summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_11.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics_for_Engineers/Chapter_11.ipynb')
-rwxr-xr-xApplied_Physics_for_Engineers/Chapter_11.ipynb302
1 files changed, 302 insertions, 0 deletions
diff --git a/Applied_Physics_for_Engineers/Chapter_11.ipynb b/Applied_Physics_for_Engineers/Chapter_11.ipynb
new file mode 100755
index 00000000..e3b094b0
--- /dev/null
+++ b/Applied_Physics_for_Engineers/Chapter_11.ipynb
@@ -0,0 +1,302 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Electromagnetic Theory"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1, Page 559"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "H_0 = 1; # Amplitude off field vector,in A/m\n",
+ "mu_0 = 12.56e-7; # Permeability,in weber/A-m \n",
+ "eps = 8.85e-12; # Permittivity in free space,in C/N-meter-square\n",
+ "\n",
+ "#Calculations\n",
+ "# From the relation between the amplitude of the field vector E and vector H of an EM wave in free space \n",
+ "E_0 = H_0*(sqrt(mu_0/eps));\n",
+ "\n",
+ "#Result\n",
+ "print \"The amplitude of field vector E in free space = %5.1f V/m\"%E_0\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The amplitude of field vector E in free space = 376.7 V/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2, Page 560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "E_o = 1e+3; # Amplitude field vector in free space,N/C\n",
+ "c = 3e+8; # Speed of light,in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "# From the relation between the amplitude of the field vector E and vector H of an EM wave in free space E_o = H_o*(sqrt(mu_o/eps))and B_o = mu_o*H_o, we have\n",
+ "B_o = E_o/c;\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum value of magnetic induction vector = %4.2e weber/A-m\"%B_o\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum value of magnetic induction vector = 3.33e-06 weber/A-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3, Page 560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "sigma = 5; # Conductivity of the conducting medium, mho/m\n",
+ "eps_r = 8.85e-12; # Relative electrical permittivity of medium, F/m\n",
+ "eps_0 = 1; # Electrical permittivity of free space, F/m\n",
+ "E0 = 250; # Amplitude of applied electric field, V/m\n",
+ "\n",
+ "#Calculations\n",
+ "J = sigma*E0; # Amplitude of conduction current density, A/metre-square\n",
+ "J_D = eps_r*eps_0*E0*1e+010; # Amplitude of displacement current density, A/metre-square\n",
+ "omega = sigma/(eps_0*eps_r); # Frequency at which J = J_D\n",
+ "\n",
+ "#Results\n",
+ "print \"The conduction current density = %3dsin(10^10t) A/metre-quare\"%J\n",
+ "print \"The displacement current density = %5.3fcos(10^10t) A/metre-quare\"%J_D #incorrect answer in the textbook\n",
+ "print \"The frequency at which J = J_D is %3.1e Hz\"%omega"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The conduction current density = 1250sin(10^10t) A/metre-quare\n",
+ "The displacement current density = 22.125cos(10^10t) A/metre-quare\n",
+ "The frequency at which J = J_D is 5.6e+11 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.8, Page 565"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "P = 1000; # Energy radiated by the lamp, watt\n",
+ "r = 2; # Distance from the source at which the electric field intensity is given, m\n",
+ "\n",
+ "#Calculations\n",
+ "S = P/(4*pi*r**2); # Magnitude of Poynting vector, W/metre-square\n",
+ "# As wave imepdence, Z0 = E/H = 377 and H = E/377, so that with E*H = S we have\n",
+ "E = 377\n",
+ "E = sqrt(S*E)\n",
+ "\n",
+ "#Result\n",
+ "print \"The average value of the intensity of electric field of radiation = %4.1f V/m\"%(E)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The average value of the intensity of electric field of radiation = 86.6 V/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.9, Page 566"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "S = 2*4.186/60*1e+04; # Solar constant, J/s/metre-square\n",
+ "# From the poynting vector S = E*H \n",
+ "C = 377; # Wave Impedence, ohm\n",
+ "\n",
+ "#Calculations\n",
+ "E = sqrt(S*C); # Electric field of radiation, V/m\n",
+ "H = E/C; # Magnetic field of radiation, A/m\n",
+ "E0 = E*sqrt(2); # Amplitude of electric field of radiation, V/m \n",
+ "H0 = H*sqrt(2); # Amplitude of magnetic field of radiation, A/m\n",
+ "\n",
+ "#Results\n",
+ "print \"The amplitude of electric field of radiation = %6.1f V/m\"%E0 #incorrect answer in the textbook\n",
+ "print \"The amplitude of magnetic field of radiation = %5.3f V/m\"%H0\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The amplitude of electric field of radiation = 1025.7 V/m\n",
+ "The amplitude of magnetic field of radiation = 2.721 V/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.12, Page 569"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "sigma = 3.54e+007; # Electrical conductivity of Al, mho per metre \n",
+ "mu = 12.56e-007; # Permeability of the medium, weber/A-m\n",
+ "f = 71.6e+06; # Frequency of the wave, Hz\n",
+ "\n",
+ "#Calculations\n",
+ "omega = 2*pi*f; # Angular frequency of the wave, rad per sec\n",
+ "delta = sqrt(2/(sigma*mu*omega)); # Skin depth of the EM wave in Al, m\n",
+ "\n",
+ "#Result\n",
+ "print \"The skin depth of an EM-wave in Al = %2.0f micron\"%(delta/1e-06)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The skin depth of an EM-wave in Al = 10 micron\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.14, Page 571"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "sigma = 5.; # Electrical conductivity, mho per metre \n",
+ "mu = 12.56e-007; # Permeability of the medium, weber/A-m\n",
+ "eps_0 = 8.85e-012; # Electric permittivity of free space, C-square/N-m-square\n",
+ "\n",
+ "#Calculations&Results\n",
+ "eps = 70*eps_0; # Electric permittivity of the medium, C-square/N-m-square\n",
+ "delta = 2/sigma*sqrt(eps/mu); # The skin depth and attenuation constant of sea water\n",
+ "print \"The skin depth of an EM-wave in sea water = %6.4f m\"%delta\n",
+ "Beta = 1/delta; # The attenuation constant of sea water, per metre\n",
+ "print \"The attenuation constant of the sea water = %6.2f m\"%Beta\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The skin depth of an EM-wave in sea water = 0.0089 m\n",
+ "The attenuation constant of the sea water = 112.57 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file