summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_16-checkpoint_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_16-checkpoint_2.ipynb')
-rwxr-xr-xElectrical_Circuit_Theory_And_Technology/chapter_16-checkpoint_2.ipynb913
1 files changed, 0 insertions, 913 deletions
diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_16-checkpoint_2.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_16-checkpoint_2.ipynb
deleted file mode 100755
index 429b5bb8..00000000
--- a/Electrical_Circuit_Theory_And_Technology/chapter_16-checkpoint_2.ipynb
+++ /dev/null
@@ -1,913 +0,0 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h1>Chapter 16: Single-phase parallel a.c. circuits</h1>"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 1, page no. 239</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the current in each branch,\n",
- "#(b) the supply current, (c) the circuit phase angle,\n",
- "#(d) the circuit impedance, and (e) the power consumed\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 20;# in Ohms\n",
- "L = 2.387E-3;# in Henry\n",
- "V = 60;# in Volts\n",
- "f = 1000;# in Hz\n",
- "\n",
- "#calculation:\n",
- "IR = V/R\n",
- "XL = 2*math.pi*f*L\n",
- "IL = V/XL\n",
- "I = (IR**2 + IL**2)**0.5\n",
- "phi = math.atan(IL/IR)\n",
- "phid = phi*180/math.pi\n",
- "Z = V/I\n",
- "P = V*I*math.cos(phi)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current through resistor is \",round(IR,2),\" A and current through Inductor is \",round( IL,2),\" A\"\n",
- "print \"\\n (b)current, I = \",round(I,2),\" A \"\n",
- "print \"\\n (c)phase angle = \",round(phid,2),\"deg lagging\"\n",
- "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n",
- "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current through resistor is 3.0 A and current through Inductor is 4.0 A\n",
- "\n",
- " (b)current, I = 5.0 A \n",
- "\n",
- " (c)phase angle = 53.13 deg lagging\n",
- "\n",
- " (d)Impedance Z = 12.0 Ohm \n",
- "\n",
- " (e)Power consumed = 180.0 Watt "
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 2, page no. 240</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the current in each branch, (b) the supply current,\n",
- "#(c) the circuit phase angle, (d) the circuit impedance, \n",
- "#(e) the power dissipated, and (f) the apparent power.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 80;# in Ohms\n",
- "C = 30E-6;# in Farads\n",
- "V = 240;# in Volts\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "IR = V/R\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "Ic = V/Xc\n",
- "I = (IR**2 + Ic**2)**0.5\n",
- "phi = math.atan(Ic/IR)\n",
- "phid = phi*180/math.pi\n",
- "Z = V/I\n",
- "P = V*I*math.cos(phi)\n",
- "S = V*I\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current through resistor is \",round(IR,2),\" A and current through capacitor is \",round( Ic,2),\" A\"\n",
- "print \"\\n (b)current, I = \",round(I,2),\" A \"\n",
- "print \"\\n (c)phase angle = \",round(phid,2),\"deg leading\"\n",
- "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n",
- "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \"\n",
- "print \"\\n (f)apparent Power = \",round(S,2),\" VA \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current through resistor is 3.0 A and current through capacitor is 2.26 A\n",
- "\n",
- " (b)current, I = 3.76 A \n",
- "\n",
- " (c)phase angle = 37.02 deg leading\n",
- "\n",
- " (d)Impedance Z = 63.88 Ohm \n",
- "\n",
- " (e)Power consumed = 720.0 Watt \n",
- "\n",
- " (f)apparent Power = 901.72 VA "
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 3, page no. 241</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the values of C and R.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "pf = 0.6;# power factor\n",
- "V = 120;# in Volts\n",
- "f = 200;# in Hz\n",
- "I = 2;# in Amperes\n",
- "\n",
- "#calculation:\n",
- "phi = math.acos(pf)\n",
- "phid = phi*180/math.pi\n",
- "IR = I*math.cos(phi)\n",
- "Ic = I*math.sin(phi)\n",
- "R = V/IR\n",
- "C = Ic/(2*math.pi*f*V)\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Resistance R = \",round(R,2),\" Ohm \"\n",
- "print \"\\n (b)Capacitance,C = \",round((C/1E-6),2),\" uF \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Resistance R = 100.0 Ohm \n",
- "\n",
- " (b)Capacitance,C = 10.61 uF "
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4, page no. 242</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the branch currents, \n",
- "#(b) the supply current and its phase angle, \n",
- "#(c) the circuit impedance, and (d) the power consumed.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 25E-6;# in Farads\n",
- "L = 120E-3;# in Henry\n",
- "V = 100;# in Volts\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "IL = V/XL\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "Ic = V/Xc\n",
- " #IL and Ic are anti-phase. Hence supply current,\n",
- "I = IL - Ic\n",
- " #the current lags the supply voltage V by 90\u00c2\u00b0\n",
- "phi = math.pi/2\n",
- "phid = phi*180/math.pi\n",
- "Z = V/I\n",
- "P = V*I*math.cos(phi)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current through Inductor is \",round(IL,2),\" A and current through capacitor is \",round( Ic,2),\" A\"\n",
- "print \"\\n (b)current, I = \",round(I,2),\" A \"\n",
- "print \"\\n (c)phase angle = \",round(phid,2),\"deg lagging\"\n",
- "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n",
- "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current through Inductor is 2.65 A and current through capacitor is 0.79 A\n",
- "\n",
- " (b)current, I = 1.87 A \n",
- "\n",
- " (c)phase angle = 90.0 deg lagging\n",
- "\n",
- " (d)Impedance Z = 53.56 Ohm \n",
- "\n",
- " (e)Power consumed = 0.0 Watt "
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 5, page no. 242</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the branch currents, \n",
- "#(b) the supply current and its phase angle, \n",
- "#(c) the circuit impedance, and (d) the power consumed.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 25E-6;# in Farads\n",
- "L = 120E-3;# in Henry\n",
- "V = 100;# in Volts\n",
- "f = 150;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "IL = V/XL\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "Ic = V/Xc\n",
- " #IL and Ic are anti-phase. Hence supply current,\n",
- "I = Ic - IL\n",
- " #the current leads the supply voltage V by 90\u00c2\u00b0\n",
- "phi = math.pi/2\n",
- "phid = phi*180/math.pi\n",
- "Z = V/I\n",
- "P = V*I*math.cos(phi)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current through Inductor is \",round(IL,2),\" A and current through capacitor is \",round( Ic,2),\" A\"\n",
- "print \"\\n (b)current, I = \",round(I,2),\" A \"\n",
- "print \"\\n (c)phase angle = \",round(phid,2),\"deg leading\"\n",
- "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n",
- "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current through Inductor is 0.88 A and current through capacitor is 2.36 A\n",
- "\n",
- " (b)current, I = 1.47 A \n",
- "\n",
- " (c)phase angle = 90.0 deg leading\n",
- "\n",
- " (d)Impedance Z = 67.93 Ohm \n",
- "\n",
- " (e)Power consumed = 0.0 Watt "
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 6, page no. 244</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the current in the coil and its phase angle,\n",
- "#(b) the current in the capacitor and its phase angle,\n",
- "#(c) the supply current and its phase angle,\n",
- "#(d) the circuit impedance, \n",
- "#(e) the power consumed, \n",
- "#(f) the apparent power, and \n",
- "#(g) the reactive power.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 30E-6;# in Farads\n",
- "R = 40;# in Ohms\n",
- "L = 159.2E-3;# in Henry\n",
- "V = 240;# in Volts\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Z1 = (R**2 + XL**2)**0.5\n",
- "ILR = V/Z1\n",
- "phi1 = math.atan(XL/R)\n",
- "phi1d = phi1*180/math.pi\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "Ic = V/Xc\n",
- "phi2 = math.pi/2\n",
- "phi2d = phi2*180/math.pi\n",
- "Ih = ILR*math.cos(phi1) + Ic*math.cos(phi2)\n",
- "Iv = -1*ILR*math.sin(phi1) + Ic*math.sin(phi2)\n",
- "I = (Ih**2 + Iv**2)**0.5\n",
- "phi = math.atan(abs(Iv)/Ih)\n",
- "Z = V/I\n",
- "P = V*I*math.cos(phi)\n",
- "phid = phi*180/math.pi\n",
- "S = V*I\n",
- "Q = V*I*math.sin(phi)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current through coil is \",round(ILR,2),\" A and lagged by phase angle is \",round(phi1d,2),\"deg\"\n",
- "print \"\\n (b)Current through capacitor is \",round(Ic,2),\" A and lead by phase angle is \",round(phi2d,2),\"deg\"\n",
- "print \"\\n (c)supply Current is \",round(I,2),\" A and lagged by phase angle is \",round(phid,2),\"deg\"\n",
- "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n",
- "print \"\\n (e)Power consumed = \",round(P,2),\" Watt \"\n",
- "print \"\\n (f)apparent Power = \",round(S,2),\" VA \"\n",
- "print \"\\n (g)reactive Power = \",round(Q,2),\" var \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current through coil is 3.75 A and lagged by phase angle is 51.35 deg\n",
- "\n",
- " (b)Current through capacitor is 2.26 A and lead by phase angle is 90.0 deg\n",
- "\n",
- " (c)supply Current is 2.43 A and lagged by phase angle is 15.85 deg\n",
- "\n",
- " (d)Impedance Z = 98.64 Ohm \n",
- "\n",
- " (e)Power consumed = 561.76 Watt \n",
- "\n",
- " (f)apparent Power = 583.97 VA \n",
- "\n",
- " (g)reactive Power = 159.53 var "
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 7, page no. 246</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the current in the coil, and (b) the current in the capacitor. \n",
- "#(c) Measure the supply current and its phase angle (d) the circuit impedance and (e) the power consumed.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 0.02E-6;# in Farads\n",
- "R = 3000;# in Ohms\n",
- "L = 120E-3;# in Henry\n",
- "V = 40;# in Volts\n",
- "f = 5000;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Z1 = (R**2 + XL**2)**0.5\n",
- "ILR = V/Z1\n",
- "phi1 = math.atan(XL/R)\n",
- "phi1d = phi1*180/math.pi\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "Ic = V/Xc\n",
- "phi2 = math.pi/2\n",
- "phi2d = phi2*180/math.pi\n",
- "Ih = ILR*math.cos(phi1) + Ic*math.cos(phi2)\n",
- "Iv = -1*ILR*math.sin(phi1) + Ic*math.sin(phi2)\n",
- "I = (Ih**2 + Iv**2)**0.5\n",
- "phi = math.atan((Iv)/Ih)\n",
- "phid = phi*180/math.pi\n",
- "Z = V/I\n",
- "P = V*I*math.cos(phi)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current through coil is \",round(ILR*1000,2),\"mA and lagged by phase angle is \",round(phi1d,1),\"deg\"\n",
- "print \"\\n (b)Current through capacitor is \",round(Ic*1000,2),\"mA and lead by phase angle is \",round(phi2d,2),\"deg\"\n",
- "print \"\\n (c)supply Current is \",round(I*1000,1),\"mA and leaded by phase angle is \",round(phid,2),\"deg\"\n",
- "print \"\\n (d)Impedance Z = \",round(Z/1000,3),\"KOhm \"\n",
- "print \"\\n (e)Power consumed = \",round(P*1000,1),\"mWatt \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current through coil is 8.3 mA and lagged by phase angle is 51.5 deg\n",
- "\n",
- " (b)Current through capacitor is 25.13 mA and lead by phase angle is 90.0 deg\n",
- "\n",
- " (c)supply Current is 19.3 mA and leaded by phase angle is 74.5 deg\n",
- "\n",
- " (d)Impedance Z = 2.068 KOhm \n",
- "\n",
- " (e)Power consumed = 206.8 mWatt "
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 8, page no. 249</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the resonant frequency of the circuit and \n",
- "#(b) the current circulating in the capacitor and inductance at resonance.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 40E-6;# in Farads\n",
- "R = 0;# in Ohms\n",
- "L = 150E-3;# in Henry\n",
- "V = 50;# in Volts\n",
- "\n",
- "#calculation:\n",
- "fr = ((1/(L*C) - R*R/(L*L))**0.5)/(2*math.pi)\n",
- "Xc = 1/(2*math.pi*fr*C)\n",
- "Icirc = V/Xc\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Parallel resonant frequency, fr = \",round(fr,2),\" Hz \"\n",
- "print \"\\n (b)Current circulating in L and C at resonance = \",round(Icirc,2),\" A \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Parallel resonant frequency, fr = 64.97 Hz \n",
- "\n",
- " (b)Current circulating in L and C at resonance = 0.82 A "
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 9, page no. 250</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the resonant frequency, \n",
- "#(b) the dynamic resistance, \n",
- "#(c) the current at resonance and \n",
- "#(d) the circuit Q-factor at resonanc\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 20E-6;# in Farads\n",
- "R = 60;# in Ohms\n",
- "L = 200E-3;# in Henry\n",
- "V = 20;# in Volts\n",
- "\n",
- "#calculation:\n",
- "fr = ((1/(L*C) - R*R/(L*L))**0.5)/(2*math.pi)\n",
- "Rd = L/(R*C)\n",
- "Ir = V/Rd\n",
- "Q = 2*math.pi*fr*L/R\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Parallel resonant frequency, fr = \",round(fr,2),\" Hz \"\n",
- "print \"\\n (b)the dynamic resistance,RD = \",round(Rd,2),\" ohm \"\n",
- "print \"\\n (c)Current at resonance = \",round(Ir,2),\" A \"\n",
- "print \"\\n (d)Q-factor = \",round(Q,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Parallel resonant frequency, fr = 63.66 Hz \n",
- "\n",
- " (b)the dynamic resistance,RD = 166.67 ohm \n",
- "\n",
- " (c)Current at resonance = 0.12 A \n",
- "\n",
- " (d)Q-factor = 1.33"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10, page no. 251</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine for the condition when the supply current is a minimum:\n",
- "#(a) the capacitance of the capacitor,\n",
- "#(b) the dynamic resistance, \n",
- "#(c) the supply current, and \n",
- "#(d) the Q-factor.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "fr = 5000;# in ohm\n",
- "R = 800;# in Ohms\n",
- "L = 100E-3;# in Henry\n",
- "V = 12;# in Volts\n",
- "\n",
- "#calculation:\n",
- "C = 1/(L*((2*math.pi*fr)**2 + R*R/(L*L)))\n",
- "Rd = L/(R*C)\n",
- "Ir = V/Rd\n",
- "Q = 2*math.pi*fr*L/R\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)capacitance, C = \",round((C/1E-9),2),\" nF \"\n",
- "print \"\\n (b)the dynamic resistance,RD = \",round(Rd,2),\" ohm \"\n",
- "print \"\\n (c)Current at resonance = \",round((Ir/1E-3),2),\" mA \"\n",
- "print \"\\n (d)Q-factor = \",round(Q,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)capacitance, C = 9.52 nF \n",
- "\n",
- " (b)the dynamic resistance,RD = 13137.01 ohm \n",
- "\n",
- " (c)Current at resonance = 0.91 mA \n",
- "\n",
- " (d)Q-factor = 3.93"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 11, page no. 252</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the currenttaken by a capacitor connected in parallel with the motor to correct the power factor to unity, and \n",
- "#(b) the value of the supply current after power factor correction.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "f = 50;# in ohm\n",
- "V = 240;# in Volts\n",
- "pf = 0.6;# power factor\n",
- "Im = 50;# in amperes\n",
- "\n",
- "#calculation:\n",
- "phi = math.acos(pf)\n",
- "phid = phi*180/math.pi\n",
- "Ic = Im*math.sin(phi)\n",
- "I = Im*math.cos(phi)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)the capacitor current Ic must be \",round(Ic,2),\" A for the power factor to be unity. \"\n",
- "print \"\\n (b)Supply current I = \",round(I,2),\" A \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)the capacitor current Ic must be 40.0 A for the power factor to be unity. \n",
- "\n",
- " (b)Supply current I = 30.0 A "
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 12, page no. 253</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the current taken by the motor, \n",
- "#(b) the supply current after power factor correction, \n",
- "#(c) the current taken by the capacitor,\n",
- "#(d) the capacitance of the capacitor, and \n",
- "#(e) the kvar rating of the capacitor.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "Pout = 4800;# in Watt\n",
- "eff = 0.8# effficiency\n",
- "f = 50;# in ohm\n",
- "V = 240;# in Volts\n",
- "pf1 = 0.625;# power factor\n",
- "pf2 = 0.95;# power factor\n",
- "\n",
- "#calculation:\n",
- "Pin = Pout/eff\n",
- "Im = Pin/(V*pf1)\n",
- "phi1 = math.acos(pf1)\n",
- "phi1d = phi1*180/math.pi\n",
- "phi2 = math.acos(pf2)\n",
- "phi2d = phi2*180/math.pi\n",
- "Imh = Im*math.cos(phi1)\n",
- " #Ih = I*cos(phi2)\n",
- "Ih = Imh\n",
- "I = Ih/math.cos(phi2)\n",
- "Imv = Im*math.sin(phi1)\n",
- "Iv = I*math.sin(phi2)\n",
- "Ic = Imv - Iv\n",
- "C = Ic/(2*math.pi*f*V)\n",
- "kvar = V*Ic/1000\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)current taken by the motor, Im = \",round(Im,2),\" A\"\n",
- "print \"\\n (b)supply current after p.f. correction, I = \",round(I,2),\" A \"\n",
- "print \"\\n (c)magnitude of the capacitor current Ic = \",round(Ic,0),\" A\"\n",
- "print \"\\n (d)capacitance, C = \",round((C/1E-6),0),\" uF \"\n",
- "print \"\\n (d)kvar rating of the capacitor = \",round(kvar,2),\" kvar \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)current taken by the motor, Im = 40.0 A\n",
- "\n",
- " (b)supply current after p.f. correction, I = 26.32 A \n",
- "\n",
- " (c)magnitude of the capacitor current Ic = 23.0 A\n",
- "\n",
- " (d)capacitance, C = 305.0 uF \n",
- "\n",
- " (d)kvar rating of the capacitor = 5.52 kvar "
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 13, page no. 254</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine, for the lamps and motor, (a) the total current, (b) the overall power factor and \n",
- "#(c) the total power. (d) Find the value of the static capacitor to improve the overall power factor to 0.975 lagging.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "S = 3000;# in VA\n",
- "f = 50;# in ohm\n",
- "V = 250;# in Volts\n",
- "Iil = 10;# in Amperes\n",
- "Ifl = 8;# in Amperes\n",
- "pfil = 1; # power factor\n",
- "pffl = 0.7;# power factor\n",
- "pfm = 0.8;# power factor\n",
- "pf0 = 0.975;# power factor\n",
- "\n",
- "#calculation:\n",
- "phiil = math.acos(pfil)\n",
- "phiild = phiil*180/math.pi\n",
- "phifl = math.acos(pffl)\n",
- "phifld = phifl*180/math.pi\n",
- "phim = math.acos(pfm)\n",
- "phimd = phim*180/math.pi\n",
- "phi0 = math.acos(pf0)\n",
- "phi0d = phi0*180/math.pi\n",
- "Im = S/V\n",
- "Ih = Iil*math.cos(phiil) + Ifl*math.cos(phifl) + Im*math.cos(phim)\n",
- "Iv = Iil*math.sin(phiil) - Ifl*math.sin(phifl) - Im*math.sin(phim)\n",
- "Il = (Ih**2 + Iv**2)**0.5\n",
- "phi = math.atan(abs(Iv)/Ih)\n",
- "phid = phi*180/math.pi\n",
- "pf = math.cos(phi)\n",
- "P = V*Il*pf\n",
- "I = Il*math.cos(phi)/math.cos(phi0)\n",
- "Ic = Il*math.sin(phi) - I*math.sin(phi0)\n",
- "C = Ic/(2*math.pi*f*V)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)total current, Il = \",round(Il,2),\" A\"\n",
- "print \"\\n (b)Power factor = \",round(pf,2),\"lagging\"\n",
- "print \"\\n (c)Total power, P = \",round(P/1000,2),\"KWatt\"\n",
- "print \"\\n (d)capacitance, C = \",round((C/1E-6),2),\"uF \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)total current, Il = 28.32 A\n",
- "\n",
- " (b)Power factor = 0.89 lagging\n",
- "\n",
- " (c)Total power, P = 6.3 KWatt\n",
- "\n",
- " (d)capacitance, C = 91.29 uF "
- ]
- }
- ],
- "prompt_number": 10
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file