diff options
Diffstat (limited to 'Applied_Physics_for_Engineers/Chapter_11.ipynb')
-rwxr-xr-x | Applied_Physics_for_Engineers/Chapter_11.ipynb | 302 |
1 files changed, 302 insertions, 0 deletions
diff --git a/Applied_Physics_for_Engineers/Chapter_11.ipynb b/Applied_Physics_for_Engineers/Chapter_11.ipynb new file mode 100755 index 00000000..e3b094b0 --- /dev/null +++ b/Applied_Physics_for_Engineers/Chapter_11.ipynb @@ -0,0 +1,302 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11: Electromagnetic Theory" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.1, Page 559" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "H_0 = 1; # Amplitude off field vector,in A/m\n", + "mu_0 = 12.56e-7; # Permeability,in weber/A-m \n", + "eps = 8.85e-12; # Permittivity in free space,in C/N-meter-square\n", + "\n", + "#Calculations\n", + "# From the relation between the amplitude of the field vector E and vector H of an EM wave in free space \n", + "E_0 = H_0*(sqrt(mu_0/eps));\n", + "\n", + "#Result\n", + "print \"The amplitude of field vector E in free space = %5.1f V/m\"%E_0\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The amplitude of field vector E in free space = 376.7 V/m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.2, Page 560" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "E_o = 1e+3; # Amplitude field vector in free space,N/C\n", + "c = 3e+8; # Speed of light,in m/s\n", + "\n", + "#Calculations\n", + "# From the relation between the amplitude of the field vector E and vector H of an EM wave in free space E_o = H_o*(sqrt(mu_o/eps))and B_o = mu_o*H_o, we have\n", + "B_o = E_o/c;\n", + "\n", + "#Result\n", + "print \"The maximum value of magnetic induction vector = %4.2e weber/A-m\"%B_o\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum value of magnetic induction vector = 3.33e-06 weber/A-m\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.3, Page 560" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "sigma = 5; # Conductivity of the conducting medium, mho/m\n", + "eps_r = 8.85e-12; # Relative electrical permittivity of medium, F/m\n", + "eps_0 = 1; # Electrical permittivity of free space, F/m\n", + "E0 = 250; # Amplitude of applied electric field, V/m\n", + "\n", + "#Calculations\n", + "J = sigma*E0; # Amplitude of conduction current density, A/metre-square\n", + "J_D = eps_r*eps_0*E0*1e+010; # Amplitude of displacement current density, A/metre-square\n", + "omega = sigma/(eps_0*eps_r); # Frequency at which J = J_D\n", + "\n", + "#Results\n", + "print \"The conduction current density = %3dsin(10^10t) A/metre-quare\"%J\n", + "print \"The displacement current density = %5.3fcos(10^10t) A/metre-quare\"%J_D #incorrect answer in the textbook\n", + "print \"The frequency at which J = J_D is %3.1e Hz\"%omega" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The conduction current density = 1250sin(10^10t) A/metre-quare\n", + "The displacement current density = 22.125cos(10^10t) A/metre-quare\n", + "The frequency at which J = J_D is 5.6e+11 Hz\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.8, Page 565" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "P = 1000; # Energy radiated by the lamp, watt\n", + "r = 2; # Distance from the source at which the electric field intensity is given, m\n", + "\n", + "#Calculations\n", + "S = P/(4*pi*r**2); # Magnitude of Poynting vector, W/metre-square\n", + "# As wave imepdence, Z0 = E/H = 377 and H = E/377, so that with E*H = S we have\n", + "E = 377\n", + "E = sqrt(S*E)\n", + "\n", + "#Result\n", + "print \"The average value of the intensity of electric field of radiation = %4.1f V/m\"%(E)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The average value of the intensity of electric field of radiation = 86.6 V/m\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.9, Page 566" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "S = 2*4.186/60*1e+04; # Solar constant, J/s/metre-square\n", + "# From the poynting vector S = E*H \n", + "C = 377; # Wave Impedence, ohm\n", + "\n", + "#Calculations\n", + "E = sqrt(S*C); # Electric field of radiation, V/m\n", + "H = E/C; # Magnetic field of radiation, A/m\n", + "E0 = E*sqrt(2); # Amplitude of electric field of radiation, V/m \n", + "H0 = H*sqrt(2); # Amplitude of magnetic field of radiation, A/m\n", + "\n", + "#Results\n", + "print \"The amplitude of electric field of radiation = %6.1f V/m\"%E0 #incorrect answer in the textbook\n", + "print \"The amplitude of magnetic field of radiation = %5.3f V/m\"%H0\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The amplitude of electric field of radiation = 1025.7 V/m\n", + "The amplitude of magnetic field of radiation = 2.721 V/m\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.12, Page 569" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "sigma = 3.54e+007; # Electrical conductivity of Al, mho per metre \n", + "mu = 12.56e-007; # Permeability of the medium, weber/A-m\n", + "f = 71.6e+06; # Frequency of the wave, Hz\n", + "\n", + "#Calculations\n", + "omega = 2*pi*f; # Angular frequency of the wave, rad per sec\n", + "delta = sqrt(2/(sigma*mu*omega)); # Skin depth of the EM wave in Al, m\n", + "\n", + "#Result\n", + "print \"The skin depth of an EM-wave in Al = %2.0f micron\"%(delta/1e-06)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The skin depth of an EM-wave in Al = 10 micron\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.14, Page 571" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "sigma = 5.; # Electrical conductivity, mho per metre \n", + "mu = 12.56e-007; # Permeability of the medium, weber/A-m\n", + "eps_0 = 8.85e-012; # Electric permittivity of free space, C-square/N-m-square\n", + "\n", + "#Calculations&Results\n", + "eps = 70*eps_0; # Electric permittivity of the medium, C-square/N-m-square\n", + "delta = 2/sigma*sqrt(eps/mu); # The skin depth and attenuation constant of sea water\n", + "print \"The skin depth of an EM-wave in sea water = %6.4f m\"%delta\n", + "Beta = 1/delta; # The attenuation constant of sea water, per metre\n", + "print \"The attenuation constant of the sea water = %6.2f m\"%Beta\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The skin depth of an EM-wave in sea water = 0.0089 m\n", + "The attenuation constant of the sea water = 112.57 m\n" + ] + } + ], + "prompt_number": 8 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |