summaryrefslogtreecommitdiff
path: root/Electrical_Machines_II/extra-chapter1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electrical_Machines_II/extra-chapter1.ipynb')
-rwxr-xr-xElectrical_Machines_II/extra-chapter1.ipynb961
1 files changed, 961 insertions, 0 deletions
diff --git a/Electrical_Machines_II/extra-chapter1.ipynb b/Electrical_Machines_II/extra-chapter1.ipynb
new file mode 100755
index 00000000..aa84025a
--- /dev/null
+++ b/Electrical_Machines_II/extra-chapter1.ipynb
@@ -0,0 +1,961 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:73456f874b64111f39ff6e1df283939e5a576ba362e30194dc5083b7ddd99204"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1: Synchronous Machines(Additional problems)"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 1, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "phase = 3 #three phase winding\n",
+ "ns = 36. #number of slots\n",
+ "np = 4 #number of poles\n",
+ "\n",
+ "#Calculations\n",
+ "nsp = ns/phase #number of slots per phase\n",
+ "npp = nsp/np #number of slots pole/phase\n",
+ "alpha = 180*np/ns #slot angle\n",
+ "Kd = math.sin(npp*alpha/2*math.pi/180)/(3*math.sin(alpha/2*math.pi/180))\n",
+ "\n",
+ "#Results\n",
+ "print \"The distribution factor is %.2f\"%Kd"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distribution factor is 0.96\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 2, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "np = 3 #number of phases\n",
+ "npl = 4 #number of poles\n",
+ "ns = 24 #number of slots\n",
+ "\n",
+ "#calculaions\n",
+ "nsp = ns/npl #number of slot/pole\n",
+ "alpha = 180/nsp #slot pitch(degrees)\n",
+ "m = ns/(npl*np) \n",
+ "Kd = math.sin(m*alpha/2*math.pi/180)/(m*math.sin(alpha/2*math.pi/180))\n",
+ "Kc = math.cos(alpha/2*math.pi/180)\n",
+ "\n",
+ "#Results\n",
+ "print \"Distribution factor = %.2f\"%Kd\n",
+ "print \"Pitch factor = %.3f degrees\"%Kc"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Distribution factor = 0.97\n",
+ "Pitch factor = 0.966 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 3, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vl= 11000 #V\n",
+ "N = 1500 #rpm\n",
+ "f = 50 #Hz\n",
+ "\n",
+ "#Calculations\n",
+ "P = (120*f)/N\n",
+ "Vp = Vl/math.sqrt(3)\n",
+ "\n",
+ "#Results\n",
+ "print \"Number of poles = %d\"%P\n",
+ "print \"Voltage per phase of alternator = %d V\"%Vp"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of poles = 4\n",
+ "Voltage per phase of alternator = 6350 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 4, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "P = 4 #number of poles\n",
+ "ph = 3 #number of phases\n",
+ "s = 36 #number of slots\n",
+ "cs = 8 #coil span\n",
+ "\n",
+ "#calculations\n",
+ "nsp = s/P #number of slots/pole\n",
+ "alpha = 180/nsp #slot pitch\n",
+ "m = s/(P*ph)\n",
+ "Kd = math.sin(m*alpha/2*math.pi/180)/(m*math.sin(alpha/2*math.pi/180))\n",
+ "ns = nsp-cs #no. of slots by which coil is short pitched\n",
+ "B = 1*alpha\n",
+ "Kc= math.cos(B/2*math.pi/180)\n",
+ "\n",
+ "#Results\n",
+ "print \"Distribution factor = %.3f\"%Kd\n",
+ "print \"Pitch factor = %.3f degrees\"%Kc"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Distribution factor = 0.960\n",
+ "Pitch factor = 0.985 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 5, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "P= 16. #number of poles\n",
+ "N = 375 #rpm\n",
+ "s = 144. #number of slots\n",
+ "c = 10 #number of conductors\n",
+ "phase = 3\n",
+ "phi = 0.035 #flux per pole\n",
+ "\n",
+ "#Calculations\n",
+ "f = (P*N)/120 #Hz\n",
+ "ns = s/P #slot/pole\n",
+ "m = ns/phase\n",
+ "alpha = 180/ns #slot angle\n",
+ "Kd = math.sin(m*alpha/2*math.pi/180)/(m*math.sin(alpha/2*math.pi/180))\n",
+ "Tc = s*c #total number of conductor\n",
+ "Tcp = Tc/phase #total number of conductors/phase\n",
+ "Ncp = Tcp/2 #number of turns/phase\n",
+ "emf = 4.44*Kd*phi*f*Ncp\n",
+ "Vl = math.sqrt(3)*emf\n",
+ "\n",
+ "#Results\n",
+ "print \"Frequency = %d Hz\"%f\n",
+ "print \"E.M.F = %d V\"%emf\n",
+ "print \"Line voltage = %d V\"%Vl"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency = 50 Hz\n",
+ "E.M.F = 1789 V\n",
+ "Line voltage = 3100 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 6, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "P = 4 #no. of poles\n",
+ "s = 36 #no. of slots\n",
+ "ph = 3 #no. of phases\n",
+ "cs = 8 #coil span\n",
+ "\n",
+ "#Calculations\n",
+ "ns = s/P #no. of slots/pole\n",
+ "alpha = 180/ns #slot pitch\n",
+ "m = s/(P*ph)\n",
+ "Kd = math.sin(m*alpha/2*math.pi/180)/(m*math.sin(alpha/2*math.pi/180))\n",
+ "Ns = ns-cs\n",
+ "Kc = math.cos(alpha/2*math.pi/180)\n",
+ "\n",
+ "#Results\n",
+ "print \"Distribution factor = %.2f\"%Kd\n",
+ "print \"Pitch factor = %.4f degrees\"%Kc"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Distribution factor = 0.96\n",
+ "Pitch factor = 0.9848 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 7, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "El = 6600 #V\n",
+ "P = 4 #number of poles\n",
+ "s = 60 #number of slots\n",
+ "ph = 3 #number of phases\n",
+ "c = 2 #number of conductors\n",
+ "sn = 13 #slot number\n",
+ "f = 50 #Hz\n",
+ "T = 20 #V\n",
+ "\n",
+ "#Calculations\n",
+ "n = s/P\n",
+ "m = n/ph\n",
+ "Zp = (s*c)/ph\n",
+ "B = 180/n #degrees\n",
+ "Kd = math.sin(m*B/2*math.pi/180)/(m*math.sin(B/2*math.pi/180))\n",
+ "Cs = (sn-1)*180/n #degrees\n",
+ "Kp = math.cos((180-Cs)/2*math.pi/180)\n",
+ "phi = El/(math.sqrt(3)*4.44*Kd*Kp*f*T)\n",
+ "\n",
+ "#Results\n",
+ "print \"The required flux pole is %.3f V\"%phi"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required flux pole is 0.943 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 8, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Varible declaration\n",
+ "Vl = 230 #V\n",
+ "Rt = 10*10**3 #VA\n",
+ "ph = 3 #no. of phases\n",
+ "Ra = 0.5 #ohms/phase\n",
+ "Xs = 1.2 #ohms/phase\n",
+ "cos_phi = 0.8 #lagging\n",
+ "sin_phi = 0.6 #leading\n",
+ "V = 132.8 #V\n",
+ "\n",
+ "#Calculations\n",
+ "I = Rt/(ph*V) #A\n",
+ "print I\n",
+ "#Part(a)\n",
+ "Eo = math.sqrt(((V*cos_phi)+(I*Ra))**2+((V*sin_phi)+(I*Xs))**2)\n",
+ "Reg1 = (Eo-V)/V*100\n",
+ "\n",
+ "#Part(b)\n",
+ "Eo = math.sqrt((V*cos_phi+I*Ra)**2+(V*sin_phi-I*Xs)**2)\n",
+ "Reg2 = (Eo-V)/V*100\n",
+ "\n",
+ "#Results\n",
+ "print \"Part(a): Regulation = %.2f %%\"%Reg1\n",
+ "print \"Part(b): Regulation = %.2f %%\"%Reg2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "25.1004016064\n",
+ "Part(a): Regulation = 21.81 %\n",
+ "Part(b): Regulation = -3.08 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 9, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "El = 10000 #V\n",
+ "Kd = 0.96\n",
+ "Kp = 1.0\n",
+ "phi = 15*10**-2 #wb\n",
+ "f = 50 #Hz\n",
+ "\n",
+ "#Calculations\n",
+ "T = El/(math.sqrt(3)*4.44*Kd*Kp*phi*f)\n",
+ "Zp = 2*T\n",
+ "\n",
+ "#Result\n",
+ "print \"Number of armature conductors in series/phase = %d\"%Zp\n",
+ "#Answer differs due to rounding-off errors"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of armature conductors in series/phase = 361\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 10, Page 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "s = 90 #no. of slots\n",
+ "P = 10 #no. of poles\n",
+ "ph = 3 #no. of phases\n",
+ "E = 11000. #E.M.F(V)\n",
+ "phi = 0.16 #flux(Wb)\n",
+ "f = 50 #Hz\n",
+ "\n",
+ "#Calculations\n",
+ "nsp = s/(P*ph) #slot/pole/phase\n",
+ "alpha = 180/(s/P) #slot angle\n",
+ "m = s/(P*ph)\n",
+ "Kd = math.sin(m*alpha/2*math.pi/180)/(m*math.sin(alpha/2*math.pi/180))\n",
+ "N = E/(math.sqrt(3)*4.44*Kd*phi*f)\n",
+ "Nc = 2*N\n",
+ "\n",
+ "#Result\n",
+ "print \"Number of conductors/phase are %d\"%Nc\n",
+ "#Incorrect answer for N in the textbook. Hence the result differs"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of conductors/phase are 372\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 11, Page 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vl = 400 #V\n",
+ "cos_phi = 1 #pf\n",
+ "n = 85./100 #efficiency\n",
+ "Zs = 10 #reactance(ohms)\n",
+ "\n",
+ "#Calculations\n",
+ "out = Zs*735.5 #output\n",
+ "mi = out/n #motor input(W)\n",
+ "Il = mi/(math.sqrt(3)*Vl*cos_phi)\n",
+ "I = Il #since current is minimum when power factor is unity\n",
+ "Er = I*Zs\n",
+ "V = Vl/math.sqrt(3)\n",
+ "E = math.sqrt(V**2+Er**2)\n",
+ "emf = math.sqrt(3)*E\n",
+ "\n",
+ "#Results\n",
+ "print \"Minimum current = %.1f A\"%I\n",
+ "print \"Line induces e.m.f. = %d V\"%emf\n",
+ "#Answers differ due to rounding-off errors"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum current = 12.5 A\n",
+ "Line induces e.m.f. = 454 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 12, Page 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "P = 6\n",
+ "phi = 25*10**-3 #wb\n",
+ "f = 50 #Hz\n",
+ "ph = 3 #no. of phases\n",
+ "s = 12 #no. of slots/pole\n",
+ "nc = 4 #no. of conductors/slot\n",
+ "\n",
+ "#Calculations\n",
+ "Zph = nc*s*P/ph\n",
+ "T = Zph/2\n",
+ "alpha = 180*(1-5./P)\n",
+ "Kc = math.cos(alpha/2*math.pi/180)\n",
+ "m = s/ph\n",
+ "B = 180/s\n",
+ "Kd = math.sin(m*alpha/2*math.pi/180)/(m*math.sin(alpha/2*math.pi/180))\n",
+ "Eph = 4.44*Kc*Kd*f*phi*T\n",
+ "El = math.sqrt(3)*Eph\n",
+ "\n",
+ "#Results\n",
+ "print \"Line e.m.f. = %.1f V\"%El\n",
+ "#incorrect answer for Kd in the textbook. Hence the result differs"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Line e.m.f. = 372.8 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 13, Page 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "P = 1200 #kW\n",
+ "V = 2300 #V\n",
+ "Ia = 200 #A\n",
+ "cos_phi_a = 0.9 #lagging\n",
+ "\n",
+ "#Calculations\n",
+ "Pa = V*Ia*cos_phi_a/10**3 #kW\n",
+ "phi = math.atan(cos_phi_a)\n",
+ "Pra = Pa*math.tan(phi)\n",
+ "Pr = 0 #since power factor is unity\n",
+ "Prb = Pr-Pra\n",
+ "Pb = P-Pa\n",
+ "tan_phi = Prb/Pb\n",
+ "cos_phi_b = math.cos(math.atan(tan_phi))\n",
+ "Ia = Pb*10**3/(V*cos_phi_b)\n",
+ "\n",
+ "#Results\n",
+ "print \"Power = %d kW\"%Pb\n",
+ "print \"Power factor = %.3f\"%cos_phi_b\n",
+ "print \"Current = %.1f A\"%Ia\n",
+ "#incorrect answers in the textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power = 786 kW\n",
+ "Power factor = 0.904\n",
+ "Current = 378.2 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 14, Page 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "\n",
+ "#Part (a) - for lighting load\n",
+ "P1 = 600 #kW\n",
+ "cos_phi =1 #power factor\n",
+ "tan_phi = 0\n",
+ "Prl = P1*tan_phi\n",
+ "\n",
+ "#Part(b) - for inductive load\n",
+ "P2 = 800 #W\n",
+ "cos_phi = 0.9\n",
+ "tan_phi = 0.4843\n",
+ "Pri = P2*tan_phi\n",
+ "\n",
+ "#Part(c) - for capacitive power\n",
+ "P3 = 800\n",
+ "cos_phi = 0.8\n",
+ "tan_phi = 0.75\n",
+ "Prc = -P3*tan_phi\n",
+ "\n",
+ "P = P1+P2+P3\n",
+ "Pr = Prl+Pri+Prc\n",
+ "Pa = 1000 #kW\n",
+ "cos_phi_a = 0.85\n",
+ "tan_phi_a = math.tan(math.acos(cos_phi_a))\n",
+ "Pra = Pa*tan_phi_a\n",
+ "Pb = P-Pa\n",
+ "Prb = Pr-Pra\n",
+ "tan_phi_2 = Prb/Pb\n",
+ "cos_phi_b = math.cos(math.atan(tan_phi_2))\n",
+ "\n",
+ "#Results\n",
+ "print \"Active power supplied by alternator B = %d kW\"%Pb\n",
+ "print \"Power factor of alternator B = %.4f leading\"%cos_phi_b\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Active power supplied by alternator B = 1200 kW\n",
+ "Power factor of alternator B = 0.8217 leading\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 15, Page 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "E = 1000 #KVa\n",
+ "Vl = 11000 #V\n",
+ "ph = 3 #no. of phases\n",
+ "Ra = 3.5 #armature resistance(ohms)\n",
+ "Xs = 40 #armature reactance(ohms)\n",
+ "cos_phi = 0.8\n",
+ "\n",
+ "#Calculations\n",
+ "Ia = round(E*1000/(math.sqrt(3)*Vl),1)\n",
+ "V = Vl/math.sqrt(3)\n",
+ "phi = math.degrees(math.acos(cos_phi))\n",
+ "Rad = round(Ia*Ra) #armature resistance drop/phase\n",
+ "Xad = round(Ia*Xs) #armature reactance drop per phase\n",
+ "Er = math.sqrt(Rad**2+Xad**2) #incorrect answer in the textbook\n",
+ "theta = math.degrees(math.atan(Xs/Ra))\n",
+ "\n",
+ "#Part a - Unity p.f.\n",
+ "Eba = math.sqrt(V**2+Er**2-(2*V*Er*math.cos(theta*math.pi/180)))\n",
+ "Vla = Eba*math.sqrt(3)\n",
+ "#From triangle OAB\n",
+ "alpha_a = math.degrees(math.asin((Er*math.sin(theta*math.pi/180))/Eba))\n",
+ "\n",
+ "#Part b - At p.f. 0.8 lagging\n",
+ "BOA_b = theta-phi\n",
+ "Ebb = math.sqrt(V**2+Er**2-(2*V*Er*math.cos(BOA_b*math.pi/180)))\n",
+ "Vlb = Ebb*math.sqrt(3)\n",
+ "alpha_b = math.degrees(math.asin(Er*math.sin(BOA_b*math.pi/180)/Ebb))\n",
+ "\n",
+ "#Part c - At p.f. 0.8 leading\n",
+ "BOA_c = theta+phi\n",
+ "Ebc = math.sqrt(V**2+Er**2-(2*V*Er*math.cos(BOA_c*math.pi/180)))\n",
+ "Vlc = Ebc*math.sqrt(3)\n",
+ "alpha_c = math.degrees(math.asin(Er*math.sin(BOA_c*math.pi/180)/Ebc))\n",
+ "\n",
+ "#Results\n",
+ "print \"Induced e.m.f. and angular retardation are as below:\"\n",
+ "print \"Part a : %d V,%.2f degrees\"%(Vla,alpha_a)\n",
+ "print \"Part b : %d V,%.2f degrees\"%(Vlb,alpha_b)\n",
+ "print \"Part c : %d V,%.2f degrees\"%(Vlc,alpha_c)\n",
+ "\n",
+ "#Incorrect answers in the textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Induced e.m.f. and angular retardation are as below:\n",
+ "Part a : 11284 V,18.80 degrees\n",
+ "Part b : 8984 V,17.62 degrees\n",
+ "Part c : 13294 V,13.49 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 16, Page 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Em = 6000 #V\n",
+ "Xs = 1.5 #ohms/phase\n",
+ "Il = 1000 #amps\n",
+ "sin_phi = 1 #power factor\n",
+ "\n",
+ "#Calculations\n",
+ "#Since load is inductive\n",
+ "Vt = Em-Il*Xs\n",
+ "Vl = round(math.sqrt(3)*Vt) #since winding is connected in star\n",
+ "Pr = math.sqrt(3)*Vl*Il*sin_phi/10**6\n",
+ "\n",
+ "#Results\n",
+ "print \"Reactive power supplied to the load is %.2f MVAR\"%Pr\n",
+ "#Incorrect answer in textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Reactive power supplied to the load is 13.50 MVAR\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 17, Page 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 7000 #V\n",
+ "I = 1400 #amps\n",
+ "Xs = 1.2 #ohms\n",
+ "f = 50 #Hz\n",
+ "Po = 4 #number of poles\n",
+ "cos_phi = 1 #power factor, since load is resistive\n",
+ "\n",
+ "#Calculations\n",
+ "E = math.sqrt(V**2+(I*Xs)**2) #V\n",
+ "P = 3*V*I*cos_phi #W\n",
+ "N = 120*f/Po #rpm\n",
+ "w = (2*math.pi*N)/60 #rad/sec\n",
+ "T = P/(w*9.81)\n",
+ "\n",
+ "#Result\n",
+ "print \"The required torque is %.2e kg-meter\"%T"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required torque is 1.91e+04 kg-meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 18, Page 122"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Ep = 5700 #V\n",
+ "Xs = 1.5 #ohms\n",
+ "\n",
+ "#Calculations\n",
+ "#Since windings are connected in star\n",
+ "Ip = Ep/Xs #phase current(A)\n",
+ "Il = Ip\n",
+ "\n",
+ "#Result\n",
+ "print \"The current per phase is %d Amps\"%Il"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current per phase is 3800 Amps\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Problem 19, Page 122"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vt = 15 #KV\n",
+ "Ps = 100*10**6 #power supplied by generator VA\n",
+ "cos_phi = 0.8 #power factor(lagging)\n",
+ "Xs = 0.7 #ohm per phase\n",
+ "Vl = 15 #KV\n",
+ "f = 50 #Hz\n",
+ "Po = 2 #no. of poles\n",
+ "\n",
+ "#Calculations\n",
+ "Vp = Vl/math.sqrt(3) #KV\n",
+ "AC = Vp*cos_phi\n",
+ "sin_phi = 0.6\n",
+ "BC = Vp*sin_phi #KV\n",
+ "Il = Ps/(math.sqrt(3)*Vl*10**3) #amps\n",
+ "Vd = Il*Xs #voltage drop in synchronous reactance KV\n",
+ "BL = 2.697\n",
+ "LC = BL+BC #V\n",
+ "AL = math.sqrt(AC**2+LC**2) #V\n",
+ "Em = AL*math.sqrt(3) #V\n",
+ "Ns = (120*f)/Po #rpm\n",
+ "P = Ps*cos_phi #W\n",
+ "wT = 80*10**6\n",
+ "T = (wT*60)/(2*math.pi*Ns)\n",
+ "print \n",
+ "#Result\n",
+ "print \"Induced e.m.f. = %.2f V\"%Em\n",
+ "print \"Torque = %.2e Nw-m\"%T\n",
+ "print \"Speed = %d rpm\"%Ns\n",
+ "#Answers differ due to rounding-off errors"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Induced e.m.f. = 18.19 V\n",
+ "Torque = 2.55e+05 Nw-m\n",
+ "Speed = 3000 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file