summaryrefslogtreecommitdiff
path: root/ENGINEERING_PHYSICS_by_M.ARUMUGAM/3.ACOUSTICS AND SUPERCONDUCTIVITY.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'ENGINEERING_PHYSICS_by_M.ARUMUGAM/3.ACOUSTICS AND SUPERCONDUCTIVITY.ipynb')
-rw-r--r--ENGINEERING_PHYSICS_by_M.ARUMUGAM/3.ACOUSTICS AND SUPERCONDUCTIVITY.ipynb472
1 files changed, 472 insertions, 0 deletions
diff --git a/ENGINEERING_PHYSICS_by_M.ARUMUGAM/3.ACOUSTICS AND SUPERCONDUCTIVITY.ipynb b/ENGINEERING_PHYSICS_by_M.ARUMUGAM/3.ACOUSTICS AND SUPERCONDUCTIVITY.ipynb
new file mode 100644
index 00000000..a665a220
--- /dev/null
+++ b/ENGINEERING_PHYSICS_by_M.ARUMUGAM/3.ACOUSTICS AND SUPERCONDUCTIVITY.ipynb
@@ -0,0 +1,472 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#3: ACOUSTICS OF BUILDINGS AND SUPERCONDUCTIVITY"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.1, Page number 3.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Reverbration time = 3.9 s\n",
+ "Final Reverbration time = 1.95 s\n",
+ "Thus the reverbration time is reduced to one-half of its initial value\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=2265\n",
+ "A=92.9\n",
+ "x=2 #The absorption become 2*A of open window\n",
+ "\n",
+ "#Calculation\n",
+ "T=(0.16*V)/A #Sabine's formula \n",
+ "T2=(0.16*V)/(x*A)\n",
+ "\n",
+ "#Result\n",
+ "print\"Reverbration time =\",round(T,1),\"s\"\n",
+ "print\"Final Reverbration time =\",round(T2,2),\"s\"\n",
+ "print\"Thus the reverbration time is reduced to one-half of its initial value\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.2, Page number 3.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Volume of the hall = 2160 m**3\n",
+ "Total absorption = 430.7 m**2\n",
+ "Reverbration time = 0.8 second\n",
+ "Answer given for the Reverbration time in the text book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a1=450 #Area of plastered wall\n",
+ "a2=360 #Area of wooden floor and wooden doors\n",
+ "a3=24 #Area of Glass\n",
+ "a4=600 #Area of seats\n",
+ "a5=500 #Area of audience when they are in seats\n",
+ "c1=0.03 #Coefficient of absorption of plastered wall\n",
+ "c2=0.06 #Coefficient of absorption of wooden floor and wooden doors\n",
+ "c3=0.025 #Coefficient of absorption of Glass\n",
+ "c4=0.3 #Coefficient of absorption of seats\n",
+ "c5=0.43 #Coefficient of absorption of audience when they are in seats\n",
+ "l=12\n",
+ "b=30\n",
+ "h=6\n",
+ "\n",
+ "#Calculation\n",
+ "V=l*b*h #volume of the hall\n",
+ "A=(a1*c1)+(a2*c2)+(a3*c3)+(a4*c4)+(a5*c5) #Total absorption\n",
+ "T=(0.16*V)/A #Reverbration time\n",
+ "\n",
+ "#Result\n",
+ "print\"Volume of the hall =\",V,\"m**3\"\n",
+ "print\"Total absorption =\",A,\"m**2\"\n",
+ "print\"Reverbration time =\",round(T,1),\"second\"\n",
+ "print\"Answer given for the Reverbration time in the text book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.3, Page number 3.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total absorpttion = 1000.0 m**2 of O.W.U.\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=1.2\n",
+ "V=7500\n",
+ "\n",
+ "#Calculation\n",
+ "A=(0.16*V)/T\n",
+ "\n",
+ "#Result\n",
+ "print\"Total absorpttion =\",A,\" m**2 of O.W.U.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.4, Page number 3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "T1 = 1.45 second\n",
+ "T2 = 0.73 second\n",
+ "Change in Reverbration time = 0.727 second\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=12*10**4\n",
+ "A=13200\n",
+ "x=2 #The absorption become 2*A of open window\n",
+ "\n",
+ "#Calculation\n",
+ "T1=(0.16*V)/A #Sabine's formula \n",
+ "T2=(0.16*V)/(x*A)\n",
+ "Td=T1-T2\n",
+ "\n",
+ "#Result\n",
+ "print\"T1 =\",round(T1,2),\"second\"\n",
+ "print\"T2 =\",round(T2,2),\"second\"\n",
+ "print\"Change in Reverbration time =\",round(Td,3),\"second\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.6, Page number 3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field is 33.64 *10**3 ampere/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=64*10**3; #initial field(ampere/m)\n",
+ "T=5; #temperature(K)\n",
+ "Tc=7.26; #transition temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "H=H0*(1-(T/Tc)**2); #critical field(ampere/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical field is\",round(H/10**3,2),\"*10**3 ampere/m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.7, Page number 3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Frequency of generated microwaves= 483.0 *10**9 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19\n",
+ "V=1*10\n",
+ "h=6.625*10**-34\n",
+ "\n",
+ "#Calculations\n",
+ "v=(2*e*V**-3)/h \n",
+ "\n",
+ "#Result\n",
+ "print\"Frequency of generated microwaves=\",round(v/10**9),\"*10**9 Hz\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.8, Page number 3.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of electrons per unit volume = 3.7 *10**28/m**3\n",
+ "Effective mass of electron 'm*' = 17.3 *10*-31 kg\n",
+ "Penetration depth = 3.81011659367 Angstroms\n",
+ "#The answer given in the text book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=7300 #density in (kg/m**3)\n",
+ "N=6.02*10**26 #Avagadro Number\n",
+ "A=118.7 #Atomic Weight\n",
+ "E=1.9 #Effective mass\n",
+ "e=1.6*10**-19\n",
+ "\n",
+ "#Calculations\n",
+ "n=(d*N)/A\n",
+ "m=E*9.1*10**-31\n",
+ "x=4*math.pi*10**-7*n*e**2\n",
+ "lamda_L=math.sqrt(m/x)\n",
+ " \n",
+ "#Result\n",
+ "print \"Number of electrons per unit volume =\",round(n/10**28,1),\"*10**28/m**3\"\n",
+ "print\"Effective mass of electron 'm*' =\",round(m*10**31,1),\"*10*-31 kg\"\n",
+ "print\"Penetration depth =\",lamda_L*10**8,\"Angstroms\"\n",
+ "print\"#The answer given in the text book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "##Example number 3.9, Page number 3.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Tc = 7.0969 K\n",
+ "lamda0= 39.0 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda_L1=39.6*10**-9\n",
+ "lamda_L2=173*10**-9\n",
+ "T1=7.1\n",
+ "T2=3\n",
+ "\n",
+ "#Calculations\n",
+ "x=(lamda_L1/lamda_L2)**2\n",
+ "Tc4=(T1**4)-((T2**4)*x)/(1-x)\n",
+ "Tc=(Tc4)**(1/4)\n",
+ "print\"Tc =\",round(Tc,4),\"K\"\n",
+ "print\"lamda0=\",round((math.sqrt(1-(T2/Tc)**4)*lamda_L1)*10**9),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.10, Page number 3.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hc = 4.2759 *10**4\n",
+ "Critical current density,Jc = 1.71 *10**8 ampere/metre**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=6.5*10**4 #(ampere/metre)\n",
+ "T=4.2 #K\n",
+ "Tc=7.18 #K\n",
+ "r=0.5*10**-3\n",
+ "\n",
+ "#Calculations\n",
+ "Hc=H0*(1-(T/Tc)**2)\n",
+ "Ic=(2*math.pi*r)*Hc\n",
+ "A=math.pi*r**2\n",
+ "Jc=Ic/A #Critical current density\n",
+ "\n",
+ "#Result\n",
+ "print\"Hc =\",round(Hc/10**4,4),\"*10**4\"\n",
+ "print \"Critical current density,Jc =\",round(Jc/10**8,2),\"*10**8 ampere/metre**2\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.11, Page number 6.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "New critical temperature for mercury = 4.145 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc1=4.185\n",
+ "M1=199.5\n",
+ "M2=203.4\n",
+ "\n",
+ "#Calculations\n",
+ "Tc2=Tc1*(M1/M2)**(1/2)\n",
+ "\n",
+ "#Result\n",
+ "print\"New critical temperature for mercury =\",round(Tc2,3),\"K\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}