diff options
Diffstat (limited to 'Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_1.ipynb')
-rwxr-xr-x | Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_1.ipynb | 1677 |
1 files changed, 0 insertions, 1677 deletions
diff --git a/Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_1.ipynb b/Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_1.ipynb deleted file mode 100755 index e7b68d8a..00000000 --- a/Electrical_Circuit_Theory_And_Technology/chapter_15-checkpoint_1.ipynb +++ /dev/null @@ -1,1677 +0,0 @@ -{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h1>Chapter 15: Single-phase series a.c. circuits</h1>"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 1, page no. 214</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#(a) Calculate the reactance of a coil \n",
- "#(b) Determine the inductance of the coil.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "L = 0.32;# in Henry\n",
- "f1 = 50;# in Hz\n",
- "f2 = 5000;# in Hz\n",
- "Z = 124;# in ohms\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f1*L\n",
- "L = Z/(2*math.pi*f2)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Inductive reactance, XL = \",round(XL,2),\" ohms \\n\"\n",
- "print \"\\n (b)Inductance L = \",round((L/1E-3),2),\" mH \\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Inductive reactance, XL = 100.53 ohms \n",
- "\n",
- "\n",
- " (b)Inductance L = 3.95 mH "
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 2, page no. 214</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate its inductive reactance and the resulting current if connected to\n",
- "#(a) a 240 V, 50 Hz supply, and (b) a 100 V, 1 kHz supply.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "L = 0.040;# in Henry\n",
- "V1 = 240;# in volts\n",
- "V2 = 100;# in volts\n",
- "f1 = 50;# in Hz\n",
- "f2 = 1000;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL1 = 2*math.pi*f1*L\n",
- "I1 = V1/XL1\n",
- "XL2 = 2*math.pi*f2*L\n",
- "I2 = V2/XL2\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Inductive reactance, XL = \",round( XL1,2),\" ohms and current I = \",round( I1,2),\" A\\n\"\n",
- "print \"\\n (b)Inductive reactance, XL = \",round( XL2,2),\" ohms and current I = \",round( I2,2),\" A\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Inductive reactance, XL = 12.57 ohms and current I = 19.1 A\n",
- "\n",
- "\n",
- " (b)Inductive reactance, XL = 251.33 ohms and current I = 0.4 A"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 3, page no. 215</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the capacitive reactance of a capacitor of 10 \u03bcF when connected to a circuit of frequency (a) 50 Hz (b) 20 kHz\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 10E-6;# in Farads\n",
- "f1 = 50;# in Hz\n",
- "f2 = 20000;# in Hz\n",
- "\n",
- "#calculation:\n",
- "Xc1 = 1/(2*math.pi*f1*C)\n",
- "Xc2 = 1/(2*math.pi*f2*C)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Capacitive reactance, Xc = \",round( Xc1,2),\" ohms \"\n",
- "print \"\\n (b)Capacitive reactance, Xc = \",round( Xc2,2),\" ohms \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Capacitive reactance, Xc = 318.31 ohms \n",
- "\n",
- " (b)Capacitive reactance, Xc = 0.8 ohms "
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4, page no. 215</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the value of its capacitance.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "Z = 40;# in ohms\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "C = 1/(2*math.pi*f*Z)\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n Capacitance,C = \",round((C/1E-6),2),\" uF \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " Capacitance,C = 79.58 uF "
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 5, page no. 215</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate the current taken by a 23 \u03bcF capacitor when connected to a 240 V, 50 Hz supply.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "C = 23E-6;# in Farads\n",
- "f = 50;# in Hz\n",
- "V = 240;# in volts\n",
- "\n",
- "#calculation:\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "I = V/Xc\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n current I = \",round(I,2),\" A \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " current I = 1.73 A "
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 6, page no. 216</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Find the supply voltage and the phase angle between current and voltage\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "Vr = 12;# in volts\n",
- "Vl = 5;# in volts\n",
- "\n",
- "#calculation:\n",
- "V = (Vr**2 + Vl**2)**0.5\n",
- "phi = math.atan(Vl/Vr)\n",
- "phid = phi*180/math.pi\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n supply voltage V = \",V,\" V, phase angle between current and voltage is \", round(phid,2),\"deg lagging\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " supply voltage V = 13.0 V, phase angle between current and voltage is 22.62 deg lagging"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 7, page no. 216</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the reactance, (b) the impedance, and (c) the current taken from a 240 V, 50 Hz supply. \n",
- "#Determine also the phase angle between the supply voltage and current\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "V = 240;# in volts\n",
- "R = 4;# in ohms\n",
- "L = 0.00955;# in Henry\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Z = (R**2 + XL**2)**0.5\n",
- "I = V/Z\n",
- "phid = math.atan(XL/R)*180/math.pi\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Inductive reactance, XL = \",round(XL,2),\" ohms\"\n",
- "print \"\\n (b)Impedance, Z = \",round(Z,2),\" ohms\"\n",
- "print \"\\n (c)Current, I = \",round(I,2),\" A\"\n",
- "print \"\\n (d)phase angle between the supply voltage and current is \",round(phid,2),\"deg lagging\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Inductive reactance, XL = 3.0 ohms\n",
- "\n",
- " (b)Impedance, Z = 5.0 ohms\n",
- "\n",
- " (c)Current, I = 48.0 A\n",
- "\n",
- " (d)phase angle between the supply voltage and current is 36.87 deg lagging\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 8, page no. 217</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate the resistance, impedance, inductive reactance and inductance of the coil.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "Vdc = 12;# in volts\n",
- "Vac = 240;# in volts\n",
- "Iac = 20;# in Amperes\n",
- "Idc = 2;# in Amperes\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "R = Vdc/Idc\n",
- "Z = Vac/Iac\n",
- "XL = (Z**2 - R**2)**0.5\n",
- "L = XL/(2*math.pi*f)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Resistance, R = \",R,\" ohms\"\n",
- "print \"\\n (b)Impedance, Z = \",Z,\" ohms\"\n",
- "print \"\\n (c)Inductive reactance, XL = \",round(XL,2),\" ohms\"\n",
- "print \"\\n (d)Inductance, L = \",round(L,2),\" H\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Resistance, R = 6.0 ohms\n",
- "\n",
- " (b)Impedance, Z = 12.0 ohms\n",
- "\n",
- " (c)Inductive reactance, XL = 10.39 ohms\n",
- "\n",
- " (d)Inductance, L = 0.03 H"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 9, page no. 217</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the inductive reactance of the coil, \n",
- "#(b) the impedance of the circuit, \n",
- "#(c) the current in the circuit, \n",
- "#(d) the p.d. across each component, and \n",
- "#(e) the circuit phase angle.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 200;# in ohms\n",
- "L = 0.3183;# in henry\n",
- "V = 240;# in volts\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Z = (R**2 + XL**2)**0.5\n",
- "I = V/Z\n",
- "VL = I*XL\n",
- "VR = I*R\n",
- "phid = math.atan(XL/R)*180/math.pi\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Inductive reactance, XL = \",round(XL,2),\" ohms\"\n",
- "print \"\\n (b)Impedance, Z = \",round(Z,2),\" ohms\"\n",
- "print \"\\n (c)current, I = \",round(I,2),\" A\"\n",
- "print \"\\n (d)p.d. across Inductor, VL = \",round(VL,2),\" V and p.d. across resistance, VR = \",round(VR,2),\" V\"\n",
- "print \"\\n (e)circuit phase angle is \",round(phid,2),\" deg lagging\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Inductive reactance, XL = 100.0 ohms\n",
- "\n",
- " (b)Impedance, Z = 223.61 ohms\n",
- "\n",
- " (c)current, I = 1.07 A\n",
- "\n",
- " (d)p.d. across Inductor, VL = 107.33 V and p.d. across resistance, VR = 214.66 V\n",
- "\n",
- " (e)circuit phase angle is 26.56 deg lagging\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10, page no. 218</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#calculate (a) the circuit impedance, \n",
- "#(b) the current flowing, \n",
- "#(c) the p.d. across the resistance, \n",
- "#(d) the p.d. across the inductance and \n",
- "#(e) the phase angle between voltage and current.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 100;# in ohms\n",
- "L = 0.2;# in henry\n",
- "Vmax = 200;# in volts\n",
- "w = 500;# in rad/sec\n",
- "\n",
- "#calculation:\n",
- "Vrms = 0.707*Vmax\n",
- "f = w/(2*math.pi)\n",
- "XL = 2*math.pi*f*L\n",
- "Z = (R**2 + XL**2)**0.5\n",
- "I = Vrms/Z\n",
- "VL = I*XL\n",
- "VR = I*R\n",
- "phid = math.atan(XL/R)*180/math.pi\n",
- "\n",
- "\\\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Impedance, Z = \",round(Z,2),\" ohms\"\n",
- "print \"\\n (b)current, I = \",round(I,2),\" A\"\n",
- "print \"\\n (c)p.d. across resistance, VR = \",round(VR,2),\" V\"\n",
- "print \"\\n (d)p.d. across Inductor, VL = \",round(VL,2),\" V\"\n",
- "print \"\\n (e)circuit phase angle is \",phid,\"deg\\n\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Impedance, Z = 141.42 ohms\n",
- "\n",
- " (b)current, I = 1.0 A\n",
- "\n",
- " (c)p.d. across resistance, VR = 99.98 V\n",
- "\n",
- " (d)p.d. across Inductor, VL = 99.98 V\n",
- "\n",
- " (e)circuit phase angle is 45.0 deg"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 11, page no. 218</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#determine the value of the supply voltage and the voltage across the 1.273 mH inductance.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 30;# in ohms\n",
- "L = 1.2273E-3;# in henry\n",
- "f = 5000;# in Hz\n",
- "VR = 6;# in volts\n",
- "\n",
- "#calculation:\n",
- "I =VR/R\n",
- "XL = 2*math.pi*f*L\n",
- "Z = (R**2 + XL**2)**0.5\n",
- "V = I*Z\n",
- "VL = I*XL\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)supply voltage = \",round(V,2),\" Volts\"\n",
- "print \"\\n (b)p.d. across Inductor, VL = \",round(VL,2),\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)supply voltage = 9.77 Volts\n",
- "\n",
- " (b)p.d. across Inductor, VL = 7.71 V"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 12, page no. 219</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the impedance of the circuit, \n",
- "#(b) the current in the circuit, \n",
- "#(c) the circuit phase angle, \n",
- "#(d) the p.d. across the 60 ohm resistor\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 60;# in ohms\n",
- "Rc = 20;# in ohms\n",
- "L = 159.2E-3;# in henry\n",
- "f = 50;# in Hz\n",
- "V = 240;# in volts\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Rt = R + Rc\n",
- "Z = (Rt**2 + XL**2)**0.5\n",
- "I = V/Z\n",
- "phid = math.atan(XL/Rt)*180/math.pi\n",
- "VR = I*R\n",
- "Zc = (Rc**2 + XL**2)**0.5\n",
- "Vc = I*Zc\n",
- "VL = I*XL\n",
- "VRc = I*Rc\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Impedance, Z = \",round(Z,2),\" ohms\"\n",
- "print \"\\n (b)current, I = \",round(I,3),\" A\"\n",
- "print \"\\n (c)circuit phase angle is \",round(phid,0),\"deg lagging\"\n",
- "print \"\\n (d)p.d. across resistance, VR = \",round( VR,1),\" V\"\n",
- "print \"\\n (e)p.d. across coil, Vc = \",round(Vc,1),\" V\"\n",
- "print \"\\n (f1)p.d. across Inductor, VL = \",round(VL,2),\" V\"\n",
- "print \"\\n (f2)p.d. across coil resistance, VRc = \",round(VRc,2),\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Impedance, Z = 94.35 ohms\n",
- "\n",
- " (b)current, I = 2.544 A\n",
- "\n",
- " (c)circuit phase angle is 32.0 deg lagging\n",
- "\n",
- " (d)p.d. across resistance, VR = 152.6 V\n",
- "\n",
- " (e)p.d. across coil, Vc = 137.0 V\n",
- "\n",
- " (f1)p.d. across Inductor, VL = 127.23 V\n",
- "\n",
- " (f2)p.d. across coil resistance, VRc = 50.88 V"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 13, page no. 220</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the impedance, and (b) the current taken from a 240 V, 50 Hz supply. \n",
- "#Find also the phase angle between the supply voltage and the current.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 25;# in ohms\n",
- "C = 45E-6;# in Farads\n",
- "f = 50;# in Hz\n",
- "V = 240;# in volts\n",
- "\n",
- "#calculation:\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "Z = (R**2 + Xc**2)**0.5\n",
- "I = V/Z\n",
- "phid = math.atan(Xc/R)*180/math.pi\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Impedance, Z = \",round(Z,2),\" ohms\"\n",
- "print \"\\n (b)current, I = \",round(I,2),\" A\"\n",
- "print \"\\n (c)phase angle between the supply voltage and current is \",round(phid,2),\"deg leading\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Impedance, Z = 75.02 ohms\n",
- "\n",
- " (b)current, I = 3.2 A\n",
- "\n",
- " (c)phase angle between the supply voltage and current is 70.54 deg leading"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 14, page no. 221</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate: (a) the value of capacitance, C, \n",
- "#(b) the supply voltage, \n",
- "#(c) the phase angle between the supply voltage and current, \n",
- "#(d) the p.d. across the resistor, and\n",
- "#(e) the p.d. across the capacitor\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 40;# in ohms\n",
- "f = 60;# in Hz\n",
- "I = 3;#in amperes\n",
- "Z = 50;# in ohms\n",
- "\n",
- "#calculation:\n",
- "Xc = (Z**2 - R**2)**0.5\n",
- "C = 1/(2*math.pi*f*Xc)\n",
- "V = I*Z\n",
- "phid = math.atan(Xc/R)*180/math.pi\n",
- "VR = I*R\n",
- "Vc = I*Xc\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)capacitance, C = \",round((C/1E-6),2),\" uF\"\n",
- "print \"\\n (b)Voltage, V = \",V,\" Volts\"\n",
- "print \"\\n (c)phase angle between the supply voltage and current is \",round(phid,2),\"deg leading\"\n",
- "print \"\\n (d)p.d. across resistance, VR = \", VR,\" V\"\n",
- "print \"\\n (e)p.d. across Capacitor, Vc = \",Vc,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)capacitance, C = 88.42 uF\n",
- "\n",
- " (b)Voltage, V = 150 Volts\n",
- "\n",
- " (c)phase angle between the supply voltage and current is 36.87 deg leading\n",
- "\n",
- " (d)p.d. across resistance, VR = 120 V\n",
- "\n",
- " (e)p.d. across Capacitor, Vc = 90.0 V"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 15, page no. 222</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the current flowing, \n",
- "#(b) the phase difference between the supply voltage and current, \n",
- "#(c) the voltage across the coil and \n",
- "#(d) the voltage across the capacitor\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 5;# in ohms\n",
- "C = 100E-6;# in Farads\n",
- "L = 0.12;# in Henry\n",
- "f = 50;# in Hz\n",
- "V = 300;# in volts\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "X = XL - Xc\n",
- " #Since XL is greater than Xc, the circuit is inductive.\n",
- "Z = (R**2 + (XL-Xc)**2)**0.5\n",
- "I = V/Z\n",
- "phid = math.atan((XL-Xc)/R)*180/math.pi\n",
- "Zcl = (R**2 + XL**2)**0.5\n",
- "Vcl = I*Zcl\n",
- "phidc = math.atan(XL/R)*180/math.pi\n",
- "Vc = I*Xc\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current,I = \",round(I,2),\" A\"\n",
- "print \"\\n (b)phase angle between the supply voltage and current is \",round(phid,2),\"deg\"\n",
- "print \"\\n (c)Voltage across the coil, Vcoil = \",round(Vcl,0),\" Volts\"\n",
- "print \"\\n (d)p.d. across Capacitor, Vc = \",round(Vc,0),\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current,I = 38.91 A\n",
- "\n",
- " (b)phase angle between the supply voltage and current is 49.57 deg\n",
- "\n",
- " (c)Voltage across the coil, Vcoil = 1480.0 Volts\n",
- "\n",
- " (d)p.d. across Capacitor, Vc = 1239.0 V"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 16, page no. 224</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the circuit current, \n",
- "#(b) the circuit phase angle and \n",
- "#(c) the voltage drop across each impedance.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R1 = 8;# in ohms\n",
- "C = 0.25E-6;# in Farads\n",
- "L = 130E-6;# in Henry\n",
- "Rc = 5;# in ohms\n",
- "R2 = 10;# in ohms\n",
- "f = 20000;# in Hz\n",
- "V = 40;# in volts\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "X = Xc - XL\n",
- "R = R1 + R2 + Rc\n",
- " #Since Xc is greater than XL, the circuit is capacitive.\n",
- "Z = (R**2 + (Xc-XL)**2)**0.5\n",
- "I = V/Z\n",
- "phid = math.atan((Xc-XL)/R)*180/math.pi\n",
- "V1 = I*R1\n",
- "V2 = I*((Rc**2 + XL**2)**0.5)\n",
- "V3 = I*((R2**2 + Xc**2)**0.5)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current,I = \",round(I,2),\" A\"\n",
- "print \"\\n (b)circuit phase angle is \",round(phid,2),\"deg leading\"\n",
- "print \"\\n (c1)Voltage across the Resistance of 8 ohms = \",round(V1,2),\" Volts\"\n",
- "print \"\\n (c2)Voltage across the coil, Vcoil = \",round(V2,2),\" Volts\"\n",
- "print \"\\n (c3)p.d. across Capacitor resistance circuit = \",round(V3,2),\" Volts\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current,I = 1.44 A\n",
- "\n",
- " (b)circuit phase angle is 33.97 deg leading\n",
- "\n",
- " (c1)Voltage across the Resistance of 8 ohms = 11.54 Volts\n",
- "\n",
- " (c2)Voltage across the coil, Vcoil = 24.64 Volts\n",
- "\n",
- " (c3)p.d. across Capacitor resistance circuit = 48.12 Volts"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 17, page no. 224</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the p.d.\u2019s V1 and V2 for the circuit\n",
- "#determine the supply voltage V and the circuit phase angle.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R1 = 4;# in ohms\n",
- "C = 1.273E-6;# in Farads\n",
- "L = 0.286E-3;# in Henry\n",
- "R2 = 8;# in ohms\n",
- "f = 5000;# in Hz\n",
- "I = 5;# in amperes\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "phid1 = math.atan(XL/R1)*180/math.pi\n",
- "V1 = I*((R1**2 + XL**2)**0.5)\n",
- "Xc = 1/(2*math.pi*f*C)\n",
- "V2 = I*((R2**2 + Xc**2)**0.5)\n",
- "phid2 = math.atan(Xc/R2)*180/math.pi\n",
- "Z = ((R1+R2)**2 + (Xc-XL)**2)**0.5\n",
- "V = I*Z\n",
- "phid = math.atan((Xc-XL)/(R1+R2))*180/math.pi\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Voltage supply, V = \",round(V,2),\" V\"\n",
- "print \"\\n (b)circuit phase angle is \",round(phid,2),\"deg leading\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Voltage supply, V = 100.08 V\n",
- "\n",
- " (b)circuit phase angle is 53.16 deg leading"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 18, page no. 226</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#At what frequency does resonance occur?\n",
- "#Find the current flowing at the resonant frequency.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 10;# in ohms\n",
- "C = 60E-6;# in Farads\n",
- "L = 125E-3;# in Henry\n",
- "V = 120;# in Volts\n",
- "\n",
- "#calculation:\n",
- "fr = 1/(2*math.pi*(L*C)**0.5)\n",
- " #At resonance, XL = Xc and impedance Z = R\n",
- "I = V/R\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Resonance frequency,Fr = \",round(fr,2),\" Hz\"\n",
- "print \"\\n (b)Current, I = \",round(I,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Resonance frequency,Fr = 58.12 Hz\n",
- "\n",
- " (b)Current, I = 12.0"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 19, page no. 226</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#find (a) the circuit resistance, and (b) the circuit capacitance.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "L = 0.05E-3;# in Henry\n",
- "fr = 200000;# in Hz\n",
- "V = 0.002;# in Volts\n",
- "I = 0.1E-3;# in amperes\n",
- "#calculation:\n",
- "# L-C-R\n",
- "#At resonance, XL = Xc and impedance Z = R\n",
- "R = V/I\n",
- "C = 1/(L*(2*math.pi*fr)**2)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Resistance, R = \",round(R,2),\" ohms\"\n",
- "print \"\\n (b)Capacitance, C = \",round((C/1E-9),2),\"nF\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Resistance, R = 20.0 ohms\n",
- "\n",
- " (b)Capacitance, C = 12.67 nF"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 20, page no. 227</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the resonant frequency, and \n",
- "#(b) the current at resonance. \n",
- "#How many times greater than the supply voltage is the voltage across the reactances at resonance?\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "L = 80E-3;# in Henry\n",
- "C = 0.25E-6;# in Farads\n",
- "R = 12.5;# in ohms\n",
- "V = 100;# in Volts\n",
- "\n",
- "#calculation:\n",
- "fr = 1/(2*math.pi*((L*C)**0.5))\n",
- " #At resonance, XL = Xc and impedance Z = R\n",
- "I = V/R\n",
- "VL = I*(2*math.pi*fr*L)\n",
- "Vc = I/(2*math.pi*fr*C)\n",
- "Vm = VL/V\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)the resonant frequency = \",round(fr,2),\" Hz\"\n",
- "print \"\\n (b)Current, I = \",round(I,2),\"\"\n",
- "print \"\\n (b)Voltage magnification at resonance = \",round(Vm,2),\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)the resonant frequency = 1125.4 Hz\n",
- "\n",
- " (b)Current, I = 8.0 \n",
- "\n",
- " (b)Voltage magnification at resonance = 45.25 V"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 21, page no. 228</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the Qfactor of the circuit at resonance\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "L = 60E-3;# in Henry\n",
- "C = 30E-6;# in Farads\n",
- "R = 2;# in ohms\n",
- "\n",
- "#calculation:\n",
- "Q = ((L/C)**0.5)/R\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n At resonance, Q-factor = \",round(Q,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " At resonance, Q-factor = 22.36"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 22, page no. 228</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine (a) the resonant frequency, \n",
- "#(b) the current at resonance,\n",
- "#(c) the voltages across the coil and the capacitor at resonance, and\n",
- "#(d) the Q-factor of the circuit.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "L = 100E-3;# in Henry\n",
- "C = 2E-6;# in Farads\n",
- "R = 10;# in ohms\n",
- "V = 50;# in Volts\n",
- "\n",
- "#calculation:\n",
- "fr = 1/(2*math.pi*((L*C)**0.5))\n",
- " #At resonance, XL = Xc and impedance Z = R\n",
- "I = V/R\n",
- "VL = I*(2*math.pi*fr*L)\n",
- "Vc = I/(2*math.pi*fr*C)\n",
- "Q = VL/V\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)the resonant frequency = \",round(fr,2),\" Hz\"\n",
- "print \"\\n (b)Current, I = \",round(I,2),\"\"\n",
- "print \"\\n (c)Voltage across coil at resonance is \",round(VL,2),\"V \"\n",
- "print \"and Voltage across capacitance at resonance is \",round( Vc,2),\"V\"\n",
- "print \"\\n (d)At resonance, Q-factor = \",round(Q,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)the resonant frequency = 355.88 Hz\n",
- "\n",
- " (b)Current, I = 5.0 \n",
- "\n",
- " (c)Voltage across coil at resonance is 1118.03 V and Voltage across capacitance at resonance is 1118.03 V\n",
- "\n",
- " (d)At resonance, Q-factor = 22.36"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 23, page no. 230</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the bandwidth of the filter.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "L = 20E-3;# in Henry\n",
- "R = 10;# in ohms\n",
- "fr = 5000;# in Hz\n",
- "\n",
- "#calculation:\n",
- "Qr = (2*math.pi*fr)*L/R\n",
- "bw = fr/Qr\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n Bandwidth, (f2-f1) = \",round(bw,2),\" Hz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " Bandwidth, (f2-f1) = 79.58 Hz"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 24, page no. 231</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Find the power dissipated in the resistor.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 5000;# in ohms\n",
- "Imax = 0.250;# in Amperes\n",
- "\n",
- "#calculation:\n",
- "Irms = 0.707*Imax\n",
- "P = Irms*Irms*R\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n Power, P = \",round(P,2),\" Watts\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " Power, P = 156.2 Watts"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 25, page no. 231</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate the power dissipated.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "R = 60;# in ohms\n",
- "L = 75E-3;# in Henry\n",
- "V = 110;# in Volts\n",
- "f = 60;# in Hz\n",
- "\n",
- "#calculation:\n",
- "XL = 2*math.pi*f*L\n",
- "Z = (R**2 + XL**2)**0.5\n",
- "I = V/Z\n",
- "P = I*I*R\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n Power, P = \",round(P,2),\" Watts\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " Power, P = 165.02 Watts"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 26, page no. 232</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Find the value of the inductance.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "VI = 300;# in VA\n",
- "V = 150;# in Volts\n",
- "f = 50;# in Hz\n",
- "\n",
- "#calculation:\n",
- "I = VI/V\n",
- "XL = V/I\n",
- "L = XL/(2*math.pi*f)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n Inductance = \",round(L,2),\" H\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " Inductance = 0.24 H"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 27, page no. 232</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Determine the rated power output and the corresponding reactive power.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "VI = 200000;# in VA\n",
- "pf = 0.8;# power factor\n",
- "\n",
- "#calculation:\n",
- "P = VI*pf\n",
- "Q = VI*math.sin(math.acos(pf))\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n rated power output is \",round(P/1000,2),\"KW and the corresponding reactive power is \",round(Q/1000,2),\"kvar\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " rated power output is 160.0 KW and the corresponding reactive power is 120.0 kvar"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 28, page no. 233</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Calculate (a) the resistance, \n",
- "#(b) the impedance, \n",
- "#(c) the reactance, \n",
- "#(d) the power factor, and \n",
- "#(e) the phase angle between voltage and current.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "V = 120;# in Volts\n",
- "f = 50;# in Hz\n",
- "P = 400;# in Watt\n",
- "I = 8;# in Amperes\n",
- "\n",
- "#calculation:\n",
- "R = P/(I*I)\n",
- "Z = V/I\n",
- "XL = (Z**2 - R**2)**0.5\n",
- "pf = P/(V*I)\n",
- "phi = math.acos(pf)*180/math.pi\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)resistance = \",round(R,2),\" ohm \"\n",
- "print \"\\n (b)Impedance Z = \",round(Z,2),\" Ohm \"\n",
- "print \"\\n (c)reactance = \",round(XL,2),\" ohm \"\n",
- "print \"\\n (d)Power factor = \",round(pf,2),\"\"\n",
- "print \"\\n (e)phase angle = \",round(phi,2),\"deg lagging\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)resistance = 6.25 ohm \n",
- "\n",
- " (b)Impedance Z = 15.0 Ohm \n",
- "\n",
- " (c)reactance = 13.64 ohm \n",
- "\n",
- " (d)Power factor = 0.42 \n",
- "\n",
- " (e)phase angle = 65.38 deg lagging"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 29, page no. 233</h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Find (a) the current flowing, (b) the phase angle,\n",
- "#(c) the resistance, (d) the impedance, and (e) the capacitance.\n",
- "from __future__ import division\n",
- "import math\n",
- "#initializing the variables:\n",
- "V = 100;# in Volts\n",
- "f = 60;# in Hz\n",
- "P = 100;# in Watt\n",
- "pf = 0.5;# power factor\n",
- "\n",
- "#calculation:\n",
- "I = P/(pf*V)\n",
- "phi = math.acos(pf)*180/math.pi\n",
- "R = P/(I*I)\n",
- "Z = V/I\n",
- "Xc = (Z**2 - R**2)**0.5\n",
- "C = 1/(2*math.pi*f*Xc)\n",
- "\n",
- "\n",
- "#Results\n",
- "print \"\\n\\n Result \\n\\n\"\n",
- "print \"\\n (a)Current I = \",round(I,2),\" A \"\n",
- "print \"\\n (b)phase angle = \",round(phi,2),\"deg leading\"\n",
- "print \"\\n (c)resistance = \",round(R,2),\" ohm \"\n",
- "print \"\\n (d)Impedance Z = \",round(Z,2),\" Ohm \"\n",
- "print \"\\n (e)capacitance = \",round((C/1E-6),2),\"uF \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "\n",
- " Result \n",
- "\n",
- "\n",
- "\n",
- " (a)Current I = 2.0 A \n",
- "\n",
- " (b)phase angle = 60.0 deg leading\n",
- "\n",
- " (c)resistance = 25.0 ohm \n",
- "\n",
- " (d)Impedance Z = 50.0 Ohm \n",
- "\n",
- " (e)capacitance = 61.26 uF "
- ]
- }
- ],
- "prompt_number": 6
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |