diff options
Diffstat (limited to 'Antennas_and_Wave_Propagation/chapter6.ipynb')
-rw-r--r-- | Antennas_and_Wave_Propagation/chapter6.ipynb | 182 |
1 files changed, 182 insertions, 0 deletions
diff --git a/Antennas_and_Wave_Propagation/chapter6.ipynb b/Antennas_and_Wave_Propagation/chapter6.ipynb new file mode 100644 index 00000000..040ba097 --- /dev/null +++ b/Antennas_and_Wave_Propagation/chapter6.ipynb @@ -0,0 +1,182 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h1>Chapter 6: Electric Dipoles, Thin Linear Antennas \n", + " and Arrays of Dipoles and Apertures<h1>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 6-8.1, Page number: 174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable declaration\n", + "z = 333.0 #Driving point impedence (ohm)\n", + "r = 300.0 #twin-line impedence (ohm)\n", + "z1 = 73.0 #Self impedence of lambda/2 dipole (ohm)\n", + "z2 = 13.0 #Mutual impedence with lambda/2 spacing (ohm)\n", + "\n", + "#Calculation\n", + "pv = (z-r)/(z+r) #Reflection coefficient (unitless)\n", + "vswr = (1+pv)/(1-pv) #Voltage Standing Wave Ratio (unitless)\n", + "gain_l2 =math.sqrt((2*z1)/(z1-z2)) #Field gain over lambda/2 dipole (unitless)\n", + "gain_l2_db = 20*math.log10(gain_l2) #Field gain (in dB)\n", + "gain_iso = (gain_l2**2)*1.64 #Gain over isotropic source (unitless)\n", + "gain_iso_db = 10*math.log10(gain_iso) #Gain over isotropic source (in dB)\n", + "\n", + "#Result\n", + "print \"The VSWR is\", vswr\n", + "print \"The field gain over lambda/2 dipole is\", round(gain_l2,2), \"or\", round(gain_l2_db,1), \"dB\"\n", + "print \"\"\"The gain over isotropic source is %.1f or %.1f dB\n", + " \"\"\" % (round(gain_iso),gain_iso_db)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The VSWR is 1.11\n", + "The field gain over lambda/2 dipole is 1.56 or 3.9 dB\n", + "The gain over isotropic source is 4.0 or 6.0 dB\n", + " \n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 6-8.2, Page number:175<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable declaration\n", + "z = 73.0 #Self impedence of lambda/2 dipole (ohm)\n", + "zm = 64.4 #Mutual impedence with lambda/8 spacing (ohm)\n", + "\n", + "#Calculation\n", + "D = math.sqrt((2*z)/(z-zm))*math.sin(math.pi/8) #Field gain over lambda/2 dipole (unitless)\n", + "D_db = 20*math.log10(D) #Field gain over lambda/2 dipole (in dB)\n", + "\n", + "gain_iso = (D**2)*1.64 #gain over isotropic source (unitless)\n", + "gain_iso_db = 10*math.log10(gain_iso) #gain over isotropic source (in dB)\n", + "\n", + "#Result\n", + "print \"The field gain over lambda/2 dipole is\", round(D,2), \"or\", round(D_db,2), \"dB\"\n", + "print \"The gain over isotropic source is\", round(gain_iso,2), \"or\", round(gain_iso_db,1), \"dB\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The field gain over lambda/2 dipole is 1.58 or 3.96 dB\n", + "The gain over isotropic source is 4.08 or 6.1 dB\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 6-12.1, Page number: 196<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt, log10\n", + "\n", + "#Variable declaration\n", + "s1 = 0.4 #Spacing 1(lambda)\n", + "s2 = 0.5 #Spacing 2(lambda)\n", + "s3 = 0.6 #Spacing 3(lambda)\n", + "R_21_1 = 6.3 #Mutual resistance for s1 (ohm)\n", + "R_21_2 = -12.691 #Murual resistance for s2 (ohm)\n", + "R_21_3 = -23.381 #Mutual resistance for s3 (ohm) \n", + "Z = 73.13 #Self impedence of lambda/2 dipole (ohm)\n", + "\n", + "#Calculation\n", + "gain_1 = sqrt(2*(Z/(Z+R_21_1))) #Gain in fieldfor s1 (unitless)\n", + "gain_iso1 = 1.64*(gain_1**2) #Power gain over isotropic (unitless)\n", + "gain_iso_db1 = 10*log10(gain_iso1) #Power gain (in dBi)\n", + "\n", + "gain_2 = sqrt(2*(Z/(Z+R_21_2))) #Gain in fieldfor s2 (unitless)\n", + "gain_iso2 = 1.64*(gain_2**2) #Power gain over isotropic (unitless)\n", + "gain_iso_db2 = 10*log10(gain_iso2) #Power gain (in dBi)\n", + "\n", + "gain_3 = sqrt(2*(Z/(Z+R_21_3))) #Gain in fieldfor s3 (unitless)\n", + "gain_iso3 = 1.64*(gain_3**2) #Power gain over isotropic (unitless)\n", + "gain_iso_db3 = 10*log10(gain_iso3) #Power gain (in dBi)\n", + "\n", + "#Result\n", + "print \"The gain in field over half wave antenna for s1 is\", round(gain_1,2)\n", + "print \"\"\"The power gain over isotropic for s1 is %.2f or %.1f dBi\n", + " \"\"\" % (gain_iso1,gain_iso_db1)\n", + " \n", + "print \"The gain in field over half wave antenna for s2 is\", round(gain_2,2)\n", + "print \"\"\"The power gain over isotropic for s2 is %.2f or %.2f dBi\n", + " \"\"\" % (gain_iso2,gain_iso_db2)\n", + " \n", + "print \"The gain in field over half wave antenna for s3 is\", round(gain_3,2)\n", + "print \"\"\"The power gain over isotropic for s3 is %.2f or %.2f dBi\n", + " \"\"\" % (gain_iso3,gain_iso_db3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The gain in field over half wave antenna for s1 is 1.36\n", + "The power gain over isotropic for s1 is 3.02 or 4.8 dBi\n", + " \n", + "The gain in field over half wave antenna for s2 is 1.56\n", + "The power gain over isotropic for s2 is 3.97 or 5.99 dBi\n", + " \n", + "The gain in field over half wave antenna for s3 is 1.71\n", + "The power gain over isotropic for s3 is 4.82 or 6.83 dBi\n", + " \n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |