summaryrefslogtreecommitdiff
path: root/Applied_Physics/Chapter10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics/Chapter10.ipynb')
-rwxr-xr-xApplied_Physics/Chapter10.ipynb316
1 files changed, 316 insertions, 0 deletions
diff --git a/Applied_Physics/Chapter10.ipynb b/Applied_Physics/Chapter10.ipynb
new file mode 100755
index 00000000..7b7470a8
--- /dev/null
+++ b/Applied_Physics/Chapter10.ipynb
@@ -0,0 +1,316 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:03ee5374207ea96e9a4f31e16f771d187a11f07daf287d94fc54e352b5db8bff"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10:Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1 , Page no:313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "Tc=7.2; #in K (critical temperature)\n",
+ "T=5; #in K (given temperature)\n",
+ "H0=6.5E3; #in A/m (critical magnetic field at 0K)\n",
+ "\n",
+ "#calculate\n",
+ "Hc=H0*(1-(T/Tc)**2); #calculation of magnitude of critical magnetic field\n",
+ "\n",
+ "#result\n",
+ "print\"The magnitude of critical magnetic field is Hc=\",round(Hc,2),\"A/m\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnitude of critical magnetic field is Hc= 3365.35 A/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.2 , Page no:313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "r=0.02; #in m (radius of ring)\n",
+ "Hc=2E3; #in A/m (critical magnetic field at 5K)\n",
+ "pi=3.14; #value of pi used in the solutiion\n",
+ "\n",
+ "#calculate\n",
+ "Ic=2*pi*r*Hc; #calculation of critical current value\n",
+ "\n",
+ "#result\n",
+ "print\"The critical current value is Ic=\",Ic,\"A\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical current value is Ic= 251.2 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.3 , Page no:313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "M1=199.5; #in amu (isotropic mass at 5K)\n",
+ "T1=5; #in K (first critical temperature)\n",
+ "T2=5.1; #in K (second critical temperature)\n",
+ "#calculate\n",
+ "#since Tc=C*(1/sqrt(M)\n",
+ "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n",
+ "#therefore we have M2=(T1/T2)^2*M1\n",
+ "M2=(T1/T2)**2*M1; #calculation of isotropic mass at 5.1K\n",
+ "\n",
+ "#result\n",
+ "print\"The isotropic mass at 5.1K is M2=\",round(M2,3),\"a.m.u.\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The isotropic mass at 5.1K is M2= 191.753 a.m.u.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.4 , Page no:314"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "T=6; #in K (given temperature)\n",
+ "Hc=5E3; #in A/m (critical magnetic field at 5K)\n",
+ "H0=2E4; #in A/m (critical magnetic field at 0K)\n",
+ "\n",
+ "#calculate\n",
+ "#since Hc=H0*(1-(T/Tc)^2)\n",
+ "#therefor we have Tc=T/sqrt(1-(Hc/H)^2)\n",
+ "Tc=T/math.sqrt(1-(Hc/H0)); #calculation of transition temperature\n",
+ "\n",
+ "#result\n",
+ "print\"The transition temperature is Tc=\",round(Tc,3),\"K\";\n",
+ "print \"NOTE: The answer in the textbook is wrong\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The transition temperature is Tc= 6.928 K\n",
+ "NOTE: The answer in the textbook is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.5 , Page no:314"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "T=5; #in K (given temperature)\n",
+ "d=3; #in mm (diameter of the wire)\n",
+ "Tc=8; #in K (critical temperature for Pb)\n",
+ "H0=5E4; #in A/m (critical magnetic field at 0K)\n",
+ "pi=3.14; #value of pi used in the solution\n",
+ "\n",
+ "#calculate\n",
+ "Hc=H0*(1-(T/Tc)**2); #calculation of critical magnetic field at 5K\n",
+ "r=(d*1E-3)/2; #calculation of radius in m\n",
+ "Ic=2*pi*r*Hc; #calculation of critical current at 5K\n",
+ "\n",
+ "#result\n",
+ "print\"The critical magnetic field at 5K is Hc=\",Hc,\"A/m\";\n",
+ "print\"The critical current at 5K is Ic=\",Ic,\"A\";\n",
+ "print \" (roundoff error)\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical magnetic field at 5K is Hc= 30468.75 A/m\n",
+ "The critical current at 5K is Ic= 287.015625 A\n",
+ " (roundoff error)\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.6 , Page no:314"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "V=8.50; #in micro V (voltage across Josephson junction )\n",
+ "e=1.6E-19; #in C (charge of electron)\n",
+ "h=6.626E-34; #in J/s (Planck\u2019s constant)\n",
+ "\n",
+ "#calculate\n",
+ "V=V*1E-6; #changing unit from V to microVolt\n",
+ "v1=2*e*V/h; #calculation of frequency of EM waves\n",
+ "\n",
+ "#result\n",
+ "print\"The frequency of EM waves is v=\",v1,\"Hz\";\n",
+ "print \"NOTE: The answer in the textbook is wrong\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of EM waves is v= 4105040748.57 Hz\n",
+ "NOTE: The answer in the textbook is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.7 , Page no:315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#given\n",
+ "M1=200.59; #in amu (average atomic mass at 4.153K)\n",
+ "Tc1=4.153; #in K (first critical temperature)\n",
+ "M2=204; #in amu (average atomic mass of isotopes)\n",
+ "\n",
+ "#calculate\n",
+ "#since Tc=C*(1/sqrt(M)\n",
+ "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n",
+ "#therefore we have Tc2=Tc1*sqrt(M1/M2)\n",
+ "Tc2=Tc1*math.sqrt(M1/M2); #calculation of transition temperature of the isotopes\n",
+ "\n",
+ "#result\n",
+ "print\"The transition temperature of the isotopes is Tc2=\",round(Tc2,3),\"K\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The transition temperature of the isotopes is Tc2= 4.118 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file