diff options
Diffstat (limited to 'Applied_Physics_for_Engineers/Chapter_4.ipynb')
-rwxr-xr-x | Applied_Physics_for_Engineers/Chapter_4.ipynb | 813 |
1 files changed, 813 insertions, 0 deletions
diff --git a/Applied_Physics_for_Engineers/Chapter_4.ipynb b/Applied_Physics_for_Engineers/Chapter_4.ipynb new file mode 100755 index 00000000..6943795a --- /dev/null +++ b/Applied_Physics_for_Engineers/Chapter_4.ipynb @@ -0,0 +1,813 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4: Geometrical Optics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.2, Page 191" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "r = 1; # For convenience assume radius of the circle to be unity, unit\n", + "alpha = 0.8*r; # Distance of light source from the centre of the spherical shell, unit\n", + "\n", + "#Calculations\n", + "cos_phi_by_2 = sqrt((alpha+1)/(4*alpha));\n", + "\n", + "#Result\n", + "print \"cos(phi/2) = %d/4\"%(cos_phi_by_2*4)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "cos(phi/2) = 3/4\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.3, Page 193" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f1 = 5.; # Focal length of thin convex lens, cm \n", + "f2 = 3.; # Focal length of thin convex lens, cm \n", + "d = 2.; # Separation between the lenses, cm\n", + "\n", + "#Calculations\n", + "F = (1./f1)+(1./f2)-(d/(f1*f2)); # Equivalent focal length of a combination of the two lenses, cm\n", + "\n", + "#Result\n", + "print \"The equivalent focal length of the combination of lenses = %3.1f cm\"%F\n", + "#incorrect answers in the textbook" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The equivalent focal length of the combination of lenses = 0.4 cm\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.4, Page 194" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "P1 = 5; # Power of first converging lens, diopter\n", + "P2 = 4; # Power of second converging lens, diopter\n", + "d = 0.1; # Separation distance between two lenses, cm\n", + "\n", + "#Calculations\n", + "P = P1+P2-d*P1*P2;\n", + "f = 1/P*100; # The corresponding value of the focal length of the lens combination, cm\n", + "\n", + "#Result\n", + "print \"The focal length of the combination of lenses of given powers = %5.2f cm\"%f\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The focal length of the combination of lenses of given powers = 14.29 cm\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.5, Page 194" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f1 = 30.; # Focal length first convex lens, cm \n", + "f2 = -50.; # Focal length of second convex lens, cm \n", + "d = 20.; # Separation distance between lenses, cm \n", + "\n", + "#Calculations\n", + "F = f1*f2/(f1+f2-d); # Equivalent focal length of a combination of the two lenses, cm\n", + "\n", + "#Result\n", + "print \"The equivalent focal length of the combination = %4.1f cm\"%F\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The equivalent focal length of the combination = 37.5 cm\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.7, Page 195" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f1 = 4.; # Focal length of thin convex lens, cm \n", + "f2 = 12.; # Focal length of thin convex lens, cm \n", + "d = 8.; # Separation distance between the lenses, cm\n", + "\n", + "#Calculations&Results\n", + "F = f1*f2/(f1+f2-d); # Equivalent focal length of the combination, cm\n", + "L1H1 = d*F/f2; # Distance of first principal point H1 from first lens, cm\n", + "print \"The distance of the first principal point H1 from the first lens = %d cm\"%L1H1\n", + "L2H2 = -d*F/f1; # Distance of first principal point H2 from second lens, cm\n", + "print \"The distance of the second principal point H2 from the second lens = %d cm\"%L2H2\n", + "L1F1 = -F*(1-d/f2); # Distance of first focal point F1 from first lens, cm\n", + "print \"The distance of the first focal point F1 from the first lens = %d cm\"%L1F1\n", + "L2F2 = F*(1-d/f1); # Distance of second focal point F2 from first lens, cm\n", + "print \"The distance of the second focal point F2 from the second lens= %d cm\"%L2F2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The distance of the first principal point H1 from the first lens = 4 cm\n", + "The distance of the second principal point H2 from the second lens = -12 cm\n", + "The distance of the first focal point F1 from the first lens = -2 cm\n", + "The distance of the second focal point F2 from the second lens= -6 cm\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.8, Page 195" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f1 = 25.; # Focal length of thin convex lens, cm \n", + "f2 = -15.; # Focal length of thin concave lens, cm \n", + "d = 15.; # Separation distance between the lenses, cm \n", + "\n", + "#Calculations&Results\n", + "# We know that, F = f1*f2/f1+f2-d then\n", + "F = f1*f2/(f1+f2-d); # The equivalent focal length of the combination\n", + "L1H1 = d*F/f2; # The distance of the first principal point H1 from the first lens, cm\n", + "print \"The distance of the first principal point H1 from the first lens = %d cm\"%L1H1\n", + "L2H2 = -d*F/f1; # The distance of the second principal point H2 from the first lens, cm\n", + "print \"The distance of the second principal point H2 from the second lens = %d cm\"%L2H2\n", + "L1F1 = -F*(1-d/f2); # The distance of the first focal point F1 from the first lens, cm\n", + "print \"The distance of the first focal point H1 from the first lens = %d cm\"%L1F1\n", + "L2F2 = F*(1-d/f1); # The distance of the second principal point F2 from the first lens, cm\n", + "print \"The distance of the second focal point H2 from the second lens= %d cm\"%L2F2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The distance of the first principal point H1 from the first lens = -75 cm\n", + "The distance of the second principal point H2 from the second lens = -45 cm\n", + "The distance of the first focal point H1 from the first lens = -150 cm\n", + "The distance of the second focal point H2 from the second lens= 30 cm\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.9, Page 196" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.linalg import solve\n", + "from numpy import *\n", + "\n", + "#Variable declaration\n", + "w1 = 0.024; # Magnitude of the print ersive power of first lens\n", + "w2 = 0.036; # Magnitude of the print ersive power of second lens\n", + "\n", + "#Calculations\n", + "# Let 1/f1 = x and 1/f2 = y, then\n", + "# The condition for achromatic combination of two lenses, w1/f1 + w2/f2 = 0 => w1*x + w2*y = 0 --- [i]\n", + "F = 90.; # Given focal length, cm\n", + "# Also F = 1/f1 + 1/f2 => F = x + y ---- (II)\n", + "A = array([[w1 ,w2],[ 1, 1]]); # Square matrix\n", + "B = array([0,1/F]); # Column vector\n", + "X = solve(A,B)\n", + "f1 = 1/X[0]; # Focal length of convex lens, cm\n", + "f2 = 1/X[1]; # Focal length of concave lens, cm\n", + "\n", + "#Results\n", + "print \"The focal length of convex lens = %.f cm\"%((f1))\n", + "print \"The focal length of concave lens = %.f cm\"%((f2))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The focal length of convex lens = 30 cm\n", + "The focal length of concave lens = -45 cm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.10, Page 197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from scipy.linalg import solve\n", + "from numpy import *\n", + "\n", + "\n", + "#Variable declaration\n", + "w1 = 0.02; # Magnitude of the dispersive power of first lens\n", + "w2 = 0.04; # Magnitude of the dispersive power of second lens\n", + "\n", + "#Calculations\n", + "# Let 1/f1 = x and 1/f2 = y, then\n", + "# The condition for achromatic combination of two lenses, w1/f1 + w2/f2 = 0 => w1*x + w2*y = 0 --- (I)\n", + "F = 20.; # Given focal length of achromatic doublet, cm\n", + "# Also F = 1/f1 + 1/f2 => F = x + y ---- (II)\n", + "A = [[w1, w2], [1, 1]]; # Square matrix\n", + "B = [0,1/F]; # Column vector\n", + "X = solve(A,B); # Characteristic roots of the simultaneous equations, cm\n", + "f1 = 1/X[0]; # Focal length of convex lens, cm\n", + "f2 = 1/X[1]; # Focal length of concave lens, cm\n", + "\n", + "#Results\n", + "print \"The focal length of convex lens = %2d cm\"%(ceil(f1))\n", + "print \"The focal length of concave lens = %2d cm\"%(ceil(f2))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The focal length of convex lens = 10 cm\n", + "The focal length of concave lens = -20 cm\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.11, Page 197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "from numpy import *\n", + "from scipy.linalg import solve\n", + "#Variable declaration\n", + "w1 = 0.017; # Magnitude of the print ersive power of first lens\n", + "w2 = 0.034; # Magnitude of the print ersive power of second lens\n", + "\n", + "\n", + "# Let 1/f1 = x and 1/f2 = y, then\n", + "# The condition for achromatic combination of two lenses, w1/f1 + w2/f2 = 0 => w1*x + w2*y = 0 --- [i]\n", + "F = 40.; # Given focal length of achromatic doublet, cm\n", + "# Also F = 1/f1 + 1/f2 => F = x + y ---- (II)\n", + "A = [[w1, w2],[ 1, 1]]; # Square matrix\n", + "B = [0,1/F]; # Column vector\n", + "X = solve(A,B); # Characteristic roots of the simulmath.taneous equations, cm\n", + "f1 = 1/X[0]; # Focal length of convex lens, cm\n", + "f2 = 1/X[1]; # Focal length of concave lens, cm\n", + "# For the convex lens\n", + "R2 = -25.; # Radius of curvature of the contact surface, cm \n", + "mu = 1.5; # Mean refractive index of crown glass\n", + "# From the Lens Maker formula, 1/f = (mu - 1)*(1/R1-1/R2), solving for R1\n", + "f = f1;\n", + "R1 = 1/(1/(f*(mu-1))+1/R2); # Radius of curvature of second surface of first lens, cm\n", + "print \"The radius of curvature of second surface of first lens = %5.2f cm\"%R1\n", + "# For the concave lens\n", + "R1 = -25.; # Radius of curvature of the contact surface, cm \n", + "mu = 1.7; # Mean refractive index of flint glass\n", + "# From the Lens Maker formula, 1/f = (mu - 1)*(1/R1-1/R2), solving for R1\n", + "f = f2;\n", + "R2 = 1/(1/R1-1/(f*(mu-1))); # Radius of curvature of second surface of second lens, cm\n", + "print \"The radius of curvature of second surface of second lens = %5.2f cm\"%R2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The radius of curvature of second surface of first lens = 16.67 cm\n", + "The radius of curvature of second surface of second lens = -233.33 cm\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.12, Page 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "# For flint glass\n", + "mu_C = 1.665; # Refractive index of flint glass for C line\n", + "mu_F = 1.700; # Refractive index of flint glass for F line\n", + "\n", + "#Calculations\n", + "mu_D = (mu_F+mu_C)/2; # Refractive index of flint glass for D line\n", + "w2 = (mu_F-mu_C)/(mu_D-1); # Magnitude of the dispersive power of second lens of flint glass\n", + "# For crown glass\n", + "mu_C = 1.510; # Refractive index of crown glass for C line\n", + "mu_F = 1.536; # Refractive index of crown glass for F line\n", + "mu_D = (mu_F+mu_C)/2; # Refractive index of flint glass for D line\n", + "w1 = (mu_F-mu_C)/(mu_D-1); # Magnitude of the dispersive power of second lens of crown glass\n", + "f = 50.; # Focal length of acromatic doublet, cm\n", + "FD = f*(w2-w1)/w2; # Focal length of D line of the Fraunhofer spectrum due to convex lens of crown glass\n", + "FC = FD*(mu_D - 1)/(mu_C - 1); # Focal length of C component of converging lens, cm\n", + "\n", + "#Result\n", + "print \"The focal length of C component of converging lens = %4.2f cm\"%FC\n", + "#rounding-off error" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The focal length of C component of converging lens = 1.57 cm\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.13, Page 200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "F = 50.; # Equivalent focal length of combination of two lenses, cm\n", + "\n", + "#Calculations\n", + "#d = f1+f2/2, condition for no chromatic aberration (1)\n", + "#d = f2-f1, condition for minimum spherical aberration (2)\n", + "# From (1) and (2), f1 = 3*d/2, f2 = d/2\n", + "# As 1/F = 1/f1 + 1/f2 - d/(f1*f2), solving for d\n", + "d = 4./3*50; # Distance of separation betwen two lenses, cm\n", + "f1 = 3*d/2,\n", + "f2 = d/2;\n", + "\n", + "#Results\n", + "print \"f1 = %.f cm\"%(f1)\n", + "print \"f2 = %5.2f cm\"%(f2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f1 = 100 cm\n", + "f2 = 33.33 cm\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.14, Page 201" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "mu_R = 1.5230; # Refractive index for red wavelength\n", + "mu_V = 1.5145; # Refractive index for violet wavelength\n", + "R1 = 40.; # Radius of curvature for red wavelength, cm\n", + "R2 = -10.; # Radius of curvature for violet wavelength, cm\n", + "\n", + "#Calculations\n", + "# As 1/f = (mu - 1)*(1/R1 - 1/R2), solving for fV and fR\n", + "fV = 1./((mu_V-1)*(1/R1-1/R2)); # Focal length for violet wavelength, cm \n", + "fR = 1./((mu_R-1)*(1/R1-1/R2)); # Focal length for violet wavelength, cm \n", + "l = fR - fV; # Longitudinal chromatic aberration, cm\n", + "\n", + "#Result\n", + "print \"The longitudinal chromatic aberration = %5.3f cm\"%(abs(l))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The longitudinal chromatic aberration = 0.253 cm\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.15, Page 202" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "F = 10; # Equivalent focal length of a combination of two lenses, cm\n", + "d = 2; # Separation distance between two lenses, cm\n", + "\n", + "#Calculations\n", + "# As d = f1-f2, condition for minimum spherical aberration => f1 = d+f2\n", + "# and F = f1*f2/(f1+f2-d), so solving for f2\n", + "f2 = 2*F-d; # Focal length of second lens, cm\n", + "f1 = d+f2; # Focal length of first lens, cm\n", + "\n", + "#Result\n", + "print \"f1 = %2d cm, f2 = %2d cm\"%(f1, f2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f1 = 20 cm, f2 = 18 cm\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.16, Page 202" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "mu = 1.6; # Refractive index of aplanatic surface\n", + "R = 3.2; # Radius of curvature, cm\n", + "\n", + "#Calculations&Results\n", + "R1 = R/mu; # First radius of the aplanatic surface, cm \n", + "print \"R1 = %3.1f cm\"%R1\n", + "R2 = R*mu; # Second radius of the aplanatic surface, cm \n", + "print \"R2 = %4.2f cm\"%R2\n", + "#Since the image of an object at one aplanatic point will be formed by the sphere at the other aplantic point,so the is\n", + "m = mu**2; # The lateral magnification of the image\n", + "print \"The lateral magnification of the image = %4.2f\"%m\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "R1 = 2.0 cm\n", + "R2 = 5.12 cm\n", + "The lateral magnification of the image = 2.56\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.17, Page 203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "mu = 1.52; # Refractive index of aplanatic surface\n", + "R = 30; # Radius of curvature, cm\n", + "\n", + "#Calculations&Results\n", + "R1 = R/mu; # First radius of the aplanatic surface, cm \n", + "print \"R1 = %5.2f cm\"%R1\n", + "R2 = R*mu; # Second radius of the aplanatic surface, cm \n", + "print \"R2 = %4.1f cm\"%R2\n", + "#Since the image of an object at one aplanatic point will be formed by the sphere at the other aplantic point,so the is\n", + "m = mu**2; # The lateral magnification of the image\n", + "print \"The lateral magnification of the image = %4.2f\"%m\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "R1 = 19.74 cm\n", + "R2 = 45.6 cm\n", + "The lateral magnification of the image = 2.31\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.18, Page 203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "F = 5; # Equivalent focal length of Huygens eyepiece, cm\n", + "\n", + "#Calculations\n", + "# as f1 = 3*f, f2 = f and d = 2*f, therefore\n", + "f = 2./3*F; # Focal length of base lens, cm\n", + "f1 = 3*f; # Focal length of field lens, cm\n", + "\n", + "#Result\n", + "print \"The focal length of the field lens = %2d cm\"%f1\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The focal length of the field lens = 10 cm\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.19, Page 204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "f = 10; # Given focal length of each lens, cm\n", + "f1 = f; # Focal length of first lens, cm \n", + "f2 = f; # Focal length of second lens, cm\n", + "\n", + "#Calculations\n", + "d = 2./3*f; # Separation distance between two lenses, cm\n", + "F = f1*f2/(f1+f2-d); # Equivalent focal length of Ramsden eyepiece, cm\n", + "\n", + "#Result\n", + "print \"The equivalent focal length of the field lenses is = %3.1f cm\"%F\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The equivalent focal length of the field lenses is = 7.5 cm\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.20, Page 204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "d = 10; # Distance between the two thin plano convex lenses in the Huygens eyepiece, \n", + "\n", + "#Calculations&Results\n", + "f = d/2; # Base focal length\n", + "f1 = 3*f; # Focal length of the first component lens, cm\n", + "print \"f1 = %d cm\"%f1\n", + "f2 = f; # Focal length of the second component lens, cm\n", + "print \"f2 = %d cm\"%f2\n", + "F = 3./2*f; # Equivalent focal length of the lens, cm\n", + "print \"F = %3.1f cm\"%F\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f1 = 15 cm\n", + "f2 = 5 cm\n", + "F = 7.5 cm\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.21, Page 204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "F = 4.2; # Equivalent focal length of Ramsden eyepiece, cm\n", + "#F = 3/4*f, Equivalent focal length of Ramsden eyepiece, \n", + "f = 5.6; #focal length,in cm\n", + "\n", + "#Calculations&Results\n", + "f1 = f;\n", + "f2 = f;\n", + "print \"f1 = %3.1f cm\"%f1\n", + "print \"f2 = %3.1f cm\"%f2\n", + "d = 2./3*f;\n", + "print \"d = %4.2f cm\"%d\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "f1 = 5.6 cm\n", + "f2 = 5.6 cm\n", + "d = 3.73 cm\n" + ] + } + ], + "prompt_number": 29 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |