summaryrefslogtreecommitdiff
path: root/Antennas_and_Wave_Propagation/chapter24.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Antennas_and_Wave_Propagation/chapter24.ipynb')
-rw-r--r--Antennas_and_Wave_Propagation/chapter24.ipynb332
1 files changed, 332 insertions, 0 deletions
diff --git a/Antennas_and_Wave_Propagation/chapter24.ipynb b/Antennas_and_Wave_Propagation/chapter24.ipynb
new file mode 100644
index 00000000..a97a053a
--- /dev/null
+++ b/Antennas_and_Wave_Propagation/chapter24.ipynb
@@ -0,0 +1,332 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h1>Chapter 24: Space Wave Propagation<h1>"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 24-9.1, Page number: 808<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "tx_h = 49.0 #Transmitting antenna height (m)\n",
+ "rx_h = 25.0 #Receiving antenna height (m)\n",
+ "f = 100e6 #Frequency (Hz)\n",
+ "tx_p = 100.0 #Transmitted power (W)\n",
+ "c = 3e8 #Speed of light (m/s)\n",
+ "a = 6370 #Earth's radius (km)\n",
+ "\n",
+ "#Calculations\n",
+ "wave_lt = c/f #Wavelength (m)\n",
+ "d0 = sqrt(2*(4.0/3.0)*(a/1000.0))*(sqrt(tx_h)+sqrt(rx_h))\n",
+ " #Line of Sight (LOS) distance (km)\n",
+ "d = d0*1000 #LOS (m)\n",
+ "Er = (88*sqrt(tx_p)/(wave_lt*(d**2)))*tx_h*rx_h\n",
+ " #Received signal strength (W)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Line of Sight distance is\", round(d0,2), \"km\"\n",
+ "print \"The received signal strength is\", round(Er,6), \"W\"\n",
+ "\n",
+ "#The mistake is in the calculation of (88*sqrt(tx_p)/(wave_lt*(d**2))) where four orders of\n",
+ "#magnitude are ignored in the resulting calculation."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Line of Sight distance is 49.46 km\n",
+ "The received signal strength is 0.000147 W\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "'The mistake is in the calculation of (88*sqrt(tx_p)/(wave_lt*(d**2))) where four orders of\\nmagnitude are ignored in the resulting calculation.'"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 24-9.2, Page number: 809<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "tx_h = 144 #Transmitting antenna height (m)\n",
+ "rx_h = 25 #Receiving antenna height (m)\n",
+ "k = 4.0/3.0 #Equivalent earth radius/Actual earth radius (unitless)\n",
+ "a = 6370 #Radius of earth (km)\n",
+ "\n",
+ "#Calculations\n",
+ "los = 4.12*(sqrt(tx_h) + sqrt(rx_h)) #Line of sight distance (km)\n",
+ "\n",
+ "horz = sqrt(2*k*a*(tx_h/1000.0)) #Surface range to radio horizon from radar (km)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Radio horizon distance from radar is\", round(horz,2),\"km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Radio horizon distance from radar is 49.46 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 24-9.3, Page number: 809<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "tx_h = 100 #Transmitting antenna height (m)\n",
+ "rx_h = 16 #Receiving antenna height (m)\n",
+ "tx_p = 40e3 #Transmitting antenna power radiation (W)\n",
+ "f = 100e6 #Frequency (Hz)\n",
+ "d = 10e3 #Distance (m)\n",
+ "c = 3e8 #Speed of light (m/s)\n",
+ "E = 1e-3 #Signal strength (V/m)\n",
+ "\n",
+ "#Calculations\n",
+ "los = 4.12*(sqrt(tx_h) + sqrt(rx_h)) #LOS distance (km)\n",
+ "wave_lt = c/f #Wavelength (m)\n",
+ "\n",
+ "Es = (88*sqrt(tx_p)/(wave_lt*(d**2)))*tx_h*rx_h\n",
+ " #Field strength at distance d (V/m)\n",
+ "\n",
+ "dsig = sqrt(88*sqrt(tx_p)*tx_h*rx_h/(wave_lt*E))\n",
+ " #Distance at which field strength reduces to 1mV/m\n",
+ "\n",
+ "#Result\n",
+ "print \"The LOS distance is\", los, \"km\"\n",
+ "print \"The field strength at 10km is\", round(Es,5),\"V/m\"\n",
+ "print \"The distance at which field strength is 1mV/m is\", round(dsig,-1), \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The LOS distance is 57.68 km\n",
+ "The field strength at 10km is 0.09387 V/m\n",
+ "The distance at which field strength is 1mV/m is 96880.0 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 24-9.4, Page number: 809<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "gain = 10 #Antenna gain (dB)\n",
+ "Wt = 500 #Power radiation (W)\n",
+ "d = 15e3 #Distance (m)\n",
+ "Wr = 2e-6 #Received power (W)\n",
+ "\n",
+ "#Calculations\n",
+ "Ae = Wr*(4*pi*(d**2))/(Wt*gain) #Effective area (m^2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The effective area of the receiving antenna is\", round(Ae,2), \"m^2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The effective area of the receiving antenna is 1.13 m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 24-9.5, Page number: 809<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "h = 1000 #Height of duct (m)\n",
+ "delM = 0.036 #Change in refractive modulus (unitless)\n",
+ "c = 3e8 #Speed of light (m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "wl_max = 2.5*h*sqrt(delM*1e-6) #Maximum wavelength (m)\n",
+ "fmax = c/wl_max #Maximum frequency (Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum frequency that can be transmitted is\", round(fmax/1e6,1),\"MHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum frequency that can be transmitted is 632.5 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 24-12.1, Page number: 812<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi,sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "gain = 10 #Gain of transmitting antenna (dB)\n",
+ "P = 100 #Radiating power (W)\n",
+ "f = 1e6 #Frequency (Hz)\n",
+ "rx_gain = 15 #Gain of receiving antenna (dB)\n",
+ "d = 20e3 #Distance (m)\n",
+ "c = 3e8 #Speed of light (m/s)\n",
+ "v = 1000 #scattering volume (m^3)\n",
+ "sigma = 0.1 #Effective scattering cross-section (m^2)\n",
+ "\n",
+ "#Calculations\n",
+ "wl = c/f #Wavelength (m)\n",
+ "Pr_a = P*gain*rx_gain*(wl**2)/(4*pi*(4*pi*(d**2)))\n",
+ " #Received power in case (a) (W)\n",
+ "F = (2*sqrt(sigma*v))/(d*sqrt(pi)) #Attenuation Factor (unitless)\n",
+ "Pr_b = Pr_a*F #Received power in case (b) (W)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"The received power in case (a) is\", round(Pr_a,5), \"W\"\n",
+ "print \"The received power in case (b) is\", round(Pr_b,10), \"W\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The received power in case (a) is 0.02137 W\n",
+ "The received power in case (b) is 1.20581e-05 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<h3>Example 24-14.1, Page number: 813<h3>"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 3000 #Distance (km)\n",
+ "f = 3e3 #Frequency (MHz)\n",
+ "\n",
+ "#Calculations\n",
+ "path_l = 32.45 + 20*log10(f) + 20*log10(d)\n",
+ "\n",
+ "#Result\n",
+ "print \"The path loss between the two points is\", round(path_l,3), \"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The path loss between the two points is 171.535 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file