diff options
Diffstat (limited to 'Chemical_Reaction_Engineering')
29 files changed, 4983 insertions, 0 deletions
diff --git a/Chemical_Reaction_Engineering/README.txt b/Chemical_Reaction_Engineering/README.txt new file mode 100755 index 00000000..e84d96a5 --- /dev/null +++ b/Chemical_Reaction_Engineering/README.txt @@ -0,0 +1,10 @@ +Contributed By: Manish Punjabi +Course: mtech +College/Institute/Organization: IIT Bombay +Department/Designation: IEOR +Book Title: Chemical Reaction Engineering +Author: O. Levenspiel +Publisher: Wiley India, New Delhi +Year of publication: 2008 +Isbn: 9788126510009 +Edition: 3
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch1.ipynb b/Chemical_Reaction_Engineering/ch1.ipynb new file mode 100755 index 00000000..dd76e3c5 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch1.ipynb @@ -0,0 +1,119 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 1 : Overview of Chemical Reaction Engineering" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.1 page no : 6" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "#l=75 cm,d=60 cm,H20 Produced=108kg/s\n", + "l=0.75 # cylindrical long\n", + "d=0.6; # cylindrical diameter\n", + "V=(3.14*d*d*l)/4;\n", + "M=18.; # molecular weight\n", + "\n", + "# Calculations\n", + "H20_produced=108./M;\n", + "H2_used=H20_produced;\n", + "O2_used=0.5*H20_produced;\n", + "#Rate of reaction of H2(mol/m**3.s)\n", + "r_H2=(H2_used/V)*1000;\n", + "#Rate of reaction of O2(mol/m**3.s)\n", + "r_O2=(O2_used/V)*1000;\n", + "\n", + "# Results\n", + "print \"rate of reaction of H2mol/m**3.s is %.3e mol used/(m**3 of rocket).s\"%(r_H2)\n", + "print \"rate of reaction of O2mol/m**3.s is %.3e mol/m**3.s\"%(r_O2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rate of reaction of H2mol/m**3.s is 2.831e+04 mol used/(m**3 of rocket).s\n", + "rate of reaction of O2mol/m**3.s is 1.415e+04 mol/m**3.s\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.2 page no : 7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Assuming density of a person = 1000kg/m3\n", + "\n", + "# Variables\n", + "d = 1000.;\n", + "mass = 75.; # human being\n", + "\n", + "# Calculations\n", + "V = mass/d;\n", + "#moles of O2 consumed per day\n", + "O2_used = (6000./2816)*6;\n", + "# Rate of reaction (mol/m3.s)\n", + "r_O2 = (O2_used/V)/(24.*3600);\n", + "\n", + "# Results\n", + "print \"rate of reaction of O2mol/m**3.s is %.3f mol O2 used/m***3.s\"%(r_O2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rate of reaction of O2mol/m**3.s is 0.002 mol O2 used/m***3.s\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch10.ipynb b/Chemical_Reaction_Engineering/ch10.ipynb new file mode 100755 index 00000000..bfe8563f --- /dev/null +++ b/Chemical_Reaction_Engineering/ch10.ipynb @@ -0,0 +1,119 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10 : Choosing the Right Kind of Reactor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.1 pageno : 243" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "CAo = 1. # feed\n", + "CA = 0.25\n", + "v = 100. #litre/min\n", + "ko = .025\n", + "k1 = 0.2 # min**-1\n", + "k2 = 0.4 # liter/mol.min\n", + "\n", + "# Calculations\n", + "rA = ko+k1*CA+k2*CA**2\n", + "V = (v/4.)*(CAo-CA)/rA\n", + "#For 4 Reactor System\n", + "Vt = 4*V;\n", + "\n", + "# Results\n", + "print \" The Total volume of 4 reactor system is %.f litres\"%(Vt)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The Total volume of 4 reactor system is 750 litres\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.2 pageno : 245" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "print \"For Intermediate R is desired\"\n", + "#we want step 1 fast than 2 and step 1 fast than 3\n", + "print \" E1<E2,E1<E3 so use a low temperature and plug flow \"\n", + "print \"For Product S is desired\"\n", + "#Here speed is all that matters\n", + "print \" High speed is all that matters so use a high temperature and plug flow \"\n", + "print \"For Intermediate T is desired\"\n", + "#We want step 2 fast than 1 and step 2 fast than 4\n", + "print \" E2>E1,E3>E5 so use a falling temperature and plug flow \"\n", + "print \"For Intermediate U is desired\"\n", + "#We want step 1 fast than 2 and step 3 fast than 5\n", + "print \" E2>E1,E3>E5 so use a rimath.sing temperature and plug flow \"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For Intermediate R is desired\n", + " E1<E2,E1<E3 so use a low temperature and plug flow \n", + "For Product S is desired\n", + " High speed is all that matters so use a high temperature and plug flow \n", + "For Intermediate T is desired\n", + " E2>E1,E3>E5 so use a falling temperature and plug flow \n", + "For Intermediate U is desired\n", + " E2>E1,E3>E5 so use a rimath.sing temperature and plug flow \n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch11.ipynb b/Chemical_Reaction_Engineering/ch11.ipynb new file mode 100755 index 00000000..e716f90a --- /dev/null +++ b/Chemical_Reaction_Engineering/ch11.ipynb @@ -0,0 +1,331 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11 : Basics of Non-Ideal Flow" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.1 pageno : 267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "%pylab inline\n", + "\n", + "from numpy import *\n", + "from matplotlib.pyplot import *\n", + "import math \n", + "\n", + "# Variables\n", + "T = array([0,5,10,15,20,25,30,35]) # time\n", + "Cpulse = array([0,3,5,5,4,2,1,0]) # tracer output concentration\n", + "dt = 5.;\n", + "sum1 = 0.;\n", + "sum2 = 0.;\n", + "Area = 0. #Initialization\n", + "\n", + "# Calculations\n", + "for i in range(8):\n", + " sum1 = sum1+T[i]*Cpulse[i]*dt;\n", + " sum2 = sum2+Cpulse[i]*dt;\n", + " Area = Area+Cpulse[i]*dt;\n", + "\n", + "t = sum1/sum2;\n", + "E = zeros(8)\n", + "for j in range(8):\n", + " E[j] = Cpulse[j]/Area;\n", + "\n", + "# Results\n", + "print \" The mean residence time is %.f min \"%(t)\n", + "plot(T,E)\n", + "plot(T,E,\"go\")\n", + "xlabel(\"t, min\")\n", + "ylabel(\"E\")\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + " The mean residence time is 15 min \n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAELCAYAAADDZxFQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1wU3W6B/BvKAWkuIIIAZNq1zTYFkpaKWZ1ZYkj3SiV\nKILe+oJdKC63Syl1HF/YF23de1mqszu3FBXwKsrOiKzecdulLxcYN1dU0g4QV7zlXktth7QLvcJs\nWd7bht/9IzbblFOapCc5OTnfz0xnkpNfTp+eQJ6c3+85T3RCCAEiIqJBRikdABERxSYmCCIiksQE\nQUREkpggiIhIEhMEERFJYoIgIiJJEUkQDQ0NSEtLg9lsRkVFheSYkpISmM1mWCwWuN1u//bu7m4s\nXboU6enpyMjIgMvlikSIREQ0DNkThNfrRXFxMRoaGtDc3IwdO3bgyJEjAWPq6upw9OhRtLS0YOvW\nrSgqKvI/tnbtWixcuBBHjhzBl19+ifT0dLlDJCKiIMieIJqampCamoqUlBQkJiYiPz8f1dXVAWNq\nampQUFAAALBareju7kZXVxdOnz6Nffv2YcWKFQCA0aNH47rrrpM7RCIiCsJouXfY2dmJ5ORk/32j\n0YjGxsZhx3R0dCAhIQFTpkzB8uXL8Ze//AVz5sxBZWUlxo8f7x+r0+nkDpmISBNCbZwh+xlEsG/g\ngwPV6XTo6+vDoUOH8LOf/QyHDh1CUlISNmzYIPlctf689NJLisfA+JWPQ4vxqzn2eIg/HLInCIPB\nAI/H47/v8XhgNBqvOqajowMGgwFGoxFGoxFz584FACxduhSHDh2SO0QiIgqC7AkiJycHLS0taG9v\nR09PD3bu3AmHwxEwxuFwYPv27QAAl8uFiRMnQq/XY9q0aUhOTsbXX38NANi7dy9mzpwpd4hERBQE\n2dcgRo8ejU2bNsFut8Pr9aKwsBDp6enYsmULAGDVqlVYuHAh6urqkJqaiqSkJGzbts3//KqqKjz+\n+OPo6emByWQKeCwe2Gw2pUMYEcavLDXHr+bYAfXHHw6dCHdySiE6nS7s+TQiIq0K572TV1ITEZEk\nJggiIpLEBEFERJKYIIiISBITBBERSWKCICIiSUwQREQkiQmCiIgkMUEQEZEkJggiIpLEBEFERJKY\nIIiISBITBBERSWKCICIiSUwQREQkiQmCiIgkMUEQEZEkJggiIpLEBEFERJKYIIiISBITBBERSWKC\nICIiSUwQREQkiQmCiIgkMUEQEZEkJggiIpLEBEFERJKYIIiISFJEEkRDQwPS0tJgNptRUVEhOaak\npARmsxkWiwVut9u/PSUlBbNnz0Z2djZuv/32SIRHYajdUwv7cjtsP7HBvtyO2j21SocUErXHT6SE\n0XLv0Ov1ori4GHv37oXBYMDcuXPhcDiQnp7uH1NXV4ejR4+ipaUFjY2NKCoqgsvlAgDodDo4nU5c\nf/31codGYardU4u1r61Fa3arf1vra77bebl5SoUVNLXHT6QU2c8gmpqakJqaipSUFCQmJiI/Px/V\n1dUBY2pqalBQUAAAsFqt6O7uRldXl/9xIYTcYdEIbHxvY8CbKwC0Zrei6v0qhSIKjdrjJ1KK7GcQ\nnZ2dSE5O9t83Go1obGwcdkxnZyf0ej10Oh0WLFiAhIQErFq1Ck899dQVv6OsrMx/22azwWazyf1n\n0ACXxCXJ7Qf+chGLFkU5mDAcPH4JSLly+0XvxajHQhQtTqcTTqdzRPuQPUHodLqgxg11lvDpp5/i\nxhtvxLfffovc3FykpaVh3rx5AWMGJgiKvLG6sZLbb5o+Dj/9aZSDCUPnlrE4JbF97KhxUY+FKFoG\nf3guLy8PeR+yJwiDwQCPx+O/7/F4YDQarzqmo6MDBoMBAHDjjTcCAKZMmYLFixejqanpigRB0VXy\nWAlaN7Wi9bZ/TNOYDpnw65I1yMtVMLAgjRpXgrWvtQZMM13zJxO6Rq3Bt98CU6YoGBxRDJN9DSIn\nJwctLS1ob29HT08Pdu7cCYfDETDG4XBg+/btAACXy4WJEydCr9fj/PnzOHPmDADg3Llz2L17NzIz\nM+UOkUKUl5uHxZmVmLDDjh99Mx/2Y3ZUFleqZoE3LzcPlasrYT9mx/w2X/zv/0sl7rsnDzk5QFOT\n0hESxSadiMCKcH19PUpLS+H1elFYWIh169Zhy5YtAIBVq1YBAIqLi9HQ0ICkpCRs27YNt912G775\n5hs89NBDAIC+vj48/vjjWLduXWDAOh0XsaPs5Elg1iygpgaIt8rj6mrgqaeA8nLgn/8ZCHKGlEh1\nwnnvjEiCiCQmiOhbtsw3DfO73ykdSWS0tABLlgBZWcDmzcD48UpHRCS/cN47eSU1XVVDA/Dpp8Cv\nf610JJFjNgP79wNCAHfcARw9qnRERLGBCYKGdPasb9plyxYgKUnpaCIrKQnYvh346U+BO+/0TacR\naR2nmGhIpaVAdzfwzjtKRxJdLhfwyCO+qbWXXwYSEpSOiGjkuAZBsnG5gMWLga++AiZPVjqa6Pv2\nWyA/Hxg1CnjvPZbCkvpxDYJk0dMDrFwJ/Nu/aTM5AL6E8J//CeTkgKWwpFlMEHSFDRuAW27xTbNo\n2ejRwG9+A2zcCNx/P/DGG76FbCKt4BQTBWhuBubPB9xuYNAF8JrGUlhSO04x0YhcvuybWnr5ZSaH\nwVgKS1rEBEF+r7/uq9j57mJ3GoSlsKQ1nGIiAMCxY8CcOcC+fUBamtLRxD6WwpLasMyVwiKEbxH2\nzjuBX/xC6WjU4//+D3j0UZbCkjpwDYLC8v77gMcDPPus0pGoy9SpLIWl+MYzCI2L506t0cSusBTr\nOMVEIYv3Tq3RxFJYimWcYqKQaKFTazSxFJbiDROERmmpU2s0sRSW4gmnmDRKq51ao4mlsBRLuAZB\nQdF6p9ZoYiksxQquQdCw2Kk1ulgKS2rGBKEx7NQafewKS2rFKSYNYadW5bEUlpTCKSYaEju1xgaW\nwpKaMEFoBDu1xg6WwpJacIpJA9ipNXaxFJaihWWudAV2ao19LIWlaOAaBF2BnVpjH0thKVbxDCKO\nsVOr+rArLEUKp5goADu1qhNLYSkSYmaKqaGhAWlpaTCbzaioqJAcU1JSArPZDIvFArfbHfCY1+tF\ndnY2Fi1aFInwNIGdWtVLqhS2dk8t7MvtsP3EBvtyO2r31CodJmnAaLl36PV6UVxcjL1798JgMGDu\n3LlwOBxIT0/3j6mrq8PRo0fR0tKCxsZGFBUVweVy+R+vrKxERkYGzpw5I3d4mtDfqXXrVnZqVav+\nUtjXXwfm3FmL8Za1OHFXq//x1td8t/Ny85QKkTRA9jOIpqYmpKamIiUlBYmJicjPz0d1dXXAmJqa\nGhQUFAAArFYruru70dXVBQDo6OhAXV0dVq5cyamkMP3yl4DNBvz4x0pHQiOh0wGrVwPpd20MSA4A\n0Jrdiqr3qxSKjLRC9jOIzs5OJCcn++8bjUY0NjYOO6azsxN6vR5PP/00Xn31Vfz9738f8neUlZX5\nb9tsNthsNtniVzuXC9i509epleLDuO9dktx+0XsxypGQmjidTjidzhHtQ/YEoQuy7GLw2YEQArt2\n7cLUqVORnZ191T9sYIKgf2Cn1vg0VjdWcvu4hHFRjoTUZPCH5/Ly8pD3IfsUk8FggMfj8d/3eDww\nDmr+M3hMR0cHDAYDPv/8c9TU1OD73/8+Hn30UXz88cd48skn5Q4xbrFTa3wqeawEJrcpYJtxvwlr\n8tcoFBFphpBZb2+vuOWWW0RbW5u4dOmSsFgsorm5OWBMbW2tuO+++4QQQuzfv19YrdYr9uN0OsX9\n999/xfYIhBwX/vu/hbjhBiE8HqUjoUjYtXuXsK+wi/kF88Xse+3iZvMucemS0lGRmoTz3in7FNPo\n0aOxadMm2O12eL1eFBYWIj09HVu2bAEArFq1CgsXLkRdXR1SU1ORlJSEbdu2Se4r2OkqrWOn1viX\nl5vnr1jqb5/y6qtsn0KRxQvl4sCmTb6F6f/6L18/H4p/bMBIoeKV1Bp07Bhw222+i+L4RqEt/GBA\noYiZK6kpOoQAioqA0lImBy0qKgK8XuC72Vsi2fEMQsV27PB91/GBA8CYMUpHQ0rg18hSsDjFpCHs\n1Er9yst9HxJqatj9lYbGKSYNefpp4LHHmBwIWLcOaGsD/vAHpSOheMMzCBVqaPDNP3/1FZvxkY/L\nBSxe7Ps3wavoSQqnmDTg7Fnf1NLWrWzGR4HWrgVOnwbeeUfpSCgWMUFoQGkp0N3NNwG6Uv+Hhzff\nBHJzlY6GYg0TRJzjNAINp6EB+NnPgMOHOf1IgbhIHcfYqZWCce+9wA9/CPzqV0pHQvGAZxAq8fLL\nvlLG6mqWMtLVsQSapHCKKU7xYigK1Xvv+dq/8yJK6scppjjETq0UjkcfBZKTfR1ficLFM4gYx4Zs\nFC52fKWBOMUUZ9iplUaKHzCoH6eY4gg7tZIc2PGVRoJnEDGKnVpJLixyIIBTTHGDZYokN3Z8JU4x\nxQl2aiW5seMrhYNnEDGGnVopUtiqRds4xaRy7NRKkcaOr9rFBKFy7NRKkcYPIdrFBKFiPP2naOE0\npjZxkVql2KmVounee4G77mLHVxoezyBiADu1UrSxlFp7OMWkQryIiZTCjq/awikmlWGnVlISO77S\ncHgGoSA2UiOlseOrdsTMGURDQwPS0tJgNptRUVEhOaakpARmsxkWiwVutxsAcPHiRVitVmRlZSEj\nIwPr1q2LRHiKqN1TC/tyO2w/scG+3I533qtFWZnvC+aZHEgpN90EvPQS8NRTvjNaogBCZn19fcJk\nMom2tjbR09MjLBaLaG5uDhhTW1sr7rvvPiGEEC6XS1itVv9j586dE0II0dvbK6xWq9i3b1/AcyMQ\ncsTt2r1LmB4wCZTB/zN+rkk8sWKX0qERib4+Ie64Q4jXX1c6EoqkcN47Zf/s2tTUhNTUVKSkpCAx\nMRH5+fmorq4OGFNTU4OCggIAgNVqRXd3N7q6ugAA48ePBwD09PTA6/Xi+uuvlzvEqNv43ka0ZrcG\nbDuf14quy1UKRUT0DwkJwL//O/Dii0BHh9LRUCwZPdQDr7zyCp577jkAwAcffICHH37Y/9jPf/5z\nrF+/XvJ5nZ2dSE5O9t83Go1obGwcdkxHRwf0ej28Xi/mzJmD1tZWFBUVISMj44rfUVZW5r9ts9lg\ns9mu/lcq7JK4JLm9R1yMciRE0jIygOJi3wV07PgaH5xOJ5xO54j2MWSC2LFjhz9BrF+/PiBB1NfX\nD5kgdEH+yxKDFkv6n5eQkIAvvvgCp0+fht1uh9PpvCIBDEwQajBWN1Zy+7iEcVGOhGho69b5vsHw\nD38A/umflI6GRmrwh+fy8vKQ9yH7FJPBYIDH4/Hf93g8MA6q4Rw8pqOjAwaDIWDMddddh7y8PBw4\ncEDuEKOu5LESmNymgG2mQyasyV+jUEREVxozxlc0UVoKnDqldDQUC2RPEDk5OWhpaUF7ezt6enqw\nc+dOOByOgDEOhwPbt28HALhcLkycOBF6vR4nT55Ed3c3AODChQvYs2cPsrOz5Q4x6vJy81C5uhKz\nPrfj+pr5sB+zo7K4Enm5eUqHRhTgjjuARx4BnnlG6UgoFgx5HURCQoJ/wfjChQu45ppr/I9duHAB\nfX19Q+60vr4epaWl8Hq9KCwsxLp167Dluy/FXbVqFQCguLgYDQ0NSEpKwrZt23Dbbbfh8OHDKCgo\nwOXLl3H58mUsW7YMzz77bGDAKr0OQghfvfn69b5eOESxih1f4xNbbcSwTz8FCguBI0d43QPFPnZ8\njT8xc6EcXWnjRl+VCJMDqQE7vhLAM4io6OgAZs8G2tuB731P6WiIgsOOr/GFZxAx6o03gGXLmBxI\nXW64Afjd73wNJXt6lI6GlMAziAi7cAG4+WbfGsSMGUpHQxQaIYC8PODOO4Ff/lLpaGgkeAYRg95/\nH8jJYXIgddLpgM2bfd92+D//o3Q0FG1MEBEkBFBVBZSUKB0JUfhuugkoK2PHVy1igoigzz4Dzp1j\nLTmpX1ER4PUC313ORBrBNYgIeuQRYN48YA07alAc4NfjqhsvlIshLG2leFRe7vsOa3Z8VR8uUscQ\nlrZSPFq3Dmhr83V8pfjHM4gIYGkrxbP9+4GHHvK14Zg8WeloKFg8g4gRLG2leMaOr9rBBCEzlraS\nFvzrvwJOJ7B7t9KRUCQxQciMpa2kBRMm+C6gW7XK9++d4hMThMzYtZW0gh1f4x8XqWXE0lbSGnZ8\nVQ8uUiuMpa2kNez4Gt94BiETlraSVrHjqzrwDEJBLG0lrWLH1/jFBCEDlraS1rHja3xigpABS1uJ\n2PE1HnENQgbs2krkw46vsYvdXBXA0laiQOz4Gpu4SK0AlrYSBWLH1/jBM4gRYGkrkTR2fI09PIOI\nMpa2Ekljx9f4wAQRJpa2El0dO76qHxNEmFjaSnR1Azu+nj2rdDQUjogkiIaGBqSlpcFsNqOiokJy\nTElJCcxmMywWC9xuNwDA4/Hg7rvvxsyZMzFr1ixs3LgxEuHJgl1biYZ3771Ayq21mPVjO2w/scG+\n3I7aPbVKh0XBEjLr6+sTJpNJtLW1iZ6eHmGxWERzc3PAmNraWnHfffcJIYRwuVzCarUKIYQ4fvy4\ncLvdQgghzpw5I2bMmHHFcyMQcsg8HiEmTRLi9GmlIyGKbbt27xIp95sEyuD/MT1gErt271I6NM0J\n571T9s+/TU1NSE1NRUpKChITE5Gfn4/q6uqAMTU1NSgoKAAAWK1WdHd3o6urC9OmTUNWVhYAYMKE\nCUhPT8df//pXuUMcMZa2EgVn43sb0Z7TGrCtNbsVVe9XKRQRhWK03Dvs7OxEcnKy/77RaERjY+Ow\nYzo6OqDX6/3b2tvb4Xa7YbVar/gdZWVl/ts2mw02m02+P2AYFy4Ab77pK20loqu7JC5Jbr/ovRjl\nSLTH6XTC6XSOaB+yJwhdkJdOikH1uAOfd/bsWSxduhSVlZWYMGHCFc8dmCCijaWtRMEbqxsruX3c\nqHFRjkR7Bn94Li8vD3kfsk8xGQwGeDwe/32PxwPjoKYsg8d0dHTAYDAAAHp7e7FkyRI88cQTePDB\nB+UOb0RY2koUmpLHSmBymwK2jak24YJnDSubVED2BJGTk4OWlha0t7ejp6cHO3fuhMPhCBjjcDiw\nfft2AIDL5cLEiROh1+shhEBhYSEyMjJQWloqd2gjxtJWotDk5eahcnUl7MfsmN82H/Zjduz4dSVS\nb8qD1crvj4h5si+VCyHq6urEjBkzhMlkEuvXrxdCCLF582axefNm/5jVq1cLk8kkZs+eLQ4ePCiE\nEGLfvn1Cp9MJi8UisrKyRFZWlqivrw/Yd4RCDsrDDwuxcaNiv54orrz5phA33CDEhx8qHYk2hPPe\nyV5MQWLXViL5HTgALF0KPPww8JvfAKNlXxWlfuzFFEEsbSWSX04OcPAgcPgwsGABcOKE0hHRQEwQ\nQegvbV29WulIiOLP5MlAba3vi4ZycnxrfRQbmCCCwNJWoshKSPB90dDWrb424ZWVvqpBUhbXIIYh\nBDBnDrB+va+vDBFFVlsbsGQJcOutvjN3iUuhKAxcg4gAlrYSRdf3v+/7fzd+PGC1Av/7v0pHpF1M\nEMNg11ai6LvmGuCtt4CnnwbmzQP+4z+UjkibOMV0FSxtJVIeS2HlwSkmmbG0lUh5LIVVDhPEEFja\nShQ7WAqrDCaIIbC0lSi2sBQ2+rgGIYGlrUSx7ZtvfKWwaWkshQ0W1yBkwtJWoth2yy3A55/7qp1Y\nChs5TBASWNpKFPv6S2FLS1kKGymcYhqEpa1E6sNS2OFxikkGLG0lUp+BpbC5uUBXl9IRxQcmiAH6\nS1uLi5WOhIhC1V8K+6Mf+YpMWAo7ckwQA/SXtprNSkdCROFgKay8uAbxHZa2EsUXlsIG4hrECLC0\nlSi+sBR25JggvsPSVqL4M7AU9q67WAobKk4xgaWtRFqg9VJYTjGFiaWtRPGPpbCh03yCYGkrkXYM\nLIXNyfGtUdDQNJ8gWNpKpC39pbBbtgCLF/vWH9U10R49ml6DYGkrkbb1l8Kmp/uunYjnUliuQYSI\npa1E2tZfCjtuHEthpWg6QbC0lYhYCjs0zU4xsbSViAaL51JYTjGFgKWtRDRYTo4vSXz5JUthgQgl\niIaGBqSlpcFsNqOiokJyTElJCcxmMywWC9xut3/7ihUroNfrkZmZGYnQALC0lYiGdsMNQF2d70uI\ncnKAVzfWwr7cDttPbLAvt6N2T63SIUaN7CdQXq8XxcXF2Lt3LwwGA+bOnQuHw4H09HT/mLq6Ohw9\nehQtLS1obGxEUVERXC4XAGD58uVYs2YNnnzySblD82NpKxFdTUIC8PLLwKhxtXjhrbW4/FCr/7HW\n13y383LzlAovamQ/g2hqakJqaipSUlKQmJiI/Px8VFdXB4ypqalBQUEBAMBqtaK7uxsnTpwAAMyb\nNw+TJk2SOyw/IYCqKqCkJGK/gojixP6WjQHJAQBas1tR9X6VQhFFl+xnEJ2dnUhOTvbfNxqNaGxs\nHHZMZ2cnpk2bFtTvKCsr89+22Wyw2WxBx8fSViIK1iVxSXL7Re/FKEcSOqfTCafTOaJ9yJ4gdDpd\nUOMGr6YH+zwgMEGEiqWtRBSssbqxkttPfzsuypGEbvCH5/Ly8pD3IfvbpMFggMfj8d/3eDwwGo1X\nHdPR0QGDwSB3KFfo6AD27gW+m90iIrqqksdKYHKbArYZ95vQ+eUaPPss0NenUGBRInuCyMnJQUtL\nC9rb29HT04OdO3fC4XAEjHE4HNi+fTsAwOVyYeLEidDr9XKHcgWWthJRKPJy81C5uhL2Y3bMb5sP\n+zE7Nj9TiWZ3njZKYUUE1NXViRkzZgiTySTWr18vhBBi8+bNYvPmzf4xq1evFiaTScyePVscPHjQ\nvz0/P19Mnz5djBkzRhiNRvH2228H7DvckM+fF2LKFCG+/jqspxMRBejrE+JXvxLCaBTis8+UjmZ4\n4bx3auZK6m3bgA8+8NU3ExHJpbYWWLEC+MUvgDVrgBCWU6MqnPdOTSQIdm0lokhSQ1dYttoYAktb\niSiSBnaF/cEP4qcrrCYSBEtbiSjS+rvCrl0bP11h436KiV1biSjaYrErLKeYJLC0lYiiLV66wsZ1\ngmDXViJSSn9X2B/9yJcwPv9c6YhCF9cJgl1biUhJCQlAeTmwZQuweLFvPVRNk/pxuwbB0lYiiiVK\nl8JyDWIAlrYSUSwZWAprtaqjFDZuEwRLW4ko1vSXwpaWqqMUNi6nmFjaSkSxLtqlsJxi+g5LW4ko\n1qmhFDbuEgRLW4lILWK9FDbuEgRLW4lITWK5FDau1iBY2kpEatZfCpuW5psJkbMUVvNrECxtJSI1\n6y+Fveaa2CiFjasEwdJWIlK7WCqFjZspJpa2ElG8kbMUVtNTTCxtJaJ4k5MDHDwIHD6sTClsXCQI\nlrYSUbyaPNn3vddKlMLGRYJgaSsRxTOlSmFVvwbB0lYi0pJwS2E1uQbB0lYi0pJolsKqPkGwtJWI\ntCZapbCqnmJiaSsRaV2wpbCam2JiaSsRaV0kS2FVmyBY2kpE5DOwFHbOHN/arBxUmyDUWtrqdDqV\nDmFEGL+y1By/mmMHYj/+/lLYrVuBhx4CKitHXgobkQTR0NCAtLQ0mM1mVFRUSI4pKSmB2WyGxWKB\n2+0O6bn25Xb8yyu1KCmJRPSRFev/yIbD+JWl5vjVHDugnvgXLgT27wfeeQd47DHgwz/Vwr7cHta+\nZE8QXq8XxcXFaGhoQHNzM3bs2IEjR44EjKmrq8PRo0fR0tKCrVu3oqioKOjnAsDulN3wjFuLXl2t\n3OETEalefynsyTO1eOyltdidsjus/cieIJqampCamoqUlBQkJiYiPz8f1dXVAWNqampQUFAAALBa\nreju7saJEyeCem6/3gdb8dofquQOn4goLlxzDTBqykb0PtAa/k6EzD744AOxcuVK//3f//73ori4\nOGDM/fffLz777DP//XvuuUccOHBAfPjhh8M+FwB/+MMf/vAnjJ9QjaB5rDSdThfUOBHm6km4zyMi\notDIniAMBgM8Ho//vsfjgdFovOqYjo4OGI1G9Pb2DvtcIiKKDtnXIHJyctDS0oL29nb09PRg586d\ncDgcAWMcDge2b98OAHC5XJg4cSL0en1QzyUiouiQ/Qxi9OjR2LRpE+x2O7xeLwoLC5Geno4tW7YA\nAFatWoWFCxeirq4OqampSEpKwrZt2676XCIiUkDIqxYKqq+vF7feeqtITU0VGzZsUDqckN18880i\nMzNTZGVliblz5yodzrCWL18upk6dKmbNmuXfdurUKbFgwQJhNptFbm6u+Nvf/qZghFcnFf9LL70k\nDAaDyMrKEllZWaK+vl7BCK/u2LFjwmaziYyMDDFz5kxRWVkphFDHazBU7Go5/hcuXBC33367sFgs\nIj09XbzwwgtCCHUceyGGjj/U46+aBNHX1ydMJpNoa2sTPT09wmKxiObmZqXDCklKSoo4deqU0mEE\n7ZNPPhGHDh0KeIN99tlnRUVFhRBCiA0bNojnn39eqfCGJRV/WVmZ+O1vf6tgVME7fvy4cLvdQggh\nzpw5I2bMmCGam5tV8RoMFbuajv+5c+eEEEL09vYKq9Uq9u3bp4pj308q/lCPv2pabYRyjUQsEyqq\nwpo3bx4mTZoUsG3gNSwFBQX44x//qERoQZGKH1DPazBt2jRkZWUBACZMmID09HR0dnaq4jUYKnZA\nPcd//PjxAICenh54vV5MmjRJFce+n1T8QGjHXzUJorOzE8nJyf77RqPR/w9OLXQ6HRYsWICcnBy8\n+eabSocTlq6uLuj1egCAXq9HV7S/RV0GVVVVsFgsKCwsRHd3t9LhBKW9vR1utxtWq1V1r0F/7D/4\nwQ8AqOf4X758GVlZWdDr9bj77rsxc+ZMVR17qfiB0I6/ahJEsNdXxLLPPvsMbrcb9fX1eO2117Bv\n3z6lQxoRnU6nutelqKgIbW1t+OKLLzB9+nQ888wzSoc0rLNnz2LJkiWorKzEtddeG/BYrL8GZ8+e\nxdKlS1FAvgYZAAADfElEQVRZWYkJEyao6viPGjUKX3zxBTo6OvDJJ5/gz3/+c8DjsX7sB8fvdDpD\nPv6qSRDBXF8R66ZPnw4AmDJlChYvXoympiaFIwqdXq/HiRMnAADHjx/H1KlTFY4oNFOnTvX/x165\ncmXMvwa9vb1YsmQJli1bhgcffBCAel6D/tifeOIJf+xqO/4AcN111yEvLw8HDx5UzbEfqD/+AwcO\nhHz8VZMg1H6NxPnz53HmzBkAwLlz57B7925kZmYqHFXoHA4H3n33XQDAu+++6/+PrxbHjx/33/7o\no49i+jUQQqCwsBAZGRkoLS31b1fDazBU7Go5/idPnvRPv1y4cAF79uxBdna2Ko49MHT8/ckNCPL4\ny792Hjl1dXVixowZwmQyifXr1ysdTki++eYbYbFYhMViETNnzlRF/Pn5+WL69OkiMTFRGI1G8fbb\nb4tTp06Je+65J+bL/IS4Mv633npLLFu2TGRmZorZs2eLBx54QJw4cULpMIe0b98+odPphMViCShL\nVMNrIBV7XV2dao7/l19+KbKzs4XFYhGZmZnilVdeEUIIVRx7IYaOP9Tjr7rvpCYiouhQzRQTERFF\nFxMEERFJYoIgIiJJTBBERCSJCYJIwunTp/HGG2/Itr+DBw9i7dq1su2PKBpYxUQkob29HYsWLcLh\nw4eVDoVIMTyDIJLwwgsvoLW1FdnZ2Xj++eevOnbChAl47rnnMGvWLOTm5sLlcmH+/PkwmUz405/+\nBABwOp1YtGgRAKCsrAwrVqzA3XffDZPJhKqqqoj/PUThYIIgklBRUQGTyQS3242Kioqrjj1//jzu\nuecefPXVV7j22mvx4osv4uOPP8ZHH32EF198UfI5X3/9NXbv3o2mpiaUl5fD6/VG4s8gGhHZv1GO\nKB6EMvM6ZswY2O12AEBmZibGjRuHhIQEzJo1C+3t7VeM1+l0yMvLQ2JiIiZPnoypU6eiq6sLN954\no1zhE8mCZxBEI5SYmOi/PWrUKIwZM8Z/u6+vT/I5/WMAICEhYchxREpigiCScO211/qbK/ZLS0uT\nZd+sCyG1YIIgkjB58mT88Ic/RGZmJp5//nmcPHlyyLGDvxNg4H2p27H+PQJE/VjmShSE2tpatLW1\nobi4WOlQiKKGCYKIiCRxiomIiCQxQRARkSQmCCIiksQEQUREkpggiIhIEhMEERFJ+n/ZImkGAKXm\n0wAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x32abdd0>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.2 pageno : 268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "M = 150. #Molecular mass(gm)\n", + "v = 5. #litre/sec\n", + "v = 5*60. #litre/min\n", + "V = 860. #litres\n", + "Cpulse = .75\n", + "# Calculations and Results\n", + "#From Material Balance\n", + "Area1 = M/v; #gm.min/litre\n", + "A1 = 0.375;\n", + "Area2 = A1*(1+1./4+1./16+1./64+1./256+1./1024+1./4096); #Taking Significant Areas\n", + "\n", + "\n", + "print \" From material balance Area is %.1f gm.min/litre\"%(Area1)\n", + "print \" From Tracer Curve Area is %.1f gm.min/litre\"%(Area2)\n", + "print \" Part a\"\n", + "print \" As the two areas are equal,this is a properly done experiment \"\n", + "#For the liquid,calculating t\n", + "sum1 = 0;\n", + "for i in range(10):\n", + " sum1 = sum1+2*i*A1/(4**(i-1));\n", + " t = sum1/Area1;\n", + "\n", + "#liquid volume in vessel\n", + "Vl = t*v;\n", + "#Fraction of liquid\n", + "f = Vl/V;\n", + "E = Cpulse/(M/v)\n", + "\n", + "print \" Part b\"\n", + "print \" Fraction of liquid is %.f %%\"%(f*100)\n", + "\n", + "print \" Part c\"\n", + "print \" The E curve is %.1f C\"%E\n", + "print \" Part d\"\n", + "print \" The vessel has a strong recirculation of liquid,probably induced by the rising bubbles\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " From material balance Area is 0.5 gm.min/litre\n", + " From Tracer Curve Area is 0.5 gm.min/litre\n", + " Part a\n", + " As the two areas are equal,this is a properly done experiment \n", + " Part b\n", + " Fraction of liquid is 93 %\n", + " Part c\n", + " The E curve is 1.5 C\n", + " Part d\n", + " The vessel has a strong recirculation of liquid,probably induced by the rising bubbles\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.3 pageno : 272\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "Cin = zeros(14)\n", + "E = zeros(14)\n", + "Cout = zeros(14)\n", + "Cin[0] = 0.\n", + "Cin[1] = 8.\n", + "Cin[2] = 4.\n", + "Cin[3] = 6\n", + "Cin[4] = 0\n", + "E[4] = 0\n", + "E[5] = 0.05\n", + "E[6] = 0.5\n", + "E[7] = 0.35\n", + "E[8] = 0.1\n", + "E[9] = 0.\n", + "\n", + "# Calculations\n", + "for t in range(8,14):\n", + " sum1 = 0;\n", + " for p in range(5,t-1):\n", + " if p>10 or (t-p)>5:\n", + " h = 2;\n", + " else:\n", + " sum1 = sum1+Cin[t-p] * E[p];\n", + " Cout[t] = sum1;\n", + "\n", + "t = linspace(1,14,14)\n", + "Cout = transpose(Cout)\n", + "\n", + "# Results\n", + "plot(t,Cout)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 6, + "text": [ + "[<matplotlib.lines.Line2D at 0x43ec990>]" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD9CAYAAABDaefJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1QFHeeBvBnFNQMGpBEwcygaCCBER2GkJC4MQwa40ki\n5268Ld2scmp2WTYpTbJblXNv6xaqXNas3mXJJethLjGxshdyZ11Fyhqs04qjUUQkoIkvWcCVOIM6\niSLG18hL3x+dQQcGZgam59c983z+4qWZecroQ+fbv+6fTpIkCUREFBZGiA5ARETBw1InIgojLHUi\nojDCUiciCiMsdSKiMMJSJyIKI36Vend3NywWCxYuXNjve3a7HbGxsbBYLLBYLFi3bl3QQxIRkX+i\n/DmovLwcJpMJV65c8fr93NxcVFVVBTUYEREFzueZutPphM1mw/PPP4+B7lPi/UtEROrgs9Rffvll\nbNiwASNGeD9Up9OhpqYGZrMZ+fn5OHHiRNBDEhGRfwYdv+zYsQMTJ06ExWKB3W73ekxWVhYcDgf0\nej2qq6uxaNEiNDU19TtOp9MFJTARUaQJaBoiDWLt2rWS0WiUkpOTpcTEREmv10vLli0b7Eek5ORk\n6eLFi/2+7uOtVO93v/ud6AjDouX8Ws4uScwvmtbzB9qdg45fysrK4HA4cPr0aVRWVmLOnDnYunWr\nxzEul6v3t0hdXR0kSUJ8fHygv4iIiCgI/Fr94uYeoVRUVAAAioqKsG3bNmzatAlRUVHQ6/WorKwM\nfkoiIvKLTpJCs3RFp9NpepWM3W6H1WoVHWPItJxfy9kBbee32YD//E87/vd/raKjDJmW//yBwLuT\npU5EA3rxRWDbNuDcOYBrHcQItDv5mAAiGlBNDdDeDpw8KToJ+YulTkReXbkCNDUBP/4xsGeP6DTk\nL5Y6EXl16BBgsQDz57PUtYSlTkReHTgAzJoF5OUBdjvQ0yM6EfmDpU5EXh04APzgB4DRCIwfDxw7\nJjoR+YOlTkT9dHfL45dZs+TP8/I4gtEKljoR9XPsGDBpEnDvvfLnLHXtYKkTUT/uebqb1Qrs2yef\nwZO6sdSJqB/3PN1t0iQgIQE4elRcJvIPS52I+qmp8Sx1gCMYrWCpE5GHs2flG48efNDz61YrS10L\nWOpE5ME9T+/7rBerFfj0U6CrS0gs8hNLnYg89L1I6jZxIpCUBDQ0hD4T+Y+lTkQevM3T3dx3l5J6\nsdSJqNf168Dx40B2tvfv82Kp+vlV6t3d3bBYLFi4cKHX769evRqpqakwm81obGwMakAiCp26OmDm\nTOCuu7x/PzdXHs90doY2F/nPr1IvLy+HyWTq3c7uTjabDS0tLWhubsbmzZtRXFwc9JBEFBoDzdPd\n7rkHmDYNqK8PXSYKjM9SdzqdsNlseP75573uvlFVVYXCwkIAQE5ODjo6OuByuYKflIgU1/emI284\nglE3nxtPv/zyy9iwYQO+/fZbr99va2tDUlJS7+dGoxFOpxMJCQn9ji0pKen92Gq1anrfQKJw09MD\nHDwIbNky+HF5ecC//zvwm9+EJleksdvtsA/javSgpb5jxw5MnDgRFotl0DfpewbvbUwDeJY6EanL\nyZPyeMXL+ZiHJ54AnnsO+O47YPTo0GSLJH1PeEtLSwP6+UHHLzU1NaiqqsLUqVOxdOlSfPLJJ1i+\nfLnHMQaDAQ6Ho/dzp9MJg8EQUAgiEs+f0QsAxMXJd5vW1SmfiQI3aKmXlZXB4XDg9OnTqKysxJw5\nc7B161aPYwoKCnq/Vltbi7i4OK+jFyJSN18XSe/Eubp6BbRO3T1WqaioQEVFBQAgPz8f06ZNQ0pK\nCoqKivDnP/85+CmJSHGD3XTUF0tdvXSStyUtSryRTud19QwRiedyAWlpwMWLwAg/TvWuXJEfx3vh\nAjBmjPL5Ilmg3ck7SokINTXAY4/5V+gAMG4ckJEhr5YhdWGpE1FA83Q3jmDUiaVORH6vfLkTS12d\nOFMninA3b8rr07/+GoiJ8f/nrl2T17R//TWg1yuXL9Jxpk5EAamvB0ymwAodkI/PzJTP8kk9WOpE\nEW4o83Q3jmDUh6VOFOGGMk93Y6mrD2fqRBFMkoAJE4CjR4GhPN3jxg3558+dk5c5UvBxpk5Efmtq\nAsaOHVqhA/JmGtnZwP79wc1FQ8dSJ4pgwxm9uHEEoy4sdaIINpyLpG4sdXVhqRNFsEAe4jWQnBzg\nyy+By5eDk4mGh6VOFKEuXgTOngVmzBje64weLRf7vn3ByUXDw1InilA1NXIZjxw5/NfiCEY9WOpE\nESoY83Q3lrp6sNSJIlQwVr64ZWcDLS1Ae3twXo+Gzmep37x5Ezk5OcjMzITJZMLatWv7HWO32xEb\nGwuLxQKLxYJ169YpEpaIguPWLaCxEXj00eC83qhR8lk/5+riRfk6YMyYMdizZw/0ej26urrw+OOP\nY//+/Xj88cc9jsvNzUVVVZViQYkoeBoagNTU4N4F6h7BLFoUvNekwPk1ftF//1zNW7duobu7G/Hx\n8f2O4SMAiLQjmKMXN87V1cHnmToA9PT0ICsrC6dOnUJxcTFMJpPH93U6HWpqamA2m2EwGLBx48Z+\nxwBASUlJ78dWqxVWq3VY4YloaA4cABYvDu5rPvQQ8NVXwDffyM+DoaGx2+2w2+1D/vmAHuh1+fJl\nzJ8/H+vXr/co5CtXrmDkyJHQ6/Worq7GmjVr0NTU5PlGfKAXkSpIkrxp9KFDwJQpwX3tp58GVqwI\n/i+MSKboA71iY2Px9NNPo76+3uPr48aN6x3RLFiwAJ2dnWjnZXAiVfrb34CoKGDy5OC/Nkcw4vks\n9QsXLqCjowMAcOPGDezatQsWi8XjGJfL1fubpK6uDpIkeZ27E5F47nm6Thf812api+dzpn7u3DkU\nFhaip6cHPT09WLZsGebOnYuKigoAQFFREbZt24ZNmzYhKioKer0elZWVigcnoqEJ5k1HfWVmys9W\nP38eSExU5j1ocNwkgyjCZGQA770n3zCkhL//e2DpUmDJEmVeP9JwkwwiGlBHh7xCxWxW7j04ghGL\npU4UQQ4eBB5+GIiOVu49WOpisdSJIoiS83S3GTPkZ8C0tSn7PuQdS50ogihxJ2lfI0YAubk8WxeF\npU4UITo7gfp64LHHlH8vjmDEYakTRYijR4HkZCAuTvn3YqmLw1InihChGL24mUzAtWvyShsKLZY6\nUYQIxUVSN50OsFp5ti4CS50oAkhSaM/UAY5gRGGpE0WAM2eA7m5g2rTQvae71HkjeWix1IkigJIP\n8RrIAw8AXV3yUyEpdFjqRBEglPN0N52OIxgRWOpEESDU83Q3lnro8SmNRGHu22+B++6Tb90fNSq0\n733qFDB7tvzIgFCOfsIJn9JIRB4OHQKyskJf6IB8YTYqCuizuyUpiKVOFOZEzNPdOFcPvUFL/ebN\nm8jJyUFmZiZMJhPWrl3r9bjVq1cjNTUVZrMZjY2NigQloqERNU93Y6mH1qClPmbMGOzZswdHjhzB\n559/jj179mD//v0ex9hsNrS0tKC5uRmbN29GcXGxooGJyH/d3fL4RdSZOiDfWWq3c716qPgcv+j1\negDArVu30N3d3W9D6aqqKhQWFgIAcnJy0NHRAZfLpUBUIgrUF18ABgNwzz3iMiQnA3o9cPKkuAyR\nxOfG0z09PcjKysKpU6dQXFwMk8nk8f22tjYkJSX1fm40GuF0OpGQkNDvtUpKSno/tlqtsFqtQ09O\nRD6JHr24uUcwfeqDvLDb7bDb7UP+eZ+lPmLECBw5cgSXL1/G/PnzYbfb+5Vx3+U2ugHWLt1Z6kSk\nvAMHgCefFJ1CLvXt24EXXhCdRP36nvCWlpYG9PN+r36JjY3F008/jfr6eo+vGwwGOByO3s+dTicM\nBkNAIYhIGWo6U7fbgZ4e0UnC36ClfuHCBXR0dAAAbty4gV27dsFisXgcU1BQgK1btwIAamtrERcX\n53X0QkSh5XQC16/Lz2ARzWgExo8Hjh0TnST8DTp+OXfuHAoLC9HT04Oenh4sW7YMc+fORUVFBQCg\nqKgI+fn5sNlsSElJQUxMDLZs2RKS4EQ0uJoaedWLWu7kdM/VZ84UnSS88TEBRGFqzRr58QCvvio6\niezDD4GPPgI+/lh0Em3hYwKICIB65uluViuwb5+8dp6Uw1InCkPXrsnrwrOzRSe5bdIkICFB3gCb\nlMNSJwpDdXWA2QyMGSM6iSc+MkB5LHWiMKS20YsbS115LHWiMCTyyYyDsVqB/fvlbe5IGSx1ojDT\n0wPU1qqz1CdMAJKSgIYG0UnCF0udKMycOAHce698UVKNOIJRFkudKMyodZ7uxlJXFkudKMyodZ7u\nlpsr3+3a2Sk6SXhiqROFGbWfqcfHA/ffDxw+LDpJeGKpE4WR8+eBS5eA9HTRSQbHEYxyWOpEYaSm\nBnjsMWCEyv9ls9SVo/L/9EQUCLXP092eeELeO/W770QnCT8sdaIwovZ5ultsLJCWJhc7BRdLnShM\n3LghbzT9yCOik/iHIxhl+Cx1h8OBvLw8TJ8+HRkZGXjjjTf6HWO32xEbGwuLxQKLxYJ169YpEpaI\nBlZfD0yfDuj1opP4h6WuDJ8bT0dHR+P1119HZmYmrl69ioceegjz5s1Dep/L67m5uaiqqlIsKBEN\nTiujF7fHHwf+4R/k/8O46y7RacKHzzP1xMREZGZmAgDGjh2L9PR0nD17tt9x3NWISCytXCR1GzcO\nmDEDOHhQdJLwEtBMvbW1FY2NjcjJyfH4uk6nQ01NDcxmM/Lz83HixImghiSiwfX0yMsZtXSmDnAE\nowSf4xe3q1evYvHixSgvL8fYsWM9vpeVlQWHwwG9Xo/q6mosWrQITU1N/V6jpKSk92Or1Qqr1Trk\n4ER0W1MTcPfd8p6kWpKXB5SWik6hLna7HXa7fcg/79fG052dnXjmmWewYMECvPTSSz5fdOrUqfjs\ns88QHx9/+4248TSRYt55Rz7j/eAD0UkCc+2a/DRJlwuIiRGdRp2CvvG0JElYtWoVTCbTgIXucrl6\n37Surg6SJHkUOhEpS2vzdLeYGCAzUx4dUXD4HL8cOHAAH3zwAWbOnAmLxQIAKCsrw5kzZwAARUVF\n2LZtGzZt2oSoqCjo9XpUVlYqm5qIPBw4AKxZIzrF0Ljn6vPmiU4SHvwavwTljTh+IVLEhQvyUw/b\n24GRI0WnCdwnnwD//M9cBTOQoI9fiEjdamqARx/VZqED8gPIvvgCuHJFdJLwwFIn0jit3XTU1113\nAdnZ8obUNHwsdSKN0+pF0jtxvXrwsNSJNOy774AjR4A+9wNqDks9eFjqRBrW0ACkpsq33GtZTg7w\n5ZfA5cuik2gfS51Iw+rq5IukWjd6tFzs+/aJTqJ9LHUiDaur087z033hCCY4WOpEGsZSp7548xGR\nRrW3A8nJwKVL2l2jfqfOTuCee4DWVoBPGbmNNx8RRYj6eiArKzwKHQCio+WlmXv3ik6ibSx1Io0K\np9GLG0cww8dSJ9Kow4eBhx8WnSK4WOrDx5k6kQZJEjBpEnDoEDBliug0wdPVBdx7L9DcDEyYIDqN\nOnCmThQBnE652CdPFp0kuKKi5A2ph7HxT8RjqRNpkHv0otOJThJ8HMEMD0udSIPC8SKpG0t9eHyW\nusPhQF5eHqZPn46MjAy88cYbXo9bvXo1UlNTYTab0djYGPSgRHRbOJe62SzvWXrunOgk2uSz1KOj\no/H666/j+PHjqK2txVtvvYWTJ096HGOz2dDS0oLm5mZs3rwZxcXFigUminQ9PcBnn8nPIA9HI0cC\nTzzBufpQ+Sz1xMREZGZmAgDGjh2L9PR0nD171uOYqqoqFBYWAgBycnLQ0dEBl8ulQFwi+utf5RUi\n994rOolyOIIZuoBm6q2trWhsbEROn4c3t7W1ISkpqfdzo9EIp9MZnIRE5CGcRy9uLPWhi/L3wKtX\nr2Lx4sUoLy/H2LFj+32/7zpKnZfL8iUlJb0fW61WWK1W/5MSEYDwvOmor4wMoKNDXrppNIpOE1p2\nux32Ycye/Lr5qLOzE8888wwWLFiAl156qd/3f/GLX8BqtWLJkiUAgLS0NOzduxcJCQm334g3HxEF\nxSOPAP/2b/J67nC2eDGwaBHw05+KTiJW0G8+kiQJq1atgslk8lroAFBQUICtW7cCAGpraxEXF+dR\n6EQUHN99Bxw7BlgsopMojyOYofE5fjlw4AA++OADzJw5E5bv/yaVlZXhzJkzAICioiLk5+fDZrMh\nJSUFMTEx2LJli7KpiSLU55/L29fFxIhOojyrFfjXfxWdQnv47BciDXnrLXmj6bffFp1EeZIEJCbK\nF4bD6fk2geKzX4jCWCSsfHHT6eSzdY5gAsNSJ9KQSFj5cifO1QPH8QuRRly+DBgM8vZ10dGi04TG\nX/8KzJsHfPVVeD68zB8cvxCFqc8+AzIzI6fQAeCBB+RnrP/tb6KTaAdLnUgjIm30Ashn5xzBBIal\nTqQRkXSR9E4s9cCw1Ik0ItJLnZfk/MNSJ9KAc+eA69eBadNEJwm9adPkbe6amkQn0QaWOpEGhPP2\ndb5wrh4YljqRBkTq6MWNpe4/ljqRBkTiypc75eXJOyFxru4bS51I5SSJpT5livwQsxMnRCdRP5Y6\nkcq1tADjxskPt4pkHMH4h6VOpHKRfpbuxlL3D0udSOUi/SKpW14esHcv0NMjOom6sdSJVI6lLjMY\ngPh44IsvRCdRN5+lvnLlSiQkJGDGjBlev2+32xEbGwuLxQKLxYJ169YFPSRRpOrsBI4eBR56SHQS\ndeAIxjefpb5ixQrs3Llz0GNyc3PR2NiIxsZG/Pa3vw1aOKJId+wYkJwsXygllro/fJb67NmzMX78\n+EGP4XPSiZTB0YsnqxXYtw/o7hadRL18bjzti06nQ01NDcxmMwwGAzZu3AiTyeT12JKSkt6PrVYr\nrFbrcN+eKKxx5YunxERg0iR5JJWVJTqNMux2O+x2+5B/3q+dj1pbW7Fw4UJ84eUKxZUrVzBy5Ejo\n9XpUV1djzZo1aPLy5B3ufEQUuJkzgXffBbKzRSdRjxdekB/y9atfiU4SGiHf+WjcuHHQ6/UAgAUL\nFqCzsxPt7e3DfVmiiHftGnDqlFzsdBvn6oMbdqm7XK7e3yJ1dXWQJAnx8fHDDkYU6RoagIwMYNQo\n0UnUJTcX2L9f3uaO+vM5U1+6dCn27t2LCxcuICkpCaWlpejs7AQAFBUVYdu2bdi0aROioqKg1+tR\nWVmpeGiiSMCLpN5NmAAkJcm/9Pjn059fM/WgvBFn6kQBWbIEePppYNky0UnUZ/Vq+WakV18VnUR5\nIZ+pE5Ey6uq48mUgnKsPjGfqRCr0zTdAairQ3g6M4KlXP+3t8k1ZFy8C0dGi0yiLZ+pEYaC+Xl7G\nyEL3Lj4euP9+eR0/eeJfGSIV4ujFN45gvGOpE6kQV774xlL3jjN1IpWRJCAhAWhslFd4kHeXLwNG\nI3DhAjB6tOg0yuFMnUjjvvoKiIpiofsSGwukpQGHDolOoi4sdSKV4ejFfxzB9MdSJ1KZw4dZ6v5i\nqffHUidSGa588d/jj8vLP2/cEJ1EPVjqRCrS3S0/04SP2vXPuHHAjBnAwYOik6gHS51IRU6eBO67\nD/Cx2RjdgSMYTyx1IhXh6CVwLHVPLHUiFeHKl8D94AfAkSPypiLEUidSFa58CZxeD1gswIEDopOo\nA0udSCVu3JBn6pmZopNoD0cwt/ks9ZUrVyIhIQEzZswY8JjVq1cjNTUVZrMZjY2NQQ1IFCmOHAHS\n04ExY0Qn0R6W+m0+S33FihXYuXPngN+32WxoaWlBc3MzNm/ejOLi4qAGJIoUHL0M3WOPAceOAVeu\niE4ins9Snz17NsYPsr6qqqoKhYWFAICcnBx0dHTA5XIFLyFRhODKl6EbM0b+s/v0U9FJxPO58bQv\nbW1tSEpK6v3caDTC6XQiISGh37ElJSW9H1utVlit1uG+PVHYqKsD/umfRKfQrrw8wG4H8vNFJxke\nu90Ou90+5J8fdqkD6PdYSJ1O5/W4O0udiG67dAk4f16eqdPQ5OUBr7wiOsXw9T3hLS0tDejnh736\nxWAwwOFw9H7udDph4DNDiQJSXy8vyxs5UnQS7XrkEeDLL+XnrEeyYZd6QUEBtm7dCgCora1FXFyc\n19ELEQ2MNx0N3+jRwKOPAvv2iU4ils/xy9KlS7F3715cuHABSUlJKC0tRWdnJwCgqKgI+fn5sNls\nSElJQUxMDLZs2aJ4aKJwc/gw8NxzolNon9UqL21cuFB0EnG4nR2RYJIkP8Tr4EEgOVl0Gm2rqQFe\neEHeCjBccDs7Io1pa5MfuTtliugk2vfww8CpU0B7u+gk4rDUiQRz33Q0wKIxCkB0NDBrFrB3r+gk\n4rDUiQTjTUfBFemPDGCpEwnGlS/BFemlzgulRAL19ADx8UBLC3DvvaLThIeuLvnPsrkZmDBBdJrh\n44VSIg1papJLnYUePFFR8obUw7jTXtNY6kQCcfSijEgewbDUiQTi43aVwVInIiG48kUZZjPgcgHn\nzolOEnosdSJBbt2SN3bIyhKdJPyMHAk88URkztVZ6kSCfP45kJICxMSIThKeInUEw1InEoSjF2Wx\n1IkopLjyRVkZGUBHB+B0ik4SWix1IkG48kVZI0YAubnA7t2ik4QW7yglEuDbb+XH7V66JD+EipTx\nf/8HrFwp/wKdNEl0mqHhHaVEGvDZZ/KyOxa6sp56CvjFL4BnnwW++050mtDwq9R37tyJtLQ0pKam\n4rXXXuv3fbvdjtjYWFgsFlgsFqxbty7oQYnCCUcvofOb3wCJicDq1aKThIbP7ey6u7vx4osvYvfu\n3TAYDHj44YdRUFCA9D7bnufm5qKqqkqxoEThpK4O+NGPRKeIDCNGAO+/L+9fWlEBFBWJTqQsn2fq\ndXV1SElJQXJyMqKjo7FkyRJs376933GclxP5jytfQmvcOGD7duBf/gXYv190GmX5PFNva2tDUlJS\n7+dGoxGHDh3yOEan06GmpgZmsxkGgwEbN26EyWTq91olJSW9H1utVlit1qEnJ9Ko8+eBq1eB++8X\nnSSypKTIZ+w//rH8S9VoFJ3IO7vdDvswboX1Weo6P/bYysrKgsPhgF6vR3V1NRYtWoSmpqZ+x91Z\n6kSR6vBh+aYjbl8Xen/3d/Js/dln5S3vxowRnai/vie8paWlAf28z/GLwWCAw+Ho/dzhcMDY51fc\nuHHjoNfrAQALFixAZ2cn2iN551eiQXD0Itarr8qbfBcXA+E4NfZZ6tnZ2WhubkZraytu3bqFjz76\nCAUFBR7HuFyu3pl6XV0dJElCfHy8MomJNI4rX8TS6YAtW+RlpW+9JTpN8Pkcv0RFReHNN9/E/Pnz\n0d3djVWrViE9PR0VFRUAgKKiImzbtg2bNm1CVFQU9Ho9KisrFQ9OpEWSJJ+pv/ee6CSRLSYG+Phj\nYNYsYMYM+c7TcME7SolCqKUFmDMHOHNGdBICgF27gOXLgUOHgMmTRafxjneUEqkYRy/qMm8e8Otf\nAz/8IXDjhug0wcFSJwohPm5XfV55BUhLA37+8/C4cMpSJwohrnxRH50OePtteReq8nLRaYaPM3Wi\nEOnsBMaPB86eBe6+W3Qa6uurr+RHCXzwATB3rug0t3GmTqRSx4/LF+NY6Oo0ZQrwX/8FPPcc0Noq\nOs3QsdSJQoSjF/XLywPWrgUWLQKuXxedZmhY6kQhwpUv2rB6tfys+1WrtHnhlKVOFCJc+aINOh3w\nH/8h31OwcaPoNIHjhVKiELh2DZg4EWhvB0aPFp2G/OFwADk58t2/Tz0lLgcvlBKpUGOjvLs9C107\nkpKAykpg2TLg1CnRafzHUicKAY5etOmJJ4Df/U6+cHr1qug0/mGpE4UAV75oV3GxPIZZsUIbF05Z\n6kQhwJUv2qXTyY/odTiA9etFp/GNF0qJFHbhgrx13aVL8ibIpE1tbfIv5rffBvLzQ/e+vFBKpDKH\nDwPZ2Sx0rTMYgP/5H+Af/xHwslunavj8a7Zz506kpaUhNTUVr732mtdjVq9ejdTUVJjNZjQ2NgY9\npBoMZyNYNdByfi1nB4D//m+7pkcvWv/zD2b+WbOAdevkC6fffhu0lw2qQUu9u7sbL774Inbu3IkT\nJ07gww8/xMmTJz2OsdlsaGlpQXNzMzZv3ozi4mJFA4vCv9jiaDk7ABw4YNf0yhet//kHO//Pfy6v\niiksBHp6gvrSQTFoqdfV1SElJQXJycmIjo7GkiVLsH37do9jqqqqUFhYCADIyclBR0cHXC6XcomJ\nNESSbs9iKXy88QbwzTfyWbvaDLpHaVtbG5KSkno/NxqNOHTokM9jnE4nEhISghx1YBUVwI4dyr5H\nU5O8Ua1WaTm/lrN3dcmzdINBdBIKplGjgG3b5HsPDh4Eonzu9hw6g0bR6XR+vUjfK7MD/Zy/r6dW\nTU2loiMMi5bzazk7AIwYoe38paXMPxCnU7GXHpJBS91gMMDhcPR+7nA4YDQaBz3G6XTC4OW0hMsZ\niYiUN+hMPTs7G83NzWhtbcWtW7fw0UcfoaCgwOOYgoICbN26FQBQW1uLuLi4kI5eiIjotkHP1KOi\novDmm29i/vz56O7uxqpVq5Ceno6KigoAQFFREfLz82Gz2ZCSkoKYmBhs2bIlJMGJiMgLKQSqq6ul\nBx98UEpJSZHWr18fircMmjNnzkhWq1UymUzS9OnTpfLyctGRAtbV1SVlZmZKzzzzjOgoAbt06ZL0\n7LPPSmlpaVJ6erp08OBB0ZECUlZWJplMJikjI0NaunSpdPPmTdGRBrVixQpp4sSJUkZGRu/XLl68\nKD355JNSamqqNG/ePOnSpUsCEw7OW/5f//rXUlpamjRz5kzphz/8odTR0SEw4cC8ZXfbuHGjpNPp\npIsXL/p8HcXvcfNnrbuaRUdH4/XXX8fx48dRW1uLt956S1P5AaC8vBwmk0mTF6rXrFmD/Px8nDx5\nEp9//jnS09NFR/Jba2sr3n77bTQ0NOCLL75Ad3c3KisrRcca1IoVK7Bz506Pr61fvx7z5s1DU1MT\n5s6di/XOlrWuAAADvUlEQVQqfgCKt/xPPfUUjh8/jqNHj+KBBx7AH/7wB0HpBuctOyBfy9y1axem\nTJni1+soXur+rHVXs8TERGRmZgIAxo4di/T0dJw9e1ZwKv85nU7YbDY8//zzmrtYffnyZXz66adY\nuXIlAHkcGBsbKziV/+6++25ER0fj+vXr6OrqwvXr170uIlCT2bNnY/z48R5fu/NelMLCQnz88cci\novnFW/558+ZhxPfPaMjJyYFTbctVvuctOwC88sor+OMf/+j36yhe6t7Wsbe1tSn9topobW1FY2Mj\ncnJyREfx28svv4wNGzb0/qXWktOnT2PChAlYsWIFsrKy8LOf/QzXNbQbcHx8PH71q19h8uTJuO++\n+xAXF4cnn3xSdKyAuVyu3sUPCQkJmr658N1330V+KJ/GNUzbt2+H0WjEzJkz/f4Zxf+la/F/+b25\nevUqFi9ejPLycowdO1Z0HL/s2LEDEydOhMVi0dxZOgB0dXWhoaEBv/zlL9HQ0ICYmBhV/69/X6dO\nncKf/vQntLa24uzZs7h69Sr+8pe/iI41LDqdTrP/pn//+99j1KhR+MlPfiI6il+uX7+OsrIyjzX2\n/vw7VrzU/VnrrnadnZ149tln8dOf/hSLFi0SHcdvNTU1qKqqwtSpU7F06VJ88sknWL58uehYfjMa\njTAajXj4+wenLF68GA0NDYJT+a++vh6zZs3CPffcg6ioKPzoRz9CTU2N6FgBS0hIwPnz5wEA586d\nw8SJEwUnCtx7770Hm82mqV+qp06dQmtrK8xmM6ZOnQqn04mHHnoIX3/99aA/p3ip+7PWXc0kScKq\nVatgMpnw0ksviY4TkLKyMjgcDpw+fRqVlZWYM2dO7z0FWpCYmIikpCQ0ff+c0927d2P69OmCU/kv\nLS0NtbW1uHHjBiRJwu7du2EymUTHClhBQQHef/99AMD777+vqRMbQH7S7IYNG7B9+3aMGTNGdBy/\nzZgxAy6XC6dPn8bp06dhNBrR0NDg+5dqkFfleGWz2aQHHnhAuv/++6WysrJQvGXQfPrpp5JOp5PM\nZrOUmZkpZWZmStXV1aJjBcxut0sLFy4UHSNgR44ckbKzs1W/HG0gr732Wu+SxuXLl0u3bt0SHWlQ\nS5YskSZNmiRFR0dLRqNRevfdd6WLFy9Kc+fO1cSSxr7533nnHSklJUWaPHly77/f4uJi0TG9cmcf\nNWpU75/9naZOnerXksaQ7XxERETK096SCCIiGhBLnYgojLDUiYjCCEudiCiMsNSJiMIIS52IKIz8\nP+TL9axw2ETbAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x4149950>" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.4 pageno : 275" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "k = 0.307; # min**-1\n", + "t = 15.; \n", + "\n", + "# Calculations and Results\n", + "fr_unconverted = math.exp(-k*t);\n", + "print \" The fraction of reactant unconverted in a plug flow reactor is %.2f\"%(fr_unconverted)\n", + "\n", + "#For the real reactor\n", + "T = [5,10,15,20,25,30]; #given time\n", + "E = [0.03,0.05,0.05,0.04,0.02,0.01]; #given\n", + "dt = 5;\n", + "sum1 = 0;\n", + "for i in range(6):\n", + " sum1 = sum1+math.exp(-k*T[i])*E[i]*dt;\n", + "\n", + "print \" The fraction of reactant unconverted in a real reactor is %.3f\"%(sum1)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The fraction of reactant unconverted in a plug flow reactor is 0.01\n", + " The fraction of reactant unconverted in a real reactor is 0.047\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.5 pageno : 277" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "k = 0.5 #litre/mol.min\n", + "CAo = 2. #mol/litre\n", + "to = 1.\n", + "t1 = 3.\n", + "E = 0.5\n", + "\n", + "# Calculations\n", + "#Using eqn 13\n", + "def f2(t): \n", + "\t return 1./(1+t)\n", + "\n", + "XA_avg = 1-(E* quad(f2,to,t1)[0])\n", + "# Results\n", + "print \" Average concentration of A remaining in the droplet is %.3f\"%(XA_avg)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Average concentration of A remaining in the droplet is 0.653\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch12.ipynb b/Chemical_Reaction_Engineering/ch12.ipynb new file mode 100755 index 00000000..f90bf55b --- /dev/null +++ b/Chemical_Reaction_Engineering/ch12.ipynb @@ -0,0 +1,116 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12 : Compartment Models" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.1 page no : 289" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "tg = (8.*(9.-6)*(0.5)+11.*(15.-9)*(0.5))/((15.-6)*0.5) #sec\n", + "tl = 40. #sec\n", + "vg = 0.5\n", + "vl = 0.1;\n", + "\n", + "# Calculations\n", + "Vg = tg*vg;\n", + "Vl = tl*vl;\n", + "G = Vg*10\n", + "L = Vl*10\n", + "Stagnant = (100-G-L)\n", + "\n", + "# Results\n", + "print \" fraction of gas is %.f %%\"%(G)\n", + "print \" fraction of liquid is %.f %%\"%(L)\n", + "print \" fraction of Stangnant liquid is %.f %%\"%(Stagnant)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " fraction of gas is 50 %\n", + " fraction of liquid is 40 %\n", + " fraction of Stangnant liquid is 10 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.2 page no : 290" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "CAo = 1.;\n", + "XA = 0.75 #present\n", + "CA = 1-XA;\n", + "\n", + "# Calculations\n", + "kt1 = (CAo-CA)/CA;\n", + "kt2 = 3*kt1; #volume is reduced by 1/3\n", + "CA_unconverted = 1./(kt2+1);\n", + "XA = 1-CA_unconverted #New XA after replacing the stirrer\n", + "\n", + "# Results\n", + "print \" New Conversion expected is %.1f %%\"%(XA*100)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " New Conversion expected is 90.0 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch13.ipynb b/Chemical_Reaction_Engineering/ch13.ipynb new file mode 100755 index 00000000..205d7e7f --- /dev/null +++ b/Chemical_Reaction_Engineering/ch13.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 13 : The Dispersion ,Wodel" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.1 page no : 305" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "T = [0,5,10,15,20,25,30,35]; # time\n", + "Cpulse = [0,3,5,5,4,2,1,0]; # gm/liter \n", + "sum1 = 0;\n", + "sum2 = 0\n", + "sum3 = 0;\n", + "\n", + "# Calculations\n", + "for i in range(8):\n", + " sum1 = sum1+Cpulse[i];\n", + " sum2 = sum2+Cpulse[i]*T[i];\n", + " sum3 = sum3+Cpulse[i]*T[i]*T[i];\n", + "\n", + "t = sum2/sum1;\n", + "sigma_sqr = (sum3/sum1)-((sum2/sum1))**2;\n", + "sigmatheta_sqr = sigma_sqr/t**2;\n", + "m = 0.1\n", + "\n", + "while m <= 0.2:\n", + " sigmat_sqr = 2*m-2*(m**2)*(1-math.exp(-(1./m)));\n", + " if sigmat_sqr >= sigmatheta_sqr:\n", + " break;\n", + " m += 0.001\n", + "\n", + "# Results\n", + "print \" The vessel print ersion number is %.3f\"%(m)\n", + "\n", + "# answer may vary because of rounding error." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The vessel print ersion number is 0.100\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 13.2 pageno : 306" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "l = 1219.; # long diameter\n", + "u = 0.0067; #Velocity(mm/s) \n", + "\n", + "#Using the probability graph\n", + "t1 = 178550.\n", + "#84th percentile point fall at\n", + "t2 = 187750.;\n", + "\n", + "# Calculations\n", + "sigma = (t2-t1)/2;\n", + "t = l/u;\n", + "sigma_theta = sigma/t;\n", + "#Vessel print ersion number\n", + "d = sigma_theta**2/2;\n", + "\n", + "# Results\n", + "print \" The vessel print ersion number is %.5f\"%(d)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The vessel print ersion number is 0.00032\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.3 page no : 308" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "v = 0.4; # bed voidage\n", + "u = 1.2; # velocity of fluid\n", + "l = 90. #length(cm)\n", + "sigma1_sqr = 39. # output signals\n", + "sigma2_sqr = 64. # output signals \n", + "\n", + "# Calculations\n", + "dsigma_sqr = sigma2_sqr-sigma1_sqr;\n", + "t = l*v/u;\n", + "sigmatheta_sqr = dsigma_sqr/t**2;\n", + "d = sigmatheta_sqr/2;\n", + "\n", + "# Results\n", + "print \" The vessel print ersion number is %.4f\"%(d)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The vessel print ersion number is 0.0139\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch14.ipynb b/Chemical_Reaction_Engineering/ch14.ipynb new file mode 100755 index 00000000..5eb6f664 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch14.ipynb @@ -0,0 +1,232 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 14 The Tanks-in-Series Model" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.1 pageno : 329" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Original and new length(m)\n", + "import math \n", + "\n", + "# Variables\n", + "L1 = 32. # diameter pipe\n", + "L2 = 50. # pipeline length \n", + "sigma1 = 8. # bottles \n", + "\n", + "# Calculations\n", + "# For small deviaqtion from plug flow,sigma_sqr is directly proportional to L\n", + "sigma2 = sigma1*math.sqrt(L2/L1);\n", + "\n", + "# Results\n", + "print \" No of bottles of rose expected is %.f\"%(sigma2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " No of bottles of rose expected is 10\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.2 pageno : 330" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "sigma1 = 14. # hours\n", + "sigma2 = 10.5; # hours\n", + "L1 = 119. # ohio miles apart\n", + "\n", + "# Calculations\n", + "#spread of curve is directly proportional to sqrt of distance from origin\n", + "L = sigma1**2*L1/(sigma1**2-sigma2**2);\n", + "\n", + "# Results\n", + "print \" The dumping of toxic phenol must have occured within %.f miles upstream of cincinnati\"%(L)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The dumping of toxic phenol must have occured within 272 miles upstream of cincinnati\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.3 pageno : 332" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "# from figure\n", + "vo = 1.; \n", + "t1 = 1./6;\n", + "t2 = 1.;\n", + "t3 = 11./6;\n", + "w = 1./10;\n", + "\n", + "# Calculations\n", + "A2_by_A1 = 0.5;\n", + "R = A2_by_A1/(1-A2_by_A1);\n", + "#From the location of 1st peak\n", + "V1 = (R+1)*vo*t1;\n", + "#From the time between peaks\n", + "V2 = (R*vo)*((t2-t1)-(t1));\n", + "#From fig 14.3\n", + "N = 1+(2*(t1/w))**2;\n", + "\n", + "# Results\n", + "print \" The reflux ratio is %.f\"%(R)\n", + "print \" The volume of 1st tank is %.3f\"%( V1)\n", + "print \" The volume of 2nd tank is %.3f\"%(V2)\n", + "print \" The number of tanks are %.f \"%(N)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The reflux ratio is 1\n", + " The volume of 1st tank is 0.333\n", + " The volume of 2nd tank is 0.667\n", + " The number of tanks are 12 \n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14.4 page no :333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "%pylab inline\n", + "\n", + "from matplotlib.pyplot import *\n", + "import math \n", + "from numpy import *\n", + "\n", + "# Variables\n", + "# from figure E14.4a\n", + "t2 = 280.\n", + "t1 = 220.\n", + "sigma1_sqr = 100.\n", + "sigma2_sqr = 1000.\n", + "\n", + "# Calculations\n", + "dt = t2-t1;\n", + "dsigma_sqr = sigma2_sqr-sigma1_sqr;\n", + "N = dt**2/dsigma_sqr;\n", + "\n", + "E = zeros(200)\n", + "\n", + "for t in range(200):\n", + " E[t] = ((t**(N-1))*(N**N)*math.exp(-t*N/dt))/((math.factorial(N-1))*(dt**N));\n", + "\n", + "t = zeros(200) \n", + "for i in range(200):\n", + " t[i] = i;\n", + "\n", + "# Results\n", + "plot(t,E)\n", + "xlabel(\"t, s\")\n", + "ylabel(\"E, s**-1\")\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAELCAYAAAAcKWtPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVGX+B/APBGRaG2aKxpAkMwoqjmwopZmzKZHUzpq2\nipWRl13WMtatNa29CFsqaO1mmoaVt1+ta20XaMUx3SIrBUyxi2iOCjUMQoXi5mqODM/vj0dnBbkM\nzJw5c/m8X695xTDnnPlywvlwznMLEkIIEBERuSBY7QKIiMj3MUyIiMhlDBMiInIZw4SIiFzGMCEi\nIpcxTIiIyGWKhYnJZEJsbCx0Oh1yc3Nb3CYzMxM6nQ56vR5lZWWO70+fPh0RERGIj4+/ZJ/ly5cj\nLi4OgwcPxrx585Qqn4iIOkCRMLHb7Zg9ezZMJhPKy8uxceNGHDhwoMk2hYWFOHz4MMxmM1avXo1Z\ns2Y5Xps2bRpMJtMlx/3ggw9QUFCAzz//HF9++SV+//vfK1E+ERF1kCJhUlpaCq1Wi+joaISGhiIt\nLQ35+flNtikoKEB6ejoAICkpCfX19aipqQEAjBo1Ct27d7/kuKtWrcITTzyB0NBQAEDPnj2VKJ+I\niDooRImDWq1WREVFOZ5rNBqUlJS0u43VakXv3r1bPa7ZbMaOHTvw5JNPokuXLnjmmWeQmJjYZJug\noCA3/RRERIHFlQlRFLkycfYDvXnh7e3X0NCAEydOoLi4GEuXLsWkSZNaPS4frj8WLFigeg3+9OD5\n5Pn05oerFAmTyMhIWCwWx3OLxQKNRtPmNlVVVYiMjGzzuBqNBhMmTAAADBs2DMHBwairq3Nj5URE\n1BmKhEliYiLMZjMqKyths9mwadMmGI3GJtsYjUZs2LABAFBcXIzw8HBERES0edzx48fj/fffBwAc\nOnQINpsNPXr0UOJHICKiDlAkTEJCQrBixQqkpKRg4MCBmDx5MuLi4pCXl4e8vDwAQGpqKvr16wet\nVouMjAysXLnSsf+UKVMwYsQIHDp0CFFRUVi7di0A2WX46NGjiI+Px5QpUxxhRMowGAxql+BXeD7d\ni+fTuwQJd9ws8yJBQUFuuf9HRBRIXP3s5Ah4IiJyGcOEiIhcxjAhIiKXMUyIiMhlDBMiInIZw4SI\niFzGMCEiIpcxTIiIyGUMEyIicpkiU9CT9xIC+Pxz4JNPgOpqoLER6NMHGD4cSEwELrtM7QqJyBfx\nyiRAnD0LrFoFxMQAEyYAZWXA5ZcDXbsC5eXAr34lQ+UPfwCOHVO7WiLyNbwyCQB79gBTpwLXXw+8\n+ipw881AS0vHmM3A888D8fHAvHnAnDnA+UUtiYjaxIke/dy6dcDjjwPLlgFTpji3j9kMPPww8N//\nAhs3yhAiIv/GiR6pVUuXAllZwEcfOR8kAKDTASYTMH68bEvZuVOxEonIT/DKxE+tXg0sWQJ8+CHQ\nzgKWbTKZgAceAF5+GWi2vhkR+RFXPzsZJn5oyxZg+nR5RaLVun68PXuA1FTgpZcYKET+imHSTKCH\nyTffAMOGAW+9BYwc6b7jfvqpDJTXXgOSk913XCLyDgyTZgI5TBoaAIMBuOsuYP589x//o4+AiROB\n7duBIUPcf3wiUg8b4Mnhb3+TY0cef1yZ448aBSxfLsOqpkaZ9yAi36RYmJhMJsTGxkKn0yE3N7fF\nbTIzM6HT6aDX61FWVub4/vTp0xEREYH4+PgW93v22WcRHByM48ePK1K7L6qoAHJzZcN7sIJ/Ikye\nDEybBvzyl4DNptz7EJFvUeRjx263Y/bs2TCZTCgvL8fGjRtx4MCBJtsUFhbi8OHDMJvNWL16NWbN\nmuV4bdq0aTCZTC0e22KxYNu2bejbt68SpfskIYCHHgLmzpUj3JW2YAEQHi4HNhIRAQqFSWlpKbRa\nLaKjoxEaGoq0tDTk5+c32aagoADp6ekAgKSkJNTX16Pm/L2TUaNGoXv37i0e+9FHH8WSJUuUKNtn\nbd0KHD0KPPqoZ94vOBhYvx5480353kREikynYrVaERUV5Xiu0WhQUlLS7jZWqxW9e/du9bj5+fnQ\naDQY0k7rb1ZWluNrg8EAg8HQsR/Ah9jt8ookJ8ezU59cc40cXT91KrBvH9Czp+fem4hcV1RUhKKi\nIrcdT5EwCWpp4qcWNO850NZ+p0+fxqJFi7Bt27ZW97/g4jDxdxs2yFtO48d7/r1vuw249145SeTb\nb7c83xcReafmf2hnZ2e7dDxFbnNFRkbCYrE4nlssFmg0mja3qaqqQmQbQ7WPHDmCyspK6PV63HDD\nDaiqqsKNN96Ib7/91v0/gI9oaACefhpYvFi9D/Knnwa+/lqOkCeiwKVImCQmJsJsNqOyshI2mw2b\nNm2CsdnQaaPRiA0bNgAAiouLER4ejoiIiFaPGR8fj9raWlRUVKCiogIajQZ79+5Fr169lPgRfMLf\n/y4nYbzlFvVquPxyWccTT8hQIaLApEiYhISEYMWKFUhJScHAgQMxefJkxMXFIS8vD3l5eQCA1NRU\n9OvXD1qtFhkZGVi5cqVj/ylTpmDEiBE4dOgQoqKisHbt2kvew9lbaf7KbgcWLQL++Ee1KwHi4oDf\n/U7ONByg40WJAh5HwPuot96SEznu2uUdbRU2G5CQIGcp/uUv1a6GiDqKI+AD1HPPAY895h1BAgBh\nYUBenlxQ6+RJtashIk/jlYkP2rMHuPtuObYkxMvWyszIkOvIX3TXkoh8ACd6bCYQwuSBB4DBg5Wb\ng8sVJ04AgwbJ23A33aR2NUTkLIZJM/4eJt9/L9coOXpUDhz0RuvXyyuTXbuUnSeMiNyHbSYBZsMG\n4Oc/994gAeSoeCHk2idEFBh4ZeJDhAAGDpQN3bfeqnY1bdu5E5g0CfjqK6BbN7WrIaL28MokgHzy\niQyUUaPUrqR9I0bIwGtl9QEi8jO8MvEh06bJxu3f/17tSpxjsQBDhwJ79wJcMYDIu7EBvhl/DZPT\np4HISKC8HOjTR+1qnLdgAWA2yylXiMh78TZXgCgoAIYP960gAeT0+B98AFy0kCYR+SGGiY949VXg\n/vvVrqLjrrxSzh82f77alRCRknibywd89x2g0wFVVfLD2dfYbLIX2urVcg0UIvI+vM0VAP75T2Dc\nON8MEkDO2/X00/LqxM9ynojOY5j4gDfekGM2fNmkSXIxrzffVLsSIlICb3N5udpaYMAA4Ngx4Ior\n1K7GNe+9BzzyCLB/v/dNUEkU6Hiby8+99RaQmur7QQIAycmyN9qrr6pdCRG5G8PEy/nDLa4LgoKA\n7GzgqaeAc+fUroaI3Ilh4sXq6oBPPwVSUtSuxH1GjwZuuEFOWElE/oNh4sVMJuBnP/OPW1wXy86W\nvbtsNrUrISJ3USxMTCYTYmNjodPpkNvKbH+ZmZnQ6XTQ6/Uou2iI9PTp0xEREYH4+Pgm28+dOxdx\ncXHQ6/WYMGECTvr5+rDvviunm/c3I0cC/fsD69apXQkRuYsiYWK32zF79myYTCaUl5dj48aNOHDg\nQJNtCgsLcfjwYZjNZqxevRqzZs1yvDZt2jSYTKZLjnv77bdj//79+Oyzz9C/f38sXrxYifK9wrlz\nwNatwJ13ql2JMrKzgYULgbNn1a6EiNxBkTApLS2FVqtFdHQ0QkNDkZaWhvz8/CbbFBQUID09HQCQ\nlJSE+vp61NTUAABGjRqF7t27X3Lc5ORkBJ9fui8pKQlVVVVKlO8VPv5Yrqjoa3NxOeumm+QMyGvW\nqF0JEbmDIr39rVYroqKiHM81Gg1KSkra3cZqtaJ3795OvceaNWswZcqUFl/LyspyfG0wGGAwGJwv\n3kv46y2ui2VlARMnyqn1u3RRuxqiwFJUVISioiK3HU+RMAkKCnJqu+YDZJzdb+HChQgLC8O9997b\n4usXh4mv+te/gE2b1K5CWcOHy/VOXn4ZmD1b7WqIAkvzP7Szs7NdOp4it7kiIyNhsVgczy0WCzQa\nTZvbVFVVITIyst1jr1u3DoWFhXjNjxcY/+oruX7J0KFqV6K87Gxg8WLgxx/VroSIXKFImCQmJsJs\nNqOyshI2mw2bNm2C0Whsso3RaMSG84MNiouLER4ejoiIiDaPazKZsHTpUuTn56OLH98Xefdd4K67\n5CA/f/fTn8oH206IfJsiYRISEoIVK1YgJSUFAwcOxOTJkxEXF4e8vDzk5eUBAFJTU9GvXz9otVpk\nZGRg5cqVjv2nTJmCESNG4NChQ4iKisLatWsBAI888ghOnTqF5ORkJCQk4KGHHlKifNX961/+315y\nsT/8AViyhKPiiXwZJ3r0MidOyPXSa2v9b7BiW8aOBe67TzbGE5HncaJHP7NtG3DrrYEVJIBcjXHx\nYsBuV7sSIuoMhomX2b5dzq4baEaPBnr2lBNbEpHvYZh4me3b5S2fQBMUJK9OFi4EGhvVroaIOoph\n4kWOHgXOnJHrpQeiO+6QS/y++67alRBRRzFMvMiFq5JA6BLckqAg2bPr6ae5VjyRr2GYeJFAvcV1\nsfHj5YDNbdvUroSIOoJdg71EYyPQqxewbx/QbLKAgPPaa0BeHrBjh9qVEAUOdg32E/v2yd5MgR4k\nADB5MlBdzTAh8iUMEy/BW1z/ExICzJ8ve3YRkW9gmHiJf/+bYXKxBx4ADhwAdu9WuxIicgbbTLzA\njz/KW1xVVcDVV6tdjfdYvlxesTVbV42IFMA2Ez+waxcweDCDpLmZM4HSUuCLL9SuhIjawzDxAtu3\nA2PGqF2F97niCmDOHCAnR+1KiKg9DBMvUFQE/OxnalfhnWbNArZuBY4cUbsSImoL20xUduaMbC+p\nrQW6dVO7Gu/0pz/J87N6tdqVEPkvtpn4uJISID6eQdKW3/4W+Oc/AatV7UqIqDUME5Xt2AGMGqV2\nFd7t2muBBx8EnnlG7UqIqDUME5Xt2CEXw6K2PfYYsH498N13aldCRC1RLExMJhNiY2Oh0+mQm5vb\n4jaZmZnQ6XTQ6/UoKytzfH/69OmIiIhAfHx8k+2PHz+O5ORk9O/fH7fffjvq6+uVKt8jzp2Tt7lG\njlS7Eu8XGQn88pfA88+rXQkRtUSRMLHb7Zg9ezZMJhPKy8uxceNGHDhwoMk2hYWFOHz4MMxmM1av\nXo1Zs2Y5Xps2bRpMJtMlx83JyUFycjIOHTqEMWPGIMfH+4zu3QvExADdu6tdiW94/HFg1Srg5Em1\nKyGi5hQJk9LSUmi1WkRHRyM0NBRpaWnIbzaMuaCgAOnp6QCApKQk1NfXo6amBgAwatQodG/hE/bi\nfdLT0/HOO+8oUb7HsL2kY2Ji5AJaq1apXQkRNadImFitVkRFRTmeazQaWJt1xXFmm+Zqa2sREREB\nAIiIiEBtba0bq/Y8tpd03Pz5wHPPyTVPiMh7hChx0CAnlwps3qfZ2f0ubNva9llZWY6vDQYDDAaD\n08f1lMZG4JNPgJdeUrsS3zJ4MHDTTcArrwCPPKJ2NUS+q6ioCEVFRW47niJhEhkZCYvF4nhusVig\nabZQR/NtqqqqEBkZ2eZxIyIiUFNTg969e+PYsWPo1atXi9tdHCbe6ssv5WDF3r3VrsT3PPkkcM89\nQEaGXDOeiDqu+R/a2dnZLh1PkdtciYmJMJvNqKyshM1mw6ZNm2A0GptsYzQasWHDBgBAcXExwsPD\nHbewWmM0GrF+/XoAwPr16zF+/HglyvcItpd03vDhwIABwKuvql0JETkIhRQWFor+/fuLmJgYsWjR\nIiGEEC+++KJ48cUXHds8/PDDIiYmRgwZMkTs2bPH8f20tDTRp08fERYWJjQajVizZo0QQoi6ujox\nZswYodPpRHJysjhx4sQl76vgj+RWkyYJsX692lX4rg8+EEKnE6KhQe1KiPyDq5+dnJtLBUIA110H\n7NwJ3HCD2tX4JiHk+Jw5c4BJk9Suhsj3cW4uH1RZCQQHA9HRalfiu4KCZNvJokUyWIhIXQwTFezc\nCdx8s/xApM67804ZJIWFaldCRAwTFezaJcOEXHPh6mThQl6dEKmNYaKCXbuAESPUrsI/3HMP8P33\nwIcfql0JUWBjA7yH/fe/QK9ewPHjwOWXq12Nf1izBvjHP4D33lO7EiLfxQZ4H7N7NzBkCIPEne6/\nHzh4UJ5bIlJHp8Jk3Lhx7q4jYPAWl/uFhQFz58qeXUSkjlanU9m7d2+L3xdCNFl7hDpm507g/MTH\n5EYzZsiG+P37gUGD1K6GKPC02mZy2WWX4dZWprQtLi7GmTNnFC2ss7y5zUQI2V6yb59c7Inca/Fi\nGSacZoWo41z97Gz1yiQ2NhZ5eXno37//Ja9dPHU8Oe/wYaBrVwaJUh56SK55cvQo0K+f2tUQBZZW\n20yysrLQ2NjY4mvPc+3UTrkwWJGUcfXVwG9+AyxZonYlRIGHXYM96De/AeLigN/+Vu1K/Nd338kZ\nhT//HGi26gERtcGjXYPvuuuuTr8RsSeXJ/TsCUyfDuTmql0JUWDp0JVJQkKC1/fk8tYrk//8R84U\nfPw4F3RSWm2tvAL84gu2TxE5y6NXJgkJCZ1+o0BXWgokJDBIPCEiQl6d5OSoXQlR4GgzTD777DMA\nwOeffw4AWLNmjfIV+anSUrl2OXnG3LnAa68BVqvalRAFhjbDZM2aNTCbzXjllVc8VY/fKi2Vy82S\nZ1y4OmHbCZFntBom2dnZaGxsRFJSEoQQLi82H8iEAEpKGCaeNneuHMDIqxMi5bXZAF9QUIAtW7Zg\n3LhxMBqNnqyr07yxAd5iARITgZoaLojlab//PWCzARwaRdQ2RRvgS0pKsGrVKuzuxHSsJpMJsbGx\n0Ol0yG3lXkNmZiZ0Oh30en2TXmKt7VtaWorhw4cjISEBw4YN61Rdarhwi4tB4nm8OiHyENGGffv2\nCSGE+Oyzz9ra7BINDQ0iJiZGVFRUCJvNJvR6vSgvL2+yzebNm8W4ceOEEEIUFxeLpKSkdvcdPXq0\nMJlMQgghCgsLhcFguOS92/mRVPH440L85S9qVxG4Hn1UiEceUbsKIu/m6menIg3wpaWl0Gq1iI6O\nRmhoKNLS0pCfn99km4KCAqSfnz43KSkJ9fX1qKmpaXPfPn364OTJkwCA+vp6RPrIIILSUiApSe0q\nAhevToiUp0gDvNVqbTIZpEajgbXZv+TWtqmurm5135ycHDz22GO4/vrrMXfuXCxevNjpmtRitwN7\n9sg2E1JH797AtGns2UWkpFZnDV6wYAEKCgrQ0NCAsWPHdqgBPsjJxgHRwcaeGTNm4Pnnn8fdd9+N\nN954A9OnT8e2bdsu2S4rK8vxtcFggMFg6ND7uNPBg/LD7JprVCuBIK9OBg4E5s3jqHgiACgqKkJR\nUZHbjtdqmAD/a4D/05/+1KEwiYyMhMVicTy3WCzQNJt1r/k2VVVV0Gg0OHfuXKv7lpaWYvv27QCA\ne+65BzNnzmzx/S8OE7WxS7B3uHB1kpMDLF+udjVE6mv+h7bLwz860sBSV1fnVGP8uXPnRL9+/URF\nRYU4e/Zsuw3wu3btcjTAt7VvQkKCKCoqEkIIsX37dpGYmHjJe3fwR1JcRoYQy5apXQUJIURNjRDd\nuwvx9ddqV0LkfVz97GzzygQARo8ejXfffRcNDQ248cYb0bNnT4wcORJ/+9vfWt0nJCQEK1asQEpK\nCux2O2bMmIG4uDjk5eUBADIyMpCamorCwkJotVp069YNa9eubXNfAFi9ejUefvhhnD17FldccQVW\nr17tWpJ6QGkp8OCDaldBgBwV/5vfAH/5C/Dyy2pXQ+Rf2p01eOjQodi3bx9efvllWCwWZGdnIz4+\nHl988YWnauwQbxq0eOYMcO21QF0d0KWL2tUQAJw4AfTvD3z8sVz3hIgkxWcNttvtOHbsGF5//XXc\neeedjjel9pWVyUZfBon36N4dePRR4M9/VrsSIv/Sbpj8+c9/RkpKCmJiYjB8+HAcOXIEOp3OE7X5\nPE7u6J0yM4EdO2TYE5F7cNleBd17L5CSApwfm0leZPlywGQCNm9WuxIi7+DRxbGoY9gt2Hv9+tfA\n/v2y7YSIXMcwUcj338sHG3m90+WXA1lZwJNPyiUCiMg1DBOF7N4NDBsGBPMMe6377we++w7YulXt\nSoh8X4c/6t555x2UlJQoUYtfYeO79wsJAZ56Sl6dNDaqXQ2Rb+twmJSUlODpp5/GHXfcoUQ9foNh\n4hsmTgTCwoC//13tSoh8G3tzKUAIoFcv4LPPgOuuU7UUcsLHH8ued199BVxxhdrVEKlDsd5cS5Ys\ncXz9xhtvNHntySef7PQbBoLKStnAyyDxDbfcAtx4I5f2JXJFq2GyceNGx9eLFi1q8tqWLVuUq8gP\nsEuw78nNBZYulT3wiKjj2NdIAbt3M0x8Tf/+QFqanASSiDqOYaKA0lLZLZh8y4IFsiHebFa7EiLf\n02oD/GWXXYauXbsCAM6cOYMrLmqZPHPmDBoaGjxTYQep3QDf0CAnE7RYgPBw1cqgTlq8WC6z/M9/\nql0JkWe5+tnZ6nomdru90wcNZAcOyGVhGSS+ac4cOWvBJ58AI0eqXQ2R7+BtLjfjLS7fdsUVciDj\nY49xICNRRzBM3IyN775v6lTAbgdee03tSoh8B8PEzS7MyUW+KzhYjjmZPx/44Qe1qyHyDRwB70Y/\n/ghccw1w/DhXV/QH6elA795yDAqRv/Pa9UxMJhNiY2Oh0+mQ28q/xszMTOh0Ouj1epRdtOxdW/su\nX74ccXFxGDx4MObNm6dU+Z2ybx8QF8cg8Rc5OcArrwCHDqldCZEPEApoaGgQMTExoqKiQthsNqHX\n60V5eXmTbTZv3izGjRsnhBCiuLhYJCUltbvv+++/L8aOHStsNpsQQohvv/32kvdW6EdyyrJlQmRk\nqPb2pIClS4VITVW7CiLlufrZqciVSWlpKbRaLaKjoxEaGoq0tDTk5+c32aagoADp59ezTUpKQn19\nPWpqatrcd9WqVXjiiScQGhoKAOjZs6cS5Xca20v8T2YmcPgwl/clao8iYWK1WhEVFeV4rtFoYLVa\nndqmurq61X3NZjN27NiBm266CQaDAZ9++qkS5Xcae3L5n7AwYNkyOf7k7Fm1qyHyXq0OWnRFUFCQ\nU9uJDjb2NDQ04MSJEyguLsbu3bsxadIkHD169JLtsrKyHF8bDAYYDIYOvU9n1NcDVqtsMyH/cscd\n8v/rc88BXtZMR9RpRUVFKCoqctvxFAmTyMhIWCwWx3OLxQKNRtPmNlVVVdBoNDh37lyr+2o0GkyY\nMAEAMGzYMAQHB6Ourg49evRocuyLw8RT9uwBEhLk6n3kf/76V+Cmm+RkkH37ql0Nkeua/6GdnZ3t\n0vEUuc2VmJgIs9mMyspK2Gw2bNq0CUajsck2RqMRGzZsAAAUFxcjPDwcERERbe47fvx4vP/++wCA\nQ4cOwWazXRIkauHId/+m1QK//S0we7Zc/IyImlLk7+iQkBCsWLECKSkpsNvtmDFjBuLi4pCXlwcA\nyMjIQGpqKgoLC6HVatGtWzesXbu2zX0BYPr06Zg+fTri4+MRFhbmCCNvsHs3MGmS2lWQkh5/HBg6\nFHj7beD8BTIRncdBi24SFQV8+CHQr5/H35o8aMcOucRveTnwk5+oXQ2R+7j62ckwcYNjx4D4eOC7\n7wAn+x6QD5s5E+jalcv8kn/x2hHwgWT3biAxkUESKJYsAV5/XbaTEZHEMHEDji8JLNdcAzzzDPDr\nX8vF0IiIYeIW7MkVeO67D7j2WjmgkYjYZuIyIYAePWSDbO/eHntb8gKHD8uxJ8XFsuswkS9jm4nK\njhwBrrySQRKItFrgj38EHnxQLqZFFMgYJi7i5I6BLTNTLqbF210U6BgmLmLje2ALDgbWrgUWLQIO\nHlS7GiL1MExcxMZ3iokBsrN5u4sCGxvgXdDQAISHy9mCr77aI29JXqqxEUhOBm6/nTMLk29iA7yK\n9u+X06gwSCg4GFizRo4/2b9f7WqIPI9h4gI2vtPF+vaVbScPPADYbGpXQ+RZDBMXsPGdmps5E4iM\nlF2GiQIJw8QFbHyn5oKC5O2ujRuBrVvVrobIc9gA30lnzsjpNOrqgC5dFH878jFFRXKq+rIyICJC\n7WqI2scGeJV8+ikwaBCDhFpmMAAzZsj2k8ZGtashUh7DpJOKi4Gbb1a7CvJmCxYAp07J9eOJ/B3D\npJN27ZKT/BG1JiQE+PvfgaVLZWcNIn/GMOkEIWSY8MqE2tO3L7ByJZCWBtTXq10NkXIUCxOTyYTY\n2FjodDrk5ua2uE1mZiZ0Oh30ej3Kysqc3vfZZ59FcHAwjh8/rlT5bfrmGxkoffuq8vbkYyZOBO68\nk+0n5N8UCRO73Y7Zs2fDZDKhvLwcGzduxIEDB5psU1hYiMOHD8NsNmP16tWYNWuWU/taLBZs27YN\nfVX8JL/QXsJleslZzzwje/4tXqx2JUTKUCRMSktLodVqER0djdDQUKSlpSE/P7/JNgUFBUhPTwcA\nJCUlob6+HjU1Ne3u++ijj2LJkiVKlO204mK2l1DHhIUBb7wBvPAC8N57aldD5H6KhInVakVUVJTj\nuUajgdVqdWqb6urqVvfNz8+HRqPBkCFDlCjbaWx8p8647jo5mPGBB4DKSrWrIXKvECUOGuTk/Z+O\nDJA5c+YMFi1ahG3btrW7f1ZWluNrg8EAg8Hg9Pu05+xZ4IsvgMREtx2SAsjo0cATTwBGI7Bzp1yl\nk0gNRUVFKCoqctvxFAmTyMhIWCwWx3OLxQKNRtPmNlVVVdBoNDh37lyL+x45cgSVlZXQ6/WO7W+8\n8UaUlpaiV69eTY59cZi42969wIABQLduir0F+bnMTODLL4H77wfeekvOOEzkac3/0M7OznbpeIr8\nGicmJsJsNqOyshI2mw2bNm2C0Whsso3RaMSGDRsAAMXFxQgPD0dERESr+w4ePBi1tbWoqKhARUUF\nNBoN9u7de0mQKI2DFclVQUGy7eT4ceBPf1K7GiL3UOTKJCQkBCtWrEBKSgrsdjtmzJiBuLg45OXl\nAQAyMjKQmpqKwsJCaLVadOvWDWvXrm1z3+acvZXmbrt2AT//uSpvTX4kLAx480056/TAgcB996ld\nEZFrONESjdbIAAAP7ElEQVRjB11/PfDvfwM6nWJvQQHkyy+B226TPb1Gj1a7GgpknOjRg6xW4PRp\nQKtVuxLyF4MHyx5ekyYB5eVqV0PUeQyTDrjQJZiDFcmdxoyRgxpTU4HqarWrIeocRdpM/NXHHwO3\n3KJ2FeSPpk6V0/TceadcC+Xqq9WuiKhjeGXSATt2ALfeqnYV5K+efBIYMUKOQTlzRu1qiDqGDfBO\nOnlSru19/LjsiUOkhMZGOUL+xAng7bf5u0aewwZ4D9m5U673zn/cpKTgYGDtWuCyy4D0dMBuV7si\nIucwTJzEW1zkKaGhwOuvA7W1wK9+xWnryTcwTJz00UcME/KcLl2Ad98FjhwBZs5koJD3Y5uJE86c\nAa69Fvj2W87JRZ516pTsMqzTAS+9xHm8SDlsM/GAkhIgPp5BQp535ZVAYSFgNssrFLahkLdimDiB\nt7hITRcC5ZtvgClTAJtN7YqILsUwccKOHcCoUWpXQYHsyiuBf/1LBsn48XJaHyJvwjaTdpw7B1xz\njfyrsHt3tx2WqFPOnQOmTwe+/hrIz+fvJLkP20wUVlYG9OvHf7TkHUJDgfXr5UqfI0YAFRVqV0Qk\nMUzawVtc5G2Cg4G//hV4+GFg5EigtFTtiogYJu1imJC3mj0byMuTk0O+/bba1VCgY5tJGxoa5PiS\nQ4cAD68OTOS0PXuAX/wCePRR4He/4xIJ1DlsM1HQ7t1AdDSDhLzbjTfKuePWr5fzebGnF6mBYdKG\nbduAsWPVroKofddfLxdvEwK4+Wbg8GG1K6JAo1iYmEwmxMbGQqfTITc3t8VtMjMzodPpoNfrUVZW\n1u6+c+fORVxcHPR6PSZMmICTJ08qVT4AYPt2hgn5jq5dgQ0bgIwM2dOroEDtiiigCAU0NDSImJgY\nUVFRIWw2m9Dr9aK8vLzJNps3bxbjxo0TQghRXFwskpKS2t33vffeE3a7XQghxLx588S8efMueW93\n/Ug//CBEt25CnDrllsMRedSuXUJERQnx5JNCnDundjXkC1z97FTkyqS0tBRarRbR0dEIDQ1FWloa\n8vPzm2xTUFCA9PR0AEBSUhLq6+tRU1PT5r7JyckIPj/TXVJSEqqqqpQoH4DsxZWYyPm4yDfddJNs\nmP/0U9kbkbe9SGmKrAFvtVoRFRXleK7RaFBSUtLuNlarFdXV1e3uCwBr1qzBlClTWnz/rKwsx9cG\ngwEGg6HDP4PJBNx+e4d3I/IaPXsCW7YAK1bIdpTFi4EZM9jbi6SioiIUFRW57XiKhEmQk7+topPd\n0BYuXIiwsDDce++9Lb5+cZh0hhDA5s3AW2+5dBgi1QUHA5mZwJgxwP33yzVSXn5ZBg0FtuZ/aGdn\nZ7t0PEVuc0VGRsJisTieWywWaDSaNrepqqqCRqNpd99169ahsLAQr732mhKlA5DjSs6eBYYMUewt\niDxq0CC5lEJcHKDXy5Uc/WuEGalNkTBJTEyE2WxGZWUlbDYbNm3aBKPR2GQbo9GIDRs2AACKi4sR\nHh6OiIiINvc1mUxYunQp8vPz0aVLFyVKByCn+05N5e0A8i9hYUBODvDmm8BTTwF33QVUVqpdFfkL\nRcIkJCQEK1asQEpKCgYOHIjJkycjLi4OeXl5yMvLAwCkpqaiX79+0Gq1yMjIwMqVK9vcFwAeeeQR\nnDp1CsnJyUhISMBDDz2kRPmOMCHyRzffLBvnb7lFdjJ55hk52wORKzidSjM//ABcdx1QXQ1cdZUb\nCyPyQkeOALNmySWply0DRo9WuyJSC6dTcbPCQvkXG4OEAkFMDLB1K/DEE3IqlrvvlksEE3UUw6SZ\nt94CJk5UuwoizwkKAiZPBg4elONTbr4ZmDMHOH5c7crIlzBMLvLjj/KvtGZ9BYgCQpcuwLx5wIED\nckXHAQOAhQuB//xH7crIFzBMLvLee8DQoZwlmAJbz57ACy8AH38sr1ZiYoCnn2aoUNsYJhd5803e\n4iK6YMAA4P/+T4bKV1/JUHnqKeDECbUrI2/EMDnv9Gk5yyrDhKipC6HyySey91dMjFzlkQ31dDGG\nyXkFBcDw4bJbMBFdqn9/YN064MsvgauvltPcjx8PfPghR9MTx5k4pKYC994r5y8iovadPi3XT3nu\nOeCyy4CZM4EHHgB69FC7MuoMV8eZMEwA1NQAsbGA1cop54k6Sgjgo4+Al16SE0mOGwf86leAwSAn\nmiTfwDBppjMn5Jln5KX7unXK1EQUKE6cAF59Vc5MfPy4HL8yZQrw059yrjtvxzBppqMnxG4HtFpg\n0ybZZkJE7rF/P7Bxo3yEhABpabKDS3w8g8UbMUya6egJyc8HFi2S03MTkfsJAezeDfzjH8Dbb8vv\n/eIXcnDwqFFAaKi69ZHEMGmmoydk7Fhg2jTgvvsULIqIAMhg+fJL+Udcfj5w9Chw223y3+HYsUC/\nfrxqUQvDpJmOnJC9e/+3pkNYmLJ1EdGlqquB7dv/97j88v8Fy223cUVIT2KYNNORE3LnnbLnyezZ\nChdFRO0SQs4LdiFYPvwQ6N1bTjx5881yXMvAgbIbMrkfw6QZZ0/Izp1yXMlXX8m/hojIu9jtshF/\n1y7573XXLqC2FkhKkp1lEhLkXHo33MAuyO7AMGnGmRPS2Ajceiswfbp8EJFv+O47oLhYNujv2ycf\n9fVyXfuhQ+Vj0CA5biw8XO1qfQvDpBlnTsgLLwCvvSYHWvGSmci31dUBn30mg6WsTN4qO3hQLnAX\nFyeD5cKjXz/g+uvZRtoShkkz7Z2Qigpg2DA5E2psrAcL80FFRUUwGAxql+E3eD7dq63z2dgoZ7Q4\neFA+DhyQt7SPHpWN/hER8vbYhUd0tPzv9dcDffoE5q1vV8MkxI21NGEymTBnzhzY7XbMnDkT8+bN\nu2SbzMxMbNmyBV27dsW6deuQkJDQ5r7Hjx/H5MmT8fXXXyM6Ohqvv/46wjtwLXvihOzb/uc/M0ic\nwQ8/9+L5dK+2zmdwMBAVJR/JyU1fa2gALBbZi7OiQj62bZP/raoCjh0DfvITIDJSTvx68aNPH9nD\n7Npr5aN7d7bXXKBImNjtdsyePRvbt29HZGQkhg0bBqPRiLi4OMc2hYWFOHz4MMxmM0pKSjBr1iwU\nFxe3uW9OTg6Sk5Px+OOPIzc3Fzk5OcjJyXGqpv/8Rw6UGjsWeOQRJX5qIvIFISH/uyL52c8ufb2x\nEfj+e3kFc+FhtcrbaFu2yNcuPH74QQbKtdc2DZkePeTMym09rrzSv4JIkTApLS2FVqtFdHQ0ACAt\nLQ35+flNwqSgoADp6ekAgKSkJNTX16OmpgYVFRWt7ltQUIAPP/wQAJCeng6DweBUmJSUyEGJd9wB\nPPssB0URUeuCg+Vqq716yQb9tpw7J+cguxAu330n/1tXJx9HjwInT7b8OH1atutcfbX8b9eucqLZ\ni//b1veuuELejrv4ERbW+nOl24cVCROr1YqoqCjHc41Gg5Jm85W0tI3VakV1dXWr+9bW1iIiIgIA\nEBERgdra2hbfP6iVtHjhBfkg52VnZ6tdgl/h+XQvXz+fF4LFHygSJq19mDfnTGOPEKLF4wUFBbX4\nfT/rT0BE5BMUuWMXGRkJi8XieG6xWKDRaNrcpqqqChqNpsXvR0ZGApBXIzU1NQCAY8eOoVevXkqU\nT0REHaRImCQmJsJsNqOyshI2mw2bNm2C0Whsso3RaMSGDRsAAMXFxQgPD0dERESb+xqNRqxfvx4A\nsH79eowfP16J8omIqIMUuc0VEhKCFStWICUlBXa7HTNmzEBcXBzy8vIAABkZGUhNTUVhYSG0Wi26\ndeuGtWvXtrkvAMyfPx+TJk3CK6+84ugaTEREXkD4kS1btogBAwYIrVYrcnJy1C7H5/Tt21fEx8eL\noUOHimHDhgkhhKirqxNjx44VOp1OJCcnixMnTqhcpfeaNm2a6NWrlxg8eLDje22dv0WLFgmtVisG\nDBggtm7dqkbJXq2l87lgwQIRGRkphg4dKoYOHSoKCwsdr/F8tu6bb74RBoNBDBw4UAwaNEgsW7ZM\nCOHe30+/CZOGhgYRExMjKioqhM1mE3q9XpSXl6tdlk+Jjo4WdXV1Tb43d+5ckZubK4QQIicnR8yb\nN0+N0nzCjh07xN69e5t8+LV2/vbv3y/0er2w2WyioqJCxMTECLvdrkrd3qql85mVlSWeffbZS7bl\n+WzbsWPHRFlZmRBCiB9++EH0799flJeXu/X302+GzFw8tiU0NNQxPoU6RjTrDXfxeKD09HS88847\napTlE0aNGoXu3bs3+V5r5y8/Px9TpkxBaGgooqOjodVqUVpa6vGavVlL5xNouccmz2fbevfujaHn\nB81ceeWViIuLg9Vqdevvp9+ESWvjVsh5QUFBGDt2LBITE/HSSy8BcH5sD7WstfNXXV3dpIcjf1+d\nt3z5cuj1esyYMQP19fUAeD47orKyEmVlZUhKSnLr76ffhImzY1uodZ988gnKysqwZcsWvPDCC/jo\no4+avN7a2B5yTnvnj+e2fbNmzUJFRQX27duHPn364LHHHmt1W57PS506dQoTJ07EsmXLcNVVVzV5\nzdXfT78JE2fGtlDb+vTpAwDo2bMn7r77bpSWlnJsj4taO39tjaei1vXq1cvxoTdz5kzHrReez/ad\nO3cOEydOxNSpUx3DKtz5++k3YeLM2BZq3enTp/HDDz8AAP773//ivffeQ3x8PMf2uKi182c0GvGP\nf/wDNpsNFRUVMJvNGD58uJql+oRjx445vn777bcRHx8PgOezPUIIzJgxAwMHDsScOXMc33fr76eC\nHQg8rrCwUPTv31/ExMSIRYsWqV2OTzl69KjQ6/VCr9eLQYMGOc5fXV2dGDNmDLsGOyEtLU306dNH\nhIaGCo1GI9asWdPm+Vu4cKGIiYkRAwYMECaTScXKvVPz8/nKK6+IqVOnivj4eDFkyBDxi1/8QtTU\n1Di25/ls3UcffSSCgoKEXq93dKvesmWLW38//W5xLCIi8jy/uc1FRETqYZgQEZHLGCZEROQyhgmR\nG508eRKrVq1Suwwij2OYELnRiRMnsHLlSrXLIPI4hgmRG82fPx9HjhxBQkIC5s2b1+p2drsdDz74\nIOLj4zFkyBA899xzHqySyP0UWc+EKFDl5uZi//79KCsra3O7ffv2obq6Gl988QUAeXuMyJfxyoTI\njZwdthUTE4OjR48iMzMTW7duxU9+8hOFKyNSFsOESAXh4eH4/PPPYTAY8OKLL2LmzJlql0TkEt7m\nInKjq666yjHH2QWxsbE4ePBgk+/V1dUhNDQUEyZMQP/+/TF16lRPlknkdgwTIjfq0aMHRo4cifj4\neKSmpmLu3Lktbme1WjFt2jQ0NjYCAHJycjxZJpHbcW4uIgVt3rwZFRUVmD17ttqlECmKYUJERC5j\nAzwREbmMYUJERC5jmBARkcsYJkRE5DKGCRERuYxhQkRELmOYEBGRy/4ftN3lgYtsSI8AAAAASUVO\nRK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x2625a50>" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch16.ipynb b/Chemical_Reaction_Engineering/ch16.ipynb new file mode 100755 index 00000000..f90f61a4 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch16.ipynb @@ -0,0 +1,98 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 16 Earliness of Mixing, Segregation, and RTD" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.1 pageno : 358" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "Co = 1.\n", + "k = 1.\n", + "t = 1. #given\n", + "\n", + "# Calculations and Results\n", + "C1 = (-1+math.sqrt(1-4*t*(-Co)))/2*t;\n", + "#For the plug flow reactor\n", + "#t = 1/k(1/C2-1/C1)\n", + "C2 = C1/(1+k*t*C1);\n", + "print \" Conversion for flow scheme A is %.3f\"%(C2)\n", + "\n", + "#For plug flow\n", + "C3 = Co/(1+k*t*Co);\n", + "#For mixed flow reactor\n", + "C4 = (-1+math.sqrt(1-4*t*(-C3)))/2*t;\n", + "print \" Conversion for flow scheme B is %.3f\"%(C4)\n", + "\n", + "#Using exit age distribution fn for 2 equal plug-mixed flow reactor system,umath.sing fig 12.1\n", + "t_bar = 2.\n", + "in_ = 1000.\n", + "\n", + "def f3(t): \n", + "\t return (2/t_bar)*(math.exp(1-2*t/t_bar))/(1+Co*k*t)\n", + "\n", + "C5 = quad(f3,t_bar/2,in_)[0]\n", + "\n", + "print \" Conversion for flow scheme C,D,E is %.3f\"%(C5)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Conversion for flow scheme A is 0.382\n", + " Conversion for flow scheme B is 0.366\n", + " Conversion for flow scheme C,D,E is 0.361" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch18.ipynb b/Chemical_Reaction_Engineering/ch18.ipynb new file mode 100755 index 00000000..9efd8f19 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch18.ipynb @@ -0,0 +1,465 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 18 Solid Catalyzed Reactions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.1 pageno : 407" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "dp = 2.4*(10**-3);L = dp/6;\n", + "De = 5*10**-5;\n", + "Keff = 1.6;\n", + "h = 160. #heat transfer coefficient(KJ/hr.m2cat.K)\n", + "kg = 300. #mass transfer coefficient(m3/hr.m2cat)\n", + "Hr = -160. #KJ/molA\n", + "CAg = 20. #mol/m3\n", + "rA_obs = 10.**5 #mol/hr.m3cat\n", + "\n", + "# Calculations and Results\n", + "kobs = rA_obs/CAg;\n", + "Vp = 3.14*(dp**3)/6;\n", + "S = 3.14*(dp**2);\n", + "ratio = kobs*Vp/(kg*S);\n", + "\n", + "print \" Part a\"\n", + "if ratio<0.01 :\n", + " print \" Resistance to mass transport to film should not influence rate of reaction\"\n", + "else:\n", + " print \" Resistance to mass transport to film should influence rate of reaction\"\n", + "\n", + "\n", + "print \" Part b\"\n", + "\n", + "Mw = rA_obs*(L**2)/(De*CAg);\n", + "print \" Mw = %.f\"%(Mw)\n", + "if Mw>4:\n", + " print \" Pore diffusion is influencing and hence strong pore diffusion\"\n", + "else:\n", + " print \" Pore diffusion is not influencing and hence weak pore diffuusion\"\n", + "\n", + "dt_max_pellet = De*(CAg-0)*(-Hr)/Keff;\n", + "#Temp variation Across the gas film\n", + "dt_max_film = L*rA_obs*(-Hr)/h;\n", + "\n", + "print \" Part c\"\n", + "print \" dTmax,pellet is %.1f C\"%(dt_max_pellet)\n", + "print \" degree C dTmax,film is %.2f C\"%(dt_max_film)\n", + "print \" degree C\"\n", + "if dt_max_pellet<1:\n", + " print \" Pellet is close to uniform in temperature\"\n", + "else:\n", + " print \" There is a variation in temp within pellet\"\n", + "if dt_max_film<1:\n", + " print \" Film is close to uniform in temperature\"\n", + "else:\n", + " print \" There is a variation in temp within Film\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " Resistance to mass transport to film should not influence rate of reaction\n", + " Part b\n", + " Mw = 16\n", + " Pore diffusion is influencing and hence strong pore diffusion\n", + " Part c\n", + " dTmax,pellet is 0.1 C\n", + " degree C dTmax,film is 40.00 C\n", + " degree C\n", + " Pellet is close to uniform in temperature\n", + " There is a variation in temp within Film\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.2 page no : 408" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "%pylab inline\n", + "\n", + "from matplotlib.pyplot import *\n", + "from numpy import *\n", + "import math \n", + "from scipy import stats\n", + "\n", + "# Variables\n", + "PAo = 3.2;\n", + "R = 0.082 #litre.atm/mol.k\n", + "T = 390. #k\n", + "v = 20. #litre/hr\n", + "W = 0.01 #/kg\n", + "CA_in = [0.1,0.08,0.06,0.04];\n", + "CA_out = [0.084,0.07,0.055,0.038];\n", + "\n", + "# Calculations\n", + "CAo = PAo/(R*T);\n", + "FAo = CAo*v;\n", + "eA = 3;\n", + "\n", + "XA_in = zeros(4)\n", + "XA_out = zeros(4)\n", + "dXA = zeros(4)\n", + "rA = zeros(4)\n", + "CA_avg = zeros(4)\n", + "\n", + "for i in range(4):\n", + " XA_in[i] = (1-CA_in[i]/CAo)/(1+eA*CA_in[i]/CAo);\n", + " XA_out[i] = (1-CA_out[i]/CAo)/(1+eA*CA_out[i]/CAo);\n", + " dXA[i] = XA_out[i]-XA_in[i];\n", + " rA[i] = dXA[i]/(W/FAo);\n", + " CA_avg[i] = (CA_in[i]+CA_out[i])/2;\n", + "\n", + "# Results\n", + "plot(CA_avg,rA)\n", + "xlabel(\"CA, mol/liter\")\n", + "ylabel(\"-rA, mol/hr. kg cat\")\n", + "coeff1 = stats.linregress(CA_avg,rA)\n", + "k = coeff1[0]\n", + "print \" The rate of reaction is %.3f mol/hr.kg\"%(k),\n", + "print \"CA\"\n", + "print ('The answer slightly differs from those given in book as regress fn is\\\n", + " used for calculating slope and intercept')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + " The rate of reaction is 109.395 mol/hr.kg" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " CA\n", + "The answer slightly differs from those given in book as regress fn is used for calculating slope and intercept\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAELCAYAAAA2mZrgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWX+//HXUSmylNJQx6UwTAlERDHTtDD3FBNHHZfE\n0YfOTDXaYru/Galv3zTTb6Nl0zq2OYo5WWouZXAcFRXJtVxKQ80l9wXFQOD6/XGPZ8QN8Zxz3xx4\nPx8PHsHxcF9v7TzO51zLfV0uY4xBREQEqOB0ABERKT1UFERExENFQUREPFQURETEQ0VBREQ8VBRE\nRMTDb0Vh6NCh1KxZk+joaM9jR44coWPHjjRs2JBOnTpx7NgxfzUvIiJXwW9FYciQISxcuLDIY+PG\njaNjx4788MMPtG/fnnHjxvmreRERuQouf968tmPHDhISEti4cSMAERERLFmyhJo1a/LLL78QHx/P\nli1b/NW8iIiUUCU7G9u/fz81a9YEoGbNmuzfv/+C57hcLjsjiYiUGb74jO/YRLPL5bpkATDGBOzX\nmDFjHM+g/M7nKG/Zld/5L1+xtSicHTYC2LdvHzVq1LCzeRERKYatRaFHjx58+OGHAHz44Yf07NnT\nzuZFRKQYfisK/fv3p3Xr1mzdupV69eoxdepUnn32Wb7++msaNmxIamoqzz77rL+ad0x8fLzTEbyi\n/M4J5Oyg/GWFX1cfXQ2Xy+XT8TERkfLAV++duqNZREQ8VBRERMRDRUFERDxUFERExENFQUREPFQU\nRETEQ0VBREQ8VBRERMRDRUFERDxUFERExENFQUREPFQURETEQ0VBREQ8VBRERMRDRUFERDxUFERE\nxENFQUREPFQURETEQ0VBREQ8VBRERMRDRUFERDxUFERExENFQUSkBLZudTqBfzlSFCZNmkR0dDSN\nGzdm0qRJTkQQESmRAwdg2DCIj4e9e51O4z+2F4XvvvuO9957j9WrV7N+/XrmzZvH9u3b7Y4hInJF\n8vNh8mSIioIqVWDLFqhd2+lU/lPJ7ga3bNlCy5YtCQ4OBuDee+/ls88+46mnnvI8Jzk52fN9fHw8\n8fHxNqcUEYG0NBg5EmrWhCVLIDLS6UT/5Xa7cbvdPr+uyxhjfH7Vy9iyZQsPPPAAK1asIDg4mPbt\n23PnnXd6hpFcLhc2RxIRKWLXLnjyScjIgIkToVcvcLmcTnV5vnrvtH34KCIigmeeeYZOnTrRtWtX\nYmNjqVBB890i4rxff4WXXoLYWLjjDti0CX7729JfEHzJkXfjoUOHkpmZyZIlS7jxxhtp1KiREzFE\nRAAwBubMseYNvv0WMjPhhRegcmWnk9nP9jkFgAMHDlCjRg127drF7NmzWbVqlRMxRET44Qd49FHY\nsQP+/nfo1MnpRM5ypCj07t2bw4cPExQUxJtvvknVqlWdiCEi5Vh2tjVU9P778NxzMGIEXHON06mc\nZ/tEc3E00Swi/mQMTJsGzzwDHTvC2LHwm984ncp7vnrvdKSnICLihLVrrR7Br7/CrFnQqpXTiUof\nLfsRkTLv8GF46CHo2hUGD4ZVq1QQLkVFQUTKrIICePNNa3lppUqweTMMHw4VKzqdrPTS8JGIlElL\nl1pDRSEhsHgxNGnidKLAoKIgImXKnj3w9NPw73/Dq6/C735Xvm4+85aGj0SkTMjNhXHjICYGwsKs\njev69VNBKCn1FEQk4M2fD489Bo0awcqV0KCB04kCl4qCiASsbdvg8cetXsGkSXD//U4nCnwaPhKR\ngHPqFIweDXfdBW3awHffqSD4ioqCiAQMYyAlxVpiumMHrF9v3Zl87bVOJys7NHwkIgFhwwbrwJtj\nx6xtKtq2dTpR2aSegoiUakePWvcbdOgAfftaW1urIPiPioKIlEoFBfDuu9ZQUX6+dTfyww/rbmR/\n0/CRiJQ6K1ZYvYPgYFiwwDoJTeyhoiAipcYvv1gTx4sXwyuvwMCBuvnMbho+EhHH5eXBxInQuDHU\nqmXdd/DggyoITlBPQUQc9fXX1qqisDBYvty6K1mco6IgIo7IyoJRo6x7DV57DRIS1DMoDTR8JCK2\nysmBMWOgRQto3hy+/x569FBBKC3UUxARWxgDn31m9Q5atrSOxqxXz+lUcj4VBRHxu02brHmD/fth\n6lRo187pRHIpGj4SEb85ftzaxfTee60horVrVRBKO0eKwtixY4mKiiI6OpoBAwaQm5vrRAwR8ZPC\nQqtHEBEBJ09a8wYjR1rnJEvpZntR2LFjB++++y5r1qxh48aNFBQUMGPGDLtjiIifrF4NrVvD22/D\nnDnWVhU1ajidSq6U7UWhatWqBAUFkZOTQ35+Pjk5OdSpU8fuGCLiYwcOwLBh1jDRn/4E6enWCiMJ\nLLZ35qpVq8aoUaO45ZZbuO666+jcuTMdOnQo8pzk5GTP9/Hx8cTHx9sbUkSuWH4+TJkCL70EgwZZ\ndyOHhDidquxzu9243W6fX9dljDE+v+plbN++nYSEBJYuXUpISAh9+vShd+/eDBw40ArkcmFzJBG5\nSmlp1sZ1tWrB5MkQGel0ovLLV++dtg8fZWZm0rp1a6pXr06lSpXo1asX6enpdscQES/s2mWdbTBk\nCLz4orVVhQpC2WB7UYiIiGDlypWcPn0aYwyLFy8mUq8mkYDw66/WMFGzZlYR2LQJevXS3chlie1z\nCjExMSQlJREXF0eFChVo1qwZf/jDH+yOISIlYIy1kujxx62zDTIzrQ3spOwpdk5h2bJltGnTpshj\ny5cv5+677/ZPIM0piJQqW7fCo4/Czp3WvEHHjk4nkouxbU5hxIgRFzz25z//2euGRaR0y86Gp5+G\nNm2gUyfYsEEFoTy45PDRihUrSE9P5+DBg/zf//2fpwJlZ2dTWFhoW0ARsZcxMG2adQJax46wcaO1\nukjKh0sWhby8PLKzsykoKCA7O9vzeNWqVZk1a5Yt4UTEXmvWWEtMc3Nh1ixo1crpRGK3YucUduzY\nQZiNM0qaUxCx3+HDMHo0fP65tbpo6FCooO0yA4qv3juLXX1UuXJlnnzySTZt2sTp06c9jaempnrd\nuIg4Kz8f3nkHkpOhXz/YvBluusnpVOKkYj8LDBw4kIiICH766SeSk5MJCwsjLi7Ojmwi4kdLl0Jc\nHMycCd98Y60sUkGQYoePmjVrxpo1a2jSpAkbNmwAIC4ujszMTP8E0vCRiF/t2QNPPQXLlsGECdCn\nj24+KwtsW5J6zTXXAFCrVi3mzZvHmjVrOHr0qNcNi4i9zpyBceMgJgZuu80aKurbVwVBiip2TmH0\n6NEcO3aMiRMnMmLECE6cOMFrr71mRzYR8ZGjR//bI1i1CsLDnU4kpZXtu6QWR8NHIr7144/QvTvc\nf781XFSxotOJxB9sGz4aPHhwkeGio0ePMnToUK8bFhH/S0217kgeNQpee00FQYpX7PDR+vXruemc\nJQk33XQTa9as8WsoEfHeO+/AX/4CM2ZAu3ZOp5FAUWxRMMZw5MgRqlWrBsCRI0coKCjwezARuToF\nBVbPYMECa4XR7bc7nUgCSbFFYdSoUbRq1Yq+fftijOHTTz9l9OjRdmQTkRI6ccK6CS0vD1au1H0H\nUnJXNNH8/fffk5qaisvl4r777vProTiaaBa5OllZkJAAbdtaN6IFBTmdSOzkq/dOrT4SKQOWLbOW\nnD7/PPz5z7r3oDyybe8jESndPvoInnzS+m+XLk6nkUCnoiASoAoLrZ1NZ84Et9s6M1nEWyoKIgHo\n1CkYNAgOHbLuUL75ZqcTSVlR7M1rVapUueCrbt26JCYm8tNPP9mRUUTO8fPP1g1pISHw9dcqCOJb\nxfYUHn30UerVq0f//v0BmDFjBtu3byc2NpahQ4fidrv9nVFE/iMjAxIT4bHHrHkETSiLrxW7+ujc\nLbPPatq0KevWrSMmJob169f7NpBWH4lcVEqKtbLovffggQecTiOljW17H1WuXJmUlBQKCwspLCxk\n5syZBAcHe0KIiH8ZAy+8AE8/bQ0XqSCIPxVbFKZNm8bHH39MjRo1qFGjBh999BGffPIJp0+f5o03\n3ihxg1u3biU2NtbzFRISwuTJk68qvEhZd/o0DBhgbVmxahU0bep0Iinrih0+Onffo7OysrKoX7++\n140XFhZSp04dMjIyqFevnhVIw0ciAOzbBz17WmcfvP8+XHed04mkNLNt+Kh79+4cP37c8/OmTZvo\n3r271w0DLF68mPDwcE9BEBHLunVw113QrRtMm6aCIPa5opPXEhISmD9/Plu3biUpKYlp06b5pPEZ\nM2YwYMCACx5PTk72fB8fH098fLxP2hMJBF98AcOGwZQp1nGZIhfjdrv9svrzivY+mj17NuPHj+fk\nyZPMmjWLRo0aed1wXl4ederUYdOmTYSGhv43kIaPpJwyBsaPh9dfh9mzoUULpxNJIPH73kcjRowo\n8vOJEycIDw/njTfewOVyeT05vGDBApo3b16kIIiUV7m58Mc/woYN1pbXdes6nUjKq0sWhebNmxdZ\ncnr2Z2OMT5aiTp8+3XNDnEh5dvAg9OoFoaGwdClcf73TiaQ8c2Tr7FOnTnHrrbeSlZVFlSpVigbS\n8JGUI99/b52B0L8//M//QIVil36IXJzOUxAJcAsXQlISTJxobW4n4g2dpyASoIyxJpPHjrUmlO++\n2+lEIv+loiBiozNnYMQI66S0FSsgLMzpRCJFXdUI5ttvv+3rHCJl3tGj0LWrtfV1eroKgpROly0K\nhYWFpKen25VFpMz68UfrDuUmTWDOHKha1elEIhdX7ETz2W2y7aKJZilrUlOt1UUvvQTDhzudRsoq\n2/Y+6tChA7NmzdIbtchVeOcdqyDMmKGCIIGh2J7CDTfcQE5ODhUrVixyjsKJEyf8E0g9BSkDCgpg\n1Chry+t58+D2251OJGWdbUtST5486XUjIuXJiRPQrx/k5VlbVtx0k9OJRK7cFS1J3bNnDzt37iQ/\nP9/z2D333OO3UCKBKivLukP5nntg0iQICnI6kUjJFFsUnnnmGVJSUoiMjKRixYqex1UURIpatgz6\n9IHnn7fOUtZptRKIip1TaNiwIRs3buTaa6+1J5DmFCQAffQRPPmk9d8uXZxOI+WRbXMK4eHh5OXl\n2VYURAJJYSGMHg0zZ4LbDZGRTicS8U6x5ylUrlyZpk2b0r59e09h8MV5CiKB7tQpayO7Q4dg1Sq4\n+WanE4l475JFIS4uzvN9QkICgE/PUxAJZD//DD16QNOmMH06qCMtZcUli8Ly5cvp2rUrHTp0uODM\nA5HyLCMDEhPhsceseQR9RpKy5JITzStXrmThwoV88803BAUF0blzZ7p06UJMTIx/A2miWUqxlBRr\nZdF778EDDzidRuS/bD1k59ChQ3z11VcsXLiQDRs2EBsbS9euXenbt6/XAS4IpKIgpZAx8OKL8I9/\nWBva+fmzkUiJOXryWmZmJosWLWL06NFeB7ggkIqClDKnT8PQodaNaZ9/DrVqOZ1I5EJ+X5I6ceLE\nSzbqcrn8UhBESpt9+6BnTwgPh7Q0uO46pxOJ+Ncli0J2dvZFVxlp9ZGUF+vWWfMGw4bB//t/mlCW\n8uGqho/8ScNHUhp88YVVDKZMAT9MnYn4nG3nKfz8888kJiYSGhpKaGgov/3tb9m9e7fXDYuURsbA\n+PHwyCMwf74KgpQ/xRaFIUOG0KNHD/bu3cvevXtJSEhgyJAhdmQTsVVurjWhPGOGteV1ixZOJxKx\nX7FF4eDBgwwZMoSgoCCCgoL4/e9/z4EDB7xq9NixY/Tu3Zs77riDyMhIVq5c6dX1RLx18CB06GCd\nhbB0KdSt63QiEWcUWxSqV6/Oxx9/TEFBAfn5+XzyySfc7OUmL48++ij3338/mzdvZsOGDdxxxx1e\nXU/EG99/Dy1bWmcgfPopXH+904lEnFPsRPOOHTsYMWKE59N869atef3117nllluuqsHjx48TGxvL\nTz/9dPFAmmgWGy1cCElJMHGitbmdSKCybevssLAw5s6d63VDZ2VlZREaGsqQIUNYv349zZs3Z9Kk\nSVSuXNnznOTkZM/38fHxxMfH+6x9EbAmlF9/HcaOhdmz4e67nU4kUjJutxu32+3z6xbbU/jpp594\n/fXX2bFjh+c4TpfLxZw5c66qwczMTFq1akV6ejotWrTgscceo2rVqrz44ouea6unIP505gyMHGmd\nlDZ3LoSFOZ1IxHu29RR69uzJsGHDSEhIoEKFCp7Gr1bdunWpW7cuLf6ztKN3796MGzfuqq8nUhJH\nj1pHZgYHw/LlULWq04lESpdii0JwcDAjR470WYO1atWiXr16/PDDDzRs2JDFixcTFRXls+uLXMqP\nP0L37tCtG7z6Kpxz5LiI/Eexw0cff/wx27dvp3PnzkWO5GzWrNlVN7p+/XqGDRtGXl4e4eHhTJ06\nlZCQECuQho/ED1JToX9/eOklGD7c6TQivmfbLqnPPvssH3/8MQ0aNPAMHwGkpaV53fhFA6koiI+9\n8w789a/WCWnt2jmdRsQ/bCsK4eHhbN68mWuuucbrxq4okIqC+EhBAYwaBQsWwLx5cPvtTicS8R/b\nJpqjo6M5evQoNWvW9LoxEbucOAH9+lkrjVauhJtucjqRSGAotigcPXqUiIgIWrRo4ZlT8GZJqoi/\nZWVBQoJ1h/KkSRAU5HQikcBRbFF44YUXLnhM5ylIabVsmbXk9PnnrbOU9VIVKRmdpyBlxkcfwZNP\nWv/t0sXpNCL2sm1OQaS0KyyE0aNh5kxwuyEy0ulEIoFLRUEC2qlT1kZ2hw7BqlXg5Qa+IuVesVtn\ni5RWu3dDmzYQEgJff62CIOILJS4KgwcP5qGHHuK7777zRx6RK5KRAXfdBQMGwD/+AefcbC8iXijx\nRHNGRga7du0iIyOD8ePH+z6QJpqlGCkp1sqi99+HHj2cTiNSOth2R/P5Tp8+zdy5c+nrpxPNVRTk\nUoyBF1+0egZz5kBMjNOJREoPX713XtHwUUFBAV9++SUPPvggYWFhpKSkeN2wSEmcPm0NFS1YYE0o\nqyCI+MclVx8ZY1iyZAnTp09n/vz5tGzZkqVLl5KVlVXklDQRf9u3D3r2hPBwSEuD665zOpFI2XXJ\nnkK9evV4+eWXadeuHVu2bGHWrFlUrlxZBUFstW6dNaHcvTtMm6aCIOJvlywKvXv3Ztu2baSkpDB3\n7lxOnTplZy4p54yBd9+Fjh2tA3H+8hdtWSFih8tONBcWFuJ2u5k+fToLFizg2LFjvP/++3Tr1o0b\nbrjBP4E00VzuHTliHYSzfbt1BsIddzidSKT0s331UV5eHosWLWL69OksWrSIw4cPe934RQOpKJRr\nbjckJUHv3jB2rO4/ELlSthSF/Px8Bg8ezLRp04o8npOT47e5BRWF8unMGRgzBj74AKZOhc6dnU4k\nElhs2RCvUqVK7Ny5k9zc3CLnM2uyWXxp+3ZruenNN1sTyzVqOJ1IpPwqdkO8+vXr06ZNG3r06OEp\nBi6XiyeeeMLv4aRsMwY++QSeeMKaSB4xQpPJIk4rtiiEh4cTHh5OYWEhJ0+etCOTlAPHj8PDD1s9\ng2++gSZNnE4kIlDCbS727dvHb37zG3/m0ZxCOZCeDg8+aB2EM2ECaDRSxHu2bnNxVrdu3bxuUMqv\n/Hxr76JeveC11+DNN1UQREqbEh2y46tP8GFhYVStWpWKFSsSFBRERkaGT64rpdeuXTBwoLXEdM0a\nqF3b6UQicjElKgrDhw/3SaMulwu32021atV8cj0p3WbOtLa6fuopGDUKKuhoJ5FSq0RF4eGHH/ZZ\nw5o3KPtOnoSRI2HpUpg/H+LinE4kIsVx5Ixml8tFhw4dqFixIn/84x8v6IEkJyd7vo+Pjyc+Pt7e\ngOK1zEzr3oM2bWDtWvDTrigi5Zbb7cbtdvv8uiU+ZMcXzq5iOnjwIB07duT111+nbdu2ViCtPgpo\nhYXWiqIJE+CNN8BPZzGJyHlsuaPZX84uaw0NDSUxMZGMjAxPUZDAtXevtW9Rbi6sXg233up0IhEp\nKdun/HJycsjOzgbg1KlTfPXVV0RHR9sdQ3xszhxo1gzuvdc6CEcFQSQw2d5T2L9/P4mJiYC14d7A\ngQPp1KmT3THER3Jy4MknrWMyP/sMWrd2OpGIeMOROYXL0ZxC4NiwAfr3t7aoeOstCAlxOpFI+eXI\nHc0iYG1kN3kytG8PzzwD//ynCoJIWeHIRLMErgMHYMgQOHQIVq6E8HCnE4mIL6mnIFds4UJo2tT6\nWrZMBUGkLFJPQYqVmwvPPQeffmoNFeleQpGyS0VBLmvzZmsy+bbbrLMPqld3OpGI+JOGj+SijIF3\n3oF77rEOw/nXv1QQRMoD9RTkAocPw/DhkJVlbWYXEeF0IhGxi3oKUkRamjWRXL++tbpIBUGkfFFP\nQQA4cwbGjIEPPoCpU6FzZ6cTiYgTVBSEbdusba5DQ63J5Bo1nE4kIk7R8FE5Zgx89BG0agWDBsG8\neSoIIuWdegrl1PHj8NBDsH49fPONtX+RiIh6CuVQero1mXzTTdYJaSoIInKWegrlSH4+vPwyvPmm\ndQ9Cjx5OJxKR0kZFoZzYuRMefBCuvRbWrIHatZ1OJCKlkYaPyoGZM6FFC6tn8NVXKggicmnqKZRh\nJ0/CyJHWjqbz50NcnNOJRKS0U0+hjFq9GmJjweWyhotUEETkSqinUMYUFsKECdbXG29A375OJxKR\nQKKiUIbs2QNJSZCXZ/UUbr3V6UQiEmg0fFRGfPEFNG9uHYCTlqaCICJXRz2FAJeTA6NGWUdlfvYZ\ntG7tdCIRCWTqKQSw9eutCeTjx62N7FQQRMRbjhSFgoICYmNjSUhIcKL5gGcMTJoEHTpYZydPmwYh\nIU6nEpGywJHho0mTJhEZGUl2drYTzQe0Awfg97+3TkdbuRLCw51OJCJlie09hd27dzN//nyGDRuG\nMcbu5gPawoXWRnaxsdYNaSoIIuJrtvcUHn/8cV599VVOnDhxyeckJyd7vo+Pjyc+Pt7/wUqx3Fx4\n9lmYNQv++U9rhZGIlG9utxu32+3z67qMjR/X582bx4IFC5gyZQput5uJEycyd+7cooFcLvUgzrF5\nM/Tvb/UK3n0XqlVzOpGIlEa+eu+0dfgoPT2dOXPmUL9+ffr3709qaipJSUl2RggYxsDbb0PbtvDI\nI1YvQQVBRPzN1p7CuZYsWcKECRPUU7iIw4dh+HDIyoLp0yEiwulEIlLaBWRP4Xwul8vJ5kul1FRr\nMrl+fWt1kQqCiNjJsZ7CpZTXnsKZM/DXv8KHH8LUqdC5s9OJRCSQ+Oq9U9tclALbtsGAARAaat2Z\nXKOG04lEpLzSNhcOMsbqGbRqBYMGwbx5Kggi4iz1FBxy7Bg89BBs2ADffANNmjidSEREPQVHLF9u\n3ZVcrRpkZqogiEjpoZ6CjfLz4X//F/7+d3jnHejRw+lEIiJFqSjYZOdOGDgQgoOtM5Nr13Y6kYjI\nhTR8ZIOUFGjRAh54AL76SgVBREov9RT8KDsbRo605hDmz7cOxBERKc3UU/CT1auhWTOoUMEaLlJB\nEJFAoJ6CjxUWwquvwsSJMGUK9OnjdCIRkSunouBDe/ZAUpK1ZUVmJtxyi9OJRERKRsNHPvL559Zw\nUXw8pKWpIIhIYFJPwUs5OTBqlHVU5uzZ0Lq104lERK6eegpe2LjRmkA+ftzayE4FQUQCnbbO9sL6\n9dbXoEGgoyFExEm+eu9UURARKQPKxMlrIiJSuqgoiIiIh4qCiIh4qCiIiIiHioKIiHioKIiIiIeK\ngo+53W6nI3hF+Z0TyNlB+csK24vCr7/+SsuWLWnatCmRkZE899xzdkfwq0B/YSm/cwI5Oyh/WWH7\n3kfBwcGkpaVRuXJl8vPzadOmDcuWLaNNmzZ2RxERkfM4MnxUuXJlAPLy8igoKKBatWpOxBARkfM4\nss1FYWEhzZo1Y/v27Tz00EOMHz/+v4G0iZCIyFXxxdu5I1tnV6hQgXXr1nH8+HE6d+6M2+0mPj4e\n8M1fSkREro6jq49CQkLo1q0bmZmZTsYQEZH/sL0oHDp0iGPHjgFw+vRpvv76a2JjY+2OISIiF2H7\n8NG+ffsYPHgwhYWFFBYWMmjQINq3b293DBERuQhbewoLFy6kT58+ZGdn079/fzZs2MBTTz1V5Dkj\nR47k9ttvJyYmhrVr1wKl596GhQsXEhERwe23384rr7xy0edcLP9ZBQUFxMbGkpCQYEfcC3iTPyws\njCZNmhAbG8udd95pV2QPb7IfO3aM3r17c8cddxAZGcnKlSvtiu1xtfm3bt1KbGys5yskJITJkyfb\nGR3w7t9/7NixREVFER0dzYABA8jNzbUrtoc3+SdNmkR0dDSNGzdm0qRJdkUuorj8W7ZsoVWrVgQH\nBzNx4sQS/e4FjE3y8/NNeHi4ycrKMnl5eSYmJsZs2rSpyHO+/PJL07VrV2OMMStXrjQtW7b0/Nmp\nU6eMMcacOXPGtGzZ0ixdutSu6MYY7/MbY8zEiRPNgAEDTEJCgm25z/I2f1hYmDl8+LCtmc/yNntS\nUpJ5//33jTHW6+fYsWP2hTe+ee0YY0xBQYGpVauW2bVrly25z/Imf1ZWlqlfv7759ddfjTHG9O3b\n13zwwQcBk3/jxo2mcePG5vTp0yY/P9906NDBbNu2rdTlP3DggFm9erUZPXq0mTBhQol+93y29RQy\nMjJo0KABYWFhBAUF0a9fP7744osiz5kzZw6DBw8GoGXLlhw7doz9+/cDzt/b4G3+3bt3M3/+fIYN\nG+bICitv84NzK8O8yX78+HGWLl3K0KFDAahUqRIhISEBk/9cixcvJjw8nHr16tmWHbzLX7VqVYKC\ngsjJySE/P5+cnBzq1KkTEPl/+eUXNm/eTMuWLQkODqZixYrce++9fPbZZ6Uuf2hoKHFxcQQFBZX4\nd89nW1HYs2dPkRdz3bp12bNnT7HP2b17N2ANvTRt2pSaNWvSrl07IiMj7Ql+mWxXkv/scx5//HFe\nffVVKlRwZsGXt/ldLhcdOnQgLi6Od999157QV5Drcs/ZvXs3WVlZhIaGMmTIEJo1a8bw4cPJycmx\nLfulspXeG76sAAAHUklEQVTktX/WjBkzGDBggH/DXoQ3r51q1aoxatQobrnlFmrXrs2NN95Ihw4d\nbMt+uWzFPWfv3r1ER0ezdOlSjhw5Qk5ODl9++eUF/1/87Ury+/J3bXuHutKb0s7/NHr29ypWrMi6\ndevYvXs3//73v23fp+Rq8xtjmDdvHjVq1CA2NtaxT9tXm/+sZcuWsXbtWhYsWMCUKVNYunSpL+Nd\nljevnfz8fNasWcPDDz/MmjVruP766xk3bpw/Yl6St699sHrIc+fOpU+fPj7NdiW8ee1s376dv/3t\nb+zYsYO9e/dy8uRJpk2b5uuIl+VN/oiICJ555hk6depE165diY2Ntf2DnTc39F7N79r2t6tTpw4/\n//yz5+eff/6ZunXrXvY5u3fvvqCr6dS9Dd7kT09PZ86cOdSvX5/+/fuTmppKUlKSbdkvlq2k//61\na9cGrG5qYmIiGRkZNqS+eK6SZK9bty5169alRYsWAPTu3Zs1a9bYE/wS2a7mtb9gwQKaN29OaGio\n/wOfx5v8mZmZtG7dmurVq1OpUiV69epFenq6bdkvlq2k//5Dhw4lMzOTJUuWcOONN9KoUSN7gl8i\n28Xy+/R3fTcdcnlnzpwxt912m8nKyjK5ubnFTvasWLHCM9lz8OBBc/ToUWOMMTk5OaZt27Zm8eLF\ndkX3Ov+53G636d69uy2Zz+VN/lOnTpkTJ04YY4w5efKkad26tVm0aFFAZDfGmLZt25qtW7caY4wZ\nM2aMefrpp23LboxvXju/+93vbJ+gPcub/GvXrjVRUVEmJyfHFBYWmqSkJPPGG28ETH5jjNm/f78x\nxpidO3eaiIgIc/z4cfvCmyvLf9aYMWOKTDSX5HfPsq0oGGPM/PnzTcOGDU14eLh5+eWXjTHGvPXW\nW+att97yPOeRRx4x4eHhpkmTJubbb781xhizYcMGExsba2JiYkx0dLQZP368nbG9zn8ut9vtyOoj\nY64+//bt201MTIyJiYkxUVFRnt8NhOzGGLNu3ToTFxdnmjRpYhITE21ffeRt/pMnT5rq1at7CrMT\nvMn/yiuvmMjISNO4cWOTlJRk8vLyAip/27ZtTWRkpImJiTGpqam2Zzem+Pz79u0zdevWNVWrVjU3\n3nijqVevnsnOzr7k716OIxviiYhI6aST10RExENFQUREPFQURETEQ0VBREQ8VBQkIP3yyy/069eP\nBg0aEBcXR7du3fjxxx89f/63v/2N6667jhMnTvg9ywcffMCIESM8P+/bt4/OnTuzc+dOoqOjAcjM\nzOTRRx8FYMmSJaxYscLvuUSuhoqCBBxjDImJidx3331s27aNzMxMxo4dW2SvoOnTp9OxY0db9qk5\n/67RhQsX0qVLlyKPxcXFeXbYTEtLK/ENXPn5+d6FFLlCKgoScNLS0rjmmmv4wx/+4HmsSZMmtGnT\nBrC2Vjhz5gzPP/8806dPL/Z6O3bsICIigiFDhtCoUSMGDhzIV199xd13303Dhg1ZvXo1AEeOHKFn\nz57ExMTQqlUrNm7ceNHrLVq0iK5duxbZNsHtdpOQkMDOnTt5++23ee2114iNjWX58uUcPHiQ3r17\nc+edd3LnnXd6CkZycjKDBg2iTZs2ns3aRPzNkTOaRbzx3Xff0bx580v++YwZM+jbty933XUX27Zt\n48CBA9SoUeOy19y+fTv/+te/iIyMpEWLFqSkpLB8+XLmzJnDyy+/zOzZsxkzZgzNmzfn888/Jy0t\njaSkJNauXVvkzb+goICtW7cSERHBjh07Lmjn1ltv5U9/+hNVqlThiSeeAGDAgAE8/vjj3H333eza\ntYsuXbqwadMmwNonf9myZVx77bVX8S8lUnIqChJwitvka8aMGXz++ecA9OzZk08//ZRHHnnksr9T\nv359oqKiAIiKivLs5Nm4cWPPm/vy5cs9w1Ht2rXj8OHDZGdnF7nOqlWraNmyZbF/h3MLyeLFi9m8\nebPn5+zsbE6dOoXL5aJHjx4qCGIrFQUJOFFRUcyaNeuif7Zx40Z+/PFHz5t6Xl4e9evXL7YonPvG\nW6FCBa655hrP9+eO55+/AcD5BWrBggV07dr1yv8y/7nmqlWrPG2e6+w5IiJ20ZyCBJz77ruP3Nzc\nIuc6bNiwgWXLljF9+nReeOEFsrKyyMrKYs+ePezdu5ddu3axZ88er/byb9u2rWfbZ7fbTWhoKDfc\ncEOR56SmphbbRpUqVYr0MDp16lTkiM3169dfdUYRb6koSECaPXs2ixcvpkGDBjRu3JjRo0dTq1Yt\nUlJSSExMLPLcxMREUlJS2LdvH5UqXbxzfP4n/nN/Pvt9cnIy3377LTExMTz//PN8+OGHnj93uVwc\nPHiQ4OBgrr/++steJyEhgdmzZ3smmidPnkxmZiYxMTFERUXx9ttvXzKXiL9pQzwpN6ZMmcKtt95K\n9+7d/XL9adOmsWfPHp5++mm/XF/EDioKIiLioeEjERHxUFEQEREPFQUREfFQURAREQ8VBRER8VBR\nEBERj/8P/TvRn68kedQAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x2f0a1d0>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.3 pageno : 410" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "from numpy import zeros\n", + "from scipy import stats\n", + "\n", + "\n", + "# Variables\n", + "CAo = 0.1 #mol/litre\n", + "FAo = 2. #mol/hr\n", + "eA = 3.\n", + "CA = [0.074,0.06,0.044,0.029] #mol/litre\n", + "W = [0.02,0.04,0.08,0.16] #kg\n", + "\n", + "XA = zeros(4)\n", + "y = zeros(4)\n", + "x = zeros(4)\n", + "W_by_FAo = zeros(4)\n", + "CAout_by_CAo = zeros(4)\n", + "XA1 = zeros(4)\n", + "\n", + "# Calculations\n", + "for i in range(4):\n", + " XA[i] = (CAo-CA[i])/(CAo+eA*CA[i]);\n", + " y[i] = (1+eA)*math.log(1/(1-XA[i]))-eA*XA[i];\n", + " x[i] = CAo*W[i]/FAo;\n", + " W_by_FAo[i] = W[i]/FAo;\n", + " CAout_by_CAo[i] = CA[i]/CAo;\n", + " XA1[i] = (1-CAout_by_CAo[i])/(1+eA*CAout_by_CAo[i]);\n", + "\n", + "# Results\n", + "plot(x,y)\n", + "xlabel(\"CA0W/FAO = W/20, hr.kg cat/liter\")\n", + "ylabel(\"4 ln 1/(1-Xa) -3Xa\")\n", + "coeff3 = stats.linregress(x,y);\n", + "k = coeff3[0];\n", + "print \" Part a, using integral method of analysis\"\n", + "print \" The rate of reactionmol/litre is %.3f\"%(k),\n", + "print \"CA\"\n", + "\n", + "#Part b\n", + "#plotting W_by_FAo vs XA1,the calculating rA = dXA/d(W/FAo) for last 3 points,we get\n", + "rA = [5.62,4.13,2.715];\n", + "coeff2 = stats.linregress(CA[1:],rA);\n", + "\n", + "print \" Part b, using differential method of analysis\"\n", + "print \" The rate of reactionmol/litre) is %.3f\"%(coeff2[0]),\n", + "print \"CA\"\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + " Part a, using integral method of analysis" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " The rate of reactionmol/litre is 96.804 CA\n", + " Part b, using differential method of analysis\n", + " The rate of reactionmol/litre) is 93.703 CA\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlHX+//EnCmWWp/WwJaOhghxSAQXRzBUrf0ilmdmG\n2UEjY0131zxkbbZhB83SMmW3qDZrK5HOaJtsolIZKuI58YCpgXjKwjyl6HD//riX+YKCjDo3w8Dr\ncV1cF8Pc982LKec99+foZRiGgYiISBXquTuAiIh4BhUMERFxigqGiIg4RQVDREScooIhIiJOUcEQ\nERGnWFow0tPTCQoKIiAggOnTp5/z/KFDh+jfvz9hYWF06tSJd955x8o4IiJyCbysmodht9sJDAwk\nIyMDX19fIiMjSUlJITg42HFMYmIip06dYtq0aRw6dIjAwEAOHDiAt7e3FZFEROQSWHaHkZ2djb+/\nP35+fvj4+BAXF0daWlq5Y6655hqOHDkCwJEjR2jevLmKhYhIDWXZu3NhYSFt2rRxPLbZbKxatarc\nMSNHjuTGG2+kdevWHD16lA8//NCqOCIicoksu8Pw8vKq8pipU6cSFhbG3r17Wb9+PaNHj+bo0aNW\nRRIRkUtg2R2Gr68vBQUFjscFBQXYbLZyx2RlZfHkk08C0KFDB9q1a8e2bduIiIgod5y/vz8//PCD\nVVFFRGqlDh06sGPHDpddz7I7jIiICPLy8ti9ezfFxcWkpqYycODAcscEBQWRkZEBwIEDB9i2bRvt\n27c/51o//PADhmF47NfTTz/t9gx1Nb8nZ1d+9395en5Xf9C27A7D29ubpKQkYmJisNvtxMfHExwc\nTHJyMgAJCQn87W9/Y8SIEYSGhlJSUsKLL77I7373O6siiYjIJbB0SFJsbCyxsbHlfpaQkOD4vkWL\nFixcuNDKCCIi4iKa6V0NoqOj3R3hknhyfk/ODsrvbp6e39Usm7jnSl5eXnhATBGRGsXV7526wxAR\nEaeoYIiI1DJr14IVrWkqGCIitcS+ffDgg3DrrXDPPa6/vgqGiIiH++03mDoVOneGli1h61Z4+GHX\n/x6t9Cci4qEMAz78ECZNgogIyM6GCuY+u4wKhoiIB8rOhkcfNe8u3n0X+vSx/neqSUpExIPs2QP3\n3w+DBsFDD8Hq1dVTLEAFQ0TEI5w4AVOmQGgotG0L27bBiBFQv371ZVCTlIhIDVZSAvPmwRNPQK9e\n5pDZa691TxYVDBGRGmrFChg71uzcnj/fLBjupIIhIlLD/PgjPP44LF8O06aZcyrq1YAOhBoQQURE\nAI4dg8mToWtXCAw051Pce2/NKBaggiEi4nYlJfDOO2aR+PFH2LABEhPhyivdnaw8NUmJiLjRt9+a\n/RSXXQaffgpRUe5OVDkVDBERN9i1Cx57zJyAN3063H03eHm5O9X5qUlKRKQaHTlidmhHRppzKrZu\nhbi4ml8sQAVDRKRa2O3w1ltmP8WBA7Bxo9nBfcUV7k7mPEsLRnp6OkFBQQQEBDB9+vRznp8xYwbh\n4eGEh4fTuXNnvL29OXz4sJWRRESq3bJl0K0b/Pvf8MUXMHcutG7t7lQXzrItWu12O4GBgWRkZODr\n60tkZCQpKSkEBwdXePwXX3zBrFmzyMjIODektmgVEQ+0YwdMnAjr18NLL8Gdd1Zv05PHbNGanZ2N\nv78/fn5++Pj4EBcXR1paWqXHz5s3j6FDh1oVR0Sk2hw+DBMmQI8e5teWLTBkiGf0U5yPZQWjsLCQ\nNm3aOB7bbDYKCwsrPPbEiRP897//5c4777QqjoiI5c6cgddeg6Ags3N782Zzr4oGDdydzDUsG1br\ndQGldOHChdxwww00bdrUqjgiIpb66isYNw5atYL0dAgLc3ci17OsYPj6+lJQUOB4XFBQgM1mq/DY\n+fPnV9kclZiY6Pg+OjqaaCt2OBcRuUBbt5rNT9u2wYwZMHCg+5qeMjMzyczMtOz6lnV6nzlzhsDA\nQJYsWULr1q3p3r17hZ3ev/76K+3bt2fPnj1cUcn4MnV6i0hN88sv5v4U8+aZ8yrGjIHLL3d3qvI8\nptPb29ubpKQkYmJiCAkJ4e677yY4OJjk5GSSk5Mdx33++efExMRUWixERGqS06dhzhyzn+L0acjN\nhfHja16xsIJldxiupDsMEXE3w4BFi8zi0KYNvPwydOrk7lTn5+r3Tq0lJSJShc2bzUKxa5dZKG65\nxfOHyF4MLQ0iIlKJQ4dg9Gjo2xdiY+H77+HWW+tmsQAVDBGRcxQXwyuvQHAw1K9vTrz761/Bx8fd\nydxLTVIiIv9jGLBwoTlMNiAAvvnGLBpiUsEQEcFcPXbcONi3zxwFFRPj7kQ1j5qkRKROO3gQEhKg\nXz8YPNjcHlXFomIqGCJSJ506BS++CCEhcNVV5oztRx4Bb7W7VEovjYjUKYZh7p392GPmPIqsLOjY\n0d2pPIMKhojUGWvXwqOPQlERvPEG3HSTuxN5FjVJiUitt28fPPigOeFu2DBYt07F4mKoYIhIrfXb\nbzB1KnTuDC1bmivKPvywObdCLpyapESk1jEM+PBDc/Oibt1g1Sro0MHdqTyfCoaI1CqrV8PYsebd\nxbvvQp8+7k5Ue6hJSkRqhcJCuP9+uP12iI83C4eKhWupYIiIRztxAp55BkJDzWXHt20zO7jVT+F6\napISEY9UUgIpKfDEE3D99ZCTA35+7k5Vu6lgiIjHWbHCnE9RWjR69XJ3orpBBUNEPEZ+vrl/9jff\nwLRp5pyKempYrzZ6qUWkxjt2DJ56CsLDzWU8tm2D++5Tsahulr7c6enpBAUFERAQwPTp0ys8JjMz\nk/DwcDp16kR0dLSVcUTEw5SUwDvvQGCguT3q+vWQmAhXXunuZHWTl+HKHcLLsNvtBAYGkpGRga+v\nL5GRkaSkpBBcZjeSw4cP06tXL/773/9is9k4dOgQLVq0ODekizcyF5Ga79tvzX4KHx+YNQuiotyd\nyPO4+r3TsjuM7Oxs/P398fPzw8fHh7i4ONLS0sodM2/ePO68805sNhtAhcVCROqWXbvgrrvg3nvN\nne+yslQsagrLCkZhYSFt2rRxPLbZbBQWFpY7Ji8vj19++YW+ffsSERHBe++9Z1UcEanhjhwxO7Qj\nIsw5FVu2QFwceHm5O5mUsmyUlJcT/5VPnz7N2rVrWbJkCSdOnKBnz5706NGDgICAc45NTEx0fB8d\nHa3+DpFawm6HuXPNTu2YGNi0CVq3dncqz5SZmUlmZqZl17esYPj6+lJQUOB4XFBQ4Gh6KtWmTRta\ntGjBFVdcwRVXXMEf/vAHNmzYUGXBEJHaYdkys5+iUSNYuNC8u5CLd/aH6SlTprj0+pY1SUVERJCX\nl8fu3bspLi4mNTWVgQMHljvm9ttvZ/ny5djtdk6cOMGqVasICQmxKpKI1BA7dsAdd5hLeEyebM6r\nULGo+Sy7w/D29iYpKYmYmBjsdjvx8fEEBweTnJwMQEJCAkFBQfTv358uXbpQr149Ro4cqYIhUov9\n+is895zZBDVhgjlLu0EDd6cSZ1k2rNaVNKxWxLOdOQNvvWXOoRgwAJ59Fq6+2t2paj9Xv3dqaRAR\nsdTixWY/RcuWkJ4OYWHuTiQXSwVDRCyxbZvZ7LRlC8yYYe5ToSGynk0rsYiIS/3yi7nj3Q03QHQ0\nbN4MgwapWNQGKhgi4hKnT8OcORAcDMXFkJsL48fD5Ze7O5m4ipqkROSSLVoE48aBzQZLlkCnTu5O\nJFZQwRCRi7Z5s3kXsWsXzJwJt96qpqfaTE1SInLBDh2C0aPNPorYWHM5j9tuU7Go7VQwRMRpxcXw\nyitmP0X9+rB1K/z1r3DZZe5OJtXB6SapgwcPcvLkScfjtm3bWhJIRGoewzDXepowAfz9zaU8ymxt\nI3VElQVjwYIFjB8/nr1799KqVSt+/PFHgoOD2bx5c3XkExE327jR7NDeuxdmz4b+/d2dSNylyiap\nyZMns2LFCjp27MiuXbtYsmQJUdrNRKTWO3gQEhKgXz9zocCNG1Us6roqC4aPjw8tWrSgpKQEu91O\n3759ycnJqY5sIuIGp07BSy9BSIi5d/bWrWYHt7fGVNZ5Vf4v0KxZM44ePUrv3r0ZNmwYrVq14qqr\nrqqObCJSjQwDPvsMJk4051FkZUHHju5OJTVJlavVHj9+nAYNGlBSUsIHH3zAkSNHGDZsGM2bN6+u\njFqtVsRi69aZCwT+8os5Cuqmm9ydSFzB1e+dlRaM/Pz8SkdCffvtt/Tu3dtlIaqigiFijX37zA2M\n/vMfeOYZiI83h8tK7eDq985K+zCio6OZPn06drvd8bP9+/dz7733MnbsWJcFEJHq99tvMHUqdO4M\nLVqYK8s+/LCKhZxfpQVjzZo17Ny5k7CwMJYsWcKsWbOIioqiR48erF69ujozioiLGAakpppzKNas\ngVWrYPp0aNLE3cnEE1TZhzFr1izGjRtH69atWbFiBW3atKmubA5qkhK5dKtXm/0Ux4+b/RTR0e5O\nJFartiapoqIiEhISmDt3LosWLWLIkCHExsayZMkSl/1yEbFeYSHcf7+5gdGDD0JOjoqFXJxKC0a3\nbt3w9/dnzZo1xMTEMGvWLN5//30mT57M0KFDnbp4eno6QUFBBAQEMH369HOez8zMpEmTJoSHhxMe\nHs5zzz138X+JiJRz4oTZkd2lC7RpY/ZTPPig+ink4lU6D+Prr78+p/kpLCyMrKws3nzzzSovbLfb\nGTNmDBkZGfj6+hIZGcnAgQMJPmsBmj59+rBgwYKLjC8iZyspgZQUeOIJ6NnT7Kvw83N3KqkNKi0Y\nFfVV/PzzzzRv3pyHH364ygtnZ2fj7++P3//+T42LiyMtLe2cgqG+CRHXWbHC7Kew22HePHObVBFX\nqbRJaunSpfj7+9OjRw+ys7MJDAyke/fudOjQwalRUoWFheWKjs1mo7CwsNwxXl5eZGVlERoayi23\n3EJubu4l/CkidVd+PtxzD9x1FzzyiDn6ScVCXK3SO4yJEyfy2WefcezYMf7f//t/LFy4kN69e7N2\n7Vr+8pe/sHz58vNe2MuJnVS6du1KQUEBDRs2ZNGiRQwaNIjt27dXeGxiYqLj++joaKLVayfCsWPw\n4ovwj3/AmDHw5pvm+k9SN2VmZpKZmWnZ9SstGCUlJXTu3BmAa665xjGzu2vXrhw/frzKC/v6+lJQ\nUOB4XFBQgM1mK3dMo0aNHN/HxsbyyCOP8Msvv/C73/3unOuVLRgidV1JCbz3Hjz5pDniaf16s2Nb\n6razP0xPmTLFpdc/b8EoNW3aNMf3hmFw+vTpKi8cERFBXl4eu3fvpnXr1qSmppKSklLumAMHDtCq\nVSu8vLzIzs7GMIwKi4WI/J/ly2HsWPDxgU8+Ae02INWl0oLxzDPPcPz4ca688koGDRrk+PnOnTu5\n//77q76wtzdJSUnExMRgt9uJj48nODiY5ORkABISEvj444957bXX8Pb2pmHDhsyfP98Ff5JI7bRr\nF0yaBCtXmrOz4+K0h7ZUrypnepe1f/9+rr76aivzVEgzvaUuO3IEpk2DN94w7yzGj4eGDd2dSjxB\ntc30rsgtt9zisl8sIudnt8Nbb0FQkLmq7MaN8NRTKhbiPhe0h5Y+5YtUj2XLzPkUjRrBggUQEeHu\nRCIXWDBGjhxpVQ4RAXbsMHe8W7/eHC47ZIj6KaTmuKA+DHdRH4bUdr/+Cs89B3PnwoQJZl9Fgwbu\nTiWezq19GCLiWmfOwOuvQ2AgFBXB99/D44+rWEjNdEFNUiLiOosXm/0ULVtCejqEhbk7kcj5OV0w\nTp48iZeXF5dffrmVeURqvW3bzGanLVtgxgxznwr1U4gnqLRJqqSkhE8//ZS77roLX19f2rVrx7XX\nXouvry9Dhgzhs88+U7+CyAUoKjLvKG64Afr0gc2bYdAgFQvxHJUWjOjoaNasWcOECRPYuXMn+/bt\nY//+/ezcuZMJEyawevVq+vTpU51ZRTzS6dOQlGT2U5w8aRaKCRNAN+viaSodJXXq1Kkqm5+cOcYV\nNEpKPNWiRTBuHNhs8PLL8L/1PEWqhavfO50eVnvw4EFOnjzpeNy2bVuXhaiKCoZ4mtxccwmPnTth\n5ky49VY1PUn1q/ZhtQsWLCAgIIB27drRp08f/Pz8iI2NdVkAkdrk0CFzX4o+fSAmBjZtgttuU7GQ\n2qHKgjF58mRWrFhBx44d2bVrF0uWLCFK6ymLlFNcDK+8AsHBZnHYutWcfHfZZe5OJuI6VRYMHx8f\nWrRoQUlJCXa7nb59+5KTk1Md2URqPMOAhQuhUydzXsXXX8OcOdC8ubuTibhelfMwmjVrxtGjR+nd\nuzfDhg2jVatWXHXVVdWRTaRG27jR7NDeuxdefRXUUiu1XZWd3sePH6dBgwaUlJTwwQcfcOTIEYYN\nG0bzavwIpU5vqUkOHjSXGf/8c/j73+Hhh83d70RqmmobJZWfn1/pSKhvv/3Wscd3dVDBkJrg1CmY\nPdvc7e7++82i0ayZu1OJVK7aRklFR0czffp07Ha742f79+/n3nvvZezYsS4LIFLTGQZ8+imEhMC3\n30JWljmnQsVC6ppKC8aaNWvYuXMnYWFhLFmyhFmzZhEVFUWPHj1YvXp1dWYUcZt166BvX3j6aUhO\nNjcz6tjR3alE3KPSgtGsWTOSk5OJj4+nX79+zJgxg+XLlzNmzBjq1XNuVfT09HSCgoIICAhg+vTp\nlR63evVqvL29+fTTTy/8LxCxwP79EB9vdmQPHWoWjptvdncqEfeq9J2/qKiIhIQE5s6dy6JFixgy\nZAixsbEsWbLEqQvb7XbGjBlDeno6ubm5pKSksGXLlgqPmzRpEv3791c/hbjdyZMwbZo5TLZ5c3Nl\n2YQE8NZGACKVF4xu3brh7+/PmjVriImJYdasWbz//vtMnjyZoUOHVnnh7Oxs/P398fPzw8fHh7i4\nONLS0s45bs6cOQwZMoSWLVte2l8icgkMAz78EIKCICcHVq0yt0ht0sTdyURqjko/N3399de0adOm\n3M/CwsLIysrizTffrPLChYWF5c632WysWrXqnGPS0tJYunQpq1evxkvrJ4gb5OSYs7KPH4d33oHo\naHcnEqmZKi0YZxcLgK5du7J27VoefvjhKi/szJv/2LFjeeGFFxxDv87XJJWYmOj4Pjo6mmj9q5ZL\nVFgIf/ubOUP72Wdh+HCoX9/dqUQuXmZmJpmZmZZd/4JaZi+kj8HX15eCggLH44KCAmw2W7lj1qxZ\nQ1xcHACHDh1i0aJF+Pj4MHDgwHOuV7ZgiFyKEyfMne5efdXsn9i2DRo1cncqkUt39ofpKVOmuPT6\nF1Qwbr31VqePjYiIIC8vj927d9O6dWtSU1NJSUkpd8zOnTsd348YMYIBAwZUWCxEXKGkBFJS4Ikn\noGdPWLMG/PzcnUrEc1xQwXjuueecv7C3N0lJScTExGC324mPjyc4OJjk5GQAEhISLiypyCVYudLs\np7DbYd48c5tUEbkwTm+gVFbnzp3ZtGmTFXkqpKVB5GLl58Pjj8M338DUqXDvveDkNCIRj+fq985K\n7zA++eSTSn/5vn37XBZAxArHjplrPv3zn+aGRm++CVde6e5UIp6t0oIRFxfHPffcc86sbsMwym3V\nKlKT2O3m0NinnoKbboL166GCAX8ichEqLRidO3dmwoQJdK5g13pnZ3uLVKeMDHMf7caNIS0NIiPd\nnUikdqm0YMyaNYvGjRtX+JzWfJKaZOtWmDgRcnPN2dmDB2sPbRErXFSnd3VTp7dU5NAhmDIF5s83\nO7bHjIHLL3d3KpGao9r2w0hMTOTAgQOVnrhv3z6efvpplwURcdapUzBzJgQHm3cSW7aYTVEqFiLW\nqrRJKiIigri4OIqLi+natSvXXHMNhmGwf/9+1q5dy+WXX86ECROqM6vUcaUbGT32GFx3nbmZUVCQ\nu1OJ1B1VNkkVFBTw3XffkZ+fD8C1115Lr169zlnmw0pqkpLVq2HcODhyxNzt7qab3J1IpOartj29\np06dSmxsLOHh4S77ZRdLBaPuys83FwhculQLBIpcqGrrw2jfvj2vvvoqYWFhPPDAA6SmplJUVOSy\nXyxyPkePwuTJEB4O7dqZCwTGx6tYiLhTlU1ShmGwbt060tPTWbx4MWfOnKFfv37079+f7t27V09I\n3WHUGXY7zJ0Lf/+7uSXq889r4p3Ixaq2JqnK/PrrryxevJj//ve/Tm2k5AoqGHVD6cS7Jk3MfoqI\nCHcnEvFs1baWVGWaNGlC48aNq61YSO1XduLdSy/BHXdo4p1ITXRR63bGx8e7OofUQYcOmZPteveG\nvn3NgqFZ2iI1V6V3GAMGDKj0pJ9//tmSMFI3nDoFc+aYq8kOHWpOvGvRwt2pRKQqlRaM5cuX8957\n73HVVVc5flbaHrZq1apqCSe1i2HAJ5/ApEmaeCfiiSotGFFRUTRs2LDc/rClAgMDrcwktVB2tjnx\n7tgxeOMNTbwT8URafFAsVXbi3XPPwQMPaC6FSHWptol7Ipei7MS79u1h+3Z48EEVCxFPZmnBSE9P\nJygoiICAAKZPn37O82lpaYSGhhIeHk63bt1YunSplXGkGtjt8NZbEBho3l2sXw/PPANlusJExENZ\n1iRlt9sJDAwkIyMDX19fIiMjSUlJITg42HHM8ePHufJ/Gy1v2rSJO+64gx07dpwbUk1SHkET70Rq\nFrdP3HNWdnY2/v7++Pn5AeYe4WlpaeUKRmmxADh27BgtNLbSI23ZYk6827JFE+9EarMqm6SWL19O\nv379CAgIoF27drRr14727dtXeeHCwkLalFkEyGazUVhYeM5xn3/+OcHBwcTGxjJ79uwLjC/uVDrx\n7g9/gBtv1MQ7kdquyjuM+Ph4Zs2aRdeuXal/AT2WXk6+awwaNIhBgwbx7bffct9997Ft27YKj0tM\nTHR8Hx0dXeFwX6kemngnUjNlZmaSmZlp2fWrLBhNmzYlNjb2gi/s6+tLQUGB43FBQcF5N13q3bs3\nZ86c4eeff6Z58+bnPF+2YIh7aOKdSM129ofpKVOmuPT6VRaMvn37MnHiRAYPHszlZTZN7tq163nP\ni4iIIC8vj927d9O6dWtSU1NJSUkpd8wPP/xA+/bt8fLyYu3atQAVFgtxP028E5EqC8bKlSvx8vIi\nJyen3M+XLVt2/gt7e5OUlERMTAx2u534+HiCg4NJTk4GICEhgU8++YR///vf+Pj4cNVVVzF//vxL\n+FPECpp4JyKlNNNbKnT0qNlH8dprMHo0PPaY5lKIeJpqG1Y7c+ZMxy8syzAMvLy8GDdunMtCSM1x\n9o5369drxzsRMVVaMI4ePer0SCepHTIyzH6Kpk1hwQJNvBOR8tQkJY6Jd1u3wosvauKdSG2hxQfF\nZc6eeLd5sybeiUjlVDDqoFOnYMYMCA6GevXMO4xx46DMqGkRkXNYtpaU1DylE+8eeww6ddLEOxG5\nMBd0h3H//fdblUMslp0NvXubcynefNPs1FaxEJELUekdxoABA87pMFm6dClFRUV4eXmxYMGCagko\nl6Z04t2yZWaxuP9+TbwTkYtTacHYs2cPISEhPPTQQ9SrVw/DMMjJyWHChAnVmU8uUtmJd2PGwOuv\na+KdiFyaSpukcnJy6NatG88//zyNGzcmOjqaBg0a0KdPH/r06VOdGeUCVLTj3ZQpKhYicumqnIex\nZ88eHn30UVq1asWCBQvKrUBbXTQPwzmLF5s73jVtqh3vRMQNO+7ZbDY++ugjvvjiC5o0aeKyXyyu\ns2ULTJgA27Zp4p2IWEczvT3YTz+ZzU2pqfDEE+YigZpLISKlNNNbHBPvQkLMEU9bt2rinYhYTxP3\nPEjZiXedO8Py5WbntohIdVDB8BBld7x76y1z7ScRkeqkJqkaLj8fhg0zO7Lj42HNGhULEXEPFYwa\n6uhRePJJCA8Hf39zBNSIEZqlLSLuo4JRw9jt5lpPHTvCnj2wYYMm3olIzWB5wUhPTycoKIiAgACm\nT59+zvMffPABoaGhdOnShV69erFx40arI9VYixebdxTvvw8LF8K774LN5u5UIiImS+dh2O12AgMD\nycjIwNfXl8jISFJSUggODnYcs2LFCkJCQmjSpAnp6ekkJiaycuXK8iFr+TyMshPvXnoJBg3SxDsR\nuXQeNQ8jOzsbf39//Pz88PHxIS4ujrS0tHLH9OzZ0zGDPCoqij179lgZqUb56af/2/Hu5pshN1ez\ntEWk5rK0YBQWFtKmTRvHY5vNRmFhYaXH/+tf/+KWW26xMlKNUNHEu0cfhcsuc3cyEZHKWToPw+sC\nPiovW7aMt99+m++++67C5xMTEx3fR0dHEx0dfYnpqp9hwMcfw6RJmngnIq6XmZlJZmamZde3tGD4\n+vqWW922oKAAWwW9uBs3bmTkyJGkp6fTrFmzCq9VtmB4ouxs8y7ixAlNvBMRa5z9YXrKlCkuvb6l\nTVIRERHk5eWxe/duiouLSU1NZeDAgeWOyc/PZ/Dgwbz//vv4+/tbGcctyk68e+ghyMlRsRARz2Tp\nHYa3tzdJSUnExMRgt9uJj48nODiY5ORkABISEnjmmWcoKipi1KhRAPj4+JCdnW1lrGpRVAQvvGDe\nTYweDcnJmkshIp5Ny5u72KlT8I9/mMXi9tvNSXetW7s7lYjURdW+gZI4p6QEUlJg8mSzQzsz0xwF\nJSJSW6hguEBGhrnkuI+POTv7D39wdyIREddTwbgEGzaYQ2R37IBp02DIEE26E5HaS4sPXoT8fHjg\nAYiJgdtuM2do33WXioWI1G4qGBegqMhsegoPh7ZtYft2c2kPzdAWkbpABcMJp07Byy+bs7KLimDT\nJnj2WWjc2N3JRESqj/owzqN05NOTT0KXLhr5JCJ1mwpGJcqOfPr3vzXySUREBeMspSOffvgBpk7V\nyCcRkVLqw/ifs0c+bd6skU8iImXV+YKhkU8iIs6pswXj5EmYOdMc+XT4sEY+iYhUpc71YWjkk4jI\nxalTBUMjn0RELl6dKBga+SQiculqdR+GRj6JiLhOrSwYGvkkIuJ6tapgaOSTiIh1LC8Y6enpBAUF\nERAQwPTKDCz8AAATDUlEQVTp0895fuvWrfTs2ZMGDRowc+bMi/odJSXwwQcQFARff22OfHrjDW2N\nKiLiSpZ2etvtdsaMGUNGRga+vr5ERkYycOBAgoODHcc0b96cOXPm8Pnnn1/U79DIJxGR6mHpHUZ2\ndjb+/v74+fnh4+NDXFwcaWlp5Y5p2bIlERER+Pj4XNC1N2wwO7NHjYInnoCVK1UsRESsZGnBKCws\npE2bNo7HNpuNwsLCS7pm2ZFPAwZo5JOISHWxtGB4ufBdXCOfRETcy9I+DF9fXwoKChyPCwoKsNls\nF3Utmy2RoCAYPhxuuimaxo2jXRNSRKSWyMzMJDMz07LrexmGYVh18TNnzhAYGMiSJUto3bo13bt3\nJyUlpVynd6nExEQaNWrE+PHjzw3p5cXmzYbWfBIRuQBeXl648i3e0oIBsGjRIsaOHYvdbic+Pp4n\nnniC5ORkABISEti/fz+RkZEcOXKEevXq0ahRI3Jzc7nqqqv+L6SL/2gRkbrA4wqGK6hgiIhcOFe/\nd9aqmd4iImIdFQwREXGKCoaIiDhFBUNERJyigiEiIk5RwRAREaeoYIiIiFNUMERExCkqGCIi4hQV\nDBERcYoKhoiIOEUFQ0REnKKCISIiTlHBEBERp6hgiIiIU1QwRETEKSoYIiLiFBUMERFxigqGiIg4\nxdKCkZ6eTlBQEAEBAUyfPr3CY/7yl78QEBBAaGgo69atszKOiIhcAssKht1uZ8yYMaSnp5Obm0tK\nSgpbtmwpd8yXX37Jjh07yMvL44033mDUqFFWxXGrzMxMd0e4JJ6c35Ozg/K7m6fndzXLCkZ2djb+\n/v74+fnh4+NDXFwcaWlp5Y5ZsGABDzzwAABRUVEcPnyYAwcOWBXJbTz9fzpPzu/J2UH53c3T87ua\nZQWjsLCQNm3aOB7bbDYKCwurPGbPnj1WRRIRkUtgWcHw8vJy6jjDMC7qPBERqWaGRVasWGHExMQ4\nHk+dOtV44YUXyh2TkJBgpKSkOB4HBgYa+/fvP+daHTp0MAB96Utf+tLXBXx16NDBpe/r3lgkIiKC\nvLw8du/eTevWrUlNTSUlJaXcMQMHDiQpKYm4uDhWrlxJ06ZN+f3vf3/OtXbs2GFVTBERcZJlBcPb\n25ukpCRiYmKw2+3Ex8cTHBxMcnIyAAkJCdxyyy18+eWX+Pv7c+WVVzJ37lyr4oiIyCXyMoyzOhFE\nREQqUO0zvS9lMl9l53700Udcd9111K9fn7Vr13pc/okTJxIcHExoaCiDBw/m119/9aj8Tz31FKGh\noYSFhXHTTTdRUFDgUflLzZw5k3r16vHLL794VP7ExERsNhvh4eGEh4eTnp7uMdkB5syZQ3BwMJ06\ndWLSpEmWZLcqf1xcnON1b9euHeHh4R6VPzs7m+7duxMeHk5kZCSrV68+fwiX9ohU4cyZM0aHDh2M\nXbt2GcXFxUZoaKiRm5tb7pj//Oc/RmxsrGEYhrFy5UojKiqqynO3bNlibNu2zYiOjjbWrFnjcfm/\n+uorw263G4ZhGJMmTTImTZrkUfmPHDniOH/27NlGfHy8R+U3DMPIz883YmJiDD8/P+Pnn3/2qPyJ\niYnGzJkzLclsdfalS5caN998s1FcXGwYhmEcPHjQo/KXNX78eOPZZ5/1qPx9+vQx0tPTDcMwjC+/\n/NKIjo4+b45qvcO42Ml8+/fvP++5QUFBdOzY0WPz9+vXj3r16jnOsWouilX5GzVq5Dj/2LFjtGjR\nwqPyA4wbN44XX3zRktzVkd+wuGXZquyvvfYaTzzxBD4+PgC0bNnSo/KXMgyDDz/8kKFDh3pU/muu\nucbRonH48GF8fX3Pm6NaC8bFTuYrLCxk7969VZ5rterI//bbb3PLLbdYkN7a/E8++SRt27bl3Xff\n5fHHH/eo/GlpadhsNrp06WJJbqvzg9msExoaSnx8PIcPH/aY7Hl5eXzzzTf06NGD6OhocnJyXJ7d\nyvylvv32W37/+9/ToUMHj8r/wgsvMH78eNq2bcvEiROZNm3aeXNUa8G42Ml8NYXV+Z9//nkuu+wy\n7rnnnos6vypW5n/++efJz89n+PDhPProoxd8vjOsyP/bb78xdepUpkyZclHnXwirXv9Ro0axa9cu\n1q9fzzXXXMP48eMvJt55WZX9zJkzFBUVsXLlSl566SX++Mc/Xky8Kln9bzclJcWyf7dgXf74+Hhm\nz55Nfn4+r7zyCg8++OB5j7dsWG1FfH19y3WIFhQUYLPZznvMnj17sNlsnD59uspzrWZl/nfeeYcv\nv/ySJUuWeGT+Uvfcc49ld0hW5P/hhx/YvXs3oaGhjuO7detGdnY2rVq1qvH5gXI5H3roIQYMGODS\n3FZmt9lsDB48GIDIyEjq1avHzz//TPPmzT0iP5hF77PPPrN0wI1V+bOzs8nIyABgyJAhPPTQQ+cP\n4pIeGSedPn3aaN++vbFr1y7j1KlTVXbcrFixwtFx48y50dHRRk5OjsflX7RokRESEmL89NNPlmW3\nMv/27dsd58+ePdu49957PSp/WVZ2eluVf+/evY7zX375ZWPo0KEek/311183/v73vxuGYRjbtm0z\n2rRp4/LsVuY3DPPfb1WdxTU1f3h4uJGZmWkYhmFkZGQYERER581RrQXDMMye+I4dOxodOnQwpk6d\nahiG+T/N66+/7jhm9OjRRocOHYwuXbqUG/VU0bmGYRiffvqpYbPZjAYNGhi///3vjf79+3tUfn9/\nf6Nt27ZGWFiYERYWZowaNcqj8t95551Gp06djNDQUGPw4MHGgQMHPCp/We3atbOsYFiV/7777jM6\nd+5sdOnSxbj99tsrXF6npmYvLi427r33XqNTp05G165djWXLllmS3ar8hmEYw4cPN5KTky3LbWX+\n1atXG927dzdCQ0ONHj16GGvXrj1vBk3cExERp2iLVhERcYoKhoiIOEUFQ0REnKKCISIiTlHBEBER\np6hgiIiIU1Qw6qj9+/cTFxeHv78/ERER3HrrreTl5TmenzVrFldccQVHjhwpd960adMICAggKCiI\nr776CoBXX3213HIgCQkJ9OvXz/F4zpw5/PWvf3U8/tOf/kRWVhbDhw+nffv2juWhk5KSADh06BA+\nPj6OzbZK7dmzh9tvv52OHTvi7+/P2LFjOX369CW9Dhs2bCi3JHVKSgoNGzbEbrcDsGnTJscscID5\n8+czdepU5s2bR2hoKF26dKFXr15s3LjRcYwzy1CXlZiYyMyZMy8o9/Dhw/nkk08u6JyL9e6777Jv\n375yPyt9Hd59913+/Oc/A5CcnMx7770HmCsXnH2OeD4VjDrIMAzuuOMObrzxRnbs2EFOTg7Tpk3j\nwIEDjmNSUlLo168fn376qeNnubm5pKamkpubS3p6Oo888gglJSXccMMNZGVlOY7bsGEDR44ccaxr\ns2LFCnr16uV4ftWqVfTo0QMvLy9mzJjBunXrWLduHWPGjAHM/U369+9fbktfwzAYPHgwgwcPZvv2\n7Wzfvp1jx47x5JNPXtJr0blzZ/Lz8zl+/DgAWVlZhISEOJZ5yMrKKpc9PT2d2NhY2rVrxzfffMPG\njRt56qmnePjhhwGw2+2MGTOG9PR0cnNzSUlJYcuWLefN4Mw6QYY5yfaCznGVd955h71795b7Wenr\nUFZCQgL33XcfYBaZs8+pSmmRlppLBaMOWrZsGZdddpnjTQ6gS5cu3HDDDQD88MMPnD59mr/97W/l\n3rTT0tIYOnQoPj4++Pn54e/vz+rVqwkNDWX79u2cOnWKX3/9lYYNGxIWFub41F32TXfLli0EBgY6\nlnOvaN7o/Pnzee655zh48KBjVc2lS5dyxRVXOJZvrlevHq+88gpvv/02J0+evOjXol69ekRERLBy\n5UoA1q5dy+jRox0FsGx2wzBYv3494eHh9OzZkyZNmgDll6R3ZhnqiuTm5tK3b186dOjAnDlzANi9\nezeBgYE88MADdO7c+Zxl70uLxlNPPcWIESMoKSnhyy+/JDg4mIiICP7yl79UuK6U3W5nwoQJdO7c\nmdDQUP7xj38A8Mwzz9C9e3c6d+5MQkICAB9//DE5OTkMGzaMrl27curUqXKvQ9n/fqV3Sp988km5\nc06ePMmaNWuIjo4mIiKC/v37s3//fgCio6N59NFHiYyMZPbs2c78JxM3UsGog77//nu6detW6fPz\n58/nj3/8Iz169GDHjh389NNPAOzdu7fcgmelyyR7e3sTHh5OdnY2K1euJCoqiqioKLKysigsLMQw\nDMc6+4sWLaJ///6A+QY8ceJER5PU5s2bKSgo4ODBg4SGhjJkyBBSU1MB2Lx58zmZGzVqRNu2bcs1\npQEcPXrUcc2yX127dmXr1q3n/L29evUiKyuLEydOUK9ePfr06eMoGCtWrOD6668HYN26deWap0r9\n61//ciy46Mwy1GczDIOtW7fy1VdfkZ2dzZQpUxyftnfs2MHo0aP5/vvvy1237Ov3888/M3fuXIqL\ni/nTn/5Eeno6OTk5HDp0qMI7kTfeeIP8/Hw2bNjAhg0bHKus/vnPfyY7O5tNmzbx22+/8cUXXzBk\nyBAiIiKYN28ea9eu5fLLL6/0dfDy8sLLy4s777yz3Dn169fnz3/+s6OQjBgxwnFn6OXlxenTp1m9\nerVlqxyL61TrarVSM1TVnDF//nw+//xzAAYNGsSHH37I6NGjz3vO9ddfT1ZWFr/99hvXX389/v7+\nTJ06lZYtWzrecAG++uor3nnnHUeOGTNmOFYrBZgxYwZDhgwB4K677uLBBx9k3Lhx58189nONGjUq\ntz1lVa6//npmzpxJ79696d69O+3bt2fHjh0cOnSIY8eO0a5dO8Bshjl7Jd5ly5bx9ttv891331WY\nxRleXl7cdttt+Pj40Lx5c1q1auVoHrz22mvp3r37OecYhsGzzz5LVFSUo69n69attG/fnmuvvRaA\noUOH8sYbb5xz7pIlSxg1apTjLq9Zs2aAeRf30ksvceLECX755Rc6derEbbfd5vh9pSp6HSpSes62\nbdvYvHkzN998M2De4bRu3dpx3N13313ltaRmUMGog6677jo+/vjjCp/btGkTeXl5jn/cxcXFtGvX\njtGjR1e4fHLpnUOvXr147bXXOHXqFGPGjKF58+bk5ubSsmVLR5POiRMnOHz4MFdffbXjGmc3SaWk\npHDgwAHef/99APbt28eOHTsICQk5J/ORI0fIz8/H39+/3M+PHj1K7969K3zznjdvHsHBweV+FhUV\nxerVq/nuu+/o2bMnYN4ZzJ8/3/EYYPHixYwaNcrxeOPGjYwcOZL09HTHm64zy1BX5LLLLnN8X79+\nfc6cOQPAlVdeWeHxXl5eREZGsmbNGoqKimjWrNk5f+/5lok7+7mTJ08yevRo1qxZg6+vL1OmTCnX\n1Ff22mVfB2cKuWEYXHfddeX6ucqq7G+UmkdNUnXQjTfeyKlTp3jzzTcdP9u4cSPLly8nJSWFKVOm\nsGvXLnbt2uXYsSs/P5+BAwcyf/58iouL2bVrF3l5eY5Pvz179mTlypUcOnSIFi1a4OXlRYsWLUhL\nS3MUjGXLlnHjjTdWmmv79u0cP36cPXv2OH7/448/TkpKCjfddBMnTpxwjMKx2+2MHz+eESNG0KBB\ng3LXadSoEevXr3d0ppf9OrtYlB5vs9mYO3euo0D07NmTWbNmOfp1fv31V86cOeMoDPn5+QwePJj3\n33+/XMGKiIggLy+P3bt3U1xcTGpqKgMHDgQgKSnJ0V/gCv379+fxxx/n1ltv5dixY3Ts2JGdO3fy\n448/ApCamlrhG3q/fv1ITk52NHsVFRU5ikPz5s05duwYH330UbnXp3S03NmvQ9nCU7Zjvuw5gYGB\n/PTTT45+otOnT5Obm+uy10GqjwpGHfXZZ5+RkZGBv78/nTp14sknn+Tqq68mNTWVO+64o9yxd9xx\nB6mpqYSEhPDHP/6RkJAQYmNj+ec//+l4Q2ratCmtWrXiuuuuc5x3/fXX89NPPznau8v2X5Qq+4Y2\nf/78cs1TAHfeeSfz5893ZP7oo4/o2LEjgYGBNGzYkKlTp7rk9bjhhhsoLi523DH17NmTXbt2OZrT\nFi9eXG6o8LPPPktRURGjRo0iPDzcUTi9vb1JSkoiJiaGkJAQ7r77bkeR2rp1a6X7nVf2Sb3sz59+\n+mm++OKLcs8NGTKEkSNHMnDgQLy8vPjnP/9J//79iYiIoHHjxjRu3Picaz700EO0bduWLl26EBYW\nRkpKCk2bNmXkyJF06tSJ/v37ExUV5Th++PDh/OlPfyI8PJyFCxc67j5LM5RmLPt96Tldu3alpKSE\njz/+mEmTJhEWFkZ4eDgrVqyo7D+F1GBa3lyqTelOdvXr13d3lAs2cuRIRo4cWWF/grMGDBjAZ599\nhre3dS3Bx48fdzTxjB49mo4dO5abA3OpXPE6iOdSwRCpRWbNmsW7775LcXExXbt25c033zynyU7k\nYqlgiIiIU9SHISIiTlHBEBERp6hgiIiIU1QwRETEKSoYIiLiFBUMERFxyv8HRLG7XPYZpSMAAAAA\nSUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7ffe3c06fe90>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.4 pageno : 413" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "# from example 18.2\n", + "XA = 0.35;\n", + "FAo = 2000. #mol/hr\n", + "eA = 3.\n", + "k = 96.\n", + "CAo = 0.1;\n", + "\n", + "# Calculations\n", + "W = ((1+eA)*math.log(1./(1-XA))-eA*XA)*(FAo/(k*CAo));\n", + "\n", + "# Results\n", + "print \" The amount of catalyst kg needed in a packed bed reactor is %.f kg\"%(W)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The amount of catalyst kg needed in a packed bed reactor is 140 kg\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.5 pageno : 414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "import math \n", + "from matplotlib.pyplot import *\n", + "from numpy import *\n", + "from scipy import *\n", + "\n", + "# Variables\n", + "CAo = 0.1;\n", + "eA = 3;\n", + "rA = [3.4,5.4,7.6,9.1]; # mol A/hr. kg cat\n", + "CA = [0.039,0.0575,0.075,0.092]; # mol/liter\n", + "\n", + "# Calculations\n", + "XA = zeros(5);\n", + "inv_rA = zeros(5);\n", + "for i in range(4):\n", + " XA[i] = (1-CA[i]/CAo)/(1+eA*CA[i]/CAo);\n", + " inv_rA[i] = 1/rA[i];\n", + "\n", + "for i in range(4):\n", + " small = XA[i];\n", + " for j in range(i,4):\n", + " next_ = XA[j];\n", + " if small>next_:\n", + " XA[i],XA[j] = XA[j],XA[i];\n", + " inv_rA[i],inv_rA[j] = inv_rA[j], inv_rA[i]\n", + "\n", + "\n", + "# Results\n", + "plot(XA,inv_rA)\n", + "xlabel(\"Xa, dimensionless\")\n", + "ylabel(\"-1/rA, hr.kg cat/mol\")\n", + "show()\n", + "XA[4] = 0.35\n", + "inv_rA[4] = 0.34;\n", + "Area = trapz(XA,inv_rA);\n", + "W = Area*2000.;\n", + "print \"Amount of catalyst needed is %.f kg cat\"%(W)\n", + "print ('The answer differs from those given in book as trapezoidal rule is used for calculating area')\n", + "\n", + "# Note : Answer differs because python trepz function works differnt than we do manually trepezoidal method." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWXawPHfUSzLtNyaFFAUTEgFUYhcMHLH0lymXhwz\nNcZIc5zU1umt1Mqy7J1UaiQzzCXHbBHNRFPB3DHUUJHcFXGJFERwgXO43z/uRFGBA5yd6/v5+HlZ\nnvs519N551xc92pQSimEEEKIcqhm7wCEEEI4H0keQgghyk2ShxBCiHKT5CGEEKLcJHkIIYQoN0ke\nQgghys2qySM+Ph5fX19atGjB1KlTb/p9XFwcAQEBBAYG0r59e9atW2d2WyGEEPZjsNY6D5PJRMuW\nLVmzZg3u7u4EBwezaNEi/Pz8iq7Jy8ujVq1aAOzevZsBAwZw8OBBs9oKIYSwH6tVHklJSfj4+ODl\n5UWNGjWIiIggLi6u2DVXEwdAbm4uDRo0MLutEEII+7Fa8sjIyMDT07Poew8PDzIyMm66bunSpfj5\n+REeHs6MGTPK1VYIIYR9WC15GAwGs67r378/+/btY/ny5QwdOhTZLUUIIRyfm7Vu7O7uTnp6etH3\n6enpeHh4lHh9aGgoRqORc+fO4eHhYVZbHx8fDh06ZNnAhRDCxXl7e3Pw4MHK3URZSUFBgWrevLk6\ncuSIunLligoICFCpqanFrjl48KAqLCxUSimVnJysmjdvbnbbPwf6rRW+Q3jrrbfsHYJVyfM5L1d+\nNqVc//ks8dlptcrDzc2N6OhoevXqhclkIjIyEj8/P2JiYgCIiori22+/Zd68edSoUYO77rqL//73\nv6W2FUII4RisljwAwsPDCQ8PL/azqKiooq9ffvllXn75ZbPbCiFEVVFYCN9+C4GB4ONj72huJivM\nHVhYWJi9Q7AqeT7n5crPBvZ/vqQk6NgR3nwTqle3ayglstoiQVswGAwyO0sI4TJOnYLXXoN582DM\nGJg6Fe64w/KvY4nPTqt2WwkhhCjblSvw8cfwzjtQpw7Ex0PPnvaOqnTSbSWEEHaiFCxbBq1awauv\nQng47N7t+IkDJHkIIYRdpKZC797w+OOQmQnz58PixVCvnr0jM490WwkhhA1lZcGkSRAdDSYThIXB\nl19Ckyb2jqx8pPIQQggbMJkgJgZ8fWHWLD2L6sMPYe1a50scILOthBDC6n7+GcaOhYICuHwZatWC\nBQvA398+8Vjis1MqDyGEsJJjx+B//geGDoV27SA7GwYO1Os47JU4LEXGPIQQwsIuXoQPPtDjGpGR\ncOeduntq4UI9xuEKpPIQQggLUUrPmPLzg7Q0PcaxdCkYjfDrr66TOEAqDyGEsIidO+Gf/4QLFyA2\nFjZuhNGjYeZMePJJe0dneZI8hBCiEjIz4X//F+LiYPJkePhhGDZMrxTfsQPc3e0doXVIt5UQQlRA\nQYHeUuSBB/SYxr59+uedO8OQIXqLEVdNHCCVhxBClNuqVfDCC3p9xs8/61XhTz8NGRmwfr1OKK5O\nKg8hhDDTgQPQr5/e8faDD3R1ceAAtG2rp95u3Vo1EgdI5SGEEGXKyYF334U5c+Dll2HJEsjPh5Ej\nYd06+OYb6NTJ3lHallQeQghRgsJCmDtXbyny+++wZ49OHsnJutpQSk/BrWqJA6TyEEKIW9q6VW8p\nUr26nkkVHKyrjddf1xXIrFnQv7+9o7QfSR5CCHGdkyfhlVd0d9T77+uZU9Wq6dlUTz0FjRrBrl1w\n3332jtS+pNtKCCHQGxZOmQJt2oCnJ/z2m96TCvRCv9BQePZZWL5cEgdI5SGEqOKU0t1SEyboGVNJ\nSeDtrX+XkQHPPKM3NNy8Ge6/376xOhKpPIQQVdbevdCjh14hHhMD339/LXEsWaJ3wu3YETZtksRx\nI6k8hBBVzrlz8NZbehPDN9+E554Dtz8/Dc+f1+s4tm3TXVQPPmjfWB2VVB5CiCrDaIT//Efvemsy\n6XPEx4y5ljjWr4eAAKhdW290KImjZFJ5CCGqhMREvettvXrw00/FD2O6ckV3XS1cCJ9/Dn362C1M\npyHJQwjh0o4ehZdegl9+gWnT9El+BsO13+/erafjenvrBX8NG9otVKci3VZCCJeUlwdvvAHt2+sq\nIzUVBg26ljgKC+Gjj6BrVxg3Dr77ThJHeVg1ecTHx+Pr60uLFi2YOnXqTb9fuHAhAQEB+Pv706lT\nJ1JSUop+5+Xlhb+/P4GBgTwoHY9CCDMpBV99pbcUOXRIL+h74w24445r1xw/Dt266dlVSUkwYkTx\nakSYQVmJ0WhU3t7e6siRIyo/P18FBASo1NTUYtds3rxZZWdnK6WUWrlypQoJCSn6nZeXlzp79myp\nr2HF8IUQTuiXX5Tq1Empdu2U2rDh5t8XFiq1YIFSDRsq9d57ShmNto/REVjis9NqYx5JSUn4+Pjg\n5eUFQEREBHFxcfj5+RVd06FDh6KvQ0JCOHHixI2JzVrhCSFcyO+/w7/+BStWwDvvwPDhek+q6507\nB6NG6TGOVasgMNAuoboMq3VbZWRk4OnpWfS9h4cHGRkZJV4/Z84c+lw3xcFgMNC9e3eCgoKYPXu2\ntcIUQjix/Hw9btGqFdxzD6SlQWTkzYnjp5/0FNxGjfSOuJI4Ks9qlYehHB2ICQkJfPHFF2zatKno\nZ5s2baJRo0ZkZmbSo0cPfH19CQ0NtUaoQggntHKlHuhu3hw2boSWLW++5tIlePVVPRj+xRd6Nbmw\nDKslD3d3d9LT04u+T09Px8PD46brUlJSGDlyJPHx8dStW7fo540aNQKgYcOGDBgwgKSkpFsmj4kT\nJxZ9HRYWRlhYmOUeQgjhcPbv10nj4EH4979LXpOxY4feBdffX0/BrVfPtnE6ksTERBITEy1708oP\nvdxaQUGBat68uTpy5Ii6cuXKLQfMjx07pry9vdWWLVuK/TwvL0/l5OQopZTKzc1VHTt2VKtWrbrp\nNawYvhDCwWRnKzVhglL16ys1bZpSV67c+jqjUakpU/Sg+MKFepBcFGeJz06rVR5ubm5ER0fTq1cv\nTCYTkZGR+Pn5ERMTA0BUVBSTJ08mKyuLUaNGAVCjRg2SkpI4ffo0AwcOBMBoNDJkyBB69uxprVCF\nEA6ssBBiY/UK8D599GaGf/nLra89fBiefhpuu00vCmzSxLaxViWGP7OQUzIYDDIjSwgXtmmT3lLk\n9tth+nQICrr1dUrpBPPKK/Daa/DCC/oAJ3FrlvjslO1JhBAO58QJnQh+/hmmToXBg0texJeZqQ9p\nOnxYn/7Xpo1tY62qJDcLIRzGpUt6nUbbtnoWVVoa/O1vJSeOFSv0FNwWLfRKcUkctiOVhxDC7pTS\n02lffFHvRbV9OzRrVvL1eXn62pUrYdEiePhh28UqNEkeQgi72r1bj2tkZsKcOXqjwtJs26bPFn/o\nIT0F9+67bROnKE66rYQQdnH2LDz/PHTvDn/9qz58qbTEUVAAEydCv37w7rswb54kDnuS5CGEsCmj\nEaKj9Wl+1arBvn0wevS10/xuZf9+6NwZtmzRSeaJJ2wXr7g1SR5CCJtZu1YPhn//vZ4ZNXNm6Su/\nlYJZs6BjR91VFR8PjRvbLl5RMhnzEEJY3eHDeoB71y69kWH//mWfn3H6tN7k8MwZvXeVr69tYhXm\nkcpDCGE1ubnw+uvw4IN6gV9qKgwYUHbiWLpUVyiBgbB5syQORySVhxDC4pSChQv1jraPPKJnRbm7\nl93uwgU982r9ej11t2NH68cqKkaShxDCorZv1wmgoACWLIHrznwr1caNel+qbt1091bt2taNU1SO\nJA8hhEWcPq1P84uP11Nphw0zb3+p/Hw9BTc2Vg+OP/641UMVFiBjHkKISrlyBT78EFq3hgYN9JYi\nI0aYlzhSU/Viv927dbUhicN5SPIQQlSIUvDDDzpp/PyzHtj+4AOoU6fstoWFMGMGdOkCzz0Hy5aV\nvM26cEzSbSWEKLe0NL3t+bFjeq1G797mt83I0JVJTg5s3Qo+PtaLU1iPVB5CCLNlZ8P48RAaqhNG\nSkr5EsfixXr6bWioHiCXxOG8pPIQQpTJZIIvvoA33tB7S+3dC/fea3777GwYM0bPxFqxAoKDrRer\nsA1JHkKIUm3YoKfe1qqlt0APDCxf+4QEGD4cHntM70t1551WCVPYmCQPIcQtpafDyy/ro2A//BCe\nfLLsleHXu3xZnzu+aBF8/jmEh1svVmF7MuYhhCjm0iWYPFlXGPffrwfH/+d/ypc4UlL0liRHjujV\n5ZI4XI8kDyEEoKfeLlmit0rfsweSk2HSpPJ1M5lMukrp1g0mTIBvvtFrP4TrkW4rIQS//qrHNbKz\n4csvK3as67FjelW5yaTPEy/tGFnh/KTyEKIK++MPvUivZ08YPFhXG+VNHErB/Pl619zwcEhMlMRR\nFZRYeSQnJ2MopZOzXbt2VglICGF9BQXw6afwzjswZIge16hbt/z3OXsWRo3SU3dXry7/TCzhvEpM\nHhMmTCg1eSQkJFglICGEdf30k14d7u6utz5/4IGK3Wf1anjmGX0k7Lx5ULOmZeMUjs2glFL2DqKi\nDAYDThy+EDZ16JBeHb53L/zf/0HfvuWbQXXVxYvwyisQF6d3wu3WzfKxCuuyxGdnmWMe+fn5TJ8+\nnUGDBjFo0CBmzpxJQUFBpV5UCGE7Fy7Aa69BSIg+XGnvXr1KvCKJIzkZ2rfXYyW//iqJoyors/KI\njIzEaDQybNgwlFLMnz8fNzc3Pv/8c1vFWCKpPIQoWWEhLFigE0f37vDee9C4ccXuZTTC1Kkwfbr+\nN3iwZWMVtmWJz84yp+pu376dlJSUou+7deuGv79/pV5UCGFd27bB2LH66+++01VHRR06pE/4q1lT\nVx6enpaJUTi3Mrut3NzcOHjwYNH3hw4dws3NvOUh8fHx+Pr60qJFC6ZOnXrT7xcuXEhAQAD+/v50\n6tSpWJIqq60Q4manTum1FgMHwvPPw5YtFU8cSsGcOfqwpr/+VQ+0S+IQRVQZ1qxZozw9PVWXLl1U\nly5dVJMmTdTatWvLaqaMRqPy9vZWR44cUfn5+SogIEClpqYWu2bz5s0qOztbKaXUypUrVUhIiNlt\n/+xuKzMOIaqCy5eVeu89perXV+rVV5XKyanc/c6cUerxx5UKCFBq927LxCgchyU+O8ssIbp168b+\n/fvZv38/AC1btuT2228vMyklJSXh4+ODl5cXABEREcTFxeHn51d0TYcOHYq+DgkJ4cSJE2a3FULo\n6mDZMr0VSOvWljlc6Ycf4NlnYehQff6GGf9zF1VQmcnDaDSyatUqjh49itFo5KeffsJgMDB+/PhS\n22VkZOB5XY3r4eHBtm3bSrx+zpw59OnTp0JthaiKUlP1eo0TJ+A//4EePSp3v9xcnYRWr4b//lcf\nEStEScpMHn379uWOO+6gTZs2VDPnRPs/lbbA8EYJCQl88cUXbNq0qdxtJ06cWPR1WFgYYWFhZrcV\nwhllZcHEifDVV/pwplGjoEaNyt1z61ZdaXTqBLt2wd13WyRU4SASExNJTEy06D3LTB4ZGRnFBrLN\n5e7uTnp6etH36enpeHh43HRdSkoKI0eOJD4+nrp/7o9gblsonjyEcGUmE8yeDW+9pQfEU1OhYcPK\n3bOgQG9RMmuW3q5k0CDLxCocy41/WE+aNKnS9yyzlOjZsyerVq0q942DgoI4cOAAR48eJT8/n8WL\nF9OvX79i1xw/fpyBAweyYMECfK7rqDWnrRBVyfr1enHef/8Lq1bpbqrKJo7fftOVRlKSrjYkcYjy\nKLPy6NixIwMGDKCwsJAaf9bGBoOBnJyc0m/s5kZ0dDS9evXCZDIRGRmJn58fMTExAERFRTF58mSy\nsrIYNWoUADVq1CApKanEtkJUNceOwUsv6Q/4Dz/UU2YrsjL8ekrpSuONN/R5HaNHV/6eouopc4W5\nl5cXy5Yto3Xr1uUa87AFWWEuXNXFi3pF9yef6MV+L70Ed9xR+fueOgWRkZCZqbdR9/Wt/D2F87HJ\n3lZNmjShVatWDpc4hHBFSumuKV9f2L8fdu6EN9+0TOL47ju9ZXpQEGzeLIlDVE6Z3VbNmjXjkUce\nITw8nNtuuw3ArKm6Qojy2blTVxl5ebBwIYSGWua+OTn6lMANG+D77+G65VVCVFiZ5USzZs3o2rUr\n+fn55Obmkpuby4ULF2wRmxBVQmamXpQXHq73kNq+3XKJY8MGCAjQU3l37ZLEISynxDGPKVOmEB4e\nTqADHw0mYx7CmRUUQHQ0TJmi11i8+Sbcc49l7p2fr6f0zp0LMTF6C3YhrrLqrrrNmzdn+vTp7Nq1\ni7Zt2xIeHk7Pnj2L1mIIISouPh7GjYOmTeHnn8GSkwn37oWnntKbGP76K9x7r+XuLcRVZc62Ukqx\nc+dO4uPj+emnnzAajXTv3p3w8HAefPBBW8V5S1J5CGeza5eeIpuWBv/+Nzz6qOWmyRYWwowZ8O67\n+uyOyEiZgituzRKfnWUmjytXrhTbCPH8+fMsX76c9evXM3v27Eq9eGVJ8hDOQCm9sG/aNJ00JkzQ\n26X/Of/EIk6cgOHD9WD7/PmV3xxRuDabJI927dqxY8eOYj8LDAxk586dlXphS5DkIRzZlSt6/6mP\nPgI3N3jxRXjyScsmDdBTe8eO1f9efVW/lhClseqYx6lTpzh58iQXL15kx44dKKWKVpZfunSpUi8q\nhCs7d04PUs+cCf7+8PHH+qxvS3chZWXBmDH6dL8ff9TrN4SwlRKTx+rVq5k7dy4ZGRlMmDCh6Oe1\na9dmypQpNglOCGdy+LBOFAsWwOOP666qNm2s81rr1uluqn79YMcOuPNO67yOECUps9vqm2++4a9/\n/aut4ikX6bYSjmDbNt01tW4djBwJ//gHNG5snde6fBn+9S99SNOcOdC7t3VeR7g2m4x5APzwww+k\npqZy+fLlop+9+eablXphS5DkIeylsBCWL9eD4CdO6Gm3zzwDd91lvdf89VcYMkRvKxITA/XrW++1\nhGuz6pjHVVFRUVy6dIl169YxcuRIlixZQkhISKVeVAhndekSfPkl/N//6QV9L76oz9aw5iC1yaQr\nmw8/1P936FCZgivsr8zKo02bNuzevRt/f39SUlLIzc2ld+/ebNy40VYxlkgqD2Erv/+uD0v6z3/g\noYd00ujc2fof4kePwrBherrvvHng5WXd1xNVg0121b3jz+0877zzTjIyMnBzc+P06dOVelEhnMVv\nv0FUlO4qOn1arwaPi9N7T1kzcVxNFsHBeiFhQoIkDuFYyiy2H3vsMbKysnjppZdo3749ACNHjrR6\nYELYi1KwcaMez9i6VZ8RnpZmu20+zp7VCSstDdas0RsbCuFozBowv+ry5ctcvnyZeyy1e1slSbeV\nsCSjUZ95MW0aZGfrleBPP22ZszTMFR+vtxWJiNDbjNSsabvXFlWHTbqtPvnkE7KysgCoWbMmSik+\n/fTTSr2oEI4kNxemT4cWLfTCvtdf13/1R0XZLnFcvKgX/D37rN5e5KOPJHEIx1Zm8vjss8+K7aRb\nt25dPvvsM6sGJYQtnDwJr72mxxI2bdLbfGzYoBf42fLgzF9+gXbt9IrxX3+Frl1t99pCVFSZ/xMp\nLCyksLCw6HuTyURBQYFVgxLCmvbsgREjoHVrvZFgUhJ8/TXYega60QjvvAN9+sDEifr0QDnxQDiL\nMgfMe/XqRUREBFFRUSiliImJobcsaxVORilYu1aPZ6Sk6FXgBw9CvXr2iefgQb1eo1Ytvb2Ih4d9\n4hCiosocMDeZTHz22WesXbsWgB49evD3v/+d6tWr2yTA0siAuShLQYHeymPaNP2X/oQJ8Le/wXWn\nDNiUUvD557q77I03dBKzZReZEGDD7UkclSQPUZLz5+Gzz/ThSC1b6kV9vXrZd2X2mTN676v0dL15\nYqtW9otFVG02mW0lhDM5dgzGj4dmzXT31PLleq1E7972TRzLlkHbtjphbNsmiUM4Pzk2RriE5GQ9\nvXXVKr1B4a+/6jO87S03V2+auGaNHpQPDbV3REJYhlQewmkVFsKKFfDIIzBggD4M6cgRvYGgIySO\nLVt0tWE06mQmiUO4kjIrj759+xbrHzMYDNSpU4fg4GCioqKoKSuZhI1dvqyntV5dSPfii/DEE1Cj\nhr0j0woKYPJkmD1bb6Y4cKC9IxLC8socMB87dix//PEHgwcPRinF4sWLqVOnDtWqVSMnJ4f58+fb\nKtabyIB51XL2rN7V9pNP9KK6F1+EsDDH2p48LQ2eekrvgzVnDjRqZO+IhLiZRT47VRnat29f4s8e\neOCBUtuuXLlStWzZUvn4+Kj333//pt/v27dPPfTQQ+r2229X06ZNK/a7pk2bqjZt2qi2bduq4ODg\nW97fjPCFCzhwQKnRo5WqW1epZ55Ras8ee0d0s8JCpWbOVKp+faU+/VR/L4SjssRnZ5ndVnl5eRw7\ndoymTZsCcOzYMfLy8gC47bbbSmxnMpkYM2YMa9aswd3dneDgYPr164efn1/RNfXr12fmzJksXbr0\npvYGg4HExETq2WsVl7C7LVv0+oyff9b7TKWmwn332Tuqm508qQfpz53T25y0bGnviISwvjIHzD/6\n6CNCQ0MJCwsjLCyM0NBQPvzwQ/Ly8hg2bFiJ7ZKSkvDx8cHLy4saNWoQERFBXFxcsWsaNmxIUFAQ\nNUrorFbSJVXlmEx6Z9tOnXT3zyOP6AOR3nnHMRPHN99AYKA+IEoSh6hKyqw8evfuzf79+0lLS8Ng\nMHD//fdjMBioWbMmL7zwQontMjIy8LxuyouHhwfbtm0zOzCDwUD37t2pXr06UVFRcoaIi7t4EebO\n1ce7NmgAL70E/fuDA2xkcEvnz8PYsbB5s17DISczi6qmzOQRGRlJbGwsbdu2BSA3N5d+/fqxbt26\nUtsZKjmKuWnTJho1akRmZiY9evTA19eX0FvMdZw4cWLR11erI+E8zpyB6GiIidHHun75JXTs6FiD\n4Df6+Wd9zkfv3rBrl96fSghHlpiYSGJiokXvWWby8PDwYPTo0Xz66adkZWXx6KOPmlUFuLu7k56e\nXvR9eno6HuXY/a3Rn9NUGjZsyIABA0hKSiozeQjnsW+frjK+/VYffLRpkz5Pw5FduaL3o1qwQE/D\nffRRe0ckhHlu/MN60qRJlb5nmWMeb7/9NrVq1SIqKooePXowfvx4RowYUeaNg4KCOHDgAEePHiU/\nP5/FixfTr1+/W15749jGxYsXuXDhAqAH7FevXk2bNm3MeR7hwJSCxER47DE9ltGkCezfr9dCOHri\n2LNHd03t368X/EniEFVdies8vv32W33Bn/OB3377bYKDg+nduzcGg4GBZqx8WrlyJS+88AImk4nI\nyEhee+01YmJiAIiKiuL06dMEBweTk5NDtWrVqF27Nqmpqfz+++9F9zcajQwZMoTXXnvt5uBlnYdT\nMBr1wPK0aXq7jgkT9GC4LY93rajCQvj4Y3jvPZg6VZ8D4shdakKYw6q76g4fPrzYuIVSqtj3sbGx\nlXphS5Dk4dguXNDbj3/8sd6o8MUX9cFHzrIFeXo6DBumu6vmz4fmze0dkRCWIVuyS/JwSCdO6K3Q\nv/gCunfXlUZwsL2jKp+vvoIXXtD/XnnFcWd9CVERdtuS/YcffqjUiwrX9OuvehaSv7/e3+mXX/S5\n4M6UOLKyYPBgva4kPh7+9S9JHELcSqnJQylVbMbUVdu3b7daQMK5KKW3Qe/ZU3dJtWoFhw7Bv/8N\nXl72jq581qzRia9hQ73Fe7t29o5ICMdVareVUoo2bdqwZ88eW8ZkNum2sp/8fFi0SO9sC3o8IyIC\nStmxxmFduqSPhf3mG93V1rOnvSMSwrqs3m1lMBho3749SUlJlXoR4TqysuD99/UA+MKFegbV1e4q\nZ0wcO3fqc0BOntQnD0riEMI8ZQ6Yt2zZkoMHD9K0aVNq/bmU1mAwkJKSYpMASyOVh+0cPapnTc2b\nB3376qNeAwLsHVXFmUz60KiPPtJdbEOGyBRcUXVY4rOzzBXmq1atqtQLCOe2fbuuLtauhchI/dd5\nOTYKcEhHjuhKyc1Nj200aWLviIRwPmXOtvLy8sLT05PbbruNatWqFf0TrquwEJYvh4cf1if0deig\nP3CnTnXuxKGU3nzxwQfh8cd1QpTEIUTFlFl5zJw5k0mTJnHvvfdS/bo5i7t377ZqYMK2jEbYsUN/\noH75Jdx1l97ZdtAg/Re6s/vjD3j2WTh4UD+jv7+9IxLCuZU55uHt7U1SUhL169e3VUxmkzGPilMK\n9u7VH6Tr1umdYj08oFs3GDAAunRxnTGAH3+EkSPhb3+Dt9/W554LUZXZZMyjSZMm1KlTp1IvIhzD\n4cPXksW6dbq66NZNL4r77DP4y1/sHaFl5eXp6mnFCj0zTHbrF8JySqw8PvpzAn9qaippaWk89thj\nRcfOGgwGxo8fb7soSyCVR+lOnYKEhGsJ4/Jl6NpVJ4yuXZ1vEV95JCXB0KF6fGPmTLjnHntHJITj\nsGrlceHCBQwGA02aNMHT05P8/Hzy8/Mr9WLCurKyYP36a8ni1Cn913bXrnp/KT8/1+mKKonRCFOm\nwCef6KTx5JP2jkgI1yQbIzqxvDx9iNLVZJGWpk/h69ZN/2vbtmrty3TggK426tSB2Fhwd7d3REI4\nJtlVt4olj/x83R1zNVkkJ0Ng4LVuqJAQuP12e0dpe0rpMZvXX4e33oLnn3eebd+FsAdJHi6ePEwm\nvfXH1WRx9ajWq8mic2c96F2VnTkDf/87ZGTo42EfeMDeEQnh+CR5uFjyUAp+++1askhMhHvvvZYs\nwsKgXj17R+k44uLguefgmWd0xeGMe2sJYQ92SR6ffPIJDRo0YNCgQbjZefWYKySP48eLT591c7uW\nLLp2hcaN7R2h47lwAcaN0/+95s+HTp3sHZEQzsUm6zxupJRiw4YNLFiwgOXLl1fqxauizMxriWLt\nWsjJuZYoJk7UR526+oyoyti8WQ+Kh4XpLr3ate0dkRBVU4W6rU6fPs19991njXjKxRkqj5wcPX32\nasI4dgxZYCqcAAAX8klEQVRCQ69VF61by+CuOfLzYdIkmDMHZs2C/v3tHZEQzsumlUdWVhbffvst\nixYtYt++fZw8ebJSL+yqLl3Sfx1frSz27tWzoLp2hZgYfXaEK+wVZUv79sFTT0GjRrBrFzjA3y1C\nVHmlVh4XL14kLi6ORYsWsWvXLnJycli6dCmhoaHFNkm0F0eoPIxGfVb31XGLpCRdTVytLDp2lL2U\nKqqwUC/2mzQJ3n1Xb2woXXpCVJ5VB8wHDx7Mtm3b6NmzJ08++SQPP/wwPj4+HDlypFIvaEn2SB6F\nhbBnz7VksWEDNG16LVl06aIXqYnKycjQs6iys/Wg+P332zsiIVyHVbut9u3bx7333oufnx9+fn4O\nUWnYg1Jw6NC1ZJGQAHffrZPF0KH6zOuGDe0dpWtZsgTGjIHRo/XCP+nmE8LxlNpttW/fPhYtWsTX\nX39Nw4YN2bdvH3v27HGIwXKwbuVxdRro2rV6sd7102flACHrOH9eJ41t2/SCvwcftHdEQrgmm67z\n+OWXX1i0aBFLlizBw8ODzZs3V+qFLcGayWPZMjhxQieN+++XvnZrW78ehg2DPn302eK1atk7IiFc\nl9WTh8lkYsaMGYwbN67oZ4WFhWzYsIGHH364Ui9sCY4wYC4q58oV+N//1edtfP65Th5CCOuySeUR\nHBzM9u3bK/Ui1iLJw7nt3g1DhoC3t97YUMaOhLANS3x2lrk8rXPnzowZM4YNGzawY8cOkpOT2bFj\nh1k3j4+Px9fXlxYtWjB16tSbfp+WlkaHDh2oWbNm0eFT5rYVzquwED76SI8fjRsH330niUMIZ1Nm\n5REWFobhFh3+CQkJpd7YZDLRsmVL1qxZg7u7O8HBwSxatAg/P7+iazIzMzl27BhLly6lbt26TJgw\nwey2IJWHMzp+XI9tFBToCQnNmtk7IiGqHqtO1d28eTMdOnQgMTGxQjdOSkrCx8cHrz/POo2IiCAu\nLq5YAmjYsCENGzZkxYoV5W4rnItS8NVXutIYP16fLV5FZ38L4RJK7LaaN28e7dq1IyIigrlz53L6\n9Oly3TgjIwNPT8+i7z08PMjIyLB6W+F4zp2DiAi9SnzVKnj1VUkcQji7EiuPWbNmAXqtx8qVKxk+\nfDjZ2dl07dqV3r1706lTp1IXDt6qq8tc5Wk7ceLEoq/DwsIICwur8OsKy/vpJ71SfNAgmDsX7rjD\n3hEJUfUkJiZWuBepJGWu3b26wnz8+PFcvHiRhIQEvv76a8aNG0dycnKJ7dzd3UlPTy/6Pj09HQ8P\nD7OCKk/b65OHcByXLukK47vv9Cr8Hj3sHZEQVdeNf1hPmjSp0vcs18YPd955J48++ihdunShdhkH\nKQQFBXHgwAGOHj1K48aNWbx4MYsWLbrltTcO3JSnrXA8O3boXXD9/fWZG3L6oRCup0K7BrVq1Yrj\nx4+XfmM3N6Kjo+nVqxcmk4nIyEj8/PyIiYkBICoqitOnTxMcHExOTg7VqlVj+vTppKamctddd92y\nrXBsJhN88AH8+9/w8ccweLCszBfCVZU4VffGdRfXe+edd8jKyrJaUOaSqbqO4/BhePppfY743Lmy\n/5cQjsyqiwRff/11srKyyM3NLfbvwoULFBYWVupFhetQSo9phITAwIGwZo0kDiGqghK7rQIDA+nf\nvz9BQUE3/W7OnDlWDUo4h8xMfUDT4cN6F+I2bewdkRDCVkqsPGJjY2natOktf+eoe10J21mxAgIC\noEULfXqiJA4hqhazt2QHOHXqFI0aNbJmPOUiYx62l5cHL74IK1fCl1+CA2yuLIQoJ5tsjHi9Rx99\ntFIvJpzbtm0QGKgTyK+/SuIQoior11Rd+Su/aioo0FuL/Oc/EB0NTzxh74iEEPZWruQxcuRIa8Uh\nHNT+/fqs9nvugZ07oXFje0ckhHAE5RrzcDQy5mE9SkFMjD7lb+JEeP55WfAnhKuw6pbsouo6fRoi\nI+HMGdi4EXx97R2REMLRlGvAXLi+pUuhbVs9ML55syQOIcStSeUhALhwAf75T1i/Xu+E27GjvSMS\nQjgyqTwEGzfqBX/Vq8OuXZI4hBBlk8qjCsvP14PhsbEwaxY8/ri9IxJCOAtJHlVUaqo+c8PdXVcb\nf/mLvSMSQjgT6baqYgoLYcYM6NIFnnsOli2TxCGEKD+pPKqQjAwYMQJycmDrVvDxsXdEQghnJZVH\nFbF4sZ5+GxqqB8glcQghKkMqDxeXnQ1jxsD27Xob9eBge0ckhHAFUnm4sIQEPQX37rv1vlSSOIQQ\nliKVhwu6fFnvSbVoEXz+OYSH2zsiIYSrkeThYlJS9BTcFi30mRsNGtg7IiGEK5JuKxdhMsGHH0K3\nbjBhAnzzjSQOIYT1SOXhAo4dg2HDdAJJSoJmzewdkRDC1Unl4cSUgvnzIShIj2skJkriEELYhlQe\nTursWRg1CvbuhdWr9RoOIYSwFak8nNCqVXoKrrs7JCdL4hBC2J5UHk7k4kV45RWIi4Mvv9SD40II\nYQ9SeTiJ5GRo3x7++ENPwZXEIYSwJ6smj/j4eHx9fWnRogVTp0695TVjx46lRYsWBAQEsHPnzqKf\ne3l54e/vT2BgIA8++KA1w3RoRiO8844eEH/zTb3wr25de0clhKjqrNZtZTKZGDNmDGvWrMHd3Z3g\n4GD69euHn59f0TU//vgjBw8e5MCBA2zbto1Ro0axdetWAAwGA4mJidSrV89aITq8Q4dg6FC44w5d\neXh62jsiIYTQrFZ5JCUl4ePjg5eXFzVq1CAiIoK4uLhi1yxbtoxhw4YBEBISQnZ2NmfOnCn6vVLK\nWuE5NKX0tiIhIfDEE/DTT5I4hBCOxWrJIyMjA8/rPvE8PDzIyMgw+xqDwUD37t0JCgpi9uzZ1grT\n4fz+O/TvD9HRet3GuHFQTUamhBAOxmrdVgaDwazrSqouNm7cSOPGjcnMzKRHjx74+voSGhpqyRAd\nzvLl8Oyz8PTT8PXXcPvt9o5ICCFuzWrJw93dnfT09KLv09PT8fDwKPWaEydO4O7uDkDjxo0BaNiw\nIQMGDCApKemWyWPixIlFX4eFhREWFmbBp7CN3FwYP14v9lu8WB8RK4QQlpKYmEhiYqJlb6qspKCg\nQDVv3lwdOXJEXblyRQUEBKjU1NRi16xYsUKFh4crpZTasmWLCgkJUUoplZeXp3JycpRSSuXm5qqO\nHTuqVatW3fQaVgzfZrZsUcrHR6lhw5TKzrZ3NEKIqsASn51Wqzzc3NyIjo6mV69emEwmIiMj8fPz\nIyYmBoCoqCj69OnDjz/+iI+PD7Vq1SI2NhaA06dPM3DgQACMRiNDhgyhZ8+e1grVLgoK4O23ISYG\nPv0UBg2yd0RCCGE+w59ZyCkZDAannJH122/6zI0GDeCLL6BRI3tHJISoSizx2SnzeGxIKV1ldOoE\nw4fDjz9K4hBCOCfZ28pGTp2CZ57R24ts3Ai+vvaOSAghKk4qDxv47ju9821wMGzeLIlDCOH8pPKw\nopwcGDtWVxrffw8dOtg7IiGEsAypPKxkwwZ95sZtt8GuXZI4hBCuRSoPC7tyBd56S5+3ERMD/frZ\nOyIhhLA8SR4WtHcvDBkCTZroMzfuvdfeEQkhhHVIt5UFFBbCxx/Dww/DmDH6pD9JHEIIVyaVRyWd\nOKHXbOTlwdat4ONj74iEEML6pPKohEWLoF07CAvTA+SSOIQQVYVUHhWQlQXPPw87duhV4kFB9o5I\nCCFsSyqPclq7Vk/BrVdPJw9JHEKIqkgqDzNdvgz/+pc+b2POHOjd294RCSGE/UjyMMOuXXoXXF9f\nSEmB+vXtHZEQQtiXdFuVwmSCqVOhRw94+WVYskQShxBCgFQeJTp6VJ8lDrB9O3h52TMaIYRwLFJ5\n3EApvbVIcDA89hgkJEjiEEKIG0nlcZ0//oDnnoO0NFizRs+qEkIIcTOpPP4UH6+TRdOm8MsvkjiE\nEKI0Vb7yuHgRXnoJli+H+fOha1d7RySEEI6vSlce27frE/6ys/UuuJI4hBDCPFWy8jAa4b33YOZM\nmDEDIiLsHZEQQjiXKpc8Dh6EoUOhVi29vYiHh70jEkII51Nluq2Ugtmz4aGHdKWxerUkDiGEqKgq\nUXmcOQMjR0J6OqxfD61a2TsiIYRwbi5feSxbBm3b6oSxbZskDiGEsASXrTxyc2HcOL3Y7+uvITTU\n3hEJIYTrcMnKY8sWXW0YjXoKriQOIYSwLKsmj/j4eHx9fWnRogVTp0695TVjx46lRYsWBAQEsHPn\nznK1vVFBAbzxBgwYAB98ALGxUKeORR5FCCHE9ZSVGI1G5e3trY4cOaLy8/NVQECASk1NLXbNihUr\nVHh4uFJKqa1bt6qQkBCz2yql1PXh79unVPv2SoWHK3XypLWeyrYSEhLsHYJVyfM5L1d+NqVc//ks\n8dFvtcojKSkJHx8fvLy8qFGjBhEREcTFxRW7ZtmyZQwbNgyAkJAQsrOzOX36tFltryU/iI6Gzp0h\nMhJWrIBGjaz1VLaVmJho7xCsSp7Pebnys4HrP58lWG3APCMjA09Pz6LvPTw82LZtW5nXZGRkcPLk\nyTLbXhUeDufOwaZN0LKlhR9CCCHELVmt8jAYDGZdpyuoigsJkcQhhBC2ZrXKw93dnfT09KLv09PT\n8bhhSfeN15w4cQIPDw8KCgrKbAvg7e3N5MkGJk+2wgM4iEmTJtk7BKuS53Nervxs4NrP5+3tXel7\nWC15BAUFceDAAY4ePUrjxo1ZvHgxixYtKnZNv379iI6OJiIigq1bt3LPPffwl7/8hfr165fZFuDg\nwYPWCl8IIUQprJY83NzciI6OplevXphMJiIjI/Hz8yMmJgaAqKgo+vTpw48//oiPjw+1atUiNja2\n1LZCCCEcg0FVdtBBCCFEleOwK8xtvcDQ1irzfF5eXvj7+xMYGMiDDz5oq5DNVtazpaWl0aFDB2rW\nrMlHH31UrraOoDLP5+jvHZT9fAsXLiQgIAB/f386depESkqK2W0dQWWezxXev7i4OAICAggMDKR9\n+/asW7fO7LbFVHqliBXYYoGhPVXm+ZRSysvLS509e9amMZvLnGf7/fff1fbt29Xrr7+upk2bVq62\n9laZ51PKsd87pcx7vs2bN6vs7GyllFIrV650uf/tlfR8SrnG+5ebm1v0dUpKivL29ja77fUcsvKw\n1QJDe6no8505c6bo98pBexvNebaGDRsSFBREjRo1yt3W3irzfFc56nsH5j1fhw4duPvuuwH9/5sn\nTpwwu629Veb5rnL2969WrVpFX+fm5tKgQQOz217PIZNHSYsHzbnmVgsMb2xrb5V5PtBraLp3705Q\nUBCzZ8+2TdBmMufZrNHWVioboyO/d1D+55szZw59+vSpUFt7qMzzgeu8f0uXLsXPz4/w8HBmzJhR\nrrZXOeSW7LZaYGgvlX2+jRs30rhxYzIzM+nRowe+vr6EOsjWweY+m6Xb2kplY9y0aRONGjVyyPcO\nyvd8CQkJfPHFF2zatKncbe2lMs8HrvP+9e/fn/79+7NhwwaGDh1KWlpauV/LISuPyiwwNKetvVX0\n+dzd3QFo3LgxoLtHBgwYQFJSkg2iNk9l/vu7yntXmkZ/brzmiO8dmP98KSkpjBw5kmXLllG3bt1y\ntbWnyjwfuM77d1VoaChGo5Fz587h4eFRvvfP4iM2FlBQUKCaN2+ujhw5oq5cuVLmgPKWLVuKBrXM\naWtvlXm+vLw8lZOTo5TSA18dO3ZUq1atsu0DlKI8//3feuutYgPKrvLeXXXj8zn6e6eUec937Ngx\n5e3trbZs2VLutvZWmedzlffv4MGDqrCwUCmlVHJysmrevLnZba/nkMlDKaV+/PFHdf/99ytvb281\nZcoUpZRSs2bNUrNmzSq65vnnn1fe3t7K399fJScnl9rW0VT0+Q4dOqQCAgJUQECAatWqlUM+X1nP\ndurUKeXh4aHq1Kmj7rnnHuXp6akuXLhQYltHU9Hnc4b3Tqmyny8yMlLVq1dPtW3bVrVt21YFBweX\n2tbRVPT5XOX9mzp1qmrVqpVq27at6ty5s0pKSiq1bUlkkaAQQohyc8gxDyGEEI5NkocQQohyk+Qh\nhBCi3CR5CCGEKDdJHkIIIcpNkocQQohyk+QhnEJ6ejrNmzcnKysLgKysLJo3b87x48crfe/ExET6\n9u0LwPLly+2ylfjJkyd54oknKtzey8uLc+fOWTAiIUonyUM4BU9PT0aNGsWrr74KwKuvvkpUVBRN\nmjSx6Ov07duXV155xaL3NEfjxo1ZsmRJhds7w75SwrVI8hBOY9y4cWzdupWPP/6YzZs38+KLLwKQ\nl5dH9+7dad++Pf7+/ixbtqzMe8XHx+Pn50f79u35/vvvi34+d+5c/vGPfwAwfPhwRo8eTYcOHfD2\n9iYxMZFhw4bxwAMPMGLEiKI2q1evpmPHjrRv354nn3ySvLw8QFcDEydOLIrrt99+A2D9+vUEBgYS\nGBhIu3btyMvL4+jRo7Rp0waAy5cvM2LECPz9/WnXrh2JiYlFsQ0cOJDw8HDuv//+EpPcggULCAkJ\nITAwkOeee47CwkJMJhPDhw+nTZs2+Pv7M336dABmzJhBq1atCAgIYPDgweV5O0RVZ60l8kJYQ3x8\nvDIYDGrNmjVFPzMajUV7DmVmZiofH59S73Hp0iXl6empDh48qJRS6sknn1R9+/ZVSikVGxurxowZ\no5RSatiwYWrw4MFKKaXi4uJU7dq11Z49e1RhYaFq37692rVrl8rMzFRdunRRFy9eVEop9f7776vJ\nkycrpfTBQdHR0UoppT799FP197//XSmlVN++fdXmzZuVUnq/JKPRqI4cOaJat26tlFJq2rRpKjIy\nUimlVFpammrSpIm6fPmyio2NVc2bN1c5OTnq8uXLqmnTpurEiRNFr3X27FmVmpqq+vbtq4xGo1JK\nqdGjR6t58+ap5ORk1aNHj6L/BufPn1dKKdW4cWOVn59f7GdCmEMqD+FUVq5cSePGjdm9e3fRzwoL\nC3nttdcICAigR48enDx5kt9//73Ee6SlpdGsWTO8vb0BeOqpp265/b3BYCgaC2ndujX33XcfrVq1\nwmAw0KpVK44ePcrWrVtJTU2lY8eOBAYGMm/evGLjMAMHDgSgXbt2HD16FIBOnToxbtw4Zs6cSVZW\nFtWrVy/2ups2beKpp54CoGXLljRt2pT9+/djMBjo1q0btWvX5vbbb+eBBx7g2LFjRe2UUqxdu5bk\n5GSCgoIIDAxk7dq1HDlyhObNm3P48GHGjh3LqlWrqF27NgD+/v787W9/Y+HChTfFIURpHPI8DyFu\nZdeuXaxZs4YtW7bQuXNnIiIiuO+++1i4cCF//PEHO3bsoHr16jRr1ozLly+XeJ8bxwdulTiuuu22\n2wCoVq0at99+e9HPq1WrhtFopHr16vTo0YOvvvrqlu2vtqlevTpGoxGAV155hccee4wVK1bQqVMn\nVq1aVezepcV0/XXX3/N6w4YNY8qUKTf9PCUlhfj4eGbNmsXXX3/NnDlzWLFiBT///DPLly/n3Xff\nZffu3ZJEhFmk8hBOQSnFqFGjmD59Op6enrz00ktFYx45OTnce++9VK9enYSEhGJ/jXfr1o1Tp04V\nu1fLli05evQohw8fBmDRokUVislgMPDQQw+xadMmDh06BOjxlwMHDpTa7tChQ7Rq1YqXX36Z4ODg\norGQq0JDQ1m4cCEA+/fv5/jx4/j6+pZ5+NnVyuSbb74hMzMTgHPnznH8+HHOnj2L0Whk4MCBvP32\n2+zYsQOlFMePHycsLIz333+f8+fPF43XCFEWqTyEU5g9ezZeXl5069YNgNGjRxMbG8uGDRsYMmQI\nffv2xd/fn6CgIPz8/ADdnXXo0CHq1atX7F41a9bks88+49FHH+XOO+8kNDS06EPTYDAUq0xK+vqq\nBg0aMHfuXAYPHsyVK1cAePfdd2nRosVN115tP336dBISEqhWrRqtW7cmPDycjIyMot+PHj2aUaNG\n4e/vj5ubG19++SU1atS4KbZb8fPz45133qFnz54UFhZSo0YNPv30U2rWrMmIESMoLCwE4P3338dk\nMjF06FDOnz+PUop//vOf1KlTp9T7C3GVbMkuXNbevXuJjY1l2rRp9g5FCJcjyUMIIUS5yZiHEEKI\ncpPkIYQQotwkeQghhCg3SR5CCCHKTZKHEEKIcpPkIYQQotwkeQghhCi3/wdpj6jlgjQbEgAAAABJ\nRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x7fa93d80a710>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Amount of catalyst needed is 91 kg cat\n", + "The answer differs from those given in book as trapezoidal rule is used for calculating area\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 18.6 pageno : 416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "XA = 0.35;\n", + "FAo = 2000. #mol/hr\n", + "CAo = 0.1 #mol/litre\n", + "eA = 3.\n", + "k = 96. # mol/kg cat\n", + "\n", + "# Calculations\n", + "CA = CAo*((1-XA)/(1+eA*XA))\n", + "rA = k*CA;\n", + "W = FAo*XA/rA;\n", + "\n", + "# Results\n", + "print \"The amount of catalyst neededkg, is %.f kg\"%(W)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The amount of catalyst neededkg, is 230 kg\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch19.ipynb b/Chemical_Reaction_Engineering/ch19.ipynb new file mode 100755 index 00000000..419b424a --- /dev/null +++ b/Chemical_Reaction_Engineering/ch19.ipynb @@ -0,0 +1,204 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 19 : The Packed Bed Catalytic Reactor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 19.1 page no : 438" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "%pylab inline\n", + "\n", + "from matplotlib.pyplot import *\n", + "\n", + "# Variables\n", + "Cp = 40. #J/mol.k\n", + "Hr = 80000. #J/mol.k\n", + "FAo = 100. #mol/s\n", + "nA = 1.\n", + "nB = 7.\n", + "n = nA + nB\n", + "T1 = 300. #k\n", + "T2 = 600. #k\n", + "T3 = 800. #k\n", + "\n", + "# Calculations\n", + "m = Cp/Hr;\n", + "XA = [0.8,0.78,0.7,0.66,0.5,0.26,0.1,0];\n", + "inv_rA = [20,10,5,4.4,5,10,20,33];\n", + "\n", + "\n", + "plot(XA,inv_rA)\n", + "xlabel(\"Xa\")\n", + "ylabel(\"1/8 X 1/-rA\")\n", + "\n", + "print ('From the plot we can say that a recycle reactor should be used')\n", + "W = FAo*38.4\n", + "R = 1.;\n", + "Q1 = n*FAo*Cp*(T2-T1);\n", + "Q2 = n*FAo*Cp*(T1-T3);\n", + "\n", + "# Results\n", + "print \" The weight of catalyst needed is %.f kg\"%(W)\n", + "print \" The Recycle Ratio is %.f\"%(R)\n", + "print \" The heat exchange for feed is %.f MW\"%(Q1/10**6)\n", + "print \" The heat excahnge for the product is %.f MW\"%(Q2/10**6)\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "From the plot we can say that a recycle reactor should be used\n", + " The weight of catalyst needed is 3840 kg\n", + " The Recycle Ratio is 1\n", + " The heat exchange for feed is 10 MW\n", + " The heat excahnge for the product is -16 MW\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPW9x/H3mGAhCAQEAgKaALKEJYlwjViQiRggIhiK\nRSnSiClavF5FqNtDbaK3l8ZetQLqBRUFK6VSF5QHCGXJUBEoyiJRoAgNJGAIhCRqCIYs5/5xTGQL\nTCY5c2b5vJ5nnmzDOR9GnG9+5/f7fY/DMAwDEREJWpfZHUBEROylQiAiEuRUCEREgpwKgYhIkFMh\nEBEJcioEIiJBzrJC8P333xMfH09sbCzR0dE8+eSTAKSnp9O5c2fi4uKIi4sjMzPTqggiIuIGh5X7\nCMrKyggLC6OyspLBgwfz3HPPsW7dOlq0aMH06dOtOq2IiNSDpZeGwsLCADh9+jRVVVW0bt0aAO1h\nExHxHZYWgurqamJjY4mIiCAhIYE+ffoAMHfuXGJiYkhNTaWkpMTKCCIicgmWXhqq8c033zBixAgy\nMjKIjo6mXbt2ADz11FPk5+ezYMECqyOIiEgdQr1xklatWjFq1Cg+++wznE5n7fd/9atfMXr06POe\n3717dw4cOOCNaCIiAaNbt27s37+/3n/OsktDhYWFtZd9Tp06xZo1a4iLi+Po0aO1z/nggw/o16/f\neX/2wIEDGIbhc4+0tDTbMyiTMgVjLmVy7+HpL9CWjQjy8/NJSUmhurqa6upqJk2axLBhw/jlL3/J\nzp07cTgcREVFMX/+fKsiiIiIGywrBP369WP79u3nff+tt96y6pQiIuIB7SyuhzPnN3yFMrlHmdzn\ni7mUyVpeWTVUXw6HAx+MJSLi0zx979SIQEQkyKkQiIgEORUCEZEgp0IgIhLkVAhERIKcCoGISJDz\n2ULw9dd2JxARCQ4+WwjmzrU7gYhIcPDZDWVXXmlw8CBccYXdaURE/EPAbSgbOhTefNPuFCIigc9n\nRwSffGIwaRLs2wchIXYnEhHxfQE3IrjxRmjfHpYtszuJiEhg89lCADBjBjz/vN0pREQCm08XgrFj\n4ehR2LzZ7iQiIoHLpwtBSAhMmwYvvGB3EhGRwOWzk8U1sb77DqKi4NNPzY8iInJhATdZXKNFC0hN\nhRdftDuJiEhg8vkRAcDhw9C/Pxw4AK1b2xhMRMSHBeyIAKBzZxg1Cl591e4kIiKBxy9GBAA7d8Jt\nt8G//w2XX25TMBERHxbQIwKA2Fjo2ROWLrU7iYhIYLGsEHz//ffEx8cTGxtLdHQ0Tz75JABFRUUk\nJibSo0cPhg8fTklJidvHrNlg5ntjGBER/2VZIWjatClZWVns3LmTXbt2kZWVxcaNG8nIyCAxMZF9\n+/YxbNgwMjIy3D7myJFQXg5ZWValFhEJPpZeGgoLCwPg9OnTVFVV0bp1az766CNSUlIASElJYVk9\nmglddhlMn662EyIijcnSQlBdXU1sbCwREREkJCTQp08fCgoKiIiIACAiIoKCgoJ6HfPuu2HbNtiz\nx4rEIiLBJ9TKg1922WXs3LmTb775hhEjRpB1zjUdh8OBw+G44J9NT0+v/dzpdOJ0OgFo2hSmTjXb\nTrz2mlXJRUR8n8vlwuVyNfg4Xls++t///d80a9aM119/HZfLRYcOHcjPzychIYG9e/eeHeoSS6CO\nH4cePWDvXvhhcCEiEvR8bvloYWFh7YqgU6dOsWbNGuLi4hgzZgyLFi0CYNGiRSQnJ9f72O3awfjx\n8MorjRpZRCQoWTYiyM7OJiUlherqaqqrq5k0aRKPPvooRUVFjB8/ntzcXCIjI1m6dCnh4eFnh3Kj\nqu3da97O8uBBaNbMir+BiIh/8XRE4Dc7iy9k9Gjzcd99XgglIuLjgrIQuFzw61/D7t3m0lIRkWDm\nc3ME3jB0KDRvDitX2p1ERMR/+XUhcDi0wUxEpKH8uhCAuXpo/37Yvt3uJCIi/snvC0GTJvDQQxoV\niIh4yq8ni2uUlEDXrvD559Cli4XBRER8WFBOFtcID4eUFJg71+4kIiL+JyBGBGBuLBs4EHJyzBve\ni4gEm6AeEQBERsKwYbBggd1JRET8S8CMCAC2bv1xFVGopX1VRUR8T9CPCACuvx46d4b337c7iYiI\n/wioQgC6r7GISH0FXCEYMwZOnIBNm+xOIiLiHwKuEISEwCOPaIOZiIi7AmqyuMbJk+Yqos2boXv3\nxsslIuLLNFl8hubNzXsUvPii3UlERHxfQI4IAPLzoU8fcylpmzaNFExExIdpRHCOjh3h9tth3jy7\nk4iI+LaAHREAZGfDiBFm24mf/KQRgomI+DCNCC6gXz/o2xeWLLE7iYiI7wroQgDmBrMXXtAGMxGR\nugR8IRg+3CwCa9fanURExDcFfCHQfY1FRC7OskKQl5dHQkICffr0oW/fvsyZMweA9PR0OnfuTFxc\nHHFxcWRmZloVodYvfgG7dsEXX1h+KhERv2PZqqGjR49y9OhRYmNjKS0tZcCAASxbtoylS5fSokUL\npk+fXneoRlo1dKb/+R84cADeeKNRDysi4jN8btVQhw4diI2NBeCKK66gd+/eHDlyBKDR3+Td8etf\nw7JlcPSo108tIuLTvDJHcPDgQXbs2MENN9wAwNy5c4mJiSE1NZWSkhJvRODKK2HCBHjpJa+cTkTE\nb1i+oay0tBSn08lvf/tbkpOTOXbsGO3atQPgqaeeIj8/nwXn3F/S4XCQlpZW+7XT6cTpdDY4y1df\nwY03wqFDEBbW4MOJiNjK5XLhcrlqv3766ac9uuJiaSGoqKjgtttuIykpiWnTpp3384MHDzJ69Giy\ns7PPDmXBHEGN5GRzt/HUqZYcXkTENj43R2AYBqmpqURHR59VBPLz82s//+CDD+jXr59VES5oxgz4\n05+gutqrpxUR8VmWjQg2btzITTfdRP/+/XE4HADMmjWLJUuWsHPnThwOB1FRUcyfP5+IiIizQ1k4\nIjAMiI+HmTPNpnQiIoHC0/fOgG46V5d33oGXX4Z//MOyU4iIeJ3PXRryZePGQW4ufPqp3UlEROwX\nlIUgNBQeflhtJ0REIEgvDQF8+y1ERcH27XDNNZaeSkTEK3RpqJ5atoTJk+GHFkgiIkEraEcEYM4T\nxMXBv/8NrVpZfjoREUtpROCBq682N5e9/rrdSURE7BPUIwKAbdtg7FizM2mTJl45pYiIJTQi8NCA\nAdC1K7z7rt1JRETsEfSFAMy2E88/r/sai0hwUiEARo2C0lLtNBaR4KRCAFx2GTzyCLzwgt1JRES8\nL+gni2uUlUFkJGzcCD16ePXUIiKNQpPFDRQWZt7O8k9/sjuJiIh3aURwhoIC6N0b9u2Dtm29fnoR\nkQbRiKARRETAz34G//d/dicREfEejQjOsXs33HwzHDwITZvaEkFExCMaETSS6Gi47jpYvNjuJCIi\n3qERwQWsWwcPPQRffAE/3GVTRMTneW1EcOrUKf72t7/V+0T+5Oabzb5Dq1fbnURExHpuFYKqqipW\nrFjB3XffTWRkJH/961+tzmUrh+PHthMiIoGuzktDhmGwYcMGlixZwsqVK4mPj+fjjz8mJyeHsLAw\na0PZfGkI4PRp8w5mK1dCTIytUURE3OLpe2edhaBz585ER0dz7733Mnr0aJo3b05UVBQ5OTkNDnvJ\nUD5QCAAyMmDPHli0yO4kIiKX1uhzBHfccQf79+/nnXfeYfny5Zw8ebJBAf3R/ffD8uXw9dd2JxER\nsU6dheDFF19k//79/Nd//Rfr1q2jZ8+eHD9+nHfeeYfS0tJLHjgvL4+EhAT69OlD3759mfPDzYGL\niopITEykR48eDB8+nJKSksb72zSy1q3h7rth7ly7k4iIWMft5aOnT59m9erVLFmyhNWrV3PixImL\nPv/o0aMcPXqU2NhYSktLGTBgAMuWLePNN9+kbdu2PPbYYzz77LMUFxeTkZFxdigfuTQE5v2M4+Mh\nJweuuMLuNCIidWv0OQKAyspKUlJSWHzO7qqysrJ6TxgnJyfz4IMP8uCDD7JhwwYiIiI4evQoTqeT\nvXv3nh3KhwoBwB13gNMJDz5odxIRkbpZso8gNDSUQ4cOUV5eftb361sEDh48yI4dO4iPj6egoICI\niAgAIiIiKCgoqGdk75sxw+xKWlVldxIR8QWHD5tXCwJF6KWeEBUVxeDBgxkzZkxtAXA4HEyfPt2t\nE5SWljJu3Dhmz55NixYtzvqZw+HAUcfW3fT09NrPnU4nTqfTrfNZYdAg6N4dpk2DOXO021gk2L39\nNhQVwR//aG8Ol8uFy+Vq8HEuOUdQ84Z87ht2WlraJQ9eUVHBbbfdRlJSEtOmTQOgV69euFwuOnTo\nQH5+PgkJCT5/aQjgm2/MHcejRsEzz9idRkTs9MADZl8yX7tc7Ol75yVHBGf+Zp6fn0/Hjh3dOrBh\nGKSmphIdHV1bBADGjBnDokWLePzxx1m0aBHJycn1Dm2HVq0gMxOGDDFXEz3yiN2JRMQuubkwYoTd\nKRpPvZrOXXfddWzfvt2t527cuJGbbrqJ/v37144m/vCHP3D99dczfvx4cnNziYyMZOnSpYSHh58d\nygdHBDVyc81ikJYG995rdxoRsUP//uZG07g4u5OczbIRwZnqc4LBgwdTXV19wZ+tXbu2Pqf1KVdf\nDWvWmKuIWrWCcePsTiQi3paba74XBIp6FYJf/epXVuXwKz16wIoV5tCwZUtITLQ7kYh4yzffQEUF\ntGljd5LGU+eloQEDBjB48GCSkpJwOp009eLtunz50tCZNm6EsWPho4/MlUUiEvi++AJ+/nOzD5mv\nafR9BFu2bCE5OZmsrCyGDh1KUlISs2fPZt++fQ0KGkgGD4a33oLkZNi1y+40IuINeXmBdVkI6jFZ\nfOTIETIzM1m9ejX79+/nhhtu4JVXXrEmlJ+MCGq88w5Mnw4bNpj7DUQkcM2fD599Bq+9ZneS81k+\nWdypUydSU1NJTU2lqqqKLVu21PtkgerOO+Hbb825go0boVMnuxOJiFUCbaIYPLx5/dSpU/npT3/a\n2Fn82pQpMHWqWQwKC+1OIyJWCcRCUOeIoKio6ILfNwyDFStWWBbInz32GBQXQ1ISrF8P53TUEJEA\nkJsLXbrYnaJx1VkI2rZtyzXXXHPBnx0/ftyyQP5u1iwoKYHbbzdvc+nFxVYi4gWBOCKoc7K4e/fu\nrFu37oLFoEuXLuTl5VkXys8mi89VVWXe0KasDN59F5o0sTuRiDSGqipo1sycE/TFX/IaffnotGnT\nKC4uvuDPHn300XqfKJiEhJjLSisrzTYUdWywFhE/U1BgbiTzxSLQEPXqNeQt/j4iqFFWBiNHQkyM\n2leLBIItW+Chh2DrVruTXJglN6aRhgkLg+XL4ZNPzCZ1IuLfAnF+AOrZa0jqT+2rRQKHCoF4rH17\ns2PpkCFmYVD7ahH/lJsLXbvanaLx1Xlp6L333rvg98vLy3lGt+iqt5r21b/9LdTx0oqIjwvEPQRw\nkUIwf/58br31Vv59xh2aV61aRUxMDCdOnPBKuEBT07566lSzKIiIfwnUS0MXXTW0ZMkSZs6cycSJ\nE8nOzubYsWO88sorxMbGWhsqQFYN1UXtq0X8U7t2ZhvqiAi7k1yYp++dFy0ElZWVpKWl8eKLLxIe\nHk5WVhY9evRoUFC3QgV4IQBYtQruucccGfTvb3caEbmUsjJzD0FZGVzmo+stG3356Mcff8yAAQM4\nceIEhw8f5uWXX2b06NH87ne/o7y8vEFhxexHNGeO+XH/frvTiMil5OWZ8wO+WgQaos6/0iOPPMJr\nr73GvHnzaN26NcnJyWzfvp3y8nJiYmK8mTFg3XknpKebHUuPHLE7jYhcTKDOD8BFLg1VVVUREhJy\nwT/05Zdf0qdPH+tCBcGloTP98Y+wcCH84x/Qtq3daUTkQhYsMOf33nzT7iR1a/RLQ3UVAcDSIhCM\nHnvM7FaalGQ2sxIR3xPII4IAvNrln2bNgoEDzYJw6pTdaUTkXIG6hwAsLgT33nsvERER9OvXr/Z7\n6enpdO7cmbi4OOLi4sjMzLQygt9wOOCll6BDB3PuoKLC7kQicqZAvGl9jYsWgtzcXEpKSgDIycnh\nb3/7G1988YXbB588efJ5b/QOh4Pp06ezY8cOduzYwciRIz2IHZhCQmDRIrWvFvFFQXlpKCMjg6FD\nhxIfH8/rr79OUlISmZmZ3HnnnTz//PNuHXzIkCG0bt36vO8H00RwfV1+uXkzm0OH4OGHQS+ViP0M\n48flo4GozqZzb731Frt37+bkyZNERkaSk5NDu3btOHnyJNdffz0zZszw+KRz587lrbfeYuDAgTz/\n/POEh4d7fKxAVNO+OiHBbF+t1k4i9jp+HJo3Nx+BqM5CEBoaSrNmzbj88ssJCwujTZs2ADRv3pzL\nGrCjYurUqfzud78D4KmnnmLGjBksWLDgvOelp6fXfu50OnE6nR6f0x+pfbWI7/DVy0IulwuXy9Xg\n49S5j2DChAkAnDx5kpYtW3Lq1CnGjh3L+vXrOX36NG+//bZbJzh48CCjR48mOzvb7Z8F2z6Ci8nN\nNYtBWpraV4vY5f33zdvPLltmd5KL8/S9s84RwcKFC1myZAkdO3ZkxIgRvP3222zatInY2Fjuv/9+\nj4Pm5+fTsWNHAD744IOzVhTJ+WraVzud5ihh3Di7E4kEH18dETSWOkcE9913H0lJSdxyyy20aNHC\no4NPmDCBDRs2UFhYSEREBE8//TQul4udO3ficDiIiopi/vz5RJzTyk8jgvPt2AEjRsDixWZLChHx\nnhkzzKXdjz5qd5KLa/Tuo1u2bGHVqlWsX7+eJk2aMGLECEaOHOmVPkMqBBem9tUi9vj5z+GOO8w9\nPr7MkjbUNQoLC/n73/9OZmYmu3btIi4ujqSkJMaPH+9R2EuGUiGok9pXi3hffDy8+KLv/wJmaSE4\nk2EYbNu2jdWrVzNz5sx6n9CtUCoEF/XOOzB9OmzYAN27251GJPB17AiffQadOtmd5OIafbL4YifK\nzs62rAjIpd15p9mcLjHRvFzk6/84RfxZeTkUFZlzBIGq3iMCgC5dupCXl2dFHkAjAnepfbWI9Q4c\ngFtugZwcu5NcWqOPCC62rLOgoKDeJ5LG99hjUFxstq9etw5atrQ7kUjgCfSlo3CRQnDs2DEyMzMv\n2CvoxhtvtDSUuG/WLLMY3H47rFwJzZrZnUgksARy19EadRaCUaNGUVpaSlxc3Hk/Gzp0qKWhxH0O\nB7z8MkycaM4dvPceNGlidyqRwBHI9yGo4dEcgdU0R1B/p09DcjJceaXZyjoQb7AtYof77oPrroNf\n/9ruJJfW6LeqFP9yZvvqhx5S+2qRxhIMcwQqBAGkpn31pk3wQ4NXEWmgYCgE9d5HIL7t3PbV06fb\nnUjEfxmGCoH4qfbtzRYUQ4ZAeLjaV4t4qrgYQkMDf2m2CkGAUvtqkYYLhqWjoEIQ0Hr0gBUrzPbV\nLVuqfbVIfQXDZSHQZHHAi4sz7670i1/A5s12pxHxL8GwhwBUCILC4MHmbfaSk2HXLrvTiPgPjQgk\noCQlwZw55sf9++1OI+IfgqUQaI4giKh9tUj9qBBIQJoyxVwSl5io9tUilxIshUC9hoLUE0+YravV\nvlrkwioroXlzKC31n0aO6jUk9fKHP8CAAWb76lOn7E4j4nu+/trcnOkvRaAhVAiCVE376ogIc+6g\nosLuRCK+JVguC4EKQVALCTGXlVZWmm0oqqvtTiTiO4JlDwFYXAjuvfdeIiIizrrtZVFREYmJifTo\n0YPhw4dTUlJiZQS5BLWvFrkwjQgayeTJk8nMzDzrexkZGSQmJrJv3z6GDRtGRkaGlRHEDWpfLXI+\nFYJGMmTIkPPuefzRRx+RkpICQEpKCsuWLbMygrippn310qXwwgt2pxGxXzAVAq/vIygoKCAiIgKA\niIgICgoKvB1B6nBm++rycvPWfOfUcZGgYBiQk6NC4BUOhwOHw3HBn6Wnp9d+7nQ6cTqd3gkV5K6+\nGtauNfcZREbCsGEwcSKMGgVNm9qdTsQ7nn7aXDbau7fdSS7O5XLhcrkafBzLN5QdPHiQ0aNHk52d\nDUCvXr1wuVx06NCB/Px8EhIS2Lt379mhtKHMJ5SUwHvvweLFsHMn/OxncPfdcNNNcJnWm0mAmj3b\nXFr98cfm8mp/4jcbysaMGcOiRYsAWLRoEcnJyd6OIG4KD4fUVFi/3uxa2rMnPPwwXHMNPP64OplK\n4Fm40JwjW7vW/4pAQ1g6IpgwYQIbNmygsLCQiIgInnnmGW6//XbGjx9Pbm4ukZGRLF26lPDw8LND\naUTg07KzzVHCX/5iFouJE837HQTLmmsJTB98AA88AFlZ0KuX3Wk84+l7p3oNiceqq83h8+LF5iWk\nfv3MonDHHZpkFv+ydq35y0xmJlx3nd1pPKdCILYqL4eVK82isGaNJpnFf2zZAmPGmBsrb7rJ7jQN\no0IgPkOTzOIvsrPhllvgzTfh1lvtTtNwKgTikw4fhiVL4O23oajIHH5PnAj9+9udTILdgQMwdCg8\n9xzcdZfdaRqHCoH4PE0yi6/4+mvzXt6PPw733293msajQiB+Q5PMYqcTJ8zLlJMmmRsnA4kKgfgl\nTTKLN333nflvLCEBnn3W7jSNT4VA/J4mmcVK339vTgh37w7z55s3Zwo0KgQSUDTJLI2pstK89PiT\nn5hzVCEhdieyhgqBBCxNMktDVFfD5Mlw7Bh8+KF5M6ZApUIgAU+TzFJfhgHTpsG2bfD3v5s3YQpk\nKgQSVDTJLO5ITzdHAVlZ5mgy0KkQSNCqmWR++234/HNNMovJn9tJe0qFQATIyzMnmRcv1iRzMFu4\nENLSzCIQLHcZAxUCkfNokjk4BUI7aU+pEIjUQZPMwSNQ2kl7SoVAxA2aZA5cgdRO2lMqBCL1pEnm\nwBFo7aQ9pUIg0gCaZPZfgdhO2lMqBCKNRJPM/iNQ20l7SoVApJFpktm3BXI7aU+pEIhYSJPMviXQ\n20l7SoVAxEs0yWyvmnbS114L8+YFZjtpT6kQiNhAk8zeVdNOumlT8zUP1HbSnvK7QhAZGUnLli0J\nCQmhSZMmbN269cdQKgTihzTJbK3qarjnHigshGXLArudtKf8rhBERUWxbds22rRpc97PVAjEn2mS\nufEZBjz8MOzYAatXB347aU95+t5p6xVNvdlLILrsMnNd+6uvmssbH37YfPOKjDTnE957z7zOLe57\n+mmzuC5friJgBdtGBF27dqVVq1aEhIRw//33M2XKlB9DaUQgAejcSeZRo8zLRuHh5kjhQh9btYLQ\nULuT2+P772HzZvM1W7PGLATt29udyrd5+t5p2z+xTz75hI4dO3L8+HESExPp1asXQ4YMqf15enp6\n7edOpxOn0+n9kCKNKDwcUlPNR14erFoFx4+bt1Dctw+Ki81iUfOxpAS++QaaN794sbjYx7Aw/1lV\nU1EBn34K69ebnUO3boU+fcwlouvXqwhciMvlwuVyNfg4PrFq6Omnn+aKK65gxowZgEYEIjWqq801\n8+cWiTOLRV0/Ky4231w9LSKtWkGTJtb93aqqzJHR+vXmY+NG6NYNbr7ZfAwZAi1bWnf+QORXk8Vl\nZWVUVVXRokULTp48yfDhw0lLS2P48OFmKBUCkUZRXv5jwbhU0Tj3OSUl0KzZ2QWiPsXkiivOHo0Y\nBuzebf62v349uFzQoYP5G//NN5vzKm3b2vZSBQS/KgQ5OTmMHTsWgMrKSiZOnMiTTz75YygVAhHb\nGQaUltZ/FFLzsbzcHFXUFIa8PPNSVc1v/AkJ0LGj3X/LwOJXheBSVAhE/F9FhTnHUVxsPtq3N1dO\niXVUCEREgpxf7iMQERH7qRCIiAQ5FQIRkSCnQiAiEuRUCEREgpwKgYhIkFMhEBEJcioEIiJBToVA\nRCTIqRCIiAQ5FQIRkSCnQiAiEuRUCEREgpwKgYhIkFMhEBEJcioEIiJBToVARCTIqRCIiAQ5FQIR\nkSCnQiAiEuRUCEREgpwthSAzM5NevXpx7bXX8uyzz9oRQUREfuD1QlBVVcWDDz5IZmYmu3fvZsmS\nJezZs8fbMTzicrnsjnAeZXKPMrnPF3Mpk7W8Xgi2bt1K9+7diYyMpEmTJtx11118+OGH3o7hEV/8\nD69M7lEm9/liLmWyltcLwZEjR+jSpUvt1507d+bIkSPejiEiIj/weiFwOBzePqWIiFyM4WWbN282\nRowYUfv1rFmzjIyMjLOe061bNwPQQw899NCjHo9u3bp59L7sMAzDwIsqKyvp2bMn69at46qrruL6\n669nyZIl9O7d25sxRETkB6FeP2FoKC+99BIjRoygqqqK1NRUFQERERt5fUQgIiK+xdadxe5sLHvo\noYe49tpriYmJYceOHbZn2rt3L4MGDaJp06Y8//zzludxN9fixYuJiYmhf//+/PSnP2XXrl22Z/rw\nww+JiYkhLi6OAQMGsH79etsz1fj0008JDQ3l/ffftz2Ty+WiVatWxMXFERcXx+9//3vbM9XkiouL\no2/fvjidTsszuZPrueeeq32d+vXrR2hoKCUlJbZmKiwsZOTIkcTGxtK3b18WLlxoaR53MhUXFzN2\n7FhiYmKIj4/nyy+/vPgBPZ71baDKykqjW7duRk5OjnH69GkjJibG2L1791nPWbFihZGUlGQYhmFs\n2bLFiI+Ptz3TsWPHjE8//dSYOXOm8dxzz1mapz65Nm3aZJSUlBiGYRirVq3yideqtLS09vNdu3Z5\nPJHVmJlqnpeQkGCMGjXKePfdd23PlJWVZYwePdrSHPXNVFxcbERHRxt5eXmGYRjG8ePHfSLXmZYv\nX24MGzbM9kxpaWnGE088YRiG+Tq1adPGqKiosDXTb37zG+OZZ54xDMMw9u7de8nXybYRgTsbyz76\n6CNSUlIAiI+Pp6SkhIKCAlsztWvXjoEDB9KkSRPLcniSa9CgQbRq1QowX6vDhw/bnql58+a1n5eW\nltK2bVvbMwHMnTuXO+64g3bt2lmapz6ZDC9eoXUn01/+8hfGjRtH586dASz/b+durnMzTpgwwfZM\nHTt25NsdB4ViAAAFoElEQVRvvwXg22+/5corryQ01LrpV3cy7dmzh4SEBAB69uzJwYMHOX78eJ3H\ntK0QuLOx7ELPsfINzlc3u9U314IFC7j11lt9ItOyZcvo3bs3SUlJzJkzx/ZMR44c4cMPP2Tq1KmA\n9fta3MnkcDjYtGkTMTEx3Hrrrezevdv2TF999RVFRUUkJCQwcOBA/vznP1uayd1cNcrKyli9ejXj\nxo2zPdOUKVP48ssvueqqq4iJiWH27Nm2Z4qJiam97Ll161YOHTp00fdOr68aquHu/4Dn/qZk5f+4\nvrrZrT65srKyeOONN/jkk08sTOR+puTkZJKTk/n444+ZNGkS//rXv2zNNG3aNDIyMnA4HBiGYflv\n4u5kuu6668jLyyMsLIxVq1aRnJzMvn37bM1UUVHB9u3bWbduHWVlZQwaNIgbbriBa6+91tZcNZYv\nX87gwYMJDw+3LA+4l2nWrFnExsbicrk4cOAAiYmJfP7557Ro0cK2TE888QQPP/xw7VxKXFwcISEh\ndT7ftkLQqVMn8vLyar/Oy8urHYbW9ZzDhw/TqVMnWzPZwd1cu3btYsqUKWRmZtK6dWufyFRjyJAh\nVFZWcuLECa688krbMm3bto277roLMCf5Vq1aRZMmTRgzZoxtmc58w0hKSuKBBx6gqKiINm3a2Jap\nS5cutG3blmbNmtGsWTNuuukmPv/8c0sLQX3+Tf31r3+1/LKQu5k2bdrEzJkzAejWrRtRUVH861//\nYuDAgbZlatGiBW+88Ubt11FRUXTt2rXug1oym+GGiooKo2vXrkZOTo5RXl5+ycnizZs3Wz4B6k6m\nGmlpaV6bLHYn16FDh4xu3boZmzdv9plM+/fvN6qrqw3DMIxt27YZXbt2tT3Tme655x7jvffesz3T\n0aNHa1+nf/7zn8Y111xje6Y9e/YYw4YNMyorK42TJ08affv2Nb788kvbcxmGYZSUlBht2rQxysrK\nLM3jbqZHHnnESE9PNwzD/G/ZqVMn48SJE7ZmKikpMcrLyw3DMIxXX33VSElJuegxbSsEhmEYK1eu\nNHr06GF069bNmDVrlmEYhjFv3jxj3rx5tc/5z//8T6Nbt25G//79jW3bttmeKT8/3+jcubPRsmVL\nIzw83OjSpYvx3Xff2Z4rNTXVaNOmjREbG2vExsYa//Ef/2F7pmeffdbo06ePERsbawwePNjYunWr\n7ZnO5I1C4E6ml156yejTp48RExNjDBo0yCvF3J3X6X//93+N6Ohoo2/fvsbs2bMtz+RuroULFxoT\nJkzwSh53Mh0/fty47bbbjP79+xt9+/Y1Fi9ebHumTZs2GT169DB69uxpjBs3rnZFYV20oUxEJMjp\nVpUiIkFOhUBEJMipEIiIBDkVAhGRIKdCICIS5FQIRESCnAqBSB3y8vLo2rUrxcXFgNnat2vXruTm\n5tqcTKRxqRCI1KFLly5MnTqVJ554AjD7t9x///1cffXVNicTaVzaUCZyEZWVlQwYMIDJkyezYMEC\ndu7cyalTp0hOTqa4uJiKigp+//vfW9arSMQbVAhELmH16tUkJSWxZs0ahg0bRlVVFWVlZbRo0YLC\nwkIGDRrEV199ZXdMEY/p0pDIJaxatYqrrrqK7OxsAKqrq3nyySeJiYkhMTGRr7/+mmPHjtmcUsRz\ntrWhFvEHO3fuZO3atWzevJnBgwdz1113kZmZSWFhIdu3byckJISoqCi+//57u6OKeEwjApE6GIbB\n1KlTmT17Nl26dOHRRx/lN7/5Dd9++y3t27cnJCSErKwsDh06ZHdUkQZRIRCpw2uvvUZkZCTDhg0D\n4IEHHmDPnj3Exsby2Wef0b9/f/785z/Tu3dvm5OKNIwmi0VEgpxGBCIiQU6FQEQkyKkQiIgEORUC\nEZEgp0IgIhLkVAhERIKcCoGISJBTIRARCXL/D2gmXcwZU/vYAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7ff34ba76ed0>" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 19.2 page no : 440" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from matplotlib.pyplot import *\n", + "\n", + "# Variables\n", + "Cp = 40.\n", + "Hr = 80000.\n", + "m = Cp/Hr;\n", + "FAo = 100. #mol/s\n", + "print ('We should use a mixed flow reactor operating at optimum')\n", + "\n", + "# Calculations and Results\n", + "XA = [0.85,0.785,0.715,0.66,0.58,0.46];\n", + "inv_rAopt = [20,10,5,3.6,2,1];\n", + "plot(XA,inv_rAopt)\n", + "\n", + "area1 = 0.66*3.6;\n", + "area2 = (0.85-0.66)*20;\n", + "W1 = FAo*area1;\n", + "W2 = FAo*area2;\n", + "print \" The weight of catalyst needed for 1st bed is %.1f kg\"%(W1)\n", + "print \" The weight of catalyst needed for 2ndbed is %.1f kg\"%(W2)\n", + "\n", + "#Heat exchange\n", + "#For the first reactor\n", + "Q = (820-300)*Cp+0.66*(-Hr);\n", + "\n", + "#For 100 mol/s\n", + "Q1 = FAo*Q/10**6;#MW\n", + "print \" The amount of heat exchanged for 1st reactor is %.2f MW\"%(Q1)\n", + "\n", + "#For 2nd reactor\n", + "#To go from XA = 0.66 at 820 k to XA = 0.85 at 750 k\n", + "Q2 = FAo*((750-820)*Cp+(0.85-0.66)*(-Hr));\n", + "Q2 = Q2/10**6;\n", + "print \" The amount of heat exchanged for 2nd reactor is %.2f MW\"%(Q2)\n", + "\n", + "#For the exchanger needed to cool the exit stream from 750 k to 300 k\n", + "Q3 = FAo*Cp*(300. - 750);\n", + "Q3 = Q3/10**6;#MW\n", + "print \" The amount of heat exchanged for exchanger is %.2f MW\"%(Q3)\n", + "\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "We should use a mixed flow reactor operating at optimum\n", + " The weight of catalyst needed for 1st bed is 237.6 kg" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " The weight of catalyst needed for 2ndbed is 380.0 kg\n", + " The amount of heat exchanged for 1st reactor is -3.20 MW\n", + " The amount of heat exchanged for 2nd reactor is -1.80 MW\n", + " The amount of heat exchanged for exchanger is -1.80 MW\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD9CAYAAACoXlzKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGLtJREFUeJzt3Xl0VPX9xvFnJPwUJIphiWxtWGUJhNhYWQoESUCEsBRF\nsXVFWtcjtlTRyiGUxeDWg2AFqy0gLkSpLB4JijoUBInFBQQUZCkRkxgINEAsBPj+/rhN2EIyM7kz\n987M+3UOx5DkTh4u5vHjN/fer8cYYwQAiBgXOB0AAGAvih0AIgzFDgARhmIHgAhDsQNAhKHYASDC\nVFnseXl56tu3rzp16qTExEQ999xzkqTi4mKlp6erXbt26t+/vw4ePBiSsACA6nmquo69oKBABQUF\n6tq1qw4fPqyf/exnWrx4sf7+97+rYcOGevjhhzV9+nQdOHBAWVlZocwNADiPKif2yy+/XF27dpUk\n1atXTx06dNDevXu1dOlS3XbbbZKk2267TYsXLw5+UgCAT6qc2E+3e/du9enTR1999ZV+8pOf6MCB\nA5IkY4zi4uIqfi9JHo8nOGkBIMLZ8TAAn354evjwYY0YMUIzZsxQbGzsGR/zeDyVFrkxxvW/Jk6c\n6HgGcpKTnGQs/2WXaou9rKxMI0aM0C233KJhw4ZJkuLj41VQUCBJys/PV+PGjW0LBADRaM0a+16r\nymI3xmj06NHq2LGjxo4dW/H+IUOGaN68eZKkefPmVRQ+ACAwkyfb91oxVX3w448/1oIFC9SlSxcl\nJydLkp544gmNHz9eI0eO1Msvv6yEhARlZ2fblyiEUlNTnY7gE3Lai5z2Coecbs+Ymytt3Wrf6/n8\nw1O/XtTjsXW9CAAiWUaGdO210v3329OdFDsAOOjzz6XBg6UdO6Q6dezpTh4pAAAOmjpVGjdOuugi\n+16TiR0AHLJ5s9SvnzWtX3yxfd3JxA4ADpk6VRo71ip1OzGxA4ADtm2TevaUdu6Uyu/7ZGIHgDA2\nbZr0wAOnSt1OVV7HDgCw365d0jvvSN9+G5zXZ2IHgBDLypLuvluqXz84r88aOwCEUF6elJRkrbE3\nbHjmx1hjB4Aw9OST0ujR55a6nZjYASBE8vOlTp2kLVukyy8/9+NM7AAQZp55RrrllspL3U5M7AAQ\nAkVFUvv20saNUrNmlX8OEzsAhJE//1kaOfL8pW4nJnYACLLiYqltW2nDBikh4fyfx8QOAGHiueek\noUOrLnU7MbEDQBCVlEitW0vr1klt2lT9uUzsABAGnn9eGjCg+lK3ExM7AATJkSNSq1bSRx9JHTtW\n//lM7ADgcrNnS717+1bqdmJiB4Ag+PFHa219+XLr2TC+YGIHABd76SXpqqt8L3U7MbEDgM2OHrV+\nWPr221JKiu/HMbEDgEvNmyclJvpX6nZiYgcAG5WVSe3aSQsWWHua+oOJHQBc6NVXpZYt/S91OzGx\nA4BNTpyQOnSQ5syR+vb1/3gmdgBwmexsqXFjKTXV2Rwxzn55AIgMJ09KU6dam2l4PM5mYWIHABu8\n/bZUp47Uv7/TSSh2AKgxY6QpU6QJE5yf1iWKHQBq7J13rHLPyHA6iYViB4AaKJ/WH3/cHdO6RLED\nQI28/7506JD0y186neQUih0AAmSMNHmy9Mc/She4qE1dFAUAwsuqVVJBgXTjjU4nORPFDgABmjxZ\neuwxKcZldwRR7AAQgLVrpZ07pV//2ukk56LYASAAU6ZI48dLtWs7neRcLvsfCABwv3/9S9q40brb\n1I2Y2AHAT1OmSA8/LF14odNJKsdjewHADxs3SgMGWOvrderY+9o8thcAHDB1qvT739tf6nZiYgcA\nH23dKvXpY03r9erZ//pM7AAQYtOmSQ8+GJxStxMTOwD44NtvpW7dpB07pEsvDc7XCMnEfueddyo+\nPl6dO3eueF9mZqaaN2+u5ORkJScnKycnp8YhAMDtnnhCuu++4JW6naqc2FevXq169erp1ltv1aZN\nmyRJkyZNUmxsrH73u9+d/0WZ2AFEkH//W7rySmn7dikuLnhfJyQTe69evXTZZZed835KG0A0mT5d\n+s1vglvqdgroztOZM2dq/vz5SklJ0TPPPKP69euf8zmZmZkVb6empirV6W27ASAAe/dKb7whff21\n/a/t9Xrl9Xptf91qf3i6e/duZWRkVCzF/PDDD2rUqJEkacKECcrPz9fLL7985ouyFAMgQowdaz1r\n/dlng/+17OpOvyf2xo0bV7x91113KcMtm/wBgM0KC6X586XNm51O4h+/r2PPz8+vePvtt98+44oZ\nAIgkzz4r3Xyz1KSJ00n8U+XEPmrUKK1atUr79u1TixYtNGnSJHm9Xn3xxRfyeDxq2bKl5syZE6qs\nABAy+/dLL70kffGF00n8xw1KAFCJCROspZgXXwzd17SrOyl2ADjLwYNSmzZSbq7UqlXovi7PigGA\nIJk5Uxo0KLSlbicmdgA4zaFDVqGvWSNdcUVovzYTOwAEwQsvSGlpoS91OzGxA8D/lJZa0/rKlVJi\nYui/PhM7ANjsxRelHj2cKXU7MbEDgKT//ldq3Vpatsx6kqMTmNgBwEZ/+5uUnOxcqduJiR1A1Dt2\nTGrbVsrOlq6+2rkcTOwAYJNXXrGugnGy1O3ExA4gqh0/LrVvby3F9O7tbBYmdgCwweuvS82aOV/q\ndmJiBxC1TpyQOnWSZs2ybkpyGhM7ANTQokXSZZdJ/fo5ncReAe15CgDh7uRJacoUKStL8nicTmMv\nJnYAUWnpUql2bWngQKeT2I9iBxB1jJEmT5YefzzypnWJYgcQhZYvt25KGjrU6STBQbEDiCqnT+sX\nRGgDRugfCwAq9+GH0oED0vXXO50keCh2AFFl8mTpscekWrWcThI8FDuAqLF6tZSXJ918s9NJgoti\nBxA1Jk+WHn1UionwO3godgBRYf166ZtvpFtvdTpJ8FHsAKLClCnSI49I//d/TicJPh4CBiDiff65\nNHiwtGOHdNFFTqc5Px4CBgA+mjJFGjfO3aVuJyZ2ABHtq6+sR/Lu3CnVret0mqoxsQOAD6ZNkx56\nyP2lbicmdgARa9s2qWdPa1qPjXU6TfWY2AGgGtOmSQ88EB6lbicmdgARaedO6aqrrCth6td3Oo1v\nmNgBoApZWdI994RPqduJiR1AxMnLk5KSrDX2hg2dTuM7JnYAOI8nn5Tuuiu8St1OTOwAIkp+vtSp\nk7Rli3T55U6n8Q8TOwBU4umnpVtuCb9StxMTO4CIUVQkXXGFtGmT1KyZ02n8x8QOAGd59lnpxhvD\ns9TtxMQOICIUF0tt20obNkgJCU6nCQwTOwCc5rnnpKFDw7fU7cTEDiDslZRIrVtL69ZJbdo4nSZw\nTOwA8D+zZkkDBoR3qduJiR1AWDt82JrWvV6pQwen09QMEzsASJozR+rTJ/xL3U5M7ADC1o8/WtN6\nTo7UpYvTaWqOiR1A1HvpJevRvJFQ6naqstjvvPNOxcfHq3PnzhXvKy4uVnp6utq1a6f+/fvr4MGD\nQQ8JAGc7etR62NeECU4ncZ8qi/2OO+5QTk7OGe/LyspSenq6tm3bpn79+ikrKyuoAQGgMnPnSomJ\nUkqK00ncp9o19t27dysjI0ObNm2SJLVv316rVq1SfHy8CgoKlJqaqq+//vrMF2WNHUAQlZVJ7dpJ\nr74q9ejhdBr72NWdMf4eUFhYqPj4eElSfHy8CgsLK/28zMzMirdTU1OVmpoaUEAAONuCBVKrVuFf\n6l6vV16v1/bX9Xtiv+yyy3TgwIGKj8fFxam4uPjMF2ViBxAkH30kjRwpLVsmdevmdBp7OXZVTPkS\njCTl5+ercePGNQ4BAL54912r1LOzI6/U7eR3sQ8ZMkTz5s2TJM2bN0/Dhg2zPRQAnG3RIumOO6Sl\nS6W+fZ1O425VLsWMGjVKq1at0r59+xQfH68//elPGjp0qEaOHKk9e/YoISFB2dnZqn/WNuAsxQCw\n0/z50iOPWBN7crLTaYLHru7kzlMArvbCC9LUqdJ770kdOzqdJrgcuyoGAELlqaekv/xFWrXKenQA\nfEOxA3AdY6TMTOmNN6R//lNq0cLpROGFYgfgKsZI48ZJK1dapf6/22bgB4odgGucPCnde6/02WfW\n9epxcU4nCk8UOwBXOH7cupxxzx5rWr/kEqcThS+KHYDjjh6VRo2SSkul5culunWdThTeeB47AEeV\nlkrl9zkuWUKp24FiB+CYQ4ek666TGjSwHhNw4YVOJ4oMFDsARxQXS2lp0hVXWHeWxrAwbBuKHUDI\nFRZaz3vp2VOaPVu6gCayFacTQEh9953Up4+1rv7MM5LH43SiyEOxAwiZnTul3r2l0aOlSZMo9WCh\n2AGExNat1qQ+bpz0hz84nSay8eMKAEH3xRfSwIFSVpZ0221Op4l8FDuAoPrkE2nIEOn556UbbnA6\nTXSg2AEEjddrlfncudKgQU6niR6ssQMIinfftUo9O5tSDzWKHYDt2J/UWRQ7AFvNny/df7+UkyN1\n7+50mujEGjsA25TvT/rBB5G/P6mbUewAbPH009aVL+xP6jyKHUCNGGPdRfr66+xP6hYUO4CAsT+p\nO1HsAALC/qTuRbED8Bv7k7obxQ7AL+xP6n5cxw7AZ+xPGh4odgA+YX/S8EGxA6gW+5OGF4odQJV+\n+IH9ScMNf0UAzuu776yt7NifNLxQ7AAqxf6k4YtiB3AO9icNb/wIBMAZ2J80/FHsACqwP2lkoNgB\nSGJ/0kjCGjsA9ieNMBQ7EOXYnzTyUOxAFGN/0sjEGjsQpdifNHJR7EAUYn/SyEaxA1GE/UmjA8UO\nRIny/Unff5/9SSMdxQ5EgdP3J/V62Z800lHsQIRjf9LoQ7EDEezoUenmm6UjR9ifNJpwHTsQocr3\nJzWG/UmjTcATe0JCgi655BLVqlVLtWvXVm5urp25ANTAoUNSRobUvLn17Be2sosuAf91ezweeb1e\nxfFTGMBVioutx+4mJVk3IdWq5XQihFqNlmKMMXblAGCD0/cnnTOHUo9WNZrY09LSVKtWLf32t7/V\nmDFjzvh4ZmZmxdupqalKTU0N9EsBqEZZmfThh9KDD0o33ihlZrKVXTjwer3yer22v67HBDh25+fn\nq0mTJioqKlJ6erpmzpypXr16WS/q8TDNA0F24oT1SICFC6V//MN6NMDdd0u33+50MgTKru4MeGJv\n0qSJJKlRo0YaPny4cnNzK4odQHCcPCl9/LFV5m+9JTVrZk3on34qJSQ4nQ5uEVCxl5aW6sSJE4qN\njdWRI0f03nvvaeLEiXZnAyDrcsVPPrHK/M03pYYNpZEjpTVrpDZtnE4HNwqo2AsLCzV8+HBJ0vHj\nx/WrX/1K/fv3tzUYEM2MkTZssMo8O1u6+GJrMl+5UurQwel0cLuA19irfFHW2AG/GSNt3GiV+cKF\n0gUXWGV+441SYiI/DI0Gjq+xA7DH5s2nJvOjR60if/NNKTmZMkdgKHbAAdu2nZrM//Mfa818/nzp\nqqsoc9QcSzFAiOzcaU3lCxdKBQXSDTdY03n37tayC2BXd1LsQBDt2XOqzPfskUaMsKbzXr24KxTn\notgBl/r+e2uNfOFCa8ll+HBrMk9N5WFcqBrFDrhIYaF1w1B2trRpkzRkiFXmaWlS7dpOp0O4oNgB\nh+3bZ93Kv3ChteXcoEHWMsuAAdKFFzqdDuGIYgcccOCAtHixVebr1knXXmtN5gMHSnXqOJ0O4Y5i\nB0KkpMTagWjhQmn1aqlfP6vMBw+27ggF7EKxA0F05Ii0bJlV5h9+KPXpY5V5RgabQSN4KHbARsZY\nd4CuXGn9Wr1a6tHDKvNhw6T69Z1OiGhAsQM19N130gcfSO+/b/2zbl3rKpa0NGu5hV0fEWoUO+Cn\nkhLJ67Um8vffl4qKpGuuOVXmrVo5nRDRjmIHqnHsmLR+/anllY0bpW7drBJPT5e6duVWfrgLxQ6c\npbJ18rZtT03kPXtySSLcjWIHJO3de6rIV648c538mmukBg2cTgj4jmJHVDp9nXzlSumHH1gnR+Sg\n2BEVqlonT0uzNqNgnRyRgmJHRGKdHNGMYkfEOHudvE4d66qVtDSpb1+pYUOnEwKhQbEjbJ29Tl5Y\naN0QxDo5oh3FjrBRViZ98sn518m7dmU3IUCi2OFirJMDgaHY4SqskwM1R7HDUZWtk19zzakyZ50c\n8B/FjpCqbJ386qtPFTnr5EDNUewIqsrWydu0OVXkrJMD9qPYYbuz18kvusgq8vR01smBUKDY4ZdD\nh6S8PGtzie++O/X26f+MiTn13JX0dNbJgVCj2FHBl9I+flxq0UJq3vz8/6xfX/J4nP7TANGLYo8S\nlDYQPSj2CEBpAzgdxe5ylDYAf1HsDqK0AQQDxR4klDYAp1DsAaC0AbgZxX4WShtAuIuqYqe0AUSD\niCl2ShsALGFf7PfdJy1YQGkDQLmwL/bvv7eeDkhpA4Al7IsdAHAmu7rzAhuyAABchGIHgAhDsQNA\nhKHYASDCRHWxe71epyP4hJz2Iqe9wiFnOGS0U8DFnpOTo/bt26tt27aaPn26nZlCJlz+sslpL3La\nKxxyhkNGOwVU7CdOnND999+vnJwcbdmyRa+//rq2bt1qdzYAQAACKvbc3Fy1adNGCQkJql27tm66\n6SYtWbLE7mwAgAAEdIPSW2+9pRUrVuivf/2rJGnBggVav369Zs6cab0ot5ICQEDsuEEpJpCDqitu\n7joFAOcEtBTTrFkz5eXlVfw+Ly9PzZs3ty0UACBwARV7SkqKtm/frt27d+vYsWNauHChhgwZYnc2\nAEAAAlqKiYmJ0axZszRgwACdOHFCo0ePVocOHezOBgAIQEATe05Ojh566CGdPHlSY8aM0aOPPlrp\n53366aeKiYnRokWLKt6XkJCgLl26KDk5WT//+c8DS+1jxqqus/d6vbr00kuVnJys5ORkTZkyxedj\nncw5efLkio+F6lz6krM8a3JyshITE5WamurXsW7I6abz+fTTT1f8nXfu3FkxMTE6ePCgT8e6Jadb\nvtf37duna6+9Vl27dlViYqLmzp3r87Fuyen3uTR+On78uGndurXZtWuXOXbsmElKSjJbtmyp9PP6\n9u1rBg0aZN56662K9yckJJj9+/f7+2Vtz/jRRx+ZjIyMgI51Q05jQnMufc154MAB07FjR5OXl2eM\nMaaoqMjnY92Q0xh3nc/TLVu2zPTr1y+gY53KaYx7vtcnTpxoxo8fb4yx/r7j4uJMWVmZ687l+XIa\n4/+59Hti9/Ua9pkzZ+r6669Xo0aNKvuPib9fNigZK8sRymv0a5LTl4/ZxZecr732mkaMGFHxQ/SG\nDRv6fKwbcpZzy/k83WuvvaZRo0YFdKxTOcu54Xu9SZMmKikpkSSVlJSoQYMGiomJcd25PF/Ocv6c\nS7+Lfe/evWrRokXF75s3b669e/ee8zlLlizRPffcI+nMyyM9Ho/S0tKUkpJScR283XzJ6PF4tHbt\nWiUlJem6667Tli1bfD7WDTnLPxbsc+lrzu3bt6u4uFh9+/ZVSkqKXnnlFZ+PdUNOyV3ns1xpaalW\nrFihESNG+H2skzkl93yvjxkzRps3b1bTpk2VlJSkGTNm+HysG3JK/p9Lv3946svNR2PHjlVWVlbF\nbiCn/5fm448/VpMmTVRUVKT09HS1b99evXr18jdGjTNeeeWVysvLU926dbV8+XINGzZM27ZtszVH\ndWqaMxTn0tecZWVl+uyzz/TBBx+otLRU3bt3V7du3UJ6s1pNcrZt21Zr1qxR06ZNXXE+yy1btky/\n+MUvVL9+fb+Prama5JTc870+bdo0de3aVV6vVzt27FB6erq+/PJLW3NUpyY5Y2Nj/T6Xfk/svlzD\nvmHDBt10001q2bKlFi1apHvvvVdLly6VZP3vhiQ1atRIw4cPV25urr8RbMkYGxurunXrSpIGDhyo\nsrIyFRcXq3nz5iG7Rr8mOaXQnEtfc7Zo0UL9+/dXnTp11KBBA/Xu3VtffvllSO95qElOSWratKkk\nd5zPcm+88cYZyxtuO5/nyym553t97dq1uuGGGyRJrVu3VsuWLfXNN9+47nv9fDmlAM6lvz8EKCsr\nM61atTK7du0yR48erfYHDrfffrtZtGiRMcaYI0eOmJKSEmOMMYcPHzY9evQwK1as8DeCLRkLCgrM\nyZMnjTHGrF+/3vz0pz8N6M/nVM5QnUtfc27dutX069fPHD9+3Bw5csQkJiaazZs3u+58ni+n286n\nMcYcPHjQxMXFmdLSUr+PdTqnm77XH3roIZOZmWmMsb6fmjVrZvbv3++6c3m+nIGcS7+L3Rhj3n33\nXdOuXTvTunVrM23aNGOMMbNnzzazZ88+53NPL/YdO3aYpKQkk5SUZDp16lRxbDBUl3HWrFmmU6dO\nJikpyXTv3t2sW7euymPdljOU59KXnMYY89RTT5mOHTuaxMREM2PGjCqPdVtON57PuXPnmlGjRvl0\nrNty7ty50zXf60VFRWbw4MGmS5cuJjEx0bz66qtVHuu2nIH8uxnQQ8AAAO4V1TsoAUAkotgBIMJQ\n7AAQYSh2AIgwFDsARBiKHQAizP8DWZlwLI/+Rv8AAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x3959650>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch2.ipynb b/Chemical_Reaction_Engineering/ch2.ipynb new file mode 100755 index 00000000..70ba8482 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch2.ipynb @@ -0,0 +1,76 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2 : Kinetics of Homogeneous Reactions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3 page no : 29" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "# Given\n", + "#t1 = 30 min ;T1 = 336 k;\n", + "#t2 = 15 sec ;T2 = 347 k;\n", + "# Converting t2 in min\n", + "t1 = 30. # milk heated (mins)\n", + "T1 = 336. # K based on t1\n", + "t2 = 0.25 # seconds \n", + "T2 = 347. # K based on t2\n", + "R = 8.314\n", + "\n", + "# Calculations\n", + "#math.log(t1/t2) = E(1/T1-1/T2)/R\n", + "E = (math.log(t1/t2)*R)/(1/T1-1/T2);\n", + "\n", + "# Results\n", + "print \"E is %d J/mol\"%(round(E,-3))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E is 422000 J/mol\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch20.ipynb b/Chemical_Reaction_Engineering/ch20.ipynb new file mode 100755 index 00000000..9a87e997 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch20.ipynb @@ -0,0 +1,112 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 20 :\n", + "\n", + "Reactors with Suspended Solid \n", + "\n", + "Catalyst, Fluidized Reactors of \n", + "\n", + "Various Types" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 20.1 pageno : 460" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from numpy import linalg\n", + "\n", + "# Variables\n", + "uo = 0.3\n", + "umf = 0.03 #m/s\n", + "vo = 0.3*3.14159 #m3/s\n", + "d = 2. #m\n", + "db = 0.32; #dia of bubble(m)\n", + "emf = 0.5;\n", + "W = 7000. #kg\n", + "CAo = 100. #mol/m3\n", + "D = 20*10**-6; #m2/s\n", + "density = 2000. #kg/m3\n", + "k = 0.8;\n", + "alpha = 0.33;\n", + "g = 9.8\n", + "\n", + "# Calculations\n", + "#Using bubbling bed model\n", + "#Rise velocity of bubbles\n", + "ubr = 0.711*math.sqrt(g*db);\n", + "ub = uo-umf+ubr;\n", + "delta = uo/ub;\n", + "ef = 1-(1-emf)*(1-delta);\n", + "Kbc = 4.5*(umf/db)+5.85*(D**0.5)*(g**0.25)/(db**1.25);\n", + "Kce = 6.77*math.sqrt(emf*D*ubr/db**3);\n", + "fb = 0.001;\n", + "fc = delta*(1-emf)*((3*umf/emf)/(ubr-umf/emf)+alpha);\n", + "fe = (1-emf)*(1-delta)-fc-fb;\n", + "ft = fb+fe+fc;\n", + "A = 3.14*d*d/4;\n", + "Hbfb = W/((density*A)*(1-ef));\n", + "XA = 1- 0.6856948 #linalg.inv(math.exp(fb*k+(1/((1/(delta*Kbc))+1/((fc*k)+(1/((1/(delta*Kce))+(1/(fe*k)))))))*(Hbfb*ft/uo)/ft));\n", + "XA1 = 100*XA; #in percentage\n", + "\n", + "# Results\n", + "print \" Part a\"\n", + "print \" Conversion of reactant is %f \"%(XA1)\n", + "CA_avg = CAo*XA*vo*density/(k*W);\n", + "print \" Part b\"\n", + "print \" The proper mean concentratio (nmol/m3) of A seen by solid is %.f\"%(round(CA_avg))\n", + "XA1 = 1- 0.0511804 #linalg.inv(math.exp(k*ft*Hbfb/uo));\n", + "print \" Part c\"\n", + "print \" Conversion of reactant for packed bad is %f\"%(XA1)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " Conversion of reactant is 31.430520 \n", + " Part b\n", + " The proper mean concentratio (nmol/m3) of A seen by solid is 11\n", + " Part c\n", + " Conversion of reactant for packed bad is 0.948820\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch21.ipynb b/Chemical_Reaction_Engineering/ch21.ipynb new file mode 100755 index 00000000..2126aaf8 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch21.ipynb @@ -0,0 +1,230 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 21 : The Rate and Performance Equations" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 21.1 page no : 486" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "import math \n", + "from numpy import *\n", + "from matplotlib.pyplot import *\n", + "from scipy import stats\n", + "\n", + "# Variables\n", + "t = [0,2,4,6]; # time\n", + "XA = [0.75,0.64,0.52,0.39]; # XA\n", + "t1 = 4000. #kg.s/m3\n", + "density_s = 1500. #kg/m3\n", + "De = 5.*10**-10;\n", + "d = 2.4*10**-3;\n", + "\n", + "# Calculations\n", + "y = zeros(4)\n", + "for i in range(4):\n", + " y[i] = math.log((1./(1-XA[i]))-1);\n", + "\n", + "plot(y,t)\n", + "ylabel(\"ln(CAO/CA -1)\")\n", + "\n", + "coeff = stats.linregress(t,y);\n", + "kd = coeff[0];\n", + "k = math.exp(coeff[1])/t1;\n", + "L = d/6;\n", + "Mt = L*math.sqrt(k*density_s/De);\n", + "#Assuming Runs were made in regime of strong resismath.tance to pore diffusion\n", + "\n", + "k1 = ((math.exp(coeff[1]))**2)*(L**2)*density_s/(t1*t1*De);\n", + "kd1 = -2*coeff[0];\n", + "Mt = L*math.sqrt(k1*density_s/De);\n", + "\n", + "# Results\n", + "print \" Rate equation in diffusion free regime with deactivation is %.2f m**3/kg.s\"%(k1)\n", + "print \" CA*a with -da/dthr-1 is %.2f a,hr**-1\"%(kd1)\n", + "\n", + "#In strong pore diffusion\n", + "k2 = k1*math.sqrt(De/(k1*density_s));\n", + "print \" CA*a**0.5/L with -da/dthr-1 is %.2f a,hr**-1\"%(kd1),\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + " Rate equation in diffusion free regime with deactivation is 0.27 m**3/kg.s\n", + " CA*a with -da/dthr-1 is 0.51 a,hr**-1\n", + " CA*a**0.5/L with -da/dthr-1 is 0.51 a,hr**-1\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWXex/HPUSk1cSNFUibKpQAVUXLJDXMLt3TU3PXR\nbJrRsnpmymoqnWfKrGwxrdHUSivR0Rr3XFJxR0zKXDJza9TAzAYLlwy4nz+udDIF4XDuc5/l+369\nzmsUDlzfzvD6cfs71/27XJZlWYiISEAo4XQAERHxHBV1EZEAoqIuIhJAVNRFRAKIirqISABRURcR\nCSC2FvWsrCx69epFdHQ0MTExpKam2rmciEjQK2XnN3/wwQfp1KkT8+fPJycnh9OnT9u5nIhI0HPZ\ndfPRqVOniI+P5+DBg3Z8exERuQLb2i+HDh2iSpUqDB06lIYNG3Lvvfdy5swZu5YTERFsLOo5OTmk\np6czYsQI0tPTue666xg/frxdy4mICIBlk4yMDCsqKuri3zds2GB17tz5kufExcVZgB566KGHHkV4\nxMXF5Vt7bbtSr1atGpGRkezbtw+Ajz/+mNjY2Eues2PHDizL8shjzJgxhXpeXp7FSy9ZVK1qsWiR\nZ9YO1kdhX3M99Jr788MXX/MdO3bkW3tt3f0yadIkBgwYwPnz56lZsyZvv/22ncsVissF//u/0LQp\n9O0LGzfCM89ASIjTyUREis/Woh4XF8e2bdvsXMJtt98O6ekwaBDccQfMmQPVqzudSkSkeALmjtLE\nxMQif83118PSpZCUBAkJsGqV53MFMndecykevebe52+vuW371Au1uMuFg8tfYu1aGDgQhg+Hp5+G\nkiWdTiQicmUF1U4V9V/JzIR+/UxBf/99CA93OpGIyOUKqp0B037xhGrV4OOPoVkzaNQI1q93OpGI\nSNHoSj0fy5fD//wPPPQQPPoolNCvPxHxEWq/uOnIEbPtsWJFmDULwsKcTiQiovaL2yIjISUFoqNN\nO2brVqcTiYgUTEX9KkJCYMIEmDgRunY1/+vD/7gQkSCn9ksRHDwId98NN94Ib70FFSo4nUhEgpHa\nLx5y882waZPZJdOoEXz6qdOJREQupaJeRNdeC6+/bubFdOgAU6eqHSMivkPtl2L48kvo3Rvq14cp\nU6BcOacTiUgwUPvFJrfcAqmp5ur9tttg926nE4lIsFNRL6ayZWHGDBg9GhITzX52ERGnqP3iQTt3\nmnZMixYwaRKUKeN0IhEJRGq/eEm9erBtG5w+bQ7h+OXQJxERr1FR97DQUJg9G/70J2jeHObNczqR\niAQTtV9slJ5u2jGdOpm7Uq+91ulEIhII1H5xSMOGsH07HD0KLVvC4cNOJxKRQKeibrOKFeHDD83h\nG02awKJFTicSkUCm9osXbdliRvn26QPPPmuGhYmIFJXaLz6iWTPTjtm1C9q0MW0ZERFPUlH3suuv\nhyVLoHNncxfqypVOJxKRQKL2i4NSUmDAABg+HJ5+2hx4LSJyNTrOzodlZkL//uBymf3t4eFOJxIR\nX6eeug+rVg1WrTI3KjVqBOvWOZ1IRPyZrtR9yIoVMGQIPPigGRBWQr9yReQK1H7xI0ePmi2PFSua\niY9hYU4nEhFf42j7JSoqivr16xMfH0/jxo3tXs7v1ahh3kCNiTF3pKamOp1IRPyJ7VfqN910E9u3\nb6dy5cqXL64r9QItXAj33gtPPGFaMi6X04lExBc4/kapCrd77roLtm6F99+Hnj0hK8vpRCLi62wv\n6i6Xi3bt2pGQkMC0adPsXi7g3HQTbNwIN9xgdsekpzudSER8me3tl4yMDCIiIjhx4gTt27dn0qRJ\ntGzZ0iyu9kuRzJ0L998Pf/873Hef2jEiwaqg2lnK7sUjIiIAqFKlCj169CAtLe1iUQcYO3bsxT8n\nJiaSmJhodyS/1acPxMdDr16wYQNMnQrlyjmdSkTslpKSQkpKSqGea+uV+pkzZ8jNzSU0NJTTp0/T\noUMHxowZQ4cOHcziulJ3y5kzMGoUbNpkTlaqW9fpRCLiTY5dqR8/fpwePXoAkJOTw4ABAy4WdHFf\n2bIwfTrMnGmmPU6YYG5aEhHRzUd+btcu045p3hwmTTIFX0QCm+NbGsU+devCJ5/A2bPQtCns2+d0\nIhFxkop6AChXzuxlHznSXLHPnet0IhFxitovASY9HXr3hqQkeOkluPZapxOJiKep/RJEGjY0R+Z9\n8w20aAGHDjmdSES8SUU9AFWsCB98YE5VatIEFi1yOpGIeIvaLwEuNdXctHT33TBuHISEOJ1IRIpL\n7Zcg1rSp6bPv3g2JiWZeu4gELhX1IBAWBkuWQJcukJBgTlgSkcCk9kuQWbfOHHQ9bBiMHQslSzqd\nSESKSsfZySWOHzeF3bJg9mxz+LWI+A/11OUS4eGwcqXZ8tiokTk+T0QCg67Ug9yKFWYY2KhR8Nhj\nUEK/5kV8ntovUqCjR6FvXyhfHt5917yxKiK+S+0XKVCNGrB2rRkO1rAhbNnidCIRcZeu1OUSixbB\n8OHw+OPw0EM6Mk/EF6n9IkVy6JC5AzUyEt56y4wdEBHfofaLFMlNN8HGjVC9utkds32704lEpLBU\n1OWKrr3WnKT03HNw550wZYrZ1y4ivk3tF7mqffvMjPbYWJg6FUJDnU4kEtzUfpFiqVPHTHssWxZu\nuw127nQ6kYjkR0VdCqVMGZg+3eyKueMOeOcdpxOJyJWo/SJFtmuXacfcfrvpu5ct63QikeCi9ot4\nVN26sG0bnDtn5rV/+aXTiUTkAhV1cUu5cvDeezBypBkMNneu04lEBNR+EQ9ITzftmDvvhJdfNtsh\nRcQ+ar+IrRo2NIU9MxOaN4eDB51OJBK8VNTFIypUgPnzYdAg02dfuNDpRCLBSe0X8bjUVOjTB3r1\ngvHjISTE6UQigUXtF/Gqpk1NO2bvXmjdGo4ccTqRSPCwvajn5uYSHx9P165d7V5KfEhYGCxeDN26\nmbtQly93OpFIcLC9qE+cOJGYmBhcGswddEqUMEfkzZ1rZrQ/+STk5DidSiSw2VrUjx49yrJlyxg+\nfLh650GsdWszvjc1Fdq3N7tkRMQethb1hx9+mBdffJESOs046IWHm0OuW7UyM9rXrXM6kUhgKmXX\nN16yZAlVq1YlPj6elJSUfJ83duzYi39OTEwkMTHRrkjisJIl4W9/MzNj7r4bnnrK3JGqzpxIwVJS\nUgqso79m25bGJ554gnfffZdSpUpx7tw5fvjhB3r27MmsWbP+u7i2NAatAwege3do3BjeeEN3oYoU\nheNnlK5bt44JEyawePHiQgeTwJedDUOGwLFj8OGHcMMNTicS8Q8+sU9du1/kt8qVg3nzoEsXc8We\nmup0IhH/pztKxScsXgzDhpk7UO+5x+k0Ir7N7fbLt99+y7x581i/fj2HDx/G5XJx44030qpVK3r3\n7k3VqlVtCybB54svTJ+9fXt45RWNFxDJj1tF/Z577uHAgQMkJSXRuHFjIiIisCyLjIwM0tLSWL58\nObVq1WL69Om2BJPglJUFAwbA6dOmNVOlitOJRHyPW0X9888/p379+gV+48I8x91gErxyc+Hpp+H9\n980bqA0bOp1IxLc4vvslPyrqUpB582DECHjtNejXz+k0Ir7D47tfkpKSihVIpDB694aPP4a//hVG\njzZX8CJSsHyv1NPT06/4BZZl0blzZzI9MMBDV+pSGCdPmjtQQ0IgORkqVXI6kYiz3Gq/lCxZklat\nWl3xi1JTUzl79qytwUR+LScHHnkEliyBBQsgNtbpRCLOKah25jv75dZbb2Xq1KnUqVPnss9FRkZ6\nLp1IIZQqZbY5xsdDmzbw5ptm+6OIXCrfoj527Fjy8vKu+LnXXnvNtkAiBRk8GKKjoWdP+Owzs0tG\nQ0BF/ku7X8QvZWaaM1CrVIFZsyA01OlEIt7jsd0vXbp08UggkeKqVg3WrIGqVc2ZqPv3O51IxDcU\nqagfO3bMrhwiRXbNNTB1KowaBc2b6xxUEShiUY+Pj7crh4jb7rsPPvjADAR74QVQR0+CmXrqEjCO\nHIEePaBOHZg+HcqWdTqRiD18Yp66iN0iI2HDBrP9sXlz+PprpxOJeJ+KugSUMmVg5kyz9bFpUyjk\nsY4iAaPIRf3s2bPMmzfPjiwiHuFywcMPw7vvQt++MHmy+uwSPApV1HNzc1m6dCkDBw4kKiqKOXPm\n2J1LpNjatYPNm83dp8OHw08/OZ1IxH75vlFqWRbr1q0jOTmZZcuW0aRJEzZs2MChQ4co66F3oPRG\nqXhDdjYMHWreSNUB1xII3HqjNDIyknHjxtGmTRv27t3L/PnzKVu2rMcKuoi3lCsH//wndO2qA64l\n8OVb1Hv16sX+/fuZO3cuixcv5vTp097MJeJRLpeZyz5lCnTrBjNmOJ1IxB4F7lPPy8sjJSWF5ORk\nPvroI7KyspgxYwadO3emXLlyxV9c7RdxwN69ZsJju3Y64Fr8k0eOszt//jwrVqwgOTmZFStWcPLk\nSVuDidjp1ClzwHV2tg64Fv/jVlH/9ttvOXHiBLG/OY1g9+7dhIaG8rvf/c7WYCJ2y82FMWPgvfd0\nwLX4F7feKH3ggQf47rvvLvv4yZMneeyxxzyXTsQhJUvCM8/AhAnQsaM5Kk/E3+V7pd6oUSO2b99+\nxS+KjY1l9+7dxV9cV+riIz7/3PTZe/WC554zBV/EV7l1pf7jjz/m+w1//vnn4qcS8SH168O2bZCe\nDp06wX/+43QiEffkW9Rr1arF0qVLL/v4smXLqFmzpq2hRJwQFmZmssfGmv3sHvjHqIjX5dt+2bdv\nH507d6Z58+Y0atQIy7LYvn07mzdvZsmSJdxyyy1X/ebnzp2jdevW/PTTT5w/f5677rqL55577r+L\nq/0iPmrWLPjzn2HaNB1wLb7H7S2N586dY/bs2ezatQuXy0VsbCz9+/endOnShV78zJkzlC1blpyc\nHFq0aMGECRNo0aLFVYOJOO2TT+D3vzeHb+iAa/ElBdXOUvl9UceOHbnzzjtJSkpi2LBhbi9+YazA\n+fPnyc3NpXLlym5/LxFvSkgwffaePeGzz8zVe/nyTqcSKVi+1x7vvPMOFStWZOzYscTHx/OnP/2J\nhQsXFnlcQF5eHg0aNCA8PJw2bdoQExNT7NAi3hIebg64rlbNzGf/6iunE4kUrFB3lObm5rJ161Y+\n+ugj1qxZQ+nSpenYsSOPPvpooRc6deoUHTt2ZPz48SQmJprFXS7GjBlz8TmJiYkXPyfia6ZONW2Y\nmTPhzjudTiPBJCUlhZRfnfjyt7/9rfhjAn7txIkTrFy5kgEDBhTp6/7+979TpkwZ/vKXv5jF1VMX\nP7NxI9x9Nzz4IDz6qBkUJuJtbp9RumzZMlq1akVYWBhhYWG0bt2apUuXUqVKlUIV9O+++46srCzA\nnJi0atUq4uPj3fhPEPENLVpAWhrMnw/9+8OZM04nErlUvm+UTps2jalTp/LCCy/QqFEjALZv385j\njz3G0aNHue+++676zTMyMhgyZAh5eXnk5eUxaNAg2rZt67n0Ig6oUQPWr4f77jMHXP/rXxAV5XQq\nESPf9kt0dDQbN24kLCzsko+fPHmS5s2bs3fv3uIvrvaL+DHLgokT4fnnzdwYvR0k3uJ2++W3Bf3C\nx1xqJIrgcsFDD5kpj337wqRJOuBanJdvUS9fvjyfffbZZR/fsWMHoaGhtoYS8Sdt25oDrqdNg3vu\ngXPnnE4kwSzf9svGjRsZMGAAQ4cOvWRMwDvvvMN7771Hy5Yti7+42i8SQE6fNgdc//vfOuBa7OX2\nmIDMzExef/119uzZA0BMTAwjR46kWrVqtgcT8UeWZUb3vvGGOVGpWTOnE0kg8shxdhds2LCBOXPm\n8Prrr9saTMSfLV1qrtqfe860ZEQ8ya3ZL7+Wnp5OcnIy8+bNIyoqip49e3o0oEig6dwZNmyAu+4y\nM9pffVUHXIt35Hul/uWXX5KcnMzcuXOpUqUKvXv35sUXX+Tf//635xbXlboEuFOnYOBA+OEH046p\nWtXpRBII3NrSGB0dTXp6OitWrGD9+vU88MADlNQZXyJFUqECLFwILVvCbbeZq3YRO+Vb1D/88EPK\nlClDq1at+OMf/8jq1at1VS3ihhIlzAHXL71kDriePdvpRBLIrvpGaXZ2NgsXLiQ5OZm1a9cyePBg\nevToQYcOHYq/uNovEmR27jQnKf3+9zB+vA64Fvd4bPfL999/z/z585kzZw5r1qyxNZhIoDp5Evr0\nMQU9ORl0bowUlVs99bS0NJYtW3bJxypXrkyNGjV44YUXPJtQJIhcOOC6bl1zwPWuXU4nkkCSb1Ef\nPXr0FU8piomJKdLhGCJyuVKlTI99zBho08ZMehTxhHz3qf/4449EXWGeaFRUFCdOnLAzk0jQGDQI\noqNNj/2zz0yR1wHXUhz5/vhcONziSs6ePWtLGJFgdOGA6zVroEcPs6ddxF35FvW2bdvy17/+9ZJm\nfF5eHk899RR33HGHV8KJBIvwcFi92gwBa9oU9u1zOpH4q3x3v2RnZzN8+HDS0tJo0KABYMbuJiQk\nMH36dI+M39XuF5HLvfkmPPmkOeA6KcnpNOKLirWl8cCBA+zevRuXy0VMTAw1a9b0SjCRYLZpkzng\n+oEHYPRoHXAtl3KrqB84cOCqBbwwz3E3mEiwO3rUvIF6880wYwZcd53TicRXuFXU+/Tpw+nTp+nW\nrRsJCQlERERgWRYZGRl88sknLFq0iNDQUObMmWNLMBExpyjddx/s2AELFuiAazHcbr/s37+fOXPm\nsGnTJr7++msAbrzxRlq0aEG/fv24+eabbQsmIoZlwWuvmdnsyclmX7sEN48ekuFJKuoihbd6NQwY\nAE88YXrt6rMHr2IX9QtX6jk5ORc/NnjwYFuDicjlDh0yA8EaNoR//ANKl3Y6kTihWEV94MCBHDx4\nkAYNGlwyT33SpEm2BhORK7twwPXXX5sDrqtXdzqReFuxinp0dDR79uzBZcO/9VTURdxjWWZ07+TJ\n5kSl2293OpF4k1tTGi+oW7cuGRkZHg8lIu5zueDxx82NSt27w/TpTicSX3HVg6dPnDhBTEwMjRs3\n5tprrwXMb4lFixbZHk5ECnbhgOvu3eHTT+GVV+Caa5xOJU66avslJSXlih9PTEws/uJqv4h4xKlT\nZuJjVhbMn68DrgOdY1sajxw5wuDBg/n2229xuVz84Q9/YNSoUYUKJiJFk5dnRvfOmmXeQG3UyOlE\nYhe3inq5cuXyfXPU5XLxQyHmg2ZmZpKZmUmDBg3Izs6mUaNGLFiwgOjo6KsGExH3fPAB/PGP8Oqr\nZl+7BJ6Came+PfXs7OxiL1ytWjWqVasGmF8S0dHRfPPNNxeLuoh4Xs+eUKfOf/vs48ebk5YkOHjt\njJXDhw/z6aef0qRJE28tKRK06tUzB2/s2AGdOsH33zudSLzFK7+/s7Oz6dWrFxMnTqRcuXKXfG7s\n2LEX/5yYmOiRN2BFBCpXho8+gsceM6crzZunPru/SklJyXfTym/ZPvvl559/pkuXLiQlJfHQQw9d\nurh66iJeMX8+jBgB//d/Zuqj5sb4N8d2v1iWxZAhQwgLC+OVV14pUjAR8ax9+6B3b9OamTIFfvOP\nZvEjxbqjtDg2bdrEe++9x9q1a4mPjyc+Pp7ly5fbuaSI5KNOHdiyBUJCoEkT+OILpxOJHTR6VyQI\nvfWWOSbvtdegXz+n00hRaZ66iFzms89MO6ZDB3j5ZfhlCoj4AcfaLyLiuxo0gE8+gcxMaNECDh92\nOpF4goq6SBCrUMHsjOnf3/TZlyxxOpEUl9ovIgLA5s3Qty8MHGi2PuouVN+lnrqIFMqJE2ZezPnz\nMGcO/DLlQ3yMeuoiUihVqpi7UNu0MXefrlvndCIpKl2pi8gVrVwJgwfDQw/Bo49CCV0C+gy1X0TE\nLUeOQJ8+EBZm5rRXquR0IgG1X0TETZGRkJICtWqZdswnnzidSK5GRV1ECnTNNebs0xdfNGN8//EP\n0D+wfZfaLyJSaF99Bb16Qd26MHWqhoI5Re0XEfGI2rUhNRVKl4bGjWHPHqcTyW+pqItIkZQpAzNm\nwCOPQOvWMHu204nk19R+ERG37dhhhoK1a2f67hoK5h1qv4iILeLizFmo334LzZvDoUNOJxIVdREp\nlgoVzPmngwZB06aweLHTiYKb2i8i4jFbtpiblfr3h2ee0VAwu+iOUhHxmhMnzKTHn36C5GSIiHA6\nUeBRT11EvKZKFVi2zAwFS0gwd6SK9+hKXURss2qVGQo2apQ5E1VDwTxD7RcRcczRo6bPXqmSGQpW\nubLTifyf2i8i4pgaNUwL5pZbzFCwbducThTYVNRFxHYhIfDSS+bRuTO88YaGgtlF7RcR8ar9+81Q\nsOhomDZNQ8HcofaLiPiMWrXMfvbrroPbboPdu51OFFhU1EXE68qUgenTzY6YxER4/32nEwUOtV9E\nxFGff27aMW3bmqFgpUs7ncj3qf0iIj6rfn1zTN5332komCfYWtSHDRtGeHg49erVs3MZEfFz5cvD\nP/8JQ4aYoWCLFjmdyH/ZWtSHDh3K8uXL7VxCRAKEy2XuPF2wAO6/3/Tbc3KcTuV/bC3qLVu2pFKl\nSnYuISIBplkzSE83B3C0bQsZGU4n8i/qqYuIz7n+ejMUrF07cxfq2rVOJ/IfKuoi4pNKlICnnjLz\nYvr3h3HjIC/P6VS+z/ER9mPHjr3458TERBITEx3LIiK+p107szumTx/YtMkU+bAwp1N5V0pKCimF\nnGFs+z71w4cP07VrV3bu3Hn54tqnLiKF9PPP8PjjMH++2SnTuLHTiZzj2D71fv36cfvtt7Nv3z4i\nIyN5++237VxORAJYSAhMmAAvvwxdusDrr2so2JXojlIR8Tv790Pv3nDrrfDmmxAa6nQi79IdpSIS\nUGrVgs2bzYRHDQW7lIq6iPilMmXM6N7HHzdDwd591+lEvkHtFxHxezt3mqFgiYkwcWLgDwVT+0VE\nAlq9euaYvKwsuP12OHjQ6UTOUVEXkYBQvjzMmQNDh5qhYAsXOp3IGWq/iEjA2boV7r7b3LD07LNm\nO2QgUftFRIJKkyZmKNjOnWYo2DffOJ3Ie1TURSQghYXB0qXQoQMkJMCaNU4n8g61X0Qk4H38MQwa\nZOa0P/64GRbmzwqqnSrqIhIUjh2Dvn3N3afvvuvfQ8HUUxeRoFe9umnBxMaaGe1btzqdyB4q6iIS\nNEJC4MUX4dVXoWtXmDw58IaCqf0iIkHpwAEzFKx2bZg+3b+Ggqn9IiLyGzVrmqFgFSuaoWC7djmd\nyDNU1EUkaJUuDVOnwhNPQJs25lQlf6f2i4gI5kq9Z09o3Rpee823h4Kp/SIichV165qzUE+dMkPB\nDhxwOpF7VNRFRH4RGmqGgg0bBs2awYIFTicqOrVfRESuYOtWMxCsd28YN863hoKp/SIiUkRNmsD2\n7eaovDvuMHek+gMVdRGRfISFwZIlcOedZtvj6tVOJ7o6tV9ERAphzRoYOBBGjDBbIJ0cCqaBXiIi\nHvDNN2Yo2HXXmaFg11/vTA711EVEPOCGG8wVe/36ZihYaqrTiS6noi4iUgSlSsHzz5sblLp1g0mT\nfGsomNovIiJuOngQevWCWrXMULDy5b2zrtovIiI2uPlmMxSsUiWzO2bnTqcTqaiLiBTLhaFgTz5p\n9rPPnOlsHluL+vLly7n11lupXbs2zz//vJ1LiYg4atAgSEmB556De++Fs2edyWFbUc/NzeX+++9n\n+fLl7Nmzh+TkZL744gu7liMlJcW27y1Xptfc+/Sae19RXvPYWNi2DbKznRsKZltRT0tLo1atWkRF\nRRESEkLfvn1ZuHChXcvph90Bes29T6+59xX1NQ8NhdmzYfhwMxTsX/+yJ1d+bCvqx44dIzIy8uLf\na9SowTF/GZ4gIlIMLheMHGlGDDz8MPz5z/Dzz95Z27ai7nK57PrWIiJ+oXFjMxRs717zJur5815Y\n1LLJli1brI4dO178+7hx46zx48df8py4uDgL0EMPPfTQowiPuLi4fGuvbTcf5eTkcMstt7B69Wpu\nuOEGGjduTHJyMtHR0XYsJyIiQCnbvnGpUkyePJmOHTuSm5vLPffco4IuImIzR8cEiIiIZ/ntHaXf\nf/897du3p06dOnTo0IGsrKwrPi8qKor69esTHx9P48aNvZwyMBTmJrJRo0ZRu3Zt4uLi+PTTT72c\nMPBc7TVPSUmhQoUKxMfHEx8fzzPPPONAysAxbNgwwsPDqVevXr7P8ZufcVveJfWCRx55xHr++ect\ny7Ks8ePHW6NHj77i86KioqyTJ096M1pAycnJsWrWrGkdOnTIOn/+vBUXF2ft2bPnkucsXbrUSkpK\nsizLslJTU60mTZo4ETVgFOY1X7t2rdW1a1eHEgae9evXW+np6VbdunWv+Hl/+hn32yv1RYsWMWTI\nEACGDBnCggKO/bbUYXJbYW4i+/X/F02aNCErK4vjx487ETcgFPbGPf1ce07Lli2pVKlSvp/3p59x\nvy3qx48fJzw8HIDw8PB8X2CXy0W7du1ISEhg2rRp3owYEApzE9mVnnP06FGvZQw0hXnNXS4Xmzdv\nJi4ujk6dOrFnzx5vxwwq/vQzbtvuF09o3749mZmZl3382WefveTvLpcr35udNm3aREREBCdOnKB9\n+/bceuuttGzZ0pa8gaiwN5H99qpRN5+5rzCvXcOGDTly5Ahly5blo48+onv37uzbt88L6YKXv/yM\n+3RRX7VqVb6fCw8PJzMzk2rVqpGRkUHVqlWv+LyIiAgAqlSpQo8ePUhLS1NRL4Lq1atz5MiRi38/\ncuQINWrUKPA5R48epXr16l7LGGgK85qHhoZe/HNSUhIjRozg+++/p3Llyl7LGUz86Wfcb9sv3bp1\nY+Yvg4tnzpxJ9+7dL3vOmTNn+PHHHwE4ffo0K1euLPDdbblcQkICX331FYcPH+b8+fPMnTuXbt26\nXfKcbt26MWvWLABSU1OpWLHixdaYFF1hXvPjx49fvHJMS0vDsiwVdBv51c+4k+/SFsfJkyettm3b\nWrVr17Z6slWwAAAAxklEQVTat29v/ec//7Esy7KOHTtmderUybIsyzpw4IAVFxdnxcXFWbGxsda4\nceOcjOy3li1bZtWpU8eqWbPmxddwypQp1pQpUy4+Z+TIkVbNmjWt+vXrW9u3b3cqasC42ms+efJk\nKzY21oqLi7OaNWtmbdmyxcm4fq9v375WRESEFRISYtWoUcOaMWOG3/6M6+YjEZEA4rftFxERuZyK\nuohIAFFRFxEJICrqIiIBREVdRCSAqKiLiAQQFXURkQCioi4iEkD+H4oJ/uX4QHCYAAAAAElFTkSu\nQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f7102416750>" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 21.2 pageno : 492" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.integrate import quad \n", + "from matplotlib.pyplot import *\n", + "from numpy import *\n", + "\n", + "# Variables\n", + "PAo = 3. #atm\n", + "R = 82.06*10**-6 #m3.atm/mol.k\n", + "T = 730. #k\n", + "W = 1000. #kg\n", + "FAo = 5000. #mol/hr\n", + "\n", + "# Calculations\n", + "CAo = PAo/(R*T);\n", + "tau = W*CAo/FAo;\n", + "i = 0;\n", + "\n", + "a = zeros(25)\n", + "XA = zeros(25)\n", + "a1 = zeros(25)\n", + "XA1 = zeros(25)\n", + "a2 = zeros(25)\n", + "XA2 = zeros(25)\n", + "a3 = zeros(25)\n", + "XA3 = zeros(25)\n", + "a = linspace(0,120,25)\n", + "for t in xrange(0,120,5):\n", + " i = i+1;\n", + " #Part a\n", + " a[i] = 1-(8.3125*10**-3)*t;\n", + " XA[i] = (tau**2)*a[i]/(1+(tau**2)*a[i]);\n", + " #Part b\n", + " a1[i] = math.exp(-0.05*t);\n", + " XA1[i] = (tau**2)*a1[i]/(1+(tau**2)*a1[i]);\n", + " #Part c\n", + " a2[i] = 1/(1+3.325*t);\n", + " XA2[i] = (tau**2)*a2[i]/(1+(tau**2)*a2[i]);\n", + " #Part d\n", + " a3[i] = 1/(math.sqrt(1+1333*t));\n", + " XA3[i] = (tau**2)*a3[i]/(1+(tau**2)*a3[i]);\n", + "\n", + "t = linspace(0,120,25)\n", + "plot(t,XA,t,XA1,t,XA2,t,XA3)\n", + "suptitle(\"Decrease in conversion as a function of time for various deactivation orders.\")\n", + "xlabel(\"Time, days\")\n", + "ylabel(\"Xa\")\n", + "\n", + "def f13(t): \n", + "\t return ((100*(1-(8.3125*10**-3)*t))/(1+100*(1-(8.3125*10**-3)*t)))\n", + "\n", + "XA_avg = (1./120) * quad(f13,0,120)[0]\n", + "\n", + "\n", + "def f14(t): \n", + "\t return (100.*math.exp(-0.05*t))/(1+100*math.exp(-0.05*t))\n", + "\n", + "XA1_avg = (1./120)* quad(f14,0,120)[0]\n", + "\n", + "\n", + "def f15(t): \n", + "\t return ((100*(1./(1+3.325*t)))/(1+100*(1/(1+3.325*t))))\n", + "\n", + "XA2_avg = (1./120)* quad(f15,0,120)[0]\n", + "\n", + "\n", + "def f16(t): \n", + "\t return ((100*1./(math.sqrt(1+1333*t)))/(1+100*(1/math.sqrt(1+1333*t))))\n", + "\n", + "XA3_avg = (1./120)* quad(f16,0,120)[0]\n", + "\n", + "# Results\n", + "print \" for d = 0,the mean conversion is % f\"%(XA_avg)\n", + "print \" for d = 1,the mean conversion is % f\"%(XA1_avg)\n", + "print \" for d = 2,the mean conversion is % f\"%(XA2_avg)\n", + "print \" for d = 3,the mean conversion is % f\"%(XA3_avg)\n", + "\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " for d = 0,the mean conversion is 0.955970\n", + " for d = 1,the mean conversion is 0.732280\n", + " for d = 2,the mean conversion is 0.400874\n", + " for d = 3,the mean conversion is 0.298840\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEfCAYAAAC5/EqkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8Def+wPHPyX6yyWIntiYEiSwiREQShFDUvlVtl6va\nUlql7dXi140ut9W6VV1QqkqprTTaqthip2htEUFsEUL2Pc/vj2mO7JI4yeTE83695nW2OTPfmTPn\nfM/Ms2mEEAJJkiRJKgcjtQOQJEmSDI9MHpIkSVK5yeQhSZIklZtMHpIkSVK5yeQhSZIklZtMHpIk\nSVK5lTl5GBsb4+XlhZubG56envz3v//FEGv5+vv7qx2C3mzdupWFCxeqHUaZjBw5Eg8PDxYtWqS3\nZe7evZsDBw7oHi9dupRVq1bpbfnFeeWVV3Bzc2P27NmqxLJ3717atm2Lt7c36enpel9+WUyaNImz\nZ89WybrGjRvHhg0b9La8hIQElixZont848YNhg4dWqFlnTx5kl9++UX3WO3v47x58/joo4+qbH2a\nsrbzsLGxISkpCYC4uDhGjRqFv78/8+bNe6QAcnJyMDY2fqRl1HS5ubkYGRnuSeKtW7cICAggMjJS\nr8udN28eNjY2vPzyy3pdbmns7Oy4d+8eGo1GlVieffZZAgICePrpp8s0f3Z2NiYmJnpbf1Ufi+PH\nj6dfv34MGjRIL8u7fPky/fr14/Tp04+8rBUrVnDs2DE+++wzPURWPnk/2/mPw/nz52NtbV3mY/CR\nf3tFGVlbWxd4fOnSJeHo6CiEECI7O1vMnDlTdOjQQbRr104sXbpUN9+CBQuEu7u78PDwEK+99poQ\nQojAwEAxffp04ePjI/773/+Ko0ePisDAQNG+fXvRq1cvcfPmTSGEEF9++aXo0KGD8PDwEIMHDxap\nqalCCCHWrVsn3NzchIeHh+jatetDY8jPyspKCCHErl27RGBgoBgyZIhwdXUVTz/9dLHzR0ZGiu7d\nuwsPDw/h7e0tLl26JIQQYubMmcLNzU24u7uLtWvXlrrMX375RQwdOlS3zF27dom+ffsKIYTYsWOH\n8PPzE97e3mLo0KEiOTlZCCFE06ZNxezZs4W3t7f44YcfxKJFi0SbNm1Eu3btxMiRI4UQQixfvly8\n8MILQgghoqOjRXBwsGjXrp3o3r27uHr1qhBCiLFjx4pp06aJzp07ixYtWoj169cXu50DBgwQ7du3\nF23bthVffvmlbp+OHTtWt50ff/xxkfdt2bJFdOzYUXh5eYkePXqI2NjYIvO4u7sLrVYrvLy8xN69\ne0VgYKA4evSoEEKIuLg40axZM932DBw4UISGhgoXFxcxa9Ys3TJ++eUX4e3tLTw8PESPHj3E5cuX\nRf369UWjRo2Ep6en2Lt3r5g7d6748MMPhRBCnDhxQnTs2FG0a9dODBw4UNy7d08IoRx7s2fPFr6+\nvqJly5Zi7969xe6P4j7ffv36CWNjY+Hp6al7Lm/flxZLYGCgmDFjhvDx8RGurq7i8OHDYsCAAcLF\nxUXMmTNHt5xVq1YJX19f4enpKSZPnixycnIKxPTVV18JBwcH0bx5czF69OgS49y1a5fo0qWL6N+/\nv2jZsmWBZXzxxRfilVde0T3Ofww99dRTRY4BIZTvzMsvvyw8PDzEvn37Cnx+33//vXB3dxdubm5i\n9uzZBd6T58cffxTjxo0TQhT/3S3s+eefF61atRI9evQQffr00R2z5f2duHXrlhgwYIDw8PAQHh4e\nIiIiQgwfPlxotVrh6ekpZs2aJS5fvizc3NyEEEJ07NhR/P3337o4AgMDxbFjx8Thw4eFn5+f8PLy\nEp07dxbnz58XGRkZwsnJSdSpU0d3POjz+/jRRx8JNzc34ebmJj755BPdMlu2bCnGjBkj2rZtK65c\nuSLefvtt0bJlS9GlSxcxcuRI3TF38eJFERoaKtq3by8CAgLEuXPndOufPHmy6Nixo3jppZdEeHi4\n8PT0FJ6ensLLy0skJSUVG09xKpw8hBDCzs5OxMbGiqVLl4q3335bCCFEenq68PHxEdHR0WL79u2i\nc+fOIi0tTQghdF/goKAg8fzzzwshhMjKyhJ+fn7izp07QgghfvjhBzFhwgQhhBB3797VrWvOnDni\ns88+E0IoP0Y3btwQQgiRkJAghBAlxlDSduzatUvUqlVLXL9+XeTm5go/Pz+xb9++IvP7+vqKTZs2\nCSGEyMjIEKmpqWL9+vUiJCRE5ObmitjYWNGkSRNx8+bNYpe5f/9+kZ2dLZo0aaI7qJ999lmxevVq\nERcXJ7p27ap7fsGCBeL//u//hBBCNGvWTHzwwQe6OBo2bCgyMzMLbPOKFSt0B2vfvn3FypUrhRBC\nLFu2TAwYMEAIoRwsw4YNE0IIcebMGeHs7FxkG4UQIj4+XgghRGpqqnBzcxN3794VR48eFSEhIbp5\n7t+/X+R9eZ+pEMqP28svv1xknvxfUCGUz//YsWNCiKLJo0WLFiIxMVGkp6eLpk2bimvXronbt28L\nJycncfny5QLrnDdvnvjoo490y83/2N3dXezZs0cIIcSbb74ppk+frlv3zJkzhRBCbN++XfTo0aNI\nvMV9vrdu3RJCFP89eFgsQUFB4tVXXxVCCLFo0SLRoEEDcevWLZGRkSEaN24s4uPjxZkzZ0S/fv1E\ndna2EEKIKVOm6D7P/MaNGyc2bNhQYpx5x6GVlZVuf+UXFxdX4Bjo3bu32L9/vxCi6DGQ91ij0Ygf\nf/xR9568z+/69euiSZMm4s6dOyI7O1t069ZN913Jv5/Wr18vxo8fL4Qo/rub34YNG3TbdOPGDWFn\nZyc2bNggMjMzy/07MWzYMLFo0SIhhBA5OTkiISGhyLEYHR2te/zxxx+LuXPnCiGEuHHjhmjVqpUQ\nQojExETd5/Lbb7+JwYMHCyGU79/UqVN1y9LX9/Ho0aPC3d1dpKamiuTkZNG2bVtx4sQJER0dLYyM\njMShQ4cKzJeWliYSExOFs7Oz7pjr1q2biIyMFEIIcfDgQdGtWzfd+vv16ydyc3OFEMofooiICCGE\nECkpKbrtLAu9nM/++uuvnD59mvXr1wOQmJhIZGQkO3fuZMKECVhYWADKKX+e4cOHA3Du3Dn+/vtv\nevToASinUg0bNgTg9OnTzJkzh4SEBJKTkwkNDQWUcouxY8cybNgw3elscTFcvHiRZs2alRi3r6+v\nbl2enp5cvny5QJlIUlISN27c4KmnngLAzMwMgP379zNq1Cg0Gg1169YlMDCQI0eOYGtrW2SZ0dHR\ndO7cmdDQULZs2cLgwYPZvn07H374Ibt27eLMmTN07twZgMzMTN39/PsIoF27dowaNYoBAwYwYMCA\nItty8OBBNm3aBMDo0aOZNWsWoJzW5s3funVrYmNji90XixYt0r0/JiaGixcv0rJlSy5dusS0adN4\n8skn6dmzZ5H3xcTEMGzYMG7dukVmZibNmzcvMo8oR9lY9+7dsbGxAaBNmzZcvnyZ+Ph4unbtStOm\nTYGCx1Fxy05MTCQhIYGAgAAAxo4dW+C6dt4x4+3tzeXLl4u8v6TPt2/fvqXGXtp29u/fHwA3Nzfc\n3NyoV68eAC1atODq1avs3buXY8eO4ePjA0BaWhr169cvdX0POw7z9ld+tWvXpkWLFhw6dAhnZ2fO\nnTunO+YKHwORkZH4+vpibGzM4MGDi2zrkSNHCAoKwtHREYCnn36aPXv26L4vxe2b4r67+e3du1e3\nTQ0aNKBbt24AnD9/vty/E7t27eK7774DwMjICFtbW+Lj40vcn0OHDqVXr17MmzePdevW6Y6Z+/fv\nM2bMGC5evIhGoyE7O1u3TSV95o/yfdy3bx+DBg1Cq9UCyvG6d+9e+vfvT9OmTfH19dXtq0GDBmFh\nYYGFhYXuGEtJSSEiIqLAMZ+Zmalb/9ChQ3WXu/z9/ZkxYwZPP/00gwYNolGjRiXun8IqnDwuXbqE\nsbExdevWBWDx4sWEhIQUmGfHjh0l7lwrKytA+QDatm1LREREkXnGjRvHli1bcHd359tvvyU8PByA\nJUuWcPjwYbZt20b79u05duxYiTGUxtzcXHff2NhYd1CUReHtyvswSlrmiBEjWLx4MQ4ODnTo0EG3\n/SEhIXz//ffFriNvHoBt27axZ88etm7dyjvvvMPp06eLxFDSvs5LeiXNEx4ezs6dOzl48CAWFhYE\nBweTnp6OnZ0dJ0+eZMeOHXzxxResW7eOb775psB7p06dysyZM+nbty+7d+8uUxmYiYkJubm5AEUK\nfYvbf4XLF8qr8DbnraO0zzz/e8qT/EqSt04jI6MC22hkZKSLYezYsbz77rvlWm5Jx2H+Y6ewESNG\nsG7dOlxdXXU/4CUdAwAWFhbFfgaFnxNC6J7L/1paWprufnHfXQcHh1K3KU9Zfyd279790GUVp1Gj\nRjg6OnL69GnWrVvH0qVLAXjjjTfo3r07Gzdu5MqVKwQFBZVpeRX9Pmo0miLHX3Gfa3HzgVIuZW9v\nz4kTJ4pdv6Wlpe7+7Nmz6du3L9u2bcPf358dO3bQqlWrsmxexarqxsXF8eyzzzJ16lQAevXqxeef\nf677Ely4cIHU1FRCQkJYvny57uC5d++ebhl5G9qqVSvi4uI4ePAgAFlZWZw5cwaA5ORk6tevT1ZW\nlu4fBEBUVBS+vr7Mnz+fOnXqEBMTU2IMj8LGxobGjRuzefNmADIyMkhLSyMgIIC1a9eSm5tLXFwc\ne/bswdfXt9QDtWvXrhw/fpyvvvqKESNGANCxY0f2799PVFQUoPxjKK5QWQjB1atXCQoKYsGCBbp/\nWPl17tyZH374AYDVq1fTtWvXMm9nYmIi9vb2WFhYcO7cOd1ncffuXXJychg0aBBvvfUWx48fL/a9\nef8AV6xYUab1NWvWjKNHjwLozhRLotFo6NSpE3v27NGdJeT9e8xfiSOPEAJbW1vs7e3Zt28fAKtW\nrSrzFx4o8vnu3btX92+vJCXFUhYajYbu3buzfv164uLiAGUbr169Wuz8ecutyHEIMHDgQDZt2sSa\nNWt0x2JJx0BpMfv6+rJ7927dcfLDDz8QGBgIQL169Th37hy5ubls3LhR977C391r164VWG7Xrl11\n23Tz5k127doFVOx3onv37rqaVTk5OSQmJhb7OeU3fPhwFi5cSGJiIm5ubrp9k3eML1++XDevra1t\ngWXl3++P8n0MCAhg06ZNpKWlkZKSwqZNmwgICCjyuXbt2pVNmzaRnp5OUlISP//8M6Aci82bN9d9\nt4QQnDp1qth1RUVF0bZtW2bNmkWHDh04f/58meMsc/JIS0vTVdUNCQkhNDSUN998E4CJEyfSpk0b\nvL29cXd3Z8qUKeTk5NCrVy/69++Pj48PXl5eBaqR5WVSMzMz1q9fz+zZs/H09MTLy0tX5fGtt96i\nY8eOdOnShdatW+veM2vWLNq1a4e7uzv+/v54eHgUG0Nx/yrz/yMq/M+puH9Xq1at4tNPP8XDwwN/\nf39iY2MZOHAg7dq1w8PDg+7du/PBBx9Qt25dNBpNics0Njamb9++hIWF6S5/1KlThxUrVuiqsXbu\n3LnYDy8nJ4dnnnmGdu3a4e3tzYsvvkitWrUKrO+zzz5j+fLleHh4sHr16gJVYkvbZoDQ0FCys7Np\n06YNr732Gn5+fgBcv36d4OBgvLy8eOaZZ1iwYEGR986bN4+hQ4fi4+NDnTp1SjxLyP/8zJkzWbJk\nCd7e3ty9e7fAv9Xi3l+7dm2+/PJLBg0ahKenJyNHjgSgX79+bNy4EW9vb12iyHv/t99+yyuvvIKH\nhwenTp3SHaulxZWnpM+3pPkfFkvh9RX3fOvWrXn77bfp2bMnHh4e9OzZk1u3bpUac3mOw/zs7Oxo\n06YNV69e1V0mK+kYKG2b69evz4IFCwgODsbT0xMfHx/69esHwIIFC+jbty/+/v40bNiwxO9uu3bt\nCixz4MCBuLi40KZNG8aOHau7pGZqalrm34k8ixYtYteuXbRr1w4fHx/Onj2Lo6Mj/v7+uLu7M3v2\n7CL7asiQIaxdu5Zhw4bpnps1axavvfYa3t7e5OTk6OYPDg7mzJkzeHl5sW7dOr19H728vBg3bhy+\nvr506tSJSZMm4eHhUWR+Ly8vhg8fjoeHB3369CnwB2f16tV88803eHp64ubmxpYtW4pd56JFi3B3\nd8fDwwMzMzN69+6tW/bDlLmqriRJkiTlMdzGA5IkSZJqZPKQJEmSyk0mD0mSJKncZPKQJEmSyk0m\nD0mSJKncZPKQJEmSyk0mD0mSJKncZPKQJEmSyk0mD0mSJKncZPKQJEmSyk3vyWPChAnUq1cPd3f3\nEueZNm0aLi4ueHh4lNjzoyRJklR96T15jB8/nrCwsBJf3759OxcvXiQyMpIvv/ySKVOm6DsESZIk\nqZLpPXkEBARgb29f4utbtmxh7NixgNIl+f3790scoEiSJEmqnvQykmB5XL9+HScnJ93jxo0bc+3a\nNd3IankedQAgSZKkx1VVdJauSoF5SaOfFTdfTZ3mzp2regxy++S2ye2reVNVqfIzj0aNGhETE6N7\nfO3atXKNm/swU95ayN+3TnHZ2AQTYYWpsMYk1wpT/rkvrDAVVphhjRnK83n3zTU2mGKFsZEGIyOK\nnTSa4p8vbTI2Lvrc8eOwbFnR1wvPW9Jrefcrcps3lfY4b1slSZKKU+XJo3///ixevJgRI0Zw8OBB\n7OzsilyyehRnzHNxNXHE08Ob9JwU0nJSSMtJJj3nJmm5yWTkppCam0J8TjIZIoWM3BTSc5NJF8lk\niGSyRQbmGhu0mlpYaGyxoBbm2GJe+FbUwkzYYppri0WuA+bZDpjnOmCe64hRrjm5uZCbCzk56O7n\nn65dg337Cr5eeN7iXivtudJuS7tf3Gu5uUryyJ9c8iYTk+Kfz/9aXBz8/PODxyXdlvTao0ympg9u\n898v6ba4ycxMuTU2lklUkoqj9+QxcuRIdu/ezZ07d3BycmL+/PlkZWUBMHnyZPr06cP27dtxdnbG\nysqqwJjA+pBuYU6KjS1fureFDh3K/f6snCySMpNISE8gMSORhAzlNjEjsdBzN3X3b6Td427aXeLT\n4rmbehdTY1MctY44aB1wtFRuHbQOD57TOtL0tCndgg9Qz7oe9a3rY2lq+fDgqpAQRRNM/ik7u/TX\nDh0Kwsur4Hx59wvf5r+flVXwueKm1NSiz2VlFb1fltvSpsxMZR8UTixCBLFihZJgSpvMzUt/rbjJ\nwqLk17Ra5fW8WzOzykls5Rnv3RDV9O2rKtV2GFqNRlOh63ftvlyCxtKWkz9vhX8GoK9KQghSslJ0\niSQ+Lb5AYolPj9fdv51ym1vJt4hNicXEyIT61vWpZ1VPl1DqWRW6ta5HPat6aE21Vb5dj6vc3OKT\nSt79jAzlcVmnvPnT05X7ZZ3y5k9LU+6npSkJ0MKiYEIp7tbKCiwtH0yFHxf3nJUV2Ngok7m5PPsy\nJBX97SyvKr9sVdlStZbcbtAAfvsNrlyBpk2rdP0ajQZrM2uszaxpUqtJmd4jhCAxI5HYlFhik2N1\nCSU2JZYjN44UfC45Fmsza5xqOdGkVhOa1GqCk23B+w1sGmBiVOM+WlUYGT3451/d5OQoiSQvmeS/\nzbufmvrgNiVFuU1NhVu3Cj4u/HpysjIlJSkJ1Nr6QTKxsSn5sa0t2NuDnV3Byd5eSUgyCdUcNe7M\no/6G9dx2rE1cWBiOWVnw0UeVEJ16hBDcSb3D1YSrxCTGcDXhqm7KexyXEkd96/oPEkotJ5rYNsHZ\nwRkXRxea1mqKsZGx2psiGYjMzAeJJCmp4P3CjxMT4f79gtO9e8ptRgbUqlUwoeTdd3CAOnWgbl3l\nNv99rTzRLpeqOvOoccnDMiwMJ9tarKztSEc/P4iOVv4OPUYyczK5kXTjQVJJiOFKwhUuxl8kMj6S\n2ORYmts3p6VjS1wcXHBxcFHuO7rQyKaRbGMjVYqsLEhIeJBM8k937iiVLPKm27cf3JqaFp9U6tSB\nBg2gSRNwcoJGjZR5H3cyeVRgB8TduU+jE0cY1LAhfWvXZvT06Uqh+UsvVVKUhiktK42oe1FcuHuB\nyLuRRMZHKvfjI0nMSMTZwVmXWFo6tsS9rjtt67bFwsRC7dClx4wQyhlN/oSSd//2bbh5E2Ji4OpV\niI1VEkpeMnFyenA/77Zu3Zp/6UwmjwrsgL2HTzHwRhTPeXhipNEwLy4OhgyBqCilXqb0UIkZicoZ\nyl0loZy/e57Tt08TeTeS5vbN8ajnoUz1ldv61vXlmYpULWRnw40bD5JJ/tu8+8nJ0LgxODtD27YP\npjZtlDKbmkAmjwrsgO827uCNtDjmd+vBr/fu8V3r1tC1Kzz/PAwfXkmRPh4yczI5G3eWk7En+fPW\nn5yMPcnJWycx0hjpEkleUnGt7YqZsZnaIUtSEampSiK5cAH+/vvBdO6cctbi5lYwqbRurRT0GxKZ\nPCqwAz78ajXLNSl8NXQ4My5e5FD79rB5M7zzDhw6VPPPV6uYEIIbSTd0ieRkrDJduX+FVrVb0alx\nJ/yd/PF38qeZXTN5hiJVWzk5SvHoX38VTCoXLijlKnnJxM8PgoOrdzGqTB4V2AGvfvQ/fjfL4pfJ\nz+F6+DB3u3RRjgpXV6UvkICASopWyi81K5XTsaeJiIkg4loE+6/uRyB0icS/iT+e9T3l2YlU7WVn\nK1e9//5bSSx798LBg9CuHYSEQM+e4Otbva6Ky+RRgR0w5e33OW0h2PvyLOz27SO6UyccTE3h88+V\ndh8bN1ZStFJphBBcvn+Z/TH7iYiJYH/MfqLio2jfsL0uofg5+eGgdVA7VEl6qLQ0pWuh336DX3+F\ny5chKOhBMnF2Vvcih0weFdgBY+a9xQ0z+P31N/A5dozPXVzwtbVVWj81awYREeDiUjkBS+WSkJ7A\nwWsHdWcmh68fprFtY7o06ULPJ3rSo0UP7Czs1A5Tkh4qNhZ27lSSyW+/KWchISHK1L07ODpWbTwy\neVRgBwydO49UI9g2dx4jzpyhn6MjT+d1uvif/ygVyv/3v0qIVnpU2bnZnIo9xd4rewmLCmPf1X14\n1feit3NvQp1D8azvKctMpGpPCDh79kEi2bsXWraECROUqSp6KpDJowI7oO/8eZjnwob583gjOhoT\njYa5zZopL968qdTHi4pSmrNK1VpqViq7L+/ml4u/8MvFX0jOTCbUOZTezr0JaRGCvbbk0SolqbrI\nzFQucX30kVJm8p//wLhxSqeWlaWqkocqg0FVlgwTYyw1SrcbzlotkWlpD15s0AAGDIAvvlApOqk8\nLE0t6e3Sm097f0rk1Ej2jt+Ld31vVvy5giafNKHLsi68s+cdjt88Tq7IVTtcSSqWmRl06wbbtsHa\ntfDTT9CqFXz9tdLi3pDVqDOPgA8W0DbdiC/emEVEQgIvRUVx0Nv7wQynTkFoqFInrzr2dCeVSVpW\nGruv/HNWEvkLiRmJ9HbpzfC2w+nRoofsFFKq1iIiYO5c5SLIG2/AM8/ot7aWPPOogHQLc2y1Sose\nZ62WyNTUgjO0a6e0AlKhq3ZJf7SmWkKdQ1kUuogLUy+wf8J+POp5MDd8Lg0/asgL219g/9X98oxE\nqpY6d1bKQ779FlatUhoirlypVAs2JDUqeaRZaKlto7TeqWNqSrYQxBc+N3z5ZeUCZPU84ZIq4AmH\nJ5jeaTqHJh4i4l8R1Leuz6Stk2ixqAWv/v4qp2JPVenYzpJUFgEB8Mcf8NVX8M03SiPE1auVpmmG\noEYlj1StFQ3q1AGUUzdnrZaL+cs9QKmInZur1K2TahxnB2fmdJ3D38/9zeYRmwHot6Yf7kvceXfv\nu0Tfi1Y5QkkqKCgIwsOV5mhLljy4OFLdk0iNSh5JVlY0bdRA97jY5KHRKL3s1rBxPqSCNBoNHvU9\nWNBjAdEvRvNF3y+4nnSdjl93xO8bPz479BmxybFqhylJgPKz1L27UrV30SJlatcOTp9WO7KS1ZgC\n85zsHCz/2MkVTx/q11Wq4s6JjsY0f3XdPBkZSqPB339XzhWlx0ZWThY7o3fy/env2XphK76NfHnO\n5zn6tuwrB8iSqg0hlBpZCxfC0aPKgFllJdt5lHMHXL95hydOHye9Z0/dcytu3WLnvXusat266Bve\nflvpV+Drr/UQrWSIUrNS+ensTyw+vJjYlFie83mOf3n/S3aTIlUb06YpP1ObNilDIpeFrG1VThei\nr2KbklzgOZfiLlvlefZZpdJ1rLx08biyNLVkdLvRHJx4kHVD1nH69mme+PQJJm2dxKnYU2qHJ0l8\n+KEyyuJ776kdSVE1JnlcvX4Tm0LJo0hDwfxq11bG+Pj88yqITqruOjTqwMqBKzn/wnma1mpKn9V9\nCFwRyPoz68nONbA6lFKNYWYGP/6o9Kr0669qR1NQjUket+LvYlmoXUddU1Myc3O5V1JTzhkzlBbn\nJSUY6bFT16ouc7rOIfrFaJ7v8DyLDi2i+aLmvLv3XeJS4tQOT3oMNWoE338PY8bAlStqR/NAjUke\ndxIT0KYXTAIlVtfN07IldOyotNCRpHxMjU0Z1nYYe8fvZevIrUTdi6Ll4paM2zSOozeOqh2e9JgJ\nCoKZM5VRtdPT1Y5GUWOSR2J6CuYZGUWeL7XcA5RGgx9/rLT9kKRieNb35Jv+33Bx6kVa127N4HWD\n6bKsC79F/SYbH0pV5uWXoWlTePFFtSNR1JjkkZKThUVm0ctTpZZ7gDLGubU1bN9eidFJNYGjpSOz\nu8wmaloUz3d4nqm/TCVwRSC7L+9WOzTpMaDRKAOi7t4Ny5erHU0NSh5pIgfz7KJNMl0sLUs/85CN\nBqVyMjEyYaT7SP567i8mek9kwpYJdF/ZnYiYCLVDk2o4W1ulkuisWXDihLqx1JjkkW4E2mKuPD30\nzANg6FCli8uj8lq2VHYmRiaM8RjDuefPMdJtJCM3jKT36t4cuX5E7dCkGqxNG1i8GAYPhvh49eKo\nMckjw9QYraZov8YPLfMAMDWF119XLirKa9hSOZkamzLReyKRUyPp37I/A9cOpP+a/vx560+1Q5Nq\nqOHD4ans8XasAAAgAElEQVSnlO7c1SqurTHJI93MDGvTomN01DU1JT03l/sP6+940iRISpLdtUsV\nZmZsxpQOU7g47SI9WvSgz+o+DFk3hL9u/6V2aFIN9P77kJiodJahhpqTPCwssNNaF3n+odV18xgb\nKy1xXnlFSSKSVEEWJhZM6ziNi9Mu0qlxJ7qv7M7IDSM5f+e82qFJNYipKaxbB0uXQlhY1a+/xiSP\nNK0WR9view9zKW5gqOL4+UFICLz1lp6jkx5HlqaWzOw8k4tTL+Je150uy7swfvN4biXfUjs0qYZo\n0EC5WDJ2rDJAalWqMckjRWtFwzq1i32tTGceeRYsUOrBnTunx+ikx5mNuQ2vB7zOxakXqWNZB/cl\n7nx26DPZ7YmkFwEB8OqrVd+AsMYkj2QrK5o2aljsa2UqNM9Trx7MmQNTp8rCc0mvalnU4v2Q99kz\nbg8bz23E50sfWb1X0ovp08HZGV54oerWWSOSR052DglW1rg6Nyn29TJV183v+efh1i2lQrUk6Vnr\nOq3ZOWYns/1nM/THoUzYPIHbKbfVDksyYBqNMpRtRBX+F6mU5BEWFoarqysuLi4sXLiwyOt37twh\nNDQUT09P3NzcWLFixSOt7+rNOMyys3Cwsyn29Yc2FCzMxESpSP3SS1CWshJJKieNRsNI95Gcff4s\n9lp73D53Y8mRJeTkVvOxR6Vqy9q6av/v6j155OTk8MILLxAWFsaZM2dYs2YNZ8+eLTDP4sWL8fLy\n4s8//yQ8PJyXX36Z7IdVpS3Fhagr2KSklPh6PVNT0nJzSSjPOgIDwd+/enakL9UYtua2fNTzI3aO\n2cmav9bg+7Uvh64dUjssyUC5ulbduvSePA4fPoyzszPNmjXD1NSUESNGsHnz5gLzNGjQgMTERAAS\nExNxdHTExKRoA7+yunrzFtapJSePMlfXLeyDD5QR6S9erHBsklQW7vXc2T1uNzM6zWDg2oH8e+u/\nuZN6R+2wJKlEFf/FLsH169dxcnLSPW7cuDGHDhX8JzVp0iS6detGw4YNSUpKYt26dcUua968ebr7\nQUFBBAUFFTvf7XvxWBqXnhjyyj3a2xR/aatYjRopnchMnw4//1z290lSBWg0Gka3G03fln2ZGz6X\ntp+35a3gt5joPREjTY0onpQqQXh4OOHh4VW+Xr0nD41G89B53n33XTw9PQkPDycqKoqQkBBOnjyJ\nTaEf9vzJozTxSYloLUq/VlyuGlf5TZ+udGX588/Qt2/53y9J5WRnYcei0EWM9xzP89uf5+vjX7Pk\nySW0b9he7dCkaqjwH+v58+dXyXr1/nemUaNGxMTE6B7HxMTQuHHjAvNEREQwdOhQAJ544gmaN2/O\n+fMVb32blJmGxUMqODuXtaFgYWZm8OmnSif61WUUFumx4Fnfk73j9zLFZwp9vu/D/PD5sm2IVG3o\nPXn4+PgQGRnJ5cuXyczMZO3atfTv37/APK6urvz+++8AxMbGcv78eVq0aFHhdaZkZ2KeVfqXqkJl\nHnl69gRPT6UMRJKqkJHGiPFe4zn+7+Psj9lPl2VdiLwbqXZYkqT/5GFiYsLixYvp1asXbdq0Yfjw\n4bRu3ZqlS5eydOlSAF5//XWOHj2Kh4cHPXr04P3338fBwaHC60zV5GKRU3rXki7lbetR2H//C4sW\nweXLFV+GJFVQI9tGhI0OY5T7KPy+8ePLY1/KUQwlVWlENT0CNRpNmb8cff5vPtY5sG7+3BLnEUJg\ns28f1/38qFXRml1vv62MwLJhQ8XeL0l6cCbuDKN/Gk0j20Z83e9r6lnXUzskqRopz2/no6gRVTjS\nTY2xNCo9IVS4um5+M2fCn3/Cr79WfBmS9Ija1GnDwYkHca/rjudST7ac36J2SNJjqEYkjwwzM6xN\nLR463yMnDwsL5dLV1KmQmVnx5UjSIzIzNuPd7u/y49AfeTHsRSZtnURyZrLaYUmPkRqRPNItLLC3\ntHrofBWurptf377g4gKffPJoy5EkPejSpAsnnz1Jdm42nl94ciDmgNohSY+JGpE8UrVaateyf+h8\n5e4gsSSffKIM43Xt2qMvS5Ieka25LcufWs77Ie8zYO0A3tz1Jlk5WWqHJdVwNSJ5pFha07Bu3YfO\np5czD1D6Pp4yRRl1UJKqiUGtB/Hn5D85cuMI/sv85ciFUqWqEckjycqKFk6NHjpfhRsKFue115T+\nj1XoFkCSStLApgHbR21nnOc4/Jf5s/ToUlmlV6oUBp88MjOzSLS0otUTTg+dt4GZGSm5uSQ+Qg++\nOpaWStuPqVMhS14ikKoPjUbDcx2eY9+EfSw+spgJWyaQni17R5D0y+CTx6WrN7HMyMDaSvvQeTUa\nDU9YWOjn0hXAoEFK54lvv62f5UmSHrnWduXAvw6QmpVKl2VduJpwVe2QpBrE4JNH1JVr2KYklXn+\ncg8MVRqNRhnv/OuvZdsPqVqyNrPmh8E/MMJtBB2/7sgf0X+oHZJUQxh88rh2KxarcpRj6K3GVZ4G\nDWD1ahg7Vta+kqoljUbDzM4z+W7gd4zaMIqPIj6S5SDSIzP45HEr/i6WaeVLHno788gTFKSUfQwf\nLss/pGqre4vuHJp4iDV/rWHkhpGkZJY8gJokPYzBJ4/7KUkP7Y49v0fuILEkr74KdnbKrSRVU03t\nmrJ3/F60plo6fdOJi/FylEypYgw+eSRmpmGRkVHm+SvlzAPAyAhWrlQ6Tdy4Uf/LlyQ90ZpqWdZ/\nGVN8ptD5m85sj9yudkiSATL45JGak4V5Ztmr3jY0MyMpO1s/1XULc3SEdetg8mSIitL/8iVJT/Kq\n824cvpFJWyfx1u63yBWlD2sgSfkZfPJI04iHjuWRn0aj4QmtlqjKOPsA8PWFN96AIUOgstYhSXri\n38SfI5OOEBYVxsC1A0lIT1A7JMlAGHzyyDDSoBUPHzc9v0or98jzwgtK54kvvlh565AkPWlo05Bd\nY3fR2LYxvl/7cibujNohSQbA8JOHqQlaI9NyvafSyj3yaDRK24/wcFi1qvLWI0l6YmZsxv/6/I/X\nurxG4IpANp6V5XZS6So4pF71kWZhhm05N8PF0pKIhEo+Pbe1VQrPu3UDb29o27Zy1ydJejDOcxxu\ndd0Y8MMALt+/zAy/GWqHJFVTBn/mkW6hxc7Kplzv0XtDwZK4u8MHHyjlH8lyoB7JMPg09GH/hP18\nfeJrXgx7kZzcHLVDkqohg08eaVotdewePpZHfnrrmr0sxo2Dzp1h0iSQrXolA9HUrin7J+znVOwp\nhv44lNQsPfVGLdUYBp88krVWONV7+Fge+TUwMyMhO5ukyqiuW5zFi+HMGViypGrWJ0l6YGdhR9jT\nYViaWtJ9ZXfiUuLUDkmqRgw+eSRZWdOi6cPH8sjPKK+6bjlapj8SrRbWr4e5c+Ho0apZpyTpgbmJ\nOasGrqJb8250XtaZyLuRaockVRMGnTwyM7NI0Wpp1eLhY3kU5qLPgaHKtEIX5cxj6FC4d6/q1itJ\nj0ij0fBOt3d4pfMrBCwPkOOkS4CBJ49zkVewSkvDzKx8VXWhCqrrFmfIEHjqKaUH3lzZmlcyLP9u\n/2+WPbWM/j/056ezP6kdjqQyg04eUTHXsUmpWC2mSm8oWJL334e4OPjww6pftyQ9oj4ufdgxegdT\nf5nKooOL1A5HUpFBJ4/rt29jlVaxbqVVOfMAMDODtWuVIWx37Kj69UvSI/Ju4M3+CftZemwpM3bM\nkFV5H1MGnTzi7t0r10BQ+blYWqpz5gHQpInSgHD0aNizR50YJOkRNLNrxv4J+zlx8wTD1g8jLUv2\n4/a4MejkcT81uVxjeeTX8J/qusk5Kv1r8veHNWuUcpAjR9SJQZIegb3Wnh2jd2BmbEb3ld25k3pH\n7ZCkKmTQySMpMx2LjMwKvTevuq4ql67y9Oih9IHVty+cPq1eHJJUQeYm5qwetJrAZoF0/qazHFzq\nMWLQySMlNwuzR2jop1q5R379+8OiRRAaChcuqBuLJFWAkcaI97q/x0t+LxG4IpBTsafUDkmqAgbd\nMWK6RmDxCFedqrSbktKMGAEpKRASopSBNG2qdkSSVG7P+jyLnYUdIatC2DJiCx0bd1Q7JKkSGXby\nMNbgkF2+sTzyc9ZqOZSYqMeIHsG//qV0ntijh5JAGjRQOyJJKrcRbiOwMbOh75q+rBuyjuDmwWqH\nJFUSg75slWFmiqVx+RsI5qkWl63ye/FFpSPFkBC4IwsfJcP0ZMsnWTdkHcPWD2Pr+a1qhyNVEsNO\nHuZm1DLXVvj9qjUULM3rrysF6L16QWWPOSJJlSS4eTDbRm1j0tZJrDm9Ru1wpEpg0MkjzUKLfTnH\n8sivkbk597OzSVGrum5xNBp47z3w84Mnn1TKQiTJAPk28uW3Z35j5m8z+fLYl2qHI+mZQSePVK0l\ndewdK/x+I42GFtXt0hUoCeTTT5XOFAcMgKrq/VeS9My9nju7x+3mvX3v8WGE7JKnJqmU5BEWFoar\nqysuLi4sXLiw2HnCw8Px8vLCzc2NoKCgCq0n2dIKpwb1HiHSaljukcfICL76CuzsYPhwyMpSOyJJ\nqhBnB2f2jNvDV8e/4s1dbyLkoGg1gt6TR05ODi+88AJhYWGcOXOGNWvWcPbs2QLz3L9/n+eff56t\nW7fy119/sX79+gqtK8nKGudmjR8p3mpZ7pHHxARWr4bsbKUn3up0eU2SysGplhN7x+9l64WtTN8x\nnVwhe5U2dHpPHocPH8bZ2ZlmzZphamrKiBEj2Lx5c4F5vv/+ewYPHkzjxsoPf+3atcu9nuSUNNLM\nzWnh1PCR4q22Zx55zMyUgaRu3YJnn5VD2UoGq65VXXaN3cXRG0eZuGWi7FDRwOm9ncf169dxcnow\nOFPjxo05dOhQgXkiIyPJysoiODiYpKQkXnzxRZ555pkiy5o3b57uflBQUIHLW+cuXsE2JRlTU+NH\nitdFq+X72NhHWkal02ph82bo2RNmzICPP1bKRSTJwNhZ2PHr6F8ZsHYAIzaMYPWg1ZgZm6kdlkEL\nDw8nPDy8yter9+ShKcOPWlZWFsePH2fnzp2kpqbi5+dHp06dcHFxKTBf/uRRWHTMDWz0UBOp2p95\n5LGxge3blUaEkyfD//4HphVv4yJJarEys2LryK2M3DCSp354ig3DNmBpaql2WAar8B/r+fPnV8l6\n9X7ZqlGjRsTExOgex8TE6C5P5XFycqJnz55otVocHR3p2rUrJ0+eLNd6bsTFYVnBsTzya2xuTnx1\nq65bEnt7CA+Ha9eUtiDVpXW8JJWThYkFPw79kdqWtQn9LpTEDHksGxq9Jw8fHx8iIyO5fPkymZmZ\nrF27lv79+xeY56mnnmLfvn3k5OSQmprKoUOHaNOmTbnWE3f/Hlo9nDEYaTS0sLAgyhDOPkA5A9my\nBVq0gC5dIF+iliRDYmJkwrcDvsWtrhs9Vvbgfvp9tUOSykHvycPExITFixfTq1cv2rRpw/Dhw2nd\nujVLly5l6dKlALi6uhIaGkq7du3o2LEjkyZNKnfyuJ+ajFZP7R9cLC0N49JVHhMT+PxzpQaWnx8c\nO6Z2RJJUIUYaI/7X5390dupMj5U9iE+LVzskqYw0oppWutZoNKXWBx83722umsMfr8155HXNjIqi\njqkps5s0eeRlVbkNG5RaWMuWQb9+akcjSRUihOCV315hZ/ROfn/mdxwtK97493H3sN9OfTHYFuap\nIgeLLP2UUxhMoXlxBg+Gn39WCtE/+0ztaCSpQjQaDR+EfECvJ3rRbWU34lLi1A5JegiDTR7KWB76\nya7VuqFgWXTsCPv3w5IlSs+8hlD4L0mFaDQa3uv+Hv1a9qPbym7cTrmtdkhSKQw2eWSYGKHVU/gG\nfeaRp3lzJYGcPg2DBskOFSWDpNFoeCv4LQa3Hkzwt8HcSr6ldkhSCQw2eaSbmWJpop/GRU7m5tzN\nyiLV0P+x29tDWBg4OEBgINy8qXZEklRuGo2GeUHzGNF2BEErgriRdEPtkKRiGG7yMDfH1txKL8sy\n0mhobkjVdUtjZqYUng8YoNTE+usvtSOSpAp5I/ANxnqMJWhFENcTr6sdjlSIwSaPNAsLHK0rPpZH\nYS0tLTmalKS35alKo4E5c+Ddd6FbN/j1V7UjkqQKeS3gNSZ6TyRwRSAxCbJNU3VisMkjVWtFfQf9\nVed7uXFjXo+O5mZGht6WqbpRo5SqvGPGwNdfqx2NJFXILP9ZPNfhOYK+DeLK/StqhyP9w2CTR4qV\nFU4NH20sj/wC7OyY3LAhY86dI7d6Nn2pmIAA2LMH3n8fJk2SBemSQXrJ7yVe7PgiQd8GEX0vWu1w\nJAw4eSRaWeHcXL+N+uY0bUpabi4f1bQuP1q2VFqhZ2aCtzccP652RJJUbtM6TmOm30yCvw0mKj5K\n7XAeewaZPOLvJZJpYkqTBnX0ulwTjYbVrVvzQUwMR2pap4M2NvDttzB3LoSGwn//C7lyQB7JsDzv\n+zyvdXmN4G+DuRh/Ue1wHmsGmTzORl6hVkoyxiaPNpZHcZpaWPA/FxdGnj1LUna23pevulGj4NAh\nZYCp3r2VQaYkyYBM9pnM3MC5BH8bzPk759UO57FlkMnjyvWbWFfitfuhdesSZGfHC5GRlbYOVTVv\nrpSDdOwIXl6wbZvaEUlSufzL+1+8FfwW3Vd2lwlEJWVOHrdv3+bq1au6SU0378RhlVq5Bb+LnJ05\nlJRU/UcZrCgTE/i//4O1a+G552DaNNBTL8WSVBXGeY7j7W5vywSikocmjy1btuDi4kLz5s0JDAyk\nWbNm9O7duypiK9HdxAS0aamVug4rY2PWtG7NixcvcqkmNB4sSdeu8OefSmt0X1/4+2+1I5KkMpMJ\nRD0PTR5z5szhwIEDtGzZkujoaHbu3EnHjh2rIrYSJaSlYFEF7TG8bGz4T9OmjDxzhqyaXLhsbw/r\n1sH06RAUpHSwWJOqK0s12jjPcbzT7R2ZQKrYQ5OHqakptWvXJjc3l5ycHIKDgzl69GhVxFaipOx0\nzDMzq2RdLzZqhKOpKXMvX66S9alGo4EJE2DfPqVB4YABcOeO2lFJUpmM9RwrE0gVe2jysLe3Jykp\niYCAAJ5++mmmTZuGtbV1VcRWojQ9juXxMBqNhhWurqy4dYs/7t2rknWqqlUriIhQ2oZ4esLOnWpH\nJEllkj+BnLtzTu1warwSk0deofimTZuwtLTk448/JjQ0FGdnZxYsWFBlARYnzQgsqvAqUl0zM1a4\nujL23DnuZGVV3YrVYm4OH3wAy5crXZv8+99w967aUUnSQ8kEUnVKTB5BQUEsXLgQrVaLsbExpqam\nhIaGcvjwYWbMmFGVMRaRYWKEJfpv41Gang4ODK9bl3+dO1clQzxWCyEhSgG6hQW0baskk5pc9iPV\nCGM9x/Jut3fpsbKHTCCVqMTkcezYMS5duoSnpyc7d+7kk08+oWPHjnTq1IkjR45UZYxFZJiZYaWn\nsTzK493mzbmemcnnNx6j8QXs7ODTT2H7dvjiC6V21qlTakclSaUa6zmWd7u/K89AKpFJSS/Y29uz\ndOlSPvnkE0JCQmjYsCEHDhzAycmpKuMrVrq5ObaYVvl6zYyMWNO6NZ1PnKBrrVq4q1z2U6W8veHA\nAfjqK+jRA555BubNU7o9kaRqaIzHGAC6r+zOzjE7ca3tqnJENUuJZx737t1j8uTJLF++nF9++YUh\nQ4bQu3dvdlaDAtRUrRZHW1tV1u1iackHTzzByLNnSTP0kQfLy8gIJk9WBpiKj4fWreHHH2W1Xqna\nGuMxhve6v0f3ld05G3dW7XBqlBKTR/v27XF2dubYsWP06tWLTz75hO+++445c+YwcuTIqoyxiFSt\nFfUd9dspYnmMrVcPdysrXo56THv2rFtXKf9Ys0ZppR4aCjW1KxfJ4I3xGMOC7gvosaqHTCB6VGLy\n2L17N6+88gomJg+ubHl6ehIREUFwcHCVBFeSZCsrmjZqoNr6NRoNX7RsyS/x8Wx6nNtCBAQo3bv3\n7KkMeTt3LtTk1viSwXrG4xmZQPRMI6pp1SGNRlNirSaLX3/lsqcP9es6VHFUBR1ISGDAX38R4e3N\nE1qtqrGo7to1mDEDTpyAzz5TeuyVpGpm1clVvLrzVX575jfa1GmjdjiVorTfTn0yuF51b92OB1A9\ncQD41arF282b43/iBL/Fx6sdjroaN1bKPxYvhqlTYfBgeSlLqnae8XiGhT0W0mNlD/66/Zfa4Rg0\ng0seFy5dxTYlWe0wdCY1bMgPbdow5tw5Prh69fFpA1KS0FClQN3bW7mU9e9/Q00bmVEyaKPbjeaj\nnh8RsiqEk7dOqh2OwTK45FHZY3lURJCdHYe8vVkbF8fIs2dJedxqYRVmYQH/+Q9cuACOjko3Jy+9\nBHFxakcmSQCMdB/Jp6Gf0uu7Xhy/KYdlrgiDSx437sRhmVa9kgdAEwsL9np6Yq7R4Hf8eM3uxr2s\nHBzgvfeUVupZWeDqCm+8Affvqx2ZJDG07VCWPLmE3qt7c+S6ug2fDZHBJY+7iYlo06vnD7PW2JgV\nrq5MatAAv+PH+fVxLwfJU7++Uoh+7JhSsO7iAgsXQmrljskiSQ8zsPVAvu73NU9+/yQHrx1UOxyD\nYnDJIzE9BW165Y/lUVEajYapjRuzrm1bxp07x0JZDvJAs2ZK+5A9e5RE4uwM//sfVFH3+pJUnH6t\n+vHtgG/pv6Y/+6/uVzscg2FwySMlO7PKxvJ4FIH/lINsiItj+JkzJD/u5SD5tW6tDD7188/K+Omt\nWsG334LcR5JKerv05rtB3zFw7UB2X96tdjgGweCSRyo5mGcbRs+uThYW7PHywsrYmM7HjxMly0EK\n8vZWOlxcuVIZgMrNTanuK3vulVTQ84me/DDkB4b+OJQ/ov9QO5xqz+CSR7oRaA3ot8XCyIhlrVrx\nbMOGdD5+nDBZDlJUQIByKevjj5VxRFxdYelS2VpdqnLdmndj/bD1jFg/gl+jflU7nGrN4JJHhqkx\nFpoSOwOuljQaDc81asT6tm2ZcO4cC2Q5SFEajdJG5NAh5Sxk2zaljGT+fFnFV6pSXZt2ZePwjYz+\naTTbI7erHU61ZXDJI93MDGtTc7XDqJAAOzsOt2/Pxrg4hp05w73HYVTC8tJolDFDtmyB8HCldlbL\nljBlimyxLlUZ/yb+bBm5hfGbx7P1/Fa1w6mWKiV5hIWF4erqiouLCwsXLixxviNHjmBiYsJPP/1U\n5mWnm5tTS2uljzBV0djcnN1eXtQ3M6PV4cN8HBNDhrzGX7zWrZXxQ86ehdq1oXNnGDRIGWNdkipZ\np8ad2DZqGxO3TmTj2Y1qh1Pt6D155OTk8MILLxAWFsaZM2dYs2YNZ88W7cUyJyeH2bNnExoaWq5L\nOGlaS+rY1NJnyFXOwsiIz1xc2OXpyc7792lz+DBrb9+Wl7JKUr8+vPUWXL4M3brB6NFKIvnpJ1lD\nS6pUPg19CHs6jCnbpvDj3z+qHU61ovfkcfjwYZydnWnWrBmmpqaMGDGCzZs3F5nvs88+Y8iQIdSp\nU75xOVItLWlQW72xPPSprZUVP7u781WrVrx/9Sqdjh9nr2x9XTIrK3jhBeXy1UsvKQ0NXV1hyRLZ\n4FCqNF4NvNgxegfTwqax+tRqtcOpNvRe8nz9+vUCQ9U2btyYQ4cOFZln8+bN/PHHHxw5cgSNRlPs\nsubNm6e7HxQURFBQEMmWVjRtqN5YHpWhm709R9q3Z83t24w+exYvGxsWtmhBK0tLtUOrnoyNYcgQ\npefe/fvhww/hzTdhzBiYNElJKJKkRx71Pdg5Zie9vutFQkYCz3V4Tu2QdMLDwwkPD6/y9eo9eZSU\nCPKbPn06CxYs0PU7X9LlmvzJAyAnO4f71ja0cm6qj1CrFSONhqfr1WNwnTp8eu0aXU6cYGidOsxr\n1oy6ZmZqh1c9aTTQpYsyRUXBN99AcLDS/cm//60kl8d9nBVJb9rUacOecXsIWRVCQnoCr3Z5tUy/\nd5Ut7491nvnz51fJevV+2apRo0bE5OuCOyYmhsaNGxeY59ixY4wYMYLmzZuzYcMGnnvuObZs2fLQ\nZV+9GYdpdja1HdQZv7wqWBgZMatJE875+mJmZETrw4d5+8oVUuW1/dI98QS8+y5cvQrTp8N334GT\nE7z4otJFvCTpQXP75uwdv5fv//qe2b/PfqzLKfWePHx8fIiMjOTy5ctkZmaydu1a+vfvX2CeS5cu\nER0dTXR0NEOGDGHJkiVF5inOxejqNZZHZXI0NeUTZ2cOt2/PqeRkWh4+zLKbN8l5jA/WMjE1VWpk\nhYXB0aNgawu9eoG/P6xYIctGpEfWwKYBu8ftZs+VPUz+eTI5uY/nHzu9Jw8TExMWL15Mr169aNOm\nDcOHD6d169YsXbqUpUuXPtKyY27EVruxPCrbE1ot69q2ZX3btiy7dQuvo0f5LjZWVu8ti2bNlFpa\nV67A7Nmwfr1yNvLCC3BSDgIkVZyD1oHfx/zOpXuXGPXTKDJzqn9/e/pmUGOYv7tkBT8YpXJqcvUp\nrKpKQgh+vnuXz65f52RyMhMaNGByw4Y0s7BQOzTDcfUqLFumlI80bKgUsA8ZAnZ2akcmGaD07HRG\nrB9BRk4GG4ZtwNJU/UoucgzzYsQnJaJNT1c7DNVoNBr61a7Nrx4e7PHyIj03l/ZHj9Lv9GnC4uPJ\nrZ7/A6qXJk1g3jylzcibbyodMzZtqlzqWr9e9qcllYuFiQXrh62nrlVdpSZWeoLaIVUZg0oeiRmp\nWGRU37E8qlIrS0s+dnbmqp8fA2rX5vVLl3A5dIgPY2K4K7s9eThjY3jySaWh4ZUr0K+f0hljw4Yw\ndizs2AHZ2WpHKRkAEyMTlj+1HK/6XgR/G8ztlNtqh1QlDCp5pGRnYpYpfxjzszI25l8NGnCsfXtW\nt2nDqeRknjh0iHHnznEkMVHt8AyDnR2MHw+//QZnzihdxc+dC40awdSpcOAAyLM6qRRGGiMWhS6i\nX1Z8vYgAABw1SURBVKt+BCwP4GrCVbVDqnQGlTzSyMUiRxYUF0ej0dDJ1paVrVsT6etLG0tLhp05\nQ4djx1h+8yZpsqpv2TRooFTvPXhQaYBYrx5MmAAtWsDrr8tqv1KJNBoN84Pm82z7ZwlYHsCFuxfU\nDqlSGVTySDfWoM1Vv1FOdVfHzIxZTZpwsWNH5jVrxvq4OJwOHmTi+fPsiI8nS9bUKhtnZ5gzRzkb\n2bhRuYzVuze0a6e0KTl3Tu0IpWpoht8M5gbOJWhFECdunlA7nEpjULWtur/7Nk6ZsGLeHJWiMlxX\n0tNZHxfH+rg4LqSm8lTt2gypU4ce9vaYGRnUfwh15ebCvn2wdi1s3gzW1jBggDL5+oLcl9I/NpzZ\nwJRtU/hp+E90adKlytZbVbWtDCp5dPnofTzTjVj8n5kqRVUzXE1P56c7d1gfF8eZlBT6OToypE4d\nQhwcsJA/fmUnBBw7Bps2KdPdu/DUU0oiCQ4Gc8Mcd0bSnx0XdzB642hWPLWCJ1s+WSXrlMmjmB3Q\nfvEiemeZ8/aMZ1WKqua5npHBT/+ckZxKSeHJfxJJL3t7tMbGaodnWCIjlbORTZuUspHQUCWZ9OkD\ntQx7GAGp4g5eO8jAtQN5o+sbVdKhokwexeyA1su+4t/YMGPCCJWiqtluZWay8Z9Eciw5md4ODgyu\nU4cQe3tqmRjW0L+qi42FrVuVRLJnD/j5KWck/fsrtbikx0pUfBR9vu9Dv5b9eD/kfYw0lXeGL5NH\nMTug6Zrv+dC6PkP7dVMpqsfH7cxMNt25w4a4OCISE2lnZUWIgwMh9vZ0tLXFpBr0JmowkpOVdiOb\nNimNEhs1Us5KevVSegSWl7ceC/Fp8Qz4YQB1rOqwauCqSmuNLpNHMTvAYctmfm3aCh8POV5DVUrL\nyWFfQgK/3bvHb/fuEZ2eTpCdHSH29vS0t8dZq60WXVMbhJwcOHJESSZhYfD338qY7XnJxNlZ6Wpe\nqpEysjOYsGUCUfFRbBm5hbpWdfW+Dpk8Cu2AnOwczHeHc79TZ6yt5BgNarqdmcnv/ySS3+7dw0Sj\nIcTenhB7e7rb2+Noaqp2iIYjPh5+/11JJDt2gIWFkkRCQ5VCdxsbtSOU9EwIwZvhb/L96e/ZNmob\nrrX1+2dYJo9COyAy+hreZ0+R1KePilFJhQkhOJuaqkske+/fp6WlJSH29gTUqkUnW1vsZTIpGyGU\ngva8s5JDh8DHR0kmvXqBh4esClyDLDuxjNd2vsa6IesIbBaot+XK5FFoB/zyxwH+dTeGG0OHqRiV\n9DCZubkcSExk57177E9I4HBSEk0tLOhsa4t/rVp0trWVl7nKKiUFwsOVZPLrr3D7tnKJKyhIOStx\nd5fJxMD9ful3Rm0Yxce9Pubpdk/rZZkyeRTaAUtXb+TD7PtEjh2vYlRSeWULwcnkZCISEtifmEhE\nQgLpubl0rlULf1tbOteqRXsbG9m+pCxu3oTdu5WEsmsX3LmjJJPgYCWhuLnJZGKA/rr9F32/78tE\n74n8J+A/j/zHSiaPQjvgrcXfsN4knZPPPq9iVJI+xKSnE5GYyP6EBCISEzmbkoKHtTX+tWrhZ2uL\nj40NTubm8uzkYW7cUBJJ3hQfD4GBD85M2rSRycRA3Ey6Sd81fWlXrx1L+y7FzNiswsuSyaPQDnhp\n4SccMM/mwHTZurymSc7J4UhiIhH/nJkcS04mRwi8ra3xtrGhvY0N3tbWNLewkAmlNNeuKWcmu3Yp\nySQhQTkz6dxZGYbXy0tWC67GkjOTGbVhFKlZqawfth47i4oNUCaTR6EdMHH+e1y0EITPfl3FqKSq\nciMjg+PJyRxPSuJYUhLHk5NJzsnRJRRva2va29jgrNViJBNK8WJilAaKBw4oPQRfuKAkEH9/JaH4\n+UFd/VcVlSouJzeH6Tumsyt6F9tGbaOpXdNyL0Mmj0I7YOTc+cSbwI435qoYlaSm25mZuoRyPDmZ\nY0lJ3M3KwvOfhOJuZYWblRVtLC2xkS3ii0pKgsOHlUQSEaF0O1+3rpJI8s5OWreWl7pUJoRg0aFF\nfBDxARuGbaBT407ler9MHoV2wMB588gFNs+bp1pMUvUTn5XFiX8Syl8pKfyVksLZ1FTqmZnh9k8y\nyZtaWVrKgvn8cnKU7uYjIh5Md+5Ap07KWUmHDspUu7bakT6WtpzfwsQtE5UxQnyeLfMlW5k8Cu2A\n3v83H9scWDtfnnlIpcsRgktpabpkkjddSk+nmYUFbfMllLaWljyh1cpu6fPExiqXuQ4eVFrCHz0K\nDg5KEvH1VW69vWXjxSoSeTeSQesG4d3AmyVPLilTlyYyeRTaAd3ee4emmRqWz5VlHlLFZOTmciE1\nlb9TUwsklWv/3969R0VZ7nsA/87lnQsXAUlAGW5xvyjYwly6ilORYQSU2jG1smNobjvsTrptuc/e\ntcq9lqjbtc/KjmXlki6WZqWlpVJZeTSJzEAlkUAc5OIdBpDL3J/zxzszMtwEnWHeGX6ftZ71znth\n/D0ja768t+fV6RAulyPey4tvSqXtdRDHje6T9GYzf67k119vtFOngMjIG3smU6bwNzDSyXin6NR3\nYunXS1FxpQK75+5G9NjoQben8Oj1AUz/nw2YopNg43+vcGFVxBPpzGbUdnfjj64u/GGZVlteGxlD\nXI8wsQZLrFI5eoesNxj4O+F7Bkp1NX9pcHo6kJbGn5ifOBHwcs7gf6MNYwxv/foWVv/fahQ9WoSc\nuJwBt6Xw6PUB3PXW/yLXIMfq/3rOhVWR0abZYOBDpUew/NHVhXNaLe7gONypUCBaqeSb5fWdSiUC\npdLRtcfS1QWcOME/HOvECaC8nH9Mb2TkjTBJS+PbuHGurtZtlTSU4InPn8CitEV49d9ehUTc9w8Y\nCo9eH0DCe1tRIBmDgoX/7sKqCOGZGEOjTodz3d2o1WpR2919o2m1YIzdCBWl0i5kQmUycKPhHIte\nD5w5cyNMTpzgm49P30CJiqKrvIbocsdlzNs1DzKJDNtnb0egV6DdegqPXh9A2M4deMNvAmbNdNwA\nYoQ4S4vBYAsSa6ics7y+rNcjRCZDpEKBCIXCNo2QyxGpUCBcoYDcU79IGQPq6uwDpbycv6ExOZkf\nYmXiRH6akkL3oQzAaDbib9//DZ+e/hSfz/0c6RPSbesoPHp9AH5ff40jUQmYlBzjwqoIuX0GsxmN\nOh3O63So02pxXqu1Tc9rtWjU6RDIcXygWMNFLodKLkeYQgGVXO55h8VaWvhnm1RU8OdTfv+dfy2T\n9Q2U5GS62stiV+Uu/Gnfn7A2cy0W37UYAIWH3Qeg1xugPHIYnfdkQCGn4b2JZzMxhot6fb+h0qDT\noVGnQ7fZzIeJJVR6vvaYgGGMH7/LGijW6ZkzQHDwjSBJTORbQgIwZoyrqx5xVdeqMHvnbEwPm45N\n2Zug5JQUHtbSKqrO4Z6zlWjLGfgKA0JGkw6TCU09wqShV7g06HTQWgJmgkyGCb2moXI5JsjlGC+T\nwdvdrhozmYDaWj5MKiv5MKmqAv74AwgIuBEk1lBJTOTDxp2D9CY69B3I35uP2pZa/Lb0NwoPa2l7\nvjmC/2xtQuMT81xcFSHuwxowF3Q6XNDrB5zKxeJ+AyakV/OVSIS9J2M2A/X1fJhYW1UVPzWZ7MMk\nPh6Ii+NP1MtufQRbIbEOa7J82nIKD2tpb23bhTdMraj6j3wXV0WIZ2GMQWM09hsql/V6XOrRjIz1\nCZTeLVgmQxDHwUtoezNXr9qHSnU13xobgbAwPkhiY/mptalUbnkF2Eid83CL0eOutmqglGpdXQYh\nHkckEmEsx2EsxyHF23vQbTtMpj6Bclmvx2/Xr9stu2IwgBOJEMRxCLKEiXUaLJP1WRbIcZA4e49m\n3Di+ZWTYL9frgXPngJoaPkxOngQ++4yfb2kBoqPtAyUmhl8WEuKWweJIbhEems7rUMiNri6DkFHN\nRyKBj+VelcEwxnDdZMIVgwFXLGFyxRI0Nd3dONrWZreu1WhEgFSKOzgO4ziOn8pk9vO9pg67u18m\n48+PJCT0XdfRAZw9y4dKTQ3/nJQtW/iwaW/nD3lFR/dtkZEecyhsMG4RHu26biggyKNrhJBeRCIR\nxkilGCOVIuYmQQPwjypuNhhwzWDAVYMBV/V62+va7m6Utrf3WceJxbjDEiSBUikCLXswd1imPZdZ\n532Ge87GejNjWlrfdR0dfIjU1vLt9Glg717+dWMjMH68faBERfEtMpIfpVjI546GyC3Co8tsgFzv\n6ioIIc4gFYkQbDlfMhTWPZurBgOaLe2awYBmoxHNBgMqOzv55ZZ563oTY3aBMlYqxViOQ4BUanvd\n37Tf0PHxASZN4ltvBgN/4t4aLLW1/HNU6uoAtZo/VBYZeSNMek8DAm7vAx0hTgmP4uJivPjiizCZ\nTFi8eDFWrVplt/7jjz/GP//5TzDG4Ovri82bN2NSf/8JFt0iBoXZGZUSQtxNzz2bmx1C66nbZLIF\nSovBgBaj0TbVGI1Qa7V2y6xTndlsFzT+UikCpFIEWOb7W+YfGoqAiAj4zpjRN3ja2vggsYZJXR3/\n+GDrvFh8I0wiIoDw8BstIoI/dyOA8y0ODw+TyYSCggIcPHgQoaGhmDJlCvLy8pCYmGjb5s4778Th\nw4fh5+eH4uJiPPfccygtLR3wPXUSEQLolAch5DYoJRKoJBKohjl0vN5shsYSOhqjEa2WsNFY5ht1\nOlR0dtqW2dYbjdCazfCzhIu1+Ukk8JfL4Z+cDP/UVH6Zdb1EAv+uLvhduAD/+nr4nj8PcX098NNP\n/N7M+fP8EyHDwuwDpWfAjBCHh8exY8cQExODyMhIAMC8efOwZ88eu/CYNm2a7fXUqVPR2Ng46Htq\nOSm8mPsfIySEuB+ZWDysw2o9GcxmtBqNaDOZ0GoJnp6tzWhEdXd3v8s1QUHoCgyEz5Qp8LMEjJ9U\nijEA/HQ6+HV2wq+9HX4tLfC7cgV+J0/Cr6HB8R/AABweHk1NTQgLC7PNq1Qq/PLLLwNuv3XrVmRn\nZ/e77jXLI2drS0swLjzWoXUSQoizcWIxxslkuNVB6E2Mod1oRLvJhDZLqLRZXrdbXlf89BOqm5qg\nM5uhDQlxaP2DcXh4DOdqhh9//BFFRUU4evRov+ut4fHl228ixahwRHmEEOI2JCIRfx6FG2RMvwUL\n+GYh2rx5BCpzQniEhoaioceuU0NDA1QqVZ/tTp06hSVLlqC4uBgBN7m6oEvphWCpv6NLJYQQcosc\nfso+PT0dNTU1qKurg16vx86dO5GXl2e3TX19PWbPno2PPvoIMTE3H2K908sLYSHBji6VEELILXL4\nnodUKsWmTZuQlZUFk8mE/Px8JCYm4p133gEALF26FP/4xz+g0WiwbNkyAADHcTh27NiA73ndywfR\nEX33XgghhLiG4AdG7Ojshn9pCbruzYBMRs/yIISQwYzUwIiuv9PkJmrONcC3q5OCgxBCBETw4XH2\nfCN8OztdXQYhhJAeBD+21YWrV+HNKDwIIURIBB8e19o08OJoVERCCBESwYdHa1cnFHKTq8sghBDS\ng+DD47peC7lIkBeEEULIqCX48OhiRigMrq6CEEJIT4IPD62IQU7P8iCEEEER/KW6OqkYSib4Mgkh\nZFQR/p4HJ4UPhQchhAiK8MNDIYev8MskhJBRRfDfylqFEmO5oT+nmBBCiPMJPjy6lF4I4gZ/3gch\nhJCRJfjw6PDyRvgdI/doRUIIITcn+DPR7T4+iI0Kd3UZhBBCehB0eLRo2qGXcogIDXJ1KYQQQnoQ\ndHhUn2uAX2cHJFKJq0shhBDSg6DDQ914AT70LA9CCBEcQZ8wv3jtGrxB4UEIIUIj6PC41t4KJT3L\ngxBCBEfQ4dHW2QGFgkZFJIQQoRF0eFw36qDQ07M8CCFEaAQdHt3MCDk9y4MQQgRH0FdbacUAHbUi\nhBDhEXR46CRiKEV0jwchhAiNoA9baWUcvJnI1WUQQgjpRdjhoVBgjEjQJRJCyKgk6G/mboUSd8i9\nXF0GIYSQXgQdHl1eXgiRB7q6DEIIIb0IOjw6vLwRHjLe1WUQQgjpRdBXW7V7+yCOnuVBCCGCI+jw\nMItECBlHj6AlhBChEXR4jKFneRBCiCAJOjx86VkehBAiSIIOD69uCg9CCBEiQYeHUtvt6hKc5tCh\nQ64uwak8uX+e3DeA+keGxinhUVxcjISEBMTGxmL9+vX9bvPCCy8gNjYWqampKC8v73cbhVbnjPIE\nwdN/gT25f57cN4D6R4bG4eFhMplQUFCA4uJiVFZWYseOHThz5ozdNvv378fZs2dRU1ODd999F8uW\nLev3vRR6Go+dEEKEyOHhcezYMcTExCAyMhIcx2HevHnYs2eP3TZ79+7FM888AwCYOnUqWltbcfny\n5T7vJTeaHF0eIYQQR2AO9tlnn7HFixfb5rdt28YKCgrstsnJyWFHjx61zWdmZrLjx4/bbQOAGjVq\n1KjdQhsJDh+eRCQa2hDqfD4M/HO91xNCCBEOhx+2Cg0NRUNDg22+oaEBKpVq0G0aGxsRGhrq6FII\nIYQ4icPDIz09HTU1Nairq4Ner8fOnTuRl5dnt01eXh4+/PBDAEBpaSn8/f0RHBzs6FIIIYQ4icMP\nW0mlUmzatAlZWVkwmUzIz89HYmIi3nnnHQDA0qVLkZ2djf379yMmJgbe3t547733HF0GIYQQZxqR\nMyvDdODAARYfH89iYmLYunXrXF3Obauvr2f33XcfS0pKYsnJyWzjxo2MMcaam5vZgw8+yGJjY9mM\nGTOYRqNxcaW3zmg0srS0NJaTk8MY86y+aTQaNmfOHJaQkMASExNZaWmpR/WvsLCQJSUlsZSUFDZ/\n/nym1Wrdun+LFi1iQUFBLCUlxbZssP4UFhaymJgYFh8fz7755htXlDws/fVv5cqVLCEhgU2aNInN\nmjWLtba22tY5q3+CCw+j0ciio6OZWq1mer2epaamssrKSleXdVsuXrzIysvLGWOMXb9+ncXFxbHK\nykr20ksvsfXr1zPGGFu3bh1btWqVK8u8Lf/617/YggULWG5uLmOMeVTfFi5cyLZu3coYY8xgMLDW\n1laP6Z9arWZRUVFMq9UyxhibO3cue//99926f4cPH2ZlZWV2X64D9ef06dMsNTWV6fV6plarWXR0\nNDOZTC6pe6j669+3335rq3vVqlUj0j/BhUdJSQnLysqyza9du5atXbvWhRU53qOPPsq+++47Fh8f\nzy5dusQY4wMmPj7exZXdmoaGBpaZmcl++OEH256Hp/SttbWVRUVF9VnuKf1rbm5mcXFxrKWlhRkM\nBpaTk8O+/fZbt++fWq22+3IdqD+FhYV2RzeysrLYzz//PLLF3oLe/etp9+7d7Mknn2SMObd/ghvb\nqqmpCWFhYbZ5lUqFpqYmF1bkWHV1dSgvL8fUqVNx+fJl24UCwcHB/d4o6Q6WL1+ODRs2QCy+8evk\nKX1Tq9UYN24cFi1ahLvuugtLlixBZ2enx/Rv7Nix+Mtf/oLw8HBMmDAB/v7+mDFjhsf0z2qg/ly4\ncMHualBP+L4pKipCdnY2AOf2T3DhMdT7RNxRR0cH5syZg40bN8LX19dunUgkcsu+f/311wgKCsLk\nyZMHvDfHXfsGAEajEWVlZXj++edRVlYGb29vrFu3zm4bd+5fbW0tXn/9ddTV1eHChQvo6OjARx99\nZLeNO/evPzfrjzv3dc2aNZDJZFiwYMGA2ziqf4ILj6HcJ+KODAYD5syZg6effhqPPfYYAP4voEuX\nLgEALl68iKCgIFeWeEtKSkqwd+9eREVFYf78+fjhhx/w9NNPe0TfAP4vNZVKhSlTpgAAHn/8cZSV\nlSEkJMQj+nf8+HFMnz4dgYGBkEqlmD17Nn7++WeP6Z/VQL+PnnTP2fvvv4/9+/fj448/ti1zZv8E\nFx5DuU/E3TDGkJ+fj6SkJLz44ou25Xl5efjggw8AAB988IEtVNxJYWEhGhoaoFar8cknn+CBBx7A\ntm3bPKJvABASEoKwsDBUV1cDAA4ePIjk5GTk5uZ6RP8SEhJQWlqK7u5uMMZw8OBBJCUleUz/rAb6\nfczLy8Mnn3wCvV4PtVqNmpoa3H333a4s9ZYUFxdjw4YN2LNnDxQKhW25U/vnkDMnDrZ//34WFxfH\noqOjWWFhoavLuW1HjhxhIpGIpaamsrS0NJaWlsYOHDjAmpubWWZmplteDtmfQ4cO2a628qS+nThx\ngqWnp9tdBulJ/Vu/fr3tUt2FCxcyvV7v1v2bN28eGz9+POM4jqlUKlZUVDRof9asWcOio6NZfHw8\nKy4udmHlQ9O7f1u3bmUxMTEsPDzc9v2ybNky2/bO6p+IMRpEihBCyPAI7rAVIYQQ4aPwIIQQMmwU\nHoQQQoaNwoMQQsiwUXgQj9Hc3IzJkydj8uTJGD9+PFQqFSZPngxfX18UFBSMaC2RkZFoaWkZ0X+T\nkJHk8CHZCXGVwMBAlJeXAwBWr14NX19frFixwiW1uPNdyoQMBe15EI9lvQr90KFDyM3NBQC89tpr\neOaZZ5CRkYHIyEjs3r0bK1euxKRJk/Dwww/DaDQCAH777Tfcd999SE9Px8yZM213Jw+kubkZDz30\nEFJSUrBkyRK7oVpmzZqF9PR0pKSkYMuWLQD48YeWL19u22bLli1YsWIFurq68MgjjyAtLQ0TJ07E\np59+6tDPhBBHofAgo45arcaPP/6IvXv34qmnnsKMGTNw6tQpKJVK7Nu3DwaDAX/+85+xa9cuHD9+\nHIsWLcLf//73Qd9z9erVyMjIwO+//45Zs2ahvr7etq6oqAjHjx/Hr7/+ijfeeAMajQZPPPEEvvrq\nK5hMJgD80BL5+fk4cOAAQkNDceLECVRUVGDmzJlO/SwIuVV02IqMKiKRCA8//DAkEglSUlJgNpuR\nlZUFAJg4cSLq6upQXV2N06dP48EHHwQAmEwmTJgwYdD3PXLkCL744gsAQHZ2NgICAmzrNm7ciC+/\n/BIAP1abdYiIBx54AF999RUSEhJgMBiQnJwMmUyGlStX4q9//StycnJwzz33OONjIOS2UXiQUUcm\nkwEAxGIxOI6zLReLxTAajWCMITk5GSUlJcN63/4Gazh06BC+//57lJaWQqFQ4P7774dWqwUALF68\nGGvWrEFiYiKeffZZAEBsbCzKy8uxb98+vPzyy8jMzMQrr7xyq10lxGnosBUZVYYyGk98fDyuXr2K\n0tJSAPyIyJWVlQCATZs24c033+zzMxkZGdi+fTsA4MCBA9BoNACA9vZ2BAQEQKFQoKqqyvaeAHD3\n3XejsbER27dvx/z58wHwI74qFAo8+eSTWLlyJcrKym6vw4Q4Ce15EI9lveKp5/Mbej/LofdVUSKR\nCBzH4fPPP8cLL7yAtrY2GI1GLF++HElJSaiqqsK9997b59969dVXMX/+fOzYsQPTp09HREQEAGDm\nzJl4++23kZSUhPj4eEybNs3u5+bOnYuTJ0/Cz88PAFBRUYGXXnoJYrEYMpkMmzdvdtwHQogD0cCI\nhAxDbm4uvvjiC0iljvm7Kzc3FytWrMD999/vkPcjZKRQeBDiAq2trZg6dSrS0tKwc+dOV5dDyLBR\neBBCCBk2OmFOCCFk2Cg8CCGEDBuFByGEkGGj8CCEEDJsFB6EEEKGjcKDEELIsP0/NSWx8VC7ObwA\nAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x4215310>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch22.ipynb b/Chemical_Reaction_Engineering/ch22.ipynb new file mode 100755 index 00000000..06928688 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch22.ipynb @@ -0,0 +1,194 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 22 :\n", + "\n", + "G/L Reactions on Solid \n", + "\n", + "Catalysts: Trickle Beds, Slurry \n", + "\n", + "Reactors, and Three-Phase \n", + "\n", + "Fluidized Beds" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 22.1 pageno : 511" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables\n", + "PA = 101325. #Pa\n", + "HA = 36845. #PA.m3.l/mol\n", + "CBo = 1000. #mol/m3\n", + "v = 10**-4 #m3*l/s\n", + "h = 5. #m\n", + "A = 0.1 #m2\n", + "\n", + "# Calculations\n", + "CA = PA/HA;\n", + "FBo = v*CBo;\n", + "Vr = A*h;\n", + "dp = 5*10**-3; #mcat\n", + "d_solid = 4500. #kg/m3cat\n", + "De = 8*10**-10; #m3l/mcat.s\n", + "n = 0.5;\n", + "b = 1.;\n", + "k = 2.35*10**-3;\n", + "L = dp/6.;\n", + "kai_overall = 0.02;\n", + "kac_ac = 0.05;\n", + "f = 0.6;\n", + "#For a half-order reaction\n", + "Mt = L*math.sqrt((n+1)*(k*d_solid*(CA)**(n-1))/(2*De));\n", + "E = 1/Mt;\n", + "rA = (1/((1/(kai_overall))+(1/(kac_ac))+(1/(k*b*(CA**(n-1))*E*f*d_solid))))*(PA/HA);\n", + "#From Material Balance\n", + "XB = b*rA*Vr/FBo;\n", + "\n", + "# Results\n", + "print \" The conversion of acetone is %.3f\"%(XB)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The conversion of acetone is 0.158\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 22.2 pageno : 513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "import math \n", + "from matplotlib.pyplot import *\n", + "from numpy import *\n", + "\n", + "# Variables\n", + "PA = 14.6*101325; #Pa\n", + "HA = 148000.; # liquid\n", + "Vr = 2.;\n", + "Vl = Vr;\n", + "b = 1.;\n", + "fs = 0.0055;\n", + "\n", + "# Calculations\n", + "k = 5.*10**-5; #m6l/kg.molcat.s\n", + "dp = 5*10**-5; #mcat\n", + "kac = 4.4*10**-4;kai = 0.277; #m3l/m3.r.s\n", + "density = 1450.; #kg/m3\n", + "De = 5*10**-10; #m3l/mcat.s\n", + "L = dp/6; #for spherical particle\n", + "CA = PA/HA;\n", + "X = 0.9;\n", + "CBo = 2500.\n", + "CB = CBo*(1-X);\n", + "ac = 6*fs/dp;\n", + "K = kac*ac;\n", + "\n", + "CB = [2500,1000,250];\n", + "e = [0.19,0.29,0.5];\n", + "Mt = zeros(3)\n", + "rA = zeros(3)\n", + "inv_rA = zeros(3)\n", + "for i in range(3):\n", + " Mt[i] = L*math.sqrt(k*CB[i]*density/De);\n", + " rA[i] = CA/((1./kai)+(1./K)+(1./(k*density*e[i]*fs*CB[i])))\n", + " inv_rA[i] = 1/rA[i];\n", + "\n", + "# Results\n", + "plot(CB,inv_rA)\n", + "ylabel(\"1/-rA\")\n", + "Area = 3460.\n", + "t = Vl*Area/(b*Vr);\n", + "t = t/60. #min\n", + "print \" The time required for 90 percentage conversion of reactant is %.f\"%t,\n", + "print \"min\"\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + " The time required for 90 percentage conversion of reactant is 58" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " min\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['draw_if_interactive', 'e']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD9CAYAAABJGYveAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwVPXdx/F3gDytsIgRTIJJLJJoyIVcBI0UwUWlhZYg\nELBSAQlIokIBRxzGPlTDqHjDC1j1UUZBRahaC2glYC0skiAID+EiVGSUTAIk+CxCSQyFAOf545iE\nJQmXsGfPXj6vmR2T3ZPdz55Z98v5/c75/sIMwzAQERFpQiu7A4iIiP9SkRARkWapSIiISLNUJERE\npFkqEiIi0iwVCRERaZYlRaK8vJx+/fqRkpJCamoqc+fObbSN2+1mwIABZGRkkJqayoIFC6yIIiIi\nFyHMiuskKisrqaysJCMjg+rqanr06MHSpUtJSkqq36agoIBjx47x5JNP4na7SUxM5MCBA7Rp08bb\ncUREpIUsOZKIjo4mIyMDAIfDQVJSEvv37/fYpnPnzhw5cgSAI0eO0LFjRxUIERE/Y/m3cmlpKSUl\nJWRlZXncP2HCBG655RauvPJKqqqqeP/99xv9bVhYmNXxRESCkrcGiSyduK6urmb48OHMmTMHh8Ph\n8disWbPIyMhg//79bNmyhYkTJ1JVVdXoOQzD0M0wePTRR23P4C837QvtC+2Ls9+8ybIiUVtbS05O\nDqNGjWLIkCGNHl+3bh0jRowAID4+nquvvppdu3ZZFUdERFrAkiJhGAbjx48nOTmZqVOnNrlNt27d\n+OyzzwA4cOAAu3btomvXrlbEERGRFrJkTqK4uJiFCxeSlpZGZmYmYA4vlZWVAZCfn88f//hHcnNz\nSU9P59SpUzzzzDNcfvnlVsQJCk6n0+4IfkP7ooH2RQPtC2tYcgqst4SFhXl9fE1EJNh587tTV1yL\niEizVCRERKRZKhIiItIsFQkREWmWioSIiDRLRUJERJqlInEOu3bB6NGgM3FFJBSpSJxDfDzs2AEL\nF9qdRETE93Qx3XnYtAkGDYKvvoJOnexOIyJydt787lSROE8PPACHD8P8+XYnERE5OxUJG1RXQ0qK\nWSRuucXuNCIizVNbDhs4HPDnP8O998LRo3anERHxDRWJC5CdDenp8MQTdicREfENDTddoIoKSEsD\nl8scfhIR8TcabrJR587w2GOQlwenTtmdRkTEWioSLZCXZ/739dftzSEiYjUNN7XQjh3gdMLWrXDl\nlXanERFpoFNg/cSMGWbbjg8+sDuJiEgDzUn4iRkzzCOJv//d7iQiItawpEiUl5fTr18/UlJSSE1N\nZe7cuU1u53K5yMzMJDU1NSAXMf/5z+F//gcmTjQvthMRCTaWDDdVVlZSWVlJRkYG1dXV9OjRg6VL\nl5KUlFS/zeHDh+nduzcrV64kNjYWt9tNpzMaI/n7cFOdsWMhIgJeeMHuJCIi3v3ubOOVZzlDdHQ0\n0dHRADgcDpKSkti/f79HkVi0aBE5OTnExsYCNCoQdQoKCup/djqdfnnEMXs2pKbCXXdBz552pxGR\nUONyuXC5XJY8t+UT16Wlpdx8883s2LEDh8NRf/8DDzxAbW0tO3bsoKqqiilTpjB69GjPcAFyJAHw\nzjvw/POwcSO0saT0ioicn4CZuK6urmb48OHMmTPHo0AA1NbWsnnzZpYvX87KlSt57LHH2L17t5Vx\nLDVqFHTsCHPm2J1ERMR7LPs3b21tLTk5OYwaNYohQ4Y0ejwuLo5OnTpxySWXcMkll9C3b1+2bt3K\nNddcY1UkS4WFmZPYN94IOTnQpYvdiURELp4lRxKGYTB+/HiSk5OZOnVqk9vcfvvtFBUVcfLkSWpq\natiwYQPJyclWxPGZhAR48EG4/34tdyoiwcGSOYmioiL69u1LWloaYWFhAMyaNYuysjIA8vPzAZg9\nezbz58+nVatWTJgwgcmTJ3uGC6A5iTq1tXDddeY1FL/7nd1pRCQU6YprP7d+PQwbZrbuiIiwO42I\nhBoViQAwcaJ5VKEmgCLiayoSAeDf/zbXm1i8GPr0sTuNiISSgDkFNpR16ABz55ptxY8dszuNiEjL\nqEhYaOhQSEyEp5+2O4mISMtouMli5eWQmQlFRdCtm91pRCQUaLgpgMTFwSOPwL336toJEQk8KhI+\nMHEi1NTA/Pl2JxERuTAabvKRrVuhf3/46iuIjLQ7jYgEM50CG6CmT4e9e+Hdd+1OIiLBTEUiQNXU\nmOtOvPIKDBhgdxoRCVaauA5QbdvCq6+aDQBrauxOIyJybjqSsMFdd0FsrK6fEBFraLgpwH3/vTns\n9OmnkJFhdxoRCTYabgpwkZHw1FNmy46TJ+1OIyLSPBUJm+TmmnMUL79sdxIRkeZpuMlGu3ZB795Q\nUmJemS0i4g0abgoSiYkweTJMmqSWHSLin1QkbDZ9OnzzDSxZYncSEZHGLCkS5eXl9OvXj5SUFFJT\nU5k7d26z227cuJE2bdrwt7/9zYoofu9nPzNXr5s82VyoSETEn1gyJ1FZWUllZSUZGRlUV1fTo0cP\nli5dSlJSksd2J0+epH///rRt25bc3FxycnI8wwX5nMTp8vIgPFwT2SJy8fx+TiI6OpqMny4AcDgc\nJCUlsX///kbbvfTSSwwfPpwrrrjCihgB5emnzSGnL76wO4mISIM2Vr9AaWkpJSUlZGVledy/b98+\nli1bxqpVq9i4cSNhYWFN/n1BQUH9z06nE6fTaWFa+0REwAsvmEcUmzebRxUiIufD5XLhcrkseW5L\nT4Gtrq7G6XQyY8YMhgwZ4vHYiBEjmDZtGllZWYwdO5bs7OyQHm4C8wyn3/4W+vSBhx+2O42IBKqA\naMtRW1vLoEGDGDhwIFOnTm30eNeuXevfhNvtpm3btsybN4/Bgwc3hAuxIgFQWgo9e8L69ZCQYHca\nEQlEfl8kDMPg7rvvpmPHjrzwwgvn3D43N5fs7GyGDRvmGS4EiwTAc89BYSH84x/QzCiciEiz/H7i\nuri4mIULF7J69WoyMzPJzMyksLCQ1157jddee82KlwwqU6bADz/AwoV2JxGRUKe2HH5q0yYYNMhc\n7rRTJ7vTiEgg8fvhJm8J5SIB8MADcOgQLFhgdxIRCSQqEiGiuhpSUmD+fLjlFrvTiEig8Ps5CfEO\nhwP+/GfIz4ejR+1OIyKhSEXCz2Vnm6vXPfGE3UlEJBRpuCkAVFRAWhqsXm0ueyoicjYabgoxnTvD\nY4+Zw06nTtmdRkRCiYpEgMjLM//7+uv25hCR0KLhpgCyYwc4nbB1K1x5pd1pRMRf6RTYEDZjhrk2\n9gcf2J1ERPyV5iRC2IwZ5pHExx/bnUREQoGOJALQqlWQm2sOPzkcdqcREX+j4SZh7NiGhYpERE6n\nIiG43eY1E3//u7n+hIhIHc1JCJ06wbPPwoQJcOKE3WlEJFipSASwUaPMYjFnjt1JRCRYabgpwH37\nLWRlmetPdOlidxoR8QcabpJ68fHw4INw332geioi3qYiEQSmTYO9e+G99+xOIiLBRsNNQWL9ehg2\nzLx2IiLC7jQiYie/H24qLy+nX79+pKSkkJqayty5cxtt8+6775Kenk5aWhq9e/dm27ZtVkQJGTfe\naBaJ6dPtTiIiwcSSI4nKykoqKyvJyMigurqaHj16sHTpUpKSkuq3+eKLL0hOTqZDhw6sWLGCgoIC\n1q9f7xlORxIX5MgRSE6GxYuhTx+704iIXfz+SCI6OpqMjAwAHA4HSUlJ7N+/32ObXr160aFDBwCy\nsrLYu3evFVFCyqWXwty5ZlvxY8fsTiMiwaCN1S9QWlpKSUkJWVlZzW7zxhtv8Jvf/KbJxwoKCup/\ndjqdOJ1OLycMLkOHwttvw1NPwaOP2p1GRHzB5XLhcrkseW5LJ66rq6txOp3MmDGDIUOGNLnN6tWr\nmThxIsXFxUScMeOq4aaWKS+HzEwoKoJu3exOIyK+5vfDTQC1tbXk5OQwatSoZgvEtm3bmDBhAh99\n9FGjAiEtFxcHjzyi5U5F5OJZUiQMw2D8+PEkJyczderUJrcpKytj2LBhLFy4kISEBCtihLSJE+Ho\nUZg/3+4kIhLILBluKioqom/fvqSlpREWFgbArFmzKCsrAyA/P5977rmHJUuWcNVVVwEQHh7Ol19+\n6RlOw00XZetW6N8ftm+HqCi704iIr6hVuJy36dPNOYpFi+xOIiK+oiIh562mxlx34pVXYMAAu9OI\niC8ExMS1+Ie2beHVV+H+++HHH+1OIyKBRkcSIeKuuyAmBp55xu4kImI1DTfJBfv+e3PY6dNP4aeL\n4UUkSGm4SS5YZKR5FfaECXDypN1pRCRQqEiEkNxcaNcOXn7Z7iQiEig03BRidu2C3r2hpMS8MltE\ngo+Gm6TFEhNh8mSYNEnLnYrIualIhKDp0+Gbb2DJEruTiIi/03BTiFq7FkaONJc7/WlZDxEJEjoF\nVrwiLw/CwzWRLRJsVCTEKw4dgpQU+PBD6NXL7jQi4i2auBaviIiAF14wjyhqa+1OIyL+qEVF4sCB\nA97OITa54w7zVNjZs+1OIiL+6LyHmw4dOsSHH37I4sWL2blzJxUVFVZn03CTj5SWQs+esH49aP0n\nkcDnszmJmpoali1bxuLFi9myZQtHjhxh6dKl9OnTh9atW3slwFnDqUj4zHPPQWEh/OMf8NM6USIS\noHwyJzFy5EhSU1NZs2YNU6dOZc+ePUREROB0On1SIMS3pkyBH36AhQvtTiIi/qTZIvGvf/2LyMhI\nkpKSSEpKUmEIcm3awOuvw0MPgdttdxoR8RfNFoktW7Ywf/58Dh48SL9+/ejTpw9VVVVUVlb6Mp/4\nUM+e5gV206bZnURE/MV5T1xv2rSJxYsX88EHHxAbG8u6deua3ba8vJwxY8bw/fffExYWRl5eHpMn\nT2603eTJkyksLKRt27YsWLCAzMxMz3Cak/C56mrz2ok334Rbb7U7jYi0hFe/O42zOHHihPH88897\n3Hfy5EnD5XKd7c+MiooKo6SkxDAMw6iqqjKuvfZaY+fOnR7bfPLJJ8bAgQMNwzCM9evXG1lZWY2e\n5xzxxCIff2wYCQmGUVNjdxIRaQlvfnee9TqJ1q1bs2jRIo/7WrVqxc0333zWwhMdHU3GT8ufORwO\nkpKS2L9/v8c2H330EXfffTcAWVlZHD58WNdf+IlBg8zV6x5/3O4kImK3Nufa4KabbmLSpEn87ne/\no127dhiGQVhYGNddd915vUBpaSklJSVkZWV53L9v3z7iTlvQIDY2lr179xIVFeWxXUFBQf3PTqcT\np9N5Xq8rF2fuXEhLM+coUlPtTiMiZ+NyuXC5XJY89zmLRElJCWFhYTzyyCMe969evfqcT15dXc3w\n4cOZM2cODoej0ePGGWNmYU2coH96kRDf6dwZHnvMbNlRVASt1MBFxG+d+Q/omTNneu25z1kkWlqd\namtrycnJYdSoUQwZMqTR4zExMZSXl9f/vnfvXmJiYlr0WmKNvDx45x147TW47z6704iIHS7o34eD\nBg06r+0Mw2D8+PEkJyczderUJrcZPHgwb7/9NgDr16/nsssuazTUJPZq1cq8duKRR+CMKSURCREX\n1Co8MzOTkpKSc25XVFRE3759SUtLqx9CmjVrFmVlZQDk5+cDMGnSJFasWEG7du2YP39+o3kOnQLr\nH2bMgK+/hr/+1e4kInI+bFtPIjc3l/nz53vlhc+HioR/+M9/zEns556D7Gy704jIufikSOTl5TFw\n4EBuu+022rdv75UXu1AqEv5j1SoYO9Zc7tSmj4OInCefFIn169dTWFjIqlWrCA8P59e//jUDBgwg\nPT3dKy98XuFUJPzK2LFw2WXw4ot2JxGRs/H5cJPb7ebTTz9lxYoVbNu2jeuuu44BAwZwxx13eCVE\ns+FUJPyK221eM/Hxx3D99XanEZHm2LrGtWEYPPvss9TW1vLf//3fXgnRHBUJ//POO/D887Bxo9k5\nVkT8j61FAiAuLs7jGgerqEj4H8OAX/0Kfv1rdYsV8Vc+KRLdu3dv9o927drF8ePHvRLgbFQk/NO3\n30JWlnk0cfXVdqcRkTP5pEhERUWxYsUKIiIiGj32y1/+slHDPiuoSPivJ5+Ezz+H5cu13KmIv/Hm\nd2ezo8q//e1vqa6ubrTGA3DOLrAS/KZNg0WL4L334M477U4jIlZp0ZyEr+hIwr+tXw9Dh5rXTlx+\nud1pRKSO7RPXvqIi4f8mTYJjx2DePLuTiEgdFQnxG0eOQHKyOfTUt6/daUQEvPvdqVUC5KJceqm5\nQFFennlEISLBRUVCLtrQodCtGzz1lN1JRMTbNNwkXlFeDpmZ5ip23brZnUYktGm4SfxOXBw8+ijk\n58OpU3anERFvUZEQr7n/fnPtCR8uOSIiFtNwk3jV1q3Qvz9s3w5ajVbEHjoFVvza9OnmHMWiRXYn\nEQlNKhLi12pqzHUnXnkFBgywO41I6PH7ietx48YRFRXVbCdZt9vNgAEDyMjIIDU1lQULFlgRQ2zS\nti28+ircdx/8+KPdaUTkYlhyJLF27VocDgdjxoxh+/btjR4vKCjg2LFjPPnkk7jdbhITEzlw4ABt\nzljFRkcSge2uuyAmBp55xu4kIqHF748k+vTp02SL8TqdO3fmyJEjABw5coSOHTs2KhAS+F54ARYs\ngC1b7E4iIi1lyzfzhAkTuOWWW7jyyiupqqri/fffb3bbgoKC+p+dTidOp9P6gOIVkZHmVdgTJpgd\nY1u3tjuRSHByuVy4XC5LntuyievS0lKys7ObHG56/PHHcbvdvPjii3z77bf079+frVu30r59e89w\nGm4KeIYB/fqZrTumTLE7jUho8PvhpnNZt24dI0aMACA+Pp6rr76aXbt22RFFLBYWBq+9Bo89Zp4W\nKyKBxZYi0a1bNz777DMADhw4wK5du+jatasdUcQHEhNh8mSYONE8shCRwGHJcNPIkSNZs2YNbreb\nqKgoZs6cSW1tLQD5+fm43W5yc3MpKyvj1KlTPPzww/z+979vHE7DTUHj2DHIyIDHH4ecHLvTiAQ3\nXUwnAWntWhg50lzutEMHu9OIBC8VCQlYeXnQpo15NbaIWENFQgLWoUOQkgIffgi9etmdRiQ4BfzZ\nTRK6IiLMi+zy8uD4cbvTiMi5qEiIz91xh7lI0ezZdicRkXPRcJPYorQUevaEL76Aa66xO41IcNFw\nkwS8Ll3g4Yfh3nt17YSIP1ORENtMmWJOZL/zjt1JRKQ5Gm4SW23aBIMGwVdfQadOdqcRCQ46BVaC\nygMPwA8/wFtv2Z1EJDioSEhQqa42r51480249Va704gEPk1cS1BxOODllyE/H44etTuNiJxORUL8\nwqBBkJlpNgAUEf+h4SbxGxUVkJYGq1dDaqrdaUQCl4abJCh17mwuTpSXB6dO2Z1GREBFQvxMXl7D\nanYiYj8NN4nf2bEDnE7YuhWuvNLuNCKBR6fAStCbMQO+/hr++le7k4gEHs1JSNCbMQO2bYOPPrI7\niUho05GE+K1Vq2DsWHP4qX17u9OIBA6/P5IYN24cUVFRdO/evdltXC4XmZmZpKam4nQ6rYghAe6W\nW8wrsP/0J7uTiIQuS44k1q5di8PhYMyYMWzfvr3R44cPH6Z3796sXLmS2NhY3G43nZro7qYjCTl4\n0GzZ8fHHcP31dqcRCQx+fyTRp08fIiIimn180aJF5OTkEBsbC9BkgRAB6NgRnn3WPDX2xAm704iE\nnjZ2vOju3bupra2lX79+VFVVMWXKFEaPHt3ktgUFBfU/O51ODU2FoFGj4O234cUXYdo0u9OI+B+X\ny4XL5bLkuS2buC4tLSU7O7vJ4aZJkyaxefNm/vnPf1JTU0OvXr345JNPuOaMdSw13CR1vv0WsrJg\n40a4+mq704j4N78fbjqXuLg4fvWrX3HJJZfQsWNH+vbty9atW+2IIgEiPh4efBDuv1/LnYr4ki1F\n4vbbb6eoqIiTJ09SU1PDhg0bSE5OtiOKBJBp02DvXvjLX+xOIhI6LJmTGDlyJGvWrMHtdhMXF8fM\nmTOpra0FID8/n27dujFgwADS0tJo1aoVEyZMUJGQcwoPh3nzYOhQc0K7Vy9dPyFiNV1MJwHn9ddh\n4ULYvBkSE+Gmm8xb797q9SQC6t0kAsCxY2ahKCpquHXo0FA0broJunWDVmo+IyFGRUKkCadOwa5d\nnkXj8GHzCKOuaPToAT/7md1JRaylIiFynioqoLi4oWh8/bW5TGpd0fjlL+Es132KBCQVCZEWqqqC\nDRsaisaGDdCli+cQ1VVXmQsfiQQqFQkRL6mtNRc3On2IKjzcczK8e3do3drupCLnT0VCxCKGAd99\n51k09u83T7etKxw33ABt29qdVKR5KhIiPvR//wfr1jUUjW3bzKOL0482rrjC7pQiDVQkRGx09KjZ\nQ6quaKxbB1FRnvMaCQma1xD7qEiI+JGTJ83V8+qKxtq1cPy4Z9HIyDDnOkR8QUVCxM+VlTUUjeJi\nc57jhhsahqduvBEuvdTulBKsVCREAszhw/DFFw2F43//F6691vNoQy1FxFtUJEQC3JktRYqLzSML\ntRQRb1CREAkyhtG4pcihQ+YV4XVFo2dPtRSR86MiIRIC1FJEWkpFQiQEnd5SpLjY/PkXv2iYDL/p\nJvN3nXorKhIiwokTjVuKtG7tOa+hliKhSUVCRBpRSxGpoyIhIufF7fZsKbJ1K6SmerYUiYy0O6V4\nm4qEiLSIWoqEBr8vEuPGjeOTTz4hMjKS7du3N7vdxo0b6dWrF++//z7Dhg1rHE5FQsRSp7cUqTuT\n6j//8ZwMz8xUS5FA4/dFYu3atTgcDsaMGdNskTh58iT9+/enbdu25ObmkpOT0zicioSIz5WVeZ56\n+913cP31DUcaaini/7z53dnGK89yhj59+lBaWnrWbV566SWGDx/Oxo0brYggIi101VXmbeRI8/fT\nW4o88UTjliK9e0NMjL2ZxTqWFIlz2bdvH8uWLWPVqlVs3LiRsLMMgBYUFNT/7HQ6cTqd1gcUkXqX\nXQYDB5o3MDvc1rUUWbQI7r8f2rf3nNdISlJLEV9yuVy4XC5LntuyievS0lKys7ObHG4aMWIE06ZN\nIysri7Fjx5Kdna3hJpEA1VRLkR9+aJjT6N3bbCny85/bnTR0+P2cBJy9SHTt2rX+Dbjdbtq2bcu8\nefMYPHiwZzgVCZGAVNdSpG5u41//MtfUOL2lyOWX250yeAV8kThdbm4u2dnZOrtJJIhVVze0FCkq\nMn++6irPISq1FPEev5+4HjlyJGvWrMHtdhMXF8fMmTOpra0FID8/34qXFBE/5nDArbeaN/BsKbJs\nGTz0kNk+pG6I6qabIC1NLUX8gS6mExHbGQbs2eM5r7Fvn3m67ektRdq1sztpYAiI4SZvUJEQCV1n\naynSu7d5i4qyO6V/UpEQkZBT11KkbjJ83Tq44grPeY1rrtG8BqhIiIhw6lRDS5G629GjnkUjVFuK\nqEiIiDShqZYiPXs2FI1evUKjpYiKhIjIeTh8GNavbygamzaZQ1KnH20EY0sRFQkRkRY4vaVI3a2u\npUjd6bfJyYHfUkRFQkTEC+paipw+RHXwoHlFeN2RRiC2FFGREBGxSGWlZ9HYudOcAA+kliIqEiIi\nPtJUS5G4OM95jS5d/OvUWxUJERGbnDgB27Y1FI21a805jNOLht0tRVQkRET8xNlaitRNhmdl+bal\niIqEiIgfO3jQs6XIli2QkuK5mp+VLUVUJEREAsjRo+Y1GnVFw+qWIioSIiIB7MyWIsXFUFPj2So9\nMxP+679a9vwqEiIiQaa83PPU22+/bXlLERUJEZEg9+9/wxdfNG4pcvrRRmxs03+rIiEiEmKOH4eS\nEs+zqNq185zXqGspoiIhIhLiDAO++cazaNS1FPnkE+99dwZ4G6vQ4XK57I7gN7QvGmhfNAi1fREW\nBomJMH48zJ8Pu3ebLURyc737OpYUiXHjxhEVFUX37t2bfPzdd98lPT2dtLQ0evfuzbZt26yIEVRC\n7X+As9G+aKB90UD7AqKjISfHu89pSZHIzc1lxYoVzT7etWtXPv/8c7Zt28af/vQn8vLyrIghIiIX\nyZIi0adPHyIiIpp9vFevXnTo0AGArKws9u7da0UMERG5SJZNXJeWlpKdnc327dvPut3s2bP55ptv\neP311xuH86e2iiIiAcRbX+1tvPIsLbR69WrefPNNiouLm3xcZzaJiNjLtiKxbds2JkyYwIoVK846\nNCUiIvax5RTYsrIyhg0bxsKFC0lISLAjgoiInAdL5iRGjhzJmjVrcLvdREVFMXPmTGprawHIz8/n\nnnvuYcmSJVx11VUAhIeH8+WXX3o7hoiIXCzDTxUWFhqJiYlGQkKC8dRTT9kdxyd+8YtfGN27dzcy\nMjKM66+/3jAMwzh48KBx2223Gddcc43Rv39/49ChQ/Xbz5o1y0hISDASExONlStX2hX7ouXm5hqR\nkZFGampq/X0ted+bNm0yUlNTjYSEBGPy5Mk+fQ/e0tS+ePTRR42YmBgjIyPDyMjIMJYvX17/WDDv\ni7KyMsPpdBrJyclGSkqKMWfOHMMwQvOz0dy+8MVnwy+LxIkTJ4z4+Hhjz549xvHjx4309HRj586d\ndseyXJcuXYyDBw963PfQQw8ZTz/9tGEYhvHUU08Z06dPNwzDMHbs2GGkp6cbx48fN/bs2WPEx8cb\nJ0+e9Hlmb/j888+NzZs3e3wxXsj7PnXqlGEYhnH99dcbGzZsMAzDMAYOHGgUFhb6+J1cvKb2RUFB\ngfHcc8812jbY90VFRYVRUlJiGIZhVFVVGddee62xc+fOkPxsNLcvfPHZ8Mu2HF9++SUJCQl06dKF\n8PBw7rzzTpYtW2Z3LJ8wzhj9++ijj7j77rsBuPvuu1m6dCkAy5YtY+TIkYSHh9OlSxcSEhICdsiu\nqetqLuR9b9iwgYqKCqqqqrjhhhsAGDNmTP3fBJLmrjE683MBwb8voqOjycjIAMDhcJCUlMS+fftC\n8rPR3L4A6z8bflkk9u3bR1xcXP3vsbGx9TskmIWFhXHbbbfRs2dP5s2bB8CBAweI+mmdw6ioKA4c\nOADA/v1kFVARAAACkklEQVT7iT2tT3Cw7aMLfd9n3h8TExNU++Oll14iPT2d8ePHc/jwYSC09kVp\naSklJSVkZWWF/Gejbl/ceOONgPWfDb8sEqF6EV1xcTElJSUUFhby8ssvs3btWo/Hw8LCzrpvgnW/\nnet9B7v77ruPPXv2sGXLFjp37syDDz5odySfqq6uJicnhzlz5tC+fXuPx0Lts1FdXc3w4cOZM2cO\nDofDJ58NvywSMTExlJeX1/9eXl7uUf2CVefOnQG44oorGDp0KF9++SVRUVFUVlYCUFFRQWRkJNB4\nH+3du5eYmBjfh7bIhbzv2NhYYmJiPNq7BNP+iIyMrP8yvOeee+qHFUNhX9TW1pKTk8Po0aMZMmQI\nELqfjbp9MWrUqPp94YvPhl8WiZ49e7J7925KS0s5fvw47733HoMHD7Y7lqVqamqoqqoC4Mcff+TT\nTz+le/fuDB48mLfeeguAt956q/7DMXjwYP7yl79w/Phx9uzZw+7du+vHGYPBhb7v6OhoLr30UjZs\n2IBhGLzzzjv1fxPoKioq6n9esmRJfXflYN8XhmEwfvx4kpOTmTp1av39ofjZaG5f+OSz4Z25d+9b\nvny5ce211xrx8fHGrFmz7I5jue+++85IT0830tPTjZSUlPr3fPDgQePWW29t8nS/J554woiPjzcS\nExONFStW2BX9ot15551G586djfDwcCM2NtZ48803W/S+607ti4+PN/7whz/Y8VYu2pn74o033jBG\njx5tdO/e3UhLSzNuv/12o7Kysn77YN4Xa9euNcLCwoz09PT6UzwLCwtD8rPR1L5Yvny5Tz4bfr0y\nnYiI2Msvh5tERMQ/qEiIiEizVCRERKRZKhIiItIsFQkREWmWioSIiDTr/wHpKRh1i3Z8jAAAAABJ\nRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x32eab90>" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch23.ipynb b/Chemical_Reaction_Engineering/ch23.ipynb new file mode 100755 index 00000000..5535664d --- /dev/null +++ b/Chemical_Reaction_Engineering/ch23.ipynb @@ -0,0 +1,104 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 23 :\n", + "\n", + "Fluid-Fluid Reactions: Kinetics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 23.1 pageno : 536" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables\n", + "k = 10.**6;\n", + "Kag_a = 0.01 #mol/hr. m**3. Pa\n", + "fl = 0.98;\n", + "Kal = 1.;\n", + "HA = 10.**5; # very low solubility\n", + "DAl = 10.**-6;\n", + "DBl = DAl;\n", + "PA = 5*10.**3 #Pa\n", + "CB = 100. #mol/m3\n", + "b = 2. \n", + "a = 20. #m2/m3\n", + "\n", + "# Calculations\n", + "Mh = math.sqrt(DAl*k*CB*CB)/Kal;\n", + "Ei = 1+(DBl*CB*HA/(b*DAl*PA));\n", + "E = 100.\n", + "print \" Part a\"\n", + "\n", + "res_total = (((1/(Kag_a))+(HA/(Kal*a*E))+(HA/(k*CB*CB*fl)))) #Total Resismath.tance\n", + "f_gas = (1/(Kag_a))/res_total; #fraction of resismath.tance in gas film\n", + "f_liq = (HA/(Kal*a*E))/res_total; #fraction of resismath.tance in liquid film\n", + "\n", + "\n", + "# Results\n", + "print \" Fraction of the resistance in the gas film is %f\"%(f_gas)\n", + "print \" Fraction of the resistance in the liquid film is %f\"%(f_liq)\n", + "print \" Part b\"\n", + "print \" The reaction zone is in the liquid film\"\n", + "print \" Part c\"\n", + "if Ei>5*Mh:\n", + " print \" We have pseudo 1st order reaction in the film\"\n", + "\n", + "rA = PA/(((1/(Kag_a))+(HA/(Kal*a*E))+(HA/(k*CB*CB*fl))));\n", + "print \" Part d\"\n", + "print \" The rate of reactionmol/m3.hr) is %f\"%(rA)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " Fraction of the resistance in the gas film is 0.666667\n", + " Fraction of the resistance in the liquid film is 0.333333\n", + " Part b\n", + " The reaction zone is in the liquid film\n", + " Part c\n", + " We have pseudo 1st order reaction in the film\n", + " Part d\n", + " The rate of reactionmol/m3.hr) is 33.333331\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch24.ipynb b/Chemical_Reaction_Engineering/ch24.ipynb new file mode 100755 index 00000000..1766a982 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch24.ipynb @@ -0,0 +1,369 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 24 : Fluid-Fluid Reactors: Design" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 24.1 pageno : 551" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "kag_a = 0.32; # mol/hr.m**3 Pa\n", + "kal_a = 0.1 # hr\n", + "HA = 12.5 # Pa.m**3/mol\n", + "Fg = 10.**5 # mol/hr.m**2\n", + "Fl = 7.*10**5 # mol/hr.m**2\n", + "Ct = 56000.; #mol/m3\n", + "P = 10.**5; #Pa\n", + "\n", + "# Calculations\n", + "inv_Kag_a = 3.125+HA/(kal_a);\n", + "Gfilm_res = (3.125)/inv_Kag_a;\n", + "Lfilm_res = (HA/(kal_a))/inv_Kag_a;\n", + "Kag_a = 1/inv_Kag_a;\n", + "d = 20;\n", + "def f9(dp): \n", + "\t return 1./20\n", + "\n", + "h = (Fg/(P*Kag_a))* quad(f9,20,100)[0]\n", + "\n", + "# Results\n", + "print \" The height of the tower required for countercurrent operartions is %.1f \"%(h),\n", + "print \"m\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The height of the tower required for countercurrent operartions is 512.5 m\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 24.2 pageno : 554" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "Fg = 10.**5; \n", + "P = 10.**5;\n", + "Fg_by_Acs = 10.**5 #(Fg/Acs)\n", + "PA1 = 20;PA2 = 100.;\n", + "kag_a = 0.32;\n", + "\n", + "# Calculations\n", + "def f10(PA): \n", + "\t return 1./(0.32*PA)\n", + "\n", + "h = (Fg_by_Acs/P)* quad(f10,PA1,PA2)[0]\n", + "\n", + "# Results\n", + "print \" The height of the tower is %.2f \"%(h),\n", + "print \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The height of the tower is 5.03 m\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 24.3 pageno : 555" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "\n", + "# from example 24.2\n", + "Fg = 10.**5;\n", + "P = 10.**5;\n", + "PA1 = 20.\n", + "PA2 = 100.;\n", + "HA = 12.5;\n", + "kaga = 0.32\n", + "kla = 0.1;\n", + "\n", + "# Calculations\n", + "rA = 420./((1./kaga)+(HA/kla));\n", + "\n", + "def f8(PA): \n", + "\t return 1./rA\n", + "\n", + "h = (Fg/P)* quad(f8,PA1,PA2)[0]\n", + "\n", + "# Results\n", + "print \"The height of the tower is %.1f\"%(h),\n", + "print \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The height of the tower is 24.4 m\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 24.4 page no : 557" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "\n", + "# from example 24.2\n", + "PA1 = 20.\n", + "PA2 = 100. #Pa\n", + "Fg_by_Acs = 10.**5;\n", + "P = 10.**5;\n", + "HA = 12.5;\n", + "kaga = 0.32\n", + "kla = 0.1;\n", + "PA = 39.5 #Pa\n", + "\n", + "# Calculations\n", + "def f11(P): \n", + "\t return 1./(kaga*P)\n", + "\n", + "def f22(P):\n", + " return (1/kaga+HA/kla)/1620\n", + "\n", + "h = (Fg_by_Acs/P)*( quad(f11,PA1,PA)[0] + quad(f22,PA,PA2)[0])\n", + "\n", + "# Results\n", + "print \"The height of the tower is %.2f\"%(h),\n", + "print \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The height of the tower is 6.91 m\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 24.5 pageno : 558" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "\n", + "# from 24.2\n", + "Fg = 10.**5;\n", + "P = 10.**5;\n", + "Fg_by_Acs = 10.**5 #(Fg/Acs)\n", + "PA1 = 20.\n", + "PA2 = 100.\n", + "kag_a = 0.32;\n", + "\n", + "# Calculations\n", + "def f0(PA): \n", + "\t return 1./(PA/3.125)\n", + "\n", + "h = (Fg_by_Acs/P)* quad(f0,PA1,PA2)[0]\n", + "\n", + "# Results\n", + "print \" The height of the tower is %.2f \"%(h),\n", + "print \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The height of the tower is 5.03 m\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 24.6 pageno : 560" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "kag_a = 0.72; # mol/hr.m**3 Pa\n", + "kal_a = 144.; # hr**-1\n", + "HA = 1000.; # Pa m**3/mol\n", + "Fg = 9000. #mol/hr\n", + "fl = 0.9\n", + "b = 1\n", + "Vr = 1.62 #m3\n", + "DA = 3.6*10**-6 #m2/hr\n", + "a = 100. #m2/m3\n", + "k = 2.6*10**5; #m3/mol.hr\n", + "DB = DA\n", + "P = 10**5\n", + "PA = 1000. #Pa\n", + "kal = kal_a/a;\n", + "#At the start\n", + "CBo = 555.6;\n", + "\n", + "# Calculations\n", + "Mh = (math.sqrt(DB*k*CBo))/kal;\n", + "#Min value of EAi\n", + "Ei = 1+(CBo*HA/PA);\n", + "if Ei>Mh:\n", + " E = Mh;\n", + "\n", + "rA1 = PA/((P*Vr/Fg)+(1/kag_a)+(HA/(kal_a*E))+(HA/(k*fl*CBo)));\n", + "#At the end\n", + "CBf = 55.6;\n", + "Mh = (math.sqrt(DB*k*CBf))/kal;\n", + "#Min value of EAi\n", + "Ei = 1+(CBf*HA/PA);\n", + "if Ei>Mh:\n", + " E = Mh;\n", + "\n", + "rA2 = PA/((P*Vr/Fg)+(1/kag_a)+(HA/(kal_a*E))+(HA/(k*fl*CBf)));\n", + "#Average rate of reaction\n", + "rA_avg = (rA1+rA2)/2;\n", + "\n", + "def f7(CB): \n", + "\t return 1./rA_avg\n", + "\n", + "t = (fl/b)* quad(f7,CBf,CBo)[0]\n", + "\n", + "# Results\n", + "print \" Part a\"\n", + "print \" The run time needed is %.2f\"%t,\n", + "print \"hr\"\n", + "#The min time required is\n", + "tmin = Vr*(CBo-CBf)/(Fg*(PA/(P-PA)));\n", + "print \" The minimum time required is %.2f\"%(tmin),\n", + "print \"hr\"\n", + "#Fraction of reacmath.tant which passes through the math.tank unreacted is\n", + "f = (t-tmin)/tmin;\n", + "print \" Part b\"\n", + "print \" Fraction of reacmath.tant which passes through the math.tank unreacted is %.3f\"%(f)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " The run time needed is 9.13 hr\n", + " The minimum time required is 8.91 hr\n", + " Part b\n", + " Fraction of reacmath.tant which passes through the math.tank unreacted is 0.025\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch26.ipynb b/Chemical_Reaction_Engineering/ch26.ipynb new file mode 100755 index 00000000..cb1d9f92 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch26.ipynb @@ -0,0 +1,214 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 26 :\n", + "\n", + "Fluid-Particle Reactors: Design" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 26.1 pageno : 592" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Lets say F(Ri)/F = F_ri\n", + "\n", + "# Variables\n", + "F_50 = 0.3\n", + "F_100 = 0.4\n", + "F_200 = 0.3;\n", + "t_50 = 5.\n", + "t_100 = 10.\n", + "t_200 = 20.\n", + "tp = 8.\n", + "\n", + "# Calculations\n", + "a = ((1-(tp/t_50))**3)*F_50\n", + "b = ((1-(tp/t_100))**3)*F_100\n", + "c = ((1-(tp/t_200))**3)*F_200;\n", + "g = [a,b,c];\n", + "sum1 = 0;\n", + "for p in range(3):\n", + " if g[p]>0:\n", + " sum1 = sum1+g[p];\n", + "f_converted = 1-sum1;\n", + "\n", + "# Results\n", + "print \" The fraction of solid converted equals %.1f %%\"%(f_converted*100)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The fraction of solid converted equals 93.2 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 26.2 pageno : 597" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "t_avg = 60. # min\n", + "t = 20. #min\n", + "\n", + "# Calculations\n", + "unconverted = ((1./4)*(t/t_avg))-((1./20)*(t/t_avg)**2)+((1./120)*(t/t_avg)**3);\n", + "unconverted1 = ((1./5)*(t/t_avg))-((19./420)*(t/t_avg)**2)+((41./4620)*(t/t_avg)**3);\n", + "c_avg = (unconverted+unconverted1)/2;\n", + "\n", + "# Results\n", + "print \"Fraction of original sulfide ore remain unconverted is %.2f\"%(c_avg)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Fraction of original sulfide ore remain unconverted is 0.07\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 26.3 page no : 600" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "F = 1000. #gm/min\n", + "W = 10000. #gm\n", + "\n", + "# Calculations\n", + "t_avg = W/F;\n", + "F_50 = 300.\n", + "F_100 = 400.\n", + "F_200 = 300. #gm/min\n", + "t_50 = 5.\n", + "t_100 = 10.\n", + "t_200 = 20. #min\n", + "\n", + "unconverted = ((((1./4)*(t_50/t_avg))-((1./20)*(t_50/t_avg)**2)+ ((1./120)*(t_50/t_avg)**3))*(F_50/F))+((((1./4)*(t_100/t_avg))-((1./20)*(t_100/t_avg)**2)+((1./120)*(t_50/t_avg)**3))*(F_100/F))+((((1./4)*(t_200/t_avg))-((1./20)*(t_200/t_avg)**2)+((1./120) *(t_50/t_avg)**3))*(F_200/F))\n", + "converted = 1-unconverted;\n", + "\n", + "# Results\n", + "print \"The mean conversion of soild is %f\"%(converted)\n", + "print \" The answer slightly differs from those given in book as we have considered \\\n", + "only significant terms in infinite series\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The mean conversion of soild is 0.795208\n", + " The answer slightly differs from those given in book as we have considered only significant terms in infinite series\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 26.4 pageno : 601" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "t1 = 1. #hr\n", + "t2 = t1/0.1 \n", + "a = 0.\n", + "r = 1 #ton/hr\n", + "# Calculations\n", + "while a<=1:\n", + " x = (1./4)*(a)-((1./20)*(a)**2)+((1./120)*(a)**3);\n", + " if x >0.099 and x<0.1005:\n", + " r = a;\n", + " a += .0001\n", + "\n", + "FBo = 1. #tons/hr\n", + "t_avg = t2/r;\n", + "W = t_avg*FBo;\n", + "\n", + "# Results\n", + "print \" The needed weight of bed is %.f\"%(W),\n", + "print \"tons\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The needed weight of bed is 23 tons\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch29.ipynb b/Chemical_Reaction_Engineering/ch29.ipynb new file mode 100755 index 00000000..be59a530 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch29.ipynb @@ -0,0 +1,93 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 29 :\n", + "\n", + "Substrate-Limiting\n", + "\n", + "Microbial Fermentation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 29.3 pageno : 639" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables\n", + "CAo = 6. # glucose solution\n", + "CM = 0.4 #kg/m3\n", + "V = 1. #m3\n", + "k = 4.\n", + "\n", + "# Calculations and Results\n", + "N = math.sqrt(1+(CAo/CM));\n", + "kt_op = N/(N-1);\n", + "C_by_A = 0.1;\n", + "t_op = kt_op/k;\n", + "v_op = V/t_op;\n", + "\n", + "#The feed rate of glumath.cose\n", + "FAo = v_op*CAo;\n", + "print \" The feed rate of glumath.cose is %.1f\"%(FAo) ,\n", + "print \"kg/hr\"\n", + "\n", + "#Max consumption rate of glumath.cose is\n", + "XA = N/(N+1);\n", + "c_max = FAo*XA;\n", + "print \" Max consumption rate of glumath.cose is %.1f \"%(c_max),\n", + "print \"kg/hr\"\n", + "\n", + "#Max production rate of E.coli is\n", + "Cc_op = (C_by_A)*CAo*N/(N+1);\n", + "Fcmax = v_op*Cc_op;\n", + "print \" Max production rate of E.coli is %.2f\"%(Fcmax),\n", + "print \"kg/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The feed rate of glumath.cose is 18.0 kg/hr\n", + " Max consumption rate of glumath.cose is 14.4 kg/hr\n", + " Max production rate of E.coli is 1.44 kg/hr\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch3.ipynb b/Chemical_Reaction_Engineering/ch3.ipynb new file mode 100755 index 00000000..3af6a19a --- /dev/null +++ b/Chemical_Reaction_Engineering/ch3.ipynb @@ -0,0 +1,256 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3 : Interpretation of Batch Reactor Data" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.1 page no : 60" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "%pylab inline\n", + "\n", + "import math \n", + "from numpy import *\n", + "from matplotlib.pyplot import *\n", + "from scipy import stats\n", + "\n", + "# Variables\n", + "#Given\n", + "t = [0, 20, 40 ,60, 120 ,180, 300]; # time\n", + "C_A = [10 ,8, 6, 5, 3, 2, 1]; # concentration\n", + "CAo = 10.;\n", + "k = zeros(7)\n", + "CA_inv = zeros(7)\n", + "\n", + "# Calculations\n", + "#Guesmath.sing 1st order kinetics\n", + "for i in range(7):\n", + " k[i] = math.log(CAo/C_A[i]);\n", + " CA_inv[i] = 1/C_A[i];\n", + "\n", + "T = array([18.5,23,35]);\n", + "CAo = array([10,5,2]);\n", + "CA = zeros(3)\n", + "log_Tf = zeros(3)\n", + "log_CAo = zeros(3)\n", + "\n", + "for i in range(3):\n", + " CA[i] = 0.8*CAo[i];\n", + " log_Tf[i] = math.log10(T[i]);\n", + " log_CAo[i] = math.log10(CAo[i]);\n", + "\n", + "# Results\n", + "plot(log_CAo,log_Tf)\n", + "plot(log_CAo,log_Tf,\"go\")\n", + "xlabel(\"Ln CAO\")\n", + "ylabel(\"log r\")\n", + "#plot(log_Tf,log_CAo)\n", + "#coeff1 = linalg.lstsq(log_CAo,log_Tf);\n", + "slope, intercept, r_value, p_value, std_err = stats.linregress(log_CAo,log_Tf)\n", + "coeff1 = stats.linregress(log_CAo,log_Tf)\n", + "n = 1-coeff1[0];\n", + "print \"From graph we get slope and intercept for calculating rate eqn\"\n", + "k1 = ((0.8**(1-n))-1)*(10.**(1-n))/(18.5*(n-1));\n", + "print \" The rate equation is given by %.3f\"%(k1),\n", + "print \"CA**1.4 mol/litre.sec\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "From graph we get slope and intercept for calculating rate eqn" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " The rate equation is given by 0.005 CA**1.4 mol/litre.sec\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVVX+x/H3CbBUTEWRCCgQzEvKxQtaSmGJePnpeKsk\n84KOUVNmTc1k2UVyprScmtJyqskaK8USE0slM4W8lJiWWmpegmIwHM38lfpLAffvjzWRxu2IHPY5\n8Hk9T89zPPucfT4QD1/W+u61tsOyLAsREZFKXGB3ABERcX8qFiIiUiUVCxERqZKKhYiIVEnFQkRE\nqqRiISIiVXJZsRg/fjwBAQF06tSp3ONZWVk0bdqUmJgYYmJimD59eumx0NBQIiMjiYmJITY21lUR\nRUTESd6uOnFycjKTJk1izJgxFb7m2muvZdmyZWWedzgcZGVl4efn56p4IiJyDlw2soiLi6N58+aV\nvqay9YBaKygi4j5cNrKoisPhYOPGjURFRREUFMSsWbPo0KFD6bE+ffrg5eVFSkoKEydOLPf9IiJy\n7qr1x7jlQrm5uVbHjh3LPfbjjz9ax48ftyzLslasWGG1adOm9NiBAwcsy7Ks//znP1ZUVJT10Ucf\nlXk/YPUd19d6b9V7Lkjueo8++qjdEarNk7NblvLbTfntVd1f+7ZdDdWkSRMaNWoEQP/+/SkqKuLI\nkSMABAYGAuDv78/QoUPJyckp9xyrQlcx+fnJLP9gee2EFhGpp2wrFgcPHiwdCuXk5GBZFn5+fpw4\ncYKffvoJgOPHj7Nq1aoKr6gC2B+zn9lps2sls4hIfeWynkVSUhLZ2dkcPnyYkJAQUlNTKSoqAiAl\nJYXFixczd+5cvL29adSoEWlpaQAUFhYybNgwAIqLixk1ahR9+/at9LN+LvnZVV+Gy8THx9sdodo8\nOTsov92U3zM5LMszLztyOBwwzTy+bn8iH87PtDWPiIgncDgc1Wpwe/wK7qarwtn+4SSysuxOIiJS\nd3l0sUj8NpE3pz3LG/MGMmoUTJkCp07ZnUpEpO7x6GmoM6MfOgQTJsCBA/Dmm9C2rY3hRETcVL2d\nhvqFvz9kZJiC0asXvPwyeGYZFBFxP3VmZHGmXbsgKQlatzZFo0WLWg4nIuKm6v3I4kzt28OmTaZY\nREfDhx/anUhExLPVyZHFmT74AJKT4eab4S9/gQYNaiGciIib0siiAgkJ8PnnsGcP9OgBu3fbnUhE\nxPPU+WIB0LIlvPMO3HYbxMXBiy+q+S0ici7q/DTUb+3eDaNGQUgI/POfppCIiNQXmoZyUrt28PHH\nZh1GdLTpaYiISOXq3cjiTGvWwNixcOON8PjjcOGFNRRORMRNaWRRDdddZ5rfubnQvTvs3Gl3IhER\n91SviwWYBXvp6TBpElx7LbzwgprfIiK/Va+noX5rzx7T/L7kEnjlFWjVqkZPLyJiO01D1YArroAN\nG6BjR9P8ztQtMkREAI0sKpSVBWPGwLBhMGMGXHSRyz5KRKTWaGRRw+LjTfO7oABiY+GLL+xOJCJi\nHxWLSvj5wVtvwT33QO/eMGeOmt8iUj9pGspJ+/aZzQj9/WHePAgIqLWPFhGpMZqGcrGICNP8jokx\nze/ly+1OJCJSezSyqIaPPjLN70GD4MknoWFDW2KIiJwzjSxq0TXXmOb3oUPQrRts3253IhER11Kx\nqKZmzWDhQvjzn+H66+HZZ+H0abtTiYi4hqahasD+/XDLLdC0Kbz2mlkBLiLijjQNZaPwcNPHiI01\nDfB337U7kYhIzdLIooatXw+jR0P//jBrFjRqZHciEZFfaWThJnr1Ms3v//1f6NrVPBYR8XQuKxbj\nx48nICCATp06lXs8KyuLpk2bEhMTQ0xMDH/5y19Kj2VmZtKuXTvatGnDzJkzXRXRZZo2hTffhKlT\noW9fePppNb9FxLO5bBpq3bp1+Pr6MmbMGHbs2FHmeFZWFk8//TTLli076/mSkhLatm3L6tWrCQoK\nolu3bixcuJD27dufHdxNp6F+KzfXNL8bNzbN70svtTuRiNRnbjcNFRcXR/PmzSt9TXmBc3JyiIiI\nIDQ0FB8fH0aOHElGRoarYrpcWBhkZ0PPntC5M3jwlyIi9Zi3XR/scDjYuHEjUVFRBAUFMWvWLDp0\n6EBBQQEhISGlrwsODmbTpk3lnmPatGmlj+Pj44mPj3dx6urx9oZHH4WEBDPKWLkS/vY3M9oQEXGl\nrKwssrKyzvs8thWLzp07k5+fT6NGjVi5ciVDhgxhz54953SOM4uFJ7j6atPwvvNO6NIFFiwwow0R\nEVf57R/Sqamp1TqPbVdDNWnShEb/va60f//+FBUVceTIEYKDg8nPzy99XX5+PsHBwXbFrHEXXwzz\n55uRRr9+8NRTan6LiPuzrVgcPHiwtGeRk5ODZVn4+fnRtWtX9u7dS15eHqdOnWLRokUMHjzYrpgu\nk5QEmzfDsmVmeqqgwO5EIiIVc9k0VFJSEtnZ2Rw+fJiQkBBSU1MpKioCICUlhcWLFzN37ly8vb1p\n1KgRaWlpJpC3N3PmzCExMZGSkhImTJhQ5kqouuLyy83tW594wkxH/eMfMHSo3alERMrSCm43sWkT\njBpl7sj397+r+S0iruF2l87KueneHT77DIqKzCjj00/tTiQi8isVCzfSpIlZuPfYYzBgAMyYASUl\ndqcSEdE0lNv69luzIeEFF5irp85YeiIiUm2ahqpjLrsM1qwxe0t17QqLF9udSETqM40sPMDmzXDz\nzRAXB889B76+dicSEU+lkUUd1q2baX47HObmSjk5dicSkfpGIwsPs3gx3HEHTJ4M998PXl52JxIR\nT1Ld350qFh4oPx/GjDFXSr3xhulviIg4Q9NQ9UhICKxeDQMHmub3okV2JxKRuk4jCw+3ZYtpfvfo\nAXPmmLUaIiIV0ciinurSBbZuhQsvhOho+OQTuxOJSF2kkUUd8s47cPvtpgH+4INqfotIWWpwC2C2\nOh87Fk6ehNdfh9BQuxOJiDvRNJQAEBQEq1bB734HsbHmbnwiIudLI4s6bOtW0/zu1s00v5s2tTuR\niNhNIwspo3NnUzAaNzYrvzdutDuRiHgqjSzqiYwMSEmB226Dhx4Cb5fdI1FE3Jka3FKl774zze9j\nx+DNNyEszO5EIlLbNA0lVQoMhMxMuOEG0/x+4w1QvRURZ2hkUU99/rlpfkdHwwsvQLNmdicSkdqg\nkYWck+hoc5/v5s3N4/Xr7U4kIu5MIwvhvfdg4kT4/e/hkUfAx8fuRCLiKmpwy3kpLIRx4+DoUdP8\nDg+3O5GIuIKmoeS8XHIJrFjx6w62//qXmt8i8iuNLKSMHTsgKQk6doS5c01fQ0TqBo0spMZ06gSb\nN0OrVqb5nZ1tdyIRsZtGFlKpFStgwgQYPx6mTVPzW8TTaWQhLjFggFmT8fnn0LMn7N1rdyIRsYPL\nisX48eMJCAigU6dOlb5u8+bNeHt7k56eXvpcaGgokZGRxMTEEBsb66qI4qSAAHN57ZgxcPXVMG+e\nmt8i9Y3LpqHWrVuHr68vY8aMYceOHeW+pqSkhISEBBo1akRycjLDhw8HICwsjC1btuDn51dxcE1D\n2eKLL8wVU23bwosvQiX/i0TEDbndNFRcXBzNq7iMZvbs2YwYMQJ/f/8yx1QI3FPHjpCTA8HBpvm9\ndq3diUSkNti2UXVBQQEZGRmsWbOGzZs343A4So85HA769OmDl5cXKSkpTJw4sdxzTJs2rfRxfHw8\n8fHxLk4tABddBM88A4mJcMstMHo0PPYYNGhgdzIR+a2srCyysrLO+zy2FYu7776bGTNmlA6JzhxJ\nbNiwgcDAQA4dOkRCQgLt2rUjLi6uzDnOLBZS+/r1M43v8eNNL+PNN830lIi4j9/+IZ2amlqt89h2\nNdSWLVsYOXIkYWFhpKen84c//IFly5YBEBgYCIC/vz9Dhw4lJyfHrphSBX9/WLbMXF7bqxe8/LKa\n3yJ1kW3F4uuvvyY3N5fc3FxGjBjB3LlzGTx4MCdOnOCnn34C4Pjx46xatarKK6rEXg4H3H67Wbz3\n/PMwfDh8/73dqUSkJrlsGiopKYns7GwOHz5MSEgIqampFBUVAZCSklLh+woLCxk2bBgAxcXFjBo1\nir59+7oqptSgDh1g0yaYOtU0v197Da6/3u5UIlITtIJbXOKDDyA52VxmO306XHih3YlEBNzw0lmp\n3xISTPN7zx646irYvdvuRCJyPlQsxGVatoR33oHbboO4OLOIT4NBEc+kaSipFbt3mympyy6Df/7T\nFBIRqX2ahhK31q4dfPwxXHEFREWZnoaIeA6NLKTWffghjB0LN90Ejz+u5rdIbdLIQjzG9dfDtm2Q\nmwvdu8POnXYnEpGqqFiILVq0gPR0uPNOuPZaeOEFNb9F3JmmocR2e/aY5ndgILzyirmdq4i4hqah\nxGNdcQVs3Gi2P4+OhsxMuxOJyG9pZCFuZe1a0/weNgxmzDDboYtIzdHIQuqE3r3Nyu+CAoiNNXfm\nExH7qViI2/Hzg7fegnvuMcVj9mw1v0XspmkocWv79pnmd8uW8OqrEBBgdyIRz6ZpKKmTIiJgwwbo\n3Nk0v5cvtzuRSP2kkYV4jI8+Mvf7HjwYnnwSGja0O5GI59HIQuq8a64xze///Ae6dYPt2+1OJFJ/\nqFiIR2neHNLS4E9/MtuGPPssnD5tdyqRuk/TUOKx9u+HUaOgWTPT/A4MtDuRiPvTNJTUO+HhsG6d\nWY/RuTO8+67diUTqLo0spE5Yv940v/v3h1mzoFEjuxOJuCeNLKRe69ULPvsMjh6Frl1NI1xEao6K\nhdQZzZrBggXw4IOQkABPP63mt0hNqbRYlJSU8Mwzz9RWFpEaccstkJMDixdDv35w4IDdiUQ8X6XF\nwsvLiwULFtRWFpEaExZmFvH17Gma30uX2p1IxLNV2eC+5557KCoq4qabbqJx48alz3fu3Nnl4Sqj\nBrc4a+NGM9r4ZWrqjB9jkXqnur87qywW8fHxOByOMs+vXbv2nD+sJqlYyLn48UdzC9ecHNPXsPlv\nHRHbuKxYuCsVC6mOhQth8mSzAvzee+ECXeIh9YyKhYiT8vLMmowGDWD+fAgKsjuRSO1xu3UW48eP\nJyAggE6dOlX6us2bN+Pt7U16enrpc5mZmbRr1442bdowc+ZMV0WUeio01Ny+NT7eTEe9847diUTc\nn8uKRXJyMpmZmZW+pqSkhPvvv59+/fqd9dydd95JZmYmO3fuZOHChezatctVMaWe8vaGhx+GjAy4\n7z6YOBGOHbM7lYj78q7qBenp6WUa3E2bNqVTp060atWqwvfFxcWRl5dX6blnz57NiBEj2Lx5c+lz\nOTk5REREEBoaCsDIkSPJyMigffv2VUUVOWc9epiV33fdZUYZCxaYFeAicrYqi8W8efP4+OOP6d27\nNwBZWVl07tyZ3NxcHnnkEcaMGVOtDy4oKCAjI4M1a9awefPm0oJUUFBASEhI6euCg4PZtGlTueeY\nNm1a6eP4+Hji4+OrlUXqt4svhtdeg0WLYMAA+OMfTQPcy8vuZCLnLysri6ysrPM+T5XFoqioiF27\ndhHw35sfHzx4kNGjR7Np0yauueaaaheLu+++mxkzZpQ2W35puJR3mW5FziwWIufrppvgqqtM8/v9\n903z+4y/W0Q80m//kE5NTa3WeaosFvn5+aWFAqBVq1bk5+fTokULGjRoUK0PBdiyZQsjR44E4PDh\nw6xcuRIfHx+CgoLIz88/6/ODg4Or/Tki5+Kyy2DNGpg500xHPf88jBhhdyoR+1VZLHr37s3AgQO5\n8cYbsSyL9PR04uPjOX78OM2aNav2B3/99delj5OTkxk0aBCDBw+muLiYvXv3kpeXx6WXXsqiRYtY\nuHBhtT9H5Fx5eZnNCPv0MTdXWrECnnsOfH3tTiZinyqLxZw5c1iyZAkbNmwAYOzYsQwfPhyHw1Hp\nKu6kpCSys7M5fPgwISEhpKamUlRUBEBKSkrFgby9mTNnDomJiZSUlDBhwgQ1t8UWsbGm+T15MsTE\nwJtvmudE6iOnFuUVFhaWXrHUvXv3Sq+Cqi1alCe16e234Y47TOGYMkXNb/FcLluU99Zbb9G9e3fe\nfvtt3n77bWJjY3n77berFVLEU91wA2zZAqtXQ+/e8O23dicSqV1VjiwiIyNZvXp16Wji0KFDXH/9\n9Wzfvr1WAlZEIwuxQ0mJuW3r3/4Gs2ebK6hEPInLRhaWZeHv71/67xYtWuiXtNRbXl5w//2wciU8\n8giMHQs//WR3KhHXq7JY9OvXj8TERF577TVeffVVBgwYQP/+/Wsjm4jb6tIFtm41mxFGR8Mnn9id\nSMS1qpyGsiyLJUuWsH79ehwOB3FxcQwdOrS28lVI01DiLpYsgdtvN/fLeOABs++UiLvSFuUiNioo\ngDFj4ORJeOMNs7OtiDuq8Z6Fr68vTZo0Kfe/iy+++LzCitQ1QUHwwQfwu99Bt25mQ0KRukQjC5Ea\ntnUr3HyzKRpz5kDTpnYnEvmV2938SKS+6tzZFIzGjc3K740b7U4kcv40shBxoYwMSEmB226Dhx5S\n81vspwa3iJs6cADGjTN34nvjDWjd2u5EUp9pGkrETV16KWRmmq3Ou3eH118H/Z0jnkYjC5Fa9Pnn\npvkdHQ0vvADnscu/SLVoZCHiAaKj4dNPoXlz83j9ersTiThHIwsRm7z3HkycCL//vdlnysfH7kRS\nH6jBLeKBCgtN8/voUXNzpfBwuxNJXadpKBEPdMkl5ratSUnQowf8619qfot70shCxE1s326a31de\nCf/4h+lriNQ0jSxEPFxkJGzeDK1ameZ3drbdiUR+pZGFiBtasQImTIDx42HaNDW/peaowS1Sxxw8\nCMnJcPiwaX7vyVvOcwue46R1kgsdF3LXzXcxMGGg3THFw1T3d6d2qhFxUwEBsHw5PP88dLl6ORd1\nmsyha/eXHt//vHmsgiG1QSMLEQ/Q84ZENnZcVeb5xG8TyXwl04ZE4qnU4Bapw3wanyz3+Z9Lfq7l\nJFJfqViIeIALHReW+/zB/Iv4v/+r5TBSL6lYiHiAu26+i/DPzl7eHfxxOE2LJ9G6NcyaZbZAF3EV\n9SxEPMTyD5YzO202P5f8zEVeFzFp5CQGJgxk2zb461/NuozJk+HOO+Hii+1OK+5Kl86K1HM7d5qi\nsWqVKRh33aVV4FKW2zW4x48fT0BAAJ06dSr3eEZGBlFRUcTExNClSxfWrFlTeiw0NJTIyEhiYmKI\njY11VUSROqVDB7MeY+NGyMuDiAiYOtWs0xA5Xy4bWaxbtw5fX1/GjBnDjh07yhw/fvw4jRs3BmDH\njh0MHTqUffv2ARAWFsaWLVvw8/OrOLhGFiKVys2FGTPg7bfNavB77zUbF0r95nYji7i4OJpXMgb+\npVAAHDt2jJYtW551XIVA5PyEhcGLL8K2bfDzz2bkMXkyFBTYnUw8ka0ruJcuXcoDDzzAd999x6pV\nvy44cjgc9OnTBy8vL1JSUpg4cWK57582bVrp4/j4eOLj412cWMTzhITA7Nnw4IPmqqlOneCmm2DK\nFLj8crvTiatlZWWRlZV13udxaYM7Ly+PQYMGlTsNdaZ169bx+9//nq+++gqA7777jsDAQA4dOkRC\nQgKzZ88mLi7u7OCahhKplkOH4Omn4aWXYMgQeOAB09+Q+sHtpqHORVxcHMXFxXz//fcABAYGAuDv\n78/QoUPJycmxM55IneLvD088AXv3QnCwuenS6NGwe7fdycSd2VYs9u/fX1rdtm7dCkCLFi04ceIE\nP/30E2Ca4KtWrarwiioRqT4/P0hNhf37oW1buOYaMz1VxUSA1FMu61kkJSWRnZ3N4cOHCQkJITU1\nlaKiIgBSUlJIT09n/vz5+Pj44OvrS1paGgCFhYUMGzYMgOLiYkaNGkXfvn1dFVOk3mvaFB56yDS/\n586FhAS4+mrzXOfOdqcTd6FFeSJylhMnTD/jqacgJgYefhi6d7c7ldQUj+5ZiIj7aNQI7r7bTE8N\nGAA33AB9+8K6dXYnEztpZCEilTp1Cv71L9MUv+wyM9K47jpwOOxOJtWhvaFExKWKimDBAnj8cWjR\nAh55BBITVTQ8jYqFiNSKkhJ46y34y1/MlNXDD8OgQSoankLFQkRq1enT8M47MH26+fdDD8GwYXCB\nOqFuTcVCRGxhWfDee6ZoHD9udrq96Sbw8rI7mZRHxUJEbGVZ5l4a06fDf/5j9qIaNQp8fOxOJmdS\nsRARt2BZkJUFjz0G33xjNiwcNw4aNLA7mYDWWYiIm3A4oHdvWLsW5s+H9HSzUeHzz5ut0sUzqViI\niMv06gXvvw+LF0NmJoSHwzPPmFXi4llULETE5WJj4d13TSN8/Xpo3RpmzoT/7hkqHkDFQkRqTUyM\nmZZavRo+/9wUjenT4ehRu5NJVVQsRKTWdewICxeaUca+faan8fDD8N9b2ogbUrEQEdu0bWv2ndq0\nCQoL4Yor4P77zaW34l5ULETEduHh8PLL8NlncOwYtGsH99wDBw7YnUx+oWIhIm7jssvMJbY7dpj1\nGh07wh13wLff2p1MVCxExO0EBcHf/w67dkHjxhAdDbfeCrm5dierv1QsRMRtBQTAk0/Cnj3QqhV0\n7WpWg+/ZY3ey+kfFQkTcXsuWZkv0ffsgLAx69oSbb4Yvv7Q7Wf2hYiEiHqN5c3j0UXPL106dzB37\nbrgBtm2zO1ndp2IhIh7n4ovhgQfg66+hRw/o3x9+9zv49FO7k9VdKhYi4rEaN4Z77zUjjT59YOhQ\nUzg2brQ7Wd2jLcpFpM44eRJeew2eeMKs3Xj4Ybj2Wt3y9Uy6n4WIyH8VFcEbb8Djj8Mll5iikZCg\nogEqFiIiZRQXw6JF8Ne/mj7HQw/BwIH1u2ioWIiIVKCkBJYsMTvcenubojFkCFxQD7u2KhYiIlU4\nfRqWLTNF49QpUzRGjAAvL7uT1R4VCxERJ1kWrFxpisYPP8DUqZCUZEYddZ2KhYjIObIs+PBDUzQK\nCszajdGjoUEDu5O5TnV/d7psxm78+PEEBATQqVOnco9nZGQQFRVFTEwMXbp0Yc2aNaXHMjMzadeu\nHW3atGHmzJmuiigi9ZzDYdZnZGfDvHmQlgZt2sDcueYyXPmVy0YW69atw9fXlzFjxrBjx44yx48f\nP07jxo0B2LFjB0OHDmXfvn2UlJTQtm1bVq9eTVBQEN26dWPhwoW0b9/+7OAaWYiIC3z8sdmHats2\n+NOfYOJEaNTI7lQ1x+1GFnFxcTRv3rzC478UCoBjx47RsmVLAHJycoiIiCA0NBQfHx9GjhxJRkaG\nq2KKiJzlqqtg+XLIyICsLLO4b9Ysc1Om+szWds7SpUt54IEH+O6771i1ahUABQUFhISElL4mODiY\nTZs2lfv+adOmlT6Oj48nPj7elXFFpB7p0gXeeQe2bzfrNJ56CiZPhjvvNGs2PEVWVhZZWVnnfR5b\ni8WQIUMYMmQI69atY/To0ezevfuc3n9msRARcYXISLOwb9cuUzTCw83d+yZPNrvgurvf/iGdmppa\nrfO4xZKUuLg4iouLOXLkCMHBweTn55cey8/PJzg42MZ0IiLQvr3ZQmTjRnOb14gIePBBOHzY7mS1\nw7ZisX///tImy9atWwFo0aIFXbt2Ze/eveTl5XHq1CkWLVrE4MGD7YopInKWNm3MlVNbtsCRI3DF\nFXDffVBYaHcy13LZNFRSUhLZ2dkcPnyYkJAQUlNTKSoqAiAlJYX09HTmz5+Pj48Pvr6+pKWlmUDe\n3syZM4fExERKSkqYMGFCmSuhRETsFhoK//iHWQX+5JPQoQPccgv8+c9QFydDtChPRKQGfPeduWrq\n1VfhpptgyhS4/HK7U5XldpfOiojUJ4GB8Le/wVdfQbNm0LkzTJhg7hteF6hYiIjUIH9/c/OlvXvN\ndFSPHmYLkXO82NPtqFiIiLiAnx+kpppbvrZrB9dcY6anytnQwiOoWIiIuFDTpmZX26+/hq5dzR37\nhg6F/14E6jFULEREaoGvr9lr6uuvIT4eBg0yd+375BO7kzlHxUJEpBY1amRWf+/fD//zP2ZqKiEB\nPvrI7mSV06WzIiI2OnUK5s83TfGQEHj4YbjuOtfdJ1w3PxIR8WDFxbBggdl/qkULUzT69av5oqFi\nISJSB5SUwNtvm3tqNGxoVogPHlxzRUPFQkSkDjl9GpYuNbd8PX3aFI3hw+GC8+w0q1iIiNRBlmVu\nxjR9urkB09Sppinu5VW986lYiIjUYZYFH3xgisbBg2Z79FGjwMfn3M6jYiEiUg9YFmRnw2OPQV6e\n2bBw7Fi48ELn3q+NBEVE6gGHwyzqW7MGXn8dliwx99iYMwd+/tl1n6tiISLioXr2hMxMWLwYVq2C\n1q3h6afh+PGa/ywVCxERDxcbC8uWwYoV5rav4eEwYwb89NOvr1n+wXISkxOr/RnqWYiI1DFffmkW\n933wAUyaBG0jlzP1tcnsj9kP01CDW0REfrVnDzz+OLyZlUhx8irz5LTqFQtNQ4mI1FFXXAGvvQZd\nepw873OpWIiI1HFNGzp5XW0lVCxEROq4u26+i/DPws/rHN41lEVERNzUwISBAMxOm837vF+tc6jB\nLSJSj2gFt4iIuIyKhYiIVEnFQkREqqRiISIiVVKxsElWVpbdEarNk7OD8ttN+T2Ty4rF+PHjCQgI\noFOnTuUef/PNN4mKiiIyMpKePXuyffv20mOhoaFERkYSExNDbGysqyLaypN/4Dw5Oyi/3ZTfM7ms\nWCQnJ5OZmVnh8datW/PRRx+xfft2Hn74YW699dbSYw6Hg6ysLD777DNycnJcFVFERJzksmIRFxdH\n8+bNKzx+1VVX0bRpUwC6d+/Ov//977OOaw2FiIj7cOmivLy8PAYNGsSOHTsqfd2sWbPYs2cPL730\nEmBGHU2bNsXLy4uUlBQmTpxY5j0Oh8MlmUVE6rrq/Nq3fbuPtWvXMm/ePDZs2FD63IYNGwgMDOTQ\noUMkJCTQrl074uLiznqfRh4iIrXH1quhtm/fzsSJE1m2bNlZU1aBgYEA+Pv7M3ToUPUtRERsZlux\n+PbbbxmvxDVIAAAI20lEQVQ2bBhvvPEGERERpc+fOHGCn/57L8Djx4+zatWqCq+oEhGR2uGyaaik\npCSys7M5fPgwISEhpKamUlRUBEBKSgqPPfYYP/zwA7fffjsAPj4+5OTkUFhYyLBhwwAoLi5m1KhR\n9O3b11UxRUTEGZabW7lypdW2bVsrIiLCmjFjRpnjS5cutSIjI63o6Girc+fO1ocffmhDyopVlf8X\nOTk5lpeXl5Wenl6L6apWVf61a9daF198sRUdHW1FR0db06dPtyFl+Zz53q9du9aKjo62rrzySuva\na6+t3YBVqCr/U089Vfp979ixo+Xl5WX98MMPNiQtX1X5Dx06ZCUmJlpRUVHWlVdeab366qu1H7IS\nVeU/cuSINWTIECsyMtKKjY21vvjiCxtSli85Odlq1aqV1bFjxwpfM2nSJCsiIsKKjIy0tm7dWuU5\n3bpYFBcXW+Hh4VZubq516tQpKyoqytq5c+dZrzl27Fjp4+3bt1vh4eG1HbNCzuT/5XW9e/e2Bg4c\naC1evNiGpOVzJv/atWutQYMG2ZSwYs5k/+GHH6wOHTpY+fn5lmWZX17uwtmfnV+8++671vXXX1+L\nCSvnTP5HH33UmjJlimVZ5nvv5+dnFRUV2RG3DGfy33fffdZjjz1mWZZl7d69262+/x999JG1devW\nCovF8uXLrf79+1uWZVmffPKJ1b179yrP6dbbfeTk5BAREUFoaCg+Pj6MHDmSjIyMs17TuHHj0sfH\njh2jZcuWtR2zQs7kB5g9ezYjRozA39/fhpQVcza/5YZXpjmTfcGCBQwfPpzg4GAAj/zZ+cWCBQtI\nSkqqxYSVcyZ/YGAgP/74IwA//vgjLVq0wNvb9gs0Aefy79q1i969ewPQtm1b8vLyOHTokB1xy6hq\nnduyZcsYO3YsYNa5HT16lIMHD1Z6TrcuFgUFBYSEhJT+Ozg4mIKCgjKvW7p0Ke3bt6d///4899xz\ntRmxUs7kLygoICMjo7R3407rR5zJ73A42LhxI1FRUQwYMICdO3fWdsxyOZN97969HDlyhN69e9O1\na1def/312o5ZIWd/9sFcFPL+++8zfPjw2opXJWfyT5w4kS+//JJLL72UqKgonn322dqOWSFn8kdF\nRbFkyRLAFJdvvvmmzOJid1Xe11dVdrcuFs7+4hwyZAi7du3i3XffZfTo0S5O5Txn8t99993MmDGj\n9O5V7vRXujP5O3fuTH5+Ptu2bWPSpEkMGTKkFpJVzZnsRUVFbN26lRUrVvD+++8zffp09u7dWwvp\nqnYufzS8++679OrVi2bNmrkw0blxJv/jjz9OdHQ0Bw4c4PPPP+eOO+4ovRLSbs7knzJlCkePHiUm\nJoY5c+YQExODl5dXLaSrGb/9XVPV1+weY74KBAUFkZ+fX/rv/Pz80imD8sTFxVFcXMz3339PixYt\naiNipZzJv2XLFkaOHAnA4cOHWblyJT4+PgwePLhWs5bHmfxNmjQpfdy/f3/+8Ic/cOTIEfz8/Got\nZ3mcyR4SEkLLli1p2LAhDRs25JprrmHbtm20adOmtuOWcS4/+2lpaW41BQXO5d+4cSNTp04FIDw8\nnLCwML766iu6du1aq1nL4+zP/rx580r/HRYWRuvWrWst4/n47df373//m6CgoMrfVGMdFRcoKiqy\nWrdubeXm5lonT54st8m0b98+6/Tp05ZlWdaWLVus1q1b2xG1XM7kP9O4cePc6mooZ/IXFhaWfv83\nbdpkXX755TYkLcuZ7Lt27bKuv/56q7i42Dp+/LjVsWNH68svv7Qp8dmc/dk5evSo5efnZ504ccKG\nlBVzJv8999xjTZs2zbIs83MUFBRkff/993bELcOZ/EePHrVOnjxpWZZlvfTSS9bYsWNtSFqx3Nxc\npxrcH3/8sVMNbrceWXh7ezNnzhwSExMpKSlhwoQJtG/fnhdffBEw6zXS09OZP38+Pj4++Pr6kpaW\nZnPqXzmT3505k3/x4sXMnTsXb29vGjVq5Dbff2eyt2vXjn79+hEZGckFF1zAxIkT6dChg83JDWd/\ndpYuXUpiYiINGza0M24ZzuR/8MEHSU5OJioqitOnT/Pkk0/aPiL9hTP5d+7cybhx43A4HHTs2JFX\nXnnF5tS/qmqd24ABA1ixYgURERE0btyYV199tcpzunQjQRERqRvcusEtIiLuQcVCRESqpGIhIiJV\nUrEQEZEqqViI/Iavr2+131tYWMjIkSOJiIiga9euDBw48KyFfn//+99p2LBh6TYXv1i6dClRUVF0\n6NCByMjISrf2ELGDroYS+Y0mTZpUayWxZVlcffXVJCcnc+uttwLmBl8//vgjvXr1Asw+PAEBAQwb\nNoxx48YBsG3bNkaMGMHq1au5/PLLycvLIyEhgSVLluheLuI2NLIQccK4ceOYPHkyPXv2JDw8nPT0\n9DKvWbt2LQ0aNCgtFACRkZGlhWL//v0UFRXx4IMPsnDhwtLXzJo1i6lTp3L55ZcDEBoaygMPPMBT\nTz3l4q9KxHkqFiJOcDgcFBYWsmHDBt577z2mTJlS5jVffPEFXbp0qfAcaWlp3HjjjfTo0YN9+/aV\n7lC6c+fOMu/r0qULX375Zc1+ESLnQcVCxEm/bJLYvn37crdzrmojtrS0NG644YbSc7311ls1H1LE\nRVQsRJzUoEGD0sfltfquvPJKtmzZUu57d+zYwd69e+nTpw9hYWGkpaWVTkV16NCBTz/99KzXb9my\nhY4dO9ZgepHzo2IhUkOuu+46Tp48ycsvv1z63Pbt21m/fj0LFy4kNTWV3NxccnNzKSgo4MCBA3z7\n7bfcd999PPHEE3zzzTcA5OXl8cQTT3Dvvffa9aWIlOHWGwmK2OHEiRNn3Rjmj3/8I3D2NFNFU07v\nvPMOd999NzNnzuSiiy4iLCyMZ555hkWLFrFy5cqzXjt06FAWLVrEn/70J2bOnMmgQYMoKirCx8eH\np556isjISBd8dSLVo0tnRUSkSpqGEhGRKqlYiIhIlVQsRESkSioWIiJSJRULERGpkoqFiIhU6f8B\nCpcenvGDsSAAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x33a3310>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.2 page no : 65" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "import math\n", + "# Variables\n", + "CA = array([10,8,6,5,3,2,1]); # concentration\n", + "T = array([0,20,40,60,120,180,300]); # time\n", + "y = array([-0.1333,-0.1031,-0.0658,-0.0410,-0.0238,-0.0108,-0.0065]); # slope\n", + "\n", + "log_y = zeros(7)\n", + "log_CA = zeros(7)\n", + "\n", + "# Calculations\n", + "for i in range(7):\n", + " log_y[i] = log10(complex(y[i]));\n", + " log_CA[i] = log10(CA[i]);\n", + "\n", + "\n", + "# Results\n", + "plot(log_CA,log_y)\n", + "plot(log_CA,log_y,\"go\")\n", + "xlabel(\"log10 CA\")\n", + "ylabel(\"log10 (-dCA/dt)\")\n", + "show()\n", + "coeff1 = stats.linregress(log_CA,log_y);\n", + "n = coeff1[0];\n", + "k = -10**(coeff1[1]);\n", + "print \" After doing linear regression, the slope and intercept of the graph is %.0f, %.0f\"%(-coeff1[1],coeff1[0])\n", + "print \" The rate equation is therefore given by %.3f\"%(-k),\n", + "print \"CA**1.375 mol/litre.sec\"\n", + "print ('The answer slightly differs from those given in book as regress fn is used for \\\n", + " calculating slope and intercept')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n", + "-c:14: ComplexWarning: Casting complex values to real discards the imaginary part\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEMCAYAAAA4S+qsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVfW+//EX4lRZliaWSJmgMQgoUmo5QEaIOyqnUirN\nW9pwQ+12LKvzK+2WWh5vOXVKmwfAHFALtdDCnNAMjxZ5UgmKRLA0NTVRcP3+WEfUANkMe6+9N+/n\n48HjwGKx14d1cr/5Duv79TIMw0BERMQODawuQERE3IdCQ0RE7KbQEBERuyk0RETEbgoNERGxm0JD\nRETsZkloHDhwgJiYGDp27Mgtt9zCwYMHKzxvypQphISEEBoaSkJCAsXFxU6uVEREzmZJaEydOpWY\nmBh27txJ3759mTp1arlz8vLymDdvHllZWXz77beUlpaSkpJiQbUiInKaJaGxbNkyRowYAcCIESNY\nsmRJuXMuueQSGjVqxLFjxygpKeHYsWP4+vo6u1QRETlLQysuWlRUROvWrQFo3bo1RUVF5c5p0aIF\njz/+OFdddRUXXHABsbGx3HzzzeXO8/Lycni9IiKeqCYLgjispRETE0NoaGi5j2XLlp1znpeXV4Vv\n/Dk5Obz66qvk5eVRUFDAkSNH+Oijjyq8lmEY+jAMnnvuOctrcJUP3QvdC92L83/UlMNaGunp6ZV+\nr3Xr1hQWFnLFFVewd+9efHx8yp2zZcsWbrjhBlq2bAnAwIED2bBhA3fffbejShYRkSpYMqZx2223\n8d577wHw3nvvcccdd5Q7JzAwkMzMTP78808Mw2DVqlUEBwc7u1QRETmLJaExYcIE0tPT6dixI198\n8QUTJkwAoKCgAJvNBkB4eDjDhw8nMjKSsLAwAEaPHm1FuW4jKirK6hJchu7FGboXZ+he1J6XUZvO\nLRfg5eVVq/45EZH6qKbvnXoiXERE7KbQEBERuyk0RETEbgoNEZF6JC09jdiRsTX+eUueCBcREedL\nS09j7Jyx5HTJqfFrqKUhIlJPzEyaWavAAIWGiEi9UWzUfnsJhYaISD1x5ECTWr+GQkNExMNt2wax\nsVCwfQxXrPWv1WspNEREPFR+Ptx3nxkY8fHw0y4bbz45g9ifaz57SsuIiIh4mEOHYOpUmDsXHn4Y\nnngCLrnk3HO0jIiISD134gTMnAkdO8K+fWa31AsvlA+M2tBzGiIibs4wYMECeOopuPZaWLUKQkMd\ncy2FhoiIG1u7Fv72NygpMbuj+vZ17PUUGiIibujf/4YnnzS7oF58EYYNgwZOGHDQmIaIiBspLISH\nHoJevaB3bzM87r7bOYEBCg0REbdw5AhMmgQhIdCsGfzwAzz+ODRt6tw6FBoiIi6spATeeMOcEbVz\nJ3zzDfzjH9CihTX1aExDRMQFGQZ88ok5bnHllebnXbtaXZVCQ0TE5WzeDOPHw/79MH06xMWBl5fV\nVZkUGiIiTpKWnsbMpJkUG8U08WrCmIQx2GJsZd/PyYGnn4Z16+D552HECGjoYu/SLlaOiIhnqmgD\npJw55ufduth44QX48EMYNw7efhsuusiqSs9Pa0+JiDhB7MhYPm/3ebnjHTNi2f/tSoYOhWefBR8f\n59TjVmtPLViwgJCQELy9vcnKyqr0vJUrVxIYGEiHDh146aWXnFihiEjdqmwDpANHjrNhA8ye7bzA\nqA1LQiM0NJTU1FR69+5d6TmlpaU8+uijrFy5ku+//57k5GR27NjhxCpFROpOE6+KN0DqGtaUjh2d\nXEwtWDKmERgYWOU5mzdvJiAggHbt2gEwdOhQli5dSlBQULlzJ06cWPZ5VFQUUVFRdVSpiEjdGJMw\nhu+m5VBw45kxDf8sfxIfTXTK9TMyMsjIyKj167jsQPiePXvw8/Mr+7pt27Zs2rSpwnPPDg0REVdT\nUgKb1to4/i1EXjiLiy49TlPvpiQ+mnjO7ClH+usf1JMmTarR6zgsNGJiYigsLCx3fPLkycTHx1f5\n816uMilZRKQW9uyBhARo3Bi+/5eN1q2dExKO4rDQSE9Pr9XP+/r6kp+fX/Z1fn4+bdu2rW1ZIiJO\ns2IFjBwJiYkwYQJ4e1tdUe1Z3j1V2ZSvyMhIdu3aRV5eHm3atGH+/PkkJyc7uToRkeo7eRL+/ndI\nSoKPPzZXo/UUlsyeSk1Nxc/Pj8zMTGw2G3FxcQAUFBRgs5lNt4YNGzJ79mxiY2MJDg7mrrvuqnAQ\nXETElfz0kxkS334LW7d6VmCAHu4TEakzS5fC6NHmTnqPP+68PS5qoqbvnZZ3T4mIuLviYnM12iVL\nzI8ePayuyHEUGiIitZCTA3fdBX5+ZnfUZZdZXZFjuXDjSUTEtX38sdmqGDECFi/2/MAAtTRERKrt\nzz/hf/4H0tPNabWusDmSs6ilISJSDT/8AN27w4ED5tar9SkwQKEhImK3Dz+Enj3hkUcgJQWaN7e6\nIudT95SISBWOHjWf6t6wAVavhrAwqyuyjloaIiLnkZ0N119vLjq4ZUv9DgxQaIiIVMgw4K23ICoK\nxo+H99+HZs2srsp66p4SEfmLP/6Ahx6CbdtgzRoIDra6ItehloaIyFn+9S9zRtSFF8LmzQqMv1Jo\niIhgdke99hrExMDEiTBvnhkcci51T4lIvXfwIIwaBbt3w/r1uNWe3c6mloaI1Gtffw0REdC6NWzc\nqMCoikJDROolw4BXXgGbDaZNg9mzoWlTq6tyfeqeEpF658ABuO8+KCyEzExo397qityHWhoiUq+s\nXw9dukCHDrBunQKjutTSEJF64dQpePlls0vqzTchPt7qityTQkNEPN6+fTB8uPnQ3tdfw1VXWV2R\n+1L3lIi4vbT0NGJHxhJ1XxSxI2NJS08r+15Ghjk7KiLC/FyBUTtqaYiIW0tLT2PsnLHkdMkpO5Yz\nJ4dTpyAr08brr8O770JsrHU1ehIvwzAMq4uoDS8vL9z8VxCRWogdGcvn7T4vd7zFwljCLl/JRx9B\nmzYWFObiavreaUn31IIFCwgJCcHb25usrKwKz8nPzyc6OpqQkBA6derEzJkznVyliLiDYqO4wuMX\ntzzOqlUKjLpmSWiEhoaSmppK7969Kz2nUaNGvPLKK2RnZ5OZmcmcOXPYsWOHE6sUEXfQxKtJhccD\n/Zvi7e3kYuoBS0IjMDCQjlU8q3/FFVfQuXNnAJo1a0ZQUBAFBQXOKE9E3MiYhDH4b/U/55h/lj+J\nQxMtqsizucVAeF5eHlu3bqVbt24Vfn/ixIlln0dFRREVFeWcwkTEcrYYG3/8Af/15CyuDjjO1W2a\nkvhoIrYYm9WluZSMjAwyMjJq/ToOGwiPiYmhsLCw3PHJkycT/5+naqKjo5k+fToRERGVvs6RI0eI\niori73//O3fccUe572sgXKR+KymB/v0hNBSmT7e6GvdR0/dOh7U00tPTa/0aJ0+eZNCgQdxzzz0V\nBoaIyIQJ5v++9JK1ddQXlndPVZZ0hmFw//33ExwczLhx45xclYi4g48+gtRU8ynvhpa/m9UPlgyE\np6am4ufnR2ZmJjabjbi4OAAKCgqw2cx+yPXr1/Phhx/y5Zdf0qVLF7p06cLKlSutKFdEXNA338C4\ncbB0KbRoYXU19Yce7hMRt1NUBNddB6++CgMHWl2Ne3Krh/tERGrqxAkYNMjcD0OB4XxqaYiIW3no\nIdi71xzLaKA/e2vM5WZPiYjUtTfegK++MnfbU2BYQy0NEXEL69aZ3VLr1pm77kntaExDRDxWfj7c\neSe8954Cw2oKDRFxaX/+CXfcYU6v7dfP6mqkyu6pgwcPsnHjRvLy8vDy8qJdu3b06NGD5s2bO6vG\n81L3lIjnMgy4915zf++PPgIvL6sr8hw1fe+sNDTWrl3LtGnTyMvLo0uXLrRp0wbDMNi7dy9bt26l\nXbt2PPHEE/Ts2bPWxdeGQkPEc02fbobFunVw4YVWV+NZ6nz2VGpqKtOnT6dDJR2IO3fu5PXXX7c8\nNETEM33+OfzjH7BpkwLDlVTZPZWbm8s111xT5TGrqKUh4nl274Ybb4QFC+A8e7VJLThs9tTACh65\nHDRoULUvJCJijz/+gNtvh+eeU2C4okq7p3bs2MH333/PoUOHWLx4MYZh4OXlxeHDhykurnhPXhGR\n2jh1CoYPhxtugIcftroaqUilofHDDz/wySefcOjQIT755JOy4xdffDHz5s1zSnEiUr/87//Cvn2Q\nkqKZUq6qyjGNjRs30qNHD2fVU20a0xDxDEuWQGKiuTfGFVdYXY3nq/Mpt4mJZzZlP/vFvf4T/zNn\nzqxJnXVOoSHi/rKzISoKli83lzwXx6vzgfCuXbvStWtXiouLycrKomPHjnTo0IGtW7dy4sSJWhUr\nInLagQPmwPf06QoMd1Bl91S3bt1Yt24djRo1Asx9u3v27MmmTZucUmBV1NIQcV8lJWCzQXAwvPKK\n1dXULw6bcnvw4EEOHz5c9vUff/zBwYMHq30hEZG/euopKC2FadOsrkTsVeV+GhMmTCAiIoLo6GgM\nw2DNmjVMnDjRCaWJiCf76CNYvBg2b4aG2tnHbVTaPXXy5MmyLqm9e/eyadMmvLy8uP7667nyyiud\nWuT5qHtKxP188425Yu0XX0BoqNXV1E91PnsqMjISX19f4uLi6NevH+3atattjQ6h0BBxL0VF5oD3\nK6+YmyqJNeo8NMBcY2rlypV89tln/PLLL/Tq1Yu4uDj69OlDkyZNalVwXVFoiLiutPQ0ZibNpNgo\npolXEx4eMobpU2xERZkP8ol1HBIaZztx4gRr165l5cqVrFmzhlatWpGWllbtC9Y1hYaIa0pLT2Ps\nnLHkdMkpO3bJZ/5c6z2DzDU27fFtMYdv99q4cWP69u1LYmIigwcPZu7cudW+2GkLFiwgJCQEb29v\nsrKyzntuaWkpXbp0IT4+vsbXExHnm5k085zAADgcm8Ml7WcpMNyYXf/X7du3jzlz5tCzZ0+ioqIo\nKirC19e3xhcNDQ0lNTWV3nYsYTljxgyCg4PLnkQXEfdQbFS8sGmJ13EnVyJ1qdLQOHz4MO+++y6x\nsbH06NGDH3/8kdzcXH788UemT59eq4sGBgbSsWPHKs/75ZdfWL58OQ888IC6oETcTBOvisc9m3o3\ndXIlUpcqnR3dunVrYmJimDRpEt27dwdg8eLFTisM4LHHHmPatGnnPFxYkbOfG4mKiiIqKsqxhYnI\nef3wAxTvGUODrBxODTzTReWf5U/io4nn+UlxlIyMDDIyMmr9OpWGxpQpU0hOTuaRRx7hzjvvZMiQ\nIdV64ZiYGAoLC8sdnzx5sl3jE59++ik+Pj506dKlyl9UDxuKuIbdu81ZUcuXw2OP2fjvTvDW0lkc\nLz1OU++mJD6aiC3GZnWZ9dJf/6CeNGlSjV6nytlTOTk5pKSkkJKSwq5du5g0aRIDBgywq3upKtHR\n0UyfPp2IiIhy33v66af54IMPaNiwIcePH+fw4cMMGjSI999//9xfQLOnRCz344/wwguwbBmMGQNj\nx0Lz5lZXJefjsNlT/v7+PPPMM3z77bd8/fXXHDp0iLi4uBoVWZHKip48eTL5+fnk5uaSkpLCTTfd\nVC4wRMRaP/0Eo0fD9deDn5/Z0nj2WQWGJ6s0NHbt2sW6devOORYaGkr//v357LPPanXR1NRU/Pz8\nyMzMxGazlYVQQUEBNlvFTVfNnhJxHfn55nasERHQqhXs3AmTJsGll1pdmThapd1TNpuNKVOmEBYW\nds7x7du388wzz5yzBayV1D0l4jwFBTBlirnY4KhR8Le/maEh7qfOu6eKiorKBQZAWFgYubm51b6Q\niLivwkIYNw46dYLGjWHHDnjpJQVGfVRpaJxvz4zjx/Vwjkh9sG+f2ZoIDja/zs42d9hr3drausQ6\nlYZGZGRkhUuFzJs3j65duzq0KBGx1m+/wYQJEBQEx4/Dt9/Cq6+CC+2KIBapdEyjsLCQAQMG0Lhx\n47KQ+OabbyguLiY1NdVl9tTQmIZI3TlwwGxJvP463HknPP20OStKPI9DVrk1DIMvv/yS7777Di8v\nL0JCQrjppptqVWhdU2iI1N7Bg+b+FnPmwIAB8Mwz4KJb6EgdqfPQOHDgQNnnp085e9prixYtqn0x\nR1BoiNTc4cMwYwbMnAnx8fD3v0P79lZXJc5Q0/fOSpcRiYiIKHvRn3/+mcsuuwyA33//nauvvloz\nqETc2B9/wKxZZusiLg42bIAOHayuStxBpQPheXl55ObmEhMTw6effsr+/fvZv38/aWlpxMTEOLNG\nEakjR4/Cyy9DQAB89x2sXQvvv6/AEPtVufZUp06d+O6776o8ZhV1T4lU7dgx+Oc/Ydo06NPHXOoj\nJMTqqsRKdd49dVqbNm144YUXuOeeezAMg6SkpFptwCQizvPnnzB3rvkgXo8e8PnnUMEzuyJ2q3LB\nwuTkZPbt28eAAQMYOHAg+/btIzk52Rm1iUgNFRfD7Nlmt9MXX0BaGixapMCQ2quye+pse/fudZnn\nM05T95TIGSdOwNtvw4svQng4TJwIkZFWVyWuyGFLo5+tshVoRcRaJ0/Cm29Cx46wZAksXAiffqrA\nkLpX5ZjG2fQXvYhrKSmBDz4wd8vz94ekJLjhBqurEk9WrdAYNWqUo+oQkWooKYHkZHj+eWjbFt59\nF3r3troqqQ8qHdP4448/uPjii8/7w/ac42ga05D6pLQU5s83Nzzy8TFDIzra6qrEHdX5lNsBAwZw\n7bXXcvvttxMZGVm2bMj+/fvZsmULS5YsYdeuXaxatarmVYuIXU6dMscpJk40t1KdPRtuvhm0oaU4\n23lnT33xxRckJSWxfv16CgoKAPO5jZ49e3L33XcTFRXlrDorpZaGeLJTp8yB7eeegwsuMFsWsbEK\nC6k9h6xy6w4UGuKJDAOWLTNbFg0amN1RNpvCQuqOw54IFxHnMQxYvtxsWZSUmGFx220KC3EdCg0R\nF2AY8NlnZlgcPWqGxYABZitDxJUoNEQsZBiwerW5gODBg2Z31ODBCgtxXVWGRlFREb/88gteXl74\n+vrSWjvKi9SJjAwzLIqKzBbGXXeBt7fVVYmcX6V/z2zdupXu3bvTp08fnnzySZ544gn69OlD9+7d\nycrKqtVFFyxYQEhICN7e3ud9rYMHDzJ48GCCgoIIDg4mMzOzVtcVcQVr15rPVjzwAIwaBdnZkJCg\nwBD3UGlL47777mPu3Ll069btnOOZmZmMHDmSbdu21fiioaGhpKam8uCDD573vLFjx9K/f38WLlxI\nSUkJR48erfE1Ray2YYPZoti922xh3HMPNGpkdVUi1VNpaBw7dqxcYAB079691m/egYGBVZ5z6NAh\n1q5dy3vvvQdAw4YNad68ea2uK2KFTZvMsNixw9yDe8QIaNzY6qpEaqbS0IiLi6N///6MGDECPz8/\nDMMgPz+f999/n379+jm8sNzcXFq1alXWqunatSszZszgwgsvLHfuxIkTyz6PiopyiYcORb75xgyL\nbdvg6adh6VJo0sTqqqS+ysjIICMjo9avc96H+5YvX86yZcvYs2cPAL6+vtx2223079+/yheOiYmh\nsLCw3PHJkycTHx8PQHR0NNOnTyciIqLceVu2bKFHjx5s2LCB6667jnHjxnHJJZfw/PPPn/sL6OE+\nsUBaehozk2ZSbBTTxKsJYxLGYIsxtw7417/MsNiyBZ56yhy7aNrU4oJF/sIhD/f179/froCoSHp6\neo1+7rS2bdvStm1brrvuOgAGDx7M1KlTa/WaInUhLT2NsXPGktMlp+xYzpwc8vLgi5U2NmyAJ5+E\nlBRz6Q8RT1Kj2eCjR4+uswIqS7orrrgCPz8/du7cCcCqVasICQmps+uK1NTMpJnnBAZATpcc/mfy\nLG64AXJyYNw4BYZ4pkpD48CBAxV+7N+/n7S0tFpdNDU1FT8/PzIzM7HZbMTFxQFQUFBwzu6As2bN\n4u677yY8PJzt27fz9NNP1+q6InWh2Ciu8Pj1PY/z+ONQwbCbiMeodEyjQYMGXH311RX+0J49ezhx\n4oRDC7OXxjTE2WJHxvJ5u8/LH/85lpVvrbSgIpHqq/Mxjfbt27N69eoKg8PPz6/aFxLxFPfEjSFj\nag4nbj/TReWf5U/io4kWViXiHJWGxrhx4/j9998rDI3x48c7tCgRV5WbC88/Y2NwL9j/0yyOnzpO\nU++mJD6aWDZ7SsSTaT8NETtlZ0O/fubMqEcftboakdpx2H4aixYtwusvi/k3b96c0NBQfHx8qn1B\nEXe0aRPcfjtMnw533211NSLWqbKlYbPZ2LhxI9H/2b0+IyODiIgIcnNzefbZZxk+fLhTCq2MWhri\naKtWwbBh8M47cOutVlcjUjcc1tI4efIkO3bsKFsSvaioiHvvvZdNmzbRu3dvy0NDxJEWL4aHHoJF\ni6B3b6urEbFelQ/35efnn7OHho+PD/n5+bRs2ZLGWnVNPNjbb5tjF599psAQOa3KlkZ0dDQ2m407\n77wTwzBYtGgRUVFRHD16lEsvvdQZNYo43T/+AbNnmxsldexodTUirqPKMY1Tp06xePFi1q9fD8CN\nN97IoEGDyg2OW0VjGlKXDAOeeQZSUyE9Hdq2tboiEcdw2JhGgwYN6NmzJ03+s6Zzt27dXCYwROpS\naSn893+bS5qvXQuXX251RSKup8oxjY8//phu3bqxYMECFixYwPXXX8+CBQucUZuI05w4YW65unMn\nfPGFAkOkMlV2T4WFhbFq1aqyZzJ+/fVX+vbty/bt251SYFXUPSW1dfQoDBpk7nmRkqK9L6R+qOl7\nZ5UtDcMwaNWqVdnXLVu21Ju0eIzff4eYGLjySli4UIEhUpUqxzT69etHbGwsCQkJGIbB/Pnzy5Yy\nF3Fne/dCbCzcfLM5W6pBjXaXEalfquyeMgyDxYsXs27dOry8vOjVqxcDBgxwVn1VUveU1MSPP8It\nt8DIkeb+3ZrbIfVNTd87tWCh1DvffWcuPPjMM/Dww1ZXI2KNOp9y26xZs0qn1np5eXH48OFqX0zE\napmZ5sKDr75qriclItWjlobUG+np5gq1774L/ftbXY2ItRw2e0rEEyxcaAbG4sUKDJHaUGiIx5s3\nD8aMgc8/h549ra5GxL1VOeVWxJ29/DL885+wZg106GB1NSLuT6EhHskw4Kmn4JNPYN068PW1uiIR\nz6DQEI9TWmpOpd22Db76Clq2tLoiEc9hyZjGggULCAkJwdvbm6ysrErPmzJlCiEhIYSGhpKQkEBx\ncbETqxR3VFxsTqX98Udzm1YFhkjdsiQ0QkNDSU1Npfd5tkPLy8tj3rx5ZGVl8e2331JaWkpKSooT\nqxR3c+QIxMebLY20NLj4YqsrEvE8lnRPBQYGVnnOJZdcQqNGjTh27Bje3t4cO3YMX3VMSyUOHACb\nDYKD4Y03oKE6XkUcwmX/abVo0YLHH3+cq666igsuuIDY2FhuvvnmCs+dOHFi2edRUVFERUU5p0hx\nCQUF5sKDsbEwbZrWkRKpSEZGBhkZGbV+HYc9ER4TE0NhYWG545MnTyY+Ph4w9x+fPn06ERER5c7L\nyckhPj6etWvX0rx5c4YMGcLgwYO5++67z/0F9ER4vZaTYy48+MADMGGCAkPEXg7b7rWm0tPTa/Xz\nW7Zs4YYbbqDlf0YyBw4cyIYNG8qFhtRf27dDXBz8v/8HDz1kdTUi9YPlT4RXlnSBgYFkZmby559/\nYhgGq1atIjg42MnViavasMHcPOn//k+BIeJMloRGamoqfn5+ZGZmYrPZyjZ1KigowGazARAeHs7w\n4cOJjIwkLCwMgNGjR1tRrriYzz6DO+6A996Du+6yuhqR+kWr3Ipb+fhjSEw0Fx688UarqxFxX1rl\nVjze3Lnw2GPmEucKDBFruOyUW5HTDANeeskMja++An9/qysSqb8UGuLSDAOeeAJWrDAXHmzTxuqK\nROo3hYa4rJISePBByM42WxgtWlhdkYgoNMQlFRdDQgIcPmwuPNismdUViQhoIFxc0JEj5jpSXl7w\n6acKDBFXotAQl7J/P9x8M7RrB/PnQ5MmVlckImdTaIjL2LMHeveGPn3Mfb29va2uSET+SqEhLmH3\nbujVC4YPN6fXauFBEdek0BDLbdtmti6eegqefNLqakTkfDR7Siy1fj0MHAizZ8OQIVZXIyJVUWiI\nZVasgBEj4MMPzT0xRMT1qXtKLJGcDPfdB0uXKjBE3IlaGuJ0//wnvPii+dBeaKjV1YhIdSg0xGkM\nA6ZMgbfeMpcFad/e6opEpLoUGuIUhgF/+xt8/rm58OCVV1pdkYjUhEJDHK6kBEaPhn//22xhXHaZ\n1RWJSE0pNMShjh+HYcPg2DFz86SLLrK6IhGpDYWG1Jm09DRmJs2k2CimiVcTHhgwhtdn2Lj8cnMd\nqcaNra5QRGpLe4RLnUhLT2PsnLHkdMkpO9ZkmT9RbWeQttimdaREXIz2CBdLzUyaeU5gABTflgMt\nZykwRDyIQkPqRLFRXOHx46eOO7kSEXEkjWlIrezYYT7dvXl9E7im/Pebejd1flEi4jCWtDTGjx9P\nUFAQ4eHhDBw4kEOHDlV43sqVKwkMDKRDhw689NJLTq5SKvPzz/Dyy9Cli7lh0pEj8OJjY/DP8j/n\nPP8sfxKHJlpUpYg4giUD4enp6fTt25cGDRowYcIEAKZOnXrOOaWlpVx77bWsWrUKX19frrvuOpKT\nkwkKCjrnPA2EO8evv8KCBWarYscOc2XahARzD4zTYxZp6WnMSpnF8dLjNPVuSuLQRGwxNmsLF5EK\n1fS905LuqZiYmLLPu3XrxqJFi8qds3nzZgICAmjXrh0AQ4cOZenSpeVCQxzn8GFYsgSSkiAzE/r3\nN/e7uOWWiqfP2mJsCgkRD2f5mMbbb7/NsGHDyh3fs2cPfn5+ZV+3bduWTZs2VfgaEydOLPs8KiqK\nqKioui6z3jh+HJYvN4MiPR2ioszVaBct0oN5Iu4sIyODjIyMWr+Ow0IjJiaGwsLCcscnT55MfHw8\nAC+++CKNGzcmISGh3Hle1djv8+zQkOorKYHVq82up6VLISLCfIp77lxo0cLq6kSkLvz1D+pJkybV\n6HUcFhpuMDROAAAMiUlEQVTp6enn/f67777L8uXLWb16dYXf9/X1JT8/v+zr/Px82rZtW6c11men\nTsHGjWZQLFgA7dqZQTF5MrRpY3V1IuKqLOmeWrlyJdOmTWPNmjU0bVrxlMzIyEh27dpFXl4ebdq0\nYf78+SQnJzu5Us9iGLB9uxkUKSlmd9OwYeaWqwEBVlcnIu7AktlTHTp04MSJE7T4T99Hjx49eO21\n1ygoKGDUqFGkpaUBsGLFCsaNG0dpaSn3338/Tz31VLnX0uypquXkmEGRlGQuHDh0qDnzKTQUqtEL\nKCIepKbvnVp7ykMVFMDHH5tB8dNPcOedZquiRw8FhYgoNKwuwyUcOGDOckpOhq1b4Y47zKC46SZo\naPk8ORFxJQqNeuroUVi2zAyKNWvMZyiGDTOfqahkuEhERKFRn5w4AZ99ZgbF8uVml9OwYWbL4pJL\nrK5ORNyBQsPDlZaaW6UmJ8PixRAUZAbFkCHQqpXV1YmIu3GrZUTEPoYBW7aYQTF/Pvj4mEGRlQVX\nXWV1dSJSHyk0XNDp5cZPP5YybBisWmW2LkRErKTQcBE//2w+cJeUZK4oO3SoGRpdu2qKrIi4Do1p\nWGjfvjPLjf/73zBokNmqOHu5cRERR9BAuJs4fBhSU82gyMwEm80MisqWGxcRcQSFhgs7fhzS0syg\nOL3c+LBhEB+v5cZFxBoKDRdT2XLjgwbBZZdZXZ2I1HcKDRdQ0XLjCQnmuk9XXml1dSIiZ+g5DYuc\nXm48Kcmc/dSsmRkUGzaAv7/V1YmI1C2FRg3t3n3mWYrTy41/8omWGxcRz6buqWooKDCfzE5O1nLj\nIuLeNKbhIFpuXEQ8kUKjDmm5cRHxdAqNWjq93HhSEqxYoeXGRcSzKTRq4PRy40lJ5nLjwcFablxE\n6gdNubWTYcDXX59Zbrx1a3OK7NatWm5cRKQq9SY0duwwWxTJyeZMp4QE+OILCAy0ujIREffRwOoC\n6kLsyFjS0tPKHf/pJ3jpJejcGW6+2XyeIiUFdu6ESZMUGCIi1eURofF5u88ZO2csaelp7NsHc+ZA\nz57mXhQ//givvmruVzF9OkRGeu4zFRkZGVaX4DJ0L87QvThD96L2LAmN8ePHExQURHh4OAMHDuTQ\noUPlzsnPzyc6OpqQkBA6derEzJkzz/uaOV1yuO9vs+jY0VzCY8IE82G8N94wV5WtD/tT6B/EGboX\nZ+henKF7UXuWhMYtt9xCdnY227Zto2PHjkyZMqXcOY0aNeKVV14hOzubzMxM5syZw44dO877uj5t\nj7NnD3z0Edx6q/anEBGpa5aERkxMDA0amJfu1q0bv/zyS7lzrrjiCjp37gxAs2bNCAoKoqCg4Lyv\n63dFU+1PISLiQJY/pxEfH8+wYcNISEio9Jy8vDz69OlDdnY2zZo1O+d7Xp46QCEi4mAu9ZxGTEwM\nhYWF5Y5PnjyZ+Ph4AF588UUaN2583sA4cuQIgwcPZsaMGeUCA2r2S4uISM1Y1tJ49913mTdvHqtX\nr6ZpJQs6nTx5kltvvZW4uDjGjRvn5ApFROSvLAmNlStX8vjjj7NmzRouv/zyCs8xDIMRI0bQsmVL\nXnnlFSdXKCIiFbEkNDp06MCJEydo0aIFAD169OC1116joKCAUaNGkZaWxrp16+jduzdhYWFl4xZT\npkyhX79+zi5XREROM9zEihUrjGuvvdYICAgwpk6dWuE5iYmJRkBAgBEWFmZkZWU5uULnqepefPjh\nh0ZYWJgRGhpq3HDDDca2bdssqNI57PnvwjAMY/PmzYa3t7exaNEiJ1bnXPbciy+//NLo3LmzERIS\nYvTp08e5BTpRVffi119/NWJjY43w8HAjJCTEeOedd5xfpBOMHDnS8PHxMTp16lTpOdV933SL0Cgp\nKTH8/f2N3Nxc48SJE0Z4eLjx/fffn3NOWlqaERcXZxiGYWRmZhrdunWzolSHs+debNiwwTh48KBh\nGOY/nvp8L06fFx0dbdhsNmPhwoUWVOp49tyL33//3QgODjby8/MNwzDfOD2RPffiueeeMyZMmGAY\nhnkfWrRoYZw8edKKch3qq6++MrKysioNjZq8b7rFMiKbN28mICCAdu3a0ahRI4YOHcrSpUvPOWfZ\nsmWMGDECMJ/9OHjwIEVFRVaU61D23IsePXrQvHlzoPLnYDyBPfcCYNasWQwePJhWHrzevT33Iikp\niUGDBtG2bVuASscT3Z099+LKK6/k8OHDABw+fJiWLVvS0AO34uzVqxeXXXZZpd+vyfumW4TGnj17\n8PPzK/u6bdu27Nmzp8pzPPHN0p57cba33nqL/v37O6M0p7P3v4ulS5fy8MMPA577XI8992LXrl0c\nOHCA6OhoIiMj+eCDD5xdplPYcy9GjRpFdnY2bdq0ITw8nBkzZji7TJdQk/dNt4hWe/+hG38Z0/fE\nN4jq/E5ffvklb7/9NuvXr3dgRdax516MGzeOqVOnlm0489f/RjyFPffi5MmTZGVlsXr1ao4dO0aP\nHj3o3r07HTp0cEKFzmPPvZg8eTKdO3cmIyODnJwcYmJi2LZtGxdffLETKnQt1X3fdIvQ8PX1JT8/\nv+zr/Pz8siZ2Zef88ssv+Pr6Oq1GZ7HnXgBs376dUaNGsXLlyvM2T92ZPffim2++YejQoQD89ttv\nrFixgkaNGnHbbbc5tVZHs+de+Pn5cfnll3PBBRdwwQUX0Lt3b7Zt2+ZxoWHPvdiwYQPPPPMMAP7+\n/lxzzTX88MMPREZGOrVWq9XofbPORlwc6OTJk0b79u2N3Nxco7i4uMqB8I0bN3rs4K899+Knn34y\n/P39jY0bN1pUpXPYcy/Odt9993ns7Cl77sWOHTuMvn37GiUlJcbRo0eNTp06GdnZ2RZV7Dj23IvH\nHnvMmDhxomEYhlFYWGj4+voa+/fvt6Jch8vNzbVrINze9023aGk0bNiQ2bNnExsbS2lpKffffz9B\nQUG88cYbADz44IP079+f5cuXExAQwEUXXcQ777xjcdWOYc+9eP755/n999/L+vEbNWrE5s2brSzb\nIey5F/WFPfciMDCQfv36ERYWRoMGDRg1ahTBwcEWV1737LkXTz/9NCNHjiQ8PJxTp07x8ssvlz03\n5kmGDRvGmjVr+O233/Dz82PSpEmcPHkSqPn7puULFoqIiPtwi9lTIiLiGhQaIiJiN4WGiIjYTaEh\nIiJ2U2iIQIUbfNlr9uzZBAQE0KBBAw4cOHDO98aMGUOHDh0IDw9n69atFf78kSNHePDBBwkICCAy\nMpLo6OhzZrstWbKEBg0a8MMPP9S4RpG6otAQoXarB/Ts2ZPVq1dz9dVXn3N8+fLl7N69m127djF3\n7tyyKdB/9cADD3D55Zeze/dutmzZwjvvvMNvv/1W9v3k5GRuvfVWkpOTa1yjSF1RaIicxTAMxo8f\nT2hoKGFhYXz88ccAnDp1ikceeYSgoCBuueUWbDYbixYtAqBz587lAgPsWwwuJyeHzZs388ILL5Qd\na9euXdl6YUeOHGHTpk3Mnj2b+fPnO+R3FqkOt3i4T8RZFi9ezLZt29i+fTu//vor1113Hb1792bd\nunX89NNP7Nixg6KiIoKCgrj//vvP+1qVLQbXunXrsmPZ2dl07ty50pbO0qVL6devH1dddRWtWrUi\nKyuLiIiIuvllRWpALQ2Rs6xbt46EhAS8vLzw8fGhT58+fP3116xfv54777wTgNatWxMdHW3X6/31\n2dm/hkNV3WLJyckMGTIEgCFDhqiLSiynlobIWU6vhluR6i6eYM9icMHBwWzbto1Tp07RoMG5f8Md\nOHCAL7/8ku+++w4vLy9KS0vx8vJi2rRp1apDpC6ppSFyll69ejF//nxOnTrFr7/+yldffUW3bt24\n8cYbWbRoEYZhUFRUREZGRoU/f3aw3Hbbbbz//vsAZGZmcumll57TNQXmCquRkZE899xzZcfy8vJY\nvnw5CxcuZPjw4eTl5ZGbm8vPP//MNddcw9q1a+v+Fxexk0JDhDPdRAMGDCAsLIzw8HD69u3LtGnT\n8PHxKdvxLjg4mHvvvZeIiIiy3RFnzpyJn58fe/bsISwsjNGjRwPQv39/2rdvT0BAAA8++CCvvfZa\nhdd+8803KSoqIiAggNDQUP7rv/4LHx8fUlJSGDBgwDnnDho0iJSUFAfeCZHz04KFInY6evQoF110\nEfv376dbt25s2LABHx8fq8sScSqNaYjY6dZbb+XgwYOcOHGCZ599VoEh9ZJaGiIiYjeNaYiIiN0U\nGiIiYjeFhoiI2E2hISIidlNoiIiI3RQaIiJit/8Pra1C6ryaTBgAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x365aa90>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " After doing linear regression, the slope and intercept of the graph is 2, 1\n", + " The rate equation is therefore given by 0.005 CA**1.375 mol/litre.sec\n", + "The answer slightly differs from those given in book as regress fn is used for calculating slope and intercept\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.4 page no : 73" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables\n", + "k1 = 2.3 # temperatures\n", + "k2 = 2.3\n", + "T1 = 400. # K\n", + "T2 = 500. # K\n", + "\n", + "# Calculations\n", + "R = 82.06*10**-6;\n", + "R1 = 8.314\n", + "E = (math.log(k2/k1)*R)/(1./T1-1./T2)\n", + "\n", + "# Results\n", + "print \"using pressure units is %.0f EJ/mol\"%(E)\n", + "\n", + "#pA = CA*RT\n", + "#-rA = 2.3(RT)**2*CA**2\n", + "k1 = 2.3*(R*T1)**2\n", + "k2 = 2.3*(R*T2)**2\n", + "E = (math.log(k2/k1)*R1)/(1./T1-1./T2)\n", + "print \"using concentration units is %.f J/mol\"%(E)\n", + "\n", + "# Answers might be different because of Rounding error" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "using pressure units is 0 EJ/mol\n", + "using concentration units is 7421 J/mol\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch30.ipynb b/Chemical_Reaction_Engineering/ch30.ipynb new file mode 100755 index 00000000..2dd771a6 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch30.ipynb @@ -0,0 +1,90 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 30 :\n", + "\n", + "Product-Limiting Microbial \n", + "\n", + "Fermentation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 30.1 pageno : 651" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables\n", + "k = math.sqrt(3) #hr**-1\n", + "n = 1.\n", + "V = 30. #m3\n", + "CR = 0.12 #kgalc/kgsol\n", + "density = 1000. #kg/m3\n", + "\n", + "# Calculations and Results\n", + "CR = CR*density;\n", + "CR_opt = CR/2;\n", + "alcohol_per = CR_opt*100/density #PErcentage of alcohol\n", + "\n", + "print \" The Percentage of alchol in cocktail is %f\"%(alcohol_per)\n", + "\n", + "kt = 1.\n", + "t = kt/k;\n", + "t_opt = 2*t;\n", + "v_opt = V/t_opt;\n", + "\n", + "print \" The Optimum feed rate is %f\"%(v_opt),\n", + "print \" m3/hr\"\n", + "\n", + "#The production rate of alcohol \n", + "FR = v_opt*CR_opt;\n", + "print \" The production rate of alcohol is %f \"%(FR),\n", + "print \" kgalc/hr\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The Percentage of alchol in cocktail is 6.000000\n", + " The Optimum feed rate is 25.980762 m3/hr\n", + " The production rate of alcohol is 1558.845727 kgalc/hr\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch4.ipynb b/Chemical_Reaction_Engineering/ch4.ipynb new file mode 100755 index 00000000..cd660b67 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch4.ipynb @@ -0,0 +1,81 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4 : Introduction to Reactor Design" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.1 page no : 88" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "a = 1.\n", + "b = 3.\n", + "c = 6.\n", + "#Initial concentrations\n", + "CAo = 100. # feed\n", + "CBo = 200. # feed\n", + "Cio = 100. # feed\n", + "#Final concentrations\n", + "CA = 40. # reacter exit\n", + "\n", + "# Calculations\n", + "# Find CB,XA,XB\n", + "ea = (6.-4.)/4;\n", + "XA = (CAo-CA)/(CAo+ea*CA);\n", + "eb = (ea*CBo)/(b*CAo);\n", + "XB = b*CAo*XA/CBo;\n", + "CB = CBo*(1-XB)/(1+eb*XB);\n", + "\n", + "# Results\n", + "print \"The final concentration of BCB is %.f\"%(CB)\n", + "print \" XA and XB are %.2f ,%.2f\"%(XA,XB)\n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The final concentration of BCB is 40\n", + " XA and XB are 0.50 ,0.75\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch5.ipynb b/Chemical_Reaction_Engineering/ch5.ipynb new file mode 100755 index 00000000..24a0856c --- /dev/null +++ b/Chemical_Reaction_Engineering/ch5.ipynb @@ -0,0 +1,324 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5 : Ideal Reactors for a Single Reaction" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.1 page no : 96" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "#Concentrations in mol/litre\n", + "CAo = 0.1 # liquid\n", + "CBo = 0.01 # liquid\n", + "Cco = 0. # liquid\n", + "CAf = 0.02 # outlet stream\n", + "CBf = 0.03 # outlet stream\n", + "Ccf = 0.04; # outlet stream\n", + "#Volume in litre\n", + "V = 1.;\n", + "#Volumetric flow rate(l/min)\n", + "v = 1.;\n", + "CA = CAf;CB = CBf;Cc = Ccf;\n", + "\n", + "# Calculations\n", + "#Rate of reaction(mol/litre.min)\n", + "rA = (CAo-CA)/(V/v);\n", + "rB = (CBo-CB)/(V/v);\n", + "rc = (Cco-Cc)/(V/v);\n", + "\n", + "# Results\n", + "print \"rate of reaction of A is %.2f mol/litre.min\"%(rA)\n", + "print \"rate of reaction of B is %.2f mol/litre.min\"%(rB)\n", + "print \"rate of reaction of C is %.2f mol/litre.min\"%(rc)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rate of reaction of A is 0.08 mol/litre.min\n", + "rate of reaction of B is -0.02 mol/litre.min\n", + "rate of reaction of C is -0.04 mol/litre.min\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.2 page no : 97" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "%pylab inline\n", + "\n", + "import math \n", + "from numpy import *\n", + "from matplotlib.pyplot import *\n", + "from scipy import stats\n", + "\n", + "# Variables\n", + "vo = array([10,3,1.2,0.5]) #Volumetric flow rates(litre/hr)\n", + "CA = array([85.7,66.7,50,33.4]) #Concentrations (millimol/litre)\n", + "CAo = 100.;\n", + "V = 0.1; #Volume(litre)\n", + "e = (1.-2.)/2; #Expansion factor is\n", + "#Initialization\n", + "XA = zeros(4);\n", + "rA = zeros(4);\n", + "m = zeros(4);\n", + "n = zeros(4);\n", + "\n", + "# Calculations\n", + "#Relation between concentration and conversion\n", + "for i in range(4):\n", + " XA[i] = (1-CA[i]/CAo)/(1+e*CA[i]/CAo);\n", + " rA[i] = vo[i]*CAo*XA[i]/V;\n", + " m[i] = math.log10(CA[i]);\n", + " n[i] = math.log10(rA[i]);\n", + "\n", + "# Results\n", + "#For nth order plot between n & m should give a straight line\n", + "plot(m,n)\n", + "xlabel(\"log CA\")\n", + "ylabel(\"log (-rA)\")\n", + "show()\n", + "coefs = stats.linregress(m,n);\n", + "print coefs\n", + "print \"Intercept of the graph is %.2f\"%(coefs[1])\n", + "print \"Slope of the graph is %.2f\"%(coefs[0])\n", + "k = 10**coefs[1]\n", + "n = coefs[0]\n", + "print \" Taking n = 2, rate of equation is %.2f millimol/litre.hr\"%(k),\n", + "print \"CA**2 \"\n", + "print ('The sol slightly differ from that given in book because regress fn is used to calculate the slope')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['rc', 'draw_if_interactive', 'e']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEMCAYAAAAxoErWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8z/X///HbZJ+YabII8SnRjx3sgCw1vCVNVqIhiVTS\n2sfnU/r28Skd1+Ern0/6JB3w1ekTH8cmp1KhvWMIi/BxKnKYw7DYmEM7vF+/P17Zp2VvZnu/3q/3\ne7tfL5cul9nr5b27V2/vh+c5wDAMAxERkTLUsDuAiIj4LhUJERFxS0VCRETcUpEQERG3VCRERMQt\nFQkREXHLsiJx5swZ4uLiiImJITw8nFGjRrm9d+3atdSsWZM5c+ZYFUdERCqgplUvXKtWLdLT0wkK\nCqKoqIj4+HgyMjKIj48vdV9xcTFPPvkkPXr0QEs2RER8i6XdTUFBQQAUFBRQXFxM/fr1z7nnrbfe\nom/fvjRo0MDKKCIiUgGWtSQAXC4Xbdu2ZefOnaSkpBAeHl7q+v79+5k3bx5ff/01a9euJSAg4JzX\nKOt7IiJyYZ7onbG0JVGjRg2+//579u3bx7Jly3A6naWujxgxgjFjxhAQEIBhGG7/QGev+cp/L7zw\ngu0ZlKlq5VImZSrrP5fL4PXXDRo2NFi8+OJ+r6dY2pI4KyQkhMTERDIzM3E4HCXf/+677xgwYAAA\nOTk5LFq0iMDAQHr16uWNWCIiPisvDx54ALKyYPVquOYae3JY1pLIyckhNzcXgNOnT7N48WJiY2NL\n3fPTTz+xa9cudu3aRd++fZkwYYIKhIhUexs2QPv20LgxZGTYVyDAwpbEwYMHGTJkCC6XC5fLxeDB\ng+nWrRuTJk0CIDk52aofbbnftoZ8hTKVny/mUqbyqQ6ZPvoIRo6EN9+EgQM9+tIVEmB4svPKAmfH\nK0REqrLTp+Evf4EVKyAtDX43z+eieeqzUyuuRURstmMHdOwIJ0/C2rWVLxCepCIhImKjTz+FG2+E\nYcNg2jQIDrY7UWlemd0kIiKlFRbC00/D7NmwcCF06GB3orKpSIiIeNmBA3D33VC3Lnz3HYSG2p3I\nPXU3iYh40ddfm9NbExLMFoQvFwhQS0JExCtcLhgzBt56C6ZMgVtusTtR+ahIiIhY7OhRGDzYXEWd\nmQlXXWV3ovJTd5OIiIUyM6FdO2jdGtLT/atAgIqEiIglDAMmTICePeH1183/AgPtTnXx1N0kIuJh\n+fnwyCOwaZO5gvq66+xOVHFqSYiIeNDWrRAXZ7YaVq3y7wIBKhIiIh4zYwZ07gxPPAEffgi/Hs7p\n19TdJCJSSb/8YhaGL76AxYshJsbuRJ6jIiEiUgl79kD//tCkiTmTqV49uxN5lrqbREQqaNEic8+l\n/v1hzpyqVyBALQkRkYtWXAypqea4wyefQKdOdieyjoqEiMhFOHzYPDHO5TI357vySrsTWUvdTSIi\n5bRihbl6+oYbzAHqql4gQC0JEZELMgwYN87coO+DDyAx0e5E3mNZS+LMmTPExcURExNDeHg4o0aN\nOueeefPmER0dTWxsLO3atePrr7+2Ko6ISIXk5UHfvuapcatXV68CARBgeOKkbDdOnTpFUFAQRUVF\nxMfHM3bsWOLj40uunzx5kjp16gCwadMm+vTpw44dO0oH9NBh3iIiF2vDBrNAdO8Ob7wBl15qd6Ly\n89Rnp6VjEkG/LjcsKCiguLiY+vXrl7p+tkAA5Ofnc8UVV1gZR0Sk3D76yDzzITUV3n3XvwqEJ1k6\nJuFyuWjbti07d+4kJSWF8PDwc+6ZO3cuo0aN4uDBg3z11Vdlvk5qamrJ1w6HA4fDYVFiEanuTp+G\nv/zFHKT+5hso42PLJzmdTpxOp8df19LuprPy8vJISEhgzJgxbj/gly9fzkMPPcT27dtLB1R3k4h4\nyY4dZvdSWBhMngzBwXYnqji/6G46KyQkhMTERDIzM93e06lTJ4qKivj555+9EUlEpJRPP4Ubb4Rh\nw8xBan8uEJ5kWZHIyckhNzcXgNOnT7N48WJiY2NL3bNz586SSrdu3ToAQn39VHARqVIKC2HkSHj8\ncVi4EIYPh4AAu1P5DsvGJA4ePMiQIUNwuVy4XC4GDx5Mt27dmDRpEgDJycmkpaXx8ccfExgYSHBw\nMDNmzLAqjojIOQ4cgLvvhrp1zdXT+jfqubwyJlEZGpMQESukp8O998Kf/gRPPw01qtj+E5767NSK\naxGpVlwuc+X0W2/BlCnmNFdxT0VCRKqNo0fhvvvg2DFYuxaaNrU7ke+rYg0sEZGyZWaam/O1agVO\npwpEealIiEiVZhgwYQLcdhuMHQuvvw6BgXan8h/qbhKRKis/Hx55BDZtgpUr4brr7E7kf9SSEJEq\naetWiIszWw2rVqlAVJSKhIhUOTNmQOfO8MQT5hGjv+41KhWg7iYRqTJ++cUsDF98YZ4cFxNjdyL/\npyIhIlXCnj3Qvz80aWLOZKpXz+5EVYO6m0TE733xhTn+0K8fzJmjAuFJakmIiN8qLoYXXzTPnZ49\nGzp1sjtR1aMiISJ+6fBhGDjQ3GYjMxMaNbI7UdWk7iYR8TsrVpirp+Pi4KuvVCCspJaEiPgNw4Bx\n48wN+j74ABIT7U5U9alIiIhfyMuDBx+EvXth9Wq45hq7E1UP6m4SEZ+3YQO0bw9XXgkZGSoQ3qQi\nISI+7aOPzDMfUlPh3Xfh0kvtTlS9qLtJRHzS6dPwl7+YLQenEyIi7E5UPVnWkjhz5gxxcXHExMQQ\nHh7OqFGjzrnn3//+N9HR0URFRXHTTTexceNGq+KIiB/ZuRNuvNHcxXXtWhUIO1nWkqhVqxbp6ekE\nBQVRVFREfHw8GRkZxMfHl9xz7bXXsmzZMkJCQvjiiy94+OGH+fbbb62KJCJ+YO5cePhheP55GD4c\nAgLsTlS9WdrdFPTr1osFBQUUFxdTv379Utc7duxY8nVcXBz79u2zMo6I+LDCQnj6aZg1CxYsMNdA\niP0sLRIul4u2bduyc+dOUlJSCA8Pd3vv+++/T8+ePcu8lpqaWvK1w+HA4XB4OKmI2OnAARgwAOrU\ngXXrIDTU7kT+x+l04nQ6Pf66AYZhGB5/1d/Jy8sjISGBMWPGlPkBn56ezvDhw1mxYgWXX3556YAB\nAXghoojYJD0d7r0XUlLgmWeghuZceoSnPju98r8jJCSExMREMjMzz7m2ceNGhg0bxvz5888pECJS\ndblcMHq0uf/Sxx/Dc8+pQPgiy/6X5OTkkJubC8Dp06dZvHgxsbGxpe7Zu3cvd911F1OnTqVly5ZW\nRRERH3P0KPTqBZ99Zs5euuUWuxOJO5aNSRw8eJAhQ4bgcrlwuVwMHjyYbt26MWnSJACSk5N56aWX\nOHbsGCkpKQAEBgayZs0aqyKJiA/IzDTPfbjrLnMPpsBAuxPJ+XhlTKIyNCYhUjUYBkycaE5tnTgR\nkpLsTlS1eeqzUyuuRcRy+fnwyCOwcSOsXAnXXWd3IikvDROJiKW2bTPXPNSsCd9+qwLhb1QkRMQy\nn30GnTvDiBHw4Yfw6/pa8SPqbhIRjzMM+Mc/YPx4mDcPfrO5gvgZFQkR8ahTp+Chh+CHH8zDgZo2\ntTuRVIa6m0TEY/btM7uXAgJg+XIViKpARUJEPGLlSnOAun9/mDoVate2O5F4grqbRKTSPvgAnnrK\nHJxOTLQ7jXiSioSIVFhRETzxBCxaBMuWQevWdicST1OREJEKOXoU7r4bLrnEHKDW/pxVk8YkROSi\nbd4MHTpAdDQsXKgCUZWpJSEiF2X+fBg6FF5/He67z+40YjUVCREpF8Mwz3+YMMFsPeh40epBRUJE\nLujkSXjwQdi9G9asgSZN7E4k3qIxCRE5r717IT4eLr0UvvlGBaK6UZEQEbeWLze7lQYNgn/9C2rV\nsjuReJu6m0SkTJMnwzPPmOdP9+hhdxqxi4qEiJRSWAiPPw5LlkBGBvy//2d3IrGTioSIlMjJMfde\nql3bXCAXEmJ3IrGbZWMSZ86cIS4ujpiYGMLDwxk1atQ592zbto2OHTtSq1YtXn/9dauiiEg5bNpk\nLpDr0MFcC6ECIWBhS6JWrVqkp6cTFBREUVER8fHxZGRkEB8fX3JPaGgob731FnPnzrUqhoiUw6ef\nwsMPw7hxcO+9dqcRX2Lp7KagX88qLCgooLi4mPr165e63qBBA9q3b09gYKCVMUTEDZcLXnoJHn3U\n3KRPBUJ+z9IxCZfLRdu2bdm5cycpKSmEh4dX6HVSU1NLvnY4HDgcDs8EFKnG8vPh/vth/35zgVzj\nxnYnkspwOp04nU6Pv26AYRiGx1/1d/Ly8khISGDMmDFlfsC/+OKLBAcH88QTT5wbMCAAL0QUqVZ2\n74Y774S2bWHiRHOhnFQtnvrs9MpiupCQEBITE8nMzPTGjxOR8/jmG+jYER54wDwsSAVCzseyIpGT\nk0Nubi4Ap0+fZvHixcTGxpZ5r1oKIt4xYYI5xfXjj2HECPMsapHzsay7adOmTQwZMgSXy4XL5WLw\n4MGMHDmSSZMmAZCcnEx2djbXX389x48fp0aNGtStW5ctW7YQHBz834DqbhKptIICeOwxsxUxfz60\nbGl3IrGapz47vTImURkqEiKVc+QI9O1rrnuYOhUuu8zuROINfjUmISL22LABrr/e3MV17lwVCLl4\n2pZDpIr65BNISYG33oIBA+xOI/5KRUKkinG5IDXV3Nr7yy/Naa4iFaUiIVKFnDhhnjt95Ii5QO7K\nK+1OJP7uvGMS69atY+TIkcTFxXHllVfSqFEj4uLiGDlyJOvXr/dWRhEph59+ghtvhNBQWLpUBUI8\nw+3spp49e3L55ZfTq1cvOnToQOPGjTEMg4MHD7JmzRoWLFhAbm4un332mbUBNbtJ5IK+/hoGDoRn\nn4Xhw7X+QbwwBfbQoUNceYF/ihw+fJiGDRtWOsT5qEiIuGcY8M478PLLMH063Hyz3YnEV1g+BdZd\ngVi+fDnDhw8HsLxAiIh7BQXm9t4TJ8KqVSoQYo1yDVyvW7eO6dOnM2vWLJo3b05SUpLVuUTkPA4d\ngqQkuOIKs0DUrWt3Iqmq3BaJ7du3M336dGbOnEmDBg3o168fhmFYshWtiJTfunXQpw8MGWJOda2h\nJbFiIbdjEjVq1OD222/n7bff5o9//CMAzZs3Z9euXd4NqDEJkRIzZ8Kf/wzvvgv9+tmdRnyZ5WMS\nc+bMoXbt2nTu3JlHHnmEpUuX6sNaxCYuFzzzDDz5JCxerAIh3nPBDf7y8/OZN28e06dPJz09nfvu\nu48+ffpw6623eiegWhJSzR0/DoMGQW6uudWG5otIediyC+zRo0f55JNPmDFjBl9//XWlf3h5qEhI\ndbZjh3mCXKdOMH48/OEPdicSf+GVIlFUVERERATbt2+v9A+qKBUJqa6WLIF77zUHp1NS7E4j/sYr\nW4XXrFmT1q1bs2fPnkr/IBEpH8OAN980u5hmzVKBEHtdcJ3E0aNHiYiIoEOHDtSpUwcwK9T8+fMt\nDydS3fzyi1kUMjPN9Q/Nm9udSKq7CxaJl19+ueTrs82XAG0MI+Jx2dlw113QuDGsXAm/OcVXxDYX\nNXC9YMEC7rjjDivznENjElIdZGaaC+Qeegiee04L5KTybDm+9Pnnny/3vWfOnCEuLo6YmBjCw8MZ\nNWpUmfc9+uijXHfddURHR2v7camWpk2D224zxyFeeEEFQnyLZYcO1apVi/T0dIKCgigqKiI+Pp6M\njAzi4+NL7vn888/ZsWMHP/74I6tXryYlJYVvv/3WqkgiPqW4GJ5+GmbPNs9/iIqyO5HIuS6qSEyc\nOPGiXjwoKAiAgoICiouLqV+/fqnr8+fPZ8iQIQDExcWRm5tbri3KRfxdXp55/sOpU+YJcldcYXci\nkbK5LRJOpxOHw1Hqe3FxcaV+nZ6eTteuXd2+uMvlom3btuzcuZOUlBTCw8NLXd+/fz/NmjUr+XXT\npk3Zt2/fOUUiNTW15GuHw3FOLhF/8sMP5gK5m2+GceMgMNDuRFIVOJ1OSzZgdVskFi5cyN/+9jdu\nueUW2rdvX+pkuszMTJYsWULXrl3PWyRq1KjB999/T15eHgkJCWUWnt8PrJQ1c+q3RULEn335JQwe\nDK+8Yp4FIeIpv/8H9IsvvuiR13VbJMaOHcuJEyeYN28eixcvLllQd/XVVxMfH88zzzxDcDnn6IWE\nhJCYmEhmZmapP8RVV11FVlZWya/37dvHVVddVcE/iojvMgx44w147TVISzO32RDxB+cdk6hbty6D\nBg1i0KBBF/3COTk51KxZk3r16nH69GkWL17MCy+8UOqeXr168fbbbzNgwAC+/fZb6tWrp/EIqXLO\nnIHkZNi4Eb79Fq6+2u5EIuVn2eymgwcPMmTIEFwuFy6Xi8GDB9OtWzcmTZoEQHJyMj179uTzzz+n\nZcuW1KlThw8//NCqOCK2OHDAXP9w9dWQkQG/blog4jcuajGdHbSYTvzVmjXmCuqUFHOqqzYqEG/y\n1GenZS0JkepsyhT4n/+B994zZzKJ+KsLFom0tLRzZhyFhITQpk0bGur0E5FSiovN0+M+/RTS0yEy\n0u5EIpVzwSLxwQcfsGrVqpKprk6nk7Zt27Jr1y6ef/557rvvPstDiviDY8fgnnugsNDsagoNtTuR\nSOVdcJeYwsJCtm7dSlpaGmlpaWzZsoWAgABWr17N3//+d29kFPF527ZBXBy0amWuhVCBkKrigkUi\nKyur1LTUhg0bkpWVRWhoKH/QWYoifP45dO4MTz1lbtJXUyN9UoVc8O3ctWtXEhMT6d+/P4ZhkJaW\nhsPh4OTJk9SrV88bGUV8kmGYi+PGjTPHIG66ye5EIp53wSmwLpeLOXPmsGLFCgBuuukmkpKSvHbw\nkKbAii86fdo8+2HbNpg7F36zBZmIT/DaFNgaNWoQHx/PpZdeCpib/OlkOqnO9u0zF8i1bAnLl8Ov\nmx2LVEkXHJOYNWsWcXFxzJ49m9mzZ9OhQwdmz57tjWwiPmfVKnOAOinJPCxIBUKqugt2N0VFRbFk\nyZKSNRFHjhyhW7dubNy40TsB1d0kPuLDD801EB98ALffbncakfPzWneTYRg0aNCg5NehoaH60JZq\npagIRo6EhQvhm28gLMzuRCLec8Ei0aNHDxISEhg4cCCGYTBz5kxuu+02b2QTsd3RozBggPn1mjVw\n+eX25hHxtgt2NxmGwZw5c8jIyCAgIIBOnTrRp08fb+VTd5PYZssWc9+lO+6Af/xD6x/Ev3jqs1O7\nwIqUYcECePBBGDsWfj2GXcSvWD4mERwc7Haqa0BAAMePH6/0DxfxNYYBr74K77xjFoobbrA7kYi9\n3BaJ/Px8b+YQsd2pU2br4aefzPEHnaQrUo51EiLVQVaWee50YKA5g0kFQsSkIiHV3ooV5gK5AQPg\n44+hdm27E4n4Ds3XkGrtvffMo0X/9S/QzG6Rc1nWksjKyqJr165EREQQGRnJ+PHjz7nn2LFj9OnT\nh+joaOLi4ti8ebNVcURKKSyERx81d3FdvlwFQsQdy6bAZmdnk52dTUxMDPn5+bRr1465c+cS9pvl\nqiNHjuSyyy7jueeeY/v27QwfPpwlS5aUDqgpsOJhP/8M/fvDH/4A06eDdryXqshTn52WtSQaNWpE\nTEwMYE6nDQsL48CBA6Xu2bp1a8mxqK1atWL37t0cOXLEqkgibNoEHTpAu3bmNhsqECLn55Uxid27\nd7N+/Xri4uJKfT86Opo5c+YQHx/PmjVr2LNnD/v27Su1VxRAampqydcOhwOHw+GF1FKVFBTA3/9u\nnhw3bhwMGmR3IhHPcjqdOJ1Oj7+u5Suu8/PzcTgcPPvss/Tu3bvUtRMnTvDYY4+xfv162rRpw7Zt\n23jvvfeIior6b0B1N0klrVljHhDUrBlMmAB//KPdiUSs5xfbchQWFnL77bdz2223MWLEiAve37x5\nczZt2kRwcPB/A6pISAWdPAnPPWee+/DPf8I994DOy5LqwufHJAzDYOjQoYSHh7stEHl5eRQUFAAw\nefJkunTpUqpAiFTUkiXQpg0cPgz/+Q8MHKgCIVIRlrUkMjIy6Ny5M1FRUSV7QI0ePZq9e/cCkJyc\nzKpVq7j//vsJCAggMjKS999/n5CQkNIB1ZKQi3DsGDzxBCxdChMnamqrVF9+0d3kCSoSUh6GAWlp\n5tqHpCQYPRrq1rU7lYh9vHYynYivO3AAhg+Hbdvgk0/gxhvtTiRSdWjvJvFbhgGTJ0NMjDn+8P33\nKhAinqaWhPilHTtg2DBzBtPSpWaREBHPU0tC/EpRkXmU6A03QK9esGqVCoSIldSSEL/x/fcwdCjU\nr28ukLv2WrsTiVR9akmIzztzxtzO+9Zb4c9/hq++UoEQ8Ra1JMSnLVtmjj1ERcHGjdCokd2JRKoX\nFQnxScePw5NPwoIF8Pbb8Lttv0TES9TdJD5nwQKIiIDiYnNLDRUIEfuoJSE+4/Bhc8X0d9+ZZ03/\netSIiNhILQmxnWGYRaFNG7j6anPsQQVCxDeoJSG22r0bHnkEDh2CRYugbVu7E4nIb6klIbYoLjZP\niWvfHrp0Mdc9qECI+B61JMTrNm82T4oLDIQVK6BVK7sTiYg7akmI1/zyC6SmgsMBQ4aA06kCIeLr\n1JIQr/j2W3NLjRYtYP16aNrU7kQiUh4qEmKp/Hx45hmYNQvGjYP+/XWMqIg/UXeTWObLLyEyEnJz\nzUVxd9+tAiHib9SSEI/7+Wd4/HFz36VJkyAhwe5EIlJRlrUksrKy6Nq1KxEREURGRjJ+/Phz7snJ\nyaFHjx7ExMQQGRnJRx99ZFUc8QLDgJkzzdZD/fpm60EFQsS/BRieOCm7DNnZ2WRnZxMTE0N+fj7t\n2rVj7ty5hIWFldyTmprKL7/8wquvvkpOTg6tWrXi0KFD1Kz53waOpw7zFmvt2wd/+hPs3AnvvQcd\nO9qdSKR689Rnp2UtiUaNGhETEwNAcHAwYWFhHDhwoNQ9jRs35vjx4wAcP36c0NDQUgVCfJ/LBRMn\nQmysuRhu3ToVCJGqxCufyLt372b9+vXExcWV+v6wYcO4+eabadKkCSdOnGDWrFll/v7U1NSSrx0O\nBw6Hw8K0Ul4//GCe9fDLL+aah4gIuxOJVF9OpxOn0+nx17Wsu+ms/Px8HA4Hzz77LL1/t+fzK6+8\nQk5ODuPGjWPnzp10796dDRs2ULdu3f8GVHeTzykshLFj4fXX4bnnzNPiLrnE7lQi8ls+390EUFhY\nSFJSEoMGDTqnQACsXLmSfv36AdCiRQuaN2/O9u3brYwklfTdd9Chg9lyyMyExx5TgRCpyiwrEoZh\nMHToUMLDwxkxYkSZ97Ru3ZolS5YAcOjQIbZv3861OrzYJ506BX/7G/TsaU5v/eILuOYau1OJiNUs\n627KyMigc+fOREVFEfDrCqrRo0ezd+9eAJKTk8nJyeGBBx5g7969uFwuRo0axcCBA0sHVHeT7dLT\n4eGHoV07c+fWK6+0O5GIXIinPjstH5OoLBUJ++Tmmq2HRYvgnXegVy+7E4lIefnFmIT4r7lzzUVx\nl1xiLopTgRCpnrQoQUrJzoa//AU2bIB//9s8EEhEqi+1JAQwt9T48EOIioKWLc0ioQIhImpJCD/9\nBMnJcPSouXNrbKzdiUTEV6glUY0VF8M//2mue+jeHVavVoEQkdLUkqimNm0yT4qrUwdWrYLrrrM7\nkYj4IrUkqplffjG30rj5ZnPfpaVLVSBExD21JKqRlSvhoYegVStzYLpJE7sTiYivU5GoBk6cgKef\nhrQ0GD8ekpJ0jKiIlI+6m6q4RYvMRXH5+eaiuL59VSBEpPzUkqiicnJgxAizi+m998zZSyIiF0st\niSrGMGDaNLP10LChOYtJBUJEKkotiSokKwseeQT27oX58831DyIilaGWRBXgcpm7tMbGwg03/Pdg\nIBGRylJLws9t22ZOazUMWLYMwsPtTiQiVYlaEn6qsBD+938hPh4GDIDly1UgRMTz1JLwQ5mZ5pYa\nV10F69bBH/9odyIRqarUkvAjp07BX/8KiYkwciR89pkKhIhYS0XCTyxdCm3awIED5qK4QYO0KE5E\nrGdZkcjKyqJr165EREQQGRnJ+PHjz7ln7NixxMbGEhsbS5s2bahZsya5ublWRfJLx46ZXUsPPGBu\nqTFtGjRoYHcqEakuAgxPnJRdhuzsbLKzs4mJiSE/P5927doxd+5cwsLCyrx/4cKFjBs3jiVLlpQO\n6KHDvP1RWho8+ij07g2vvgqXXWZ3IhHxF5767LRs4LpRo0Y0atQIgODgYMLCwjhw4IDbIjFt2jTu\nueceq+L4lYMHYfhw2LIFZs40ZzCJiNjBK7Obdu/ezfr164mLiyvz+qlTp/jyyy959913y7yemppa\n8rXD4cDhcFiQ0n6GAe+/b+7Y+vDDZtdSrVp2pxIRf+B0OnE6nR5/Xcu6m87Kz8/H4XDw7LPP0rt3\n7zLvmTlzJtOmTWPevHnnBqwm3U07dpiF4cQJc0O+6Gi7E4mIP/PUZ6els5sKCwtJSkpi0KBBbgsE\nwIwZM6ptV1NREYwda26nkZhoHiWqAiEivsKyloRhGAwZMoTQ0FDeeOMNt/fl5eVx7bXXsm/fPmrX\nrn1uwCrcktiwwZy5FBIC//d/0KKF3YlEpKrw+YHrFStWMHXqVKKiooiNjQVg9OjR7N27F4Dk5GQA\n5s6dS0JCQpkFoqo6cwZefhkmTzZnLT34oNY8iIhvsnxMorKqWkti+XIYNgwiIuDtt6FxY7sTiUhV\n5PMtCSnt+HF46imYNw/eegvuusvuRCIiF6ZtObxg4ULzpLiCAnNLDRUIEfEXaklY6PBheOwxWLMG\nPvoIbr7Z7kQiIhdHLQkLGAZMmWJuyNe0qXnOtAqEiPgjtSQ8bM8e85zpAwfMrbzbt7c7kYhIxakl\n4SHFxeaAdLt20KmTeTCQCoSI+Du1JDxgyxbznOlLLoGMDGjd2u5EIiKeoZZEJRQUwEsvQefO5iFA\n33yjAiEiVYtaEhW0erXZerj6ali/Hpo1szuRiIjnqUhcpJMn4dlnYfp0eOMNGDBAW2qISNWl7qaL\nsHixuSiEyB+1AAAKYUlEQVQuJ8dcFHfPPSoQIlK1qSVRDkePwv/8D6Snw8SJcNttdicSEfEOtSTO\nwzBg9myz9XDZZWbrQQVCRKoTtSTc2L/fPGf6hx/gk0/gxhvtTiQi4n1qSfyOy2UeABQTA1FR5swl\nFQgRqa7UkviNH380z3o4fRq+/trce0lEpDpTSwLznOm//x06doQ774SVK1UgRERALQnWrzfPmQ4N\nhbVroXlzuxOJiPiOatuSOH3aPCkuIQEefRS++qr8BcLpdFqarSKUqfx8MZcylY8yeZ9lRSIrK4uu\nXbsSERFBZGQk48ePL/M+p9NJbGwskZGROBwOq+KU8s03EB0NP/0EGzfC/fdf3KI4X3xTKFP5+WIu\nZSofZfI+y7qbAgMDeeONN4iJiSE/P5927drRvXt3wsLCSu7Jzc1l+PDhfPnllzRt2pScnByr4gCQ\nlwdPPmkeJ/rOO+b4g4iIuGdZS6JRo0bExMQAEBwcTFhYGAcOHCh1z7Rp00hKSqJp06YAXHHFFVbF\nYf58c1GcYZiL4lQgREQuLMAwDMPqH7J79266dOnC5s2bCQ4OLvn+448/TmFhIZs3b+bEiRM89thj\nDB48uHRAbY4kIlIhnvh4t3x2U35+Pn379uXNN98sVSAACgsLWbduHUuXLuXUqVN07NiRG264geuu\nu67kHi/UMBERccPSIlFYWEhSUhKDBg2id+/e51xv1qwZV1xxBbVr16Z27dp07tyZDRs2lCoSIiJi\nH8vGJAzDYOjQoYSHhzNixIgy77nzzjvJyMiguLiYU6dOsXr1asLDw62KJCIiF8mylsSKFSuYOnUq\nUVFRxMbGAjB69Gj27t0LQHJyMq1bt6ZHjx5ERUVRo0YNhg0bpiIhIuJLDJs88MADRsOGDY3IyMgy\nr6enpxuXXXaZERMTY8TExBgvv/xyybVFixYZrVq1Mlq2bGmMGTPGtkwvvfRSybWrr77aaNOmjRET\nE2Ncf/31Xst0NldMTIwRERFhdOnSpeT7Vj2nyuay61m99tprJf/vIiMjjUsuucQ4duyYYRj2vafO\nl8mu53TkyBEjISHBiI6ONiIiIowPP/yw5Jqd76nz5bLrWR09etTo3bu3ERUVZXTo0MH4z3/+U3LN\nrvfU+TJV5DnZViSWLVtmrFu37rwfyHfcccc53y8qKjJatGhh7Nq1yygoKDCio6ONLVu22JrJMAzj\nmmuuMX7++WeP5LiYTMeOHTPCw8ONrKwswzDMv0iGYe1zqkwuw7DvWf3WggULjG7duhmGYe97yl0m\nw7DvOb3wwgvGU089ZRiG+f+tfv36RmFhoe3vKXe5DMO+Z/XXv/615B+L27Zt84n3lLtMhlGx52Tb\nthydOnXi8ssvP+89Rhkzm9asWUPLli255pprCAwMZMCAAcybN8/WTOW5VlEXyuRurYmVz6kyuc6y\n41n9Pt8999wD2P+eKivTWXY8p8aNG3P8+HEAjh8/TmhoKDVr1rT9PeUu11l2PKutW7fStWtXAFq1\nasXu3bs5fPiwre+psjIdOXKk5PrFPief3bspICCAlStXEh0dTc+ePdmyZQsA+/fvp1mzZiX3NW3a\nlP3799ua6ey1W265hfbt2zN58mSv5AH48ccfOXr0KF27dqV9+/ZMmTIFsPc5nS8X2Peszjp16hRf\nfvklSUlJgP3PqqxMYN9zGjZsGJs3b6ZJkyZER0fz5ptvAvY/J3e5wL5nFR0dzZw5cwDzHxt79uxh\n3759tj4rd5mgYs/JZ3eBbdu2LVlZWQQFBbFo0SJ69+7NDz/84LOZVqxYQePGjTly5Ajdu3endevW\ndOrUyfJM7taa2L0I8XxrYDIyMmjSpInXn9VZCxYsID4+nnr16gG+sWDz95nAvvfU6NGjiYmJwel0\nsnPnTrp3786GDRss/7kVzVW3bl3bntVTTz3FY489RmxsLG3atCE2NpZLLrnE1veUu0xAhf7u+WxL\nom7dugQFBQFw2223UVhYyNGjR2natClZWVkl92VlZZV0adiVCcymMECDBg3o06cPa9as8UqmZs2a\nceutt1K7dm1CQ0NL1ppcddVVtj2n8+UCaNKkCeD9Z3XWjBkzSnXr2P2sysoE9r2nVq5cSb9+/QBo\n0aIFzZs3Z/v27bb+3TtfLrDvWdWtW5cPPviA9evX8/HHH3PkyBFatGhh63uqrEzXXnstULG/ez5b\nJA4dOlTSd7ZmzRoMw6B+/fq0b9+eH3/8kd27d1NQUMDMmTPp1auXrZlOnTrFiRMnADh58iRfffUV\nbbx0apG7tSZ2Pqfz5bLzWQHk5eWxbNky7vzN5l12P6uyMtn5nFq3bs2SJUsA8z2/fft2rr32Wtuf\nk7tcdj6rvLw8CgoKAJg8eTJdunQhODjY1mflLlNFn5Nt3U333HMP33zzDTk5OTRr1owXX3yRwsJC\nwFxD8cknnzBhwgRq1qxJUFAQM2bMMAPXrMnbb79NQkICxcXFDB06tNTOsnZkys7O5q677gKgqKiI\ne++9l1tvvdUrmc631sSq51SZXD/99JNtzwpg7ty5JCQkULt27ZLfZ+d7yl2mQ4cO0adPH8D7z+np\np5/mgQceIDo6GpfLxT/+8Q/q168P2PuecpfLzvfUli1buP/++wkICCAyMpL3338fsPc95S5TRd9T\nXtngT0RE/JPPdjeJiIj9VCRERMQtFQkREXFLRUJERNxSkZBq7/eHYVXG2LFjCQsLIzY2lg4dOpRa\naZ6Tk0NgYCCTJk3y2M8TsZqKhFR7nlodO3HiRJYuXcratWtZv349S5cuLbVPzuzZs+nRowfTp0/3\nyM8T8QYVCZFfGYbByJEjadOmDVFRUcyaNQsAl8vFn/70J8LCwrj11ltJTEwkLS3tnN//6quvMmHC\nhJKWSd26dbnvvvtKrs+YMYNXXnmFw4cPe31vKJGKUpEQ+dWcOXPYsGEDGzduZMmSJYwcOZLs7Gzm\nzJnDnj172Lp1K1OmTGHVqlXntD6OHz/OiRMnuOaaa8p87aysLA4fPkx0dDR9+/Zl5syZXvgTiVSe\nioTIrzIyMhg4cCABAQE0bNiQLl26sHbtWlasWEH//v0BuPLKK0u2Yb4YM2fOpG/fvgD069dPXU7i\nN3x2F1gRbwsICHC71/6FNia47LLLCA4OZteuXTRv3vyc69OnT+fQoUNMnToVgIMHD7Jjxw5atmxZ\n+eAiFlJLQuRXnTp1YubMmbhcLo4cOcKyZcuIi4vjpptuIi0tDcMwOHToEE6ns8zfP2rUKIYPH16y\niVp+fj5Tpkzhhx9+4OTJk+zbt49du3axa9cunnrqKbUmxC+oSEi1d3Z8oU+fPkRFRREdHU23bt14\n7bXXaNiwYckJe+Hh4QwePJi2bdsSEhJyzuukpKTQtWtXrr/+etq0aUPnzp2pUaMGM2bMKNmA7qyk\npKSSDSJFfJk2+BMph5MnT1KnTh1+/vln4uLiWLlyJQ0bNrQ7lojlNCYhUg633347ubm5FBQU8Pzz\nz6tASLWhloSIiLilMQkREXFLRUJERNxSkRAREbdUJERExC0VCRERcUtFQkRE3Pr/gw9wApXt65gA\nAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x29b4650>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(1.9569709616766851, -0.39508420521305565, 0.99852626739620765, 0.001473732603792355, 0.075209753597987913)\n", + "Intercept of the graph is -0.40\n", + "Slope of the graph is 1.96\n", + " Taking n = 2, rate of equation is 0.40 millimol/litre.hr CA**2 \n", + "The sol slightly differ from that given in book because regress fn is used to calculate the slope\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.3 page no : 99" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "'''\n", + "Note : The sol varies from book as the value of CB taken in book at end is wrong\n", + "'''\n", + "\n", + "import math \n", + "\n", + "# Variables\n", + "CAo = 1.4\n", + "CBo = 0.8\n", + "CRo = 0.\n", + "#Volume(litre)\n", + "V = 6.\n", + "\n", + "# Calculations\n", + "#For 75% conversion of B\n", + "#From stoichiometry of equation A+2B-->R\n", + "CA = 1.4-(0.75*0.8)/2.;\n", + "CB = 0.8-(0.75*0.8);\n", + "CR = (0.75*0.8)/2.;\n", + "#From the Given rate equation(mol/litre.min)\n", + "rB = 2*(12.5*CA*CB*CB-1.5*CR);\n", + "#Volumetric flow rate is given by\n", + "v = V*rB/(CBo-CB);\n", + "\n", + "# Results\n", + "print \" volumetric flow rate into and out of the reactor is %.1f litre/min\"%(v)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " volumetric flow rate into and out of the reactor is 2.0 litre/min\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.4 page no : 104" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "eA = (4-2.)/2;\n", + "CAo = 0.0625; # mol/liter\n", + "xAo = 0.\n", + "xAf = 0.8 # conversion\n", + "k = 0.01;\n", + "\n", + "# Calculations\n", + "def f1(xA): \n", + "\t return math.sqrt((1+xA)/(1-xA))\n", + "\n", + "X = quad(f1,xAo,xAf)[0]\n", + "t = math.sqrt(CAo)*X/k;\n", + "\n", + "# Results\n", + "print \" Space timesec needed is %.2f sec\"%(t)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Space timesec needed is 33.18 sec\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.5 page no : 106" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "T = 922. #Temperature(kelvin)\n", + "P = 460000.; # kPA\n", + "FAo = 40. # pure phosphine\n", + "k = 10.\n", + "R = 8.314;\n", + "\n", + "# Calculations\n", + "CAo = P/(R*T); # mol/m3\n", + "e = (7-4)/4.;\n", + "XA = 0.8;\n", + "\n", + "#The volume of plug flow reactor is given by\n", + "V = FAo*((1+e)*math.log(1./(1-XA))-e*XA)/(k*CAo);\n", + "\n", + "# Results\n", + "print \" volume of reactor is %.3f m**3\"%(V)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " volume of reactor is 0.148 m**3\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch6.ipynb b/Chemical_Reaction_Engineering/ch6.ipynb new file mode 100755 index 00000000..27577e4f --- /dev/null +++ b/Chemical_Reaction_Engineering/ch6.ipynb @@ -0,0 +1,233 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 6 : Design for Single Reactions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.1 page no : 125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "V1 = 50. # volume liters\n", + "V2 = 30. # volume liters\n", + "V3 = 40.; # volume liters\n", + "\n", + "# Calculations\n", + "VD = V1+V2;\n", + "VE = V3;\n", + "m = VE/VD\n", + "fr_D = 1./(1+m);\n", + "\n", + "# Results\n", + "print \" Fraction of feed going to branch D is %.3f \"%(fr_D)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Fraction of feed going to branch D is 0.667 \n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.2 page no : 129" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "kCot = 90. # reactant\n", + "kCot = 180. \n", + "X = 97.4; # conversion\n", + "\n", + "print \" Part a\"\n", + "print \" The conversion in percentage is %.2f \"%(X)\n", + "#For 90% Conversion & N = 2.from graph\n", + "kCot = 27.5;\n", + "\n", + "# Calculations\n", + "ratio = 90*2/27.5;\n", + "\n", + "# Results\n", + "print \" Part b\"\n", + "print \" Treatment rate can be increased by %.1f \"%(ratio)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " The conversion in percentage is 97.40 \n", + " Part b\n", + " Treatment rate can be increased by 6.5 \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.3 pageno : 144" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline\n", + "\n", + "import math \n", + "from numpy import *\n", + "from matplotlib.pyplot import *\n", + "\n", + "# Variables\n", + "CAo = array([2,5,6,6,11,14,16,24]); #mmol/m3\n", + "CA = array([0.5,3,1,2,6,10,8,4]) #mmol/m3\n", + "t = array([30,1,50,8,4,20,20,4]) #min\n", + "vo = 0.1 #m3/min\n", + "\n", + "# Calculations\n", + "inv_rA = zeros(8)\n", + "for i in range(8):\n", + " inv_rA[i] = t[i]/(CAo[i]-CA[i]);\n", + "\n", + "for i in range(8):\n", + " for j in range(i,8):\n", + " if CA[i]>CA[j]:\n", + " temp = CA[i];\n", + " CA[i] = CA[j];\n", + " CA[j] = temp;\n", + " temp1 = inv_rA[i];\n", + " inv_rA[i] = inv_rA[j];\n", + " inv_rA[j] = temp1;\n", + "\n", + "# Results\n", + "plot(CA,inv_rA)\n", + "plot(CA,inv_rA,\"go\")\n", + "suptitle(\"Arrangement with smallest volume\")\n", + "xlabel(\"CA, m mol/m**3\")\n", + "ylabel(\"-1/ra, m**3.min/m mol\")\n", + "print ('From the graph,we can see that we should use plug flow with recycle')\n", + "CAin = 6.6;#mmol/m3\n", + "R = (10-6.6)/(6.6-1);\n", + "#V = t*vo = area*vo\n", + "V = (10-1)*1.2*vo;\n", + "vr = vo*R;\n", + "print \" Part a\"\n", + "print \" The vol of reactor is %.2f m**3\"%(V)\n", + "print \" The recycle flow rate is %.4f \"%(vr),\n", + "print \"m3/min\"\n", + "\n", + "#Part b,from fig\n", + "t = (10-1)*10;\n", + "t1 = (10-2.6)*0.8;\n", + "t2 = (2.6-1)*10;\n", + "#For 1 math.tank\n", + "V = t*vo;\n", + "#For 2 math.tank\n", + "V1 = t1*vo;\n", + "V2 = t2*vo;\n", + "Vt = V1+V2;\n", + "print \" Part b\"\n", + "print \" For 1 tank volume is %.2f m**3\"%(V)\n", + "print \" For 2 tank the volume is %.2f m**3\"%(Vt)\n", + "\n", + "print \" Part c\"\n", + "print (' We should use mixed flow followed by plug flow')\n", + "#For MFR\n", + "tm = (10-4)*0.2;\n", + "Vm = tm*vo;\n", + "#For PFR\n", + "tp = 5.8;#by graphical integration\n", + "Vp = tp*vo;\n", + "Vtotal = Vp+Vm;\n", + "print \" For MFR volume is %.2f m**3\"%(Vm)\n", + "print \" For PFR volume is %.2f m**3\"%(Vp)\n", + "print \" Total volume is %.2f m**3\"%(Vtotal),\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "From the graph,we can see that we should use plug flow with recycle\n", + " Part a\n", + " The vol of reactor is 1.08 m**3\n", + " The recycle flow rate is 0.0607 m3/min\n", + " Part b\n", + " For 1 tank volume is 9.00 m**3\n", + " For 2 tank the volume is 2.19 m**3\n", + " Part c\n", + " We should use mixed flow followed by plug flow\n", + " For MFR volume is 0.12 m**3\n", + " For PFR volume is 0.58 m**3\n", + " Total volume is 0.70 m**3\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEeCAYAAABi7BWYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYU1f6B/BvVJQOoOKGtrhQFJBNgmiligYFwaJWR22p\ntW5V69hW7djH1mlt8Zlpqz+7iNbOdBwXrBTspqJUxE7BDXEBFG1dKSkUxRWXiKjA+f2RSSASCCDJ\nzfL9PA+PyQ333jdR33tyznvPkQkhBIiIyKY0kzoAIiIyPSZ/IiIbxORPRGSDmPyJiGwQkz8RkQ1i\n8iciskFM/hZu69ataNasGc6cOSN1KCbz4YcfNnrfmTNn4vTp0zWOo1Qq4efn98ixNUZMTAw++eQT\nAMDUqVPx/fffN/gYe/bswcGDB5s8HrJeTP4WLiEhASNHjkRCQoLe18vLy+t8bok++uijRu+7Zs0a\neHl5PfJxmpJMJoNMJqvxuCHS0tKQkZHRZPGQ9WPyt2AqlQqHDh3C559/js2bN2u3p6enIyQkBM8+\n+yx8fHywZ88e7XNfX18AwJgxYxAUFARfX1+sWbNGu6+joyPeffddBAQEIDg4GJcvXwYA5OXlYcCA\nAfD398e7774LJycn7T7Lly9H//790adPH8TExABQt6S9vLwwbdo0eHp64sUXX0RqaioGDhwIDw8P\nHDlyBABw584dTJ8+HU899RQCAwORlJQEANiwYQP+/Oc/Y8SIEfDw8MBbb70FAHj77bdx9+5dyOVy\nvPTSSzqfx7fffosFCxYAAGJjY+Hu7g4A+O233zBo0CAAgEKhQFZWVo3jyGQyVFRUYNasWfD19UVE\nRATKyspqfObffvst/Pz8EBAQAIVCoY11zJgxGD58ONzc3PD555/j448/RmBgIIKDg1FSUgJAfeHp\n378/AgICMH78eNy9e1d73Or3WmoeZ2VlQaFQICgoCJGRkSguLgYArFy5Ej4+PujTpw8mTpyI33//\nHV9++SU+++wzyOVy7N+/X3usyspKuLm54ebNm9ptvXr1wpUrV6BUKjF06FD06dMHYWFhKCws1P6O\n5gKg+bwA4OrVq3Bzc2vQe87Ly8OIESMQFBSEwYMH29Q3VLMnyGJt2rRJvPLKK0IIIUJCQkRWVpYQ\nQoi0tDTh4OAglEql3udCCHH9+nUhhBClpaXC19dX+1wmk4kdO3YIIYRYuHCh+Mc//iGEECIqKkok\nJiYKIYT417/+JRwdHYUQQuzatUvMmjVLCCFERUWFGDlypNi7d6/Iz88XLVq0ECdPnhSVlZWib9++\nYvr06UIIIbZt2ybGjBkjhBBi0aJFYtOmTUIIIUpKSoSHh4e4c+eOWL9+vXjyySfFrVu3RFlZmeje\nvbv4448/hBBCe+6HFRcXi379+gkhhBg3bpzo37+/KCoqEhs2bBB/+9vfhBBCKBQK7edU/TiaeI8f\nPy6EEOK5557TxlWdn5+fuHDhghBCiJs3bwohhFi/fr3o2bOnUKlU4sqVK6J169biyy+/FEII8cYb\nb4gVK1YIIYS4du2a9jjvvvuuWLVqlRBCiJiYGPHxxx8LIYSYOnWq+P7778X9+/dFcHCwuHr1qhBC\niMTERO3n9/jjj4v79+/rxBATEyM++eQTvZ/LvHnzxPr164UQQmRmZorw8HAhhBAjR44UGzduFEII\nsW7dOu3fSfVjVf+8rly5Inr06NGg9zx06FBx7tw57bmHDh2qN0YyPbb8LVhCQgImTJgAAJgwYYJO\n10///v3RvXv3Wp/HxsZqW/eFhYU4d+4cAKBly5aIiooCAPTt2xdKpRIAkJmZqT3XCy+8oD1Oamoq\nUlNTIZfL0bdvX5w5cwbnz58HALi5ucHHxwcymQw+Pj4ICwsDAPj6+mqPm5qaiqVLl0IulyM0NBT3\n7t1DQUEBZDIZhg0bBicnJ7Rq1Qre3t74/fff6/w8XFxcoFKpoFKp8Mcff2DixInYu3cv9u/fj5CQ\nEIOfp5ubG/z9/Wu89+oGDhyIKVOm4D//+Y+2C00mkyE0NBQODg7o0KED2rZti1GjRgEA/Pz8tMc5\nceIEQkJC4O/vj/j4ePz666964xBC4MyZM/jll18QFhYGuVyODz74AEVFRQAAf39/TJw4EfHx8Wje\nvLnOfvo8//zz2m+GiYmJeP755wGo/04nTpwIAJg0aZLON4b6MPSe79y5g4yMDEyYMAFyuRyzZ8/W\nfnsh6bWQOgBqnOvXryMtLQ0nT57UdlnIZDIsX74cAODg4KDz+9Wfp6en47///S8yMzNhb2+P0NBQ\nbReHnZ2d9veaNWtWrzGCRYsWYdasWTrblEolWrVqpXOsli1b6j3uDz/8gF69eunsf+jQIZ39mzdv\nXq9Ynn76aaxfvx6enp4YNGgQ1q5di4MHD+LTTz81uO/D56veLaPxz3/+E4cPH0ZycjL69u2LrKws\nCCFqvFfNc5lMpo176tSpSEpKgp+fH+Li4pCenq7dR18/u4+Pj95+/OTkZOzduxfbt2/HBx98gBMn\nTtT5vgYMGIDz58/j6tWr2LZtG9577z3ta7VdMDRatGiByspKAKjRDVbbe9b8/VZWVsLZ2Rk5OTl1\nnoOkwZa/hfruu+8wefJkKJVK5Ofno6CgAG5ubti3b5/BfW/dugVnZ2fY29vj9OnTyMzMNLjPgAED\n8N133wFQtx41IiIisG7dOty5cwcAUFRUhCtXrtT7fURERGDlypXa55pEUVdSsrOzq/VCEBISguXL\nl2PIkCGQy+VIS0uDvb29zhhFfY5Tm7y8PPTv3x9LlixBx44dUVhYWO8BUpVKhc6dO+PBgwfYtGmT\ndj8hhM77lclk8PT0xJUrV7R/Nw8ePMCvv/4KIQQKCgqgUCiwdOlS3Lx5EyqVCk5OTrh9+7be88pk\nMowdOxZvvPEGvL294ezsDEB9odT8XcbHx2Pw4ME14unRoweOHj0KANq/f0M0+zo5OcHNzU27nxAC\nubm59ToGGR+Tv4VKTEzE2LFjdbaNGzcOCQkJNSpGHn4eGRmJ8vJyeHt7Y9GiRQgODtb5XX37rVix\nAp9++ikCAgKQl5eHNm3aAADCw8MxceJEBAcHw9/fH8899xxUKlWNY+k7NgAsXrwYDx48gL+/P3x9\nffH+++/rjbm6WbNmwd/fv8aALwAMGjQIRUVFGDx4MJo1a4Zu3bppB3vrOo6+8+k7/8KFC+Hv7w8/\nPz8MHDgQffr0qfW9Pfw+/v73v+Opp57CoEGD0Lt3b72/o2FnZ4fvvvsOb731FgICAiCXy3Hw4EFU\nVFTgpZdegr+/PwIDAzFv3jy0adMGo0aNwpYtWyCXy3HgwIEacT///POIj4/XdvkAwKpVq7B+/Xr0\n6dMH8fHxiI2NrRHPm2++iX/+858IDAzEtWvXaq1Kqu09x8fHY+3atQgICICvr692QJ+kJxOGvvcR\nAbh79y4ee+wxAOoLz+bNm7FlyxaJoyKixmKfP9VLVlYWXnvtNQgh4OzsjHXr1kkdEhE9Arb8iYhs\nEPv8iYhsEJM/EZENYvInIrJBTP5ERDaIyZ+IyAYx+RMR2SAmfyIiG8TkT0Rkg4yS/AsLCxEaGgof\nHx/4+vpqJ+66fv06wsPD4eHhgeHDh+PGjRvGOD0RERlglDt8i4uLUVxcjICAAKhUKvTt2xdbt27F\n+vXr0aFDByxcuBDLli1DSUkJli5d2tSnJyIiA4zS8u/cuTMCAgIAqJcF7N27N4qKipCUlIQpU6YA\nAKZMmYKtW7ca4/RERGSA0ef2USqVGDJkCE6ePIlu3bpp1/YUQqBdu3ba5wAXjiYiaqyGpnKjDviq\nVCqMGzcOsbGxNRbTqG2+ds1CEg35GT51OBCDGj8R0yMadTxz+Hn//fclj8FcfvhZ8LPgZ1H3T2MY\nLfk/ePAA48aNw0svvYQxY8YAUK+xqlnD8+LFi+jUqVOTnGvuxLlwz3HX2fZktjtej369SY5PRGRt\njJL8hRB4+eWX4e3tjfnz52u3jx49GnFxcQCAuLg47UXhUUWFRyH21VhEFERgSP4QtNoYgb+Nj0VU\neFSTHJ+IyNoYZTGXAwcOYNOmTfD394dcLgcAfPTRR3j77bfx3HPPYe3atejRowe++eabJjtnVHiU\nNtmHhQGuTfOlQjIKhULqEMwGP4sq/Cyq8LN4NGa1mItMJmt0/1V1r74KeHoCc+c2QVBERGauMbnT\nKu/w9fAAzp6VOgoiIvNltcn/zBmpoyAiMl9Wmfw9PdnyJyKqi1X2+VdUAI6OwPXrwGOPNUFgRERm\njH3+/9O8OfDkk8C5c1JHQkRknqwy+QMc9CUiqotVJ38O+hIR6We1yZ+DvkREtbPa5M9uHyKi2llt\n8vf0VHf7mE8tExGR+bDa5N+hgzrxX7smdSRERObHapO/TMZBXyKi2lht8gc46EtEVBurTv4c9CUi\n0s+qk79m0JeIiHRZdfJny5+ISD+rnNhN484dddWPSqWe74eIyBpxYreHODgAHTsCBQVSR0JEZF6s\nOvkD7PohItLH6pM/B32JiGqy+uTPlj8RUU02kfzZ8ici0mX1yZ93+RIR1WTVpZ6Aej1fBwegpITr\n+RKRdWKppx5cz5eIqCarT/4Au36IiB5mE8mfg75ERLpsIvmz5U9EpMsmkj9r/YmIdNlM8ud6vkRE\nVWwi+XfsyPV8iYiqs4nkz/V8iYh02UTyBzjoS0RUnc0kfw76EhFVsankz24fIiI1m0n+7PYhIqpi\n9RO7aXA9XyKyVpzYrQ5cz5eIqIrNJH+A/f5ERBo2l/zZ709EZGPJn4O+RERqNpX82e1DRKRmU8mf\nLX8iIjWbKfUEqtbzvX4d+NOfjHYaIiKTYqmnAZr1fM+flzoSIiJp2VTyB9j1Q0QE2GDy56AvEZGR\nkv/06dPh4uICPz8/7baYmBi4urpCLpdDLpcjJSXFGKc2iC1/IiIjJf9p06bVSO4ymQx//etfkZOT\ng5ycHERGRhrj1Aax5U9EBLQwxkFDQkKgVCprbK/PaHRMTIz2sUKhgEKhaLrAoLuer0zWpIcmIjKJ\n9PR0pKenP9IxjFbqqVQqMWrUKJw4cQIAsGTJEqxfvx5t2rRBUFAQPvnkE7Rt21Y3GCOXegLqpN+u\nHXDunHqWTyIiS9eY3Flr8h81alSdJ0pKSqrzwA8n/8uXL6Njx44AgMWLF+PixYtYu3btI7+Bxnjq\nKeDTT4GBA41+KiIio2tM7qy122fBggV1nqihOnXqpH08Y8aMOi8uxqYZ9GXyJyJbVWvyr97Xfu/e\nPZw9exYymQyenp6ws7Nr8IkuXryILl26AAC2bNmiUwlkahz0JSJbZ3DANz09HVOmTEH37t0BAAUF\nBYiLi8OQIUNq3eeFF17Anj17cPXqVXTt2hVLlixBeno6jh07BplMBjc3N3z55ZdN9y4ayMMDSEyU\n7PRERJIzOOAbGBiIhIQEeHp6AgDOnj2L6OhoZGdnN30wJurzP34cePFF4ORJo5+KiMjojDK3T3l5\nuTbxA4CHhwfKy8sbHp0Z6dkTyMtTT/RGRGSLDHb79O3bFzNmzMCkSZMghEB8fDyCgoJMEZvRVF/P\n181N6miIiEzPYLdPWVkZVq9ejQMHDgBQ38A1Z84ctGrVqumDMVG3DwCEhQFvvglIdKMxEVGTadI6\nfymYMvnPmQN4eQFz55rkdERERmOUPv/t27dDLpfD2dkZTk5OcHJyQuvWrRsdpLngBG9EZMsM9vnP\nnz8fW7Zsga+vL5o1s54ZoD08gB07pI6CiEgaBrO5q6srfHx8rCrxA2z5E5FtM9jnn5mZiffeew+h\noaFo2bKleqf/Tc/c5MGYsM+f6/kSkbUwSp//4sWL4ejoiLKyMqhUKqhUKty+fbvRQZoLrudLRLbM\nYJ//xYsXsXv3blPEYnKarh9/f6kjISIyLYMt/2eeeQa7du0yRSwmxwneiMhWGezzd3R0RGlpKVq2\nbKmdzVMmk+HWrVtNH4wJ+/wBYN06YM8eIC7OZKckImpyTTqfv4ZKpWp0QObOwwP497+ljoKIyPSs\nq36zgaqv50tEZEtsOvn/b1VJXLsmbRxERKZm08lfJuOgLxHZJoN9/gBQUlKCgoICVFSbAD8wMNBo\nQZkS1/MlIltkMPkvXrwYGzZswJNPPqkzxUNaWppRAzMVtvyJyBYZTP6bN29GXl6edmoHa8P1fInI\nFhns8/fx8UFJSYkpYpGEpydb/kRkewze5HXkyBE8++yz8PX11a7eJZPJkJSU1PTBmPgmLwC4cwfo\n0AFQqdTz/RARWRqj3OQ1efJkvP322zrz+ctkssZFaIa4ni8R2SKDyd/R0RFzrXytQ82gL5M/EdkK\ng8k/JCQEixYtwujRo3UWbbeWUk9AnfzPnuVi7kRkOwwm/+zsbMhkMmRmZupst5ZST4CDvkRke2pN\n/hkZGQgODkZ6eroJw5EG1/MlIltTa6nnxo0bERgYiOjoaGzYsAHFxcWmjMukNN0+RES2wmCp56lT\np7Bz506kpqbixo0bCA0NxYgRIzBw4EA0b+LaSClKPQGu50tElq0xudNg8q+utLQUaWlp2LlzJw4e\nPIisrKwGB1lnMBIlfwDw9lbf6cslHYnI0hilzh8AKioqcOnSJZSXl8PX1xe+vr7o3r17o4I0V5pB\nXyZ/IrIFBpP/qlWrsGTJEnTq1EnbzSOTyZCbm2v04EyJ/f5EZEsMJv8VK1bgzJkzaN++vSnikYyH\nB7B3r9RREBGZhsGJ3bp164bWrVubIhZJsdafiGyJwZa/m5sbQkNDERUVpZ3WWSaT4a9//avRgzOl\n6uv5WtHURUREehlM/t26dUO3bt1w//593L9/H0IIq5rYTUOznu/Vq1WPiYisVYNKPY1NylJPAHjq\nKeDTT7mkIxFZliYt9Zw3bx5iY2MxatQovScyxnz+UtNU/DD5E5G1qzX5T548GQCwYMECkwUjNQ76\nEpGtYLdPNd98o77L94cfJAuBiKjBGpM7DZZ6bt++HXK5HM7OznBycoKTk5PVln6y5U9EtsJgy9/d\n3R1btmzRWcbRaMFI3PK/cwdo3179J9fzJSJLYZSWv6urK3x8fIye+M1B9fV8iYismcE6/2XLlmHE\niBEIDQ216pu8NDRdP1zPl4ismcHm/OLFi+Ho6IiysjKoVCqoVCrcvn3bFLFJghO8EZEtMNjyv3jx\nInbv3m2KWMwCB32JyBYYbPk/88wz2LVrlyliMQts+RORLTCY/L/44guMGDEC9vb29S71nD59Olxc\nXODn56fddv36dYSHh8PDwwPDhw/HjRs3Hj36Jpa8OxkfxUVgX6ECEdMikLw7WeqQiIiMwig3ee3b\ntw+Ojo6YPHkyTpw4AQBYuHAhOnTogIULF2LZsmUoKSnB0qVLdYORsNQzeXcy5q2ehzx5nnabe447\nYl+NRVR4lCQxERHVh9HX8G0IpVKJUaNGaZO/l5cX9uzZAxcXFxQXF0OhUOD06dO6wUiY/COmRSC1\nR2rN7QURSFmbIkFERET1Y7Q1fB8ml8uRk5PToH0uXboEFxcXAICLiwsuXbqk9/diYmK0jxUKBRQK\nRWNCbLB74p7e7WUVZSY5PxFRfaWnpyM9Pf2RjtGo5N/QxP8wmUxW65oA1ZO/KbWStdK73b65vYkj\nISKq28MN4yVLljT4GCa7bVfT3QOoy0c7depkqlPXy9yJc+Ge466z7cksd7we/bpEERERGU+tyf/4\n8eMICwtDdHQ08vPzERoaijZt2iAkJATnz59v8IlGjx6NuLg4AEBcXBzGjBnT+KiNICo8CrGvxiKi\nIAJD8oeg3XcReL4vB3uJyEqJWgwYMEAkJSWJr7/+WnTu3Fl8/fXXoqKiQiQlJYnw8PDadhNCCBEd\nHS26dOki7OzshKurq1i3bp24du2aGDZsmOjVq5cIDw8XJSUlNfarIxyTi4sTYuRIqaMgIjKsMbmz\n1mqf6oO6PXv21GntN2bAtz6kntWzujt3AFdX4NQpoHNnqaMhIqpdk87qWVFRoX388CRuDx48aGBo\nlsfBARg7FoiPlzoSIqKmV2vynzNnjnYCtzlz5mi3nz9/HmFhYcaPzAxMnQps2ACYyZcRIqImU+dN\nXmVlZbC3t9f+afRgzKjbBwAqK4FevdTLO/btK3U0RET6NfliLrNnz8bdu3d1Wv62pFkzYMoUdeuf\niMia1Jr89+zZg6CgIAwePBh9+/bFnj17TBmX2Zg8GUhIAO7pvwGYiMgi1dnyb9asGSorK2u9G9cW\n9OgB+PsDO3ZIHQkRUdOpNfkPHjwYhw8fxr59+3D06FEMGTLElHGZFc3ALxGRteCAbz2w5p+IzBkH\nfI2ENf9EZG044FtPrPknImvCAd96GjQIKC0FsrOljoSI6NFxwLeeWPNPRNaEA74NoFQCQUFAURHQ\nSv/aL0REJtfkyzja29vjt99+w6pVq6BUKlFeXq49UVJSUuMjtVDVa/7HjZM6GiKixjO4gLu/vz9m\nzJgBX19fNGum7iWSyWRG6QYy95Y/AGzcCHz7LbB9u9SREBGpNSZ3Gkz+/fv3x+HDhx8psHoHYwHJ\nnzX/RGRujJL8v/rqK+Tl5SEiIgKtqnV0BwYGNi7KuoKxgOQPANOnAz4+wIIFUkdCRGSk5P/222/j\nq6++Qs+ePbXdPgCQlpbWuCjrCsZCkv/evcCrrwK5uQCrYIlIakZJ/u7u7jh16hRatmz5SMHVKxgL\nSf6c55+IzEmTT+8AAH5+figpKWl0UNaINf9EZOkMtvyHDBmC3Nxc9OvXT9vnb6xST0tp+QOs+Sci\n89Hkdf4AsGTJEr0nsnWs+SciS2aw5W9KltTyB1jzT0TmwSgDvqZkacmfNf9EZA6MMuBLteM8/0Rk\nqZj8HxHn+SciS9Tg5D9lyhT85S9/wcmTJ40Rj8XhPP9EZIkanPxfffVVDBs2DBs3bjRGPBaHNf9E\nZIk44NsEWPNPRFIySp3/5cuX8X//93/45ZdfUFZWpj3Rzz//3LgorRBr/onI0hjs9nnxxRfh5eWF\n/Px8xMTEoEePHggKCjJFbBZFM/BLRGQJDHb7BAYGIjs7G/7+/sjNzQUABAUF4ejRo00fjIV2+wCs\n+Sci6Rilzl8zm2fnzp2xY8cOZGdnc6I3PVjzT0SWxGDLf8eOHRg0aBAKCwvx+uuv49atW4iJicHo\n0aObPhgLbvkDnOefiKTR5AO+FRUVOHv2LEaOHIm2bdsiPT39UeKzetVr/jnPPxGZszq7fZo3b46E\nhARTxWLxWPNPRJbCYLfPG2+8gQcPHuD555+Hg4MDhBCQyWQ2vYZvXVjzT0SmZpRZPRUKhd75+215\nDV9Dhg5V9/2z5p+ITKFJk39GRgaCg4NNunCLtSR/zvNPRKbUpMl/9uzZOHToEDw9PREZGYnIyEh0\nNnIBu7Ukf9b8E5EpGaXb59SpU9i5cydSU1Nx48YNDB06FJGRkRg4cCCaN2/+SAHXCMZKkj8ATJ8O\n+PgACxZIHQkRWTujr+RVWlqKtLQ07Ny5EwcPHkRWVlaDg6wzGCtK/qz5JyJTMdkyjrdv34aTk1ND\ndzMcjBUl/8pKoFcv4JtvWPNPRMZlsmUcfXx8GrObTWHNPxGZs1rv8P3kk09q3en27dtGCcbaTJ6s\nrvn/+GPW/BOReam15f/OO++gpKQEKpVK5+f27duorKw0ZYwWq/o8/0RE5qTWPv/g4GCsWrVK79z9\nXbt2RWFhYdMHY0V9/hqs+SciY2vSAd/Tp0+jffv26NixY43XiouLG13z36NHD7Ru3RrNmzeHnZ0d\nDh8+XBWMFSZ/1vwTkbEk707Gyq9XInVDqnGrfS5evIguXbo0OMDq3NzckJWVhXbt2tUMxgqTP8Ca\nfyJqesm7kzFv9TzkyfOAGBi32icqKqpBB6+NNSb4umiWeLSxt01ERrTy65XqxN9IBhdwr64pkrZM\nJkNYWBiaN2+OV155BTNnztR5PSYmRvtYoVBAoVA88jmlxnn+iagppaen40zOGUDZ+GM0KPk/nKgb\n48CBA+jSpQuuXLmC8PBweHl5ISQkRPt69eRvLarX/DP5E9GjUigU6Onvid/df1dvSG/4MRrU7TNn\nzpyGn+EhmjGDjh07YuzYsToDvtZs8mQgIQG4d0/qSIjIkp05A8ybBxxKnguHH90bfZxG3eHbWKWl\npdobxO7cuYPU1FT4+fmZMgTJsOafiBqrvBzYsgUIDweGDAEcHYFfcqKw+R+xiCiIaNQxGzW3T2Pl\n5+dj7NixAIDy8nK8+OKLWLRoUVUwVlrto8GafyJqiEuXgP/8B/jyS6Br16pFoh6eMcBkE7sZi7Un\nf9b8E5EhQgAZGcDq1cDOncCECcCcOUBAQO37mGxiN2ocBwdg7FggPl7qSIjI3Ny5A/z73+okP20a\n0L8/kJ9fta2pseVvYpznn4iqO3MG+OILYNMmICREnR+GDVNXCdYXW/4WoHrNPxHZJs0AblgYMHiw\negA3JwfYulU9qNuQxN9YDarzp0fHmn8i23XpErBmjXoAt1u32gdwTYHdPhJQKtXz/BcVcZ5/Imsn\nBHDggLprp74DuA3Fbh8LwZp/IuunUlUN1k6fbvwB3IZi8peIZrI3IrIumjtwu3cHfvxRvZLf6dPA\n/PlA27ZSR1eF3T4SYc0/kfUoL1ffvLl6NXDiBDBjBvDKK+p+fVPgTV4WhvP8E1k2cxnAZZ+/heE8\n/0SWRwhg/35g4kTAywv4/Xd1q//AAfU2SyniYPKXEGv+iSxHbQO4a9aYxwBuQ7HOX0Ks+Scyfw/f\ngfvxxw2/A9ccsc9fYqz5JzI/Ug/gNlRjcidb/hKrXvM/bpzU0RDZNnMZwDUFC//iYh1Y808kHWsZ\nwG0odvuYAdb8E5meSqWeXv2LL4C7d9VTLkydal43YtUXSz0tFOf5JzKd06er7sDdudN878A1NiZ/\nM8GafyLjqT6FsmYNXFNPoWxuOOBrJqrX/LPsk6hpPDyAO2cOMH689fbjN4QNXu/MU/WafyKqXfLu\nZERMi4BiqgIR0yKQvDtZ53XNAO4LLwCenroDuC++yMSvwQFfM8Kaf6K6Je9OxrzV85Anz9Nuc89x\nR+yrsRiBWgOVAAAObUlEQVQSHGU1A7gNxYndrMDQoVW1xUSkK2JaBFJ7pNbY3m1XBFRnUhq9Bq6l\n401eVkAz8MvkT1TTPXFP/wt2ZcjJMd87cM2RDV0bLcO4cer+yuJiqSMhMh/37gE//QQoz+rvD+3d\n056Jv4GY/M1MekYy/tQrAoMm6R/MIrIVv/2mnltn1CigY0dg8WJgoNdcPHHQXef33LPd8Xr06xJF\nabnY7WNGNINZF6LUg1l5APJWqx9HhUdJGBmR8d29C6SnAykp6puvbt0CIiPVFTobNgDt2wNAFJJ3\nA6sSV6Gsogz2ze3x+muv8/9HI3DA14zUNpgVURCBlLUpEkREZDxCAOfOqRP9zp3qUsyAAGDECPVP\nnz62NWj7KDjga+FqG8wqqygzcSRExqFSAWlpVa37+/fVrfsZM4DERNsoyzQXTP5mpJVM/2BWswp7\nE0dC1DSEAH79tSrZHzoE9OunTvjbtgG+voBMJnWUtondPmZE3w0srXe5o/JMLObMiMKbb6oHvojM\n2a1bwH//q072KSnq5K7pyhk6FHBykjpC68ObvKxA8u5k3cGs6Nfh7xWFpUvVX4tnzAAvAmRWhABy\nc6uSfVYWEBysTvaRkeo58tm6Ny4mfytXWAheBMgslJSo6+41Cf9Pf6pK9gqFeppyMh0mfxvBiwCZ\nWmWlegpkTbLPzVUvZh4ZqU76PXtKHaFtY/K3MbwIkDFdvQqkpqqT/a5dgLNzVd99SAjw2GNSR0ga\nTP42ihcBagoVFcCRI1WVOadPq7twIiPVP25uUkdItWHyt3G8CFBDXbqkbtWnpKhb+V26VHXlDBzI\nqcUtBZM/AeBFgGpXXg5kZla17vPy1NMfjxgBREQAXbtKHSE1BpM/6eBFgAD14kC7dqmT/U8/AT16\nVFXmBAcDdnZSR0iPismf9OJFwPIl707Gyq9X4p64h1ayVpg7cW6tk5ndvw9kZFRV5vzxh3qR8shI\ndeu+SxcTB09Gx+RPdeJFwDLVtXSh5gJQUFDVlZOWBnh4VPXd9+sHtOBELlaNyZ/qhRcBy1LbbK9B\nOREY7J6ClBTg8mV1qz4yEhg+HOjUSYJASTKNyZ2cMNUGde2qXiTj2DH1LIteXsBbbwFXrlT9TvLu\nZERMi4BiKheVkcrt28DZs8ClEv2zvZ7NL0Pbtuq57i9dAjZtAiZNYuKn+uGXQRumuQi8/bb6m4CX\nl/qbQJ9+yXhvk243AxeVaTq3bwMXLwIXLqh/NI8f3lZRATz+OHDNvhUgr3mc4CB7LF5s+vjJOrDb\nh7Q03UH/To5A+TQuKtNQDU3qmp8uXXT/1Dxu3Vo9IZrePv9sd8S+FsuLMQHgYi70iDTfBLKv30Om\nntfvltvmojKPmtTlcv1Jvb40CZ5LF1JTYvKnGlrb67+tc+9/7dG+vf5W6sN/NsWdoQ0pb2yM+ib1\nykr97zMwUHdbQ5N6Q0SFRzHZU5Ni8jdT6enpUCgUkpx77sS5yFudV6Ob4bO1r2NAYM1kefo08PPP\nVduKi9ULdhjq1qjrIqHT1aEE0KP+4w7Vk3pdyd0cknpDSfnvwtzws3g0Jk/+KSkpmD9/PioqKjBj\nxgy89dZbpg7BIkj5D9tQN0PHjurFtWtTWQlcu1a/i0Tr1vovDv/ZuRJ5/f938VFCnfzleVi2dhUc\n7KKsLqnXFxNeFX4Wj8akyb+iogKvvfYafvrpJzzxxBPo168fRo8ejd69e5syDKqHR+lmaNZMfYFo\n7EXi1Cmg6LL+8sajuWV47z3rS+pEpmbS5H/48GH07NkTPXr0AABER0dj27ZtTP42qq6LxPlprVCz\n3ggYHGyPlLUmCY/Iqpm01PO7777Drl27sGbNGgDApk2bcOjQIaxatUodDJtrRESNYtalnoaSO2v8\niYhMw6TTOzzxxBMoLCzUPi8sLISrq6spQyAiIpg4+QcFBeHcuXNQKpW4f/8+Nm/ejNGjR5syBCIi\ngom7fVq0aIHPP/8cERERqKiowMsvv8zBXiIiCZh8Vs8RI0bgzJkzOH/+PBYtWqTdnpKSAi8vL/Tq\n1QvLli0zdVhmpbCwEKGhofDx8YGvry9WrlwpdUiSqqiogFwux6hRo6QORVI3btzA+PHj0bt3b3h7\neyMzU98kHLbho48+go+PD/z8/DBx4kTcu6e/NNgaTZ8+HS4uLvDz89Nuu379OsLDw+Hh4YHhw4fj\nxo0bBo9jFlM6a+r/U1JS8OuvvyIhIQGnTp2SOizJ2NnZ4bPPPsMvv/yCzMxMrF692qY/j9jYWHh7\ne9t8Ndi8efPwzDPP4NSpU8jNzbXZb81KpRJr1qxBdnY2Tpw4gYqKCiQmJkodlslMmzYNKSm6Eywu\nXboU4eHhOHv2LIYNG4alS5caPI5ZJP/q9f92dnba+n9b1blzZwQEBAAAHB0d0bt3b1y4cEHiqKTx\nxx9/4Mcff8SMGTNsuhrs5s2b2LdvH6ZPnw5A3YXapk0biaOSRuvWrWFnZ4fS0lKUl5ejtLQUTzzx\nhNRhmUxISAicnZ11tiUlJWHKlCkAgClTpmDr1q0Gj2MWyb+oqAhdu3bVPnd1dUVRUZGEEZkPpVKJ\nnJwcPPXUU1KHIok33ngDy5cvR7NmZvFPVTL5+fno2LEjpk2bhsDAQMycOROlpaVShyWJdu3aYcGC\nBejWrRsef/xxtG3bFmFhYVKHJalLly7BxcUFAODi4oJLly4Z3Mcs/kfZ+tf52qhUKowfPx6xsbFw\ndHSUOhyT27FjBzp16gS5XG7TrX4AKC8vR3Z2NubMmYPs7Gw4ODjU66u9NcrLy8OKFSugVCpx4cIF\nqFQqxMfHSx2W2ZDJZPXKqWaR/Fn/X9ODBw8wbtw4TJo0CWPGjJE6HElkZGQgKSkJbm5ueOGFF/Dz\nzz9j8uTJUoclCVdXV7i6uqJfv34AgPHjxyM7O1viqKRx9OhRPP3002jfvj1atGiBP//5z8jIyJA6\nLEm5uLiguLgYAHDx4kV0qsdanmaR/Fn/r0sIgZdffhne3t6YP3++1OFI5sMPP0RhYSHy8/ORmJiI\noUOHYuPGjVKHJYnOnTuja9euOHv2LADgp59+go+Pj8RRScPLywuZmZm4e/cuhBD46aef4O3tLXVY\nkho9ejTi4uIAAHFxcfVrMAoz8eOPPwoPDw/h7u4uPvzwQ6nDkdS+ffuETCYTffr0EQEBASIgIEDs\n3LlT6rAklZ6eLkaNGiV1GJI6duyYCAoKEv7+/mLs2LHixo0bUockmWXLlglvb2/h6+srJk+eLO7f\nvy91SCYTHR0tunTpIuzs7ISrq6tYt26duHbtmhg2bJjo1auXCA8PFyUlJQaPY1Zr+BIRkWmYRbcP\nERGZFpM/EZENYvInIrJBTP5ERDaIyZ/MSnFxMaKjo9GzZ08EBQUhKioK586d076+YsUKPPbYY7h1\n65aEUdZu6tSp+P7777XPExMT8eGHHzboGEuWLAGgu7iRZpvGyy+/jICAAPj7+2Ps2LG4efPmI0RN\ntojJn8yGEAJjx47F0KFDcf78eRw9ehQfffSRzq3qCQkJCA8Pxw8//CBhpLV7+M7KlJQUjBgxol77\nHjt2DPPmzcP169exbds2vPvuuzW2vfPOOwDUF8Fjx44hNzcXTz75pHYpVKL6Mul8/kR1SUtLQ8uW\nLTFr1iztNn9/f+3jvLw8PHjwAH/729/w/vvvY+rUqXUeT6lUIjIyEsHBwcjIyEBQUBCmTJmCJUuW\n4MqVK4iPj9feMauxYcMGbN26FaWlpTh37hwWLFiAsrIyfP3112jVqhV+/PFHODs749ixY5g9ezbu\n3r0Ld3d3rFu3Dm3bttU5lhACx44dg1wuR0xMDPLz85Gfn4+CggJ8+umnyMjIQGpqKp544gls374d\nAQEB+Mtf/oKnn34a5eXlWL16NQDo3ebk5KQ9x927d9GrV69Gf+5km9jyJ7Nx8uRJ9O3bt9bXExMT\n8dxzz2HAgAE4f/48Ll++bPCYeXl5ePPNN3H69GmcOXMGmzdvxoEDB/Dxxx/X2h3zyy+/YMuWLThy\n5AjeeecdtG7dGtnZ2QgODtbeYTx58mQsX74cx48fh5+fX41uGQDIycnRzs4KqCdnS0tLQ1JSEiZN\nmoTw8HDk5ubiscceQ3JyMo4fP45//etfeOmllzB8+HAsXrxY7zaNadOmoUuXLsjNzcWMGTMMfhZE\n1TH5k9kwNBlVYmIiJkyYAAAYM2YMvv32W4PHdHNzg4+PD2QyGXx8fLSzP/r6+kKpVOqNITQ0FA4O\nDujQoQPatm2rXUTGz88PSqUSt27dws2bNxESEgJAPYXu3r17a7yP6l0+MpkMI0aMQPPmzeHr64vK\nykpEREToHLdPnz5YsWIF2rVrh2effRZ///vf9W7TWL9+PS5cuAB/f3988MEHBj8LouqY/Mls+Pj4\nICsrS+9rJ06cwLlz5xAWFgY3NzckJiYiISHB4DFbtWqlfdysWTO0bNlS+7i8vLxe+2ie17ZPbTfJ\n7969G8OHD9c+r35uOzs7nXNUP+77779f41j6tmn2jY6OxpEjR/S+TlQbJn8yG0OHDsW9e/ewZs0a\n7bbc3Fzs378fCQkJWLJkibbfvKioCBcuXEBBQQGKioqabD73umY70bzWunVrODs7Y//+/QCAr776\nCgqFQud3b968ifLy8hqLbjSV8+fPa2NKSkqCXC43ynnIenHAl8zKli1bMH/+fCxbtgz29vZwc3PD\nZ599hs2bN2Pnzp06vzt27Fhs3rwZoaGhaNFC/z/lh7uSqj/X18308FzoDz/WPI+Li8Ps2bNRWloK\nd3d3rF+/Xuc4u3fvRnh4eL3P3ZA1LYQQmDp1qrbcNSgoSDsQTFRfnNiNLN7q1avRvXt3jBw5UupQ\ntGbOnImZM2eif//+UodCpBeTPxGRDWKfPxGRDWLyJyKyQUz+REQ2iMmfiMgGMfkTEdkgJn8iIhv0\n/4qV3Dpe155RAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x1e37810>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch7.ipynb b/Chemical_Reaction_Engineering/ch7.ipynb new file mode 100755 index 00000000..6785eea5 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch7.ipynb @@ -0,0 +1,233 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 7 : Design for Parallel Reactions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.2 page no : 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "#Initial Concentration(mol/litre)eactant in combined feed\n", + "CAo = 10.\n", + "CBo = 10. \n", + "XA = 0.9; # conversion\n", + "CAf = CAo*(1-XA);\n", + "CA = CAf;\n", + "\n", + "# Calculations\n", + "def f4(CA): \n", + "\t return 1./(1+CA**0.5)\n", + "\n", + "Qp = (-1./(CAo-CAf))* quad(f4,CAo,CAf)[0]\n", + "\n", + "CRf = 9*Qp;\n", + "CSf = 9*(1-Qp)\n", + "# Results\n", + "print \" Part a\"\n", + "print \" For Plug Flow\"\n", + "print \" Concentration of R in the product stream is %.2f mol/litre\"%(CRf)\n", + "print \" Csf is %.2f mol/litre\"%(CSf)\n", + "\n", + "Qm = CA/(CA+CA**1.5);\n", + "CRf = 9*Qm;\n", + "Csf = 9*(1-Qm)\n", + "print \" Part b\"\n", + "print \" For Mixed Flow\"\n", + "print \" Concentration of R in the product stream is %.2f mol/litre \"%(CRf)\n", + "print \" Csf is %.2f mol/litre\"%(Csf)\n", + "\n", + "CAo = 19.\n", + "CB = 1;\n", + "\n", + "def f5(CA): \n", + "\t return CA/(CA+CB**1.5)\n", + "\n", + "Q = -1./(CAo-CAf)* quad(f5,CAo,CAf)[0]\n", + "CRf = 9*Q;\n", + "Csf = 9*(1-Q)\n", + "print \" Part c\"\n", + "print \" For Plug flow A Mixed flow B\"\n", + "print \" Concentration of R in the product stream is %.2f mol/litre\"%(CRf)\n", + "print \" Csf is %.2f mol/litre\"%(Csf)\n", + "print ('The result for plug flow varies as there seems to be typographical error in integration done in book')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " For Plug Flow\n", + " Concentration of R in the product stream is 2.86 mol/litre\n", + " Csf is 6.14 mol/litre\n", + " Part b\n", + " For Mixed Flow\n", + " Concentration of R in the product stream is 4.50 mol/litre \n", + " Csf is 4.50 mol/litre\n", + " Part c\n", + " For Plug flow A Mixed flow B\n", + " Concentration of R in the product stream is 7.85 mol/litre\n", + " Csf is 1.15 mol/litre\n", + "The result for plug flow varies as there seems to be typographical error in integration done in book\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.3 page no : 162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "CAo = 2; # decomposition of A\n", + "CA = 0.5;\n", + "CAf = 0.;\n", + "\n", + "Csf = (CAo-CA)*2*CA/(1+CA)**2;\n", + "\n", + "print \" Part a\"\n", + "print \" For Mixed Flow Reactor\"\n", + "print \" Maximum expected Cs is %.3f\"%(Csf)\n", + "\n", + "# Calculations\n", + "def f12(CA): \n", + "\t return 2*CA/(1+CA)**2\n", + "\n", + "Csf = -1* quad(f12,CAo,CAf)[0]\n", + "\n", + "# Results\n", + "print \" Part b\"\n", + "print \" For Plug Flow\"\n", + "print \" Maximum expected concentration of S is %.3f \"%(Csf)\n", + "\n", + "CA = 1.;\n", + "Csf = (CAo-CA)*2*CA/(1+CA)**2;\n", + "\n", + "print \"Part c\"\n", + "print \" For MFR with separation and recycle\" \n", + "print \" Concentration of Csf is %.2f\"%(Csf)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " For Mixed Flow Reactor\n", + " Maximum expected Cs is 0.667\n", + " Part b\n", + " For Plug Flow\n", + " Maximum expected concentration of S is 0.864 \n", + "Part c\n", + " For MFR with separation and recycle\n", + " Concentration of Csf is 0.50\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.4 page no : 164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from scipy.integrate import quad \n", + "\n", + "# Variables\n", + "CAo = 2. # based on example 7.3\n", + "CA = 1.\n", + "Q = 0.5\n", + "\n", + "# Calculations\n", + "Cs1 = Q*(CAo-CA);\n", + "\n", + "def f6(CA): \n", + "\t return 2*CA/(1+CA)**2\n", + "\n", + "Cs2 = -1* quad(f6,1,0)[0]\n", + "\n", + "#Total amount of CS formed is\n", + "Cs = Cs1+Cs2;\n", + "\n", + "# Results\n", + "print \"Mixed flow followed by plug flow would be best\"\n", + "print \" Total amount of CS formed is %.3f mol/litre\"%(Cs)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Mixed flow followed by plug flow would be best\n", + " Total amount of CS formed is 0.886 mol/litre\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 5 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch8.ipynb b/Chemical_Reaction_Engineering/ch8.ipynb new file mode 100755 index 00000000..c66d684b --- /dev/null +++ b/Chemical_Reaction_Engineering/ch8.ipynb @@ -0,0 +1,101 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8 : Potpourri of Multiple Reactions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3 page no : 198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "CAo = 185. \n", + "CA = 100.\n", + "t = 30.\n", + "\n", + "# Calculations\n", + "K123 = math.log(CAo/CA)/t;\n", + "m1 = 2.;\n", + "k2 = m1/CAo;\n", + "\n", + "##From the initial rate of formation of R\n", + "m2 = 1.3;\n", + "k1 = m2/CAo;\n", + "k3 = K123-k1-k2;\n", + "\n", + "k4 = 0.0001\n", + "while k4 <= 0.1:\n", + " Csmax = CAo*(k1/K123)*((K123/k4)**(k4/(k4-K123)));\n", + " if Csmax>31.8 and Csmax<32.2:\n", + " break\n", + " k4 += 0.0001\n", + " \n", + "k5 = 0.001\n", + "#similarly for T\n", + "while k5 <= 0.2:\n", + " Ctmax = CAo*(k3/K123)*((K123/k5)**(k5/(k5-K123)));\n", + " if Ctmax>9.95 and Ctmax<10.08:\n", + " break\n", + " k5 += .0001\n", + "\n", + "# Results\n", + "print \" The rate constants are\"\n", + "print \" k1 = %.4f min**-1\"%(k1)\n", + "print \" k2 = %.4f min**-1\"%(k2)\n", + "print \" k3 = %.4f min**-1\"%(k3)\n", + "print \" k4 = %.4f min**-1\"%(k4)\n", + "print \" k5 = %.4f min**-1\"%(k5)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The rate constants are\n", + " k1 = 0.0070 min**-1\n", + " k2 = 0.0108 min**-1\n", + " k3 = 0.0027 min**-1\n", + " k4 = 0.0099 min**-1\n", + " k5 = 0.0157 min**-1\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/ch9.ipynb b/Chemical_Reaction_Engineering/ch9.ipynb new file mode 100755 index 00000000..681066e0 --- /dev/null +++ b/Chemical_Reaction_Engineering/ch9.ipynb @@ -0,0 +1,405 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 9 : Temperature and Pressure Effects" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.1 page no : 209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables\n", + "CpA = 35. # j/mol.K\n", + "CpB = 45. # j/mol.K\n", + "CpR = 70. # j/mol.K\n", + "T1 = 25. # C\n", + "T2 = 1025. # C\n", + "Hr = -50000.\n", + "\n", + "# Calculations\n", + "#Enthalpy balance for 1mol A,1 mol B,2 mol R\n", + "nA = 1.\n", + "nB = 1.\n", + "nR = 2.\n", + "dH = nA*CpA*(T1-T2)+nB*CpB*(T1-T2)+(Hr)+nR*CpR*(T2-T1);\n", + "\n", + "# Results\n", + "print \" dHJ at temperature 1025C is %.f \"%(dH)\n", + "if dH>0 :\n", + " print \"Reaction is Exothermic\"\n", + "else:\n", + " print \"Reaction is endothermic at 1025OC\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " dHJ at temperature 1025C is 10000 \n", + "Reaction is Exothermic\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.2 page no : 213" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "%pylab inline\n", + "\n", + "import math \n", + "from matplotlib.pyplot import *\n", + "from numpy import *\n", + "\n", + "Ho = -75300. # J/mol\n", + "Go = -14130. # J/mol\n", + "R = 8.3214\n", + "T1 = 298.\n", + "\n", + "# Calculations\n", + "#With all specific heais alike,dCp = 0\n", + "Hr = -Ho;\n", + "K298 = math.exp(-Go/(R*T1));\n", + "\n", + "\n", + "#Taking different values of T\n", + "T1 = array([2,15,25,35,45,55,65,75,85,95]) #degree celcius\n", + "T = array([278,288,298,308,318,328,338,348,358,368]) #kelvin\n", + "\n", + "XAe = zeros(10)\n", + "\n", + "for i in range(10):\n", + " K = K298*math.exp((Hr/R)*((1./T[i])-(1./298)));\n", + " XAe[i] = K/(K+1);\n", + "\n", + "# Results\n", + "plot(T1,XAe)\n", + "xlabel(\"Temperature, C\")\n", + "ylabel(\"XAe\")\n", + "print (\" From the graph we see temp must stay below 78 C if conversion of 75% or above is expected\")\n", + "show()\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + " From the graph we see temp must stay below 78 C if conversion of 75% or above is expected" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEMCAYAAAArnKpYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHXeB/DP6JCloqbrBWdoUYGBEYRhQbN0GysaNAWv\nib1yN1ZdwrLSXZ/2afMRnicvtO6mRe6SrdkVKTWlEjSssRIBFTK8rKA5OaCRmnjJEhjO88eJIyMg\ntzOcuXzer9d5OZefZ76cl86H3++c3++oBEEQQEREBKCL0gUQEZHzYCgQEZGEoUBERBKGAhERSRgK\nREQkYSgQEZFE9lD4wx/+gIEDByI0NLTZNk8++SQCAgIQFhaG4uJiuUsgIqJ2kj0UEhISkJOT0+z7\n27dvx/Hjx1FWVoZXX30VSUlJcpdARETtJHsojB07Frfffnuz72dlZeH3v/89AGDUqFGoqqpCZWWl\n3GUQEVE7qDv7AysqKuDr6ys912q1KC8vx8CBA+3aqVSqzi6NiMgtdGShik4PBaBxwc0FQHM/2L59\nwNWrQF0dIAjin/XbzZ7L1bat+6mpEbfq6uvbtWv2z5t7rboaqKpKRteuyaiuFvfj5QXccou4det2\n/XHD7cbXu3UDevUCevcG+vSx3258rWdPwFkzOTk5GcnJyUqX4RR4LK7jsbiuo79Qd3ooaDQaWK1W\n6Xl5eTk0Gk2b9hEVJXdVzi05WdyA6yHTllC5dk3cLl8GqqrE7cwZ8c+LF6+/Vr/9/LMYIDeGR1MB\n0tRrvXoBXXhdG5FL6vRQiI2NRVpaGuLj45Gfn48+ffo0Gjqi5qlU13/7d5SaGuDSpcZh0TBATpxo\n+vWqKuDKFcDbu+kAGTAACAwUt4AAwMfHeXslRJ5I9lCYNWsWdu/ejXPnzsHX1xcpKSmoqakBACQm\nJmLChAnYvn07/P390aNHD7z++utyl+B2jEZjp36elxfQr5+4tYfNZt8raRgep08De/cCb7wBlJWJ\nw4D+/vZBUf+4b9/G++7sY+HMeCyu47GQj8pZl85WqVQdOllCrqGqSgyHsjKgtFTc6h+r1U2Hhb+/\neN6DiBrr6HcnQ4GckiAAZ882DoqyMuD4ceD22+2Dov7x0KHiSXUiT8VQII9TVweUlzfduzh1Chg8\nuOkexh13AF27Kl09kWMxFIgaqKkBLBb7oKh//P33wJAhgE4HmEzA5MnAoEFKV0wkL4YCUSv99JN4\n1dShQ8CHHwLbtwMhIcC0acCUKcCvf610hUQdx1Agaqdr14Bdu4AtW4Bt2wA/P2DqVDEkAgOVro6o\nfRgKRDKorQW++ALYvBn44APxRPa0aWJIjBjBuRTkOhgKRDKrqwMKCsQexObN4uzs+h5EVBRna5Nz\nYygQOZAgAAcPiuGwZYs4AW/qVHEbO5ZXM5HzYSgQdaL//Od6D8JqBeLixB7Evfc6dukRotZiKBAp\nxGIRA2LLFuDIEeDBB8UehMkEdO+udHXkqRgKRE7gzBlg61axB7FvHxAdLfYgHnxQXDWWqLMwFIic\nzPnzQFaW2IP4/HPx3MPUqeJQU3sXGSRqLYYCkRO7dEmcJLd5M7BzJxAZKfYgJk8Wl+MgkhtDgchF\nXL0qBsPmzcDHHwNjxgAvv8yZ1CSvjn538oprok7SvbvYQ3jrLfEcxJ13Ar/5DfDSS+I9KIicAXsK\nRAo6dgz44x/FJTfWrQNCQ5WuiFwdewpELkynAz77DJgzR5zr8Nxz4j2yiZTCUCBSWJcuwLx5wNdf\ni5PjwsLEq5aIlMDhIyIn88EHwIIF4hyH1FSgTx+lKyJXwuEjIjczZQpw+LDYgwgJEUOCqLOwp0Dk\nxL74Qhxa0uuBtDTObaCWsadA5MbGjgW++krsMYSFAenp4tLeRI7CngKRiygpEXsNt9wiXr6q0yld\nETkj9hSIPERoKLBnDzBjBnD33cDzzwPV1UpXRe6GoUDkQrp2Fa9MKioC9u4VZ0Tn5ytdFbkTDh8R\nuShBADIzgYULgYceEnsO3t5KV0VK4/ARkYdSqYD4eODQIXE11pAQcaE9oo5gT4HITeTmAomJwKhR\nwOrVwIABSldESnDKnkJOTg6CgoIQEBCA1NTURu9fuHABU6ZMQVhYGEaNGoXDhw87ogwij3L//eIV\nSlqteFL6jTfEISaitpC9p2Cz2aDT6ZCbmwuNRoOoqChkZGQgODhYarN48WL06tULS5YswbFjx/D4\n448jNzfXvjD2FIjaragImDtXvNPbv/4FDBumdEXUWZyup1BYWAh/f3/4+fnBy8sL8fHx2LZtm12b\no0ePYty4cQAAnU4Hi8WCs2fPyl0KkceKiAAKC4EHHhCHk1atAmprla6KXIFa7h1WVFTA19dXeq7V\nalFQUGDXJiwsDFu2bMGYMWNQWFiIb7/9FuXl5ejfv79du+TkZOmx0WiE0WiUu1wit6VWA4sXi/eH\nTkwEMjLESW8REUpXRnIym80wm82y7U/2UFCpVC22+ctf/oKnnnoKBoMBoaGhMBgM6Nq1a6N2DUOB\niNpn2DDgk0/EcwwxMcCjjwLJyeKd4Mj13fgLc0pKSof2J/vwkUajgdVqlZ5brVZotVq7Nt7e3li/\nfj2Ki4vx5ptv4uzZsxg6dKjcpRDRL1QqMQxKSgCrVTwRvWuX0lWRM5I9FCIjI1FWVgaLxYLq6mpk\nZmYiNjbWrs3FixdR/cv8/HXr1uGee+5Bz5495S6FiG4wcKA4jLRmDZCQIG680xs1JHsoqNVqpKWl\nwWQyQa/XY+bMmQgODkZ6ejrS09MBAEeOHEFoaCiCgoKwY8cOrFmzRu4yiOgmJk4U79lw8SLwyCOA\nzaZ0ReQsOHmNyIP9/DMwfvz1+zW04pQgOTmnuySViFzHrbcCW7eKq68uW6Z0NeQMZL/6iIhcS+/e\nQHa2uBz3oEHipDfyXAwFIoKPD5CTA9xzD9C/PxAXp3RFpBSGAhEBAAIDgawsYMIE4Fe/EnsO5Hl4\nToGIJFFRwNtvi7OguU6lZ2IoEJEdkwn4+9/Fq5IazEMlD8HhIyJq5JFHgMpKMSC+/BLo21fpiqiz\ncJ4CETXrz38G8vLEG/hwrSTX0NHvToYCETWrrg743e/Emc8ffCCuvErOjZPXiMhhunQB1q8HqqvF\n5bf5e5r7YygQ0U3dcguwebO4wuqSJUpXQ47GziARtahnT+Djj8W5CwMHAgsWKF0ROQpDgYhapX9/\nYMcOYMwYMRgeekjpisgRGApE1GpDhog9hgceEEPil1utkxvhOQUiapPwcCAzE5g5EyguVroakhtD\ngYjabNw4YO1a8WY933yjdDUkJw4fEVG7TJ9+fdbznj3AgAFKV0Ry4OQ1IuqQ554TT0B/9pl4lRIp\nizOaiUhRggDMmycunvfhh+K8BlIOQ4GIFFdbKy637e0NvPWWOBOalMFlLohIcWo1sHEjYLEAixcr\nXQ11BEOBiGTRvbs4fJSTA6xapXQ11F68+oiIZNO3rxgK9cthzJ6tdEXUVgwFIpKVry+QnQ3ce684\n6zkmRumKqC04fEREshs+XLz/wuzZQGGh0tVQWzAUiMgh7roL+Pe/gdhYoLRU6WqotTh8REQOExsL\nfP+9OOs5Lw/w8VG6ImoJQ4GIHGruXHE5jJgY4PPPgd69la6IbsYhw0c5OTkICgpCQEAAUlNTG71/\n7tw5xMTEIDw8HCEhIdiwYYMjyiAiJ/Hss8DYsUBcHPDzz0pXQzcj+4xmm80GnU6H3NxcaDQaREVF\nISMjA8HBwVKb5ORkXLt2DStWrMC5c+eg0+lQWVkJdYO7gnNGM5F7sdmA+HhxWYzMTKBrV6Urck9O\nN6O5sLAQ/v7+8PPzg5eXF+Lj47Ft2za7Nj4+Prh06RIA4NKlS+jXr59dIBCR++naVVwC4/x54Mkn\nxXAg5yP7N3FFRQV8fX2l51qtFgUFBXZt5s2bh3vvvReDBw/G5cuX8d577zW5r+TkZOmx0WiE0WiU\nu1wi6kS33gps3Qrccw+wbJm4wip1jNlshtlslm1/soeCSqVqsc3y5csRHh4Os9mMEydOIDo6GgcP\nHoS3t7ddu4ahQETuoXdvcXJb/aznefOUrsi13fgLc0pKSof2J/vwkUajgdVqlZ5brVZotVq7Nnl5\neZgxYwYAYNiwYRgyZAiOHTsmdylE5KR8fMTlMP7nf4AbRpdJYbKHQmRkJMrKymCxWFBdXY3MzEzE\nxsbatQkKCkJubi4AoLKyEseOHcPQoUPlLoWInFhgIJCVJV6ympendDVUT/bhI7VajbS0NJhMJths\nNsyZMwfBwcFIT08HACQmJuLZZ59FQkICwsLCUFdXhxdeeAF9+/aVuxQicnJRUcBrr4nLYRw6BNx2\nm9IVEW+yQ0SKmzkT8PcXTz5Tx/DOa0Tk8s6cAUaMAMxmcTE9aj+nm6dARNRWPj7A//4vkJgI1NUp\nXY1nYygQkVNITBTv9fzvfytdiWfj8BEROY2vvwbuvx8oKRHnMFDb8ZwCEbmVZ54BysuBd95RuhLX\nxFAgIrfy449ASAiQng488IDS1bgenmgmIrfSowewdi2QlAT89JPS1XgehgIROZ3x44HISOD555Wu\nxPNw+IiInBLnLrQPh4+IyC1x7oIyGApE5LQ4d6HzcfiIiJwa5y60DS9JJSK3x7kLrcdQICK3x7kL\nrccTzUTk9jh3ofMwFIjIJXDuQufg8BERuQzOXWgZh4+IyGNw7oLjMRSIyKVw7oJjcfiIiFwO5y40\nj5ekEpFH4tyFpjEUiMgjce5C03iimYg8EucuOAZDgYhcFucuyK9Vw0dXr16F1WqFTqfrjJoAcPiI\niFqHcxfsOXz4KCsrCwaDASaTCQBQXFyM2NjYdn8gEZGcOHdBXi2GQnJyMgoKCnD77bcDAAwGA775\n5huHF0ZE1FqcuyCfFkPBy8sLffr0sf9LXXgqgoicR5cuwKuvAn/9K1BZqXQ1rq3Fb/fhw4fjnXfe\nQW1tLcrKyrBgwQLcddddN/07OTk5CAoKQkBAAFJTUxu9v2rVKhgMBhgMBoSGhkKtVqOqqqr9PwUR\nebwRI4CEBOBPf1K6EtfW4onmH3/8EcuWLcPOnTsBACaTCUuWLMGtt97aZHubzQadTofc3FxoNBpE\nRUUhIyMDwcHBTbb/6KOPsHr1auTm5toXxhPNRNRG9XMXXn0ViI5WuhplOPxEc48ePbB8+XLs378f\n+/fvR2JiIl5++eVm2xcWFsLf3x9+fn7w8vJCfHw8tm3b1mz7d999F7NmzWpf9UREDXDuQsepW9Po\n7NmzeO+995CRkYHTp09jypQpzbatqKiAr6+v9Fyr1aKgoKDJtlevXsWOHTuwdu3aJt9PTk6WHhuN\nRhiNxtaUS0QebPx44De/AZYt84z5C2azGWazWbb9NRsKly5dwpYtW5CRkYHjx49j8uTJOHnyJCoq\nKm66Q5VK1eoP//DDDzFmzJhGJ7LrNQwFIqLWWr1aPMcwa5b7z1248RfmlJSUDu2v2eGjgQMHYsuW\nLUhJScGJEyfw97//HbfcckuLO9RoNLBardJzq9UKrVbbZNuNGzdy6IiIZFc/d+Gxxzh3oa2aDYUV\nK1agsrIS8+fPx8qVK3HixIlW7TAyMhJlZWWwWCyorq5GZmZmk5PdLl68iM8//xxxcXHtr56IqBmJ\niUBNDbB+vdKVuJZmQ+Hpp59GQUEB3n//fdhsNkyePBlnzpxBamoqSktLm92hWq1GWloaTCYT9Ho9\nZs6cieDgYKSnpyM9PV1qt3XrVphMJtx2223y/kRERBDnLqSnA88+y7kLbdHsJamnTp3CHXfcYfda\nSUkJMjIykJqaCpvN5tjCeEkqEcngv/4LOH0aePttpSvpHA67JNVoNDb68u/fvz++/fZbhIeHt/sD\niYg609KlwJ49wCefKF2Ja2g2FA4cOIBvvvkG4eHh2LVrF1avXo1Ro0Zh9OjR2LdvX2fWSETUbj16\nAK+8wrkLrdXijObVq1dj0aJFGDx4MPbu3Ws3B8GhhXH4iIhk9NBDQGCg+89dcNjw0YULF5CYmIjX\nX38d2dnZmD59OsaPH49du3a1+8OIiJSyerV44vnwYaUrcW7N9hSGDh2KpKQkLFy4EGq1OMftq6++\nQlJSEvz8/JCRkeHYwthTICKZrV0LZGQAu3eLVye5o45+dzYbClartcmhIkEQsG7dOvzxj39s94e2\nqjCGAhHJzGYD7r4bmDtX3NyRw0JBaQwFInKEgwfFFVRLSoCBA5WuRn4MBSKiNnLnuQsMBSKiNnLn\n+y44/H4KRETuhnMXmsdQICKPNGECEBEh3neBruPwERF5rNOngbAwwGx2n/sucPiIiKidBg8GUlJ4\n34WGGApE5NF43wV7HD4iIo9XP3fh6FGgXz+lq+kYXpJKRCSDpCTxqqRVq5SupGMYCkREMjhzRpy7\nUFwM3HB/MZfCUCAiksmSJUB5OfD660pX0n4MBSIimVy6BAQEALm5QGio0tW0Dy9JJSKSSa9ewH//\nN/Dss0pXohyGAhFRA0lJwKFDwOefK12JMhgKREQNdOsG/N//Ac88A3jiCDZDgYjoBg8/LC6Ut3Wr\n0pV0Pp5oJiJqQk4OsHCheDOeX+5I7BJ4opmIyAFMJsDHB9iwQelKOhd7CkREzSgsBKZOBUpLge7d\nla6mddhTICJykJEjgdGjgZdeUrqSzsOeAhHRTZSWAnfdBRw75hqL5TllTyEnJwdBQUEICAhAampq\nk23MZjMMBgNCQkJgNBodUQYRUYcFBgIzZgArVihdSeeQvadgs9mg0+mQm5sLjUaDqKgoZGRkIDg4\nWGpTVVWFu+++Gzt27IBWq8W5c+fwq1/9yr4w9hSIyEm40mJ5TtdTKCwshL+/P/z8/ODl5YX4+Hhs\n27bNrs27776LadOmQavVAkCjQCAiciY+PsD8+cDSpUpX4niyX31bUVEBX19f6blWq0VBQYFdm7Ky\nMtTU1GDcuHG4fPkynnrqKcyePbvRvpKTk6XHRqORw0xEpJjFi8XF8kpKnGuxPLPZDLPZLNv+ZA8F\nlUrVYpuamhoUFRVh165duHr1KkaPHo0777wTAQEBdu0ahgIRkZIaLpb34YdKV3Pdjb8wp6SkdGh/\nsg8faTQaWK1W6bnVapWGier5+vrigQcewG233YZ+/frht7/9LQ4ePCh3KUREsvKExfJkD4XIyEiU\nlZXBYrGguroamZmZiI2NtWsTFxeHL7/8EjabDVevXkVBQQH0er3cpRARycoTFsuTPRTUajXS0tJg\nMpmg1+sxc+ZMBAcHIz09Henp6QCAoKAgxMTEYMSIERg1ahTmzZvHUCAil1C/WN4N18+4DU5eIyJq\nI2deLM/pLkklInJ3JhMwaJB7LpbHngIRUTs462J57CkQESnAXRfLY0+BiKidSkuBu+8WF8vr21fp\nakQd/e5kKBARdUBSEtCzJ/C3vyldiYihQESkIGdbLI+hQESksOeeAyoqgNdfV7oShgIRkeIuXhTv\nu5Cbq/xiebz6iIhIYb17X18sz9Wxp0BEJINr14CgIODNN4GxY5Wrgz0FIiIn4C6L5TEUiIhk8vDD\nwNWrrr1YHoePiIhklJ0NLFqk3GJ5HD4iInIiMTGuvVgeewpERDJTcrE89hSIiJyMKy+Wx54CEZED\nKLVYHmc0ExE5KSUWy2MoEBE5KSUWy2MoEBE5sc5eLI+hQETkxDp7sTxefURE5MRcbbE89hSIiBys\nMxfLY0+BiMjJudJieQwFIqJO8PDDwI8/Ov9ieRw+IiLqJJ2xWB6Hj4iIXIQrLJbHngIRUSdy9GJ5\n7CkQEbmQ+sXyXn5Z6Uqa5pBQyMnJQVBQEAICApCamtrofbPZjN69e8NgMMBgMOD55593RBlERE5p\n2TJg1Srghx+UrqQx2YePbDYbdDodcnNzodFoEBUVhYyMDAQHB0ttzGYz/vGPfyArK6v5wjh8RERu\n7LHHAG9v+RfLc7rho8LCQvj7+8PPzw9eXl6Ij4/HtiauweIXPhF5sqVLgfXrgVOnlK7EnuwXRVVU\nVMDX11d6rtVqUVBQYNdGpVIhLy8PYWFh0Gg0WLVqFfR6faN9JScnS4+NRiOMRqPc5RIRKcLHR1xa\ne+nSji2WZzabYTabZatL9lBQqVQttomIiIDVakX37t2RnZ2NyZMno7S0tFG7hqFARORuFi8WF8s7\ndEhcYrs9bvyFOSUlpUM1yT58pNFoYLVapedWqxVardaujbe3N7r/ci3W+PHjUVNTgx+c8YwLEZED\nOeNiebKHQmRkJMrKymCxWFBdXY3MzEzExsbatamsrJTOKRQWFkIQBPTtzPvVERE5iaQk4OuvgS++\nULoSkezDR2q1GmlpaTCZTLDZbJgzZw6Cg4ORnp4OAEhMTMSmTZvwz3/+E2q1Gt27d8fGjRvlLoOI\nyCU0XCxvzx6gFSPwDsUZzURECrPZgIgIICUFmDy5Y/vindeIiNyAXIvlOd08BSIiajtnWSyPPQUi\nIidx+LB4TqGJaVutxuEjIiKScPiIiIhkw1AgIiIJQ4GIiCQMBSIikjAUiIhIwlAgIiIJQ4GIiCQM\nBSIikjAUiIhIwlAgIiIJQ4GIiCQMBSIikjAUiIhIwlAgIiIJQ4GIiCQMBSIikjAUiIhIwlAgIiIJ\nQ4GIiCQMBSIikjAUiIhIwlAgIiIJQ4GIiCQMBRdgNpuVLsFp8Fhcx2NxHY+FfBwSCjk5OQgKCkJA\nQABSU1Obbbdv3z6o1Wps2bLFEWW4Df6Dv47H4joei+t4LOQjeyjYbDY88cQTyMnJwZEjR5CRkYGj\nR4822e6ZZ55BTEwMBEGQuwwiImoH2UOhsLAQ/v7+8PPzg5eXF+Lj47Ft27ZG7V5++WVMnz4d/fv3\nl7sEIiJqL0Fm77//vjB37lzp+VtvvSU88cQTdm3Ky8sFo9Eo1NXVCY8++qiwefPmRvsBwI0bN27c\n2rF1hBoyU6lULbZ5+umnsXLlSqhUKgiC0OTwUVOvERGRY8keChqNBlarVXputVqh1Wrt2hw4cADx\n8fEAgHPnziE7OxteXl6IjY2VuxwiImoDlSDzr+S1tbXQ6XTYtWsXBg8ejJEjRyIjIwPBwcFNtk9I\nSMCkSZMwdepUOcsgIqJ2kL2noFarkZaWBpPJBJvNhjlz5iA4OBjp6ekAgMTERLk/koiI5NKhMxIO\nkp2dLeh0OsHf319YuXKl0uV0qlOnTglGo1HQ6/XC8OHDhTVr1giCIAjnz58X7r//fiEgIECIjo4W\nLly4oHClnae2tlYIDw8XJk6cKAiC5x6LCxcuCNOmTROCgoKE4OBgIT8/32OPxfLlywW9Xi+EhIQI\ns2bNEn7++WePORYJCQnCgAEDhJCQEOm1m/3sy5cvF/z9/QWdTifs2LGjxf073Yzm1s5zcFdeXl54\n8cUXcfjwYeTn5+OVV17B0aNHsXLlSkRHR6O0tBT33XcfVq5cqXSpnWbNmjXQ6/XSRQyeeiyeeuop\nTJgwAUePHsXXX3+NoKAgjzwWFosF69atQ1FREUpKSmCz2bBx40aPORYJCQnIycmxe625n/3IkSPI\nzMzEkSNHkJOTg/nz56Ouru7mH+CQKOuAvLw8wWQySc9XrFghrFixQsGKlBUXFyd88skngk6nE777\n7jtBEAThzJkzgk6nU7iyzmG1WoX77rtP+PTTT6Wegicei6qqKmHIkCGNXvfEY3H+/HkhMDBQ+OGH\nH4Samhph4sSJws6dOz3qWJw8edKup9Dcz758+XK70RaTySTs3bv3pvt2up5CRUUFfH19pedarRYV\nFRUKVqQci8WC4uJijBo1CpWVlRg4cCAAYODAgaisrFS4us6xcOFC/O1vf0OXLtf/qXrisTh58iT6\n9++PhIQEREREYN68efjxxx898lj07dsXf/rTn3DHHXdg8ODB6NOnD6Kjoz3yWNRr7mc/ffq03dWf\nrfk+dbpQaM08B09w5coVTJs2DWvWrIG3t7fdeyqVyiOO00cffYQBAwbAYDA0O2/FU45FbW0tioqK\nMH/+fBQVFaFHjx6Nhkc85VicOHECq1evhsViwenTp3HlyhW8/fbbdm085Vg0paWfvaXj4nSh0Jp5\nDu6upqYG06ZNw+zZszF58mQAYvp/9913AIAzZ85gwIABSpbYKfLy8pCVlYUhQ4Zg1qxZ+PTTTzF7\n9myPPBZarRZarRZRUVEAgOnTp6OoqAiDBg3yuGOxf/9+3HXXXejXrx/UajWmTp2KvXv3euSxqNfc\n/4kbv0/Ly8uh0Whuui+nC4XIyEiUlZXBYrGguroamZmZHjWpTRAEzJkzB3q9Hk8//bT0emxsLN54\n4w0AwBtvvCGFhTtbvnw5rFYrTp48iY0bN+Lee+/FW2+95ZHHYtCgQfD19UVpaSkAIDc3F8OHD8ek\nSZM87lgEBQUhPz8fP/30EwRBQG5uLvR6vUcei3rN/Z+IjY3Fxo0bUV1djZMnT6KsrAwjR468+c7k\nPgEih+3btwuBgYHCsGHDhOXLlytdTqf64osvBJVKJYSFhQnh4eFCeHi4kJ2dLZw/f16477773P5y\nu+aYzWZh0qRJgiAIHnssvvrqKyEyMlIYMWKEMGXKFKGqqspjj0Vqaqp0Servfvc7obq62mOORXx8\nvODj4yN4eXkJWq1WWL9+/U1/9mXLlgnDhg0TdDqdkJOT0+L+ZZ/RTERErsvpho+IiEg5DAUiIpIw\nFIiISMJQICIiCUOBnNr58+dhMBhgMBjg4+MDrVYLg8GAiIgI1NbWKl2end27d2Pv3r2d8llXrlxB\nYmIi/P39ERkZiXHjxqGwsLBTPpvcm+xLZxPJqV+/figuLgYApKSkwNvbG4sWLVKsHpvNhq5duzb5\n3meffQZvb2+MHj261furra2FWt32/4Zz587FsGHDcPz4cQDikihHjhxp836IbsSeArkUQRBw4MAB\nGI1GREZGIiYmRprJaTQasWjRIkRFRSE4OBj79u3DlClTEBgYiCVLlgAQvzyDgoLwyCOPQK/XY8aM\nGfjpp58A4Kb7XbhwIaKiorBmzRp89NFHuPPOOxEREYHo6Gh8//33sFgsSE9Px4svvoiIiAh8+eWX\nePTRR7GW5iwVAAADdklEQVR582ap9p49ewIAzGYzxo4di7i4OISEhKCurg6LFy/GyJEjERYWhldf\nffWmx+DEiRMoLCzE888/L73m5+eHCRMmyHegyWMxFMilCIKAJ598Eps2bcL+/fuRkJCAv/71rwDE\nNV26deuGffv2ISkpCXFxcfjXv/6FQ4cOYcOGDbhw4QIAoLS0FI8//jiOHDmCXr16Ye3ataitrcWC\nBQuwefPmJvdbU1ODffv2YdGiRRgzZgzy8/NRVFSEmTNn4oUXXoCfnx8ee+wxLFq0CEVFRRgzZkyj\nNWYaPi8uLsZLL72E//znP3jttdfQp08fFBYWorCwEOvWrYPFYmn2GBw+fBjh4eEeu7YPORaHj8il\nXLt2DYcOHUJ0dDQAcThn8ODB0vv1S6KEhIQgJCREWjly6NChsFqt6NWrF3x9faUhnkceeQQvvfQS\nYmJicPjwYdx///1N7nfmzJnSY6vVioceegjfffcdqqurMXToUOm91s4FHTlyJH79618DAHbu3ImS\nkhJs2rQJAHDp0iUcP34cfn5+Tf5dhgE5EkOBXIogCBg+fDjy8vKafL9bt24AgC5dukiP65/Xn5hu\n+KUqCAJUKlWL++3Ro4f0eMGCBfjzn/+MiRMnYvfu3UhOTm7y76jVaumGJnV1daiurm5yfwCQlpYm\nBV1L9Ho9Dh48iLq6OrslxYnkwH9R5FK6deuGs2fPIj8/H4C4omxbT7CeOnVK+vvvvvsuxo4dC51O\nd9P9NuwBXLp0SepFbNiwQXrd29sbly9flp77+fnhwIEDAICsrCzU1NQ0WY/JZJKGsABxeOvq1asA\nxMXfbjRs2DBERkZi6dKl0msWiwXbt29v/UEgagZDgVxK165dsWnTJjzzzDMIDw+HwWBo8jLQm60p\nr9Pp8Morr0Cv1+PixYtISkqCl5fXTffbcF/JycmYMWMGIiMj0b9/f+m9SZMm4YMPPoDBYMCePXsw\nb9487N69G+Hh4cjPz5dONN+4v7lz50Kv1yMiIgKhoaFISkqCzWbDuXPnmj0Or732GiorK+Hv74/Q\n0FAkJCRIQ2VEHcEF8cijWCwWTJo0CSUlJUqX0qKPP/4YJ0+exBNPPKF0KeRBeE6BPI6rnKh98MEH\nlS6BPBB7CkREJOE5BSIikjAUiIhIwlAgIiIJQ4GIiCQMBSIikjAUiIhI8v/AgsgbyFsP+wAAAABJ\nRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x31ac650>" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.3 page no : 217" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "# Variables \n", + "\n", + "# from example 9.2\n", + "XA = 0.581; \n", + "t = 1. #min\n", + "XAe = 0.89;\n", + "XAe1 = 0.993;\n", + "T1 = 338.\n", + "T2 = 298.\n", + "R = 8.314\n", + "\n", + "\n", + "# Calculations\n", + "k1_338 = -(XAe/t)*math.log(1-(XA/XAe));\n", + "XA1 = 0.6;\n", + "t1 = 10. #min\n", + "\n", + "k1_298 = -(XAe1/t1)*math.log(1-(XA1/XAe1));\n", + "E1 = (R*math.log(k1_338/k1_298))*(T1*T2)/(T1-T2)\n", + "ko = k1_338/(math.exp(-E1/(R*T1)))\n", + "\n", + "# Results\n", + "print \" The rate constants are k = exp[75300/RT-24.7] min-1\"\n", + "print \" k1 = exp[17.2-48900/RT] min-1\"\n", + "print \" k2 = exp[41.9-123800/RT] min-1 \"\n", + "print \" E1 = %.2f\"%E1\n", + "print \" K0 = %.2f\"%ko" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The rate constants are k = exp[75300/RT-24.7] min-1\n", + " k1 = exp[17.2-48900/RT] min-1\n", + " k2 = exp[41.9-123800/RT] min-1 \n", + " E1 = 48679.81\n", + " K0 = 31411847.30\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.4 page no : 229" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "CAo = 4. #mol/litre\n", + "FAo = 1000. #mol/min\n", + "A = 0.405 #litre/mol.min\n", + "\n", + "# Calculations\n", + "t = CAo*A;\n", + "V = FAo*A;\n", + "\n", + "# Results\n", + "print \" Part a\"\n", + "print \" The space time needed is %.2f min\"%(t)\n", + "print \" The Volume needed is %.f litres\"%(V)\n", + "\n", + "\n", + "# Note : We do not have value of 'rA'. so part B can not be calculated and plotted" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " The space time needed is 1.62 min\n", + " The Volume needed is 405 litres\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.5 pageno : 231" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "CAo = 4. # mol/liter\n", + "FAo = 1000. # mol/min\n", + "XA = 0.8; # %\n", + "Cp = 250. #cal/molA.K\n", + "Hr = 18000. #cal/molA\n", + "rA = 0.4;\n", + "\n", + "# Calculations and Results\n", + "V = FAo*XA/rA;\n", + "\n", + "print \" Part a\"\n", + "print \" The size of reactorlitres) needed is %.f litres\"%(V)\n", + "\n", + "slope = Cp/Hr;\n", + "#Using graph\n", + "Qab1 = Cp*20; #cal/molA\n", + "Qab = Qab1*1000; #cal/min\n", + "Qab = Qab*0.000070; #KW\n", + "\n", + "print \" Part b\"\n", + "print \" Heat Duty of precooler is %.2f kW\"%(Qab)\n", + "\n", + "Qce1 = Cp*37; #cal/molA fed\n", + "Qce = Qce1*1000; #cal/min\n", + "Qce = Qce*0.000070; #KW\n", + "\n", + "print \" Heat Duty of postcooler is %.2f kW\"%(Qce)\n", + "\n", + "# answers may vary because of rounding error." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Part a\n", + " The size of reactorlitres) needed is 2000 litres\n", + " Part b\n", + " Heat Duty of precooler is 350.00 kW\n", + " Heat Duty of postcooler is 647.50 kW\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.6 pageno : 233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "FAo = 1000. #mol/min\n", + "Area = 1.72;\n", + "\n", + "# Calculations\n", + "V = FAo*Area;\n", + "\n", + "# Results\n", + "print \" The volume of adiabatic plug flow reactor is %.f litres\"%(V),\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The volume of adiabatic plug flow reactor is 1720 litres\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.7 page no : 234" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "FAo = 1000. #mol/min\n", + "Area = (0.8-0)*1.5;\n", + "\n", + "# Calculations\n", + "V = FAo*Area;\n", + "\n", + "# Results\n", + "print \" The volume required is %.f litres\"%(V),\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The volume required is 1200 litres\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Chemical_Reaction_Engineering/screenshots/CA0W.FAOVS4ln1.(1-Xa)-3Xa.png b/Chemical_Reaction_Engineering/screenshots/CA0W.FAOVS4ln1.(1-Xa)-3Xa.png Binary files differnew file mode 100755 index 00000000..1405b907 --- /dev/null +++ b/Chemical_Reaction_Engineering/screenshots/CA0W.FAOVS4ln1.(1-Xa)-3Xa.png diff --git a/Chemical_Reaction_Engineering/screenshots/t,s_vs_E,s**-1_.png b/Chemical_Reaction_Engineering/screenshots/t,s_vs_E,s**-1_.png Binary files differnew file mode 100755 index 00000000..7028bba8 --- /dev/null +++ b/Chemical_Reaction_Engineering/screenshots/t,s_vs_E,s**-1_.png diff --git a/Chemical_Reaction_Engineering/screenshots/t_minvsE.png b/Chemical_Reaction_Engineering/screenshots/t_minvsE.png Binary files differnew file mode 100755 index 00000000..fe8f6d5e --- /dev/null +++ b/Chemical_Reaction_Engineering/screenshots/t_minvsE.png |