summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb')
-rwxr-xr-xChemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb160
1 files changed, 160 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb
new file mode 100755
index 00000000..e5accd29
--- /dev/null
+++ b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch11_1.ipynb
@@ -0,0 +1,160 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:311c74298b5b14a54f4d1278f9c15d5918adb65c1f1cd4717c56b8ba91310447"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11 : Liquefaction of Gases"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1 Page No : 195"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Given\n",
+ "P1 = 8.74;#Initial pressure in Kgf/sq cm\n",
+ "P2 = 2.41;#Final pressure in Kgf/sq cm\n",
+ "H1 = 327.13;#Enthalpy of inlet stream in Kcal/Kg\n",
+ "Hl = 26.8;#Enthalpy of liquid at the final condition in Kcal/Kg\n",
+ "H2 = H1#Enthalpy of exit stream in Kcal/Kg ,math.since throttling is isenthalpic\n",
+ "Hg = 340.3;#Enthalpy of gas at the final condition in Kcal/Kg\n",
+ "vl = 152*10**-5;#Specific volume of liquid at the final condition in cubic meter/Kg\n",
+ "vg = 0.509;#Specific volume of gas at the final condition in cubic meter/Kg\n",
+ "v1 = 0.1494;#Initial specific volume in cubic meter/Kg\n",
+ "\n",
+ "#To Calculate the dryness fraction of exit stream and the ratio of upstream to downstream diameters\n",
+ "#(i)Calculation of the dryness fraction of exit stream\n",
+ "#From equation 3.13(a) (page no 82)\n",
+ "x = (H2- Hl)/(Hg-Hl);\n",
+ "print \"i)The dryness fraction of the exit stream is %f\"%(x);\n",
+ "\n",
+ "#(ii)Calculation of the ratio of upstream to downstream pipe diameters\n",
+ "#From equation 3.13(b) (page no 82)\n",
+ "v2 = (vl*(1-x))+(x*vg);#Total specific volume at the final condition in cubic meter/Kg\n",
+ "#u1 = u2; math.since KE changes are negligible\n",
+ "#From continuity equation: A2/A1 = D2**2/D1**2 = v2/v1 ; let required ratio,r = D2/D1;\n",
+ "r = (v2/v1)**(1/2);\n",
+ "print \" ii)The ratio of upstream to downstream diameters is %f\"%(r);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The dryness fraction of the exit stream is 0.957990\n",
+ " ii)The ratio of upstream to downstream diameters is 1.000000\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2 Page No : 199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "P1 = 1000*1.033*10**4;#Initial pressure in Kgf/sq m\n",
+ "P2 = 1*1.033*10**4;#Final pressure in Kgf/sq m\n",
+ "T1 = 300.0;#Inital temperature in K\n",
+ "Cp = 7.0;#Specific heat of the gas in Kcal/Kgmole K\n",
+ "#Gas obeys the relation: v = (R*T)/P+(b*(T**2))\n",
+ "b = 5.4392*10**-8;#in cubic meter/Kgmole K**2\n",
+ "\n",
+ "#To Calculate the temperature of the throttled gas\n",
+ "#From equation (a) (page no 212);which we got after integration \n",
+ "T2 = 1/((1/T1)-((b/Cp)*((P2-P1)/427)));\n",
+ "print \"The throttled gas is cooled to %f K\"%(T2);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The throttled gas is cooled to 284.000191 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3 Page No : 203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "#From the figure 11.8 (page no 216) & from figure A.2.7\n",
+ "H3 = 0.0;\n",
+ "H7 = -47.0;#in Kcal/Kg\n",
+ "H6 = -93.0;#in Kcal/Kg\n",
+ "H8 = 7.0;#in Kcal/Kg\n",
+ "\n",
+ "#To Calculate the fraction of air liquified at steady state and temperature of air before throttling\n",
+ "#(i)Calculation of fraction of air liquified\n",
+ "#From equation 11.3 (page no 215)\n",
+ "x = (H8-H3)/(H8-H6);\n",
+ "print \"The fraction of air liquified is %f\"%(x);\n",
+ "\n",
+ "#(ii)Calculation of temperature \n",
+ "H4 = H3+(H7*(1-x))-(H8*(1-x));#enthalpy of the gas before throttling\n",
+ "#From figure A.2.7 temperature corresponds to pressure 160 atm and the enthalpy H4 is\n",
+ "T = -112;\n",
+ "print \" The temperature of air before throttling is %d deg celsius\"%(T);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fraction of air liquified is 0.070000\n",
+ " The temperature of air before throttling is -112 deg celsius\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file