summaryrefslogtreecommitdiff
path: root/Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb')
-rw-r--r--Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb549
1 files changed, 549 insertions, 0 deletions
diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb
new file mode 100644
index 00000000..3d0851bb
--- /dev/null
+++ b/Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb
@@ -0,0 +1,549 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 11: Fibre Optics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 11-16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.2965\n",
+ "acceptance angle is 17 degrees 15 minutes\n",
+ "answer in the book varies due to rounding off errors\n",
+ "critical angle is 78 degrees 26 minutes\n",
+ "fractional index change is 0.02\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.48; #Core refractive index\n",
+ "n2=1.45; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "theta0=math.asin(NA); #acceptance angle(radian)\n",
+ "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n",
+ "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n",
+ "thetac=math.asin(n2/n1); #critical angle(radian)\n",
+ "thetac=thetac*180/math.pi; #critical angle(degrees)\n",
+ "thetacm=60*(thetac-int(thetac)); #critical angle(minutes)\n",
+ "delta=(n1-n2)/n1; #fractional index change\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,4)\n",
+ "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\"\n",
+ "print \"critical angle is\",int(thetac),\"degrees\",int(thetacm),\"minutes\"\n",
+ "print \"fractional index change is\",round(delta,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 11-17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.446\n",
+ "acceptance angle is 26 degrees 29 minutes\n",
+ "answer for angle in minutes given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.563; #Core refractive index\n",
+ "n2=1.498; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "theta0=math.asin(NA); #acceptance angle(radian)\n",
+ "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n",
+ "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n",
+ "\n",
+ "#Resul\"\n",
+ "print \"numerical aperture is\",round(NA,3)\n",
+ "print \"acceptance angle is\",int(theta0),\"degrees\",int(theta0m),\"minutes\"\n",
+ "print \"answer for angle in minutes given in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 11-17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fractional index change is 0.0416\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.563; #Core refractive index\n",
+ "n2=1.498; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "delta=(n1-n2)/n1; #fractional index change\n",
+ "\n",
+ "#Result\n",
+ "print \"fractional index change is\",round(delta,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 11-17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.3905\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.55; #Core refractive index\n",
+ "n2=1.50; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 11-18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Cladding refractive index is 1.496\n",
+ "Core refractive index is 1.546\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.39; #numerical aperture\n",
+ "n1_n2=0.05; #difference in refractive indices\n",
+ "\n",
+ "#Calculation\n",
+ "n1n2=NA**2/n1_n2; \n",
+ "n2=(n1n2-n1_n2)/2; #Cladding refractive index\n",
+ "n1=n2+n1_n2; #Core refractive index\n",
+ "\n",
+ "#Result\n",
+ "print \"Cladding refractive index is\",n2\n",
+ "print \"Core refractive index is\",n1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 11-18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.3905\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.55; #Core refractive index\n",
+ "n2=1.50; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 7, Page number 11-18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.2965\n",
+ "acceptance angle is 17 degrees 15 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.48; #Core refractive index\n",
+ "n2=1.45; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "theta0=math.asin(NA); #acceptance angle(radian)\n",
+ "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n",
+ "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,4)\n",
+ "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 11-19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "refractive index of core is 1.6583\n",
+ "refractive index of cladding is 1.625\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.33; #numerical aperture\n",
+ "delta=0.02; #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "x=1-delta;\n",
+ "n1=math.sqrt(NA**2/(1-x**2)); #refractive index of core \n",
+ "n2=x*n1; #refractive index of cladding\n",
+ "#Result\n",
+ "print \"refractive index of core is\",round(n1,4)\n",
+ "print \"refractive index of cladding is\",round(n2,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 9, Page number 11-19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "acceptance angle is 8 degrees 38 minutes 55 seconds\n",
+ "answer for angle in seconds given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.20; #numerical aperture\n",
+ "n0=1.33; #refractive index of water\n",
+ "n2=1.59; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "n1=math.sqrt((NA**2)+(n2**2)); #core refractive index\n",
+ "x=math.sqrt((n1**2)-(n2**2))/n0;\n",
+ "theta0=math.asin(x); #acceptance angle(radian)\n",
+ "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n",
+ "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n",
+ "theta0s=60*(theta0m-int(theta0m)); #acceptance angle(seconds)\n",
+ "\n",
+ "#Resul\"\n",
+ "print \"acceptance angle is\",int(theta0),\"degrees\",int(theta0m),\"minutes\",int(theta0s),\"seconds\"\n",
+ "print \"answer for angle in seconds given in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 10, Page number 11-20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fractional index change is 6.8966 *10**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.45; #Core refractive index\n",
+ "n2=1.44; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "delta=(n1-n2)/n1; #fractional index change\n",
+ "\n",
+ "#Result\n",
+ "print \"fractional index change is\",round(delta*10**3,4),\"*10**-3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 11, Page number 11-20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Cladding refractive index is 1.44\n",
+ "numerical aperture is 0.42\n",
+ "acceptance angle is 24 degrees 50 minutes\n",
+ "critical angle is 73 degrees 44 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.50; #Core refractive index\n",
+ "delta=4/100; #fractional index change\n",
+ "\n",
+ "#Calculation\n",
+ "n2=n1-(delta*n1); #Cladding refractive index\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "theta0=math.asin(NA); #acceptance angle(radian)\n",
+ "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n",
+ "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n",
+ "thetac=math.asin(n2/n1); #critical angle(radian)\n",
+ "thetac=thetac*180/math.pi; #critical angle(degrees)\n",
+ "thetacm=60*(thetac-int(thetac)); #critical angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"Cladding refractive index is\",n2\n",
+ "print \"numerical aperture is\",NA\n",
+ "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\"\n",
+ "print \"critical angle is\",int(thetac),\"degrees\",int(thetacm),\"minutes\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 12, Page number 11-21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.446\n",
+ "acceptance angle is 26 degrees 29 minutes\n",
+ "answer for angle in minutes given in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.563; #Core refractive index\n",
+ "n2=1.498; #Cladding refractive index\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "theta0=math.asin(NA); #acceptance angle(radian)\n",
+ "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n",
+ "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,3)\n",
+ "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\"\n",
+ "print \"answer for angle in minutes given in the book varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}