diff options
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb')
-rwxr-xr-x | Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb | 160 |
1 files changed, 160 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb new file mode 100755 index 00000000..e5accd29 --- /dev/null +++ b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb @@ -0,0 +1,160 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:311c74298b5b14a54f4d1278f9c15d5918adb65c1f1cd4717c56b8ba91310447" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11 : Liquefaction of Gases" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.1 Page No : 195" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Given\n", + "P1 = 8.74;#Initial pressure in Kgf/sq cm\n", + "P2 = 2.41;#Final pressure in Kgf/sq cm\n", + "H1 = 327.13;#Enthalpy of inlet stream in Kcal/Kg\n", + "Hl = 26.8;#Enthalpy of liquid at the final condition in Kcal/Kg\n", + "H2 = H1#Enthalpy of exit stream in Kcal/Kg ,math.since throttling is isenthalpic\n", + "Hg = 340.3;#Enthalpy of gas at the final condition in Kcal/Kg\n", + "vl = 152*10**-5;#Specific volume of liquid at the final condition in cubic meter/Kg\n", + "vg = 0.509;#Specific volume of gas at the final condition in cubic meter/Kg\n", + "v1 = 0.1494;#Initial specific volume in cubic meter/Kg\n", + "\n", + "#To Calculate the dryness fraction of exit stream and the ratio of upstream to downstream diameters\n", + "#(i)Calculation of the dryness fraction of exit stream\n", + "#From equation 3.13(a) (page no 82)\n", + "x = (H2- Hl)/(Hg-Hl);\n", + "print \"i)The dryness fraction of the exit stream is %f\"%(x);\n", + "\n", + "#(ii)Calculation of the ratio of upstream to downstream pipe diameters\n", + "#From equation 3.13(b) (page no 82)\n", + "v2 = (vl*(1-x))+(x*vg);#Total specific volume at the final condition in cubic meter/Kg\n", + "#u1 = u2; math.since KE changes are negligible\n", + "#From continuity equation: A2/A1 = D2**2/D1**2 = v2/v1 ; let required ratio,r = D2/D1;\n", + "r = (v2/v1)**(1/2);\n", + "print \" ii)The ratio of upstream to downstream diameters is %f\"%(r);\n", + "#end\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "i)The dryness fraction of the exit stream is 0.957990\n", + " ii)The ratio of upstream to downstream diameters is 1.000000\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.2 Page No : 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "P1 = 1000*1.033*10**4;#Initial pressure in Kgf/sq m\n", + "P2 = 1*1.033*10**4;#Final pressure in Kgf/sq m\n", + "T1 = 300.0;#Inital temperature in K\n", + "Cp = 7.0;#Specific heat of the gas in Kcal/Kgmole K\n", + "#Gas obeys the relation: v = (R*T)/P+(b*(T**2))\n", + "b = 5.4392*10**-8;#in cubic meter/Kgmole K**2\n", + "\n", + "#To Calculate the temperature of the throttled gas\n", + "#From equation (a) (page no 212);which we got after integration \n", + "T2 = 1/((1/T1)-((b/Cp)*((P2-P1)/427)));\n", + "print \"The throttled gas is cooled to %f K\"%(T2);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The throttled gas is cooled to 284.000191 K\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.3 Page No : 203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "#From the figure 11.8 (page no 216) & from figure A.2.7\n", + "H3 = 0.0;\n", + "H7 = -47.0;#in Kcal/Kg\n", + "H6 = -93.0;#in Kcal/Kg\n", + "H8 = 7.0;#in Kcal/Kg\n", + "\n", + "#To Calculate the fraction of air liquified at steady state and temperature of air before throttling\n", + "#(i)Calculation of fraction of air liquified\n", + "#From equation 11.3 (page no 215)\n", + "x = (H8-H3)/(H8-H6);\n", + "print \"The fraction of air liquified is %f\"%(x);\n", + "\n", + "#(ii)Calculation of temperature \n", + "H4 = H3+(H7*(1-x))-(H8*(1-x));#enthalpy of the gas before throttling\n", + "#From figure A.2.7 temperature corresponds to pressure 160 atm and the enthalpy H4 is\n", + "T = -112;\n", + "print \" The temperature of air before throttling is %d deg celsius\"%(T);\n", + "#end\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The fraction of air liquified is 0.070000\n", + " The temperature of air before throttling is -112 deg celsius\n" + ] + } + ], + "prompt_number": 3 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |