summaryrefslogtreecommitdiff
path: root/Chemistry/.ipynb_checkpoints
diff options
context:
space:
mode:
Diffstat (limited to 'Chemistry/.ipynb_checkpoints')
-rwxr-xr-xChemistry/.ipynb_checkpoints/Chapter_13-checkpoint.ipynb412
1 files changed, 0 insertions, 412 deletions
diff --git a/Chemistry/.ipynb_checkpoints/Chapter_13-checkpoint.ipynb b/Chemistry/.ipynb_checkpoints/Chapter_13-checkpoint.ipynb
deleted file mode 100755
index aea83030..00000000
--- a/Chemistry/.ipynb_checkpoints/Chapter_13-checkpoint.ipynb
+++ /dev/null
@@ -1,412 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:895c072b6753209785681491473fcfce8d9e8b03552e6c5bac0de19645eb5d94"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 13:Chemical Kinetics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.2,Page no:564"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "dO2=-0.024 #rate of reaction of O2, M/s\n",
- "\n",
- "#Calculation\n",
- "#(a)\n",
- "dN2O5=-2*dO2 #rate of formation of N2O5, M/s\n",
- "#(b)\n",
- "dNO2=4*dO2 #rate of reaction of NO2, M/s\n",
- "\n",
- "#Result\n",
- "print\"(a).The rate of formation of N2O5 is :\",dN2O5,\"M/s\"\n",
- "print\"(b).The rate of reaction of NO2 is :\",dNO2,\"M/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a).The rate of formation of N2O5 is : 0.048 M/s\n",
- "(b).The rate of reaction of NO2 is : -0.096 M/s\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.3,Page no:568"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "NO1=5*10**-3 #conc of NO from 1st experiment, M\n",
- "H21=2*10**-3 #conc of H2 from 1st experiment, M\n",
- "r1=1.3*10**-5 #initial rate from 1st experiment, M/s\n",
- "NO2=10*10**-3 #conc of NO from 2nd experiment, M\n",
- "H22=2*10**-3 #conc of H2 from 2nd experiment, M\n",
- "r2=5*10**-5 #initial rate from 1st experiment, M/s\n",
- "NO3=10*10**-3 #conc of NO from 3rd experiment, M\n",
- "H23=4*10**-3 #conc of H2 from 3rd experiment, M\n",
- "r3=10*10**-5 #initial rate from 3rd experiment, M/s\n",
- "\n",
- "#Calculation\n",
- "import math\n",
- "#(a)\n",
- "#r=k*NO**x*H2**y, dividing r2/r1 and r3/r2\n",
- "x=math.log(r2/r1)/math.log(NO2/NO1) #since H21=H22\n",
- "y=math.log(r3/r2)/math.log(H23/H22) #since NO3=NO2\n",
- "x=round(x) \n",
- "y=round(y) \n",
- "#(b)\n",
- "k=r2/((NO2)**x*H22**y) #rate constant, /M**2 s\n",
- "#(c)\n",
- "NO=12*10**-3 #conc of NO, M\n",
- "H2=6*10**-3 #conc of H2, M\n",
- "rate=k*(NO**x)*H2**y #rate, M/s\n",
- "\n",
- "#Result\n",
- "print\"(a) the rate of reaction is : r=k[NO]**\",x,\"*[H2]**\",y\n",
- "print\"(b) the rate constant of the reaction is :%.1e\"%k,\" /M**2 s\" \n",
- "print\"(c) the rate of reaction at given concentration is :%.1e\"%rate,\" M/s\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a) the rate of reaction is : r=k[NO]** 2.0 *[H2]** 1.0\n",
- "(b) the rate constant of the reaction is :2.5e+02 /M**2 s\n",
- "(c) the rate of reaction at given concentration is :2.2e-04 M/s\n"
- ]
- }
- ],
- "prompt_number": 72
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.4,Page no:571"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "t=8.8*60 #time, s\n",
- "k=6.7*10**-4 #rate constant, s-1\n",
- "\n",
- "#Calculation\n",
- "import math\n",
- "#(a)\n",
- "Ao1=0.25 #initial conc, M\n",
- "A1=math.exp(-k*t+math.log(Ao1)) #final conc, M\n",
- "#(b)\n",
- "A2=0.15 #initial conc, M\n",
- "Ao2=0.25 #final conc, M\n",
- "t2=-math.log(A2/Ao2)/(60*k) #time, min\n",
- "#(c)\n",
- "percent=74.0 \n",
- "#let initial conc be 1\n",
- "Ao3=1.0 #initial conc, M\n",
- "A3=1.0-percent/100.0 #final conc, M\n",
- "t3=-math.log(A3/Ao3)/(k*60.0) #time, min\n",
- "print\"(a) the concentration of cyclopropane at given time is :\",round(A1,2),\"M\"\n",
- "print\"(b) the time required is :\",round(t2),\"min\"\n",
- "print\"(c) the time required for required conversion is :%.1f\"%t3,\"min(approx)\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a) the concentration of cyclopropane at given time is : 0.18 M\n",
- "(b) the time required is : 13.0 min\n",
- "(c) the time required for required conversion is :33.5 min(approx)\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.5,Page no:573"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "t=[0,100,150,200,250,300] #time(data given), s\n",
- "P=[284.0,220.0,193.0,170.0,150.0,132.0] #pressure(data given) in mmHg corresponding to time values\n",
- "lnP=[0,0,0,0,0,0]\n",
- "\n",
- "#Calculation\n",
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "from pylab import *\n",
- "%matplotlib inline\n",
- "lnP=np.log(P) #lnP values corresponding to P\n",
- "A=plot(t,lnP)\n",
- "plt.xlim(0,350)\n",
- "plt.ylim(4.8,5.8)\n",
- "plt.ylabel('$ln Pt$')\n",
- "plt.xlabel('$t(s)$')\n",
- "plt.title('Plot of ln Pt versus time for the decomposition of azomethane\\n')\n",
- "slope=np.polyfit(t,lnP,1)\n",
- "k=-slope[0]\n",
- "\n",
- "#Result\n",
- "show(A)\n",
- "print\"The rate constant for the decomposition is :%.2e\"%k,\"s**-1\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEjCAYAAAAVCvdtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFOfaBvBnF1BYKdK70lREaVFBVBRRCPYajYkGSxBr\nbDFGYyLG3jXq8RDFmqLRaDQKSlSIHSwgCqKiIB1BURYWBJb5/phvztlwaOqyswv377r2kt2Z2bl3\ntjzOO++8I2AYhgAAAN6XkO8AAADQNKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXPBaUHx8\nfKLDwsKmKGJdu3btmm5qapqnq6tbVFhYqC87LS0tzUYoFFZVVVWhwL4DHR0dcVpamk1jr6e0tFRr\nyJAhf7Zu3frV2LFjjzTGOkJCQkImTJhwqDGee//+/RO9vb0vN8ZzK5POnTvfv3TpUu/apg8cODD8\n0KFDExSZiYho6dKlK42NjfMtLCyyFb3uxqCMn6dG/wG1sbFJE4lEEh0dHbGZmVnupEmT9pWUlLQi\nIhIIBIxAIKj3RJj3/cGvqKjQWLBgwaYLFy70Kyoq0tXX1y98l+epSXR0tI9QKKzS0dER6+rqFjk6\nOibv379/ojxyK6Oa/hMgFot1bGxs0hp73ceOHRv9/Plzk5cvXxocOXJk7Ps+X3R0tI+1tXWG7GMN\n+TxC3e7fv9+5d+/el4hqLtDh4eEDG6to1yY9Pb3N5s2b5ycnJztmZ2dbKHLd8qAqvyWNHk4gEDCn\nT58eLBaLde7cufPBrVu3uq5cuXLpuzwXwzCCd1kuNzfXrKysTLNjx44P3mX5+lhaWmaJxWKdoqIi\n3XXr1i0KCgranZyc7MhNf9fcb6OyslK9sddBxO8P7rNnz9q2b9/+kVAorHrbZRu6fRTxXoHipaen\ntzE0NHxhaGj4gu8s70PZP58KrXYWFhbZAQEBZxMTEztVn8YwjGDlypVLbWxs0kxNTfMCAwMPFBUV\n6RIRcf/bad269SsdHR1xTEyMZ/Xl37x503Lu3LlbLS0tsywtLbPmzZu3pby8vMWjR4/ac4WkdevW\nr/r373++vpw+Pj7R33333fe9evW6oqurW/Thhx+ee/HihWFDXuOwYcNO6uvrFyYmJnbq06fP33Xl\nzs7OthCJRBLZJri4uDh3Y2PjfKlUqkZEtHfv3slOTk5JBgYGLwMCAs6mp6e34eYVCoVV//rXv2a0\na9fucYcOHR4SEc2bN2+Lqalpnp6e3msXF5eEpKQkJ+41ye5ZyO4uMwwjqL5cTe/RN998s+ry5cve\ns2bN2qGjoyP+4osvfuByPH361I6IaOLEiftnzJjxr4EDB4br6OiIvb29L+fm5prNmTNnm76+fmHH\njh0fxMfHu8lug1GjRv1uYmLy3M7O7un27dtn17Rdly1btnzFihXfHjlyZKyOjo543759k+r6zHD/\no9u7d+/ktm3bPqv+vpeUlLQaMGBARHZ2tgW3d5mTk2MuEAiY8vLyFoGBgQd0dXWLOnfufP/27dtd\n3jYvEdGLFy8Mhw4dekpPT++1p6dnzJMnT+xlpycnJzv6+fn9ZWho+MLR0TH56NGjH3HTSktLtRYs\nWLDJxsYmrXXr1q+8vb0vl5WVaRIRnTp1aminTp0S9fX1C/v27Rsl+58XGxubtI0bN37p4uKSoKOj\nI54yZUpYXl6e6YABAyL09PRe+/n5/fXq1avWstto9+7dQZaWllkWFhbZmzZtWsA9V23fKSKigoIC\no8GDB5/W19cvNDQ0fMF9R7kMFy5c6Hf27NmANWvWLObeM3d39ziif34WG/IeHjx48LO2bds+MzY2\nzl+9evWS2rb369ev9T777LODJiYmz21sbNJWrVr1DcMwgvPnz/f39/eP5N7ryZMn762+7KtXr1oP\nHjz4tImJyXMDA4OXQ4YM+TMrK8uSiOj69eteOjo6Yu6mqalZZmtrm1rfNoqOjvaxsrLK3LBhw0IT\nE5PnFhYW2X/88cfw8PDwge3bt39kaGj4Yu3atV9zGRiGEaxdu/ZrBweHFCMjo4KxY8ce4X4bZH8D\ndXV1i27cuNGd+8/dwoULNxgYGLy0s7N7evbs2QDu+fbt2zfJyckpSVdXt8je3v7Jjz/+OJWbxmXb\nvHnzfFNT0zwLC4tsrmWFe11ffvnlxrZt2z4zMzPLnT59+i7u81cnhmEa9WZjY5N6/vz5fgzDUHp6\nunWnTp3uf/fdd8sZhiEfH5+osLCwyQzDUFhY2GQHB4fHqampNsXFxa1Gjhz5+4QJEw4yDENpaWlt\nBQJBlVQqFda2nm+//fZ7Ly+va/n5+Ub5+flGPXr0uPrtt99+35DlU1NTbWSn9+nTJ9rBweHx48eP\nHUpLSzV9fHyivv766zU1LRsVFeVjZWWVwTAMSaVS4fHjx0doaGiUP3r0qF1Dcvv6+l7YvXv359z9\nL7/8csP06dP/xTAM/fHHH8McHBweJycnd5BKpcKVK1d+06NHj6vcvAKBoMrf3/9cYWFh67KyspZn\nz579sEuXLrdev36tyzAMJScnd8jJyTGrvq0ZhqF9+/ZN7NWr12WGYaiu5arfqj8Pl+PJkyd2DMNQ\nYGDgfiMjo/w7d+64l5WVtfT19b3Qtm3btEOHDo2vqqoSLF26dEXfvn0vctvrgw8+uL1ixYqlFRUV\n6k+fPrW1s7N7cu7cOf+a1h0SErKM+0zU95nh3tPAwMD9EolEq6ysrGX154uOju7DvXfcbdmyZSGa\nmpqlERERAVVVVYLFixev7t69+/V3yTt27NjDY8eOPSyRSLTu37/fydLSMtPb2/sSwzBUXFzcysrK\nKmP//v2BUqlUGBcX52ZkZJSflJTUkWEYmjFjxs6+fftezM7ONpdKpcLr1693f/PmTYuHDx+2b9Wq\nVfH58+f7VVZWqq1fv36hg4PD44qKCnXu++bl5XXt+fPnxllZWRYmJiZ57u7ud+Lj412592P58uXf\nyW6jTz755GeJRKJ17969zsbGxs+572td36mvv/56zbRp03ZVVlaqVVZWql25cqWn7Hf+woULvjW9\nZ2/zvefyTZ06NbSsrKzl3bt3XVq2bFn24MEDx5q294QJEw4OHz78RHFxcau0tLS27du3f8itp6b3\nWvb24sULg+PHj48oLS3VFIvF2h999NFvw4cPP1F9voqKCvU+ffpEL1myZFV92ygqKspHXV29YsWK\nFUsrKyvVdu/e/bmhoWHBJ5988nNxcXGrxMREJy0tLUlaWlpbhmFo69atc7y8vK5lZWVZlJeXawQH\nB/973Lhxv9T2G7Zv376JGhoa5Xv27JlSVVUl2LVr1zQLC4ssbvqZM2cGPn361JZhGPr77797i0Si\nkjt37rjLZlu2bFlIZWWlWnh4+ACRSFTy6tUrPYZhaO7cuVuGDRv2R2FhYWuxWKw9ZMiQU4sXL15d\n3+99oxeUtm3bpmlra4tbt25d2LZt27SZM2fu4L7csh8sX1/fC7t27ZrGLffw4cP2Ghoa5VKpVFj9\nB7+mm729fUpEREQAd//cuXP+NjY2qbIfzIYWFB8fn6hVq1Yt4ab/61//mh4QEBBR07JRUVE+QqFQ\n2rp160IDA4MX7u7ud44cOTKmIetlGIb27NkzxdfX9wLDMFRVVSWwtrZOv3z5ci+GYSggICBC9sdb\nKpUKRSJRSXp6ujXDsD/kUVFRPtz0ixcv9m3fvv3DGzdueFZfZ10F5cKFC761LVf95uPjE7Vnz54p\nso/JFpSJEyfumzp1aig3bfv27bOcnJwSufsJCQnOrVu3LmQYhm7cuOHZpk2bZ7LPtXr16sWTJk3a\nW9O6ly1bFjJ+/PhD3P2GfGZSU1Ntanstsv8ZkF2Hn59fJHef+9K/bd7Kyko1DQ2N8ocPH7bnHluy\nZMkqbpsfPnx4LFdcuNvUqVNDly9f/p1UKhVqaWlJEhISnKs/7/fff//t2LFjD3P3q6qqBJaWlpl/\n//13b4Zhf8x/+eWXcdz0UaNGHZsxY8ZO2feD+6HktpFsxq+++mrdlClT9jAMQ3Z2dk9q+0599913\ny4cNG/ZHSkqKffWMsgWl+nv2Lt/7rKwsC266h4dHzOHDh8fWtL1btGjxRrbYhIaGTvXx8Ymq7b2u\n6xYXF+emr6//svrj06ZN2zVkyJBT3P26fneioqJ8tLS0JFVVVQKGYaioqEhHIBBUxcbGduPm79Kl\ny62TJ08OZRiGHB0dH3DbjWEYys7ONq/rN3Dfvn0THRwcHnP3S0pKRAKBoCovL8+kptc0fPjwE9u2\nbftCNpvs85mYmOTFxMR4VFVVCVq1alXMfacZhqFr16552draPq1vuzV6u7tAIGBOnjw5zNfX92Jd\n8+Xk5Ji3bdv2GXe/TZs26ZWVlep5eXmmDVlPdna2RfXl3+fgm5mZWS73t5aWVmlxcbF2bfNaWFhk\nZ2RkWL/LekaOHHl89uzZ23Nzc80ePnzYQSgUVvXq1esKEXvMYM6cOdsWLFiwSXaZrKwsS+5gsuxB\n5b59+0bNmjVrx8yZM3c+e/as7ciRI49v3LjxSx0dHXFdGXx9fS++zXL1HUcxMTF5zv2tqalZJntf\ndls+e/asbXZ2toVsJwmpVKom23xSl4Z8ZqofdG8IU1PTPO5vkUgkKSsr06yqqhK+Td78/HzjyspK\nddn1t2nTJp37+9mzZ21jYmI8ZZ+rsrJS/bPPPjv44sULw7KyMk17e/snNb1m2ecRCASMtbV1Btc8\nUz2/lpZWqex9TU3Nsuqf5eoZ79+/35lbV23fqYULF24ICQkJ8ff3jyQimjp16o+LFi1aV9P2rEtD\n3kPZ76JIJJJwnXpkFRQUGFVUVGhUfy7Z7VIXiUQimjdv3pZz5859yDUzFRcXazMMI+A+76GhocGX\nLl3qLdt0Xd/vjqGh4QtueS0trVKi/31/ZL8PI0aMOCF7jFBdXb2yrt/A6tuGy21iYvI8IiJiwPLl\ny5c9fvy4XVVVlVAikYhcXFwSZLPJrkskEkmKi4u18/PzjSUSiahLly63uWkMwwga0iFAaXoMWFhY\nZMt2PU1PT2+jrq5eaWpqmteQA8E1Lc9398CG5NbX1y/09/ePPHLkyNhffvnlk3Hjxv3KTWvTpk36\njz/+OLWwsFCfu5WUlLTq3r37jdrWMXv27O23bt3qmpSU5PTo0aP2GzZsWEhE1KpVqxLZL2Jubq5Z\nQ5Z7l9fUUNbW1hm2trapsq+vqKhI9/Tp04Mbsu66PjMNyVvTtLrmf5u8xsbG+erq6pWyx7xk/27T\npk16nz59/pZ9LrFYrLNz586ZhoaGLzQ1NctSUlIcqj+vhYVF9rNnz9py9xmGEWRkZFhbWlpm1Zab\nqedAbvWM3Pemru+UtrZ28caNG7988uSJ/alTp4Zu3rx5flRUVN/qz13f56Uh72FDGBkZFWhoaFRU\nfy4rK6vMhiy/adOmBY8ePWofGxvr8fr1a72///67D8MwAm7bXb582fu77777/uTJk8O0tbWL68r/\nrr87bdq0ST979myA7GdCIpGIzM3Nc972e/fmzZuWo0aN+v2rr75a//z5c5PCwkL9gQMHhtf3WSBi\nt6WWllZpUlKSE5fj1atXrbljW3VRmoIybty4X7ds2TIvLS3Npri4WHvJkiWrP/7448NCobDK2Ng4\nXygUVlU/qFl9+ZUrVy4tKCgwKigoMPr++++/e5+uiQ3Z8PVpSG4iok8++eSXAwcOBP7++++jPvnk\nk1+4x6dNm/bv1atXL+EOrL9+/VpP9sBtdbdu3eoaExPjWVFRoSESiSSampplampqUiIiNze3+OPH\nj48sLS3VSklJcQgLC5vCfUjrWq46U1PTvLpez9tsNw8Pj1gdHR3x+vXrvyotLdWSSqVq9+/f73zr\n1q2uDXnuuj4zDVm/qalp3osXLwxlvyh15X+bvGpqatKRI0ceDwkJCSktLdVKSkpyOnDgQCC3zQcN\nGnTm0aNH7X/66afxFRUVGhUVFRo3b97slpyc7CgUCqsmT568d/78+ZtzcnLMpVKp2vXr173Ky8tb\njBkz5rczZ84Munjxom9FRYXGpk2bFmhqapb16NHjWkNec01Wrly5tLS0VCsxMbHT/v37J3Ln+NT1\nnTp9+vTglJQUB4ZhBLq6ukVqamrSmra7mZlZblpamk1t2/Vd3sOanktNTU06ZsyY37755ptVxcXF\n2s+ePWu7ZcuWeePHj/+pIduguLhYW0tLq1RPT+/1y5cvDZYvX76Mm5aRkWE9ZsyY3w4dOjTBwcEh\npXp+ef3uTJs27d9LlixZzRX4/Px841OnTg0lavhvCae8vLxFeXl5CyMjowKhUFgVERExIDIy0r8h\nywqFwqqgoKDdc+fO3Zqfn29MxLaKNGR5pSkokydP3jthwoRDvXv3vmRnZ/dUJBJJuB40IpFI8s03\n36zq2bPnVX19/cLY2FiP6ssvXbp0ZdeuXW+5uLgkuLi4JHTt2vXW0qVLV3LT66vw1afL3q/vfJna\npjUkNxHR0KFDT6WkpDiYm5vnODs73+MeHz58+B+LFi1a9/HHHx/W09N77ezsfO/cuXMf1rbeoqIi\n3alTp/5oYGDw0sbGJs3IyKhg4cKFG4jY3l8tWrQoNzU1zZs0adI+2S9aXctVN2fOnG3Hjh0bbWBg\n8HLu3Llba9oW9W077r6ampr09OnTg+Pj493s7OyeGhsb50+dOvXH2v4nVP256vrM1LR9qnN0dEwe\nN27cr3Z2dk8NDAxecr285JV3x44ds4qLi7XNzMxyJ0+evFe2d5GOjo44MjLS//Dhwx9bWlpmmZub\n5yxevHgN10No48aNXzo7O9/r1q3bTUNDwxeLFy9eU1VVJWzfvv2jn376afzs2bO3Gxsb5585c2bQ\nn3/+OURdXb2yttdZ3/vRp0+fvx0cHFL69+9/fuHChRu4HnF1fadSUlIc/Pz8/tLR0RH36NHj2syZ\nM3dyvRplffTRR0eJ2OaVrl273qo+/V3ew9re1+3bt89u1apViZ2d3VNvb+/Ln3766c+TJk3aV99y\nRERz587dWlpaqmVkZFTQo0ePawMGDIjg5r9w4UK/58+fm4waNep3rqcX9z1929+dujLMmTNn29Ch\nQ0/5+/tH6urqFnl5eV3nfjNkf0sMDAxexsTEeNb1WdXR0RH/8MMPX4wZM+Y3AwODl7/++uu4YcOG\nnWxolnXr1i1ycHBI6d69+w2ud+CjR4/a1zb/f56TYXAeF0BzlJaWZmNnZ/e0srJS/V3O7QGoTmn2\nUAAAQLWhoAA0YxhqBuQJTV4AACAX2EMBAAC5QEEBAAC5QEEBAAC5QEEBAAC5QEEBAAC5QEEBAAC5\nUMhV/uQB/eUBAN6NPMYmbAiV2kNp6LUMlPG2bNky3jM01/yqnB35+b+pen5FUqmCAgAAygsFBQAA\n5AIFRUF8fHz4jvBeVDm/KmcnQn6+qXp+RVKZsbwEAgGjKlkBAJSFQCAgBgflAQBAlaCgAACAXKCg\nAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACA\nXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCg\nAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKCgAACAXKhUQSks5DsBAADURqUKSseORGFhRFVV\nfCcBAIDqVKqghIcT7dlD5OVFdOsW32kAAECWShWUDz4gunqVaPp0oiFDiKZOJSoo4DsVAAAQqVhB\nISISCokmTiR68IBIS4vIyYlo1y4iqZTvZAAAzZuAYRi+MzSIQCBgasqakEA0axZRSQnRjh1scxgA\nALAEAgExDCNQxLpUbg+lOhcXor//Jpo/n2j0aKJJk4jy8vhOBQDQ/Kh8QSEiEgiIPv2UbQYzNCTq\n3Jnohx+IKiv5TgYA0HwopMnLxsYmTVdXt0hNTU2qoaFRERsb61F9nujoaJ958+Ztqaio0DAyMiqI\njo72+UfQWpq8apKURDR7NlF+PtsM1ru3fF4HAICqUWSTl0IKiq2tbert27e7GBgYvKxp+qtXr1r3\n7Nnz6rlz5z60srLKLCgoMDIyMvpH/623KShERAxDdOwY0YIFbEFZv57IwuI9XwgAgIppksdQ6npB\nv/zyyyejRo363crKKpOIqHoxeRcCAdFHH7F7K23asMdaNm0iqqh432cGAICaqCtiJQKBgOnfv/95\nNTU1aXBwcGhQUNBu2emPHz9uV1FRodG3b98osVisM2fOnG0TJkw4VP15QkJC/vO3j48P+fj41Ltu\nbW2i1avZrsZffMGeab99O1G/fu/9sgAAlE50dDRFR0fzsm6FNHnl5OSYm5ub5+Tn5xv7+fn9tX37\n9tne3t6XuemzZs3acefOnQ8uXLjQTyKRiLy8vK6fOXNmULt27R7/J+hbNnnVhGGITp4kmjuXyMOD\n3WOxtn6vpwQAUGpNrsnL3Nw8h4jI2Ng4f8SIESeqH5S3trbO8Pf3j9TS0io1NDR80bt370t37951\nlXcOgYBo+HC2GaxjRyI3N6I1a4jevJH3mgAAmp9GLygSiUQkFot1iIhKSkpaRUZG+js7O9+TnWfY\nsGEnr1y50ksqlapJJBJRTEyMp5OTU1JjZRKJiJYvJ7p5k+j6dSJnZ6KzZxtrbQAAzUOjH0PJy8sz\nHTFixAkiosrKSvVPP/30Z39//8jQ0NBgIqLg4OBQR0fH5ICAgLMuLi4JQqGwKigoaHdjFhSOnR3R\nqVNEZ86wZ9s7OxNt2UJkY9PYawYAaHpUfugVeSkrI9q4kS0oc+YQffUVkaZmo60OAEAhmtwxFFWg\nqUm0dCnRnTvs+GCdOhH9+SffqQAAVAf2UGoRGcl2M3ZwINq6lf0XAEDVYA9FCfj7s3sqvXsTde/O\n7r1IJHynAgBQXigodWjRgj2WEh9P9OQJe+2V48fZ81kAAOCf0OT1FqKi2N5glpbs2fYdOvAaBwCg\nXmjyUlJ9+7J7KwMGEPXsSbRoEZFYzHcqAADlgILyljQ0iObNI7p/nygnhz3j/vBhNIMBAKDJ6z1d\nucI2g+nrs81gnTvznQgA4L/Q5KVCevUiunWLvfywry97KeLXr/lOBQCgeCgocqCuTjRzJtsMVlTE\nNoMdOoRmMABoXtDk1QhiYtgCo6nJXoLYzY3vRADQXKHJS8V5erJF5bPPiD78kD3GUljIdyoAgMaF\ngtJI1NSIpk5lr70ilbLNYGFhRFVVfCcDAGgcaPJSkDt32GawqiqinTuJunblOxEANAdo8mqCPviA\n6OpVomnTiAYPJgoOJioo4DsVAID8oKAokFBINGkSUXIyUcuW7Nhg//432yQGAKDq0OTFo4QE9oB9\nSQnbG8zLi+9EANDUoMmrmXBxIfr7b/ZkyNGjiSZPJnr+nO9UAADvBgWFZwIB0aefEj14QGRgwF4p\ncvt2ospKvpMBALwdNHkpmaQkotmz2QP2O3YQeXvznQgAVJkim7xQUJQQwxAdPUq0YAFRnz5EGzYQ\nmZvznQoAVBGOoTRzAgHRmDFsM5i1NZGzM9GmTUQVFXwnAwCoHfZQVMCjR0RffEGUns42g/n68p0I\nAFQFmrxq0JwLChHbDHbyJNHcuexYYRs3snsvAAB1QZMX/A+BgGj4cPagvaMjkbs70dq1RG/e8J0M\nAICFgqJiRCKi5cvZ0YyvXWPPZTl3ju9UAABo8lJ5Z86wx1dcXIi2bCGyseE7EQAoEzR5QYMNGkSU\nmEjUpQt7+/57orIyvlMBQHOEgtIEaGoSLV3KDpF/9y57tv3p03ynAoDmBk1eTVBkJHu2fbt2RNu2\nEdnb850IAPiCJi94L/7+RPfuscO2eHoSffstkUTCdyoAaOpQUJqoFi2IFi0iio8nevyYvfbK8ePs\n+SwAAI0BTV7NRFQUe+0VKyuiH34g6tCB70QAoAho8gK569uX3VsJCCDq2ZPo66+Jiov5TgUATQkK\nSjOioUE0bx57fCU7m6hjR6IjR9AMBgDygSavZuzKFaKZM4kMDdmLenXqxHciAJC3JtfkZWNjk+bi\n4pLg7u4e5+HhEVvbfDdv3uymrq5eefz48ZGKyNXc9epFdPs20ciRRD4+7KWIi4r4TgUAqkohBUUg\nEDDR0dE+cXFx7rGxsR41zSOVStUWLVq0LiAg4KyiqikQqauzB+sTE4lev2YHnjx0CM1gAPD2FHYM\npb4isX379tmjR48+ZmxsnK+oTPBfJiZEYWFs1+KtW4l692bPugcAaCh1RaxEIBAw/fv3P6+mpiYN\nDg4ODQoK2i07PSsry/LkyZPDLl686Hvz5s1uAoGgxv8fh4SE/OdvHx8f8vHxadTczVH37kSxsUR7\n9rAnSI4Zw44Ppq/PdzIAaIjo6GiKjo7mZ+UMwzT6LTs725xhGHr+/Lmxq6tr/KVLl7xlp48ePfro\njRs3PBmGocDAwP3Hjh0bVf052KigSAUFDBMczDCmpgwTFsYwUinfiQDgbf3/b6dCfusV3str+fLl\ny7S1tYsXLFiwiXvMzs7uKfP/TWIFBQVGIpFIsnv37qChQ4ee4uZBLy/+3L7N9gYTCol27SJydeU7\nEQA0VJPq5SWRSERisViHiKikpKRVZGSkv7Oz8z3ZeZ4+fWqXmppqm5qaajt69Ohju3btmi5bTIBf\nXbqwF/OaOJHIz4/tDSYW850KAJRNoxeUvLw8U29v78tubm7xnp6eMYMHDz7t7+8fGRoaGhwaGhrc\n2OsH+RAKiaZOZXuDFRayJ0X+9ht6gwHAf+HERngnly8TzZhBZGFBtGMHO1Q+ACifJtXkBU2Ttzd7\nQS8/PyIvL6KQEFwpEqC5Q0GBd6ahQfTll0Rxcez4YJ07E509y3cqAOALmrxAbsLD2StFfvAB0ZYt\n7FD5AMAvNHmBSho4kOj+ffaAvZsb0ebNRBUVfKcCAEXBHgo0ikeP2HNX8vLYc1d69uQ7EUDzpMg9\nFBQUaDQMw3Ytnj+fvbDXunVERkZ8pwJoXtDkBU2CQEA0dizRgwdEOjrs9Vb27CGqquI7GQA0Buyh\ngMLExxPSr5v3AAAZAElEQVRNn84WGgzhAqAYSruHkpuba8b9LZFIRPKPA02ZmxvR1atEkyax56/M\nm4cLegE0JQ0qKKtXr14SEREx4M8//xzCPZaYmNgpKiqqb+NFg6ZIKCQKCvrvBb2cnDCEC0BT0aAm\nr+TkZMeoqKi+e/bs+dzCwiLbzMws18PDIzYrK8syRPYiJY0ITV5N05UrbDMYhnABaBxK1ctLLBbr\n7N+/f6JIJJKYmprmDR48+HRubq7ZzZs3u1lYWGR36dLltkKCoqA0WRUVRD/8QLRmDdvV+OuvibS0\n+E4F0DQoVUGZNm3av/X09F5nZmZaZWZmWkVERAwQiUQSRYSThYLS9GVksMdV4uPZvZWAAL4TAag+\npSooO3funDlz5sydREQ5OTnmERERAyZPnrxXEeFkoaA0HxERRLNmEbm7s9e3xxAuAO9OqXp5tWzZ\n8g33t7m5eY6uri765UCjGjCAHcKlUye2Z9imTRjCBUAV1LuH4uDgkBIQEHD2gw8+uOPu7h739OlT\nu1GjRv1OxF48y9TUNE8hQbGH0ixhCBeA96NUTV4rVqz4tlu3bjdv3LjR/ebNm93i4uLc27Rpk96z\nZ8+r+fn5xgcPHvxMIUFRUJothiE6epQdwsXfn2j9egzhAtBQSlVQavLkyRP7mJgYz927dwcp6lwU\nFBQoKiJatozo55+JVq0imjKFPa8FAGqn9AWFc+nSpd69e/e+JMc8tUJBAQ43hAsR2wzm5sZvHgBl\nplQH5Wtz/fp1L1tb21R5hgFoCG4Il8mT2SawuXMxhAuAMnirgrJy5cqlgYGBB6ZMmRL27NmztseP\nHx/ZWMEA6iI7hItYzA7hcuQIhnAB4NNbFZROnTolHjhwIHDz5s3zGYYR2NvbP2msYAANYWxMFBZG\ndPgw0cqVRB9+yPYMAwDFe6tjKCdOnBhhZWWV2a1bt5uNmKlGOIYC9ZEdwmXGDKLFizGEC4DSHpSf\nO3fuViK2l5empmZZnz59/p41a9aORksnAwUFGiozkx3C5c4ddgiXAQP4TgTAH6UqKN9+++2K7t27\n3/Dw8Ih9+PBhByKiXr16XTlz5swgU1PTvK5du95SSFAUFHhLskO4bNlCZG3NdyIAxVNkQVGvb4bS\n0lKt9PT0NseOHRv9/PlzE319/cK4uDj3Ll263L548aKvogoKwNvihnBZu5YtKgsXsj3CWrbkOxlA\n0/TW56G8fv1a7+bNm91u377dxd7e/sno0aOPNVK2f8AeCryPlBS2mDx+TLRtG0YyhuZDqZq8lAUK\nCsjD6dNsYencmW0Gs7XlOxFA41KJExsBVNHgwWwzmIcHUdeu7FAuEoVf3QegaUJBgWZHU5NoyRKi\nuDiiBw/YkyKPH8dJkQDvC01e0OxdvEg0ezaRpSV7HoujI9+JAOQHTV4ACuTryw44OXAgUa9ebG8w\nsZjvVACqBwUFgIg0NNiD9ffvE+Xns3spP/2EZjCAt4EmL4AaXL/OnhQpEhFt344h8kF1ockLgGde\nXkSxsUQTJrADTs6cSfTyJd+pAJSbQgqKjY1NmouLS4K7u3uch4dHbPXpP//886eurq53XVxcEnr2\n7Hk1ISHBRRG5AOqipkY0dSpRUhLb9NWxI9GPPxJJpXwnA1BOCmnysrW1Tb19+3YXAwODGv+Pd/36\ndS8nJ6ckPT2912fPng0ICQkJuXHjRvd/BEWTF/AsLo7tDVZWxg462b17/csA8K1JNnnV9YK8vLyu\n6+npvSYi8vT0jMnMzLRSVC6AhnJ3J7p8mT14P3Ik0aRJRHl5fKcCUB4KKSgCgYDp37//+a5du97a\nvXt3UF3zhoWFTRk4cGC4InIBvC2BgGj8eKLkZCJDQ3YIl61b2WuxADR39Y42LA9Xr17taW5unpOf\nn2/s5+f3l6OjY7K3t/fl6vNFRUX13bt37+SrV6/2rOl5QkJC/vO3j48P+fj4NFpmgLro6hJt3Eg0\nZQrRF18Q7dnD9gbr25fvZNDcRUdHU3R0NC/rVni34eXLly/T1tYuXrBgwSbZxxMSElxGjhx5/OzZ\nswEODg4p1ZfDMRRQVgzDDt2yYAGRpydbaHDtFVAWTeoYikQiEYnFYh0iopKSklaRkZH+zs7O92Tn\nSU9PbzNy5MjjP/300/iaigmAMhMIiEaNYnuDOTqy56ysXk305g3fyQAUq9H3UFJTU21HjBhxgoio\nsrJS/dNPP/158eLFa0JDQ4OJiIKDg0M///zzPSdOnBjRpk2bdCIiDQ2NitjYWI9/BMUeCqiIp0/Z\nSxAnJbHHVwYN4jsRNGe4HkoNUFBA1UREEM2ZQ9ShA1tY7O35TgTNUZNq8gJorgYMILp3jx1w0tOT\naOlSopISvlMBNB4UFIBG1LIl0aJF7GjGT56w1145ehSDTkLThCYvAAWKjmbPtjcxYbsZOznxnQia\nOjR5ATRRPj7sEC7DhxP16UM0fz7R69d8pwKQDxQUAAVTV2f3UhIT2WLSsSPRgQNEVVV8JwN4P2jy\nAuBZTAxbYNTV2UEnP/iA70TQlKDJC6AZ8fQkunGDHcZl4ECiadOIXrzgOxXA20NBAVACQiFbUB48\nYC9H3LEj0a5duPYKqBY0eQEoobt32WYwsZhtButZ43CpAPXDmfI1QEGB5oZhiA4fJlq4kMjXl2jt\nWiILC75TgarBMRQAIIGAaNw4thnMwoLIxYVo3ToMOgnKCwUFQMnp6LB7J9evE125wl7U68wZvlMB\n/C80eQGomIgI9jLE9vZEW7awg08C1AZNXgBQK27QyX792IP1CxcSFRXxnQoABQVAJbVowV4h8v59\n9pwVR0ei/ftxtj3wC01eAE1AbCx7bXuGYQed9PCofxloHtDkBQBvxcOD6No1ohkz2IEnJ00iys3l\nOxU0NygoAE2EUEgUGEiUnExkbMz2Btu4kai8nO9k0FygoAA0Mbq6ROvXs3ssUVFEzs5szzCAxoZj\nKABN3JkzRPPmEbVvz3YzbteO70SgSDiGAgByM2gQ2824d28iLy+ir79mxwgDkDcUFIBmoGVLoq++\nYgtLbi7bzfjgQXQzBvlCkxdAM3Tjxn8v6vXDD0TduvGdCBoLmrwAoFF1785eKXLqVKKhQ9lrseTl\n8Z0KVB0KCkAzJRSy56skJxPp67PdjDdvRjdjeHdo8gIAImILy9y5RM+eEW3dSvThh3wnAnnABbZq\ngIIC0PgYhuj0ababcadO7B6LvT3fqeB94BgKAPBCICAaMoQoMZHtYuzpSbRkCVFxMd/JQBWgoADA\n/2jZkj1fJSGBKCOD7Wb888/sHgxAbdDkBQD1unaNHc24ZUu2m3GXLnwngoZCkxcAKJUePdgh8idP\nZs+8nzqVKD+f71SgbFBQAKBBhEL2fJXkZCJtbSInJ6Jt24gqKvhOBsoCTV4A8E4ePGC7GWdmst2M\n/fz4TgQ1QbfhGqCgACgfhiE6dYpo/nwiFxeiTZuI7Oz4TgWycAwFAFSCQEA0bBjbzbhbN/bKkUuX\nEpWU8J0M+ICCAgDvTVOTPV8lPp4oNZXtZnz4MLoZNzcKafKysbFJ09XVLVJTU5NqaGhUxMbGelSf\n54svvvghIiJigEgkkuzfv3+iu7t73D+CoskLQGVcucJ2M9bWZg/cu7vznaj5UmSTl7oiViIQCJjo\n6GgfAwODlzVNDw8PH5iSkuLw+PHjdjExMZ7Tp0/fdePGje6KyAYA8terF9HNm0R79xINGEA0fDjR\nqlVEhoZ8J4PGpLAmr7oq5KlTp4YGBgYeICLy9PSMefXqVeu8vDxTRWUDAPlTUyMKCmJ7g7VowXYz\n/vFHIqmU72TQWBS2h9K/f//zampq0uDg4NCgoKDdstOzsrIsra2tM7j7VlZWmZmZmVampqb/uEJD\nSEjIf/728fEhHx+fRk4OAO9LX589u37KFKJZs4h27ybasYMdJwzkLzo6mqKjo3lZt0IKytWrV3ua\nm5vn5OfnG/v5+f3l6OiY7O3tfVl2nup7MAKB4H8OmMgWFABQLa6uRJcuEf30E9GIEUQDBxKtWUNk\nbMx3sqal+n+2ly9frrB1K6TJy9zcPIeIyNjYOH/EiBEnqh+Ut7S0zMrIyLDm7mdmZlpZWlpmKSIb\nACiOQEA0YQJ7tr2uLjtE/s6daAZrKhq9oEgkEpFYLNYhIiopKWkVGRnp7+zsfE92nqFDh546ePDg\nZ0REN27c6N66detX1Zu7AKDp0NVlr7Vy8SLR0aNEXbsSXb3Kdyp4X43e5JWXl2c6YsSIE0RElZWV\n6p9++unP/v7+kaGhocFERMHBwaEDBw4MDw8PH+jg4JDSqlWrkn379k1q7FwAwL/OnYmiooiOHCEa\nO5aoXz+i9euJTNElRyVh6BUAUApiMdGKFUT79rFn28+cSaSukKO8TRvG8qoBCgpA85CcTDR7NlFu\nLnt8pXdvvhOpNhSUGqCgADQfDEP0++/soJPe3kQbNhBZWPCdSjVhcEgAaNYEAqLRo9mTItu2/e9I\nxrj2inLDHgoAKL1Hj4jmzCF69ow9KdLXl+9EqgNNXjVAQQFo3hiG6ORJonnz2GHyN24ksrauf7nm\nDk1eAADVCATsIJOJiezw+O7uRGvXEr15w3cy4KCgAIBKEYmIli8niokhunaNPb5y7hzfqYAITV4A\noOLOnGGPr7i4EG3Zwh7Eh/9CkxcAQAMNGkR0/z7bBNalC9HKlURlZXynap5QUABA5WlqEn37LdGt\nW0R37rBDupw5w3eq5gdNXgDQ5Jw7x55t7+hItHUrkZ0d34n4gyYvAID38OGHRPfuEfXowXYxXraM\nqLSU71RNHwoKADRJLVsSff01UVwce8a9kxN7HgsaOhoPmrwAoFk4f55tBrOxYS9J3K4d34kUA01e\nAABy1r8/0d277DVXvLyIvvmGqKSE71RNCwoKADQbLVoQffklW1hSU9lmsGPH0AwmL2jyAoBmKzqa\naNYsInNzou3b2V5hTQ2avAAAFMDHhz1oP2gQUa9eRF99xV45Et4NCgoANGsaGkRz57Jn2+flsc1g\nhw+jGexdoMkLAEDG1avs9ewNDNhmsE6d+E70ftDkBQDAk5492SFcRo0i6tuXvQxxURHfqVQDCgoA\nQDXq6uxeyv37RK9fEx04wHci1YAmLwCAejAMe4EvVYQmLwAAJaKqxUTRUFAAAEAuUFAAAEAuUFAA\nAEAuUFAAAEAuUFAAAEAuUFAAAEAuUFAAAEAuUFAAAEAuUFAAAEAuUFAAAEAuUFAAAEAuFFZQpFKp\nmru7e9yQIUP+rD6toKDAKCAg4Kybm1t8586d7+/fv3+ionIpSnR0NN8R3osq51fl7ETIzzdVz69I\nCiso27Ztm+Pk5JQkEAj+Z8jgHTt2zHJ3d4+Lj493i46O9lmwYMGmyspKdUVlUwRV/1Cqcn5Vzk6E\n/HxT9fyKpJCCkpmZaRUeHj7w888/31PTMMrm5uY5RUVFukRERUVFuoaGhi/U1dUrFZENAADkQyF7\nAfPmzduyYcOGhVzRqC4oKGi3r6/vRQsLi2yxWKzz22+/jVFELgAAkCOGYRr19ueffw6eMWPGToZh\nKCoqymfw4MF/Vp9nxYoVS+fMmbOVYRhKSUmxt7W1fVpUVKQjOw8RMbjhhhtuuL39rbF/57lbo++h\nXLt2rcepU6eGhoeHDywrK9MsKirS/eyzzw4ePHjwM9l5vvnmm1VERPb29k9sbW1THz582KFr1663\nuHkUdcUxAAB4N41+DGX16tVLMjIyrFNTU20PHz78sa+v70XZYkJE5OjomHz+/Pn+RER5eXmmDx8+\n7GBnZ/e0sbMBAID8KLwnFdfLKzQ0NJiIKDg4OHTJkiWrJ02atM/V1fVuVVWVcP369V8ZGBi8VHQ2\nAAB4d4L/Pz4BAADwXlTiTPmzZ88GODo6Jrdr1+7xunXrFvGdpyFsbGzSXFxcEtzd3eM8PDxiiYhe\nvnxp4Ofn91f79u0f+fv7R7569ao13zk5kydP3mtqaprn7Ox8j3usrrxr1qxZ3K5du8eOjo7JkZGR\n/vykZtWUPSQkJMTKyirT3d09zt3dPS4iImIAN02ZshMRZWRkWPft2zeqU6dOiZ07d77/ww8/fEGk\nOtu/tvyq8h6UlZVpenp6xri5ucU7OTklLV68eA2Ramz/2rLztu0VdfT/XW+VlZVq9vb2KampqTbl\n5eUarq6u8UlJSR35zlXfzcbGJvXFixcGso8tXLhw/bp1675iGIbWrl27aNGiRWv5zsndLl265H3n\nzh33zp0736svb2JiopOrq2t8eXm5Rmpqqo29vX2KVCoVKlP2kJCQZZs2bZpffV5ly84wDOXk5JjF\nxcW5MQxDYrFYu3379g+TkpI6qsr2ry2/Kr0HJSUlIoZhqKKiQt3T0/PG5cuXe6nK9q8pO1/bXun3\nUGJjYz0cHBxSbGxs0jQ0NCo+/vjjwydPnhzGd66GYKr1TDt16tTQwMDAA0REgYGBB/7444/h/CT7\nX97e3pf19fULZR+rLe/JkyeHjRs37lcNDY0KGxubNAcHh5TY2FgPPnIT1ZydqOaegcqWnYjIzMws\n183NLZ6ISFtbu7hjx44PsrKyLFVl+9eWn0h13gORSCQhIiovL28hlUrV9PX1C1Vl+9eUnYifba/0\nBSUrK8vS2to6g7tvZWWVyX1YlZlAIGD69+9/vmvXrrd2794dRMT2YDM1Nc0jIjI1Nc3Ly8sz5Tdl\n3WrLm52dbWFlZZXJzaes78n27dtnu7q63p0yZUoY11yh7NnT0tJs4uLi3D09PWNUcftz+bt3736D\nSHXeg6qqKqGbm1u8qalpHtd8pyrbv6bsRPxse6UvKDWN/aUKrl692jMuLs49IiJiwM6dO2devnzZ\nW3a6QCBgVOm11ZdX2V7L9OnTd6WmptrGx8e7mZub5yxYsGBTbfMqS/bi4mLtUaNG/b5t27Y5Ojo6\nYtlpqrD9i4uLtUePHn1s27Ztc7S1tYtV6T0QCoVV8fHxbpmZmVaXLl3qHRUV1Vd2ujJv/+rZo6Oj\nffja9kpfUCwtLbMyMjKsufsZGRnWshVWWZmbm+cQERkbG+ePGDHiRGxsrIepqWlebm6uGRFRTk6O\nuYmJyXN+U9attrzV35PMzEwrS0vLLL5y1sTExOQ59yPw+eef7+F265U1e0VFhcaoUaN+nzBhwqHh\nw4f/QaRa25/LP378+J+4/Kr2HhAR6enpvR40aNCZ27dvd1Gl7U/03+y3bt3qyte2V/qC0rVr11uP\nHz9ul5aWZlNeXt7iyJEjY4cOHXqK71x1kUgkIrFYrENEVFJS0ioyMtLf2dn53tChQ08dOHAgkIjo\nwIEDgdwXT1nVlnfo0KGnDh8+/HF5eXmL1NRU28ePH7fjerIpi5ycHHPu7xMnTozgeoApY3aGYQRT\npkwJc3JySpo7d+5W7nFV2f615VeV96CgoMCIaxIqLS3V+uuvv/zc3d3jVGH715adK4RECt72fPas\naOgtPDx8QPv27R/a29unrF69ejHfeeq7PX361NbV1TXe1dU1vlOnTve5zC9evDDo16/f+Xbt2j3y\n8/OLLCwsbM13Vu728ccf/2pubp6toaFRbmVllbF3795JdeVdtWrVEnt7+5QOHToknz179kNlyh4W\nFjZ5woQJB52dnRNcXFzuDhs27I/c3FxTZczOMAxdvny5l0AgqHJ1dY13c3OLc3Nzi4uIiAhQle1f\nU/7w8PABqvIeJCQkOLu7u99xdXWNd3Z2Tli/fv1Chqn7+6os+WvLzte2x4mNAAAgF0rf5AUAAKoB\nBQUAAOQCBQUAAOQCBQUAAOQCBQUAAOQCBQUAAOQCBQXgPbx586ZlTY+XlZVpKjoLAN9QUADe0enT\npwdzIyJUl5mZacVd1hqguUBBAWigBw8edFy9evUSInZYkaKiIl0jI6OCmuZ1cHBISUpKciotLdVS\nbEoA/qCgADRQVFRUX3d39zgion379k0aMWLEibrmHzRo0Jlff/11nGLSAfAPBQWgASIiIgaEhYVN\nyczMtMrNzTV7/vy5iZaWVik3/f79+50PHjz4WWhoaHBJSUkrIiJ7e/sn9+7dc+YvNYBioaAANMCA\nAQMiLCwssoOCgnabmZnlVj/ovnfv3smOjo7JLVu2fFNcXKzNPV5ZWamu+LQA/EBBAWiA3NxcMzMz\ns1zufkVFhYbs9PHjx/80f/78zcePHx/JXeWPiL2UgSJzAvAJBQWgAW7evNnNw8Mj9ubNm90kEolI\nTU1Nyk3766+//BISElyuXLnSq/pBeqFQWKX4tAD8QEEBaAALC4vsrKwsy+LiYm2RSCQRiUQSbpqJ\nicnzFi1alP/2229jxowZ8xv3OMMwguqX8gVoytC+C9AAXbp0ud2lS5fb3H0rK6vMwsJCfX19/UJX\nV9e7rq6ud6svk5CQ4OLp6Rmj2KQA/MEeCsA7CAoK2n306NGP6prnwoUL/T766KOjisoEwDcUFIB3\noKen97pjx44P0tPT29Q0PTExsVO/fv0u4BgKNCe4BDAAAMgF9lAAAEAuUFAAAEAuUFAAAEAuUFAA\nAEAuUFAAAEAuUFAAAEAuUFAAAEAuUFAAAEAu/g+t2fTWyjEZAgAAAABJRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0x3f0c650>"
- ]
- },
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The rate constant for the decomposition is :2.55e-03 s**-1\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.6,Page no:576"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "k=5.36*10**-4 #rate constant, s-1\n",
- "\n",
- "#Calculation\n",
- "t_half=0.693/(60*k) #half life of the reaction, min\n",
- "\n",
- "#Result\n",
- "print\"The half life for the decomposition of ethane is :\",round(t_half,1),\"min\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The half life for the decomposition of ethane is : 21.5 min\n"
- ]
- }
- ],
- "prompt_number": 77
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.7,Page no:578"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "k=7*10**9 #rate constant, M s\n",
- "\n",
- "#Calculation\n",
- "#(a)\n",
- "t=2*60 #half life of the reaction, s\n",
- "Ao1=0.086 \n",
- "A1=(k*t+1/Ao1)**-1 \n",
- "#(b)\n",
- "Ao2=0.6 \n",
- "t_half2=1/(Ao2*k) #half life of the reaction, s\n",
- "Ao3=0.42 \n",
- "t_half3=1/(Ao3*k) #half life of the reaction, s\n",
- "\n",
- "#Result\n",
- "print\"(a.)The concentration of I is :%.1e\"%A1,\"M\"\n",
- "print\"(b.)The half life for Io=0.6 is :%.1e\"%t_half2,\"s\"\n",
- "print\" The half life for Io=0.42 is :%.1e\"%t_half3,\"s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a.)The concentration of I is :1.2e-12 M\n",
- "(b.)The half life for Io=0.6 is :2.4e-10 s\n",
- " The half life for Io=0.42 is :3.4e-10 s\n"
- ]
- }
- ],
- "prompt_number": 79
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.8,Page no:584"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "T=[700.0,730.0,760.0,790.0,810.0] #temperature(data given), K\n",
- "R=8.314 #gas constant, kJ/mol\n",
- "k=[0.011,0.035,0.105,0.343,0.789] #rate constant(data given) in 1/M**1/2 s corresponding to temperature values\n",
- "import numpy\n",
- "#Calculation\n",
- "x=numpy.reciprocal(T) #1/T values corresponding to Temp values above, K-1\n",
- "x=numpy.round(x,5)\n",
- "import math\n",
- "\n",
- "from pylab import *\n",
- "%matplotlib inline\n",
- "lnk=numpy.log(k) #lnk values corresponding to k\n",
- "lnk[0]=numpy.round(lnk[0],2)\n",
- "lnk[1]=numpy.round(lnk[1],2)\n",
- "lnk[2]=numpy.round(lnk[2],3)\n",
- "lnk[3]=numpy.round(lnk[3],3)\n",
- "lnk[4]=numpy.round(lnk[4],3)\n",
- "A=plot(x,lnk,marker='o', linestyle='-')\n",
- "plt.xlim(1.2*10**-3,1.45*10**-3)\n",
- "plt.ylim(-5.0,0.0)\n",
- "plt.ylabel('$ln k$')\n",
- "plt.xlabel('$1/T(K^-1)$')\n",
- "plt.title('Plot of ln k versus 1/T\\n')\n",
- "slope=np.polyfit(x,lnk,1)\n",
- "Ea=-slope[0]*R #activation energy, kJ/mol\n",
- "\n",
- "#Result\n",
- "show(A)\n",
- "print\"The activation energy for the decomposition is :%.3e\"%(Ea/1000),\"kJ/mol\"\n",
- "print\"NOTE:Slope is approximately calculated in book,that's why wrong answer\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEjCAYAAAD31uwUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1cjff/B/DX6caplIooikVKFt3ozthyjCjG3Ixhw8zM\nd0OMzTa3bSvbDDPZppkZfpbNCFPuSebuFAmNEE2lWJObdF/n98f1ONZaqE7nXOfm9Xw8zmO6znV1\n3ufzuObt/flcn89HolAoQEREpAojsQMgIiLdx2RCREQqYzIhIiKVMZkQEZHKmEyIiEhlTCZERKQy\nJhNSG5lMlrBmzZqJmvisb7/99i17e/ubzZo1u1dQUGBb/b3MzExnIyOjqqqqqnrf7wkJCbK2bdtm\nNV6kRPqJyYRU4uzsnGlhYVFkZWV138HBIW/ChAlrHzx40BQAJBKJQiKRPHEikyp/2QNAeXm56axZ\ns5YeOHCgz71795rZ2toWNOT3GJpDhw717t279yEbG5s77du3v1bbOcePH3+mQ4cOV62srO4rX0ZG\nRlWWlpaFyp+PHj3aU9Oxk/ZhMiGVSCQSxc6dO1+4f/++1enTp7slJyf7RUREzGvI71IoFJKGXJeX\nl+dQUlJi1rlz5wsNuV7bVFRUmGjicywtLQvfeOON77/44ov3HnVOXFzcwDfeeOP7+/fvWylfAHD2\n7FlP5c89e/Y8qol4SbsxmVCjadOmzY2QkJDdaWlpHjXfUygUkoiIiHnOzs6Z9vb2N8ePH7/u3r17\nzQAgKCgoEQBsbGzuWFlZ3T958mRgzetLS0ulM2bMWO7o6Jjj6OiY884773xZVlbW5NKlS27KJGJj\nY3Onb9+++58Up0wmS1iwYMHHzz777O/NmjW7179//z1///13i7p8xxUrVoR5eHik3bhxo03N+Gxs\nbO5U/+5//fVXSwsLi6L8/Hw7ANi5c+cL3t7eZ2xtbQt69ux59Ny5c12V5zo7O2cuXrx4tqen51kr\nK6v7lZWVxp9//vn7Tk5O2c2aNbvn7u5+8dChQ70B4LXXXvtx/vz5nyivrdkVV/O6gwcPPl/bd/H3\n90965ZVXNj6qKgGAXbt2hQ4YMCC+Lm1Dho3JhFSmrCiysrLa7tq1K9THxyel5jlr166dsG7duvEJ\nCQmyq1evdigsLLScOnXqSgA4cuTIcwBw9+5d6/v371sFBgaerHl9ZGTkXLlcHpCamuqVmprqJZfL\nAyIiIua5ubldUv4FfvfuXev9+/f3rUvMMTExo3/88cfXbt261aqsrKzJkiVL3n3SNR9//PGC9evX\nj0tMTAxq06bNjervSaXS0uHDh2+JiYkZrTz2yy+/jJTJZAl2dnb5KSkpPhMnTlyzevXqSbdv324+\nefLk6MGDB+8oLy83VZ6/adOmUbt27Qq9c+eOzZUrVzp+/fXXU5KTk/3u3bvXbO/evf2eeuqpP4HH\ndx+mp6d3qnmds7NzZl3apKbc3NzWN2/etPf29j7TkOvJsDCZkEoUCoVkyJAh22xtbQuee+65IzKZ\nLGHOnDmLap63cePGV2bNmrXU2dk5s2nTpg8+/fTTDzdt2jSqqqrKqC7dWz/99NOYBQsWfGxnZ5dv\nZ2eXv3Dhwo82bNgwVhlDfWKWSCSKCRMmrO3YseMVMzOzkpEjR/5y5swZ78d9x5kzZy7bv39/30OH\nDvVu0aLF37WdN2bMmJ82bdo0qnrMY8aM+QkAvvvuuzcnT54c7e/vnySRSBTjxo1bL5VKS0+cONFd\nGVNYWNgKR0fHHKlUWmpsbFxZWloqTUtL8ygvLzdt167d9Q4dOlytHlNtMTzpuvqIj48fEBoauqsh\n15LhYTIhlUgkEsX27dtfLCgosM3MzHReuXLlVKlUWlrzvNzc3NbKf1kDQLt27a5XVFSY3Lx5074u\nn3Pjxo02Na+v2dVUHw4ODnnKP5ubmxcXFhZaPurcO3fu2Hz//fdvfPDBB59ZWVndf9R5Mpksoaio\nyEIulwdkZmY6p6ameg0dOjQWAP7888+nli5dOsvW1rZA+crOznaq/h2qd1V17NjxyvLly2eEh4eH\n29vb3xw9enRMbm5u6yd9r4ZeV5v4+PgB7OKiumIyIY1o06bNjczMTGflz9evX29nYmJSYW9vf7Mu\nT3zVdn3NriZ1sbW1Ldi5c+cLEyZMWHvs2LEejzrP2Ni4cuTIkb/ExMSMjomJGT1o0KDfmjZt+gAQ\nkt/cuXMjCwoKbJWvwsJCy5dffvln5fU122H06NExR44cee7PP/98SiKRKN5///3PAaBp06YPioqK\nLJTn5eXlOdTluvooLy83TUxMDAoODt5X32vJMDGZkEaMHj065ssvv3wnMzPTubCw0HLOnDmLRo0a\ntcnIyKiqZcuWfxkZGVVlZGS4PO76iIiIefn5+Xb5+fl2H3/88YKxY8duaGg89e0aCwoKSty4ceMr\nw4YN25qUlOT/qPOUXV3Vu7gAYNKkSatXrVr1P7lcHqBQKCQPHjxoGhcXN/BRFdGlS5fcDh48+Hxp\naalUKpWWmpmZlRgbG1cCgLe395n4+PgBBQUFtnl5eQ7Lly+fUZframuDkpISs/LyclOFQiEpLS2V\nlpWVNQGA33///VlPT8+zlpaWhfVpJzJcTCakEa+//voPY8eO3RAUFJTYoUOHqxYWFkVRUVHTAMDC\nwqJo7ty5kT179jxqa2tbIJfLA2peP2/evAg/P79kT0/Ps56enmf9/PyS582bF6F8/0nVTc33q//8\npPkwyvf69u27/4cffnh90KBBvz1qjCUgIEBuaWlZmJub27r6eIOvr++p1atXT5o6derK5s2b33Z1\ndb28fv36cY/63NLSUumHH374acuWLf9q3bp1bn5+vt2nn376IQCMHTt2g5eXV6qzs3NmSEjI7lGj\nRm1S/p7HXVfT4cOHe1lYWBQNHDgwLisrq625uXlxSEjIbkB4JHjgwIFxdWlLIgCQcHMsIqrJw8Mj\nbcuWLcPd3d0vih0L6QZWJkT0L+Xl5abjx49fx0RC9cHKhIiIVMbKhIiIVMZkQkREKmMyISIilWlF\nMtm9e3eIu7v7RVdX18uff/75+2LHQ0RE9SP6AHxlZaVxp06d0vfv39/X0dExx9/fPykmJma0viwn\nTkRkCESvTORyeUDHjh2vODs7Z5qampaPGjVq0/bt218UOy4iIqo70ZNJTk6OY/UF7pycnLJzcnIc\nxYyJiIjqRyM7uj1OfZfBICKiumno7qUNIXpl4ujomJOVldVW+XNWVlZbJyen7OrnKBQKvhQKLFy4\nUPQYtOXFtmBbsC0e/9I00ZOJn59f8uXLl10zMzOdy8rKmvz8888vDx48eIfYcRERUd2J3s1lYmJS\nsXLlyqn9+/ffU1lZaTxx4sQ1fJKLiEi3iJ5MACA0NHQXtwd9MplMJnYIWoNt8Q+2xT/YFuIRfZ7J\nk0gkEoW2x0hEpG0kEgkUhjQAT0REuk8rurl0UVxcIlas2IvSUhNIpRUIC+uHgQODxA6LiEgUTCYN\nEBeXiOnT9yAjI/LhsYyMuQDAhEJEBondXA2wYsXefyUSAMjIiERU1D6RIiIiEheTSQOUltZe0JWU\nGGs4EiIi7cBk0gBSaUWtx42NKzUcCRGRdmAyaYCwsH5wcZn7r2PW1nNw9mww9u8XKSgiIhFxnkkD\nxcUlIipqH0pKjGFmVolp04LRpEkQXn8dGDYM+OwzwNxc7CiJyFBpep4Jk0kju30bmDIFOHMG+L//\nA3x9xY6IiAwRJy3quObNgZgYYMECIDQUiIgAKmofYiEi0husTNQoOxuYMAEoLATWrwdcXcWOiIgM\nBSsTPeLkBOzZA4wZA/ToAURHAzqaF4mIHouViYZcuAC8+irg4ACsWSP8l4hIXViZ6KnOnYHjx4Fu\n3QBvb2DrVrEjIiJqPKxMRHD8ODBuHNCzJ/DVV4C1tdgREZG+YWViAJ55BkhJAczMAC8v4PBhsSMi\nIlINKxORxcUBb74pDNJHRABSqdgREZE+YGViYAYOBFJTgYwMwN8fOHtW7IiIiOqPyUQL2NkBW7YA\ns2YBffoAixcDlVwzkoh0CLu5tExmJjB+vDAfZd06oH17sSMiIl3Ebi4D5+wMHDwIDB4MBAQAa9dy\noiMRaT9WJlrs3DlhomP79sB33wGtWokdERHpClYm9FDXroBcDnTqJDxC/NtvYkdERFQ7ViY6IjFR\nGEsJDgaWLQMsLcWOiIi0GSsTqlVQkPAIcUWFsBzLsWNiR0RE9A9WJjpo2zbgf/8DJk4EFi4EmjQR\nOyIi0jasTOiJhgwRqpSzZ4Hu3YG0NLEjIiJDx2Sio+ztgR07gLfeAnr1ApYvB6qqxI6KiAwVu7n0\nQEYGMHYsYG4O/Pgj0Lat2BERkdjYzUX15uIiPO3Vpw/g6wts3MiJjkSkWaxM9Mzp00KV0qUL8O23\nQPPmYkdERGJgZUIq6dYNSE4G2rQBPD2FPeiJiNSNlYkeO3AAmDBBWOdr8WLAwkLsiIhIU1iZUKPp\n00d4fPjOHcDHR1iahYhIHViZGIhffgGmTQPefhuYMwcwNRU7IiJSJ4OqTDZv3jzCw8MjzdjYuPL0\n6dPdxIxF340cKQzOHzsGPPsscOmS2BERkT4RNZl07dr1XGxs7NCgoKBEMeMwFI6OwO7dwLhxQI8e\nwDff8BFiImocoiYTd3f3i25ubvw3sgZJJMCUKcDRo8IEx9BQ4MYNsaMiIl1nInYAdREeHv7wzzKZ\nDDKZTLRY9EWnTkJCiYwUBudXrgRGjADi4hKxYsVelJaaQCqtQFhYPwwcGCR2uET0BAkJCUhISBDt\n89U+AB8cHLwvLy/PoebxRYsWzRk0aNBvANC7d+9DS5cundWtW7fT/wmQA/BqJ5cLEx3btEnEn3/u\nwbVrkQ/fc3GZi6++6s+EQqRjND0Ar/bKZN++fcHq/gxSTUCAMDjfufNeZGVF/uu9jIxIREXNZzIh\nosfSmnkmmsyg9F9NmwIdOtT+b4uSEmMNR0NEukbUZBIbGzu0bdu2WSdOnOg+cODAuNDQ0F1ixmPo\npNKKWo+bmVVqOBIi0jWctEgPxcUlYvr0PcjI+Kery8hoDj76KATz5rGbi0iX6N2YCekO5bhIVNR8\nlJQYw8ysEr16hWDFiiCYmADvvy88WkxEVBMrE3qi7Gxg+HDAyUmYm2JlJXZERPQkBrWcCukGJydh\n8y07O+HJr4sXxY6IiLQNkwnViVQKREcDs2YBzz0HxMaKHRERaRN2c1G9yeXASy8JEx0//hgw5pPD\nRFpH091cTCbUILduAaNGCUvZ//QT0KKF2BERUXUcMyGd0KoVsHevsDWwnx+QkiJ2REQkJiYTajAT\nE+CLL4DPPgP69QM2bBA7IiISC7u5qFGcPw8MHQqEhABLlwJNmogdEZFhYzcX6aQuXYCkJCAzE3j+\neSA3V+yIiEiTmEyo0djYANu3C11efn7CfilEZBjYzUVqERcHTJgALFwIvP02l2Eh0jQ+GlwDk4nu\nunIFGDZM2Mlx1SrA3FzsiIgMB8dMSG907AgcPw6UlQE9ewrjKUSkn5hMSK2aNhUmNY4bB3TvDuzb\nJ3ZERKQO7OYijTl8GBg9GggL43L2ROrGMZMamEz0S3a2sK5XmzbCcvbNmokdEZF+4pgJ6TUnJ6FC\nadUKCAzkcvZE+oLJhDROKhWe7nr3XS5nT6Qv2M1FokpKEnZxfPVV4JNPuJw9UWPhmEkNTCb6T7mc\nvYkJEBPD5eyJGgPHTMjgKJez9/ISlmE5fVrsiIiovphMSCsol7P//HOgf39g/XqxIyKi+mA3F2md\n8+eFZVj69QOWLeNy9kQNwW4uMnhdugj7zF+/DvTuDdy4IXZERPQkTCaklWxsgG3bhM22/P2B338X\nOyIiehx2c5HWi48XlrNfsIDL2RPVFR8NroHJhAAgI0PYFpjL2RPVDcdMiGrh4iIsZ19eDvToAVy7\nJnZERFQdkwnpjKZNgY0bgfHjheXs9+4VOyIiUmI3F+kk5XL206YBH3zAcRSimjhmUgOTCT0Kl7Mn\nejSOmRDVUfXl7AMCgAsXxI6IyHAxmZBOUy5nP3s2EBTE5eyJxMJuLtIbSUlCt9eYMUBEBJezJ8PG\nMZMamEyoPv76S1jO3tiYy9mTYTOoMZP33nvvi86dO1/w8vJKHTZs2Na7d+9aixkP6b6WLYE9ewBv\nby5nT6RJoiaTfv367U1LS/NITU31cnNzu/Tpp59+KGY8pB9MTIDFi4VX//7AunViR0Sk/0RNJsHB\nwfuMjIyqACAwMPBkdna2k5jxkH4ZMQJISAAiI4GpU4GyMrEjItJfJmIHoPTDDz+8Pnr06Jja3gsP\nD3/4Z5lMBplMpqGoSNd5eAgD8+PGCcvZb94szEsh0jcJCQlISEgQ7fPVPgAfHBy8Ly8vz6Hm8UWL\nFs0ZNGjQbwAQGRk59/Tp0922bNky/D8BcgCeGkFVFbBoEfDtt8DPPwPPPit2RETqZXBPc/3444+v\nrV69etKBAwf6mJmZldR8n8mEGlN8PPDaa8Jy9lOmcBkW0l8GlUx2794dMmvWrKWHDx/uZWdnl1/b\nOUwm1NgyMoRtgb28hAmPFhZiR0TU+Awqmbi6ul4uKytr0rx589sA8Mwzzxz/5ptv3q5+DpMJqcOD\nB8CbbwJ//AFs3Qq0by92RESNy6CSSV0wmZC6KBTAihXCWMr69cJjxET6gsmkBiYTUjflcvZTpwIf\nfshxFNIPTCY1MJmQJuTkCOt6OTgIkxy5nD3pOiaTGphMSFNKS4EZM4BDh4TVh69eTcSKFXtRWmoC\nqbQCYWH9MHBgkNhhEtWJppOJ1kxaJBKbVCrMQ/nhByAwMBFNm+5BXl7kw/czMuYCABMKUS24nwlR\nDa+/Dnh47P1XIgGAjIxIREXtEykqIu3GZEJUC6m09qK9pISbpBDVhsmEqBZSaUWtx83MKjUcCZFu\nYDIhqkVYWD+4uMz91zFj4zmwsQlGRe15hsig8WkuokeIi0tEVNQ+lJQYw8ysEq+8Eoz164NQUgJs\n3Ai0ayd2hESPxkeDa2AyIW1SVQV88QWwbJmwrtfQoWJHRFQ7JpMamExIG504IcyaHzAAWLIEMDcX\nOyKifzOoPeCJdFX37kBKCpCfDwQGCgtGEhmyeiUTX1/fU8XFxeYAEB8fP+Do0aM91RMWkfazsQE2\nbQKmTweCgoDvvxcWjyQyRPVKJnPnzo00Nzcvjo2NHXr8+PFnYmNj2WNMBk0iASZOBBIThRWIR40C\n7t4VOyoizXvimElQUFDiM888c7xHjx7HfHx8UpKSkvxjY2OHzp49e7GTk1O2ci8StQXIMRPSEcXF\nwLvvArt2AT/9JHSFEYlF6wbgd+zYMdjV1fXy8ePHn5HL5QF//PHH0wDwwgsv7Ozdu/chf3//JLUG\nyGRCOiY2Fvjf/4B33gFmzwaMODJJItC6ZFKbwsJCy6SkJP+LFy+6v/XWW9+qIa6HmExIF12/Drzy\nCmBmJmy81bq12BGRodGJp7ksLS0LzczMSl544YWdjR0QkT5o105Yyr5HD6BbN2D3brEjIlKvelUm\nERER8y5fvuxqYmJSERwcvO/mzZv206dP/0qN8bEyIZ13+DDw6qvAyy8LWwQ3aSJ2RGQItLoy8fDw\nSFu3bt34ZcuWzVQoFBIXF5cMdQVGpC969RLmpFy6BPTsCVy5InZERI2vXpVJbGzsUCcnp2x1D7pX\nx8qE9IVCAaxcCXz8MbB8uTCmQqQuWj0AP2PGjOUAkJGR4WJmZlbSq1evw1OnTl2ptujAZEL658wZ\nYT5K9+5CcrG0FDsi0kdal0zmz5//Sffu3U8EBATI09PTOwHAs88++3tcXNxAe3v7m35+fslqDZDJ\nhPRQYSEQFgYcPSrMovfxETsi0jdatwd8cXGx+fXr19v9+uuvL926dauVra1tQUpKio+vr++pgwcP\nPq/uZEKkjywthb3mY2KAfv2AefOE5CLR2P/6RI2r3vNM7t69a52UlOR/6tQpXxcXl4yXXnrpVzXF\nBoCVCem/jAxhBWJ7e2DtWsDOTuyISB9oXTeX2JhMyBCUlQnVSUwMsGEDIJOJHRHpOiaTGphMyJDs\n2QO89howaRKwYAFg8sSOaKLaMZnUwGRChiYvDxg3DigqEhaM5PbA1BBaPWmRiNTPwUFYfmXwYMDP\nD9i6VeyIiJ6MlQmRFjt5UhicDwkBli7l9sBUd6xMiOihwEBhKZbbt4GAACAtTeyIiGrHZEKk5ayt\nhae8ZswQnvJavZrbA5P2YTcXkQ65cEFYiqVTJ+C774R96Ilqw24uInqkzp2FcZRWrYQlWI4fFzsi\nIgErEyIdtW0bMHmy0P31/vvcHpj+zaAqk/nz53/i5eWV6u3tfaZPnz4HsrKy2ooZD5EuGTIESE4G\ndu0S1vfKzRU7IjJkolYm9+/ft7KysroPAFFRUdNSU1O9vv/++zeqn8PKhOjxKiqAiAggOlpYPDI0\nVOyISBsYVGWiTCQAUFhYaGlnZ5cvZjxEusjEBAgPF5aynzwZmDVLWOuLSJNEHzOZO3du5IYNG8Za\nWFgUnThxoruNjc2d6u+zMiGqu7//Bl5/HcjJEZJLx45iR0Ri0bu1uYKDg/fl5eU51Dy+aNGiOYMG\nDfpN+fNnn332QXp6eqe1a9dO+FeAEoli4cKFD3+WyWSQcUlVokdSKICvvwY++gj48kvg1VfFjog0\nISEhAQkJCQ9//uijj/QrmdTV9evX2w0YMCD+/PnzXaofZ2VC1DCpqcDLLwuz6L/+mtsDGxqDGjO5\nfPmyq/LP27dvf9HHxydFzHiI9ImXF3DqlDCm0q0bcPq02BGRPhO1MnnppZd+TU9P72RsbFzp4uKS\n8e23377VqlWrW9XPYWVCpLqYGGD6dGDuXG4PbCj0bsxEVUwmRI3j6lVhBeKWLYXtgVu2FDsiUieD\n6uYiIs3p0AE4cgTw8BCWYjl0SOyISJ+wMiEyQHv3CtsDT5wILFzI7YH1Ebu5amAyIVKPmzeF7YEL\nC4XtgZ96SuyIqDGxm4uINMLeXljX68UXAX9/bg9MqmFlQkQ4eRIYM0ZYMHLZMm4PrA9YmRCRxgUG\nCvNQ7tzh9sDUMEwmRARA2B74p5+Ad94Rtgf+7jtuD0x1x24uIvqPixeFpViU2wMfPZqIFSv2orTU\nBFJpBcLC+mHgwCCxw6TH0HQ3Fx8IJKL/cHcXxlHeew9wc0tEkyZ7kJMT+fD9jIy5AMCEQg+xMiGi\nx/LxmYczZyL+c7x///nYvfsTESKiuuAAPBFpFWvr2jswSkqMNRwJaTMmEyJ6LKm0otbjZmaVGo6E\ntBmTCRE9VlhYP7i4zP3XMal0DrKzg3HpkkhBkdbhADwRPZZykD0qaj5KSoxhZlaJKVNCkJERhB49\ngHffFfadNzUVOVASFQfgiajBrl0DJk8G8vOB778XNuEi7cABeCLSGe3bA3v2CBtvhYYC778PFBeL\nHRWJgcmEiFQikQDjxwNnzwJ//gl4egIJCWJHRZrGbi4ialQ7dgBTpgiVyuLFgI2N2BEZJnZzEZFO\nGzwYOH8eMDYGunQBtm0TOyLSBFYmRKQ2hw8DkyYBXl5AVBTg4CB2RIaDlQkR6Y1evYDUVMDVVRhL\nWbuWKxHrK1YmRKQRZ84Ie843bw5ERwMdOogdkX5jZUJEesnbW1iJuF8/YQOuZcuASq7IojdYmRCR\nxl25IoylPHgArFkDdO0qdkT6h5UJEem9jh2BgweFhPL888D8+UBpqdhRkSqYTIhIFBKJkExSU4U9\n5729gaNHxY6KGordXESkFbZsAaZNA4YNAz79FLCyEjsi3cZuLiIySMOHCxVKcbEw2TE+XuyIqD5Y\nmRCR1jlwAHjzTaB7d2D5cqBlS7Ej0j2sTIjI4PXpIywc2bq18KTXxo2c7KjtWJkQkVZLSgLeeANw\ndARWrQLatRM7It3AyoSIqBp/fyA5GejZE/D1BVauBKqqxI6KamJlQkQ64+JFoUpRKISdHTt3Fjsi\n7cXKhIjoEdzdgcRE4JVXgKAg4JNPgLIysaMigMmEiHSMkRHw9tvA6dPCWl++voBcLnZUxGRCRDqp\nbVvgt9+AOXOEDblmzhTW+iJxaEUyWbp06SwjI6Oq27dvNxc7FiLSHRIJMHq0sLPjX38JjxHv3y92\nVIZJ9GSSlZXVdt++fcFPPfXUn2LHQkS6yc4O2LAB+PprYc+UCROA27fFjsqwiJ5MZs6cuWzx4sWz\nxY6DiHRfaKhQpVhZCUuybN7MyY6aYiLmh2/fvv1FJyenbE9Pz7OPOy88PPzhn2UyGWQymZojIyJd\nZWUFrFghdH9NnCjMnv/6a2HSoz5LSEhAQkKCaJ+v9nkmwcHB+/Ly8hxqHo+MjJy7aNGiOXv37u3X\nrFmze+3bt7+WnJzs16JFi7//FSDnmRBRA5WWAosWAd98A0RGCnNUjETvj9EMTc8zEW3S4vnz57v0\n6dPngIWFRREAZGdnOzk6OubI5fKAVq1a3XoYIJMJEano/HmhSjE3B1avBlxdxY5I/QwmmdTUvn37\na6dOnfJt3rz5v4bNmEyIqDFUVgJRUUBEBPDee8KjxKamYkelPgY7A14ikTBjEJHaGBsDM2YIC0ce\nOAAEBgoTH6lxaE1l8iisTIiosSkUwPr1wOzZwmPECxcKXWD6xGArEyIiTZFIgPHjhT1Trl0DvLyA\nw4fFjkq3sTIhIoO3YwcwZQowYACweDFgbS12RKpjZUJEpGGDBwtPfBkZAR4ewPbtYkeke1iZEBFV\nc/gwMGmS0PUVFQU4/GeWnG5gZUJEJKJevYDUVKBjRyGh/Pgjl2SpC1YmRESPkJIizJpv0QKIjgba\ntxc7orpjZUJEpCV8fIQNuIKDgYAA4MsvhcmP9F+sTIiI6uDKFWEs5cEDYM0aYe8UbcbKhIhIC3Xs\nCBw8KCSU558H5s8XFpIkAZMJEVEdSSRCMklNFR4l9vEBjh0TOyrtwG4uIqIGUCiArVuBsDBg2DBh\nqXsrK7Gj+ge7uYiIdIBEAgwfLlQoRUXCzo7x8WJHJR5WJkREjeDAAeDNN4Hu3YHly4GWLcWNh5UJ\nEZEO6tN6eCHgAAALeklEQVRHWDjSwUF40mvjRsOa7MjKhIiokSUlCZMdnZyAb78Fzp1LxIoVe1Fa\nagKptAJhYf0wcGCQWmPQdGVioqkPIiIyFP7+QHKysAJxly6JkEr3ID8/8uH7GRlzAUDtCUWTWJkQ\nEanRs8/Ow9GjEf853r//fOze/YnaPpdjJkREesTEpPYOoJISYw1Hol5MJkREaiSVVtR63MxMvxb5\nYjIhIlKjsLB+cHGZ+69jLi5zMG1asEgRqQfHTIiI1CwuLhFRUftQUmIMM7NKTJsWrHdPczGZEBHp\nIQ7AExGRzmEyISIilTGZEBGRyphMiIhIZUwmRESkMiYTIiJSGZMJERGpjMmEiIhUxmRCREQqYzIh\nIiKVMZkQEZHKmEyIiEhlTCZERKQyJhMdkpCQIHYIWoNt8Q+2xT/YFuIRNZmEh4eHOzk5Zfv4+KT4\n+Pik7N69O0TMeLQd/0f5B9viH2yLf7AtxFP75sQaIpFIFDNnzlw2c+bMZWLGQUREqhG9m0uTm7cQ\nEZF6iLrT4kcffbRw7dq1E6ytre/6+fklL126dJaNjc2d6udIJBJus0hE1AB6tW1vcHDwvry8PIea\nxyMjI+d27979RMuWLf8CgPnz53+Sm5vbes2aNRPVGhARETU6rdkDPjMz03nQoEG/nTt3rqvYsRAR\nUf2IOmaSm5vbWvnn2NjYoV27dj0nZjxERNQwolYm48aNW3/mzBlviUSiaN++/bXo6OjJ9vb2N0UL\niIiIGkRtlcnu3btD3N3dL7q6ul7+/PPP36/tHBsbmzvFxcXmALBw4cKPlInkUddu3rx5hIeHR5qx\nsXHlqVOnfJXH9+3bF+zn55fs6el51s/PL/nQoUO9le+dOnXKt2vXrudcXV0vT58+/St1fd/HqUtb\nhIWFrXB1db3s5eWVmpKS4vOkaxvSFjKZLMHd3f2icl5Pfn6+nbq+86Oouy1Onz7dTXlcLpcHKL+r\np6fn2Z9//vll5XuGcF/UtS3Evi802Q5K169fb2dpaVm4dOnSWcpj2nBPANrTHvW+LxQKRaO/Kioq\njF1cXK5cu3bNuayszNTLy+vMH3/80bn6OXFxcQNCQ0PjFQoFTpw4ERgYGHjiSddeuHDBPT093U0m\nkx06depUN+XvSklJ8c7NzXVQKBQ4f/68h6OjY7byPX9/f/nJkycDFAoFQkND43ft2hWiju+sC21R\n81xNvzTdFkVFReaVlZVGCoUCubm5Di1atMivqKgwNsT74nFtIeZ9oel2UL6GDx/+68iRI39esmTJ\nLOUxse8JbWuP+t4XaqlM5HJ5QMeOHa84Oztnmpqalo8aNWrT9u3bX6x+zo4dOwaPHz9+HQAEBgae\nvHPnjk1eXp7D4651d3e/6Obmdqnm53l7e59xcHDIA4Cnn376j+LiYvPy8nLT3Nzc1vfv37cKCAiQ\nA0K32rZt24ao4zs/ira0hfJ9hYjzejTdFubm5sVGRkZVAFBcXGxubW1919jYuNIQ74tHtYXyfbHu\nC023AwBs27ZtSIcOHa4+/fTTfyiPacM9AWhPeyjV575QSzLJyclxbNu2bZbyZycnp+ycnBzHupxz\n48aNNk+69nG2bNky3NfX95SpqWl5Tk6Oo5OTU7byPUdHx5z6/K7GoC1toTw2fvz4dT4+PikRERHz\nGv6tGkaMtpDL5QEeHh5pHh4eacuWLZup/AxDvC9qawslse4LTbdDYWGh5eLFi2eHh4eH1/wMse8J\nZRza0B5K9bkv1JJM6jrRsLH/NZSWlubxwQcffBYdHT25MX+vKrSpLTZu3PjK+fPnuxw5cuS5I0eO\nPLdhw4axjfmZTyJGWwQEBMjT0tI8Tp8+3W369Olf3b1717qxfrcqtKktxLwvNN0O4eHh4e+8886X\nFhYWRWJW6Y+iTe1R3/tCLWtzOTo65mRlZbVV/pyVldW2etav7Zzs7GwnJyen7PLyctMnXVub7Oxs\np2HDhm3dsGHD2Pbt219TfkZ2drZT9XMcHR1zVP1+9aEtbQEAbdq0uQEAlpaWhWPGjPlJLpcHjB07\ndoOq37GuxGgLJXd394suLi4ZV65c6ejk5JRtiPeFUvW28PX1PSXmfaHpdpDL5QFbtmwZPnv27MV3\n7tyxMTIyqjI3Ny8eNmzYVrHvCUB72uPtt9/+pt73hToGkcrLy006dOiQce3aNefS0tImTxpEOn78\neHflIFJdrpXJZIeSk5N9lT8XFBTYeHp6psbGxg6pGUtAQMDJEydOBFZVVUnEGFTTlraoqKgw/uuv\nv+wUCgXKyspMhw8f/mt0dPSb+twW165dcy4vLzdRKBTIzMx8qm3bttfv3r3bzBDvi0e1hdj3habb\noforPDx84dKlS2cqfxb7ntCm9mjIfaG2RomPjw91c3NLd3FxubJo0aIPFQoFVq1aNXnVqlWTledM\nmTJlpYuLyxVPT8/U6k8N1HatQqHA1q1bhzo5OWWZmZkV29vb54WEhOxSKBT45JNP5jVt2rTQ29s7\nRflSNkRycrJvly5dzrm4uFyZNm3aCk3fHNrSFoWFhU19fX2TPT09Uz08PM7PmDHjy6qqKok+t8X6\n9evHenh4nPf29k7x9/eXV//LwdDui0e1hTbcF5psh+qvmslEG+4JbWmPhtwXWrOcChER6S7Rl6An\nIiLdx2RCREQqYzIhIiKVMZkQEZHKmEyIiEhlTCZERKQyJhMyeBUVFSbp6emdnnReaWmpVJ1xlJSU\nmKnz9xOpE5MJGYSqqiqjmTNnLqvtvYSEBJmRkVHVpUuX3EJDQ3dFR0dP7tu37/6JEyeuiY6Onuzr\n63tq586dL9y/f99Kec2SJUvebd26da5yvaLs7Gynzp07X1i1atX/bty40WbPnj39la/jx48/U5eY\nsrOznfbv39+3sb87kSaoZW0uIm1SUFBgu3bt2gmHDx/uVdv76enpnfr27bv/l19+Gbljx47Bpqam\n5bGxsUNnz569uFOnTunW1tZ3792718zOzi5feY2fn19ySEjI7rFjx26oqqoyOnbsWI+TJ08GNmvW\n7B7wzzpo9YmpY8eOV+Lj4wf07NnzqLm5eXFjfX8iTWBlQnrP1ta2YObMmcuUf9HXpNznw9XV9bJy\nuf5Lly65derUKR0Arl692mHo0KGx1a85efJkYGBg4MnS0lLpL7/8MnLIkCHbHvX76xPTwIED42Ji\nYkbX9zsSiY3JhAyaXC4P8Pf3TwIAHx+fFAC4fPmyq4uLS4bynFu3brWqWSkkJSX5u7m5XXrppZd+\ndXNzu9SkSZOyxojHxcUl49y5c10b43cRaRKTCRm0U6dO+fr5+SVXPyaXywOUO+4BtQ+MJyUl+f/9\n998tBg8evGPjxo2vNGZMFRUV7H4mncNkQgatqqrqP/8PJCUl+Xfv3v2E8ufq2x4DQF5enkPr1q1z\nR4wYsXnEiBGbt23bNkTRiBstFRUVWTTW7yLSFCYTMljp6emdlOMi1SUlJfkru74AoPpe6YAwXqJM\nNjY2Nnf8/f2T9u3bF9xYcSnHcIh0CZMJ6b0HDx40/fLLL9+5cOFC5+XLl8948OBBU0B4JFgmkyUo\nz0tNTfX64osv3jt79qxnbGzs0Fu3brUCAAsLiyLlOceOHevxzTffvJ2Xl+eQk5PjWFRUZFFUVGSx\ncOHCjy5duuSmakwKhUJiZWV1v9G+PJGGcD8TMlhRUVHTpk2bFvWk85YsWfLuxIkT19ja2haoO6bU\n1FSvixcvur/88ss/q/uziBoTKxMySDdu3GhT1z2+J02atHrz5s0j1B0TABw4cKDPiBEjNmvis4ga\nE5MJGaQjR448179//z11Odfa2vpu586dL1y/fr2dOmNKS0vz6NOnzwGOmZAuYjcXERGpjJUJERGp\njMmEiIhUxmRCREQqYzIhIiKVMZkQEZHKmEyIiEhlTCZERKQyJhMiIlLZ/wMBDhqhMGwlewAAAABJ\nRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0x3f9ffd0>"
- ]
- },
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The activation energy for the decomposition is :1.797e+02 kJ/mol\n",
- "NOTE:Slope is approximately calculated in book,that's why wrong answer\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example no:13.9,Page no:586"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#Variable declaration\n",
- "k1=3.46*10**-2 #rate constant at T1\n",
- "T1=298 #temp K\n",
- "T2=350 #temp K\n",
- "R=8.314 #gas constant,J/K mol\n",
- "Ea=50.2*1000 #activation energy, J/mol\n",
- "\n",
- "#Calculation\n",
- "k2=k1/math.exp(Ea/R*(T1-T2)/(T1*T2)) #from equation ln(k1/k2)=Ea*(T1-T2)/(T1*T2*R), S-1\n",
- "\n",
- "#Result\n",
- "print\"The rate constant at temp 350 is :\",round(k2,3),\"s**-1\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The rate constant at temp 350 is : 0.702 s**-1\n"
- ]
- }
- ],
- "prompt_number": 81
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file