diff options
Diffstat (limited to 'Electrical_Power-i__by_M.L._Anand/Chapter5.ipynb')
-rwxr-xr-x | Electrical_Power-i__by_M.L._Anand/Chapter5.ipynb | 630 |
1 files changed, 630 insertions, 0 deletions
diff --git a/Electrical_Power-i__by_M.L._Anand/Chapter5.ipynb b/Electrical_Power-i__by_M.L._Anand/Chapter5.ipynb new file mode 100755 index 00000000..aadf45e9 --- /dev/null +++ b/Electrical_Power-i__by_M.L._Anand/Chapter5.ipynb @@ -0,0 +1,630 @@ +{ + "metadata": { + "name": "", + "signature": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5, Electrical features of lines-2" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.1 : page 128" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data :\n", + "Load=100 #in MW\n", + "V=380 #in KV\n", + "d=100 #in km\n", + "rho=0.045 #in ohm/cm**2/km\n", + "w=0.01 #in kg/cm**3\n", + "Eff=90 #in %\n", + "IL=Load*10**6/(sqrt(3)*V*10**3) #in Ampere\n", + "P_loss=Load*(100-Eff)/100 #in MW\n", + "P_loss=P_loss*10**6 #in Watt\n", + "P_loss=P_loss/3 #in watt/conductor\n", + "R_con=P_loss/IL**2 #in ohm/conductor\n", + "#R_con=R_con/d #in ohm/conductor/km\n", + "a=rho*d/R_con #in cm**2\n", + "vol=a*d #in cm**3\n", + "W_cu=vol*w #in Kg\n", + "W_cu*=100*10**3*3 # kg per 100 km \n", + "print \"Weight of Cu for 3 conductors of 100 km length %0.f Kg\" %W_cu\n", + "#Note : answer in the book is not accurate." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Weight of Cu for 3 conductors of 100 km length 9349 Kg\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.2 : page 129" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data : \n", + "R=2 #in ohm\n", + "X=6 #in ohm\n", + "P=10000*10**3 #in watts\n", + "cos_fir=0.8 #unitless\n", + "VR=22*10**3 #in volt\n", + "I=P/(sqrt(3)*VR*cos_fir) #in Ampere\n", + "VR_phase=VR/sqrt(3) #in volt\n", + "Vs=sqrt((VR_phase*cos_fir+I*R)**2+(VR_phase*sqrt(1-cos_fir**2)+I*X)**2) \n", + "print \"Sending end voltage Vs(phase) %0.2f V\" %Vs\n", + "R=((Vs-VR_phase)/VR_phase)*100 # %\n", + "print \"Regulation = %0.2f %%\" %R\n", + "# Ans in the textbook is not accurate." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sending end voltage Vs(phase) 14455.83 V\n", + "Regulation = 13.81 %\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.3 : page 129" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data : \n", + "l=10*10**3 #in meter\n", + "P_del=4000 #in KVA\n", + "cos_fir=0.9 #unitless\n", + "VL=11*10**3 #in volt\n", + "R=0.2*10 #in ohm/phase/10km\n", + "X=0.3*10 #in ohm/phase/10km\n", + "I=P_del*10**3/(sqrt(3)*VL) #in Ampere\n", + "VR_phase=VL/sqrt(3) #in volt\n", + "Vs=sqrt((VR_phase*cos_fir+I*R)**2+(VR_phase*sqrt(1-cos_fir**2)+I*X)**2) # V\n", + "Vs*=sqrt(3)/1000 # kV\n", + "print \"Sending end voltage Vs(line) %0.4f KV\" %Vs \n", + "Reg=((Vs-VL/1000)/VL*1000)*100 # %\n", + "print \"Regulation = %0.3f %%\" %Reg \n", + "Losses3line=3*I**2*R #in watt\n", + "P_rec=P_del*cos_fir #in KW\n", + "Pin=P_rec+Losses3line/1000 #in KW\n", + "ETA=P_rec/Pin #unitless\n", + "ETA*=100 # %\n", + "print \"Transmission Efficiency = %0.3f %%\" %ETA\n", + "cos_fis=(VR_phase*cos_fir+I*R)/(Vs*1000/sqrt(3)) #unitless\n", + "print \"Sending end PF = %0.4f lag\" %cos_fis " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sending end voltage Vs(line) 12.1483 KV\n", + "Regulation = 10.439 %\n", + "Transmission Efficiency = 93.157 %\n", + "Sending end PF = 0.8748 lag\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.4 : page 130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data :\n", + "l=15*10**3 #in meter\n", + "Pt=10000 #in kW\n", + "cos_fir=0.8 #unitless\n", + "VL=33*10**3 #in volt\n", + "R=0.2*15 #in ohm/phase/15km\n", + "X=0.4*15 #in ohm/phase/15km\n", + "I=Pt*10**3/(sqrt(3)*VL*cos_fir) #in Ampere\n", + "VR_phase=VL/sqrt(3) #in volt\n", + "Vs=sqrt((VR_phase*cos_fir+I*R)**2+(VR_phase*sqrt(1-cos_fir**2)-I*X)**2) \n", + "Vs*=sqrt(3)/1000 # \n", + "print \"Sending end voltage Vs(line) = %0.3f KV \" %Vs\n", + "Vs=sqrt((VR_phase*cos_fir+I*R)**2+(VR_phase*sqrt(1-cos_fir**2)-I*X)**2) \n", + "cos_fis=(VR_phase*cos_fir+I*R)/Vs #unitless\n", + "print \"Sending end PF = %0.4f leading \" %cos_fis\n", + "Reg=((Vs-VR_phase)/VR_phase)*100 # %\n", + "print \"Regulation = %0.3f %%\" %Reg" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sending end voltage Vs(line) = 32.641 KV \n", + "Sending end PF = 0.8436 leading \n", + "Regulation = -1.087 %\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.5 : page 131" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import array, sqrt, roots, poly\n", + "import cmath\n", + "from sympy import symbols\n", + "VR=symbols('VR')\n", + "#Given Data :\n", + "Vs_line=33*10**3 #in volt\n", + "cos_fir=0.8 #unitless\n", + "P_KVA=6000 #in KVA\n", + "P_KW=P_KVA*cos_fir #in KW\n", + "cos_fir=0.8 #unitless\n", + "impedence=complex(2,6) #in ohm/phase\n", + "R=impedence.real #in ohm\n", + "X=impedence.imag #in ohm\n", + "Vs_phase=Vs_line/sqrt(3) #in volt\n", + "##\n", + "I=P_KVA*10**3/sqrt(3)/VR\n", + "Vs = VR+I*R*cos_fir+I*X*sin_fir\n", + "#polynomial p = [1 -Vs_phase P_KVA*10**3*R*cos_fir/sqrt(3)+P_KVA*10**3*X*sin_fir/sqrt(3)]\n", + "sin_fir=sqrt(1-cos_fir**2) \n", + "p=poly((1,-Vs_phase,P_KVA*R*cos_fir/sqrt(3)+P_KVA*X*sin_fir/sqrt(3)) )\n", + "VR=roots(p) # Calculating roots of the polynomial\n", + "VR=VR[1] #(root calculated using -ve sign is discarded in shreedharacharya method)\n", + "VR_line=VR*sqrt(3) #in volt\n", + "print \"(i) Line voltage at receiving end = %0.2f KV\" %(VR_line/1000)\n", + "Regulation=((Vs_line-VR_line)/VR_line)*100 #unitless\n", + "print \"(ii) Regulation = %0.2f %%\" %Regulation\n", + "I=P_KVA*10**3/(sqrt(3)*VR_line)\n", + "#I=P*10**3/(sqrt(3)*VR_line) #in Ampere\n", + "TotalLoss=3*I**2*R #in watt\n", + "Pout=P_KVA*cos_fir #in KW\n", + "Pin=Pout+TotalLoss/1000 #in KW\n", + "ETA=Pout/Pin #unitless\n", + "print \"(iii) Transmission Efficiency = %0.2f %%\" %(ETA*100)\n", + "#NOTE : Answer wrong : Accuracy efficiency in textbook'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) Line voltage at receiving end = 31.20 KV\n", + "(ii) Regulation = 5.77 %\n", + "(iii) Transmission Efficiency = 98.48 %\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.6 - page 132" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data :\n", + "P_del=10000*10**3 #in Watts\n", + "cos_fir=0.8 #unitless\n", + "R=0.95 #in ohm/km\n", + "VR=132*10**3 #in volt\n", + "IL=P_del/(sqrt(3)*VR*cos_fir) #in Ampere\n", + "#TotalLosses=3*I**2*R and should be equal to (7.5/100)*P_del #in watt\n", + "l=(7.5/100)*P_del/(3*IL**2*R) #in km\n", + "print \"Distance = %0.2f km \" %l" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Distance = 88.04 km \n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.7 - page 133" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from numpy import sqrt\n", + "#Given Data :\n", + "I=180 #in Ampere\n", + "cos_fir=0.8 #unitless\n", + "R=0.7 #in ohm/phase\n", + "X=1.2 #in ohm/phase\n", + "ETA=90 #in %\n", + "Pdev_BY_VR=3*I*cos_fir #in KW\n", + "Psending_BY_VR=Pdev_BY_VR/(ETA/100) #in kW\n", + "Losses=3*I**2*R #in watt\n", + "VR=Losses/(Psending_BY_VR-Pdev_BY_VR) #in volt\n", + "Vs=sqrt((VR*cos_fir+I*R)**2+(VR*sqrt(1-cos_fir**2)+I*X)**2) \n", + "print \"Sending end voltage Vs(line) = %0.2f Volts\" %(Vs*sqrt(3))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sending end voltage Vs(line) = 2859.21 Volts\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.8 - page 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from numpy import log, sqrt, pi\n", + "#Given Data :\n", + "d=1*100 #in cm\n", + "dia=1 #in cm\n", + "r=dia/2 #in cm\n", + "Length=20 #in km\n", + "V=33 #in KV\n", + "P=10 #in MW\n", + "cosfi=0.8 #unitless\n", + "f=50 #in Hz\n", + "R=0.19 #in ohm/km/phase\n", + "#Part (i) :\n", + "L=2*10**-7*log(d/r) #in H/m\n", + "L20=L*Length*10**3 #in H\n", + "XL=2*pi*f*L20 #in ohm\n", + "R20=R*Length #in ohm\n", + "Z=sqrt(R20**2+XL**2) #in ohm\n", + "IR=P*10**3/(sqrt(3)*V*cosfi)\n", + "Losses=3*IR**2*R20 #in watt\n", + "ETA=P/(P+Losses/10**6) #unitless\n", + "print \"(i) Efficiency of line = %0.2f %%\" %(ETA*100)\n", + "#Part (ii) :\n", + "VR=V*1000/sqrt(3) #in volt\n", + "Vs=((VR*cosfi+IR*R20)+(VR*sqrt(1-cosfi**2)+IR*XL)) \n", + "print \"(ii) Regulation = %0.2f %% \" %(((Vs-VR)/VR)*100) \n", + "#Note : Answer in the book is wrong. In second last line of the solution in the book 16079+12885 is taken as 20605 instead of 28964. " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) Efficiency of line = 94.83 %\n", + "(ii) Regulation = 52.00 % \n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.9 : page 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from numpy import sqrt\n", + "#Given Data : \n", + "R=2.5 #in ohm\n", + "X=4.33 #in ohm\n", + "I=120 #in Ampere\n", + "Vr=3300 #in volt\n", + "cos_fir=0.8 #unitless\n", + "Vs=Vr+I*R*cos_fir+I*X*sqrt(1-cos_fir**2) #in volt\n", + "print \"Sending end voltage = %0.2f Volts\" %Vs" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sending end voltage = 3851.76 Volts\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.10 - page 135" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from numpy import sqrt\n", + "#Given Data :\n", + "Pt=4000*10**3 #in watt(power to be transmitted)\n", + "VR=11000 #in volt\n", + "cos_fir=0.9 #unitless\n", + "R=1 #in ohm\n", + "X=2.5 #in ohm\n", + "I=Pt/VR #in Ampere\n", + "Vs=VR+I*R*cos_fir+I*X*sqrt(1-cos_fir**2) #in volt\n", + "print \"(i) Sending end voltage = %0.2f Volts\" %Vs\n", + "Reg=(Vs-VR)*100/VR #in %\n", + "print \"(ii) Regulation = %0.3f %%\" %Reg\n", + "cos_fis=(VR*cos_fir+I*R)/Vs #unitless\n", + "print \"(iii) Sending end pf = %0.3f lag \" %(cos_fis)\n", + "losses=I**2*R #in watts\n", + "Pr=Pt*cos_fir #in wats(Receiving end power)\n", + "Psend=Pr+losses #in watts\n", + "Eff=Pr*100/Psend #unitless\n", + "print \"(iv) Transmission efficiency = %0.2f %%\" %(Eff)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) Sending end voltage = 11723.54 Volts\n", + "(ii) Regulation = 6.578 %\n", + "(iii) Sending end pf = 0.875 lag \n", + "(iv) Transmission efficiency = 96.46 %\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.11 - page 136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data :\n", + "L=20 #in Km(length of the line)\n", + "Pdev=3000*10**3 #in watt(power delivered)\n", + "cos_fir=0.8 #unitless\n", + "VR=11*1000 #in volt\n", + "R=0.15*L #in ohm\n", + "X=0.4*L #in ohm\n", + "I=Pdev/VR #in Ampere\n", + "Vs=VR+I*R*cos_fir-I*X*sqrt(1-cos_fir**2) #in volt\n", + "print \"(i) Sending end voltage = %0.2f Volts\" %Vs\n", + "Reg=(VR-Vs)*100/VR #in %\n", + "print \"(ii) Regulation = %0.2f %% \"%Reg \n", + "cos_fis=(VR*cos_fir+I*R)/Vs #unitless\n", + "print \"(iii) Sending end pf = %0.3f lag\" %cos_fis\n", + "losses=I**2*R #in watts\n", + "Pr=Pdev*cos_fir #in wats(Receiving end power)\n", + "Psend=Pr+losses #in watts\n", + "Eff=Pr*100/Psend #unitless\n", + "print \"(iv) Transmission efficiency = %0.2f %%\" %(Eff)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) Sending end voltage = 10345.45 Volts\n", + "(ii) Regulation = 5.95 % \n", + "(iii) Sending end pf = 0.930 lag\n", + "(iv) Transmission efficiency = 91.49 %\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.12 - page 137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data :\n", + "R=2 #in ohm\n", + "X=3 #in ohm\n", + "VR=10*1000 #in volt\n", + "P=1000*10**3 #in watt(power delivered)\n", + "cos_fir=0.8 #unitless\n", + "I=P/(VR*cos_fir) #in Ampere\n", + "Vs=sqrt((VR*cos_fir+I*R)**2+(VR*sqrt(1-cos_fir**2)+I*X)**2) #in volt\n", + "Reg=(Vs-VR)*100/VR #in %\n", + "print \"(i) Regulation = %0.2f %%\" %Reg \n", + "losses=I**2*R #in watts\n", + "Pr=P*cos_fir #in wats(Receiving end power)\n", + "Psend=Pr+losses #in watts\n", + "Eff=Pr*100/Psend #unitless\n", + "print \"(ii) Transmission efficiency = %0.2f %% \" %(Eff)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) Regulation = 4.26 %\n", + "(ii) Transmission efficiency = 96.24 % \n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Exa 5.13 - page 137" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import sqrt\n", + "from __future__ import division\n", + "#Given Data :\n", + "R=1.5 #in ohm\n", + "X=4 #in ohm\n", + "VR=11*1000 #in volt\n", + "VRphase=VR/sqrt(3) #in volt/phase\n", + "P=6000 #in KVA(power delivered)\n", + "cos_fir=0.8 #unitless\n", + "I=P*1000/(3*VRphase) #in Ampere\n", + "Vs=VRphase+cos_fir*I*R+sqrt(1-cos_fir**2)*I*X #in volt\n", + "Vs=Vs*sqrt(3) #in volt(not phase)\n", + "Reg=(Vs-VR)*100/VR #in %\n", + "print \"(i) Regulation = %0.1f %%\" %Reg\n", + "losses=3*I**2*R/1000 #in Kw\n", + "Pr=P*cos_fir #in wats(Receiving end power)\n", + "Psend=Pr+losses #in watts\n", + "Eff=Pr*100/Psend #unitless\n", + "print \"Transmission efficiency = %0.1f %%\" %Eff" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) Regulation = 17.9 %\n", + "Transmission efficiency = 91.5 %\n" + ] + } + ], + "prompt_number": 52 + } + ], + "metadata": {} + } + ] +} |