summaryrefslogtreecommitdiff
path: root/Basic_Electronics_and_Linear_Circuits/ch8_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Electronics_and_Linear_Circuits/ch8_1.ipynb')
-rwxr-xr-xBasic_Electronics_and_Linear_Circuits/ch8_1.ipynb562
1 files changed, 562 insertions, 0 deletions
diff --git a/Basic_Electronics_and_Linear_Circuits/ch8_1.ipynb b/Basic_Electronics_and_Linear_Circuits/ch8_1.ipynb
new file mode 100755
index 00000000..9b5ea559
--- /dev/null
+++ b/Basic_Electronics_and_Linear_Circuits/ch8_1.ipynb
@@ -0,0 +1,562 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:49ff0cb528d7e276dc193290984b83a2a7d93cab62d6ab90be1af99e7320d3ef"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8:Small Signal Amplifiers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.1 Page no.271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Ic=2*10**(-3) #A, collector current\n",
+ "Vce=8.5 #V, collectoe emitter voltage\n",
+ "\n",
+ "#Calculation\n",
+ "#hfe=delta(ic)/delta(ib), #forward current ratio in CE mode\n",
+ "#Vce=constant #collector emitter voltage\n",
+ "hfe=(2.7-1.7)*10**(-3)/((20-10)*10**(-6))\n",
+ "#hoe=delta(ic)/delta(Vce), #output admittance in CE mode\n",
+ "#ib=constant\n",
+ "hoe=(2.2-2.1)*10**(-3)/(10-7)\n",
+ "#hie=delta(Vbe)/delta(ib), #dynamic input resistance\n",
+ "#Vce=constant\n",
+ "hie=(0.73-0.715)/((20-10)*10**(-6))\n",
+ "#hre=delta(Vbe)/delta(Vce),ib=constant #reverse voltage ratio in CE mode\n",
+ "hre=(0.73-0.72)/(20-0)\n",
+ "\n",
+ "#Result\n",
+ "print \"hfe = \",hfe\n",
+ "print \"hoe = \",round(hoe/10**(-6),2),\"microS\"\n",
+ "print \"hie = \",hie/10**3,\"kohm\"\n",
+ "print \"hre = \",hre\n",
+ "\n",
+ "#a) Plot\n",
+ "#Load Line \n",
+ "Vce0=[0,15]\n",
+ "Ic0=[5,0]\n",
+ "a0=plot(Vce0,Ic0)\n",
+ "q1=plot(8.5,2.1,label='Q point',marker='o')\n",
+ "legend()\n",
+ "# AT Ib=0 microA\n",
+ "Vce1=[0,1,15]\n",
+ "Ic1=[0,0.2,0.7]\n",
+ "a1=plot(Vce1,Ic1)\n",
+ "# AT Ib=10 microA\n",
+ "Vce2=[0,1,15]\n",
+ "Ic2=[0,1.2,1.9]\n",
+ "a2=plot(Vce2,Ic2)\n",
+ "# AT Ib=20 microA\n",
+ "Vce3=[0,1,15]\n",
+ "Ic3=[0,2.2,3]\n",
+ "a3=plot(Vce3,Ic3)\n",
+ "# AT Ib=30 microA\n",
+ "Vce4=[0,1,15]\n",
+ "Ic4=[0,3.1,4.1]\n",
+ "a4=plot(Vce4,Ic4)\n",
+ "# AT Ib=40 microA\n",
+ "Vce5=[0,1,15]\n",
+ "Ic5=[0,4.1,5]\n",
+ "a5=plot(Vce5,Ic5)\n",
+ "# AT Ib=50 microA\n",
+ "Vce6=[0,1,15]\n",
+ "Ic6=[0,5.1,6.1]\n",
+ "a6=plot(Vce6,Ic6)\n",
+ "# AT Ib=60 microA\n",
+ "Vce7=[0,1,15]\n",
+ "Ic7=[0,6.1,7.2]\n",
+ "a7=plot(Vce7,Ic7)\n",
+ "#At Vce=8.5 V\n",
+ "Vce8=[0,15]\n",
+ "Ice8=[2.7,2.7]\n",
+ "a8=plot(Vce8,Ice8)\n",
+ "\n",
+ "Vce9=[0,15]\n",
+ "Ice9=[1.7,1.7]\n",
+ "a9=plot(Vce9,Ice9)\n",
+ "#at Vce=8.5\n",
+ "Vce10=[8.5,8.5]\n",
+ "Ice10=[0,3]\n",
+ "a10=plot(Vce10,Ice10)\n",
+ "xlim(0,18)\n",
+ "ylim(0,8)\n",
+ "xlabel(\"$Vce(volt)$\")\n",
+ "ylabel(\"$Ic(mA)$\")\n",
+ "show(q1)\n",
+ "show(a0)\n",
+ "show(a1)\n",
+ "show(a2)\n",
+ "show(a3)\n",
+ "show(a4)\n",
+ "show(a5)\n",
+ "show(a6)\n",
+ "show(a7)\n",
+ "show(a8)\n",
+ "show(a9)\n",
+ "show(a10)\n",
+ "\n",
+ "#(b) Plot\n",
+ "#Plot\n",
+ "#Load Line \n",
+ "Vce0=[0,15]\n",
+ "Ic0=[5,0]\n",
+ "a0=plot(Vce0,Ic0)\n",
+ "# AT Ib=0 microA\n",
+ "Vce1=[0,1,15]\n",
+ "Ic1=[0,0.2,0.7]\n",
+ "a1=plot(Vce1,Ic1)\n",
+ "# AT Ib=10 microA\n",
+ "Vce2=[0,1,15]\n",
+ "Ic2=[0,1.2,1.9]\n",
+ "a2=plot(Vce2,Ic2)\n",
+ "# AT Ib=20 microA\n",
+ "Vce3=[0,1,15]\n",
+ "Ic3=[0,2.2,3]\n",
+ "a3=plot(Vce3,Ic3)\n",
+ "# AT Ib=30 microA\n",
+ "Vce4=[0,1,15]\n",
+ "Ic4=[0,3.1,4.1]\n",
+ "a4=plot(Vce4,Ic4)\n",
+ "# AT Ib=40 microA\n",
+ "Vce5=[0,1,15]\n",
+ "Ic5=[0,4.1,5]\n",
+ "a5=plot(Vce5,Ic5)\n",
+ "# AT Ib=50 microA\n",
+ "Vce6=[0,1,15]\n",
+ "Ic6=[0,5.1,6.1]\n",
+ "a6=plot(Vce6,Ic6)\n",
+ "# AT Ib=60 microA\n",
+ "Vce7=[0,1,15]\n",
+ "Ic7=[0,6.1,7.2]\n",
+ "a7=plot(Vce7,Ic7)\n",
+ "\n",
+ "#At Vce=8.5 V\n",
+ "Vce8=[0,8.5,10]\n",
+ "Ice8=[2.2,2.2,2.15]\n",
+ "a8=plot(Vce8,Ice8)\n",
+ "# and\n",
+ "Vce9=[0,8.5,10]\n",
+ "Ice9=[2.1,2.1,2.15]\n",
+ "a9=plot(Vce9,Ice9)\n",
+ "#at Vce=8.5\n",
+ "Vce10=[8.5,8.5]\n",
+ "Ice10=[0,2.2]\n",
+ "a10=plot(Vce10,Ice10)\n",
+ "\n",
+ "#at Vce=7 V\n",
+ "Vce11=[7,7]\n",
+ "Ice11=[0,2.5]\n",
+ "a11=plot(Vce11,Ice11)\n",
+ "#at Vce=10 V\n",
+ "Vce12=[10,10]\n",
+ "Ice12=[0,2.2]\n",
+ "a12=plot(Vce12,Ice12)\n",
+ "\n",
+ "q2=plot(8.5,2.15,marker='o',label='Q point')\n",
+ "legend()\n",
+ "\n",
+ "xlim(0,18)\n",
+ "ylim(0,8)\n",
+ "xlabel(\"$Vce(volt)$\")\n",
+ "ylabel(\"$Ic(mA)$\")\n",
+ "show(a0)\n",
+ "show(q2)\n",
+ "show(a1)\n",
+ "show(a2)\n",
+ "show(a3)\n",
+ "show(a4)\n",
+ "show(a5)\n",
+ "show(a6)\n",
+ "show(a7)\n",
+ "show(a8)\n",
+ "show(a9)\n",
+ "show(a10)\n",
+ "show(a11)\n",
+ "show(a12)\n",
+ "\n",
+ "#C) plot\n",
+ "#at Vce=0 V\n",
+ "Vbe1=[0.715,0.730,0.735]\n",
+ "Ib1=[10,20,30]\n",
+ "ab1=plot(Vbe1,Ib1)\n",
+ "q3=plot(0.722,15,marker='o',label='Q Point')\n",
+ "legend()\n",
+ "\n",
+ "#at Vce=8.5 V\n",
+ "Vbe2=[0.710,0.715,0.730,0.735]\n",
+ "Ib2=[5,10,20,26]\n",
+ "ab2=plot(Vbe2,Ib2)\n",
+ "\n",
+ "#at Vce=20 V\n",
+ "Vbe3=[0.6,0.715,0.730,0.740]\n",
+ "Ib3=[0,10,15,22]\n",
+ "ab3=plot(Vbe3,Ib3)\n",
+ "\n",
+ "#at Ib=10 microA\n",
+ "Vbe4=[0,0.7,0.75]\n",
+ "Ib4=[10,10,10]\n",
+ "ab4=plot(Vbe4,Ib4)\n",
+ "\n",
+ "#at Ib=15 microA\n",
+ "Vbe5=[0,0.7,0.75]\n",
+ "Ib5=[15,15,15]\n",
+ "ab5=plot(Vbe5,Ib5)\n",
+ "#at Ib=20microA\n",
+ "Vbe6=[0,0.7,0.75]\n",
+ "Ib6=[20,20,20]\n",
+ "ab6=plot(Vbe6,Ib6)\n",
+ " \n",
+ "xlim(0,0.8)\n",
+ "ylim(0,35)\n",
+ "xlabel(\"$Vbe(volt)$\")\n",
+ "ylabel(\"$Ib(microA)$\")\n",
+ "show(ab1)\n",
+ "show(q3)\n",
+ "show(ab2)\n",
+ "show(ab3)\n",
+ "show(ab4)\n",
+ "show(ab5)\n",
+ "show(ab6)\n",
+ "\n",
+ "#d) plot\n",
+ "#at Vce=0 V\n",
+ "Vbe1=[0.6,0.7,0.72,0.73]\n",
+ "Ib1=[0,6,15,30]\n",
+ "ab_1=plot(Vbe1,Ib1)\n",
+ "q4=plot(0.72,15,marker='o',label='$Q Point$')\n",
+ "legend()\n",
+ "#Vce=20 V\n",
+ "Vbe2=[0.6,0.7,0.72,0.73,0.74]\n",
+ "Ib2=[0,6,10,15,28]\n",
+ "ab_2=plot(Vbe2,Ib2)\n",
+ "#At Ib=15 microA\n",
+ "Vbe3=[0,0.72,0.73]\n",
+ "Ib3=[15,15,15]\n",
+ "ab_3=plot(Vbe3,Ib3)\n",
+ "\n",
+ "#At Vbe=0.72\n",
+ "Vbe4=[0.72,0.72]\n",
+ "Ib4=[0,15]\n",
+ "ab_4=plot(Vbe4,Ib4)\n",
+ "#At Vbe=0.73\n",
+ "Vbe5=[0.73,0.73]\n",
+ "Ib5=[0,15]\n",
+ "ab_5=plot(Vbe5,Ib5)\n",
+ "\n",
+ "xlim(0,0.8)\n",
+ "ylim(0,35)\n",
+ "xlabel(\"$Vbe(volt)$\")\n",
+ "ylabel(\"$Ib(microA)$\")\n",
+ "show(ab_1)\n",
+ "show(q4)\n",
+ "show(ab_2)\n",
+ "show(ab_3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hfe = 100.0\n",
+ "hoe = 33.33 microS\n",
+ "hie = 1.5 kohm\n",
+ "hre = 0.0005\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAESCAYAAAD0aQL3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8U3W+P/5XmqZ7ku5r2lJaCl2gLKWAgg2byKoiCiLL\nAIPbiFfHEdR5OIL+BL3odQSduXeUTZ0BfupVFgsXEaossk1RkCIgdEv3PWnTtFk+3z9CQ9OkbdIm\nOVnez8ejjyanJyfvQPt5f877fD6fw2OMMRBCCPE4XlwHQAghhBuUAAghxENRAiCEEA9FCYAQQjwU\nJQBCCPFQlAAIIcRDcZIANm3ahIyMDAwfPhyLFy9Ge3s7F2EQQohHc3gCKC4uxkcffYSCggJcvnwZ\nWq0We/bscXQYhBDi8bwd/YYikQgCgQBKpRJ8Ph9KpRJxcXGODoMQQjyew88AQkND8cILLyAhIQGx\nsbEIDg7GtGnTHB0GIYQQ5mC//fYbS0tLY3V1dUytVrMHHniAffbZZ0b7AKAv+qIv+qKvfnxZw+Fn\nABcuXMBdd92FsLAweHt7Y/78+Th9+rTJfowxp/t67bXXOI+BYqKYPDEuismyL2s5PAEMGzYMZ86c\nQVtbGxhjOHr0KNLT0x0dBiGEeDyHJ4CsrCwsW7YM2dnZGDFiBADg8ccfd3QYhBDi8Rw+CggA1q5d\ni7Vr13Lx1gMilUq5DsEExWQZislyzhgXxWQfPNafwpGd8Xi8ftWzCCHEk1nbdnJyBkAIcX+hoaFo\nbGzkOgy3FBISgoaGhgEfh84ACCF2QX/H9tPTv621/+a0GBwhhHgoSgCEEOKhKAEQQoiHogRACCEO\nMGvWLHz66adch2GEEgAhxGPt3LkTw4cPR2BgIGJiYvD000+jubnZLu+Vl5eHpUuXWrSvVCrFtm3b\n7BJHV5QACCEO982332DGihmQ/k6KGStm4Jtvv3H4Md5991289NJLePfddyGXy3HmzBmUlJRg+vTp\nUKvVVsdjSzwezzFvxJyQk4ZFCLFCT3/HB48cZMn3JzOsh+Er+f5kdvDIQYuPPdBjNDc3s6CgIPb5\n558bbW9paWERERFs+/btZl+3fPly9sQTT7Dp06czoVDIcnNzWUlJieHnp06dYtnZ2UwsFrOxY8ey\n06dPG36Wm5vLPv74Y8YYYzt27GB33303+9Of/sRCQkJYUlISO3ToEGOMsVdeeYXx+Xzm5+fHgoKC\n2Jo1a0zi6Onf1tq2k84ACCEOteVfW3Bz1E2jbTdH3cTWPVsddozTp09DpVJh/vz5RtsDAwMxa9Ys\nHD16tMfX/utf/8Jf/vIX1NXVYeTIkXjssccAAA0NDZg9ezaee+45NDQ04I9//CNmz55tmAzH4/GM\nevbnzp3DsGHDUF9fj7Vr12LVqlUAgDfffBOTJk3Chx9+CIVCgS1btlj0mfqDZgITQhyqnZm/B/j/\n3fo/8DZYWPooBjDIdLNKq7Lo5XV1dQgPD4eXl2kfODo6GhcvXuzxtXPmzMHEiRMB6BtrsVgMmUyG\n48ePY+jQoYaEsGjRImzZsgX79+/H8uXLTY6TmJhoaPSXLVuGp59+GjU1NYiMjAQAh0yiowRACHEo\nX56v2e0zBs/A4dcOW3SMGcUzcARHTLb78f0sen14eDjq6uqg0+lMkkBlZSWio6PNvo7H40EikRie\nBwYGIjQ0FBUVFaisrERCQoLR/omJiaioqDB7rK7vERAQAABoaWkxJABHXAegEhAhxKGeXfwski8m\nG21LLkjGmkVrHHaMCRMmwNfXF19++aXR9paWFhw+fBj33nuv2dcxxlBWVma0f0NDA+Li4hAbG4uS\nkhKj/UtKSvp1z3NHXQSmMwBCiEPNnj4bALB1z1aotCr48f2w5pk1hu2OOIZYLMZrr72GNWvWQCQS\nYcqUKSgvL8fTTz+N5ORkLFy4sMfX5uXl4dSpUxg7dixeffVVTJgwAXFxcZg5cybWrFmD3bt34+GH\nH8aXX36JX3/9FXPmzLH4c3WKiorCzZs3+95xoKy6ZOwgThoWIcQKrvB3vG3bNpaZmcn8/PwYj8dj\ns2bNYs3NzT3u/7vf/Y49+eSTbPr06SwoKIjl5uay4uJiw89PnjzJxowZw8RiMcvOzmanTp0y/Ewq\nlbJt27YxxhjbuXMnmzRpktGxvby82M2bNxljjP34448sNTWVhYSEsP/4j/8wiaOnf1tr/81pNVBC\niF242t/xzp07sW7dOvz4448YPHiw2X1WrFgBiUSCN954w8HRGbPVaqBUAiKEEAC/+93v4O3tjbNn\nz/aYAFwpoVmCEgAhhNy2ZMmSXn/efSy/q+OkBHTt2jUsWrTI8PzWrVt444038Oyzz+qDcrFTR0KI\nKfo7th9blYA4vwag0+kQFxeHc+fOIT4+Xh8U/eIQ4rK0Oi0qWyoRL46nv2M7cZtrAEePHkVycrKh\n8SeEODdFuwKlzaV3vuR3Hpc0laBCUYGwgDCuwyQW4DwB7NmzB4sXL+Y6DEII9L33qpaqOw16c4lx\nY99cCpVGhQRxguErUZyIaUnTDM8lIgl8vX3B+5P71MrdFacJoKOjAwcOHMDbb79t8rP169cbHkul\nUkilUscFRoibauloMWnQuzb2FYoKhPqHGjXwQ0KHYGrSVCQGJyJBnIAw/zCLLoSGhIS41QVTZxIS\nEgIAyM/PR35+fr+Pw+k1gH379uHvf/87Dh82Xv+DrgEQYj0d0xn33ptKjMozpc2lUKqVRj33rg19\nZ+/dz9uy9XSI83GpawC7d+/Go48+ymUIhLiM1o5Ws7X3kiZ9maZcUY4QvxCjBj05JBlTBk0xPA8P\nCKdeOTHg7AygtbUViYmJKCoqglAoNA6KzgCIh9ExHapbqnutvbeqWxEvijeUYhJExr33eHE89d49\nnMsNAzWHEgBxN0q1sse6e2lzKWRyGYL9go1LMqKEO429OAERARHUeye9ogRAiIPpmA41rTVG5Zju\ntXdFuwLx4nizdfcEcQLiRfHwF/hz/VGIi6MEQIiNKdVKlDWX9Vh7l8llEPmKTIZGdn0eERgBLx7d\nfoPYFyUAQqzAGLvTezdTdy9tLoW8XY54cbxJeSZBrC/RSEQSBAgCuP4ohFACIKSrNnUbyuRlZuvu\npc2lKGsug9BX2OvQyMjASOq9E5dACYB4DMYYapW1vdbem1XNkIgkJo16Z0MfL46n3jtxG5QAiNtQ\naVTGtffuvXd5GQIFgYZSjLmhkVFBUdR7Jx6DEgBxCYwx1Cnreqy7lzSXoEnVZNJ771qiiRfFI9An\nkOuPQojToARAnIJKo4JMLuu19u4v8O9xWGSiOJF674RYiRIAsTvGGOrb6u/U3c0sCdyoakScMO5O\ngx6caFSeiRfHI8gniOuPQohboQRABqxd027UezdXpvHz9jOapdq1cU8MTkRUYBT4XnyuPwohHoUS\nAOkVYwwNbQ291t4b2hoQK4ztcWhkvCgeQl9h329GCHEoSgAerkPbYdx7N7MksC/ft8e6e4I4AdFB\n0dR7J8QFUQJwY529996WBK5T1hl67+aGRsaL4yHyFXH9UQghdkAJwIV1aDtQLi/vtfYu4At6XTEy\nJiiGeu+EeChKAE6KMYZGVWOvSwLXttYiRhjT49DIBHEC9d4JIT2iBMARtVaNckV5r8sS8Hn8XleM\njBHGwNuL05u0EUJcGCUAO2CMoUnV1Gvtvaa1BtFB0WaHRiYGJyJeFA+xn5jrj0IIcWOUAPpBrVWj\nQlHR65LAAAyNu7kSTawwlnrvhBBOUQIww6T33q2hr26pRnRQdI/DIhPECdR7J4Q4PZdIAE1NTfj9\n73+PK1eugMfjYfv27Rg/fvydoGyUAPZf24+lXy2FjukMjXn3JQk6e+8CvmDA70cI4VZrK1Berv+S\nyUwfV1UBxcWAl5suMeUSCWD58uXIzc3FypUrodFo0NraCrH4Tg/bVgngtfzXoNVp8cbkN+hm2oS4\nMMaAhoY7DXn3752P29qAuDhAIjH+3n2buzYH1radDi9aNzc348SJE9i1a5c+AG9vo8bflmRyGSZI\nJlDjT4gT02iAykrT3nrX7xUVgJ+faUM+bpxxIx8W5r6Nuz04PAEUFRUhIiICK1aswM8//4wxY8bg\n/fffR0CA8V2Z1q9fb3gslUohlUqtfi+ZXAaJSDLAiAkh/dVXSUYmA+rqgPBw09768OHG2wLp1g8m\n8vPzkZ+f3+/XO7wEdOHCBUyYMAGnT5/G2LFj8dxzz0EkEuH111+/E5SNSkAZf8vA3gV7kRmZOeBj\nEULusGVJJjoaENAlOJtw+hKQRCKBRCLB2LFjAQALFizAW2+9ZZf3ojMAQqxHJRnP4fAEEB0djfj4\neFy/fh2pqak4evQoMjIybP4+8nY5tDotxL40fJOQTlSSIV1xMnNp69ateOyxx9DR0YHk5GTs2LHD\n5u9RLi+HRCShC8DEIwykJJOSAuTmUknGE3GSALKysnD+/Hm7vgeVf4i7oJIMsRe3XbuAEgBxBf0p\nyXR+p5IMGShKAITYwUBLMlLpnYadSjLEXtw3AShkGBU9iuswiBuikgxxF+6bAOQyzE2dy3UYxMVQ\nSYZ4ErdOAFQCIp2oJEOIKUoAxOVZU5LpPra9a0lGIgFCQ6kkQzyHWyYApVoJpVqJMP8wrkMhA0Ql\nGULsxy0TQLm8HHHCOJoE5sQYA+rre+61U0mGEPtzywRA5R9udS3J9NRrp5IMIdyjBECsQiUZQtyH\n2yaAOFEc12G4FCrJEOJ53DMBKGQYFjaM6zCcBpVkCCHmuGcCkMswLWka12E4BJVkCCH95bYJwNWv\nAVBJhhBib5QAOEAlGUKIM3C7BNCuaUdjWyMiAyM5eX8qyRBCXIXbJYDKlkrECGPA9+Lb9LhUkiGE\nuBu3SwD9Kf/0pyTT+Z1KMoQQV+X2CWAgJZkRI+702qkkQwhxN5wlgEGDBkEkEoHP50MgEODcuXM2\nOW7XBPDPfwIrV+obdCrJEEKIMc4SAI/HQ35+PkJDQ216XJlchkRxIgDg55+B9euBl1+26VsQQohb\n8OLyzRljvfysf8fsegZw6xYweHD/jkMIcR9qtRoymQwFBQVch+JUOD0DmDZtGvh8Pp544gmsXr3a\n6OeDBq2HVAokJQFSqRRSqdSi43ZNAEVF+tcTQtyTQqFAVVUVKisrUVlZ2ePjpqYmREREIDY2FmfP\nngWfb9tRglzJz89Hfn5+v1/PY711w+2osrISMTExqK2txfTp07F161ZMmjRJHxSPh08/ZXj9dX19\nfv16YPJky0bXSP5Lgh9X/Yh4cTxCQ4Hr1/UXeAkhrkGn06Gurs6oAe+pcdfpdIiJiTF8RUdHm30c\nHh7uNo1+b3g8Xq+VFZP9uUoAXW3YsAFBQUF44YUXANz5EBoNsGcPLE4EGp0GAW8GoPWVVrQqBIiP\nB+RyGpZJiDNob283NNy99dpramogEol6bMy7PhcKhXTjpy6sTQCclICUSiW0Wi2EQiFaW1tx5MgR\nvPbaayb7eXsDS5YAixbpE8GTT/aeCKpaqhARGAEBX2Ao/9DvBiH2wxiDXC7vswRTVVUFhUKBqKgo\nkwZ99OjRRg17VFQUfH19uf5oHoGTBFBdXY0HH3wQAKDRaPDYY4/h3nvv7XF/SxMBXQAmxDa0Wi1q\na2v7LMFUVVWBz+eb7alnZmYa9dpDQ0Ph5cXpuBPSDScJICkpCT/99JPVr+srEdAFYEJ619bW1mdP\nvbKyEnV1dQgJCTFp2FNTU5Gbm2t4Hh0djaCgIK4/Fuknl5wJ3FMiGL5aBkn4nTOAtDSOAyXEARhj\naGxstKhhV6lUiI6ONqmvjx8/3qihj4yMhIBmR7o9l0wAnbongjUHZAgRSHC/r/4MYNYsriMkpP80\nGg2qq6tNGnNzjbu/v7/ZUTCjRo0yeh4SEkIXTYmBSyeATp2J4ICvDOF1Y/Dkk/o1fh5+WD+hjH7f\niTNpaWmxaOx6Y2MjwsPDTcowmZmZmDZtmtF2f39/rj8WcUFOMQy0O2uHMnWauH0iNk3dhHExkxAU\nBCQkALGx1s0jIKQ/dDod6uvrLWrYNRqNRWPXIyIiPGLsOrEdlxgGai+dF4FraoCwMODXXy0bPkpI\nTzo6OlBVVdVnCaa6uhpCodBkvHpCQgLGjRtn1LiLRCIqwxCn4DZnADqmg/+b/pC/JMe5H32xbh1w\n+rT+Z9ZOKCPujTEGhUJh0dh1uVyOyMjIXnvqnRdVaew64ZrHngHUtNYg2C8Yvt6+JnMArJ1QRlyT\nVqtFXV2dRQ07j8cz25hnZGQYPQ8LC6Ox68RtuU0CsGQOACUC16RSqSxaF6a2thYhISEmvfOUlBRM\nmjTJaDuNXSfETRPArVv6Br0nlAi4xxhDU1OTRWPXlUql2bHrOTk5JksI0Nh1QixncQJoa2vD7t27\ncfnyZWg0GiiVSnh5eUEoFGLcuHF4+OGHOT1V7n4GsHJl36+hRGB7Go0GNTU1fTbsVVVV8PHxMVuG\nycrKMtoeGhpKF00JsQOLLgIfPXoUhYWFmD17NpKTk41+xhjDpUuX8N1332Hq1KnIysoaeFD9uAj8\n0tGXIPYV4+VJL0MiAU6dAhITrXtfuljcM6VSabYx7/68oaEBYWFhfQ5xjI6ORkBAANcfixC3YvPl\noFUqFWQyGVJSUsz+vLa2FhEREQCAK1euICMjw4pwewiqHwlgyf8uwYzkGXh46FKIxYBSCfR3CLWn\nJALGmMVj19VqtUXL80ZERMDb220qi4S4FLvfD0ClUqG6uhq1tbWorq7G3r178cknn1gdaK9B9SMB\nSHdK8Vrua4jtmIzZs4Hffht4HK6aCNRqtcnYdXOPq6urERgY2GdPPSYmBmKxmMowhDg5uwwDXbJk\nCc6cOYOWlhb4+/sjPDwcKpUKY8eOxY0bN/odrC11XgP47ZztloF2tmsEnWPX+xoR09zcjIiICJPG\nfMSIEZgxY4bheVRUFPz8/Bz7IQghTsOiBLB9+3bs3bsXOp0OjzzyCPz9/fE///M/eOKJJ/q1rLOt\nMcZQrihHnCgO39phGWh7JoLO299ZMnadMWa27JKWlmYydp2WECCE9MWiBODj44OlS5eitbUVn376\nKXx8fKBSqQAAI0eOtGuAlqhvq0eAIAABggC73gjGmkTQ9fZ3vTXstbW1EIvFJmWXwYMH4+677zba\nLhQK7fPBCCEeyaqrdYGBgXj88cdRV1eHf/zjH/jiiy8QFhaGyb0NuneA7kNAc3Ls8z6MMTQ3N6Oq\nqgpxcZV49dVKHDpUiYceqoJAUAmJpBLt7frGvbW1FVFRUSYNe3Z2tsnYdR8fH/sETAghvejXcI3w\n8HC88sorKC0txZw5c3Dp0iVbx2WVgd4KUqvVWjR2vbKyEgKBwKQEs25dDIqLh+PgwRhERcVg27Zo\nzJsXCj6flhAghDivAY3XS0hIwF//+ldbxdJvnQmAMX0C6LwGoNPpUFxc3GfDXldXh9DQUJOGfejQ\nocjNzTXaHhgY2GMcnaOG1q0D3nvPdUYNEeIJGNNCra6Dj08U16E4jQElgEuXLvW7/KPVapGdnQ2J\nRIIDBw4MJAx9AhBK0Niofx4aqv/+j3/8A6+88gqGDh1q1IhPmDDB5PZ3thi77myjhgjxFDqdCu3t\nFWhvL0d7uwwdHfrv+ued26ogEIRhwgQZeDwaJAH0IwF88sknKCgowMiRIzFp0iTs3r0bixcvtvqN\n33//faSnp0OhUFj92u5kchlyE3MNi8B1NrQ///wzNmzYgDVr1gz4PaxBiYAQ22CMQattNmrIzTXy\nGk0zfHxi4Osrga9v3O3v8RCJJsDXNw4+PnHw9Y2Flxct2d1Vv7q9f/nLX3DmzBls3rwZMTExVr9e\nJpMhLy8Pf/7zn/Ff//Vf/QnB+Hi3S0C3Cozr/4WFhViwYMGAj99flAgI6RljWnR01JjtrXdt5AGe\noWHXN+QSBAVlwdd3tqGxFwgiwOPRNTdrWZ0AwsPD4ePjg1mzZmFWP++6/vzzz2Pz5s2Qy+U97rN+\n/XrDY6lUCqlU2uO+nQngYrc5AIWFhUhPT+9XjLZEiYB4GktLMt7ewd167XEIDp5stM3bW8T1x3Fa\n+fn5yM/P7/frrV4K4tlnn8WlS5cQFhaGnJwcTJ48GTlWjLs8ePAgDh06hA8//BD5+fl49913Ta4B\nWDOdmTEG4SYhKl+oxNrnhMjMBP7wB/0aRUOGDEFjY6PTLWHgqktMEDKwkkxct548lWRsze53BJNK\npdiyZQuUSiUuXLiACxcuWJUATp8+jf379yMvLw8qlQpyuRzLli3r93pCze3N4HvxIfQV4tYtYO5c\n/farV68iPT3d6Rp/gM4IiHOikoznsfoM4KuvvoJEIsHYsWMH/Obff/893nnnnQGdAfxS8wsWfrEQ\nV56+gtRUYN8+IC0N+O///m9cuHABH3/88YDjtDc6IyD2NpCSTGcjTyUZ52f3M4Dvv/8eAPD666/D\nz88Pubm5eOaZZ6w9jMFAe+id9X+tFigtBQYN0m+/evUq0tLSBnRsR6EzAtJfNEqGDITVCeChhx4C\nj8fDxIkT0dbWhitXrvT7zXNzc5Gbm9vv1wN3EkBFhX78v7+/fnthYSHuu+++AR3b0SgRkK6oJEPs\nrc8SUHt7OxQKBcLDw/s8WGlpKRISEgYelBWnMevz14OBYQpvA/78Z+DkSf12iUSCkydPYlDnKYEL\notKQ+6KSDLEHm5eAfH198e2330Iul+PBBx+Ef2cXu4vGxkZ8/vnnSEtLs0kCsIZMLsO4uHEounxn\nCGhzczOampocHout0RmB66GSDHElFpWA5syZg8rKSrz33nuoqamBSqWCWq0Gn89HQEAAJBIJVq9e\nDbFYbO94TcjkMjyU9hB+7LII3NWrVzFs2DBOb1JvS5QInAOVZIi7sfgaQExMjGEF0M6edUVFBWJj\nY+0WnCU6rwEUFQFTp+q3udIFYGtQIrAfmrhEPJHVF4HXrVuHXbt2wcfHB1qtFocOHcLMmTPtEZtF\nZHIZ4kRxuHULWL1av81ZZgDbCyUCyxmXZLo36MYlGV/f2Ns9dtOSjK+vBD4+MVSSIW7F6gRw7733\nGm5gEh8fz+ktIRXtCnRoOxDiF2JYCA7QJ4DHH3+cs7gcxdMTgfmSjGkj37Uko2/I46gkQwj6kQAi\nIyOxcOFCLFmyBAkJCfjll18wt3P6rYOVK8ohEUmgUvHQ0AB0VqPctQTUE3dMBAMpyYSETDHqyVNJ\nhhDzLJoJvH37dqxcudLw/Pr169i5cyc0Gg2efPJJDLbxTXgtHcp09NZRbDyxER/mHMP99wPXrwNK\npRJhYWFQKBQ2WePfFTnz8NGBlWTiuvXkqSRDSFd2mQn80ksv4cSJExg3bhxycnKQlZWFjRs3AgCK\ni4v7FagtGJaB7jIC6Nq1a0hJSfHYxh/g7oyASjKEuBaLWskXXngB48aNw9mzZ7Fx40ZcvnwZ4eHh\nyMnJQVVVFXbv3m3vOM0yjAC6alz/d+cLwNawZSKgkgwh7seiBLB27VrweDyjNfmrqqpw9uxZfPDB\nB/aKrU/linIMjxyOm0WUAHrTWyKQShl0OholQ4gnsigBmFuwLTo6Gvfffz9CQkJsHpSlZHIZZqbM\nxLe3gAkT9NuuXr2KRYsWcRaTMzFXkrnrLhm+/rocpaXlqKmR4dtvy+Hjw0NgIJVkCPE0Ay6U33PP\nPbaIo1+6TgLztDOAgZRkQkOnIDo6Dt7ecThwQIING0ROd7GYEGJ/Vt8PwBEsvZIdsTkCvzx1BUNi\nI1FSAgQGdkAkEqG5uRm+vq5ZiuBilIwzjxoihFjO7vcDcBYqjQqKdgW8VOHw8gJCQoArV24gMTHR\naRt/Zx0l447zCAghfXPZBFAuL0esMBbFRV6GIaBcln/cYZQMJQJCPIvLJgBz9X97zAD2xLVkKBEQ\n4hlcPgHcugGjM4A5c+ZYfAxnLck4C0oEhLg3l08ARUVAVpZ+W2FhIdauXWvYhzENmpt/dNmSjLOg\nRECIe+IkAahUKuTm5qK9vR0dHR24//77sWnTJquOIVPIMCR0CC7eAh58ENBoNLhx4waGDh1q2Ke8\n/APIZO9DKBzr0iUZZ0GJgBD3wkkC8PPzw/HjxxEQEACNRoOJEyfi5MmTmDhxosXHkMllmDxosuEa\nQFFREaKjoxEYGGjYp7n5JJKS3kRU1GJ7fAyPRYmAEPfAWdE6ICAAANDR0QGtVovQ0FCrXi+TyxAT\nKEFZGZCYaP4CsFx+FiLROJvFTIx1JoLCQuDxx/WJIDcXOHYMcL7ZJcTTMMagadJAeV2J5pPNqP3f\nWlR8VMF1WE6Fs2sAOp0Oo0ePxs2bN/HUU0+ZDN9cv3694bFUKjVahwjQJwB+qwQREYCfn+kQ0Pb2\ncuh0Kvj52XapamLKnc4I8nn5kDIp12GQHmjbtFDXqqGuUaOjpqP377Ud8PLzgk+kDwSRAsN3tpKB\nx3ehX8pe5OfnIz8/v9+v5ywBeHl54aeffkJzczNmzJiB/Px8o0a+awLorkPbgXplPeSVUUZLQHR9\nvVx+FkJhjtl1jIh9uFMiII7BNAzqegsa89vfdR06+ET5QBAhMG7YowQIHB5o1ND7RPjAy8+9RuZ1\n171zvGHDBqtez/koILFYjNmzZ+PChQsmvfyeVCoqER0UjdJivmEI6NWrV/HUU08Z9qHyD3coEXgu\nxhi0zdpee+Vdn2uaNPAO8TbppftE+sBvrJ/Jdr6QT506G+IkAdTV1cHb2xvBwcFoa2vDt99+i9de\ne83i13efBKbT6UyuASgUZ5GQ8LI9wicWokTgHmxRdvGJ9IH/UH+IJ4qNtgvCBG5TjnFFnCSAyspK\nLF++HDqdDjqdDkuXLsXUqVMtfn3XO4HNmAGUlZVBLBYjODgYgH6Cl0LxbwiFOfb6CMQKlAicS7/K\nLmYadE8tu7gTThLA8OHDUVBQ0O/XdyaAM7fPALr3/ltbr8DXNw4CAXf3KiCmKBHYR69ll1rTBp3K\nLqQT59cA+kOmkCFeFG+4F/DevcYjgPQXgKn+76woEfTNJmWXCB/4D/GH+G4quxDzXDMByGUYHTEB\nTU1ATIwKoKwfAAAbpUlEQVT+DGD06NGGnysUdAHYFXhSIqCyC3FGzntDGK6DIB4pH8chxWSuwyD2\n5HxNns24zw1hevkQ8e/F4/XEU/j/P0pAXh5DaGgorl+/joiICGg0Cvz4YwzuvrsRXl4CBwZMbIWr\nO5Rp27RAwAkozsv7V3bpPjadyi7EyTlvAuiBRqdBdUs1mspiMHgwUF1dDT6fj4iICACAQnEBgYFZ\n1Pi7MFuVhvpTdgGAa09co7IL8QgulwCqW6oRHhCO0mIBkpJMl4Cg+r/7MEkETzAMitDipSc6MHqw\nGuraO71xcw26paNdOnvufBEf33t9j+x/Z3P90QlxCJdLAF3nAEyaZJoA5PKziIxcxGGExBqWjnZJ\nrlHjo9oOaMu9ULvaB/v9BYgf7oPY9NuTjGi0CyFWc9kE8NvtOQDffXdnDgBjDHL5WaSkvMdxlJ7L\nqrJLrRq6dutHu3ReI3jidSDaC1i/yP1GDRHiCC6bAI7cngNQWFiIBx54AADQ3i4DY1r4+iZyHKX7\n6HGSUU9ll0YNvEP7KLtECAzb+CLrJxl50vBRQuzJ9RKAQoYQvgQ+PoBYbDwLuLP+T7MWe9evSUYR\nZtZ24bjsQomAkIFxvQQglyGdPwpJSUB9fT2USiXi4uIAeO4KoI4ouzgzSgSE9I9LJoBUJsHgwfre\nf3p6uqHHL5efxaBBf+E4woEzW3Yxs6aLpWWX7uPT+1N2cQWUCAixjksmAGWrxGQROJ1OjZaWAgiF\nYzmO0Dx3Kbu4AkoEhFjGpRKAjulQoahAXUksxo0xHgLa2voLfH0T4O0tdkgsnl52cQWUCAjpnUsl\ngNrWWoh9xSgr8sOiBcBXXxUa7iMw0Algtiq7CCIEEGYLTRp6dy27uAJKBISY51IJoOsksK7XAADz\nF4AZY2gva7e87OLbw52MqOziFigREGLM5RJAnFCCK+VASIgC9fX1SEzUj/mXy88iLu5Zo/0r/laB\noleL4JfkR2UXYmAuEQiCvkFA/BZsxsuYsWIGnl38LGZPn811qITYlcslADFPgqgooKjoV6SmpoLP\n50OjaUZ7eymCgoYb7V+ztwZpn6UhbFYYRxETZ9aZCETh32D15v9AzeibwP6XcWTQEdz84CYAUBIg\nbs2lurwyhQy+7RKTReAUivMIChoNHu9OPlPXq9HycwtCptBtIUnvPty7BTX33DTadnP0TWz4cKs7\nLx1PCDcJoKysDJMnT0ZGRgYyMzOxZcsWi14nk8sAucSwBERv9f/6vHqETAmhsg7pUztrN7v9l+sq\n5OYCx4659T1EiAfjpHUUCAR47733cOXKFZw5cwYffvghrl692ufrZHIZVDWmcwDMJoD99QibS6Uf\n0jdfnq/Z7ZPG++Hxx/XXCCgREHfESQKIjo7GyJEjAQBBQUFIS0tDRUVFn6+TyWVoKjU+A+hcAbTr\nTeB17To0ftuIsNmUAEjfnl38LJIvJhttSy5IxrOPrsGSJUBhISgRELfE+UXg4uJiXLx4EePGGffg\n169fb3gslUqRm5sLmVyG4JtxiI1th0wmQ3JyMtrbS8Dj8eHrKzHs3/R9EwLSAuAT5eOoj0FcWOeF\n3q17tgIAZpTOwJpn1hi20/BR4qzy8/ORn5/f/wMwDikUCjZmzBj21VdfGW03F1Zdax0LeSuERUQw\nduTILyw9PZ0xxlh19R52+fIDRvtef+Y6K95YbL/Aids6juN97qNWM/bpp4wNGcLYpEmMffcdYzqd\n/WMjpC/WNumcnQGo1Wo89NBDWLJkiWE9/97I5DLEBklwUwHU1Fzq8QIwYwx1++swIm+E3WInno3O\nCJyTUqtFnVqNerUa9RqN/rtabbStSaPBgcxMmpV/GycJgDGGVatWIT09Hc8995xFr5HJ9fcBGDQI\nuHbN+AJwUtL/Z9iv9XIreHweAtID7BE6IQaUCOxDxxiaNZoeG/GetgFAmECAcIEAYd7eCBMIDF9J\n/v7Ivr2NAaD/Gj1OEsCpU6fw2WefYcSIERg1ahQAYNOmTbjvvvt6fI1MLkOA5s4F4AULFkCnU6O1\n9WcIhXdu4l2/vx7h88IpwxOHoUTQM7VOh4bbDbQljXi9Wo0GjQZBfL5JI97ZsA8PDDTZFiYQIIDP\n5/rjuhxOEsDEiROh0+mseo1MIYNXaxySkoBjx/QjgFpbL8HPLwne3kLDfnX76zB402Bbh0xIn9w9\nEVhSYum+TanTIaRLQ969d54aEGCyLdTbGwIvmr/jCJyPArKUTC6Dum4iEhO1uHXrFlJTU1Ffv92o\n/t9e2Y62G20Q3+OYJaEJMcfZE4G9SyxdG3sRnw8vrj8w6ZFLJYCWSgn8EioQHx8PPz8/yOVnIBZP\nMuxTf7AeofeFwktAvQfCPUckAiqxkIHg3R465FR4PB5w/DjXYRAPdHwyMJl+9dwak0q5DsFueDwe\nrGnSnTYBdA2LMQbhJiF0m8vxxz/8DzSaBrzxxjqcOZOAiRObwOPxoVVqcTr6NMaXjIcgRMBh9MSV\n5fPyIWXSAR2jrxJLbbsaP91S43KpGl7BavhHadDC773E0tM2KrGQrqxNAC5RApK3ywHw4M8X4dat\nn3DfffdBoTgHoXAMeDz9aWnjd40QjhFS409syh4llixhIKZkCxCcI8CF7wT4+CVvpAYJ8Maf+Zg8\niftrBMRzuEQCKFeUI9xHgogkHq5evYrnn38ecvkho/V/6vfXI2werf1DembJKJbfA8j5978dNopl\nxkJg3UPOebGYuD+XSAAyuQxCnQRJSTocPHgNw4YNQ1HResTErAIAMB1D/cF6JKxL4DhS4gj2HMUC\nVGPrkCEOLbE4+6gh4r5cJgH4qCQIDW1GeHg4goKCoFCcxdCh/wAAKC4o4B3iDf8Uf44jJdbqLLEY\nGmuOR7Hk41eME4kc8MlNUSIgjuYyCUDbJAGfX4b09HSoVLfg5eUHX984AHdm/xJumSuxmGvYu26j\niUKmKBEQR3GZBNBWPQYdAVeRnp5usv5/3YE6pP4tlcMI3Uv3EktfjThNFLIPSgTE3lwmATSW3I+G\nqB+Qk5N2ewXQ8QAAVYkKHZUdEI3n5rTd2fVWYulpWyNNFHIqlAiIvbhEAihrlqGxRILS9pNIT58H\nhWIbIiIeAgDUH6hH2Kww8Pju/VfAGINSp7O4EbekxBIuEGCoB5ZYXBUlAmJrLpMAovzjcO3aZQwd\nOhiFhZchFI4BoF/8LfbJWI4jtA6VWMhAUCIgtuL0CaC1oxVtmjakhQeiSB4AH58yBAQMAZ8fCI1c\nA/kZOTL/N5Oz+KjEQrhCiYAMlNMngHJFOYJ5EoiEDSYXgBv+rwHiu8XgBw28YaQSC3FVlAhIfzl9\nApDJZfDrkIDPL0FKShoUirMIDp4CoO/Zv2qdDgUtLVRiIR6BEgGxlkskAF6LBCpV5xDQvyIh4WUw\nDUPDoQYkbUzq8bV/vHkThxsakOLvTyUW4jEoERBLuUQC6KiVoL7+PFJTZ6KjowYBAcPQfKIZvgm+\n8Iv3M/u6a0ol9tTU4GpODsIFtEAc8TyUCEhfOClEr1y5ElFRURg+fHif+8rkMsjL41Ba+j3i4log\nFGaDx+Prh3/O7bn8s+7WLaxLSKDGn3i8zkRQWAg8/rg+EeTmAseOAc63GDxxJE4SwIoVK3D48GGL\n9i1ukEFdLwFQDT+/a4ZbQNbtr+tx+Yfvm5rwc0sLnomLs1XIhLg8SgSkO04SwKRJkxASEmLRvkX1\nMoQJwpGRkY6WlnMQicZBeU0JbYsWQaODTPbXMYYXbt7EpsGD4UcjbQgxQYmAdHL6FrKyVQYxzxdp\naWmQy/UJoP5APcLnhutvHdnN7poa8AEsjIhwfLCEuBBKBMRpLwKvX78eGp0G8hMNCG04gZSUCPD5\nQvj4RKNu/0UkvGS69n+bVotXbt3CP9PTzSYHQogpuljsuvLz85Gfn9/v1zt1ArjVeAtb8E947/FD\nQoIaItE4qOvVaPm5BSFTTEtIW8rLkS0UYqJYzEHEhLg2SgSuRyqVQtrlJvcbNmyw6vVOXQKSyWXw\nVkpQV3cOsbE1+vJPXj1CpoTAy8849NqODmwuK8NbgwdzFC0h7oFKQ56DkwTw6KOP4q677sL169cR\nHx+PHTt2mN1PJpdB0xAHlepXBAZeMdT/zc3+3VBSgsciIzEkIMDe4RPiESgRuD9OSkC7d++2aL+y\nZhmUlRKMGFYBpfISAgQj0XjkJwz5YIjRfteUSuy9PemLEGJbVBpyX05dArpRLQNfGY1hw4IQEDAM\nipMdCEgPgE+kj9F+NOmLEPujMwL349QJ4LcaGQLUQUhM9LpT/uk2+5cmfRHiWJQI3IdTJ4CyZhn4\nSgaJRA6hMMdk9i9N+iKEOy6RCDo6gPp6oKgIuHQJOHWK64icitMOAwWA2nYZWG0DoqKK4F2VBR5f\nXwLqRJO+COGeza8R6HRASwsgl9/5UijMP+7rZxoNIBLpv4RC/fcTJwDqMAJw4gSg1qrRyurAqy1D\nRIQCrd+EIHye1jDBiyZ9EeJEGIN3RxuWTJNj0RgFjnwhx45lcnwrVmDJ/XKkx8nBU1jYkCuVQGDg\nnQa7a+Pd9XlYGJCUZP5nnY/9/OgqdS+cNgFUtlSCr4pEbKwCwcE5qD/QgMGb7ozxp0lfhNiAWj3w\nXnbnc4EAEIngLRRilkiEmckiyBQiXPxAiBtBIoy6R4SEDCF4UVHmG+vOx0FB1EN3EKdNADK5DKwp\nDsnJ9Qjwykb19TaIJ+kb+85JXz+OGsVxlIRwoHuJpD+Ndedjtbrn3nPXxxJJ3z3ybqPweADiAcRo\n9KWh6a8D0RU0fNSZOG0CKG6QQdMYj5SUX8AuLUbofaHwEuh7BTTpi7gcxoC2toH3sl2wRELzCJyX\n0yaAX0pl8G4NQ/zwMrTtT0T0/frhnzTpizhUZ4lkIL3szse3SyS9NshCIeCmJRJKBM7HaRPAtUoZ\noPDB4KQQyP/TC+n/HQpAP+lrbXw8TfoiPetaIrG24cZ6ICXlzs/sWCLxVJQInIfTJoCi+lJoG8KQ\nEpINn2whBCECw6SvPenpXIdHbI0xQKWyzdA/S0skoaHAoEHGP5sM4NAhGkXiAJQIuOe0CUAmL0WQ\nLgTehekImxtGk76clVrd//KIU5ZI8oEhQ/rci9gOJQLuOG0CaGblSAhIgnL/WITvCKdJX7bUU4mk\nPw05lUiIjVAicDynTQAdPrUYHF4KQXkaMMgHr5zz8Elf3Usk/e1lKxRAa2v/SyQ00YbYGSUCx3Ha\nBABlKEYMUiEiK861J311L5EMZDSJt3ffPW2RqOcSSedzFx1FQjwLJQL7c94EII/DMK9Q8O8TYXPZ\nNcdO+uoskQykl935WKPpu6dtrkRirpGnEgnxQJQI7MeJE0AwEtrGYHN0Ax7j93PSV3ExcPmy9Q23\nuRKJuQa5s0TSW4+cSiSE2AQlAttz2gTg1eqPoISJ2Ftfa/mkL60WOHsWOHBA/1VTA+TkAGKxcUMe\nGUklEkJcFCUC23HaBBCg9sIXQ6KxNj6y90lfcjlw5Ahw8CCQl6f/TZg7F/j4Y33jTw05IW6JEsHA\ncdI6Hj58GMOGDcOQIUPw9ttvm90nTOuFb0aosUYiMf1hURGwdStw77362vnHHwNjxwLnz+tv+vDm\nm8D48TZv/PPz8216PFugmCxDMVnOGePqLSaubkzjjP9O1nJ4AtBqtXjmmWdw+PBhFBYWYvfu3bh6\n9arJftF8f6zPTNZP+tJqgdOngZdfBjIzgXHjgIIC/f90eTlw+DDwhz8AiYl2jd0Z/8MpJstQTJZz\nxrgsicnRicAZ/52s5fAEcO7cOaSkpGDQoEEQCARYtGgR9u3bZ7JfWHQcFv7wA7B8uf687skn9T36\njz8GKiuBHTuA+fP1NXtCCLnNJW5V6SQcfg2gvLwc8fHxhucSiQRnz5412W9xYQF4Vb8Ac+YAGzbo\nR9sQQoiFerpGcPgwQCvJ6/EYc2xO/PLLL3H48GF89NFHAIDPPvsMZ8+exdatW+8ERVdvCCGkX6xp\n0h1+BhAXF4eysjLD87KyMki6Xeh1cE4ihBCP5PBrANnZ2bhx4waKi4vR0dGBvXv3Yt68eY4OgxBC\nPJ7DzwC8vb3xwQcfYMaMGdBqtVi1ahXS0tIcHQYhhHg8TuYBzJw5E9euXcNvv/2Gl19+2ehnlswR\ncKSysjJMnjwZGRkZyMzMxJYtW7gOyUCr1WLUqFGYO3cu16EYNDU1YcGCBUhLS0N6ejrOnDnDdUjY\ntGkTMjIyMHz4cCxevBjt7e0Oj2HlypWIiorC8OHDDdsaGhowffp0pKam4t5770VTUxPnMb344otI\nS0tDVlYW5s+fj+bmZs5j6vTuu+/Cy8sLDQ0NDo2pt7i2bt2KtLQ0ZGZmYt26dZzHdO7cOeTk5GDU\nqFEYO3Yszp8/3/tBmBPRaDQsOTmZFRUVsY6ODpaVlcUKCws5jamyspJdvHiRMcaYQqFgqampnMfU\n6d1332WLFy9mc+fO5ToUg2XLlrFt27YxxhhTq9WsqamJ03iKiopYUlISU6lUjDHGHnnkEbZz506H\nx/HDDz+wgoIClpmZadj24osvsrfffpsxxthbb73F1q1bx3lMR44cYVqtljHG2Lp165wiJsYYKy0t\nZTNmzGCDBg1i9fX1Do2pp7iOHTvGpk2bxjo6OhhjjNXU1HAeU25uLjt8+DBjjLG8vDwmlUp7PYZT\nrZNg6RwBR4qOjsbIkSMBAEFBQUhLS0NFRQWnMQGATCZDXl4efv/73zvNRfPm5macOHECK1euBKAv\n94k5XsJbJBJBIBBAqVRCo9FAqVQiLi7O4XFMmjQJISEhRtv279+P5cuXAwCWL1+Or7/+mvOYpk+f\nDq/bM+jHjRsHmUzGeUwA8Mc//hH/+Z//6dBYujIX19///ne8/PLLENxeqibCwTerMhdTTEyM4ayt\nqampz991p0oA5uYIlJeXcxiRseLiYly8eBHjxo3jOhQ8//zz2Lx5s+GP1RkUFRUhIiICK1aswOjR\no7F69WoolUpOYwoNDcULL7yAhIQExMbGIjg4GNOmTeM0pk7V1dWIiooCAERFRaG6uprjiIxt374d\ns2bN4joM7Nu3DxKJBCNGjOA6FCM3btzADz/8gPHjx0MqleLChQtch4S33nrL8Pv+4osvYtOmTb3u\n7zytB5x7/H9LSwsWLFiA999/H0FBQZzGcvDgQURGRmLUqFFO0/sHAI1Gg4KCAjz99NMoKChAYGAg\n3nrrLU5junnzJv7617+iuLgYFRUVaGlpwT//+U9OYzKHx+M51e//m2++CR8fHyxevJjTOJRKJTZu\n3IgNGzYYtjnL77xGo0FjYyPOnDmDzZs345FHHuE6JKxatQpbtmxBaWkp3nvvPcPZeE+cKgFYMkeA\nC2q1Gg899BCWLFmCBx54gOtwcPr0aezfvx9JSUl49NFHcezYMSxbtozrsCCRSCCRSDB27FgAwIIF\nC1BQUMBpTBcuXMBdd92FsLAweHt7Y/78+Th9+jSnMXWKiopCVVUVAKCyshKRkZEcR6S3c+dO5OXl\nOUWivHnzJoqLi5GVlYWkpCTIZDKMGTMGNTU1XIcGiUSC+fPnAwDGjh0LLy8v1NfXcxrTuXPn8OCD\nDwLQ//2dO3eu1/2dKgE44xwBxhhWrVqF9PR0PPfcc5zG0mnjxo0oKytDUVER9uzZgylTpuCTTz7h\nOixER0cjPj4e169fBwAcPXoUGRkZnMY0bNgwnDlzBm1tbWCM4ejRo0hPT+c0pk7z5s3Drl27AAC7\ndu1yis7F4cOHsXnzZuzbtw9+fn5ch4Phw4ejuroaRUVFKCoqgkQiQUFBgVMkywceeADHjh0DAFy/\nfh0dHR0ICwvjNKaUlBR8//33AIBjx44hNTW19xfY6wp1f+Xl5bHU1FSWnJzMNm7cyHU47MSJE4zH\n47GsrCw2cuRINnLkSHbo0CGuwzLIz893qlFAP/30E8vOzmYjRoxgDz74IOejgBhj7O2332bp6eks\nMzOTLVu2zDBqw5EWLVrEYmJimEAgYBKJhG3fvp3V19ezqVOnsiFDhrDp06ezxsZGTmPatm0bS0lJ\nYQkJCYbf9aeeeoqTmHx8fAz/Tl0lJSVxMgrIXFwdHR1syZIlLDMzk40ePZodP36ck5i6/k6dP3+e\n5eTksKysLDZ+/HhWUFDQ6zEcvhYQIYQQ5+BUJSBCCCGOQwmAEEI8FCUAQgjxUJQACCHEQ1ECIIQQ\nD0UJgBBCPBQlAEIsZItlpFUqlQ0iIcQ2KAEQj1BYWIicnBwsXboUtbW1AICLFy8iIyMDeXl5fb7+\n4MGDUCgUVr3nn/70J7z66qtG22QyGY4ePWrVcQixF0oAxCOkp6dj9uzZmDp1qmHZXh6Ph88//7zP\nFS8rKyshl8sRHh5u1XsmJydj/PjxAICrV69i48aNSElJQWFhIdra2vr3QQixIUoAxGNIJBKjxQav\nXLli0bpAO3bsMCywZY1z584Zlg4/fvw4Ro0aBQCYPXs2du/ebfXxCLE1SgDEY0gkEsMNTr777jtM\nnToV33zzDXbs2IFHH30UpaWlAIBDhw7hvffew4cffoiqqirU1NTA398fwJ3lpb/44gsUFxcbbuhy\n8OBB7Nq1C++88w6uXr0KAKipqUF4eDgOHTqEbdu2QSaToaqqCsnJybh8+TIH/wKEGKMEQDxG5xmA\nVqtFTU0N5HI5PvnkE6xYsQI7d+5EQkICSkpKsHHjRjz//PNIS0tDS0uL0YXbmpoaREZGQqVSYdCg\nQUhOTsb169fx2WefYfny5Zg1axb+9re/QS6XG+7WNHPmTMTGxmL16tWIjo4GoF9LnhCuUQIgHqPz\nDGDfvn2YN28edu7ciSVLlgAAfH19AQBff/01hgwZgoMHD4LH4yElJQVqtdpwjAkTJuDrr7/GzJkz\nAQAZGRnYtWsXHnvsMQBASUkJgoODcf78eeTk5AAAqqqqDA1/J67vlEYIQAmAeBCxWIyGhgZ4eXkh\nMDAQGo0GCQkJAPQ3H6qoqIC/vz/mzZuHOXPmYNKkSaiurgafzzc6TnV1NcLCwnDhwgWMHz8e7e3t\nhuN88cUXWLp0KS5cuIDs7GwcP37ckAzOnz9vaPid6VaexHPRbyHxKHfffbfhJkNPPvkk8vLycODA\nAfzyyy+IjY3FwoULcenSJXzzzTfYu3cvgoODERAQYHSMe+65B1988QUaGxsRFxeH1atX48iRI9i1\naxcWLFiA1NRUJCcn4+TJkxgxYgRiY2NRXl4OhUKBgIAAMMYgFAq5+PiEGKH7ARDSh3feeQerVq0y\n1PQH6ueff8avv/6KhQsX2uR4hPQXnQEQ0ofVq1fj888/t9nxvvvuOzz88MM2Ox4h/UUJgJA+iMVi\npKWlGYaJDsSVK1cwdepUugZAnAKVgAghxENRN4QQQjwUJQBCCPFQlAAIIcRDUQIghBAPRQmAEEI8\nFCUAQgjxUJQACCHEQ1ECIIQQD/X/AAoZUTqTRcPQAAAAAElFTkSuQmCC\n"
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAESCAYAAAD0aQL3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4U2X6N/BvkiZp06bpvqalpVBooZS9oGCjbEIRRVEQ\nEQYQt3dwGUdRf9eMoK+Ag46DOuM7oyi4vOil/ka2wg8R46BAgbfsIGsLTfc9bdM02/P+EZo2bdom\nbZKT5f5cV6+mJycnd6B97ufc53mew2OMMRBCCPE7fK4DIIQQwg1KAIQQ4qcoARBCiJ+iBEAIIX6K\nEgAhhPgpSgCEEOKnOEkAGzZswIgRI5CVlYXFixejra2NizAIIcSvuT0BFBcX46OPPkJhYSHOnj0L\no9GIr776yt1hEEKI3wtw9xuGhoZCKBRCo9FAIBBAo9EgMTHR3WEQQojfc/sZQEREBF544QUkJycj\nISEBYWFhmD59urvDIIQQwtzs6tWrLCMjg9XU1DC9Xs/uu+8+9sUXX1jtA4C+6Iu+6Iu++vHlCLef\nAZw4cQK33XYbIiMjERAQgPvvvx+HDx/uth9jzOO+XnvtNc5joJgoJn+Mi2Ky78tRbk8Aw4cPx9Gj\nR9Ha2grGGA4cOIDMzEx3h0EIIX7P7QkgOzsbS5cuxfjx4zFq1CgAwOOPP+7uMAghxO+5fRQQALz0\n0kt46aWXuHjrAVEoFFyH0A3FZB+KyX6eGBfF5Bo81p/CkYvxeLx+1bMIIcSfOdp2cnIGQAjxfRER\nEaivr+c6DJ8UHh6Ourq6AR+HzgAIIS5Bf8eu09O/raP/5rQYHCGE+ClKAIQQ4qcoARBCiJ+iBEAI\nIW4wZ84cfP7551yHYYUSACHEb23duhVZWVkIDg5GfHw8nn76aTQ2NrrkvfLz8/Hoo4/ata9CocCW\nLVtcEkdnlAAIIW63Z88ezJo1CwqFArNmzcKePXvcfox33nkHL7/8Mt555x2o1WocPXoUN27cwIwZ\nM6DX6x2Ox5l4PJ573oh5IA8NixDigJ7+jnfv3s3S0tKsVrBMS0tju3fvtvvYAz1GY2MjCwkJYd98\n843V9ubmZhYdHc0++eQTm69btmwZe+KJJ9iMGTOYVCplubm57MaNG5bnf/31VzZ+/Hgmk8nYhAkT\n2OHDhy3P5ebmso8//pgxxtinn37Kbr/9dvbHP/6RhYeHs9TUVLZ3717GGGOvvvoqEwgELDAwkIWE\nhLDVq1d3i6Onf1tH206PbGkpARDi/Xr6O545c6bNZYxnzZpl97EHeoy9e/eygIAAZjQauz23bNky\ntnjxYpuvW7ZsGZNKpezQoUOsra2NPfvss2zKlCmMMcZqa2tZWFgY++KLL5jRaGTbt29n4eHhrK6u\njjHGmEKhYFu2bGGMmROAUChkH3/8MTOZTOzDDz9kCQkJlvfpvK8tzkoAVAIihLhVT/cA/5//+R/w\neDy7vvbv32/zGFqt1q4YampqEBUVBT6/exMYFxeHmpqaHl87d+5cTJkyBSKRCG+++SaOHDkClUqF\nPXv2YNiwYXjkkUfA5/OxaNEiDB8+HDt37rR5nEGDBmHlypXg8XhYunQpysvLUVVVZXmeuWESHSUA\nQohbicVim9tnzZpl97r3M2fOtHmMwMBAu2KIiopCTU0NTCZTt+fKy8sRFxdn83U8Hg9yudzyc3Bw\nMCIiIlBWVoby8nIkJydb7T9o0CCUlZXZPFbn95BIJACA5uZmq/dyNUoAhBC3euaZZ5CWlma1LS0t\nDatXr3bbMSZPngyxWIzvvvvOantzczP27dvXY4JhjKGkpMRq/7q6OiQmJiIhIQE3btyw2v/GjRv9\nuue5uy4C02JwhBC3ysvLAwC8//770Gq1CAwMxOrVqy3b3XEMmUyG1157DatXr0ZoaCjuuusulJaW\n4umnn0ZaWhoWLlzY42vz8/Px66+/YsKECfjTn/6EyZMnIzExEbNnz8bq1auxfft2PPjgg/juu+/w\n22+/Ye7cuXZ/rnaxsbG4du2aw69zmENXDNzEQ8MihDjAG/6Ot2zZwkaOHMkCAwMZj8djc+bMYY2N\njT3u/7vf/Y49+eSTbMaMGSwkJITl5uay4uJiy/O//PILGzduHJPJZGz8+PHs119/tTzX+cLu1q1b\n2dSpU62Ozefz2bVr1xhjjB05coSlp6ez8PBw9uyzz3aLo6d/W0f/zWk1UEKIS3jb3/HWrVuxZs0a\nHDlyBIMHD7a5z/LlyyGXy/HGG2+4OTprzloNlEpAhBAC4He/+x0CAgJQUFDQYwLwpoRmD0oAhBBy\ny5IlS3p9vn0Yqq/gpAR06dIlLFq0yPLz9evX8cYbb+CZZ54xB+Vlp46EkO7o79h1nFUC4vwagMlk\nQmJiIo4dO4akpCRzUPSLQ4jXMhqB8nIgKYn+jl3FZ64BHDhwAGlpaZbGnxDi2ZqagJs3bX/duAGU\nlQGRkVxHSezBeQL46quvsHjxYq7DIITA3HuvqLBu0Ls28lotkJzc8TVoEDB9esfPcjkgFgM+VCr3\nWZwmAJ1Oh127duGtt97q9tzatWstjxUKBRQKhfsCI8RHNTf33XuPiLBu4IcOBaZNMzf0ycnm3r09\njXt4eLhPXTD1JOHh4QAApVIJpVLZ7+Nweg1gx44d+PDDD7Fv3z6r7XQNgBDHmUx99941Guuee+eG\nvr33budyOsQDedU1gO3bt+Phhx/mMgRCvEZLS88995s3gdJSIDzcukFPSwPuuqvj56goKs2QDpyd\nAbS0tGDQoEEoKiqCVCq1DorOAIifMZmAysree+8tLUBSku2ee3Ky+Tnqvfs3rxsGagslAOJrNJre\ne+8qFRAW1r1R79zYR0dT7530jhIAIW5mMgFVVT333G/eNA+d7Kv3HhTE9Sch3o4SACFOptEAJSW9\n995DQ3vuubf33m3cfIoQp6IEQIgDGOu7965Wm3votnrugwaZR87cuqETIZyiBEBIJ62t3XvvnRv6\nkhJAKu19aGRMDPXeiXegBED8BmNAdXXvvffGRnMPvaeLq0lJ1HsnvoMSAPEZWm3fvffg4J577snJ\nQGws9d6J/6AEQLwCY0BNTc899xs3gIaG7r33zg19UpI5ARBCzCgBEI+g1ZpHx/TWew8K6rnnPmgQ\n9d4JcRQlAOJyjAG1tb333uvrgcTEni+uJiUBISFcfxJCfAslADJgbW3WvXdbDX1gYN+9d4GA609C\niH+hBEB6xRhQV9d7772uDkhI6L333mX5JkKIB6AE4Od0ur5772Jxzz335GQgLo5674R4I0oAPqy9\n997bomI1NR29d1slmqQk87IFhBDfQwnAi+l05jXde+u9C4W9rxgZH0+9d0L8FSUAD8WYeWRMb733\n6mpzA97TxdXkZOq9E0J6RgmAI3p9R++9pwusAkHvK0bGxwMBnN6jjRDizSgBuABj5lmpvfXeq6rM\nF09t9d4HDTLX3mUyrj8JIcSXUQLoB70eKCvrvfcOdDTuthr5hATqvRNCuEUJwAZbvffODX1lpbn3\n3tvFVeq9E0I8nVckgIaGBjz22GM4f/48eDwePvnkE0yaNKkjKCclgJ07gUcfNd+yr6/eu1A44Lcj\nhHCspaUFpaWlKC0thUql6va4oqICxcXF4PvoIlNekQCWLVuG3NxcrFixAgaDAS0tLZB16mI7KwG8\n9hpgNAJvvEE30ybEmzHGUFdXZ2nIu35vf9za2orExETI5XKr71238Xy0QfD4BNDY2IgxY8bg+vXr\nPe7jrASwciUweTLw2GMDPhQhxEUMBgPKy8u79dY7fy8rK0NgYKDNxr1zIx8ZGemzjbs9HG073X7Z\nsqioCNHR0Vi+fDlOnz6NcePGYfPmzZB0uS3T2rVrLY8VCgUUCoXD76VSmdeTJ4Rwo6+SjEqlQk1N\nDaKiorr11rOysqy2BdPNH7pRKpVQKpX9fr3bzwBOnDiByZMn4/Dhw5gwYQKee+45hIaG4vXXX+8I\nyklnACNGAF9/DYwcOeBDEUI6cWZJJi4uDkK6COcUHn8GIJfLIZfLMWHCBADAggULsHHjRpe8F50B\nEOK4gZRkcnJyqCTjRdyeAOLi4pCUlITLly8jPT0dBw4cwIgRI5z+Pmq1+QIwDd8kpAOVZEhnnIwC\nOn36NB577DHodDqkpaXh008/dfoooIsXgfnzgd9+G2i0hHg+KskQwAtKQACQnZ2N48ePu/Q9qPxD\nfAWVZIir+OziBZQAiDfoT0mm/TuVZMhAUQIgxAUGUpIZMmQIFAqFpWGnkgxxFZ9OAGPGcB0F8UVU\nkiG+wqcTwD33cB0F8TZUkiH+xKcTAJWASDsqyRDSnc8uBx0ZCVy6BERFOSko4rEcKcn0tDhY+/eI\niAgqyRCv5fGLwdljoAlAozEnAI2GVgH1dgMpyXR9TCUZ4uu8Yh6Aq5WWAomJ1Ph7MsYYamtre+y1\nU0mGENfzyQRA9X9udS7J9NRr76kk03mUDJVkCHEtSgDEITRKhhDf4bMJIDGR6yi8C5VkCPE/PpsA\nhg/nOgrPQSUZQogtPpsApk/nOgr3oJIMIaS/fDYBePs1ACrJEEJcjRIAB6gkQwjxBD43EaytDZBK\ngdZWQCBwcmB2oIlLhBCu+P1EsPJyID7e+Y0/lWQIIb7G5xJAf8o//SnJtH+nkgwhxFv5fAIYSElm\n1KhRll47lWQIIb6GswSQkpKC0NBQCAQCCIVCHDt2zCnH7ZwAvvzyS6xYsQJyuZxKMoQQ0gVnCYDH\n40GpVCIiIsKpx1WpgEGDzI9Pnz6NtWvX4pVXXnHqexBCiC/gc/nmvV2t7u/YpM5nANevX8fgwYP7\ndyBCiM8wmfRoa1OhqamQ61A8CqdnANOnT4dAIMATTzyBVatWWT2fkrIWCgWQmgooFAooFAq7jts5\nARQVFSE1NdW5gRNCPIbB0ASdrgI6XfmtL/PjtrZyq+0GQwOEwmiIxQkYO7YAPB4HY8RdQKlUQqlU\n9vv1nM0DKC8vR3x8PKqrqzFjxgy8//77mDp1qjkoHg+ff87w+utAXBywdi1w5532re8vlwNHjgBJ\nSUBERAQuX76MKLotGCFegzET9Poaqwa8a4Pe/pgxE0SieIjF8RCJ4iESxd36bn7cvl0ojPKZRr83\nXnlHsHXr1iEkJAQvvPACgI4PYTAAX30FuxOBwQBIJEBLC9DS0oCkpCSo1WoalkmIBzCZ2jo14hW3\nGnVbDXsVAgJCuzXmthp6gUBKf9+deMVEMI1GA6PRCKlUipaWFuzfvx+vvfZat/0CAoAlS4BFi8yJ\n4Mkne08EFRVAdDQgFHaUf+iXgxDXYYzBaFT32ktv3240NkEkiu3WoEulY7s09LHg88VcfzS/wEkC\nqKysxPz58wGYJ2E98sgjmDlzZo/725sI6AIwIc7BmBF6fXWnXnpP9fUK8HgCm2WX4OCRlu1icTwC\nAiLA43E67oR0wUkCSE1NxalTpxx+XV+JgC4AE9I7o7HVZtmlazlGr69BQEB4p7KLucceFJQOmSy3\nU0MfB4EghOuPRfrJK2cC95QIsrKszwAyMjK4DZQQNzBfL6vvdRRM+2OTSXurMbeur4eGTrJq6IXC\nGPD5NDnS13llAmjXNRGsXg2EhwP33ms+A5gzZw7XIRLSb4wZoNNV2uild2/oBYIgm6NgpNIxVj8H\nBITTdTFi4dUJoF17Iti1C4iKMp8RqFTX8eCDg8GYfcNHCXEXo7G511Ew7dsNhnoIhVHd6uvBwSMR\nHj7dartAEMT1xyJeyCOGgXbV3/sBTJkCbNgA5OSYEBIiQXJyHRISJA7NIyCkP8xj12vtmpTEmMHq\n4mhPwx2Fwmi/GLtOnMcrhoG6SvtF4KqqMkRGhuO33yR2DR8lpCcmk+5W493XpKRKCARSq1Ew5oY8\nGVJpjlVDLxCEUhmGeASfSQAmk/lmMAkJwLFj5hFAjs4jIP7BPHa9qddRMO2PDQY1RKKYbvX1kJDR\nEItnd9oeR2PXidfxmQRQVQWEhQFicfc5AJQI/IN57HqNXZOSeDyezbJLcPAIq4ZeKIyksevEZ/lM\nArBnDgAlAu9kMmn7HAVjHrtefWvsepxVfT0oaAhksqlW22nsOiE+mgCuX7+OO++8s8d9KRFwzzx2\nvcGuSUlGo8ZSZum8FoxUOhGRkR0NvVAYS2PXCXGA3QmgtbUV27dvx9mzZ2EwGKDRaMDn8yGVSpGT\nk4MHH3wQfD53p8pdzwBWrFjR52soETifeex6lR2TkirA44lsruIYHJxttd28hAD9ZxDibHYNAz1w\n4AAuXLiAvLw8pKWlWT3HGMOZM2fw448/Ytq0acjOzh54UP0YBvryy4BMBrzyCiCXy/Hrr79iUPut\nwezk6Oqj/sRo1PTQS7du6A2GOgiFkT2s4mg93FEgkHD9sQjxKU5fDlqr1UKlUmHIkCE2n6+urkZ0\ndDQA4Pz58xgxYoQD4fYQVD8SwJIlwKxZwIMPaiGTyaDRaCAQ9G8Mtb8kAnMZptauSUmM6Xtca926\nBx8NHs9nKouEeBWX3w9Aq9WisrIS1dXVqKysxNdff43PPvvM4UB7DaofCUChAF57DUhIuIS8vDxc\nvXp1wHF4ayIwmfTdxq7bLsdUQiAIttGgd2/oBQIZlWEI8XAumQi2ZMkSHD16FM3NzQgKCkJUVBS0\nWi0mTJiAK1eu9DtYZ2q/BnD1qvOWgfa0awTm299Z99Jt1dcNhsZbt7/rWlsfhfDwWZ0a+ljw+YHu\n/RCEEI9h1xmATqfD119/DZPJhIceeghBQUH45z//iSeeeAKnTp3C6NGjnRuUg1mMMfOdwGprga1b\n/4HTp0/jn//8p1NjAlxzRtBx+7u+JyUxxmyWXbo29Oax67SEACH+xiVnACKRCI8++ihaWlrw+eef\nQyQSQavVAoDTG//+qK01JwCJxLU3gnHkjKDz7e96m5RkHrsu61Z2CQoaDJnsdqvtAQFSl3wuQoh/\n6tdicDU1NfjXv/6F9PR0REZG9jrmvl9BOZjFTp0Cli0DTp8GHnjgASxcuBAPPfSQU2MC2pcQaLT0\n0ltby3HsWDkKCioQF1eOUaPKERzcPna95dbt73oaBdP59ncip8dKCPE/blkMLioqCq+++ipu3ryJ\nuXPn4syZM/05jNMM9FaQjBm7jV3vqRzD4wmtGvSRI+MxenQ8Cguz8Le/xUMojMfTT8dBoYjgdF4E\nIYT0ZUDj9ZKTk/G3v/3NWbH0W3sCYIzh+vXrlmUgGDNBqy3uc1KS+fZ3Ed1GwQQFDYNMlmu1XSAI\nthlDSgowb55nXCwmhHTHjAz6Gj1EsXTG3W5ACeDMmTP9Lv8YjUaMHz8ecrkcu3btGkgYlgRQX18P\nAIiIiAAAlJf/C9evvwqJZJhV2UUmm9xluGOMU8aue9qoIUL8hUlrQltZG9pK29CmaoOuVIc21a2f\n27dV6CCMFGKyajJ4AvpjBPqRAD777DMUFhZi9OjRmDp1KrZv347Fixc7/MabN29GZmYmmpqaHH5t\nVyoVkJvbsQhc+3j15ubTSElZB7l89YDfwxGUCAhxDsYYjI1Gq4bcViNvaDRAFC+CWC6GOFFs/p4k\nRujkUIgTxRAliiBOEIMvprJsZ/3q9v75z3/G0aNHsWnTJsTHxzv8epVKhfz8fPzXf/0X/vrXv/Yn\nhC7HM58BdK3/t7RcQHT0ggEfv78oERDSM2Zk0FXpbPbWOzfy4MHSsIsSzY18SHYIxHkdjb0wWgge\nn/6gHOVwAoiKioJIJMKcOXP6fdP1559/Hps2bYJare5xn7Vr11oeKxQKKBSKHvdtTwAnT1ovA63R\nXIBEktmvGJ2JEgHxN/aWZALCAqx77YlihN0ZZrUtIJSWFumJUqmEUqns9+sd/pfdt28f/vKXvyAy\nMhITJ07EnXfeiYkTJ9r9+t27dyMmJgZjxozpNfDOCaA3jHUkgKKiIowcORIAoNNVW9av8RSUCIi3\no5KMZ+naOV63bp1Dr3c4ASgUCrz33nvQaDQ4ceIETpw44VACOHz4MHbu3In8/HxotVqo1WosXbq0\n3+sJNTYCAgEglZpLQPfccw8AQKO5CIkk0yPXr6FEQDwRlWT8j8MTwf79739DLpdjwoQJA37zn3/+\nGW+//Xa3UUCOTGY4dw5YuBA4fx5IT0/Hjh07kJGRgbKy/4OmphMYNuzjAcfpat666BzxHgMpybQ3\n8lSS8Xwunwj2888/AwBef/11BAYGIjc3F7///e8dPYzFQHvo7eUfo9GImzdvIiUlBQDQ0nIREknG\ngI7tLnRGQPqLSjJkIBxOAA888AB4PB6mTJmC1tZWnD9/vt9vnpubi9zc3H6/HuhIAGVlZYiIiEBQ\nUBAA8wXgiIi7B3Rsd6NEQDqjkgxxtT4TQFtbG5qamhAVFQUAmDp1quW5oKAgjB8/3vLzzZs3kZyc\n7IIwe9bTEFCN5iKCg73jDKArSgS+j0bJEE/Q52+OWCzGDz/8ALVajfnz51t62J3V19fjm2++QUZG\nBicJICenYxIYABgMjTAYGiAWuzcWZ6NE4H2oJEO8iV1dh7lz56K8vBzvvvsuqqqqoNVqodfrIRAI\nIJFIIJfLsWrVKshkMlfH241KBTzwAHDkSMcZgHkE0HDweL7xx0OJwDNQSYb4GrvPHePj4y0rgLb3\n8svKypCQkOCy4OzReQ7AtGnTAHjXBWBHUCJwHSrJEH/k8G/qmjVrsG3bNohEIhiNRuzduxezZ892\nRWx2UamAxETzNYBVq1YB8JwZwK5CicB+ViWZrg16l5KMOOFWj91GSUYsF0MUL6KSDPEpDieAmTNn\nQiQyL6ealJSEU6dOOT0oezU1ATodEB5ufQ2gpeUCEhIe5ywud/H3RGCzJGOjke9ckhHLzY08lWQI\n6UcCiImJwcKFC7FkyRIkJyfj3Llzltm37lZaai7/aLWtqKurs5SjzNcAfK8E1BNfTAQDKcmE3xVu\n1ZOnkgwhttn1l/HJJ59gxYoVAIC8vDwMHToUW7duxaFDh/Dkk0+6NMDetNf/i4uLkZycDIFAAKNR\nA52uHEFBrrkvsCfzhkRAJRlCPIddCeDll1/GoUOHkJOTg4kTJyI7Oxvr168HYG58uWJrDoBGcwlB\nQUOccoMXb8VVIqCSDCHexa5W8oUXXkBOTg4KCgqwfv16nD17FlFRUZg4cSIqKiqwfft2V8dpU+cR\nQO31f1+/AOwIZyYCKskQ4nvs+kt86aWXwOPxrJYdraioQEFBAT744ANXxdan0lIgKwu4ds36AnBw\nMCWAznpLBAoFg0lNJRlC/JFdCcDWgm1xcXG49957ER4e7vSg7KVSAbNnAz/8cB2TJ08GYL4AHBOz\niLOYPImtksxtqjZ8n9OGm4VtqLq7DT8YdRCJgeBBVJIhxN8M+Fz8jjvucEYc/dJTCcgfzgAGUpKJ\nmBaOuKUiBMSKsatAjHWbAhAXDax91XMuFhNCXM/h+wG4g71rWkdHA+fOMQwdKsONGzcgkwXjl19C\nMWVKI/h8sRsidb4BjZLp8t3ekgzdj4AQ3+Dy+wF4Cq3WPBGMz68Dn89HeHg4WlrOQywe5LGNv6eO\nkvGG4aOEEOfz2gRQWgokJADFxR1DQLm8AOwLo2QoERDiX7w2Adiu/zt/BrA/TlyiRECIf/D6BGA9\nCewCIiPn2n0MTy3JeApKBIT4Nq9PAEVFRcjOzgZgLgElJb1k2YcZGBqPNHptScZTUCIgxDdx0rJp\ntVrk5uaira0NOp0O9957LzZs2ODQMVQqYOhQ4OTJ65g/fz4YM6C19QokkmGWfUo/KIVqswrSCVKv\nLsl4CkoEhPgWThJAYGAgfvrpJ0gkEhgMBkyZMgW//PILpkyZYvcxVCpzo9N+DaC1tQgiURwEgmDL\nPo2/NCL1zVTELo51xcfwW5QICPENnHV/JRIJAECn08FoNCIiIsKh16tUQHy8ESUlJRg0aJDNC8Dq\nAjVCc0KdFjOx1p4ILlwAHn/cnAhyc4GDBwHPm11C/A1jDA0GAy5rNPilsRH/XV2Nj8rKuA7Lo3BW\n3DaZTBg7diyuXbuGp556CpmZ1sM3165da3msUCis1iECzAlAIChHdHQ0AgMDUVVlPQS0rbQNJq0J\ngYMDXfkxCOiMgLhPq9GIar0eVXo9qnS6Xr9X63QI5PMRIxIhRii0fF/BGAQ+8kupVCqhVCr7/XrO\nZwI3NjZi1qxZ2Lhxo6WR72s2m04HhIQA+fk/Yd26P+PQoUO4eHEpwsIUiI8337eg+r+rUb6lHKP2\njHLHxyCd0MxiYi8DY6i1ozFv/64zmRArEiG6U4Pe0/dokQiBfP+6xud1M4FlMhny8vJw4sSJbr38\nnpSXmxuWmzeLOg0BvYiEhKcs+1D5hzt0RuC/GGNoNBp77ZV3/rnBYEB4QIDNRnxCYGC37VKBwObi\nlKR/OEkANTU1CAgIQFhYGFpbW/HDDz/gtddes/v1XSeBMWaCRnMRwcEd1wCaCpqQ/EqyK8IndqJE\n4BucUXaJEYkwLCgIU2Qyq+2RQqHPlGO8EScJoLy8HMuWLYPJZILJZMKjjz6KadOm2f36zpPAZs2a\nhba2EggEMgQEhAEwT/Bq+n9NkE6UuuojEAdQIvAs/Sm72GrQY4VCZAUH+33ZxZtxkgCysrJQWFjY\n79e3J4CjR81nAF17/y3nWyBOFEMYLnRGuMRJKBG4Rm9ll2obDTqVXUg7zq8B9IdKBSQldSwD0dLy\ntdVtINUFakhzqPfvqSgR9M0ZZZdokQhDg4JwO5VdSA+8NgGMHduGhoYGxMfH48qViwgJGWt5vqmg\niS4AewF/SgRUdiGeyGsTAI9XipSUFPD5fLS0XEBs7BLL8+oCNRKeSuAwQuIIb0wEriy7RAuFCKWy\nC3EDr00Aev31WyOAGDSaC5YSkKHJAG2RFsGjgvs4CvE0XCeCgZZd2semU9mFeAuvSwAGA1BZCTQ0\n/IbBgwdDr68EjyeASBQNAGg60YTg7GDwhXRK7K2clQio7EJI77wuAVRWAlFRwM2b15CamoqWlgtW\nF4Cp/u87uiaCJ55kiE4x4omXdRg8Vo9qve3JRY6WXdp77lR2If7G6xJA5zkAU6dOhUZjvQaQukCN\nmEUxHEZ1UfABAAAc+0lEQVRIHGF32SVNj+qPdCg18rGqWoSgnUJkJYmQmUBlF0L6y2sTwNWrRbfO\nAH60rALKGIO6QI0h7w7hOEr/5UjZpVqvR1s/yi6WtYaeAPhxwKK1nnuxmBBP5qUJgGH/fvMcgKKi\nC4iKug8A0KZqAzMyiAeJOY7Sd/Q02qWnsku9wYCIPsou0UKhZVtfZRclT4lxTGG1jeuLxYT4Cq9M\nAOHhLRCJRJDJZFazgNvr/1TH7V1/RrtE22jQuS67UCIgZGC8MgFkZlYgNTUVen0tjEYNRKJEAP67\nAqg7yi6ejBIBIf3jlQkgPf0GBg8efKv3n2np8asL1Ej5cwq3ATqBrbKLrclF9pZduq6d7qujXSgR\nEOIYr0wAGs3lWxeAO24DadKb0FzYDOkEz1wDyFfKLt6AEgEh9vGqBGAyAWVlQE3NGeTkZFvNAG45\n1wJxshgBMvd8JH8vu3gDSgSE9M6rEkB1NSCTASUlV7Bo0X1oafk3wsPN9xEY6AQwZ5VdooVCjJdK\nuzX0vlp28QaUCAixzWMTQI2mptu2c9eBuMHAldIrCEsIQ1ndOUTI48A0Nbhx/AakE6RWr2OMobSt\nDTUGA6p1OtTo9Zav6i6Pa/V6iHg8RItEiAoIQNSt4YpRQiHihUJkhQgRLQxB1K1tEXaVXfQA9NDr\nNKh17j+PX7H1u9Bfd98PTJ8H/PvfwKpngZgY4KWXgNbm/fjow49g1BsRFBiEZ555Bnl5eU57X0I8\nEec3hbeFx+Mh8q3Ibtt1OkCrBfT6WkRGRsBgqENAgHk/Q4MBAqkAPEFHo6w1maAxmcAHwOfxLN95\nnX7u/Jh4nm/XfIsFby1w2fHb2oDmM23AAQ3QYLJs50XwEHF/BGJGxyBEFAKpWAqpSGr5HiIK6f6z\nrX3EUgQFBNk8+1MqeVAoPO7Pj3gxR28K77EJwFZYf/87cOSIGv/5z0icO/cdLl9+HOPHn4Sh0YAj\niUcwpWEKeAEdf2h3nDyJl5OTMSeyezIh3kHJU0LRZSKYs82cOQs//LC/2/bcabn4+//9O5p0TWjW\nNaOprQlNuiY0td36WXfrZ60abc0NMKkbYWpsBJqbwJqawW9pQUBLKyStBkQaxYg0CBFmFCJcL4BM\nx0fA+krccYcBfL7ApZ+P+A9HE4DHloCQn99tU/DPwPiGciTIZDDs2o6YJhlQlY/Wk81ISKkEb3+T\nZV+1wYCY337D9MxMgC6oejGJzd8FZ9JVlNvcrj1/A5lvbwOvqQloagKam83fu341NwMiESCVmr9C\nQgBpjOVnU2QwdEFitEmE0AYJoQkMQIuYjxq8BT6PfjcJdzg5AygpKcHSpUtRVVUFHo+Hxx9/HM88\n80xHUDwe2OzZ3V536jTA59cBTIW0IWLweQEICkpD67VWmPQMwcMlln1L29pQodNhnNQzh4US+yj3\nvgTF7L+49D1mHTuG/bXdr9JkBAzGM/LHcec8KdLHhoAXKu1o5C0N/a3vQsfvP00lIOJsXnEGIBQK\n8e6772L06NFobm7GuHHjMGPGDGRkdNzY3Vav7/k7gYSELRg2rBTz559AXNzvEBR9P67OO4u4pXEI\nXhBt2fe58+cxOyIC4+Lj3fGRiKvwlC4/A3hmzx5ce/ZZXLt2zbItLS0NG/+6GWp1Hu55HYg7SaOG\niO/h5PwzLi4Oo0ePBgCEhIQgIyMDZWVlfb5OpQIaGs7dmgVsXga6fQXQzjeBbzOZ8EN9PfKo9k/s\nkJeXh82bN2PWrFlAdjZmzZqFzZs3Y968PCxZAly4ADz+uHn4aG4ucPAg4HlXzghxHOfXAIqLi3Hy\n5Enk5ORYbV+7dq3lsUKhQG6uAioVEBZ2EsnJ96CtTYXAwDS03WgDT8CDWN6xAujPDQ3IkEgQKxK5\n62MQL5eXl4e8vDzwlErsUyisnqN5BMRTKZVKKJXKfr+e0wTQ3NyMBQsWYPPmzQgJCbF6rnMCAIDa\nWiAoCLhx4wLi442or08Dny+EuqC+2wqgu2prMY96/8TJKBEQT6NQKKDo1GFZt26dQ6/nLAHo9Xo8\n8MADWLJkCe67774+91epgIQEI65da0JISBV0OvMSEF1XAGWMYWdNDfJHjXJZ7MS/USLwUBoNUFNj\n7i12/uq8raEB2LWL/pNu4SQBMMawcuVKZGZm4rnnnrPrNeb7AGiQkpICrfaSZRE4dYEaqf871bLf\n2ZYWCHg8ZEokPR2KEKegROAiJhPQ2NhzI97TNgCIjDTfNDwy0vorNRUYP978mDH6z7mFkwTw66+/\n4osvvsCoUaMwZswYAMCGDRtw99139/galQqQSGotF4CjoxfApDeh5XQLpOM7LgDvrK3FvKgoWneH\nuA0lgl7o9UBdnf2NeG2tef+QkO6NeHvDnpXVfVtkJECdPodxkgCmTJkCk8nU946dqFQAn19xaxno\ngxg0KBMtZ1oQmBqIAGnHx9hZU4MNgwc7O2RC+uTzicCeEkvXbRoNEB5uu8GOjATS07tvi4jo17wK\n4jjORwHZS6UC9PoipKYOglZ7HRJJOsoLaq3q/+VtbbjS2oo7ZDIOIyX+zuMTgatLLJ0b+9BQmonv\nwbwqATQ3/4aEhCiIxUng8wOhPqqGbGpHY7+7thZ3R0RASL9wxAP0lQicgkosZAC8KgHo9acQH59r\ndQE46Y9Jln121dZiUUwMVyESYlNPieD117tcj6QSC3Ezr0gAjAElJQwm0zFERWVBIsmEvl4PXZkO\nwSOCAQAaoxHKhgZsGz6c42iJ3+uhxBJQW4sltbVYfGctSk7VogjANWk25EG1EDfXggdQiYW4lVck\nALUaABiCgvTg869DIrkbTceaIB0ntaz//2N9PcZJpQinng1xJheUWPjZWRh0VySK8A0uvbINKz6O\nhDg9Eq+8IfGMawTEb3hFAigtBaKi2hAdnQqN5iLk8udR12X9n500+5f0xZ4Sy2OPARMnuqfEolyE\nvP8ajVlrPPRiMfF5XpEAVCpAKm3A4MGp0Gh2QyIZjuKCIsSvNK/0aWIMu2trsSY5meNIiVu4chQL\nALz/vltLLB4/aoj4LK9JACJRFZKSIiAURkEgCEFTQROG/WsYAOBEUxPCAwIwJCiI40iJw9pLLLYa\n8NpaAHOAe+913ygWpRLosjChu1AiIO7mNQnAaLyJhAQBgoMzob2uBT+QD3GieQXQ9tm/hGO2Six9\n9cz7KrEAwPLlfjWKhRIBcRevSQCtrVcQG6uDRJLZbf3/XTU1+Ed6OocR+piuJRZ7L34Czh/F8rIS\nsGOxQF9EiYC4mtckgPr6s4iKUkMimWheAXSSeQbwDa0W5TodJoWG9nEUP9VbiaWnbfX1NFHIg1Ai\nIK7iFQmgpIShvv4sZDIegoMzUVHQhOgHzLd/3FVbizmRkRD4+l8BY+ZyiSOThPoqsURFAcOG0UQh\nL0GJgDiblyQAE2Jj9dDrixAoGIbmsxcgHWcuAe2sqcGTCQkcR+ggTyqxEK9DiYA4i8cngJYWoLUV\nGDUqGAKBBG0XRJAMlUAQLIDaYMBRtRr/PXIkdwFSiYVwhBIBGSiPTwClpUBYWDOSkqTmC8CHOi4A\n/09dHW6XyRAiEAz8jajEQrwUJQLSXx6fAFQqIDCwBomJAkgkQ9BU0ISwu8IA2DH7V68HCgupxEL8\nAiUC4iivSAA8XiliYrQIDs6EqkCN5FeSYWAMe+vqsD41tecX/+EPwL59wJAhVGIhfoMSAbGXVyQA\nne46oqNrITakQ1elg2S4BIcaG5EsFiMpMND2Cy9dMv/2X7xobuQJ8TOUCEhfOKldrFixArGxscjK\nyupzX5UKUKsvIizsJgwXEiEdb14BdFdtLe7prfyzZo35ixp/4ufaE8GFC8Djj5sTQW4ucPCg+dIX\n8V+cJIDly5dj3759du1bXGyAXl+EiAhAczTQcgvInTU1PS//8PPPwOnTwO9/76yQCfF6lAhIV5wk\ngKlTpyI8PNyufYuK9EhIaEVIyAg0FzQjNCcUlzQaNBuNGBsS0v0FJhPwwgvAhg1AT+UhQvwYJQLS\nzuOHr5SX85GU1ISgoAyoj6kRmhNqLv9ERYFnq4i5fTsgEAALF7o/WEK8CCUC4rEXgdeuXQuDAVCr\nTQgMVEGkmQ2BVABRnAg7T9bgZVtr/7e2Aq++Cnz5JV3hIsROdLHYeymVSiiVyn6/3qMTwPXrwHvv\n1SI7+yuYriUjNCcUtXo9Tjc34y5bJaT33jOP1Z8yxf0BE+LlKBF4H4VCAYVCYfl53bp1Dr3eo0tA\nKhUQEFCBqKga6I8lIDQnFPm1tbgrPByBXSdfVVcDmzYBGzdyEywhPoJKQ/6DkwTw8MMP47bbbsPl\ny5eRlJSETz/91OZ+5hvBFCM2VosWZbCl/m9z9u+6dcAjjwBDh7o4ekL8AyUC38dJCWj79u127VdS\nwqDRXEJqynBozmsgHC3B/lP1+KBrI3/pEvD11+ZJX4QQp6LSkO/y6BLQlSsaiEQVCOcPh2S4BL/o\nmpApkSBGJLLekSZ9EeJydEbgezw6AVy9qkV0dC14qkEdwz+7ln9o0hchbkWJwHd4dAIoKWGIi6uA\n4Ywc0onS7rN/adIXIZzxhkSgM+pQq6lFUX0RzlSewa83f+U6JI/iscNAAaC6WoyxY6+hVRmLiocC\nINDxkNl5xU6a9EUI55x9jcDETGjWNUPdprZ8NbU1dTzWNVk/1+nnzvup29QwmAwIFYciVBwKqViK\nUHEoDi0/BD7Po/u+buOxCUCvB1pagpCcXATjwWjsCW/BPGOn2b806YsQj8EYg461Yvp9aoyb2YRv\nd6mx9DU1ZB804d6H1EgcrEaTrvfGuv05jV6DYGGwpcEOFYdCKup43N6YRwZFIjUs1Wq/rvsGBgTa\nXjGAAPDgBFBeDgQE1CAlLh6h48Kwq64WGwYP7tiBJn0RMmB6o77vnrSujx74reeEAqFVA5y2IhRN\nNaH4YJ8UIcJQ3DEpFCOGSBEbEWuzsW5vyENEIdRDdxOPTQAqFQCUQC5KA3+8BJdbKzFVJjM/2T7p\n68gRLkMkhBNdSyQ99aR7a6zbn9Mb9d161rYaZ3mo3GZj3XlfocD2bU4NBnNp6PXXgbL20tBEOnH3\nBB6bAMzLQN9AdN0QnBnOcHdEBITts39p0hfxMowxtBparRpgANh5aad146zru1H3thIJzSPwXB6b\nAM6da4BEUg7TsSTsvKsV90bGmZ+gSV/EjdpLJH31pO25KNm1RPLXYcDHhR93a8hjg32zREKJwPN4\nbAK4dKkZ4WGlEDSNwl6+Gv8nItP8xJo1wEsv0aQv0qPOJRJHyyNIWYsh7w2xPOfKEolSycPOh3dy\n9K/EHUoEnsNjE0BxsQHR0cXQxN2P8VIRwoXCjklfX33FdXjEyRhj0Bq03RprAPjizBcdDbmNEknX\nhtzeEklEYARSZClW+91ZDOx9ZC+NInEDSgTc89gEUF4OjM9qwOn0APPsX5r05ZH0Rn2/yyN9lUhC\nxaFYi7XYe3Wv+0okxUoMjaRrS+5EiYA7HpsAGhpCkBpiwM4UDT6NiqJJX07UU4nEkQk27iiRAIBy\nuRJf3v8lB/9KxN0oEbifxyYArTYCaYYg/JQhRBrg95O+upZI7B2zbWvfFn1Lv0skNNGGuBolAvfx\n2AQA1CIqaDjmJEZ79aSvriWSgYzZDuAH9Fr6CBWHIlQU2mOJpH1fbx1FQvwLJQLX8+AEoEJZ+HDc\nIxC4fdJXe4mkz9mPur7r3gaToc/Sh60Sia1ySk8TbQjxZZQIXMdjE0BQkArHY5Lx/KZN/Z70VdxQ\njLOVZ3u/CGmjd26rRGKr191eIumt9k0lEkKcgxKB83lsAggNLkfcyDEQPG3/pC+jyYiC0gLsurwL\nuy7tQlVLFSYmToQsUGZVIokJjqESCSFeihKB83hsAogMrkPukW/7nPSlblNj/7X92H15N/Kv5CMu\nJA73DLsHH8/7GBMTJ1JDToiPokQwcJy0jvv27cPw4cMxdOhQvPXWWzb3CZe2Ymb+HmD16m7PFdUX\n4f2C9zHz85mQ/1WOjws/xoSECTi+6jjOPHUGb971JibJJzm98VcqlU49njNQTPbxxJhOneI6Ats8\n8d+qt5i4ujGNJ/47OcrtCcBoNOL3v/899u3bhwsXLmD79u24aKPEExlmQMjatUBgIIwmIw6XHMYr\nP76Ckf8YiZyPc1BYUYgnxz+J0j+UYt+SffhfE/8XBoUNcmnsnvgfTjHZxxNjogRgP3ticnci8MR/\nJ0e5vQR07NgxDBkyBCkpKQCARYsWYceOHcjIyLDab5ikBd9mCbDr+2XIv5KP+JB4S2lnQsIECPgC\nd4dOCPECVBqyn9sTQGlpKZKSkiw/y+VyFBQUdNvvdKISp09exdz0uVinWIeUsBQ3RkkI8XY9JYJ9\n+4DOd5b1ZzzG3Hv75u+++w779u3DRx99BAD44osvUFBQgPfff78jKErRhBDSL4406W4/A0hMTERJ\nSYnl55KSEsjlcqt93JyTCCHEL7n9IvD48eNx5coVFBcXQ6fT4euvv8a8efPcHQYhhPg9t58BBAQE\n4IMPPsCsWbNgNBqxcuXKbheACSGEuB4n8wBmz56NS5cu4erVq3jllVesnrNnjoA7lZSU4M4778SI\nESMwcuRIvPfee1yHZGE0GjFmzBjcc889XIdi0dDQgAULFiAjIwOZmZk4evQo1yFhw4YNGDFiBLKy\nsrB48WK0tbW5PYYVK1YgNjYWWVlZlm11dXWYMWMG0tPTMXPmTDQ0NHAe04svvoiMjAxkZ2fj/vvv\nR2NjI+cxtXvnnXfA5/NRV1fn1ph6i+v9999HRkYGRo4ciTVr1nAe07FjxzBx4kSMGTMGEyZMwPHj\nx3s/CPMgBoOBpaWlsaKiIqbT6Vh2dja7cOECpzGVl5ezkydPMsYYa2pqYunp6ZzH1O6dd95hixcv\nZvfccw/XoVgsXbqUbdmyhTHGmF6vZw0NDZzGU1RUxFJTU5lWq2WMMfbQQw+xrVu3uj2O//znP6yw\nsJCNHDnSsu3FF19kb731FmOMsY0bN7I1a9ZwHtP+/fuZ0WhkjDG2Zs0aj4iJMcZu3rzJZs2axVJS\nUlhtba1bY+oproMHD7Lp06cznU7HGGOsqqqK85hyc3PZvn37GGOM5efnM4VC0esxPGqdhM5zBIRC\noWWOAJfi4uIwevRoAEBISAgyMjJQVlbGaUwAoFKpkJ+fj8cee8xjLpo3Njbi0KFDWLFiBQBzuU8m\nk3EaU2hoKIRCITQaDQwGAzQaDRITE90ex9SpUxEeHm61befOnVi2bBkAYNmyZfj+++85j2nGjBng\n883NQk5ODlQqFecxAcAf/vAH/OUvf3FrLJ3ZiuvDDz/EK6+8AqHQvEpvdHQ05zHFx8dbztoaGhr6\n/F33qARga45AaWkphxFZKy4uxsmTJ5GTk8N1KHj++eexadMmyx+rJygqKkJ0dDSWL1+OsWPHYtWq\nVdBoNJzGFBERgRdeeAHJyclISEhAWFgYpk+fzmlM7SorKxEbGwsAiI2NRWVlJccRWfvkk08wZ84c\nrsPAjh07IJfLMWrUKK5DsXLlyhX85z//waRJk6BQKHDixAmuQ8LGjRstv+8vvvgiNmzY0Ov+ntN6\nwLPH/zc3N2PBggXYvHkzQkJCOI1l9+7diImJwZgxYzym9w8ABoMBhYWFePrpp1FYWIjg4GBs3LiR\n05iuXbuGv/3tbyguLkZZWRmam5vx5Zeed4tJHo/nUb//b775JkQiERYvXsxpHBqNBuvXr8e6dess\n2zzld95gMKC+vh5Hjx7Fpk2b8NBDD3EdElauXIn33nsPN2/exLvvvms5G++JRyUAe+YIcEGv1+OB\nBx7AkiVLcN9993EdDg4fPoydO3ciNTUVDz/8MA4ePIilS5dyHRbkcjnkcjkmTJgAAFiwYAEKCws5\njenEiRO47bbbEBkZiYCAANx///04fPgwpzG1i42NRUVFBQCgvLwcMTExHEdktnXrVuTn53tEorx2\n7RqKi4uRnZ2N1NRUqFQqjBs3DlVVVVyHBrlcjvvvvx8AMGHCBPD5fNTW1nIa07FjxzB//nwA5r+/\nY8eO9bq/RyUAT5wjwBjDypUrkZmZieeee47TWNqtX78eJSUlKCoqwldffYW77roLn332GddhIS4u\nDklJSbh8+TIA4MCBAxgxYgSnMQ0fPhxHjx5Fa2srGGM4cOAAMjMzOY2p3bx587Bt2zYAwLZt2zyi\nc7Fv3z5s2rQJO3bsQGBgINfhICsrC5WVlSgqKkJRURHkcjkKCws9Ilned999OHjwIADg8uXL0Ol0\niIyM5DSmIUOG4OeffwYAHDx4EOnp6b2/wFVXqPsrPz+fpaens7S0NLZ+/Xquw2GHDh1iPB6PZWdn\ns9GjR7PRo0ezvXv3ch2WhVKp9KhRQKdOnWLjx49no0aNYvPnz+d8FBBjjL311lssMzOTjRw5ki1d\nutQyasOdFi1axOLj45lQKGRyuZx98sknrLa2lk2bNo0NHTqUzZgxg9XX13Ma05YtW9iQIUNYcnKy\n5Xf9qaee4iQmkUhk+XfqLDU1lZNRQLbi0ul0bMmSJWzkyJFs7Nix7KeffuIkps6/U8ePH2cTJ05k\n2dnZbNKkSaywsLDXY7h9LSBCCCGewaNKQIQQQtyHEgAhhPgpSgCEEOKnKAEQQoifogRACCF+ihIA\nIYT4KUoAhNjJGctIa7VaJ0RCiHNQAiB+4cKFC5g4cSIeffRRVFdXAwBOnjyJESNGID8/v8/X7969\nG01NTQ695x//+Ef86U9/stqmUqlw4MABh45DiKtQAiB+ITMzE3l5eZg2bZpl2V4ej4dvvvmmzxUv\ny8vLoVarERUV5dB7pqWlYdKkSQCAixcvYv369RgyZAguXLiA1tbW/n0QQpyIEgDxG3K53GqxwfPn\nz9u1LtCnn35qWWDLEceOHbMsHf7TTz9hzJgxAIC8vDxs377d4eMR4myUAIjfkMvllhuc/Pjjj5g2\nbRr27NmDTz/9FA8//DBu3rwJANi7dy/effdd/P3vf0dFRQWqqqoQFBQEoGN56W+//RbFxcWWG7rs\n3r0b27Ztw9tvv42LFy8CAKqqqhAVFYW9e/diy5YtUKlUqKioQFpaGs6ePcvBvwAh1igBEL/RfgZg\nNBpRVVUFtVqNzz77DMuXL8fWrVuRnJyMGzduYP369Xj++eeRkZGB5uZmqwu3VVVViImJgVarRUpK\nCtLS0nD58mV88cUXWLZsGebMmYN//OMfUKvVlrs1zZ49GwkJCVi1ahXi4uIAmNeSJ4RrlACI32g/\nA9ixYwfmzZuHrVu3YsmSJQAAsVgMAPj+++8xdOhQ7N69GzweD0OGDIFer7ccY/Lkyfj+++8xe/Zs\nAMCIESOwbds2PPLIIwCAGzduICwsDMePH8fEiRMBABUVFZaGvx3Xd0ojBKAEQPyITCZDXV0d+Hw+\ngoODYTAYkJycDMB886GysjIEBQVh3rx5mDt3LqZOnYrKykoIBAKr41RWViIyMhInTpzApEmT0NbW\nZjnOt99+i0cffRQnTpzA+PHj8dNPP1mSwfHjxy0NvyfdypP4L/otJH7l9ttvt9xk6Mknn0R+fj52\n7dqFc+fOISEhAQsXLsSZM2ewZ88efP311wgLC4NEIrE6xh133IFvv/0W9fX1SExMxKpVq7B//35s\n27YNCxYsQHp6OtLS0vDLL79g1KhRSEhIQGlpKZqamiCRSMAYg1Qq5eLjE2KF7gdASB/efvttrFy5\n0lLTH6jTp0/jt99+w8KFC51yPEL6i84ACOnDqlWr8M033zjteD/++CMefPBBpx2PkP6iBEBIH2Qy\nGTIyMizDRAfi/PnzmDZtGl0DIB6BSkCEEOKnqBtCCCF+ihIAIYT4KUoAhBDipygBEEKIn6IEQAgh\nfooSACGE+ClKAIQQ4qcoARBCiJ/6/6jf3NEk5ghMAAAAAElFTkSuQmCC\n"
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAESCAYAAADnvkIDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVPXiP/D3Yd/3VVFRXEEEBEFvLpChV1HC3G8ZJnm7\n2W6bLV7Np69aV59KrZvdnyla2WKlqFfabuNT7qKmAW4kuDCACMg6wDCf3x/kJDbKDMucmeH96vF5\n8DDnnDeTzHvO5zPnHEkIIUBERHQLK7kDEBGRaWJBEBGRTiwIIiLSiQVBREQ6sSCIiEgnFgQREelk\n9IJQqVSIi4tDZGQkQkND8dJLLwEAli5diqCgIERFRSEqKgqZmZnGjkZERDeR5DgPora2Fk5OTlCr\n1Rg5ciRWrVqFH374Aa6urli4cKGx4xARkQ6yDDE5OTkBABoaGtDU1ARPT08AAM/ZIyIyHbIUhEaj\nQWRkJPz9/ZGQkICwsDAAwNq1axEREYG0tDRUVFTIEY2IiH4nyxDTDdevX8f48eOxcuVKhIaGwtfX\nFwCwePFiKJVKbNiwocXjJUmSIyYRkdlry0u9rJ9icnd3R1JSEo4ePQo/Pz9IkgRJkvDwww/j8OHD\nOtcRQpj8nyVLlsiegTmZkzmZ8caftjJ6QZSWlmqHj+rq6vDdd98hKioKRUVF2sd8/fXXCA8PN3Y0\nIiK6iY2xd6hUKpGamgqNRgONRoM5c+Zg7NixePDBB3HixAlIkoTevXtj/fr1xo5GREQ3MXpBhIeH\n49ixY39avnnzZmNH6TTx8fFyR9ALc3Ys5uxY5pDTHDK2h6yT1IaSJKld42lERF1RW187jX4EQUTk\n5eWF8vJyuWNYHE9PT5SVlXXY9ngEQURGx9/lznG757Wtzzcv1kdERDqxIIiISCcWBBER6cSCICKS\n0aOPPorXX39d7hg6sSCIiHTYtGkTwsPD4ezsjMDAQCxYsADXr1+/7ePnzp0Le3t7uLq6wtvbG+PG\njcOZM2da3c+///1vvPrqq3plmjt3LhYvXqz3z9BeLAgiMim7v9uN8Q+NR/zceIx/aDx2f7fb6NtY\nvXo1Fi1ahNWrV6OyshIHDx5EQUEBEhMT0djYqHMdSZLw4osvoqqqCpcvX4afnx/mzp1rcHaTIsyI\nmcUlotu43e/yrm93iZB7QwSWQvsn5N4QsevbXXpvu73buH79unBxcRFffPFFi+XV1dXC19dXfPjh\nhzrXmzt3rli8ePEfOXbtEi4uLkIIIXJycsSYMWOEh4eHCAsLExkZGdrHpaamildffVUIIcSPP/4o\nunfvLlavXi38/PxEYGCg2LhxoxBCiPXr1wtbW1thZ2cnXFxcRHJy8p8y3O55betrJ48giMhkrPlk\nDfKi8losy4vKw9pP1xptG/v374dKpcJ9993XYrmzszMmTpyI77///rbrit/PNaiursbHH3+MoUOH\nQq1WY/LkyfjrX/+Kq1evYu3atbj//vtx9uxZANBexfqG4uJiVFZWorCwEBs2bMBjjz2G69ev4+9/\n/zvuv/9+7VHKjh079Pp52oNnUhORyagX9TqXf/PbN5Be0/N+MPkAgv+8WNWk0mv10tJS+Pj4wMrq\nz++fAwICcPz4cZ3rCSGwatUqrFu3Dg4ODoiLi8OmTZtw4MAB1NTUYNGiRQCAhIQETJo0CVu3bsWS\nJUu0695ga2uLf/7zn7CyssKECRPg4uKCM2fOIDY29k+P7WwsCCIyGfaSvc7l4/uMR+aSTL22MT5/\nPL7Ft39a7mDtoNf6Pj4+KC0thUaj+VNJKJVKBAQE6FxPkiQ8//zzWLZsWYvlhw8fRo8ePVos69Wr\nFwoLC3Vux9vbu8V+nZycUF1drVf2jsYhJiIyGU/+7UmEHA9psSzkWAiemPWE0bYxYsQI2Nvb48sv\nv2yxvLq6GpmZmRg3btxt19X17r5bt264dOlSi+8VFBSge/fu2r/re7dMY99Vk0cQRGQykhKTAABr\nP10LVZMKDtYOeOLxJ7TLjbENd3d3LFmyBE888QTc3Nxw991348qVK1iwYAFCQkIwc+ZMnevdbuhn\n+PDhcHJywptvvomFCxdi37592LVrF5YuXapdT99hI39/f/z22296PbYjsCCIyKQkJSYZVAidsY3n\nn38e3t7eeO6553D+/HnU19djwoQJyMzMhI2N7pfNWyebb7C1tcXOnTuxYMECrFixAkFBQdiyZQv6\n9++vc707HSWkpaVh+vTp8PT0REJCAr766qs2/4z64NVcicjozO13edOmTXjxxRdx4MAB9OnTR+44\nt9XRV3PlEQQRUSvmzp0LGxsbHDp0yKQLoqPxCIKIjI6/y52D94MgIiKjYEEQEZFOLAgiItKJk9RE\nZHSenp5GP+mrK/D09OzQ7Rl9klqlUmHMmDGor69HQ0MD7r33XqxYsQJlZWWYOXMmCgoKEBwcjM8/\n/xweHh4tw3Jii4jIYG197ZTlU0y1tbVwcnKCWq3GyJEjsWrVKmRkZMDHxwcvvPAC3njjDZSXl2Pl\nypUtw7IgiIgMZlafYnJycgIANDQ0oKmpCZ6ensjIyEBqaioAIDU1Fdu3b5cjGhFRp2tqAjQauVO0\nTpY5CI1Gg6FDhyIvLw+PPvoowsLCUFxcDH9/fwDN1xspLi7Wue6N65cAQHx8POLj442QmIio46xZ\nAxQUAG+/3TnbVygUUCgU7d6OrCfKXb9+HePHj8eKFStw3333oby8XPs9Ly8vlJWVtXg8h5iIyBIs\nXw5UVQErVhhnf2Y1xHSDu7s7kpKSkJWVBX9/fxQVFQFovua6n5+fnNGIiDqNSgU46Hd7ClkZvSBK\nS0tRUVEBAKirq8N3332HqKgoJCcnIz09HQCQnp6OlJQUY0cjIjIKlQpwdJQ7ReuMPgehVCqRmpoK\njUYDjUaDOXPmYOzYsYiKisKMGTOwYcMG7cdciYgsUV2deRxB8GJ9RERGNn8+MGwY8Pe/G2d/ZjkH\nQUTUFZnLEBMLgojIyMxliIkFQURkZDyCICIinXgEQUREOvE8CCIi0olDTEREpBOHmIiISCceQRAR\nkU48giAiIp04SU1ERDpxiImIiP5ECKC+HrC3lztJ61gQRERGVF8P2NkBVmbw6msGEYmILIe5TFAD\nLAgiIqMylwlqgAVBRGRU5jJBDbAgiIiMikNMRESkE48giIhIJ85BEBGRTnV1wND6A8CePXJHaRUL\ngojIiFQqILpmL6BQyB2lVSwIIiIjqqsD3FAJuLnJHaVVLAgiIiNSqQBXwYLQ6dKlS0hISEBYWBgG\nDx6MNWvWAACWLl2KoKAgREVFISoqCpmZmcaORkTU6VQqwEVjHgVhY+wd2tra4q233kJkZCSqq6sR\nHR2NxMRESJKEhQsXYuHChcaORERkNHV1gHMTC0KngIAABAQEAABcXFwwaNAgXLlyBQAghDB2HCIi\no1KpAGc1C6JV+fn5OH78OIYPH459+/Zh7dq12Lx5M2JiYrB69Wp4eHj8aZ2lS5dqv46Pj0d8fLzx\nAhMRtVNdHeDYyQWhUCig6IBPSUlCprft1dXViI+Px6uvvoqUlBSUlJTA19cXALB48WIolUps2LCh\nZVhJ4lEGEZm1l18Gnv2gP7z37QQGDDDKPtv62inLp5gaGxsxdepUPPDAA0hJSQEA+Pn5QZIkSJKE\nhx9+GIcPH5YjGhFRp1KpAIcG8xhiMnpBCCGQlpaG0NBQPP3009rlSqVS+/XXX3+N8PBwY0cjIup0\ndXWAnco8CsLocxD79u3DRx99hCFDhiAqKgoAsHz5cmzduhUnTpyAJEno3bs31q9fb+xoRESdrrG2\nEdbqesDJSe4orZJtDqItOAdBROYubUoZ/v1dCOyqy422T7OagyAi6qqsayqhdjL94SWABUFEZFTW\nNZVocmZBEBHRLaxrKqFxYUEQEdEtbOsqIVxZEEREdAtbVSXAgiAiolvZqSohubMgiIjoFg71lZA8\nWBBERHQLh4ZKWLEgiIjoVo7qSth4sSCIiOgWTiwIIiK6lVoNuIlK2HiyIIiI6CYqFeBhbR5XcgVY\nEERERlNXB7hLfxREkxAmfQFSFgQRkZGoVIAb/iiIz0pK8EBursypbo8FQURkJCpV8xzEjYIoamiA\nr52dzKlujwVBRGQkdXWAy00FUdzQgAAWBBERqWo1cNTUAC4uAJqPIFgQRESEhrJq1Fs7AdbWAFgQ\nRET0O3VZJWpt/viIKwuCiIgAAE0VlaizNZ+CsNH3gXV1ddi6dStOnToFtVqN2tpaWFlZwdXVFXFx\ncZg+fTqsrNg3RES3oymvhMquuSDUQqBMrYavra3MqW5Pr4L4/vvvkZOTg6SkJMybN6/F94QQOHny\nJN5++22MHTsWERERnRKUiMjcieuVqLdvLoirDQ3wtrWFtSTJnOr2Wi0IlUqF4OBg3HPPPTq/X1pa\nioiICERERCA7O7vDAxIRWQpRVYUGhz/OgTDl4SVAjzkIBwcH9O3bV/t3lUqFgoICHD16FLt378az\nzz6r/V5YWFirO7x06RISEhIQFhaGwYMHY82aNQCAsrIyJCYmon///hg3bhwqKira8vMQEZmuyko0\nOppPQeg1xPTAAw/g4MGDqK6uhqOjI3x8fKBSqTBs2DCcO3fOoB3a2trirbfeQmRkJKqrqxEdHY3E\nxERs3LgRiYmJeOGFF/DGG29g5cqVWLlyZZt+KCIiU2RVVQm1k4UVxIcffojPPvsMGo0GM2bMgKOj\nI9avX49HHnkEJ06cMGiHAQEBCAgIAAC4uLhg0KBBuHLlCjIyMrB3714AQGpqKuLj41kQRGRRrKor\n0WRpBWFnZ4c5c+agpqYGW7ZsgZ2dHVQqFQAgMjKyzTvPz8/H8ePHERcXh+LiYvj7+wMA/P39UVxc\nrHMdyYQndIiI9CK9rv3yDR3fbu8VXhUKBRQKRbu2AQCSaEOS0tJSfPDBB+jfvz+8vb2RkJBg8I6r\nq6sxZswYLF68GCkpKfD09ER5ebn2+15eXigrK2sZVpJM+tK4RER3sr/nLCA5GX9Z9zfMzM7GFF9f\nzPLz6/T9tvW1s00nLvj4+ODll19GbGwsnnrqKYPXb2xsxNSpUzFnzhykpKQAaD5qKCoqAgAolUr4\nGeFJIyIyJqdKJZz6dgNgHkNM7TqzrWfPnnj77bcNWkcIgbS0NISGhuLpp5/WLk9OTkZ6ejoAID09\nXVscRESWwqO2EG4DAwGYR0EYPMSUm5uL9957D56enpgzZw769etn0A5//vlnjB49GkOGDNHOJ6xY\nsQKxsbGYMWMGLl68iODgYHz++efw8PBoGZZDTERkxqolF2guFcItyA3uP/2EghEj4GGj9wUt2qyt\nr50GF8SqVaswceJEFBQUYNu2bZg2bRomTJhg8I7bggVBROaqqrAKVt0D4NRUjTqhgde+fagbNcoo\nH7wx2hyEr68vQkNDMWHCBGzYsAElJSUG75SIqKspPaVEqW0gJCtJe6MgU/9UpsEF4e3tjVmzZmHn\nzp345ZdfWBBERHq4flqJCkfzmaAG2lAQ7u7ueO2113DgwAFs2bIFycnJnZGLiMii1J4vRI27+UxQ\nAwZc7vuGd999F+np6Vi+fHln5CEiskgNF5WQvM2rIAw+gvDw8MDevXvR2NjYGXmIiCyTUgkR0AUK\n4siRI5gxYwYmTpyIxYsXd0YuIiKLYntVCdue5lUQBg8xTZo0Cb6+vnjllVcghMDFixc7IxcRkUVx\nvK4EQsxrktrggujZsyd69uwJoPmSGL169erwUERElsa9phBigHkdQRg8xPTiiy+ivr4eANDU1IQ9\ne/Z0eCgiIkvj06CE92ALL4hx48bB3t4eANCjRw+o1eoOD0VEZEnqyupgDxU8entCCIGihgb429rK\nHatVBheEn58fZs6cqT1R7tdff+2MXEREFuPqSSVKbQIgWUmoUKvhaG0NR2truWO1yuA5iKSkJPTr\n1w+bNm3CTz/9hH/84x+dkYuIyGJU5CohOXRDEMxneAnQ8whi9uzZ2q+3bduGo0eP4qWXXkJKSgoK\nCgo6LRwRkSWoOV+Iajfzmn8A9DyC2Lx5s/brwsJCeHt7Iy0tDZIkwc/Pr013lCMi6ioa8pWAmZ1F\nDehZELY3TaYkJSWhuLgYn3/+OaqqqjhJTUTUClGoBPzNryAMnqQOCQnBX/7yFwDAhQsX/nRTHyIi\nasnmqhI2PbpAQWzevBlPP/00Nm3aBGdnZ2zdurUzchERWQyHCiUc+pjXWdRAG+9J/c9//hN+fn74\n17/+hXPnznV0JiIii+JeXQjX/uZ3BGHwx1x9fHxgZ2eHiRMnYuLEiZ2RiYjIong1KKEJ6wIFkZmZ\niTfffBPe3t6IjY1FQkICYmNjOyMbEZHZa6hugKuohM0AHwDmVRAGDzHFx8dDoVBgy5YtGDFiBI4e\nPdoZuYiILMLVU0W4Zu0HKxsrqIVAmVoNXzO4zAbQhoKQJAlHjhyBk5MTRo8ejQULFnRGLiIii1Ce\nq0SZQ/ME9dWGBnjb2sJakmROpR+Dh5j27t0LAFi2bBkcHBwwZswYPP744x0ejIjIEtScLQRczW/+\nAWjDEcTUqVMxbdo07Ny5E5s3b8bw4cMN3um8efPg7++P8PBw7bKlS5ciKCgIUVFRiIqKQmZmpsHb\nJSIyJbu/241vtr+CM+IIxj80HhmH9plVQUhCCHGnB9TX16Oqqgo+Pj6tbuzixYvamwndyU8//QQX\nFxc8+OCDOHXqFADgtddeg6urKxYuXHj7sJKEVuISEZmE3d/txlPvPoXU8jyorYBl8YBv/YMYcs8D\n+P7uRKNmaetrZ6tHEPb29jh48CA++eQT1NXV6XxMeXk5PvjgA70v3Ddq1Ch4enr+aTlf/InIUqz5\nZA3yovIQWA0oXZuXXe2rxm855vPBnlaPIG5QKpXYuHEjSkpKoFKp0NjYCGtrazg5OSEoKAjz58+H\nu7u73jvOz8/H5MmTWxxBbNy4Ee7u7oiJicHq1av/dBkPSZKQmvrH3yMjm/8QEVmS+Pj2vVlWKBRQ\nKBTav7/22mttegOud0HcoNFocOrUKXh6euo1nHQ7txZESUkJfH19AQCLFy+GUqnEhg0bWoblEBMR\nmYnxD43Ht8Hf4tj7wMPJwLFuAIZ+gOE/7ceBNzcaNUtbXzsN/hTTyy+/jKamJuTk5MDGxgbr169H\nQECAwTu+lZ+fn/brhx9+GJMnT273NomI5PLk355E3rt5CKzOax5ikmwhOfTE84nd5I6mN70KYsuW\nLRg2bBgGDBiAkSNHYtKkSQCa5x7WrFmDJUuWtDuIUqlEYGDzR8G+/vrrFp9wIiIyN0mJSdA0NMF7\nRwoGFo9CL6k3im1scF/CeLmj6U2vgsjIyEBWVhZyc3Nx8eJF7Nu3D2PGjEGfPn3adLnv2bNnY+/e\nvSgtLUWPHj3w2muvQaFQ4MSJE5AkCb1798b69esN3i4RkSkZFhiDcis//G/LXnxQWIgDlZVyRzKI\nXgVx88lwjY2NOHnyJI4dO4Zff/0VU6ZMMXinui4RPm/ePIO3Q0RkyspzlIB9N/gBOFZdjaEuLnJH\nMoheBbFs2TJkZWUhLi4OsbGxiIyMRHR0NIDmyWYiIvqzqrOFgEvz0HlWVRUe9PeXOZFh9CqIZ599\nFnFxcTh06BCWL1+OU6dOwcfHB7GxsSgqKuJNg4iIdFBdUELyDESjRoOcmhpEWOIRxAsvvABJkhAf\nH69dVlRUhEOHDmHdunWdlY2IyKxpLisBv0Dk1NYi2MEBztbWckcyiF4FIem48mBAQADuvfdenWdE\nExERYFWsBIYMQVZVFYa6usodx2BtuuXozUaPHt0ROYiILI59uRL2vbuZ5QQ10AEFQUREurlWFsK5\nXyCyqqoQ3RWPIIiISDdPlRKuAwNwqqYGkTyCICIiANCoNfDWlKC8nzu629nBzcbgKxvJzvwSExGZ\ngWtnSmElueFkk8osJ6gBFgQRUacoy1ZCsjffCWqAQ0xERJ2i6kwhKp3Nd4Ia4BEEEVGnqPtNCeEZ\niBPV1Ygy0yMIFgQRUSdouqzExYEh8LO1haetrdxx2oRDTEREnUAqVuLc4F5mO0ENsCCIiDqF3TUl\n8vr6mO0ENcCCICLqFC6VhTgf4Gy2E9QAC4KIqFO4q4pwxhkcYiIioj8IjUC1H+BuawsfM52gBlgQ\nREQdruJCOQ73D0W0u5vcUdqFBUFE1MGu/arEgYFDzHqCGmBBEBF1uMrThfhlYD+znqAGWBBERB2u\nJk+J3JBuZj1BDbAgiIg63JXr12DXBATY2ckdpV1kKYh58+bB398f4eHh2mVlZWVITExE//79MW7c\nOFRUVMgRjYio3c7ZN6DfNZXcMdpNloJ46KGHkJmZ2WLZypUrkZiYiLNnz2Ls2LFYuXKlHNGIiNot\nz9sGA+vN/1J3shTEqFGj4Onp2WJZRkYGUlNTAQCpqanYvn27HNGIiNrtbA83DHEw708wASZ0Ndfi\n4mL4+/sDAPz9/VFcXKzzcXOludqvI3//j4jIlCxHPwCAYp6iTevHi/h27V+hUEChaNu+byYJIUS7\nt9IG+fn5mDx5Mk6dOgUA8PT0RHl5ufb7Xl5eKCsra7GOJEmQKS4RUasKVCrEZmXhq5dewl2ffQYE\nBsodCUDbXztN5lNM/v7+KCoqAgAolUr4+fnJnIiISH8NGg1m5uTg+R49cNehQ8Atw+jmyGQKIjk5\nGenp6QCA9PR0pKSkyJyIiEh/i377DX62tnjW2xuwsgIcHOSO1G6yDDHNnj0be/fuRWlpKfz9/bFs\n2TLce++9mDFjBi5evIjg4GB8/vnn8PDwaBmWQ0xEZIK2l5bi6fPncSw6Gl4lJcCwYUBhodyxtNr6\n2inbHERbsCCIyNRcqKtD3LFj2Bkejjg3NyA7G5g+HcjJkTualtnPQRARmZt6jQYzcnLwcq9ezeUA\nAOXlFjH/ALAgiIja7Lm8PPSwt8dT3bv/sdCCCsJkzoMgIjInX5SU4L/XriErJgaSJP3xDRYEEVHX\ndb6uDo+dO4c9Q4bAw+aWl1ELKggOMRERGUCl0WB6djaWBAfrvt9DRQVwyycwzRULgojIAM+cP49+\njo5Y0K2b7gfwCIKIqOvZWlyM78vL8f8GDGg573AzCyoIzkEQEenhTG0tnjx/Ht9FRMDt1nmHm1lQ\nQfAIgoioFbVNTZienY3/690bkS6tXMabBUFE1HU8ef48wp2dMV+fq7Na0CQ1h5iIiO5gc1ERfr5+\nHUejo28/73AzCzqCYEEQEd1GTk0Nns3Lw/8iIuBiba3fShZUEBxiIiLSoeb3eYc3+/RBeGvzDjc0\nNACNjYCzc+eGMxIWBBHRLYQQWHD2LIa5ueEhQ+4KV17ePP+gz1CUGeAQExHRLTYWFeFoVRUOR0cb\ntqIFTVADLAgiohZOVlfjxd9+w97ISDjrO+9wgwXNPwAcYiIi0qpSqzE9Oxtv9e2L0LbMI7AgiIgs\njxACj5w9i9EeHnjA379tG7GwguAQExERgA+USmTX1ODg0KFt3wgLgojIshyvqsKrFy5gX1QUHA2d\nd7iZhU1Sc4iJiLq062o1ZuTkYG2/fujv5NS+jVnYEQQLgoi6LCEEHj5zBomenpjl59f+DVpYQXCI\niYi6rHcLC5FXV4ctgwZ1zAZZEJ0rODgYbm5usLa2hq2tLQ4fPix3JCKyQEerqrAsPx8Hhg6Fg1UH\nDaawIDqXJElQKBTw8vKSOwoRWagKtRozsrPx7/79EeLo2IEb5iR1pxNCyB2BiCyUEAIPnT6NSd7e\nmOrr27Eb5xFE55IkCffccw+sra3xyCOPYP78+S2+v3TpUu3X8fHxiI+PN25AIjJrb1++jCv19fg0\nNLTjN75kCdDWk+w6kEKhgEKhaPd2JGFib9eVSiUCAwNx9epVJCYmYu3atRg1ahSA5vIwsbhEZEYO\nVlbi3lOncHDoUPTuyKElE9fW106TG2IK/P3Sur6+vpgyZQonqYmoQ5Q1NmJWTg4+GDCgS5VDe5hU\nQdTW1qKqqgoAUFNTg2+//Rbh4eEypyIic6cRAqmnT2Oqjw/u9fGRO47ZMKk5iOLiYkyZMgUAoFar\ncf/992PcuHEypyIic7f60iWUNjbiq7AwuaOYFZObg7gTzkEQkaF+vn4dU3/9FUeio9HTwUHuOLKw\nmDkIIqKOcrWhAX/LycGHAwd22XJoDxYEEVkkjRCYc/o0/ubvjyRvb7njmCUWBBFZpJUXL6KmqQmv\n9+4tdxSzZVKT1EREHWFvRQXWXrmCo9HRsJEkueOYLR5BEJFFKf593mHTwIHobm8vdxyzxoIgIovR\nJATuz83FvMBAjOcFP9uNBUFEFuP1ggI0CYGlwcFyR7EInIMgIovwQ3k51hcWIis6Gtacd+gQPIIg\nIrOnrK/HnNxcbBk0CIGcd+gwLAgiMmtqITA7NxePdOuGsRZ0LwZTwIIgIrO2ND8ftpKEV3v1kjuK\nxeEcBBGZrW/KyrCpqAjHOO/QKVgQRGSWLtfXY+7p0/g0NBR+dnZyx7FIHGIiIrPTqNFgVk4Onuje\nHWM8POSOY7FYEERkdl69cAGu1tZY1LOn3FEsGoeYiMis7Lp2DVtLSnAsJgZWnHfoVCwIIjIbF1Uq\nPHzmDL4MC4OPra3ccSweh5iIyCw0aDSYmZODZ4OCcJe7u9xxugQWBBGZhUW//QYfW1s826OH3FG6\nDA4xEZHJ215aiq9KS3EsOprzDkbEgiAik3ahrg5/P3MGO8PD4cV5B6PiEBMRmax6jQYzcnLwcq9e\niHNzkztOl2NSBZGZmYmBAweiX79+eOONN+SO02YKhULuCHphzo7FnB1LoVDg+bw89LC3x1Pdu8sd\nRydzeS7bymQKoqmpCY8//jgyMzORk5ODrVu3Ijc3V+5YbWIu/2iYs2MxZ8d6b/du7Lp2DR8OHAjJ\nROcdzOW5bCuTKYjDhw+jb9++CA4Ohq2tLWbNmoUdO3bIHYuIZHC+rg67y8rweVgYPGw4VSoXkymI\nK1euoMdNH18LCgrClStXZExERHJo1GgwPTsbYzw8EOPqKnecLk0SQgi5QwDAl19+iczMTPznP/8B\nAHz00Ue51kX6AAAJzElEQVQ4dOgQ1q5dq32MqR5mEhGZura81JvMsVv37t1x6dIl7d8vXbqEoKCg\nFo8xkS4jIuoSTGaIKSYmBufOnUN+fj4aGhrw2WefITk5We5YRERdlskcQdjY2GDdunUYP348mpqa\nkJaWhkGDBskdi4ioyzKZIwgAmDBhAs6cOYN169YhPT39judDPPnkk+jXrx8iIiJw/PhxIydt1tp5\nG6dPn8aIESPg4OCA1atXy5CwWWs5P/74Y0RERGDIkCG46667cPLkSRlStp5zx44diIiIQFRUFKKj\no/G///3P5DLecOTIEdjY2OCrr74yYro/tJZToVDA3d0dUVFRiIqKwuuvvy5DSv2eT4VCgaioKAwe\nPBjx8fHGDfi71nKuWrVK+1yGh4fDxsYGFRUVJpeztLQUf/3rXxEZGYnBgwdj06ZNd96gMDFqtVqE\nhISICxcuiIaGBhERESFycnJaPGb37t1iwoQJQgghDh48KOLi4kwyZ0lJiThy5Ih45ZVXxKpVq4ye\nUd+c+/fvFxUVFUIIIfbs2WOyz2d1dbX265MnT4qQkBCTy3jjcQkJCSIpKUls27bNqBn1zfnjjz+K\nyZMnGz3bzfTJWV5eLkJDQ8WlS5eEEEJcvXrVJHPebOfOnWLs2LFGTNhMn5xLliwRixYtEkI0P5de\nXl6isbHxtts0qSMIQL/zITIyMpCamgoAiIuLQ0VFBYqLi00up6+vL2JiYmAr4/Vj9Mk5YsQIuP9+\n+eS4uDhcvnzZJHM6Oztrv66uroaPj4/JZQSAtWvXYtq0afD19TVqvhv0zSlk/tCHPjk/+eQTTJ06\nVfuBFWP/P9c3580++eQTzJ4924gJm+mTMzAwEJWVlQCAyspKeHt7w+YO55mYXEHocz6ErscY+0XN\nXM7bMDTnhg0bMHHiRGNEa0HfnNu3b8egQYMwYcIErFmzxpgR9f63uWPHDjz66KMA5Plotj45JUnC\n/v37ERERgYkTJyInJ8fYMfXKee7cOZSVlSEhIQExMTHYsmWLsWMa9DtUW1uLb775BlOnTjVWPC19\ncs6fPx/Z2dno1q0bIiIi8M4779xxmyYzSX2Dvr9Qt777MfYvormck2FIzh9//BEffvgh9u3b14mJ\ndNM3Z0pKClJSUvDTTz9hzpw5OHPmTCcn+4M+GZ9++mmsXLkSkiRBCCHLu3R9cg4dOhSXLl2Ck5MT\n9uzZg5SUFJw9e9YI6f6gT87GxkYcO3YMP/zwA2prazFixAgMHz4c/fr1M0LCZob8Du3cuRMjR46E\nh4dHJybSTZ+cy5cvR2RkJBQKBfLy8pCYmIhffvkFrrc5IdHkjiD0OR/i1sdcvnwZ3Y18MS99cpoC\nfXOePHkS8+fPR0ZGBjw9PY0ZEYDhz+eoUaOgVqtx7do1Y8QDoF/GrKwszJo1C71798aXX36JBQsW\nICMjw2gZ9c3p6uoKJycnAM0fDmlsbERZWZnJ5ezRowfGjRsHR0dHeHt7Y/To0fjll19MLucNn376\nqSzDS4B+Offv34/p06cDAEJCQtC7d+87v8nqtBmTNmpsbBR9+vQRFy5cEPX19a1OUh84cECWSVV9\nct6wZMkS2Sap9clZUFAgQkJCxIEDB2TJKIR+Oc+fPy80Go0QQoisrCzRp08fk8t4s7lz54ovv/zS\niAmb6ZOzqKhI+1weOnRI9OrVyyRz5ubmirFjxwq1Wi1qamrE4MGDRXZ2tsnlFEKIiooK4eXlJWpr\na42a7wZ9cj7zzDNi6dKlQojmfwPdu3cX165du+02Ta4ghBDiv//9r+jfv78ICQkRy5cvF0II8f77\n74v3339f+5jHHntMhISEiCFDhoisrCyTzKlUKkVQUJBwc3MTHh4eokePHqKqqsrkcqalpQkvLy8R\nGRkpIiMjxbBhw4yeUZ+cb7zxhggLCxORkZFi5MiR4vDhwyaX8WZyFYQQredct26dCAsLExEREWLE\niBGyvTnQ5/n817/+JUJDQ8XgwYPFO++8Y7I5N23aJGbPni1Lvhtay3n16lUxadIkMWTIEDF48GDx\n8ccf33F7JnMtJiIiMi0mNwdBRESmgQVBREQ6sSCIiEgnFgQREenEgiAiIp1YEEREpBMLgqid6uvr\n270NlUrVAUmIOhYLgrq0nJwcxMbGYs6cObh69SoA4MCBA7CyssJHH33U6vq7du1CVVWVQft87rnn\nsHjx4hbLLl++jO+//96g7RB1NhYEdWmhoaFISkrC2LFjtZfndnBwwN13342YmJg7rqtUKlFZWWnw\nJahDQkIwfPhwAEBubi6WL1+Ovn37IicnB3V1dW37QYg6AQuCurygoKAWFznLzs6GtbU1BgwYcMf1\nNm7ciClTphi8v8OHDyMuLg5A8xV0o6KiAABJSUnYunWrwdsj6iwsCOrybr6fyA8//ID4+HhcvHgR\nu3fvxqJFi6DRaAAAe/bswVtvvYV3330XRUVFKCkpgaOjIwAgLy8Pb7/9NrZt24b8/HztDa127dqF\n9PR0rFq1Crm5uQCAkpIS+Pj4YM+ePdiwYQMuX76MoqIihISE4NSpUzI8A0S6sSCoy7txBNHU1ISS\nkhKUlJQgJSUFkyZNQlNTE06dOoWCggIsX74czzzzDAYNGoTq6uoWE8slJSXw8/ODSqVCcHAwQkJC\ncPbsWXz00UdITU3FxIkT8d5776GyslJ7OfUJEyagW7dumD9/PgICAgAAarValueASBcWBHV5N44g\nduzYgeTkZBw7dgxjxowB0DyJ7enpie3bt6Nfv37YtWsXJElC37590djYqN3GiBEjsH37dkyYMAEA\nEBYWhvT0dNx///0AgIKCAnh4eODIkSOIjY0FABQVFWmL4Yba2lpj/MhEemFBUJfn7u6OsrIyWFlZ\nwdnZGRUVFejTpw/Ky8thY2ODnj17wtHREcnJyZg0aRJGjRqF4uJiWFtbt9hOcXExvL29cfToUQwf\nPhz19fXo2bMnAGDbtm2YM2cOjh49ipiYGPz444/asjhy5Ii2GKys+CtJpsPkbjlKJIe77roLycnJ\nAIApU6Zg165dqKiowPr16wEAM2fOxDvvvANbW1tUVFRg2rRp2juy3TB69Ghs27YN7u7uiImJ0d6h\n78SJE5g2bRr69++PkJAQ/Pzzz0hLS0N+fj6ysrIQEhICJycnCCFue+tHIjnwfhBEbbRq1SqkpaV1\n2C1af/nlF5w+fRozZ87skO0RtRePZ4naaP78+fjiiy86bHs//PCD9n7BRKaABUHURu7u7hg0aBAu\nXrzY7m1lZ2dj7NixnIMgk8IhJiIi0olvV4iISCcWBBER6cSCICIinVgQRESkEwuCiIh0YkEQEZFO\nLAgiItKJBUFERDr9f+uLfdE892zcAAAAAElFTkSuQmCC\n"
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAESCAYAAADnvkIDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlOXCP/DvCKi4xL6oSOooJaAwiaCFMkhIgBGmaVZE\nSb6dzvFY2Xl9tV4Lu87P8KTHVDpvVqioSYtLGhxxH465gooaahKKWywakOyy3L8/iAlkzGGYmWcG\nvp/r8hIehme+TjFf7vt+FpkQQoCIiOgu3aQOQEREpokFQUREGrEgiIhIIxYEERFpxIIgIiKNWBBE\nRKSR0QuipqYGAQEB8PX1haenJxYsWAAAiI+Ph5ubGxQKBRQKBdLT040djYiIWpBJcR5EVVUVevXq\nhfr6egQGBmLp0qXYt28f+vbti7lz5xo7DhERaSDJFFOvXr0AAHfu3EFDQwPs7OwAADxnj4jIdEhS\nEI2NjfD19YWLiwuCg4Ph5eUFAFi1ahV8fHwQFxeHsrIyKaIREdFvJJliavbrr78iLCwMCQkJ8PT0\nhJOTEwBg4cKFKCgoQFJSUqvHy2QyKWISEZk9Xd7qJT2KycbGBpGRkcjKyoKzszNkMhlkMhleeeUV\nHD9+XOP3CCFM/s97770neQbmZE7mZMbmP7oyekHcunVLPX1UXV2NPXv2QKFQoLCwUP2Ybdu2YcSI\nEcaORkRELVga+wkLCgoQGxuLxsZGNDY2IiYmBiEhIXjxxReRnZ0NmUyGwYMHY/Xq1caORkRELRi9\nIEaMGIGTJ0+22b5+/XpjRzEYpVIpdQStMKd+Mad+mUNOc8jYEZIuUreXTCbr0HwaEVFXpOt7p9FH\nEERELdnb26O0tFTqGJ2CnZ0dSkpK9LY/jiCISFL8udafe72Wur7GvFgfERFpxIIgIiKNWBBERKQR\nC4KIiDRiQRARkUY8zJWITFLanjSs3LQStaIWPWQ9MOe5OYgMjTT6Pppt27YN169fh7u7O0pKSnDj\nxg0sWLAAFhYWAICsrCy8++67qKioQGxsLOrr63H69GlMmzbtnifUzZ8/HxMmTMDEiRN1ymRoPMyV\niCSl6ec6bU8aXv/4deQp8tTb5KfkWPGXFVq/wetjH0DTBUL/9Kc/ISAgADNnzlRvnzdvHpycnPDf\n//3f6m1Tp07FU089hZiYGABATk4OJkyYgKKiIq2f74+EhIRg165dsLTU/Ls9D3Mlok5v5aaVrd7Y\nASBPkYdVX64y6j4AICEhAfX19a3KAWi6zMbmzZvVnwshkJGRgccee0y97dKlS+jbt2+7nu9ebty4\nASHEPcvBEDjFREQmp1bUaty+69IuyBZpeV+YfACD2m6uaajROkdZWRkSEhI03n7g119/RV1dnfrz\nM2fOwNLSEkOGDAHQdLXqTz/9FImJibhx4wbWrFmDRx55BJmZmYiIiMDly5exZcsWfP311wCAkydP\n4ujRo/j555/h5+eHhoYGpKWlYc2aNdizZw8+++wzuLq6YsOGDeoRiqGxIIjI5PSQ9dC4PWxIGNLf\nS9dqH2H5YdiN3W2297ToqXWOw4cPw87ODg899FCbr+3fvx8RERHqzw8cOAB3d3d89dVXqKurQ3l5\nORITE+Ho6Ijg4GDs3LkTDg4OkMlkeO6555CVlYWlS5eqv7+4uBgPP/ww9uzZg7///e8QQmDevHkA\ngNDQUKxduxZvvfUWRo0apXX+jmJBEJHJmfPcHOR9nNd6/eCkHH+d/Vej7uPOnTvo379/m+2FhYXY\nv38/Tp06pd524MABxMbGYvr06a0eu2bNGvj5+cHBwQEAcP78eTz11FNITk7GSy+9pH7cE088gQUL\nFqhHB0eOHMHo0aMBNE1fnTp1yqjl0PzEZsPM4hKRFu71c526O1WEzQwTQbFBImxmmEjdndrufXd0\nH6WlpUIul4vKykqxf/9+sX37dlFdXS1mzJghsrOz1Y9raGgQdnZ2Ii8vr80+PvnkE7Fs2TIhhBBV\nVVVi7Nix4tq1a8Lf31+UlZWJ1NTfMwUEBIiysjIhhBCvvvqq2Lt3r9i5c6fIyckRkydPFkIIkZKS\ncs+893otdX3v5AiCiExSZGikzoek6msftra2SElJwTvvvAMrKys4Ojri8OHDSExMRENDAwDg9OnT\n2LRpE2pra6FSqdRrEM1mzJiBJUuWIDU1FdnZ2fj888/h5uaGIUOGIDU1VX2Ia1VVFWxtbWFjYwMA\n6N27N4qLiyGXy2Fvbw8bGxukpKQY9R4UPMyViCRlTj/Xp0+fxscff4zp06fj6tWrePnll6WO1Iq+\nD3NlQRCRpMzp57q0tBTe3t4YOXIktm7dCmtra6kjtcKCMJ+4RKQF/lzrD0+UIyIio2BBEBGRRiwI\nIiLSiAVBREQaGb0gampqEBAQAF9fX3h6emLBggUAgJKSEoSGhsLDwwMTJ05EWVmZsaMREVELkhzF\nVFVVhV69eqG+vh6BgYFYunQpduzYAUdHR8ybNw9LlixBaWkpEhISWofl0Q5EnY69vT1KS0uljtEp\n2NnZoaSkpM12szzMtaqqCkFBQVi3bh2mTJmCjIwMuLi4oLCwEEqlEhcuXGj1eBYEEZmz+nrAwgKQ\naXlBWn3R9b1TkkttNDY24pFHHkFeXh5ee+01eHl5oaioCC4uLgAAFxeXe95gIz4+Xv2xUqk06mnn\nREQd8c47gJ0dMH++YZ9HpVJBpVJ1eD+SjiB+/fVXhIWF4YMPPsDTTz/daphpb2/fZqjEEQQRmbPZ\ns4GHHgL+qv0FZfXCLE+Us7GxQWRkJE6cOKGeWgKAgoICODs7SxmNiEjvKiuB3r2lTqE9oxfErVu3\n1EcoVVdXY8+ePVAoFIiKikJycjIAIDk5GdHR0caORkRkUOZWEEZfgygoKEBsbCwaGxvR2NiImJgY\nhISEQKFQYNq0aUhKSsKgQYPUt+EjIuosKirMqyB4sT4iIiMJCgIWLQKMfWyNWa5BEBF1JeY2xcSC\nICIyEhYEERFpxIIgIiKNzG2RmgVBRGQklZVAnz5Sp9AeC4KIyAjq65v+9OghdRLtsSCIiIygef2h\n1YX6CguBH36QLNP9sCCIiIxA4wL1nj3AXbc1MCUsCCIiI9C4QF1ebtKLEiwIIiIj0LhAXV4O9O0r\nSR5tsCCIiIxA4xQTC4KIiFgQRESkEQuCiIg0uuciNQuCiKhr4yI1ERFppHGKqaKCBUFE1NVxDYKI\niDRiQRARkUZcpCYiIo24SE1ERBq1mWKqq2u6/nfPnpJluh8WBBGREbQpiOYL9bW6/rdpYUEQERmB\nxoIw4eklQIKCuHbtGoKDg+Hl5QVvb2+sXLkSABAfHw83NzcoFAooFAqkp6cbOxoRkcGYY0FYGvsJ\nrayssHz5cvj6+qKiogKjRo1CaGgoZDIZ5s6di7lz5xo7EhGRwVVU3LVIzYJoy9XVFa6urgCAPn36\nYPjw4bhx4wYAQAhh7DhEREbBEUQ75efn49SpUxgzZgwOHTqEVatWYf369fDz88OyZctga2vb5nvi\n4+PVHyuVSiiVSuMFJiLSkTELQqVSQaVSdXg/MiHRr+0VFRVQKpX43//9X0RHR6O4uBhOTk4AgIUL\nF6KgoABJSUmtw8pkHGUQkVnq3r2pE3r0+G1DcjKwbx+wfr3Bn1vX905JjmKqq6vDlClT8MILLyA6\nOhoA4OzsDJlMBplMhldeeQXHjx+XIhoRkd7duQM0NjaVhJoZTDEZvSCEEIiLi4OnpyfeeOMN9faC\nggL1x9u2bcOIESOMHY2IyCCaz6JudcqDGRSE0dcgDh06hI0bN2LkyJFQKBQAgMWLFyMlJQXZ2dmQ\nyWQYPHgwVq9ebexoREQGYY4X6gMkKIjAwEA0Nja22R4eHm7sKERERnHPgvjtiE5TxTOpiYgMzFxH\nECwIIiIDY0EQEZFGbc6iBn6/WJ8JY0EQERkYRxBERKQRC4KIiDRiQRARkUYsCCIi0kjjInVFBQuC\niKirazOCqK1t+lt95T7TxIIgIjIwc7wXBMCCICIyOBYEERFpxIIgIiKNzPF+1AALgojI4DiCICIi\njTQWhIlfhwlgQRARGRxHEEREpBELgoiINOIiNRERtSEERxBERKTBnTtAt26AlVWLjWZwHSYAsNT2\ngdXV1UhJScHZs2dRX1+PqqoqdOvWDX379kVAQACeeeYZdOvGviEiaslcr+QKaFkQe/fuxblz5xAZ\nGYmZM2e2+poQAmfOnMFHH32EkJAQ+Pj4GCQoEZE56tQFUVNTg0GDBuHxxx/X+PVbt27Bx8cHPj4+\nyMnJ0XtAIiJzVll5j/tRm0FB3HdOqGfPnhg6dKj685qaGly5cgVZWVlIS0vDW2+9pf6al5fXfZ/w\n2rVrCA4OhpeXF7y9vbFy5UoAQElJCUJDQ+Hh4YGJEyeirKxMl38PEZFJqajoxCMIAHjhhRdw9OhR\nVFRUwNraGo6OjqipqcHo0aORm5vbrie0srLC8uXL4evri4qKCowaNQqhoaFYu3YtQkNDMW/ePCxZ\nsgQJCQlISEjQ6R9FRGQqOvUUEwCsWbMGX331FRobGzFt2jRYW1tj9erVePXVV5Gdnd2uJ3R1dYWr\nqysAoE+fPhg+fDhu3LiBHTt2ICMjAwAQGxsLpVLJgiAis9fpC6J79+6IiYlBZWUlNmzYgO7du6Om\npgYA4Ovrq/OT5+fn49SpUwgICEBRURFcXFwAAC4uLigqKtL4PfHx8eqPlUollEqlzs9PRGRoUhSE\nSqWCSqXq8H5kQgjR3m+6desWPv30U3h4eMDBwQHBwcHtfuKKigoEBQVh4cKFiI6Ohp2dHUpLS9Vf\nt7e3R0lJSeuwMhl0iEtEJJl16wCVqulvAE1nzllaAjU1d50cYTi6vnfqdOKCo6Mj3n77bfj7++P1\n119v9/fX1dVhypQpiImJQXR0NICmUUNhYSEAoKCgAM7OzrpEIyIyKW0Wqaurm4rBSOXQER06s83d\n3R0fffRRu75HCIG4uDh4enrijTfeUG+PiopCcnIyACA5OVldHERE5sxcL7MBtONM6mbnz5/Hv/71\nL9jZ2SEmJgYTJkxo1/cfOnQIGzduxMiRI6FQKAAAH3zwAebPn49p06YhKSkJgwYNwtdff93eaERE\nJqdNQZjJZTYAHQoiLS0Nr732Gq5cuYKEhARMnToV4eHhWn9/YGAgGhsbNX5t79697Y1DRGTSKiuB\nfv1abDCjEUS7p5icnJzg6emJ8PBwJCUlobi42BC5iIg6hTZnUptRQbR7BOHg4IBnn30Wzz//PNzd\n3VkQRER/oM0itRkVRLtHEDY2Nli0aBGOHDmCDRs2ICoqyhC5iIg6hS61SP3xxx8jOTkZixcvNkQe\nIqJOxZwLot0jCFtbW2RkZKCurs4QeYiIOpUuVxCZmZmYNm0aIiIisHDhQkPkIiLqFLrUIvWkSZPg\n5OSEd955B0IIXL161RC5iIg6BY2L1E5OkuVpj3aPINzd3fHQQw8BaLokxoMPPqj3UEREnUWXmmL6\nn//5H9TW1gIAGhoasHPnTr2HIiLqLDQWRJtbzJmmdhfExIkT0aNHDwDAwIEDUV9fr/dQRESdgRBd\nbATh7OyM6dOn47vvvsPp06fxww8/GCIXEZHZq61tumirZcvV3s58LabIyEgMGzYM69atw8GDB/Gn\nP/3JELmIiMyeOd+PGtByBDFjxgz1x5s3b0ZWVhYWLFiA6OhoXLlyxWDhiIjMmTnfbhTQcgSxfv16\n9cc///wzHBwcEBcXB5lMBmdnZ53uKEdE1Nl1iYKwanHno8jISBQVFeHrr79GeXk5F6mJiO7B3Aui\n3YvUcrkcjz76KADg8uXLsLW11XsoIqLOoM1Z1M2HNXXWw1zXr1+PN954A+vWrUPv3r2RkpJiiFxE\nRGavzQiishLo2ROwsJAsU3vodE/qd999F87Ozvjwww+Rm5ur70xERJ2COd8LAtDhMFdHR0d0794d\nERERiIiIMEQmIqJOwZxPkgN0KIj09HT84x//gIODA/z9/REcHAx/f39DZCMiMmvmXhDtnmJSKpVQ\nqVTYsGEDxo4di6ysLEPkIiIye+Z8qW9AhxGETCZDZmYmRo8ejfHjx2P8+PGGyEVEZPbM+UJ9gA4F\nkZGRAQB4//330bNnTwQFBWH27Nl6D0ZEZO4qKoCBA+/a0JlHEFOmTIFMJkNgYCCqq6uRk5PT7ied\nOXMm0tLS4OzsjLNnzwIA4uPj8fnnn8PptxtpfPDBB3jiiSfavW8iIlOQticN3xxeid62tdh1tgfm\nPDcHkWY2xSQTQog/ekBtbS3Ky8vh6Oh4351dvXoV7u7u933cwYMH0adPH7z44ovqgli0aBH69u2L\nuXPn3jusTIb7xCUiklzanjS8/vHryFPkqbfJT8mxw0UJz94PAP/8p1Hz6Preed9F6h49euDo0aPY\ntGkTqqurNT6mtLQUn376qdYX7hs3bhzs7OzabOebPxF1Bis3rWxVDgCQp8jDyUyVWY0gtJpimjRp\nEgoKCrB8+XIUFxejpqYGdXV1sLCwQK9eveDm5oZZs2bBxsamQ2FWrVqF9evXw8/PD8uWLdN4GQ/Z\nSy/9/omvb9MfIiJTErsAwAIAwIFgIPhA0+aYIMANwVBikUGfXqVSQaVSdXg/951iultjYyPOnj0L\nOzs7raaT7iU/Px9PPvmkeoqpuLhYvf6wcOFCFBQUICkpqXVYTjERkRkIezkMuwftBgAciD+A4Pim\nK14f/8wRlRtvQak07vuYru+d7V6kfvvtt9HQ0IBz587B0tISq1evhqura7uf+G7Ozs7qj1955RU8\n+eSTHd4nEZEU5jw3B7kr83DZr8UaxEk5hnerhTmdOabViXIbNmzAhQsXIIRAYGAgPvzwQ6SlpWHd\nunVYvXq1XoIUFBSoP962bRtGjBihl/0SERlbZGgkZj+xAn2/DAMAhF0Nw4o/L0ef4psSJ2sfrUYQ\nO3bswIkTJ3D+/HlcvXoVhw4dQlBQEIYMGaLT5b5nzJiBjIwM3Lp1CwMHDsSiRYugUqmQnZ0NmUyG\nwYMH6614iIik4GIbiQifSOCCCulJ6cD164CdHYBCqaNpTauCaHkyXF1dHc6cOYOTJ0/ihx9+wOTJ\nk9v9pJouET5z5sx274eIyFRdvAh4eLTYcPkyMGQIOl1BvP/++zhx4gQCAgLg7+8PX19fjBo1CkDT\nYjMREbWWmwuEh7fYcOkSMHgwgMNSRWo3rQrirbfeQkBAAI4dO4bFixfj7NmzcHR0hL+/PwoLC3nT\nICKiu+TmAnPmADXNG9QjCPOhVUHMmzcPMpkMSqVSva2wsBDHjh1DYmKiobIREZklIX6fYjrTvPHS\nJWDCBCljtZtWBSGTydpsc3V1xVNPPaXxjGgioq7s5k3A0hKwt2+x8dIlIC4OMKNTuXS65WhLvNw3\nEVFrubnAsGF3bTTDKaYOFwQREbXW5gim6mrgl1+A/v0ly6QLFgQRkZ61GUFcuQK4uwMWFpJl0gUL\ngohIz9oUxKVLZje9BLAgiIj0rs0Uk/ocCPPCgiAi0iMhgJ9+umsEYYYL1AALgohIr37+uemeQK3u\nC8QRBBERtZleAjiCICKie5wDwUVqIiLSWBAWFoAOt0aQGguCiEiPNE4xmeHoAWBBEBHplcYRhBku\nUAMsCCIivWloaFpukMvv+gJHEEREXdvVq4CzM9Cr111fYEEQEXVtGqeXAE4xERF1dRcv3qMgOIIg\nIuracnPvOoKpvr7pb3d3SfJ0FAuCiEhP2kwxXb/e9HePHpLk6SgWBBGRnrSZYrp0SbIs+iBJQcyc\nORMuLi4YMWKEeltJSQlCQ0Ph4eGBiRMnoqysTIpoREQ6qatrGjC0Wm64fFmyPPogSUG8/PLLSE9P\nb7UtISEBoaGhuHjxIkJCQpCQkCBFNCIinVy+DAwYAHTv3mIjRxDtN27cONjZ2bXatmPHDsTGxgIA\nYmNj8e2330oRjYhIJxqPYDLzgrCUOkCzoqIiuLi4AABcXFxQVFSk8XHx8fHqj5VKJZRKpRHSERH9\nsTZHMDU2AgcPAnjV6FlUKhVUKlWH92MyBdGSTCaDTCbT+LWWBUFEZCpyc4Hhw1tsOHas6QquN4yf\n5e5fnhctWqTTfkzmKCYXFxcUFhYCAAoKCuDs7CxxIiIi7bWZYtq8GZg6VbI8+mAyBREVFYXk5GQA\nQHJyMqKjoyVORESkvVZTTEKwIHQ1Y8YMPProo/jxxx8xcOBArF27FvPnz8eePXvg4eGB/fv3Y/78\n+VJEIyJqt+pqoKioxQnTWVmAtTXg5SVpro6SZA0iJSVF4/a9e/caOQkRUcfl5QGDBgGWze+ozaOH\ne6ylmguTXKQmIjInbaaXvvkG2LpV0kz6YDJrEERE5qrVNZhOnQK6dQN8fCTNpA8sCCKiDmp1BFMn\nmV4CWBBERB2mnmJqnl4y86OXmrEgiIg6SD3FdPZs01X7Ro2SOpJesCCIiDqgvBwoK2u6UF9nml4C\nWBBERB3y00/A0KFN69Kd4eS4llgQREQdoF6gPneuaTjh7y91JL1hQRARdYB6/WHzZmDKlN+GEp1D\n5/mXEBFJQH0EUyebXgJYEEREHXLxIjCyx4/ArVvAo49KHUevWBBERB2Qmws89MMW4OmnO9X0EsCC\nICLSWUkJcOcO0GdX55teAlgQREQ6y80Fgt3zILtxAxg3Tuo4eseCICLSUW4uMM1iCzB5MmBhIXUc\nvWNBEBHpKDcXCLrVOaeXABYEEZHOSk5dgePtS0BQkNRRDIIFQUSko8GntuB2cDRgZSV1FINgQRAR\n6UAI4LGCzbCO6ZzTSwALgohIJ0fmbcUQkYe+T02QOorBsCCIiNrpPzGfYcg/Z+OXjelA9+5SxzEY\nS6kDEBGZC9EooHriA8gPfI7a3f/BwyFDpY5kUCwIIiItNNY34j+j56L/hQPokXkILr79pI5kcCZX\nEIMGDcIDDzwACwsLWFlZ4fjx41JHIqIu7k7FHWR6vwy70mtwvZABmwdtpY5kFCZXEDKZDCqVCvb2\n9lJHISJCZXElznlNhaWFFTwu74K1vbXUkYzGJBephRBSRyAiQknuL7gsD0GNrStG5W/tUuUAmOgI\n4vHHH4eFhQVeffVVzJo1q9XX4+Pj1R8rlUoolUrjBiSiLuHnY9dQNT4Mt3yfRNCRBMi6yaSOpDWV\nSgWVStXh/ciEif26XlBQgH79+uHmzZsIDQ3FqlWrMO63qyTKZDKOLojI4C79+wK6R4Xhp/C/Qvnd\n3zq0L5VMBaVQ/v65Sgal0rjvY7q+d5rcFFO/fk1HBjg5OWHy5MlcpCYio8pZexx9nlQi/+X3O1wO\n5s6kCqKqqgrl5eUAgMrKSuzevRsjRoyQOBURdRUnPtgNl7hI5L/zOQI/i5U6juRMag2iqKgIkydP\nBgDU19fj+eefx8SJEyVORURdweE5X2JY4uv4OXEb/P8cKHUck2BSBTF48GBkZ2dLHYOIupiMZxLh\nsTUBpZv3YuTTnLVoZlIFQURkTKJRICM4Hg8eSUFDxvfwCBwkdSSTwoIgoi6p4U4DDilmw+XycfQ5\n9T2cvJyljmRyWBBE1OXU3q7FSc8X0KeqBAMuHsADbg9IHckkmdRRTEREhlb+czlyBkUAALzy/81y\n+AMsCCLqMm7mFOPasGBUuA6D/6Uv0eOBHlJHMmksCCLqEq5/n48KRSCK/SIx7of/g0V3C6kjmTwW\nBBF1ehe3nkU35ThcfWoOlBmLzOq6SlJiQRBRp3bm/w7BburjyP/zhwj6ZrbUccwKC4KIOq3j76ai\n/1+icfX/bcCjK5+VOo7Z4WGuRNQpff9f6+GRNA+Fn6di1MwAqeOYJRYEEXU6qqhlGPrvlSjffgDe\nk4ZLHcdssSCIqNMQjQIZY+fDLfs7dDv0PeQBA6WOZNZYEETUKdTX1OPIyP+CY8E52P9wEPbDHKSO\nZPZYEERk9qpLqnHG61lY19VicN4+9HbuLXWkToFHMRGRWfv1ShkuDg5DfY8+GJm/g+WgRywIIjJb\nRdkFKHw4CGWDFRj70wZ079Nd6kidCguCiMzSlX0/oWZ0IArGTcf4kx+hmyXfzvSNrygRmZ0LKafQ\nY+J4XJkxH8rdb/PSGQbCgiAis5L9kQoOz4ch/61EjF8/S+o4nRoLgojMxtF5WzFg7jRcX/oVxvzj\naanjdHo8zJWIzMJ/XvwMHl+8h1++2AXFDIXUcboEFgQRmTTRKJDxxAcYcuBz1O7+Dx4OGSp1pC7D\npKaY0tPT8fDDD2PYsGFYsmSJ1HF0plKppI6gFebUL+bUL5VKhcb6Rvxn1Jvod/Ar9Mg8hAdNrBzM\n5bXUlckURENDA2bPno309HScO3cOKSkpOH/+vNSxdGIu/9Mwp34xp37t270PR4bGwPbSSbheyICL\nbz+pI7VhLq+lrkymII4fP46hQ4di0KBBsLKywrPPPovt27dLHYuIJFBZXImiFV/CsqYcHpd3weZB\nW6kjdUkmUxA3btzAwIG/X3nRzc0NN27ckDAREUnhTsUdXJKHor5nH4zK3wpre2upI3VZMiGEkDoE\nAGzZsgXp6en47LPPAAAbN27EsWPHsGrVKvVjZDKeDENEpAtd3upN5iimAQMG4Nq1a+rPr127Bjc3\nt1aPMZEuIyLqEkxmisnPzw+5ubnIz8/HnTt38NVXXyEqKkrqWEREXZbJjCAsLS2RmJiIsLAwNDQ0\nIC4uDsOH81aBRERSMZkRBACEh4fjxx9/RGJiIpKTk//wfIg5c+Zg2LBh8PHxwalTp4yctMn9ztu4\ncOECxo4di549e2LZsmUSJGxyv5xffPEFfHx8MHLkSDz22GM4c+aMBCnvn3P79u3w8fGBQqHAqFGj\nsH//fpPL2CwzMxOWlpbYunWrEdP97n45VSoVbGxsoFAooFAo8Pe//12ClNq9niqVCgqFAt7e3lAq\nlcYN+Jv75Vy6dKn6tRwxYgQsLS1RVlZmcjlv3bqFJ554Ar6+vvD29sa6dev+eIfCxNTX1wu5XC4u\nX74s7ty5I3x8fMS5c+daPSYtLU2Eh4cLIYQ4evSoCAgIMMmcxcXFIjMzU7zzzjti6dKlRs+obc7D\nhw+LsrJuJReMAAAIRklEQVQyIYQQO3fuNNnXs6KiQv3xmTNnhFwuN7mMzY8LDg4WkZGRYvPmzUbN\nqG3OAwcOiCeffNLo2VrSJmdpaanw9PQU165dE0IIcfPmTZPM2dJ3330nQkJCjJiwiTY533vvPTF/\n/nwhRNNraW9vL+rq6u65T5MaQQDanQ+xY8cOxMbGAgACAgJQVlaGoqIik8vp5OQEPz8/WFlZGTVb\nS9rkHDt2LGxsbAA0vZ7Xr183yZy9e/9+p7CKigo4OjqaXEYAWLVqFaZOnQonJyej5mumbU4h8UEf\n2uTctGkTpkyZoj5gxdj/zbXN2dKmTZswY8YMIyZsok3Ofv364fbt2wCA27dvw8HBAZaW915pMLmC\n0OZ8CE2PMfabmrmct9HenElJSYiIiDBGtFa0zfntt99i+PDhCA8Px8qVK40ZUev/N7dv347XXnsN\ngDSHZmuTUyaT4fDhw/Dx8UFERATOnTtn7Jha5czNzUVJSQmCg4Ph5+eHDRs2GDtmu36GqqqqsGvX\nLkyZMsVY8dS0yTlr1izk5OSgf//+8PHxwYoVK/5wnyazSN1M2x+ou3/7MfYPormck9GenAcOHMCa\nNWtw6NAhAybSTNuc0dHRiI6OxsGDBxETE4Mff/zRwMl+p03GN954AwkJCZDJZBBCSPJbujY5H3nk\nEVy7dg29evXCzp07ER0djYsXLxoh3e+0yVlXV4eTJ09i3759qKqqwtixYzFmzBgMGzbMCAmbtOdn\n6LvvvkNgYCBsbY1/5rc2ORcvXgxfX1+oVCrk5eUhNDQUp0+fRt++fTU+3uRGENqcD3H3Y65fv44B\nAwYYLaOmDJpymgJtc545cwazZs3Cjh07YGdnZ8yIANr/eo4bNw719fX45ZdfjBEPgHYZT5w4gWef\nfRaDBw/Gli1b8Oc//xk7duwwWkZtc/bt2xe9evUC0HRwSF1dHUpKSkwu58CBAzFx4kRYW1vDwcEB\n48ePx+nTp00uZ7Mvv/xSkuklQLuchw8fxjPPPAMAkMvlGDx48B//kmWwFRMd1dXViSFDhojLly+L\n2tra+y5SHzlyRJJFVW1yNnvvvfckW6TWJueVK1eEXC4XR44ckSSjENrl/Omnn0RjY6MQQogTJ06I\nIUOGmFzGll566SWxZcsWIyZsok3OwsJC9Wt57Ngx8eCDD5pkzvPnz4uQkBBRX18vKisrhbe3t8jJ\nyTG5nEIIUVZWJuzt7UVVVZVR8zXTJuebb74p4uPjhRBN/w8MGDBA/PLLL/fcp8kVhBBC/Pvf/xYe\nHh5CLpeLxYsXCyGE+OSTT8Qnn3yifsxf/vIXIZfLxciRI8WJEydMMmdBQYFwc3MTDzzwgLC1tRUD\nBw4U5eXlJpczLi5O2NvbC19fX+Hr6ytGjx5t9Iza5FyyZInw8vISvr6+IjAwUBw/ftzkMrYkVUEI\ncf+ciYmJwsvLS/j4+IixY8dK9suBNq/nhx9+KDw9PYW3t7dYsWKFyeZct26dmDFjhiT5mt0v582b\nN8WkSZPEyJEjhbe3t/jiiy/+cH8mcy0mIiIyLSa3BkFERKaBBUFERBqxIIiISCMWBBERacSCICIi\njVgQRESkEQuCqINqa2s7vI+amho9JCHSLxYEdWnnzp2Dv78/YmJicPPmTQDAkSNH0K1bN2zcuPG+\n35+amory8vJ2Peff/vY3LFy4sNW269evY+/eve3aD5GhsSCoS/P09ERkZCRCQkLUl+fu2bMnJkyY\nAD8/vz/83oKCAty+fbvdl6CWy+UYM2YMAOD8+fNYvHgxhg4dinPnzqG6ulq3fwiRAbAgqMtzc3Nr\ndZGznJwcWFhY4KGHHvrD71u7di0mT57c7uc7fvw4AgICADRdQVehUAAAIiMjkZKS0u79ERkKC4K6\nvJb3E9m3bx+USiWuXr2KtLQ0zJ8/H42NjQCAnTt3Yvny5fj4449RWFiI4uJiWFtbAwDy8vLw0Ucf\nYfPmzcjPz1ff0Co1NRXJyclYunQpzp8/DwAoLi6Go6Mjdu7ciaSkJFy/fh2FhYWQy+U4e/asBK8A\nkWYsCOrymkcQDQ0NKC4uRnFxMaKjozFp0iQ0NDTg7NmzuHLlChYvXow333wTw4cPR0VFRauF5eLi\nYjg7O6OmpgaDBg2CXC7HxYsXsXHjRsTGxiIiIgL/+te/cPv2bfXl1MPDw9G/f3/MmjULrq6uAID6\n+npJXgMiTVgQ1OU1jyC2b9+OqKgonDx5EkFBQQCaFrHt7Ozw7bffYtiwYUhNTYVMJsPQoUNRV1en\n3sfYsWPx7bffIjw8HADg5eWF5ORkPP/88wCAK1euwNbWFpmZmfD39wcAFBYWqouhWVVVlTH+yURa\nYUFQl2djY4OSkhJ069YNvXv3RllZGYYMGYLS0lJYWlrC3d0d1tbWiIqKwqRJkzBu3DgUFRXBwsKi\n1X6Kiorg4OCArKwsjBkzBrW1tXB3dwcAbN68GTExMcjKyoKfnx8OHDigLovMzEx1MXTrxh9JMh0m\nd8tRIik89thjiIqKAgBMnjwZqampKCsrw+rVqwEA06dPx4oVK2BlZYWysjJMnTpVfUe2ZuPHj8fm\nzZthY2MDPz8/9R36srOzMXXqVHh4eEAul+P7779HXFwc8vPzceLECcjlcvTq1QtCiHve+pFICrwf\nBJGOli5diri4OL3dovX06dO4cOECpk+frpf9EXUUx7NEOpo1axa++eYbve1v37596vsFE5kCFgSR\njmxsbDB8+HBcvXq1w/vKyclBSEgI1yDIpHCKiYiINOKvK0REpBELgoiINGJBEBGRRiwIIiLSiAVB\nREQasSCIiEgjFgQREWnEgiAiIo3+P8ixPOMqV0GTAAAAAElFTkSuQmCC\n"
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.2 Page no.276"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "ri=2000.0 #Ohms, input resistance\n",
+ "Rb=150000.0 #Ohms, base resistance\n",
+ "\n",
+ "#Calculation\n",
+ "Zin=Rb*ri/(Rb+ri)\n",
+ "\n",
+ "#result\n",
+ "print \" The Input Impedance of the Amplifier is Zin = \",round(Zin/10**3,3),\"kohm\"\n",
+ "\n",
+ "#(b)find the voltage gain (Av)\n",
+ "Beeta=100\n",
+ "ri=2000.0 #Ohms\n",
+ "Rac=5000.0 #Ohms Resistance on outputside\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "Av=Beeta*Rac/ri\n",
+ "#result\n",
+ "\n",
+ "print \" The Voltage Gain of the Amplifier with phase of pi/2 is \",Av\n",
+ "#(c) find the current gain (Ai)\n",
+ "#Let input Current ib=2A\n",
+ "ib=2 #A, Assumption\n",
+ "io=100*ib \n",
+ "\n",
+ "#Calculation\n",
+ "Ai=io/ib # Current Gain\n",
+ "#result\n",
+ "print \"The Current Gain of the Amplifier is Ai = \",Ai"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The Input Impedance of the Amplifier is Zin = 1.974 kohm\n",
+ " The Voltage Gain of the Amplifier with phase of pi/2 is 250.0\n",
+ "The Current Gain of the Amplifier is Ai = 100\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.3 Page no.277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "Bac=150.0 #ac current gain\n",
+ "rin=2000.0 #Ohms, input resistance\n",
+ "R1=4700.00 #Ohms, resistance\n",
+ "R2=12000.0 #Ohms resistance\n",
+ "\n",
+ "#Calculation\n",
+ "Rac=R1*R2/(R1+R2) # ohm , resistance\n",
+ "Av=Bac*Rac/rin\n",
+ "#result\n",
+ "print \"a\"\n",
+ "print \"the Voltage Gain of the Amplifier with phase of pi/2 is\",round(Av,1)\n",
+ "\n",
+ "#(b)find input impedance\n",
+ "R3=75000.0 #Ohms\n",
+ "R4=7500.00 #Ohms\n",
+ "\n",
+ "#Calculation\n",
+ "Zin=R3*R4*rin/(R3*R4+R4*rin+rin*R3)\n",
+ "\n",
+ "#result\n",
+ "print \"b\"\n",
+ "print \"The Input Impedance of the Amplifier is Zin = \",round(Zin/10**3,1),\"kohm\"\n",
+ "\n",
+ "#(c)Q point\n",
+ "\n",
+ "Vcc=15 #V\n",
+ "R1=75000.0 #Ohms\n",
+ "R2=7500.00 #Ohms\n",
+ "Rc=4700.0 #Ohms\n",
+ "Re=1200.0 #Ohms\n",
+ "\n",
+ "#Calculation\n",
+ "Vb=Vcc*R2/(R1+R2) #V, base voltage\n",
+ "Ve=Vb\n",
+ "Ie=Ve/Re #A, emitter current\n",
+ "Vce=Vcc-(Rc+Re)*Ie #V, collector emitter voltage\n",
+ "#result\n",
+ "print \"c\"\n",
+ "print \"voltage at the base is \",round(Vb,2),\"V\"\n",
+ "print \"Emitter current is \",round(Ie/10**(-3),2),\"mA\"\n",
+ "print \"The collector to emitter voltage is\",round(Vce,2),\"v\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a\n",
+ "the Voltage Gain of the Amplifier with phase of pi/2 is 253.3\n",
+ "b\n",
+ "The Input Impedance of the Amplifier is Zin = 1.5 kohm\n",
+ "c\n",
+ "voltage at the base is 1.36 V\n",
+ "Emitter current is 1.14 mA\n",
+ "The collector to emitter voltage is 8.3 v\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.4 Page no.283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "u=20 #amplification factor\n",
+ "Rl=10*10**3 #Ohms, load resistance\n",
+ "rp=10*10**3 #Ohms, resistance\n",
+ "#Calculation\n",
+ "A=u*Rl/(rp+Rl) #V, voltage gain\n",
+ "#result\n",
+ "print \" The Voltage Gain of the Amplifier with phase of pi/2 is\",A"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The Voltage Gain of the Amplifier with phase of pi/2 is 10\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.5 Page no.286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "gm=3000*10**(-6) #S, transconductance\n",
+ "Rl=22*10**3 #Ohms, resistance\n",
+ "rp=300*10**3 #Ohms, resistance \n",
+ "\n",
+ "#Calculation\n",
+ "#A=-(gm*Rl/(1+(Rl/rp))), For rp>>Rl we get\n",
+ "A=gm*Rl #with Phase of 180 degrees\n",
+ "# Results \n",
+ "print \"The Gain of the Amplifier with phase of pi/2 is\",A"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Gain of the Amplifier with phase of pi/2 is 66.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 8.6 Page no.286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "Rl=12000.0 #Ohms, load resistance\n",
+ "Rg=1000000.0 #Ohms, given resistance\n",
+ "Rs=1*10**3 #Ohms, given resistance\n",
+ "Cs=25*10**(-6) #F. capacitance\n",
+ "u=20 #amplification factor\n",
+ "rd=10**5 #Ohms, dynamic drain resistance\n",
+ "vi=0.1 #V, input voltage\n",
+ "f=1*10**3 #Hz, frequency\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "Xcs=1/(2*math.pi*f*Cs)\n",
+ "#As Xcs comes out to be much smaller than Rs, Rs is completely bypassed\n",
+ "A=u*Rl/(Rl+rd)\n",
+ "vo=A*vi\n",
+ "# Result\n",
+ "print \" The Output Signal Voltage of the Amplifier is vo = \",round(vo,3),\"v\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The Output Signal Voltage of the Amplifier is vo = 0.214 v\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file