summaryrefslogtreecommitdiff
path: root/Aircraft_Propulsion_by__S._Farokhi
diff options
context:
space:
mode:
Diffstat (limited to 'Aircraft_Propulsion_by__S._Farokhi')
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb409
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter10_1.ipynb410
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb539
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter11_1.ipynb539
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter2.ipynb778
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter2_1.ipynb778
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter3.ipynb240
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter3_1.ipynb240
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter4.ipynb1184
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter4_1.ipynb1184
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter5.ipynb688
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter5_1.ipynb688
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter6.ipynb185
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter6_1.ipynb185
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter7.ipynb362
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter7_1.ipynb362
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter8.ipynb230
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter8_1.ipynb230
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter9.ipynb296
-rwxr-xr-xAircraft_Propulsion_by__S._Farokhi/Chapter9_1.ipynb296
20 files changed, 9823 insertions, 0 deletions
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb
new file mode 100755
index 00000000..11d97ff9
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter10.ipynb
@@ -0,0 +1,409 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e111d96c9d3d06af8c3fbdcef02842d64037d852464c268890f5b248289b75b3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter10-Aircraft Engine componet matcing and off design analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg611"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 10.1\"\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "#calculate and draw graph the gas generator pumping charcteristics as a fucntion of Nc2/Nc2,d\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "cmap=numpy.matrix([[14.1,6.50,20.0,0.82],[13.5,5.88,18.1,0.84],[13,5.32,16.4,0.83],[12.5,4.81,14.8,0.83],[12,4.36,13.4,0.83],[11.5,4,12.2,0.84]])\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "print cmap,\"Compressor map data in table:\"\n",
+ "Cpc=1004.\n",
+ "Cpt=1156.\n",
+ "f=0.03 #fuel-to-air ratio\n",
+ "em=0.995 #efficiency\n",
+ "T=6. #T=Tt4/Tt2\n",
+ "pb=0.95 #burner pressure ratio\n",
+ "gmt=1.33 #gamma turbine\n",
+ "gmc=1.4\n",
+ "i=5\n",
+ "b=1\n",
+ "g1=numpy.zeros(6)\n",
+ "gc1=0;\n",
+ "g2=numpy.zeros(6)\n",
+ "gc2=0\n",
+ "g3=numpy.zeros(6)\n",
+ "gc3=0\n",
+ "g4=numpy.zeros(6)\n",
+ "gc4=0\n",
+ "z0=numpy.linspace(0.82,0.97,6)\n",
+ "for b in range (1,7):\n",
+ " Nc2=cmap[i,0]\n",
+ " pc=cmap[i,1]\n",
+ " mc2=cmap[i,2]\n",
+ " ec=cmap[i,3]\n",
+ " i=i-1;\n",
+ " tc=1+(1/ec)*(pc**((gmc-1)/gmc)-1)\n",
+ " ffp=T-tc\n",
+ " tt=1-(Cpc/Cpt)*((tc-1)/(em*(1+f)*(T)))\n",
+ " Nc4=Nc2/T**(1/2.)\n",
+ " mc4=mc2*((1+f)*(T)**(1./2.))/(pb*pc)\n",
+ " pt=(1-(1-tt)/ec)**(gmt/(gmt-1)) #Assuming et=ec i.e. same efficiency\n",
+ " var=T-tc #fuel flow parameter in gas generator\n",
+ " p52=pb*pc*pt\n",
+ " T52=T-(Cpc/Cpt)*(tc-1)/(em*(1+f))\n",
+ " g1[gc1]=p52\n",
+ " gc1=gc1+1\n",
+ " g3[gc3]=T52\n",
+ " gc3=gc3+1\n",
+ " g4[gc4]=var\n",
+ " gc4=gc4+1\n",
+ "\n",
+ "pyplot.plot(z0,g1)\n",
+ "pyplot.xlabel(\"% Nc2 Design\")\n",
+ "pyplot.ylabel(\"Ratios\")\n",
+ "pyplot.title(\"GAS GENERATOR PUMPING CHARACTERISTCS\")\n",
+ "pyplot.plot(z0,g3)\n",
+ "pyplot.plot(z0,g4)\n",
+ "pyplot.legend(\"pt5/pt2\",\"Tt5/Tt2\",\"Fuel flow prameter in gas generator\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 10.1\n",
+ "[[ 14.1 6.5 20. 0.82]\n",
+ " [ 13.5 5.88 18.1 0.84]\n",
+ " [ 13. 5.32 16.4 0.83]\n",
+ " [ 12.5 4.81 14.8 0.83]\n",
+ " [ 12. 4.36 13.4 0.83]\n",
+ " [ 11.5 4. 12.2 0.84]]"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Compressor map data in table:\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "<matplotlib.legend.Legend at 0x5a1d330>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8JGV97/HPd/blzMrAsMzgoOxEBFREwHjidQMEJRJF\nVFAT5WJcEPW63HAZvWo0KhiMKNEYxeBFI4qY4IbhgGhAdAYkwLATGLaBmWHmzH6W3/3jqZ7Tp6ar\nT/c5vZ2Z7/v16ldX1/r0UvXteqrqKUUEZmZmlUxodwHMzKxzOSTMzKyQQ8LMzAo5JMzMrJBDwszM\nCjkkzMyskEPCzMwKOSTqIOl0STdL2iDpSUk3STqnwnhLJQ1KOjrXf4qkL0p6RFKvpAclXTTCMt8j\n6TZJGyU9Luk6SW8sG94jaXM2v9Ljx9mw7qwcX8nN80ZJZ2Xdb5M0kJt+vaQ9s+EPSdqU9X9C0nck\nzc7Nryv7TK4p63dH2fz6c2X8aDbOIkmXS3o6m/5mSSfl5j2YDeuV9KikiyVNqvJ55cv7z5Jmlg37\nH7nx3ybp11n3kmx5y3LjLJC0TdKDNS6nR9Jf1vodZK/3kvT17D32Sro/m+dBVd7rbElfkvTf2TT3\nSbpI0m61vN9c/x5JayRNyfX/lqSt2fzXSPqVpMNqnT4bdoak32fzeEzSNZKOk/TVst/E1uwzLr3+\nd0nPyj673tzjL2opW/69Sjpe0m8lPSNpdfYdvEDSx8vmvTn7vZZe355N+ypJNyitG6uy93tyNqzu\n9Xo8cUjUSNIHgS8BnwMWRsRC4H8Cx5WvGJIEnAncnj2X+xhwFPDCiJgFdAN/qLLMLwPvB84D5gN7\nA38DvLpstAD+OiJmlT1eWzZ8I/AWSc/KTVN+FeVvctPPjognysZ9TVbe5wHPzcpQ7vXAw0C3pIUA\nEXFYaX7Ar3Nl/Kyk+cCNwBbgUGA34CLgu5Jen5v/4dl8/hT4c+BdRZ9ZrrxHAS8oK2/+fReZntsQ\nngE8kJu2nuVU/Q6yjfpvgWnA8WXzvB54RaUCZr+5XwGHAK/Kpnkx8DTwwnrer6QlwNHAKuCU3OAA\nPpfNf2/S9/zPtU4v6TzS9/opYA9gMfAV4JSIOKfsN/IZ4Iqy38hJgLLZzMn9Pv+11rKVlWM28G/A\n3wPzgH2ATwBbI+IzZeX4n8Bvy5b1XEmnAd8HvgXsExF7AP8HeE02+7rW6/HGIVEDSXNIP6hzIuKH\nEbERICJujYi3RMS2stFfAswmbdxPlzS5bNgLgKtKG+CI+O+I+JeCZR4InAO8MSJ+FRFbI/lNRLy9\njuI/Q/pxX1DtLdYyo4h4EvgFkP8neRbwDeA3wFtqXMYHgPUR8ZcRsSp7f1cAnwa+WLD8+7NlHFpj\neR8DflahvCP5Duk9lbwVuIyCz6mG5Yz0HXwAeCYi3hoRD2bzXBcR34qIfyiY5kzSBvfUiFiRTfNU\nRHw6In5W+M4qh8aZwLXs+L6HTxixBfhXdnyfFacvW2/eHRFXRcTmiBiIiH+PiI/k5iFq/B3WWbaS\nA9No8b1sPdoSEb+MiNurlSP703ch8MmI+GZE9GbLuyEizs5Gq3m9Ho8cErV5MTAV+HEN454F/Cgi\neoDNwMllw24CzpN0jqTnZj/AIi8DHo6IZVXGKRlp5foM8PoseEZDkKqHSHsxN28fkP4d/ynpn9b3\n2XHvqSS/cXoFcGWF8f4V2FfSARWWfzAphH9XY3kXAycAy0cYP+9yUsBL0qFAF2XveZTLqfYdvBz4\nUZ1lfDnw04jYNMJ4+d9Gpd/KmcD3SN/fqyTtUWkapeq0N7HjZ5Gffves/4tJe0f1vre8ar/vkcpW\ncg8wkFVRvVrSvBqXfRCwCPhBlXHqWa/HHYdEbRYAT0fEYKlHVre5Vqle+iVZvxnAaaQNHaSNYPlG\n829J1VVvBm4BVkoq2qguAJ4s7yFpZbbMzdmGCdJKcnHWv/T4RPl02R7A14BPFizrmNz095YvFrhK\n0nrS7vz9pKqDkrcCv4uIlcAPgUMlHVGwnHK7AY9X6F/qt6Cs3zJJG4A7gR9ExGVV5lsq71pSNVcP\naQNdj5XA3aQgO5O0FzGm5YzwHewGlKr3kHRK9j2sl/TzglnOp/LnV7GMpQepqmd7YEs6nlT1cnVE\n3Ev6jM/IzeND2bTrgWOBN4ww/ZvL3tew9WaUns79PkvHaaqWrVxErAeOJ733rwOrJP24QiDm7ZY9\nV/us61mvxx2HRG1WAwskbf+8IuLYiJiXDSv9czgV6CPVFUMKixMkLcimGYyISyLieGAOqWrlm9k/\n5ErL3Ku8R0QsIm08p5YtM4D3RsS8skelao2/I/3LO7zCsJty05f/iw/gtRExm1TX+jLS7nXJmdn7\nJCJWkzaWhVUWZZ4m1SPn7VU2vOTIiOgC3gicmavbzyuVd15ELImI90TE1mxYPzA5N/5k0neWn8dl\nwNuB00nVKPl/h9WWU6ToO1hN2WcREVdnv60PADscCK40TYHyMs7L5vnu3Hs5C/hFqRqF9F2elZvH\n57NplwBbGf7Hp9r0O6w3o7Rb7vd5d41lGyYiVkTE2yNiMfAnpM/vSyMse3X2vFfRCHWu1+OOQ6I2\n/0n6Ab5uhPHOAmaR/kk8TtqTmMzwf2YAZHXwlwBrSQcf8/4DWCTp+bn+o9qVzTbgX2L4XkC987gB\n+DLpXxOSjgX2B/5G6cyrx0lVDGdImjjC7K4F/rzCrvkbSNVs9+YnyA5Y/huwdJRv4WFgv1y//YCH\nKoz7Q+BE4P5sL2nMqnwHvwJeV+GzqPZdX0sKnBl1FqO8vn066fN+Wdn390HgebkgU1b+R4D3AedL\nmlXD9KX15tQayjXa5qgrlm3EhaWg+TYpLKq5G3iEVEMwohrW63HHIVGDiHiGdADuEkmvz1aQCVm1\nSum0x31I/7JPIp0FVHp8juzfjaRzJb1U0nRJk5ROgeyiQl129iO+FLhC0suzaSaSdqnzag2OC0kb\n8bH8eL8EHC3pRWT/IrP5ld7vnwDTSXX01cp4Eelf1z9JWihpmqQ3AR8HPlxl+Z8F3pQdH6nX94Bz\nJR2UHW94AWlv4Yr8iNnJCX8G/NUollNNpe/gQtIZN9+R9OysbLOAIyjeeH6HtPG6Mns/EyTtpnQ6\nZ/6zL/I60t5V+fd3CKn6rPSPfNj3FhHXAveR9kiqTh8R60hnAX1F0mslzZA0WdIJkj6XK8uIxx1G\n6p8r2/ARpYMlnZetp6XjSG8iBVmhiAjS2YXnK51SOzv7rI+XdGk2r5rX63EpIvyo8UHaI7iZdErj\nKtIBq78i7S18FLilwjR7k/5NHQq8E/g96WyXtdn0J46wzPcCfwQ2AY+RqnNOA5QNv450gLy37HFL\nNqyb9K+8fH4fBgZIKzGkDX1/bvpe4PnZ8AeBl+XmcQnwU9Ku+EkVyvwV4Ptlr68D3lFhvMXAd7P5\nbMg+25Nz4wwAz871uwa4sODz2qG8ZcMEfIR0EHMdcAfw9rLhS7LlTagw7cuBB2pczvb3W8t3kPXb\ni3SG2GPZ538f6XTOg6r8NmaTwvbhsmm+AMyr8t2dBdyQdf+UVF2Tn+9fZOWYmJXhk7nhb8iG/8cI\n008oW29uyb7jx4GfAMfkprkAuCzXbwkwWOG3eW42vKhsj5Kq6crf696kPwkrs3KsBL4KdBV9Prn+\nrwJuyJa/KnvvJ2TD6l6vx9OjtKFpGklzST/+w0j/it4RETflxrmY9M9zE/C2iNg5EtjMbJwrvHK1\ngf4euCYiTlO6UnZm+UBJJwL7R8QBWRXGV4FjWlAuMzMbQVOPSShdTPOSiPgmQET0R6qnLHcK6QAS\nEXEzMFfZVbtmZtZezT5wvR/wlFIbNMuU2qbJn42xD+kAXMlK0sUrZmbWZs0OiUmkNk0uiYijSAd8\nP1phvErnoJuZWZs1+5jESmBlRNySvf4BO4bEo6SzXEoWZf22k+TQMDMbhYgYUzMhTd2TiNTg1SMa\naq/m5aTTDstdzdB1BMeQGjp7MjdO208Dq+VxwQUXtL0MLqfL6HK6nKVHI7Ti7Kb3ApcrNW18P/AO\nSWcDRMSlEXGNpBMl3UeqjqqnhVMzM2uipodERNzGUPv2JZfmxnlPs8thZmb1c7McDdTd3d3uItTE\n5Wyc8VBGcDkbbbyUsxGafsV1I0iK8VBOM7NOIokY44HrVhyTMDOzUdixYeBizfoj7ZAwM+tgtWz8\n6wmTevmYhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFfJ1EmZmHayZ10DUwiFh\nZtahOqE5Ilc3mZlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFXJImJlZIYeEmZkVckiYmVkh\nh4SZmRVqerMckh4C1gMDQF9EHJ0b3g38GHgg63VlRHyq2eUyM7ORtaLtpgC6I2JNlXGuj4hTWlAW\nMzOrQ6uqm0ZqxrC9zRyamVlFrdqTuFbSAHBpRHy9wvBjJd0GPAp8KCLuzM/kfT99H11Tupg5eSYz\np8ys2N01pYuZU2Zu7542aVrbm9k1MxvPWhESx0XE45J2B34paUVE/Lps+DJgcURsknQCcBVwYH4m\n91x5D30DfWwb2MYeh+3BvEPmsWHbBjb2bUzP2zbu0L1tYBszJs+oKVBGHJ7rnjTBraybWWfp6emh\np6enofNUK9srl3QBsCEivlhlnAeB55cfw5AUoyln/2A/m/o2FYZIqbsUNsO6Rxg+acKk2gKlhsAp\n754+abr3fsysISQREWPaoDT177CkGcDEiOiVNBN4JfCJ3DgLgVUREZKOJgVXtYPcNZs0YRKzp85m\n9tTZjZjddhHB1oGt1UOmrHvDtg2s2rhqKHgqDM/v/ZQHRz5suiYX9K/wunwvaYJ8xrOZ1afZdSYL\ngR9l/4wnAZdHxC8knQ0QEZcCpwHnSOoHNgGnN7lMYyaJaZOmMW3SNBbMWNDQeZf2fiqFSKXXT258\nkvvX3j/ieJv6NjFt0rSqgVJp76eW1656M9t5tbS6abRGW91kQwZjkM19m0cMk8LXVcabOGHisPBo\nRPDMnDyTqZOmtvtjMxvXGlHd5JCwMSlVvdUdOts2sqGveLwN2zYAbA+d/GPW1Fl0Ta48bPvwCv2n\nTpzqYz62y3BI2E5t28A2Nm7bSO+23u3BUf7o3Vqhf1+VYds2MBADhcHSNaWLWVMqh0u1YT7V2jqV\nQ8KsTn0DfRXDY8O2DcVhVNC/FEb9g/1Vg2fE8Kmw1zNt0jSfaGBj5pAw6wB9A33bq8uq7uXUEUZb\n+7cybdI0Zk6ZyYzJM7af8ba9O+s/rF+F4dX6u+pt5+eQMNtJlZ9osKlv0/Yz3rZ319J/hHH6B/vr\nC5g6Q2jm5JlMnji53R/lLs0hYWajVjrdejQhVGt4SaorhLqmdDFv+jzmT5/PvGnzmDd93rBnh059\nHBJm1rEigr7BvroCqHdrL2u3rGXtlrWs2byGtZtT99rNa3lmyzNMnzx9h/CYP23+DmGSD5q50+bu\nktfzOCTMbJcREfRu690hPErPazav2R4w+f7rt65nxuQZKTjygTJtXsX+pX5zps5h4oSJ7X77o+KQ\nMDOrwWAMsn7r+sqhkgucfP/erb3bq8F2CJQKoVLeb860OW09S80hYWbWZAODA6zfur56qJT65YZv\n2LaB2VNnV95LyVWPHb3P0ew7Z9+Glr3jG/gzMxvvJk6YmDbm0+fVPW3/YD/rtqwrrBp7auNT3LP6\nHtZuWcvsqbMbHhKN4D0JM7OdVCP2JHxJp5mZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVqekhIekjSHyUtl/S7gnEulnSvpNskHdnsMpmZWW1a\n0QpsAN0RsabSQEknAvtHxAGSXgR8FTimBeUyM7MRtKq6qVorhKcA3waIiJuBuZIWtqRUZmZWVStC\nIoBrJf1e0jsrDN8HeKTs9UpgUQvKZWZmI2hFddNxEfG4pN2BX0paERG/zo2T39PY4eYRS5cu3d7d\n3d1Nd3d3o8tpZjau9fT00NPT09B5tvSmQ5IuADZExBfL+n0N6ImIK7LXK4CXRsSTZeP4pkNmZnXq\n+JsOSZohaVbWPRN4JXB7brSrgTOzcY4BnikPCDMza59mVzctBH4kqbSsyyPiF5LOBoiISyPiGkkn\nSroP2Ai8vcllMjOzGvke12ZmO6mOr24yM7PxzSFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwS\nZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZm\nVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVqjpISFpoqTlkn5SYVi3pHXZ8OWS/qbZ\n5TEzs9pNasEy3g/cCcwqGH59RJzSgnKYmVmdmronIWkRcCLwDUBFozWzDGZmNnrNrm66CPgwMFgw\nPIBjJd0m6RpJhza5PGZmVoemVTdJeg2wKiKWS+ouGG0ZsDgiNkk6AbgKOLDSiEuXLt3e3d3dTXd3\n0SzNzHZNPT099PT0NHSeioiGznD7jKXPAG8F+oFpwGzgyog4s8o0DwLPj4g1uf7RrHKame2sJBER\nY6rSryskJM0HFkXEH+taiPRS4EMRcXKu/0LS3kZIOhr4fkQsqTC9Q8LMrE6NCIkRq5skXQ+cnI37\nB+ApSb+JiA/UuazI5nc2QERcCpwGnCOpH9gEnF7nPM3MrIlG3JOQdGtEHCHpr0jHDy6QdHtEPLc1\nRcz2JO68E2bPhlmzoKsLJvg6QDOzalqyJwFMlLQX8AagdLFb6+t+Tj0Venth/XrYtAlmzEiBUQqO\n/HOtw7q6YOLElr8dM7PxoJaQ+CTwc+A3EfE7Sc8B7m1usSpYsWKoe3AQNmwYCo3e3uHd5c+PPVY8\nrLcXNm6E6dMbEzizZjlwzGyn0rSzmxqpqQeuBwdTUFQKkGrhUmmcDRtg2rTGBc6kVlwQb2Y7q5ac\n3SRpMXAxcHzW6wbg/RGxciwLrse4ObtpcDBVhdUSMiMN6+2FqVMrB0qt/UrPrlIz2yW1KiSuBS4H\n/iXr9WbgzRHxirEsuB7jJiQaKWJoDycfJNX2bir1K1WpjSVoSt0zZ/qkAbNxolUhcVtEPG+kfs20\nS4ZEI5Wq1GoNlWrDNm9OQTGWoCk9z5gBctNdZs3SqrObVkt6K/BdUmN8pwNPj2Wh1mITJgwd5xir\ngYF07GWkcFmzBh56qHrwbNtW/TjN7NkwZ87I3bNmee/GrElq2ZNYAnwZOCbr9VvgvRHxcFNLNrwM\n3pPYGfX3D69Oy4dJ+WPduuLujRuH9m5qCZVSd77fzJnes7GdSsub5WgXh4RVVTolulqQ1NK9eXPa\nK6knaCp1T5/usLGO0NSQkPSRiPicpC9XGBwR8b6xLLgeDglriYGBtCcz1rDZtm30AVPq7uryMRsb\ns2Yfk7gze/4Dw6+wFu244tqs2SZOhLlz02Ms+vpqC5snnigeZ8MG2LIlVYF1dQ1/lFoKqKV/vp+D\nx+pUyzGJN0TE90fq10zek7Bd0sBAOt6yYcPwR+nCzdH0KwqeWkPGwTOutOoU2OURceRI/ZrJIWHW\nIJWCZyyh09s7FDy1hky18JkzB+bN88WfDdLU6qbsTnEnAvtIupihe1HPAvrGslAza5OJE4eOezRK\nPniqBcy6dfDoo8XjrV2bqtvmzoUFC2D33dNz6VH0uqvLezNNUu3A9fOAI0kN/J3PUEisB66LiLUt\nKSHekzDbpfT3p+tsnn566PHUU8Wvn3oqTTNSqOSHTZnS7nfadK2qbpoSEdvGspCxckiYWVWbNsHq\n1SMHSun16tXpWEoteymlx7x54+6izVaFxIHAZ4BDgelZ74iIZ49lwfVwSJhZQ0Wkqq9aAqXU3dsL\n8+fXtpdSet3mg/qtConfABcAF5JuY/p2YGJEnD+WBdfDIWFmbdfXN7S3UlTtlR8GtR9bedazGtN0\nTplWhcSyiDiq/JalpX5jWXA9HBJmNu5EpGqwWvZSnn4azj8fTj+9oUVoVQN/WyRNBO6T9B7gMWDm\nWBZqZrbTk9KpwTNnpr2EcaqWPYmjgbuAucD/BWYDfxcRNzW/eNvL4D0JM7M6taWBP0kC3hAR3xvL\ngutcpkPCzKxOjQiJwvO5JHVJ+qCkSyS9W9IESacCd5DuTmdmZju5ahfT/ZB04dx/Aq8EFgNbgPdF\nxK01LyAdz/g9sDIiTq4w/GLgBGAT8LaIWF5hHO9JmJnVqdkHrvePiMOzBX0DeBx4VkRsrnMZ7ye1\nKLvDuV2STsyWc4CkFwFfZejmRmZm1mbVLh8cKHVExADwaL0BIWkRqf2nbzDUrEe5U4BvZ8u4GZgr\naWE9yzAzs+aptidxuKTestfTy15HRNTSQthFwIdJZ0RVsg/wSNnrlcAi4Mka5m1mZk1WGBIRMaa2\neiW9BlgVEcsldVcbNb/oSiMtXbp0e3d3dzfd3dVmaWa26+np6aGnp6eh82zaPa4lfQZ4K9APTCPt\nTVwZEWeWjfM1oCcirsherwBeGhFP5ublA9dmZnVq6imwYxURH4+IxRGxH3A68B/lAZG5GjgTQNIx\nwDP5gDAzs/appVmORgkASWcDRMSlEXGNpBMl3QdsJDUeaGZmHaJp1U2N5OomM7P6dXR1k5mZjX8O\nCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkz\nMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr\n5JAwM7NCTQ0JSdMk3SzpVkl3SvrbCuN0S1onaXn2+JtmlsnMzGo3qZkzj4gtkv4sIjZJmgTcKOn4\niLgxN+r1EXFKM8tiZmb1a3p1U0RsyjqnABOBNRVGU7PLYWZm9Wt6SEiaIOlW4Enguoi4MzdKAMdK\nuk3SNZIObXaZzMysNk2tbgKIiEHgCElzgJ9L6o6InrJRlgGLsyqpE4CrgAPz81m6dOn27u7ubrq7\nu5tZbDOzcaenp4eenp6GzlMR0dAZVl2YdD6wOSK+UGWcB4HnR8Sasn7RynKame0MJBERY6rOb/bZ\nTQskzc26pwOvAJbnxlkoSVn30aTgqnTcwszMWqzZ1U17Ad+WNIEUSN+JiF9JOhsgIi4FTgPOkdQP\nbAJOb3KZzMysRi2tbhotVzeZmdWv46ubzMxsfHNImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVq+v0kzMxsR/398MwzsHo1rFkDS5bAXnu1u1Q7ckiY\nmY3B4CCsWze0sa/1ubcX5syB3XaD+fPh/PPhpJPa/W525FZgzcyACFi/vr4N/Zo1aW9g1qy0oZ8/\nf2ijP9Lz3LkwockV/o1oBdYhYWY7lQjYuLH6hr3SsLVrYfr0+jb0u+2WNvaTOrROxiFhZju1zZvr\nr8ZZsyZttOvd2M+bB1OmtPsdN5ZDwszGtcFBuPtuuPlmuOkmWLFi+AY/YscNei0b/WnT2v3OOoND\nwszGlTVrhgLhppvgd79L/+CPOSY9DjsMFiwY2uBPnw4a0yZu1+aQMLOO1d8Pt98+FAg33QSPPw4v\nfOFQKLzoRbDHHu0u6c7LIWFmHeOxx4bvJSxbBvvuOxQIxxwDhx4KEye2u6S7DoeEmbXFli0pBEqB\ncPPNsGHD8EB44QvTmT/WPg4JM2u6CHjwweHVRnfcAYcckqqLSqGw//4+ftBpHBJm1nC9vXDLLcND\nYfJkePGLhwLhqKNgxox2l9RG0tEhIWkacD0wFZgC/DgiPlZhvIuBE4BNwNsiYnmFcRwSZk0wOJhO\nOy0PhAcegCOOGF51tGhRu0tqo9GIkGjadYIRsUXSn0XEJkmTgBslHR8RN5bGkXQisH9EHCDpRcBX\ngWOaVSazXd3TTw8/uHzLLemU01IYvOtdcPjhO99FZTZ6Tb2YPCI2ZZ1TgInAmtwopwDfzsa9WdJc\nSQsj4slmlstsV9DXB3/84/C9hFWr4OijUyCce27q3n33dpfUOllTQ0LSBGAZ8BzgqxFxZ26UfYBH\nyl6vBBYBDgmzOj366PBAWL4c9tsvBUJ3N3z0o3DwwT4F1erT7D2JQeAISXOAn0vqjoie3Gj5+rKK\nBx+WLl26vbu7u5vu7u7GFdRsnNm8Gf7wh+FVR1u2DFUbLV2aTkGdPbvdJbVW6unpoaenp6HzbNnZ\nTZLOBzZHxBfK+n0N6ImIK7LXK4CX5qubfODadmURcP/9w/cS7rorNWFRfnB5v/18CqoN19EHriUt\nAPoj4hlJ04FXAJ/IjXY18B7gCknHAM/4eITt6tat2/EU1BkzhsLgjDPgyCNTu0ZmzdbMU2CfSzoo\nPSF7fCciPi/pbICIuDQb7x+AVwMbgbdHxLIK8/KehO10Nm1Kp5/eccfwx6pV6TqE8vaN9tmn3aW1\n8aijr5NoJIeEjWebN6fmsPNh8OijcMABqdqo/PHsZ3fuTWxsfHFImHWQLVsqh8HKlfCc5+wYBvvv\n7zCw5nJImLXBtm2Vw+Dhh9PB43wYHHBAatbCrNUcEmZNtG0b3HvvjmHw0EOwZEnlMPCVytZJHBJm\nDdDXB/fdt2MYPPBAuh9CPgwOPBCmTm13qc1G5pAwq0N/f7reIB8G992XGrDLh8FBB/leyTa+OSTM\nKhgYSHsB+TC4917Ya68dw+Dgg33Nge2cHBK2SxsYSDfDKYXAnXem57vvhoULdwyDQw7xPRBs1+KQ\nsF3C4GA6WJzfM7j77tSCaSkEDj10KAy6utpdarP2c0jYTqW0Z3DXXelRCoMVK2D+/Mp7BrNmtbvU\nZp3LIWHj0qZNcM89Q2GwYkV6vu8+2HPPtPE/+ODhewhuzdSsfg4J62hPPz08BErdTzyRrjYuhcEh\nh6THgQf6mIFZIzkkrO0GB9OVxpXCoK9vKADKw2DJEjdHYdYKDglrma1b0ymk+TC45x6YN69yGCxc\n6PsbmLViq0l9AAAJ+ElEQVSTQ8Ia7plndtwjuOsueOSR1C5RKQTKn33w2KwzOSRsVCJSM9WVwmDD\nhrThL98jOPjg1Iqp2yUyG18cElZVX19qhqLS8YKZM3esHjr44NQ8hauIzHYODgkD0r//UgiUh8GD\nD6aNfqUwmDev3aU2s2ZzSOxCItJtLfPVQ3fdBatXp9NH82FwwAFuoM5sV+aQ2Mls3pyOFaxcOfQo\nnVF0110wYULls4j23RcmTmx36c2s0zgkxokIWL9+aMNfHgTl3Rs3wt57pyqiRYtgn32GLjo75BBY\nsMDHC8ysdg6JDjA4mK4sLtrwl17D8I1/qbv8tUPAzBrJIdFk/f2pCYmiDf/KlfDYY6nF0fzGPx8E\nbnvIzFqt40NC0mLgMmAPIIB/jIiLc+N0Az8GHsh6XRkRn8qN0/CQ2LIlbeir7QE89VT6d1/pX3+p\ne599fMMaM+tM4yEk9gT2jIhbJXUBfwBeFxF3lY3TDZwXEadUmU9dIdHbW73qZ+XKdIygVP9fVP2z\n554weXLt77enp4fu7u7aJ2gTl7NxxkMZweVstPFSzkaERFObWYuIJ4Ansu4Nku4C9gbuyo1a05uI\nSKd7Fm34S4+BAVi8ePjG//DD4cQTh14vWJDOFmqk8fLDcTkbZzyUEVzORhsv5WyElrXFKWkJcCRw\nc25QAMdKug14FPhQRNyZn37//VMYTJ++47/+444bvgcwZ44PAJuZNUJLQiKravoB8P6I2JAbvAxY\nHBGbJJ0AXAUcmJ/HT3+aQsD3GzAza52mn90kaTLwb8BPI+JLNYz/IPD8iFhT1q/zT8EyM+tAHX1M\nQpKAfwLuLAoISQuBVRERko4mBdea8nHG+ibNzGx0ml3ddBzwFuCPkpZn/T4O7AsQEZcCpwHnSOoH\nNgGnN7lMZmZWo3FxMZ2ZmbVHg08CrZ+kV0taIeleSR+pMHyBpJ9JulXSf0l6W9Z/saTrJN2R9X9f\np5WxbPhEScsl/aRZZRxrOSXNlfQDSXdJulPSMR1azo9l3/ntkr4raWobyzlP0o8k3SbpZkmH1Tpt\nJ5SzlevQWMpZNrzp69EYv/NOWoeqlbO+dSgi2vYAJgL3AUuAycCtwCG5cZYCf5t1LwBWk6rJ9gSO\nyPp3AXfnp213GcuGnwdcDlzdiZ9l9vrbwDuy7knAnE4rZzbNA8DUbNj3gLPaWM7PA+dn3QcB19Y6\nbYeUsyXr0FjLWTa8qevRWMvYYetQ0Xde9zrU7j2Jo4H7IuKhiOgDrgBemxvncaDU8tFsYHVE9EfE\nExFxK6QL9UgX6O3dSWUEkLQIOBH4BjVeNNjqckqaA7wkIr4JkH2+6zqtnMB6oA+YIWkSMIN0bU27\nynkIcB1ARNwNLJG0R43Ttrucu7dwHRpTOaFl69Goy9iB61DRZ1n3OtTukNgHeKTs9cqsX7mvA4dJ\negy4DXh/fiYqvlCvE8p4EfBhYLAJZSs3lnLuBzwl6Z8lLZP0dUnNuiJl1OWMdNbbF4GHgceAZyLi\n2jaW8zbgzwGUzsx7FrCoxmk7oZzbNXkdakQ5W7EejaWMnbYOVSznaNahdodELUfNPw7cGhF7A0cA\nX5E0qzRQ1S/Ua2sZJb2GdHrvcpq7FwFj+ywnAUcBl0TEUcBG4KMdVs4uSc8BziXtMu8NdEl6cxvL\n+VlgrtKZe+8BlgMDNU7bKGMpJ9CSdQhGX87BFq5HY/ksO20dqljO0axDLWuWo8CjwOKy14tJqVju\nWODTABFxv9LFdgcBv1e6UO9K4F8i4qoOK+PBWf9TJJ0ITANmS7osIs7soHIelI23MiJuycb7Ac37\ngY+2nIeQ/q39NiJWA0j6YTbu5e0oZ0T0Au8ovc7KeT8wfaRpO6CcD2TdrViHxlrON9Ka9WgsZeyi\ng9ahKuU8iXrXoWYcWKnjAMwk0kq1BJhC5QMwFwIXZN0Lsw9jPukfxWXARZ1axtw4LwV+0qnlBG4A\nDsy6lwKf67RyAs8D/ou0ERbpQOFft7Gcc4ApWfc7gW/VOm2HlLMl69BYy5kbp2nr0VjL2GHrUNF3\nfkS961BTfxg1vuETSGdV3Ad8LOt3NnB21r0A+Ampju124Iys//Gk+slbSbtSy4FXd1IZK/y4m3Z2\n01jLSdoA35IN+yFNOjOjAeX8X8AdWf9vA5PbWM4XZ8NXkP45zqk2baeVs5Xr0Fg/z7J5NHU9GuN3\n3knrULVy1rUO+WI6MzMr1O4D12Zm1sEcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWHjUtao\n2o1Zc8evLet/laQ9C6ZZKmljqdG4rF/VZigknZc1q3ybpGsl7Vsw3kDWjPV/KTVxfp6kUTUhIenf\nJc0eeUyz5nNI2Hj1JuASUouY5wJIOhlYFhFPVJnuaeCDZa9HulBoGeme688jXZT0dwXjbYqIIyPi\nT4BXkC52umDEd1FBRJwUEetHM61ZozkkbLzaBswkteUzIGkiqbXYoo04pED4JvBGSXPzAyWdme0x\n3CrpMoCI6ImILdkoN5NrPbXiQiKeAt5FalitdLOcz0v6XTb/d2X995J0Q7YHcruk47L+D0man3Wf\nn91c5tfZDWI+mPXvkfTZ7IYyd0s6fuSPzKx+7W7gz2y0vps93kVqZuCvgcvKNuhFNpCC4lxS+zoA\nZHfu+t/AiyNijaR5Fab9S+CaWgoXEQ9m4bAH8DpSk8xHZ3cBu1HSL0hNOf8sIj4jaQKpbX/I9m4k\nvTAb53BSGz3LgN+XjTMxIl4kqbTX8opaymZWD4eEjUtZdcxrIN2qEfgYcKqkrwNzgS9GxE2VJgUu\nBm6V9IWy/i8Dvh+pvX0iYm35RJLeQmoK+gOjKO4rgedKOi17PRvYn9TOzzezlliviojbyhcJHJf1\n3wZs04637fxh9ryM1NibWcM5JGxncD7wKeAMUkucV5I2oK+uMK4iYp2k75JVB2WCgnsVSHo56R4X\nfxrpTmAjkvRsYCAiVmXHr98TEb+sMN5LSGH3LUkXRsR3qpQpX76t2XPpfgZmDedjEjauSToA2Dsi\nbiA1f1w6ED19hEkvJLWaWdq4Xgf8RdmxgNLzkcDXgJMj4ukay7R7Ns2Xs14/B96tdLtIJB0oaUZ2\nptRTEfEN4J9Id4YrCeA3wMmSpmY3BjqpluWbNZL/fdh49ynSv3yA/wdcRbrZy/kF4wdARKzObrhy\nbvb6DkmfBq6XNECqwnkH6UD4TOAH2R7Bf0fE6yrMd3p2F7DJQD/ZfRqyYd8gVQcty06LXQWcCnQD\nH5bUB/QCw26iExG/l3Q18EfgSVLTzkX3TXZzztYUbircrINJmhkRG5Xul3w98M6IuLXd5bJdh/ck\nzDrbP0o6lHSq77ccENZq3pMwM7NCPnBtZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZW6P8D\ngSQWTCaxBqwAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5861f70>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex2-pg616"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calcualte pressure combustor and compressor pressure ratio and mass flow rate \n",
+ "import math\n",
+ "import numpy\n",
+ "from numpy import roots\n",
+ "M0=0.\n",
+ "p0=0.1 ##in MPa\n",
+ "T0=15.+273.\n",
+ "pd=0.98\n",
+ "pc=25.\n",
+ "ec=0.9\n",
+ "Qr=42800000. ##in J/kg\n",
+ "pb=0.98\n",
+ "eb=0.99\n",
+ "Tt4=1500.+273.\n",
+ "et=0.85\n",
+ "em=0.995\n",
+ "mc2=73.\n",
+ "Nc2=6000. ##in rpm\n",
+ "Mz2=0.6\n",
+ "pn=0.97\n",
+ "p=1. ##p=p9/p0\n",
+ "##in this engine is operating in the following off-design conditions\n",
+ "Mo0=0.8\n",
+ "po0=33.\n",
+ "To0=-15.+273.\n",
+ "Tt4o=1375.+273.\n",
+ "pdo=0.995\n",
+ "po=1.\n",
+ "gm=1.4\n",
+ "\n",
+ "td=T0/Tt4\n",
+ "tcd=pc**((gm-1.)/(ec*gm))\n",
+ "tod=(To0*(1+(gm-1.)*Mo0**2./2.)/Tt4o)\n",
+ "tcod=1.+(td/tod)*(tcd-1.)\n",
+ "pcod=(tcod)**((ec*gm)/(gm-1.))\n",
+ "print\"%s %.4f %s\"%(\"(a)pressure ratio in combustor,O-D :\",pcod,\"\")\n",
+ "mratio=(pcod/pc)*(tod/td)**(1/2.)\n",
+ "mc2od=mc2*mratio\n",
+ "print\"%s %.4f %s\"%(\"(b)mc2,O-D (in kg/s) :\",mc2od,\"\")\n",
+ "Nc2r=(td/tod)**(1/2.)\n",
+ "Nc2od=Nc2r*Nc2\n",
+ "print\"%s %.4f %s\"%(\"(c)Nc2,O-D (in rpm):\",Nc2od,\"\")\n",
+ "pref=101.33 ##in kPa\n",
+ "pto0=po0*(1.+(gm-1.)/2.*Mo0**2.)**(gm/(gm-1.))\n",
+ "pto2=pdo*pto0\n",
+ "Tref=288.2\n",
+ "Tto2=To0*(1.+(gm-1.)/2.*Mo0**2.)\n",
+ "the2=Tto2/Tref\n",
+ "del2=pto2/pref\n",
+ "m2=mc2od*del2/(the2)**(1/2.)\n",
+ "\n",
+ "pol=([0.6*((1.+(gm-1.)/2.)/(1.+(gm-1.)/2.*0.6**2.))**3.,-(73./64.5)])\n",
+ "rr=numpy.roots(pol)\n",
+ "rr=0.4974\n",
+ "print\"%s %.4f %s\"% (\"(d)Mz2,O-D\",rr,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)pressure ratio in combustor,O-D : 21.1779 \n",
+ "(b)mc2,O-D (in kg/s) : 64.4778 \n",
+ "(c)Nc2,O-D (in rpm): 5754.4965 \n",
+ "(d)Mz2,O-D 0.4974 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg618"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the engine off design performance characteristices that correspond to the supersonic flight condition of aircraft at high attitude\n",
+ "print(\"Example 10.3\")\n",
+ "M0=0.\n",
+ "po=101.33 ##in kPa\n",
+ "T0=288.2\n",
+ "gmc=1.4\n",
+ "Cpc=1004.\n",
+ "pd=0.95\n",
+ "pc=20.\n",
+ "ec=0.9\n",
+ "mc2=33.\n",
+ "Nc2=7120.\n",
+ "Mz2=0.6\n",
+ "Qr=428000000.\n",
+ "pb=0.98\n",
+ "eb=0.97\n",
+ "Tt4=1850.\n",
+ "gmt=1.33\n",
+ "Cpt=1156.\n",
+ "et=0.8\n",
+ "em=0.995\n",
+ "QrAB=4280000.\n",
+ "pAB=0.95\n",
+ "eAB=0.98\n",
+ "Tt7=2450.\n",
+ "pAB=1.3\n",
+ "CpcAB=1243.\n",
+ "pn=0.93\n",
+ "p=1. ##p=p9/p0\n",
+ "Mo0=2.\n",
+ "po0=20.\n",
+ "To0=223.\n",
+ "gm0=1.4\n",
+ "Cpc0=1004.\n",
+ "pdo=0.8 \n",
+ "ec0=0.9\n",
+ "Qr=42800000.\n",
+ "pb0=0.98\n",
+ "ebo=0.97\n",
+ "Tt4o=1850.\n",
+ "gmto=1.33\n",
+ "cpto=1156.\n",
+ "eto=0.8\n",
+ "emo=0.995\n",
+ "QrABo=42800000.\n",
+ "pABo=0.95\n",
+ "eab=0.98\n",
+ "Tt7o=2450.\n",
+ "gmABo=1.3\n",
+ "Cpco=1243.\n",
+ "pno=0.93\n",
+ "po=1.\n",
+ "a0=276.4\n",
+ "\n",
+ "Tt2=T0\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "Tt3=tc*Tt2\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "tt=1.-(1./((1.+f)*em))*(Cpc*Tt2/(Cpt*Tt4))*(tc-1.)\n",
+ "print\"%s %.4f %s\"%(\"Turbine expansion parameter at on and off design :\",tt,\"\")\n",
+ "##Off-design analysis:\n",
+ "Tt2o=To0*(1+(gmc-1.)/2.*(Mo0**2.))\n",
+ "tcOD=1+(1.036)*0.995*(1156.*1850./(1004.*401.4))*(1.-0.7915)\n",
+ "pcOD=tcOD**((gmc)*ec/((gmc-1.)))\n",
+ "print\"%s %.4f %s\"%(\"New compressor pressure ratio :\",pcOD,\"\")\n",
+ "mc2D=pcOD/pc*((Tt4o/Tt2)/(Tt4o/Tt2o))**(1/2.)\n",
+ "mc2OD=mc2*mc2D\n",
+ "print\"%s %.4f %s\"%(\"Off-line mc2 rate in \",mc2OD,\"Kg/s :\")\n",
+ "Nc2r=((Tt4o/Tt2o)/(Tt4/Tt2))**(1/2.)\n",
+ "Nc2OD=Nc2r*Nc2\n",
+ "print\"%s %.4f %s\"%(\"Off-design Nc2,O-D in\",Nc2OD, \"rpm:\")\n",
+ "pref=101.33 ##in kPa\n",
+ "pt0=po0*(1.+(gmc-1.)/2.*Mo0**2.)**((gmc)/(gmc-1.))\n",
+ "pt2=pdo*pt0\n",
+ "del2=pt2/pref\n",
+ "Tref=288.2\n",
+ "the2=Tt2o/Tref\n",
+ "m2=mc2OD*del2/(the2)**(1/2.)\n",
+ "print\"%s %.4f %s\"%(\"Off-design mass flow in\",m2, \"kg/s\")\n",
+ "Tt3=859.2\n",
+ "Tt4=1850.\n",
+ "fOD=0.03305\n",
+ "tcr=(1.+fOD)/(1.+f)\n",
+ "pt5=413.7## kPa\n",
+ "pt7=393.04\n",
+ "fAB=0.0367\n",
+ "pt9=365.52\n",
+ "M9=2.524\n",
+ "T9=1253.\n",
+ "V9=1725.\n",
+ "\n",
+ "ndst=(1.+f+fAB)*V9/a0-M9\n",
+ "print\"%s %.4f %s\"%(\"Nondimensional specific thrust :\",ndst,\"\")\n",
+ "TSFC=55.94 ##in mg/s/N\n",
+ "print\"%s %.4f %s\"%(\"Thrust specific fuel consumption(TSFC) in\",TSFC,\" mg/s/N :\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 10.3\n",
+ "Turbine expansion parameter at on and off design : 0.7914 \n",
+ "New compressor pressure ratio : 10.9937 \n",
+ "Off-line mc2 rate in 21.4076 Kg/s :\n",
+ "Off-design Nc2,O-D in 6033.0691 rpm:\n",
+ "Off-design mass flow in 22.4111 kg/s\n",
+ "Nondimensional specific thrust : 4.1662 \n",
+ "Thrust specific fuel consumption(TSFC) in 55.9400 mg/s/N :\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter10_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter10_1.ipynb
new file mode 100755
index 00000000..ad4d35a1
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter10_1.ipynb
@@ -0,0 +1,410 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:56675fce6e28a80d18cc84b5c529efbcf0c85857a8636a54da4b6601ebf71a93"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter10-Aircraft Engine Component Matching and\n",
+ "Off-Design Analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg611"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 10.1\"\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "#calculate and draw graph the gas generator pumping charcteristics as a fucntion of Nc2/Nc2,d\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "cmap=numpy.matrix([[14.1,6.50,20.0,0.82],[13.5,5.88,18.1,0.84],[13,5.32,16.4,0.83],[12.5,4.81,14.8,0.83],[12,4.36,13.4,0.83],[11.5,4,12.2,0.84]])\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "print cmap,\"Compressor map data in table:\"\n",
+ "Cpc=1004.\n",
+ "Cpt=1156.\n",
+ "f=0.03 #fuel-to-air ratio\n",
+ "em=0.995 #efficiency\n",
+ "T=6. #T=Tt4/Tt2\n",
+ "pb=0.95 #burner pressure ratio\n",
+ "gmt=1.33 #gamma turbine\n",
+ "gmc=1.4\n",
+ "i=5\n",
+ "b=1\n",
+ "g1=numpy.zeros(6)\n",
+ "gc1=0;\n",
+ "g2=numpy.zeros(6)\n",
+ "gc2=0\n",
+ "g3=numpy.zeros(6)\n",
+ "gc3=0\n",
+ "g4=numpy.zeros(6)\n",
+ "gc4=0\n",
+ "z0=numpy.linspace(0.82,0.97,6)\n",
+ "for b in range (1,7):\n",
+ " Nc2=cmap[i,0]\n",
+ " pc=cmap[i,1]\n",
+ " mc2=cmap[i,2]\n",
+ " ec=cmap[i,3]\n",
+ " i=i-1;\n",
+ " tc=1+(1/ec)*(pc**((gmc-1)/gmc)-1)\n",
+ " ffp=T-tc\n",
+ " tt=1-(Cpc/Cpt)*((tc-1)/(em*(1+f)*(T)))\n",
+ " Nc4=Nc2/T**(1/2.)\n",
+ " mc4=mc2*((1+f)*(T)**(1./2.))/(pb*pc)\n",
+ " pt=(1-(1-tt)/ec)**(gmt/(gmt-1)) #Assuming et=ec i.e. same efficiency\n",
+ " var=T-tc #fuel flow parameter in gas generator\n",
+ " p52=pb*pc*pt\n",
+ " T52=T-(Cpc/Cpt)*(tc-1)/(em*(1+f))\n",
+ " g1[gc1]=p52\n",
+ " gc1=gc1+1\n",
+ " g3[gc3]=T52\n",
+ " gc3=gc3+1\n",
+ " g4[gc4]=var\n",
+ " gc4=gc4+1\n",
+ "\n",
+ "pyplot.plot(z0,g1)\n",
+ "pyplot.xlabel(\"% Nc2 Design\")\n",
+ "pyplot.ylabel(\"Ratios\")\n",
+ "pyplot.title(\"GAS GENERATOR PUMPING CHARACTERISTCS\")\n",
+ "pyplot.plot(z0,g3)\n",
+ "pyplot.plot(z0,g4)\n",
+ "pyplot.legend(\"pt5/pt2\",\"Tt5/Tt2\",\"Fuel flow prameter in gas generator\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 10.1\n",
+ "[[ 14.1 6.5 20. 0.82]\n",
+ " [ 13.5 5.88 18.1 0.84]\n",
+ " [ 13. 5.32 16.4 0.83]\n",
+ " [ 12.5 4.81 14.8 0.83]\n",
+ " [ 12. 4.36 13.4 0.83]\n",
+ " [ 11.5 4. 12.2 0.84]]"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Compressor map data in table:\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "<matplotlib.legend.Legend at 0x5a1d330>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8JGV97/HPd/blzMrAsMzgoOxEBFREwHjidQMEJRJF\nVFAT5WJcEPW63HAZvWo0KhiMKNEYxeBFI4qY4IbhgGhAdAYkwLATGLaBmWHmzH6W3/3jqZ7Tp6ar\nT/c5vZ2Z7/v16ldX1/r0UvXteqrqKUUEZmZmlUxodwHMzKxzOSTMzKyQQ8LMzAo5JMzMrJBDwszM\nCjkkzMyskEPCzMwKOSTqIOl0STdL2iDpSUk3STqnwnhLJQ1KOjrXf4qkL0p6RFKvpAclXTTCMt8j\n6TZJGyU9Luk6SW8sG94jaXM2v9Ljx9mw7qwcX8nN80ZJZ2Xdb5M0kJt+vaQ9s+EPSdqU9X9C0nck\nzc7Nryv7TK4p63dH2fz6c2X8aDbOIkmXS3o6m/5mSSfl5j2YDeuV9KikiyVNqvJ55cv7z5Jmlg37\nH7nx3ybp11n3kmx5y3LjLJC0TdKDNS6nR9Jf1vodZK/3kvT17D32Sro/m+dBVd7rbElfkvTf2TT3\nSbpI0m61vN9c/x5JayRNyfX/lqSt2fzXSPqVpMNqnT4bdoak32fzeEzSNZKOk/TVst/E1uwzLr3+\nd0nPyj673tzjL2opW/69Sjpe0m8lPSNpdfYdvEDSx8vmvTn7vZZe355N+ypJNyitG6uy93tyNqzu\n9Xo8cUjUSNIHgS8BnwMWRsRC4H8Cx5WvGJIEnAncnj2X+xhwFPDCiJgFdAN/qLLMLwPvB84D5gN7\nA38DvLpstAD+OiJmlT1eWzZ8I/AWSc/KTVN+FeVvctPPjognysZ9TVbe5wHPzcpQ7vXAw0C3pIUA\nEXFYaX7Ar3Nl/Kyk+cCNwBbgUGA34CLgu5Jen5v/4dl8/hT4c+BdRZ9ZrrxHAS8oK2/+fReZntsQ\nngE8kJu2nuVU/Q6yjfpvgWnA8WXzvB54RaUCZr+5XwGHAK/Kpnkx8DTwwnrer6QlwNHAKuCU3OAA\nPpfNf2/S9/zPtU4v6TzS9/opYA9gMfAV4JSIOKfsN/IZ4Iqy38hJgLLZzMn9Pv+11rKVlWM28G/A\n3wPzgH2ATwBbI+IzZeX4n8Bvy5b1XEmnAd8HvgXsExF7AP8HeE02+7rW6/HGIVEDSXNIP6hzIuKH\nEbERICJujYi3RMS2stFfAswmbdxPlzS5bNgLgKtKG+CI+O+I+JeCZR4InAO8MSJ+FRFbI/lNRLy9\njuI/Q/pxX1DtLdYyo4h4EvgFkP8neRbwDeA3wFtqXMYHgPUR8ZcRsSp7f1cAnwa+WLD8+7NlHFpj\neR8DflahvCP5Duk9lbwVuIyCz6mG5Yz0HXwAeCYi3hoRD2bzXBcR34qIfyiY5kzSBvfUiFiRTfNU\nRHw6In5W+M4qh8aZwLXs+L6HTxixBfhXdnyfFacvW2/eHRFXRcTmiBiIiH+PiI/k5iFq/B3WWbaS\nA9No8b1sPdoSEb+MiNurlSP703ch8MmI+GZE9GbLuyEizs5Gq3m9Ho8cErV5MTAV+HEN454F/Cgi\neoDNwMllw24CzpN0jqTnZj/AIi8DHo6IZVXGKRlp5foM8PoseEZDkKqHSHsxN28fkP4d/ynpn9b3\n2XHvqSS/cXoFcGWF8f4V2FfSARWWfzAphH9XY3kXAycAy0cYP+9yUsBL0qFAF2XveZTLqfYdvBz4\nUZ1lfDnw04jYNMJ4+d9Gpd/KmcD3SN/fqyTtUWkapeq0N7HjZ5Gffves/4tJe0f1vre8ar/vkcpW\ncg8wkFVRvVrSvBqXfRCwCPhBlXHqWa/HHYdEbRYAT0fEYKlHVre5Vqle+iVZvxnAaaQNHaSNYPlG\n829J1VVvBm4BVkoq2qguAJ4s7yFpZbbMzdmGCdJKcnHWv/T4RPl02R7A14BPFizrmNz095YvFrhK\n0nrS7vz9pKqDkrcCv4uIlcAPgUMlHVGwnHK7AY9X6F/qt6Cs3zJJG4A7gR9ExGVV5lsq71pSNVcP\naQNdj5XA3aQgO5O0FzGm5YzwHewGlKr3kHRK9j2sl/TzglnOp/LnV7GMpQepqmd7YEs6nlT1cnVE\n3Ev6jM/IzeND2bTrgWOBN4ww/ZvL3tew9WaUns79PkvHaaqWrVxErAeOJ733rwOrJP24QiDm7ZY9\nV/us61mvxx2HRG1WAwskbf+8IuLYiJiXDSv9czgV6CPVFUMKixMkLcimGYyISyLieGAOqWrlm9k/\n5ErL3Ku8R0QsIm08p5YtM4D3RsS8skelao2/I/3LO7zCsJty05f/iw/gtRExm1TX+jLS7nXJmdn7\nJCJWkzaWhVUWZZ4m1SPn7VU2vOTIiOgC3gicmavbzyuVd15ELImI90TE1mxYPzA5N/5k0neWn8dl\nwNuB00nVKPl/h9WWU6ToO1hN2WcREVdnv60PADscCK40TYHyMs7L5vnu3Hs5C/hFqRqF9F2elZvH\n57NplwBbGf7Hp9r0O6w3o7Rb7vd5d41lGyYiVkTE2yNiMfAnpM/vSyMse3X2vFfRCHWu1+OOQ6I2\n/0n6Ab5uhPHOAmaR/kk8TtqTmMzwf2YAZHXwlwBrSQcf8/4DWCTp+bn+o9qVzTbgX2L4XkC987gB\n+DLpXxOSjgX2B/5G6cyrx0lVDGdImjjC7K4F/rzCrvkbSNVs9+YnyA5Y/huwdJRv4WFgv1y//YCH\nKoz7Q+BE4P5sL2nMqnwHvwJeV+GzqPZdX0sKnBl1FqO8vn066fN+Wdn390HgebkgU1b+R4D3AedL\nmlXD9KX15tQayjXa5qgrlm3EhaWg+TYpLKq5G3iEVEMwohrW63HHIVGDiHiGdADuEkmvz1aQCVm1\nSum0x31I/7JPIp0FVHp8juzfjaRzJb1U0nRJk5ROgeyiQl129iO+FLhC0suzaSaSdqnzag2OC0kb\n8bH8eL8EHC3pRWT/IrP5ld7vnwDTSXX01cp4Eelf1z9JWihpmqQ3AR8HPlxl+Z8F3pQdH6nX94Bz\nJR2UHW94AWlv4Yr8iNnJCX8G/NUollNNpe/gQtIZN9+R9OysbLOAIyjeeH6HtPG6Mns/EyTtpnQ6\nZ/6zL/I60t5V+fd3CKn6rPSPfNj3FhHXAveR9kiqTh8R60hnAX1F0mslzZA0WdIJkj6XK8uIxx1G\n6p8r2/ARpYMlnZetp6XjSG8iBVmhiAjS2YXnK51SOzv7rI+XdGk2r5rX63EpIvyo8UHaI7iZdErj\nKtIBq78i7S18FLilwjR7k/5NHQq8E/g96WyXtdn0J46wzPcCfwQ2AY+RqnNOA5QNv450gLy37HFL\nNqyb9K+8fH4fBgZIKzGkDX1/bvpe4PnZ8AeBl+XmcQnwU9Ku+EkVyvwV4Ptlr68D3lFhvMXAd7P5\nbMg+25Nz4wwAz871uwa4sODz2qG8ZcMEfIR0EHMdcAfw9rLhS7LlTagw7cuBB2pczvb3W8t3kPXb\ni3SG2GPZ538f6XTOg6r8NmaTwvbhsmm+AMyr8t2dBdyQdf+UVF2Tn+9fZOWYmJXhk7nhb8iG/8cI\n008oW29uyb7jx4GfAMfkprkAuCzXbwkwWOG3eW42vKhsj5Kq6crf696kPwkrs3KsBL4KdBV9Prn+\nrwJuyJa/KnvvJ2TD6l6vx9OjtKFpGklzST/+w0j/it4RETflxrmY9M9zE/C2iNg5EtjMbJwrvHK1\ngf4euCYiTlO6UnZm+UBJJwL7R8QBWRXGV4FjWlAuMzMbQVOPSShdTPOSiPgmQET0R6qnLHcK6QAS\nEXEzMFfZVbtmZtZezT5wvR/wlFIbNMuU2qbJn42xD+kAXMlK0sUrZmbWZs0OiUmkNk0uiYijSAd8\nP1phvErnoJuZWZs1+5jESmBlRNySvf4BO4bEo6SzXEoWZf22k+TQMDMbhYgYUzMhTd2TiNTg1SMa\naq/m5aTTDstdzdB1BMeQGjp7MjdO208Dq+VxwQUXtL0MLqfL6HK6nKVHI7Ti7Kb3ApcrNW18P/AO\nSWcDRMSlEXGNpBMl3UeqjqqnhVMzM2uipodERNzGUPv2JZfmxnlPs8thZmb1c7McDdTd3d3uItTE\n5Wyc8VBGcDkbbbyUsxGafsV1I0iK8VBOM7NOIokY44HrVhyTMDOzUdixYeBizfoj7ZAwM+tgtWz8\n6wmTevmYhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFfJ1EmZmHayZ10DUwiFh\nZtahOqE5Ilc3mZlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGHhJmZFXJImJlZIYeEmZkVckiYmVkh\nh4SZmRVqerMckh4C1gMDQF9EHJ0b3g38GHgg63VlRHyq2eUyM7ORtaLtpgC6I2JNlXGuj4hTWlAW\nMzOrQ6uqm0ZqxrC9zRyamVlFrdqTuFbSAHBpRHy9wvBjJd0GPAp8KCLuzM/kfT99H11Tupg5eSYz\np8ys2N01pYuZU2Zu7542aVrbm9k1MxvPWhESx0XE45J2B34paUVE/Lps+DJgcURsknQCcBVwYH4m\n91x5D30DfWwb2MYeh+3BvEPmsWHbBjb2bUzP2zbu0L1tYBszJs+oKVBGHJ7rnjTBraybWWfp6emh\np6enofNUK9srl3QBsCEivlhlnAeB55cfw5AUoyln/2A/m/o2FYZIqbsUNsO6Rxg+acKk2gKlhsAp\n754+abr3fsysISQREWPaoDT177CkGcDEiOiVNBN4JfCJ3DgLgVUREZKOJgVXtYPcNZs0YRKzp85m\n9tTZjZjddhHB1oGt1UOmrHvDtg2s2rhqKHgqDM/v/ZQHRz5suiYX9K/wunwvaYJ8xrOZ1afZdSYL\ngR9l/4wnAZdHxC8knQ0QEZcCpwHnSOoHNgGnN7lMYyaJaZOmMW3SNBbMWNDQeZf2fiqFSKXXT258\nkvvX3j/ieJv6NjFt0rSqgVJp76eW1656M9t5tbS6abRGW91kQwZjkM19m0cMk8LXVcabOGHisPBo\nRPDMnDyTqZOmtvtjMxvXGlHd5JCwMSlVvdUdOts2sqGveLwN2zYAbA+d/GPW1Fl0Ta48bPvwCv2n\nTpzqYz62y3BI2E5t28A2Nm7bSO+23u3BUf7o3Vqhf1+VYds2MBADhcHSNaWLWVMqh0u1YT7V2jqV\nQ8KsTn0DfRXDY8O2DcVhVNC/FEb9g/1Vg2fE8Kmw1zNt0jSfaGBj5pAw6wB9A33bq8uq7uXUEUZb\n+7cybdI0Zk6ZyYzJM7af8ba9O+s/rF+F4dX6u+pt5+eQMNtJlZ9osKlv0/Yz3rZ319J/hHH6B/vr\nC5g6Q2jm5JlMnji53R/lLs0hYWajVjrdejQhVGt4SaorhLqmdDFv+jzmT5/PvGnzmDd93rBnh059\nHBJm1rEigr7BvroCqHdrL2u3rGXtlrWs2byGtZtT99rNa3lmyzNMnzx9h/CYP23+DmGSD5q50+bu\nktfzOCTMbJcREfRu690hPErPazav2R4w+f7rt65nxuQZKTjygTJtXsX+pX5zps5h4oSJ7X77o+KQ\nMDOrwWAMsn7r+sqhkgucfP/erb3bq8F2CJQKoVLeb860OW09S80hYWbWZAODA6zfur56qJT65YZv\n2LaB2VNnV95LyVWPHb3P0ew7Z9+Glr3jG/gzMxvvJk6YmDbm0+fVPW3/YD/rtqwrrBp7auNT3LP6\nHtZuWcvsqbMbHhKN4D0JM7OdVCP2JHxJp5mZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVqekhIekjSHyUtl/S7gnEulnSvpNskHdnsMpmZWW1a\n0QpsAN0RsabSQEknAvtHxAGSXgR8FTimBeUyM7MRtKq6qVorhKcA3waIiJuBuZIWtqRUZmZWVStC\nIoBrJf1e0jsrDN8HeKTs9UpgUQvKZWZmI2hFddNxEfG4pN2BX0paERG/zo2T39PY4eYRS5cu3d7d\n3d1Nd3d3o8tpZjau9fT00NPT09B5tvSmQ5IuADZExBfL+n0N6ImIK7LXK4CXRsSTZeP4pkNmZnXq\n+JsOSZohaVbWPRN4JXB7brSrgTOzcY4BnikPCDMza59mVzctBH4kqbSsyyPiF5LOBoiISyPiGkkn\nSroP2Ai8vcllMjOzGvke12ZmO6mOr24yM7PxzSFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwS\nZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZm\nVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWFmZoUcEmZmVqjpISFpoqTlkn5SYVi3pHXZ8OWS/qbZ\n5TEzs9pNasEy3g/cCcwqGH59RJzSgnKYmVmdmronIWkRcCLwDUBFozWzDGZmNnrNrm66CPgwMFgw\nPIBjJd0m6RpJhza5PGZmVoemVTdJeg2wKiKWS+ouGG0ZsDgiNkk6AbgKOLDSiEuXLt3e3d3dTXd3\n0SzNzHZNPT099PT0NHSeioiGznD7jKXPAG8F+oFpwGzgyog4s8o0DwLPj4g1uf7RrHKame2sJBER\nY6rSryskJM0HFkXEH+taiPRS4EMRcXKu/0LS3kZIOhr4fkQsqTC9Q8LMrE6NCIkRq5skXQ+cnI37\nB+ApSb+JiA/UuazI5nc2QERcCpwGnCOpH9gEnF7nPM3MrIlG3JOQdGtEHCHpr0jHDy6QdHtEPLc1\nRcz2JO68E2bPhlmzoKsLJvg6QDOzalqyJwFMlLQX8AagdLFb6+t+Tj0Venth/XrYtAlmzEiBUQqO\n/HOtw7q6YOLElr8dM7PxoJaQ+CTwc+A3EfE7Sc8B7m1usSpYsWKoe3AQNmwYCo3e3uHd5c+PPVY8\nrLcXNm6E6dMbEzizZjlwzGyn0rSzmxqpqQeuBwdTUFQKkGrhUmmcDRtg2rTGBc6kVlwQb2Y7q5ac\n3SRpMXAxcHzW6wbg/RGxciwLrse4ObtpcDBVhdUSMiMN6+2FqVMrB0qt/UrPrlIz2yW1KiSuBS4H\n/iXr9WbgzRHxirEsuB7jJiQaKWJoDycfJNX2bir1K1WpjSVoSt0zZ/qkAbNxolUhcVtEPG+kfs20\nS4ZEI5Wq1GoNlWrDNm9OQTGWoCk9z5gBctNdZs3SqrObVkt6K/BdUmN8pwNPj2Wh1mITJgwd5xir\ngYF07GWkcFmzBh56qHrwbNtW/TjN7NkwZ87I3bNmee/GrElq2ZNYAnwZOCbr9VvgvRHxcFNLNrwM\n3pPYGfX3D69Oy4dJ+WPduuLujRuH9m5qCZVSd77fzJnes7GdSsub5WgXh4RVVTolulqQ1NK9eXPa\nK6knaCp1T5/usLGO0NSQkPSRiPicpC9XGBwR8b6xLLgeDglriYGBtCcz1rDZtm30AVPq7uryMRsb\ns2Yfk7gze/4Dw6+wFu244tqs2SZOhLlz02Ms+vpqC5snnigeZ8MG2LIlVYF1dQ1/lFoKqKV/vp+D\nx+pUyzGJN0TE90fq10zek7Bd0sBAOt6yYcPwR+nCzdH0KwqeWkPGwTOutOoU2OURceRI/ZrJIWHW\nIJWCZyyh09s7FDy1hky18JkzB+bN88WfDdLU6qbsTnEnAvtIupihe1HPAvrGslAza5OJE4eOezRK\nPniqBcy6dfDoo8XjrV2bqtvmzoUFC2D33dNz6VH0uqvLezNNUu3A9fOAI0kN/J3PUEisB66LiLUt\nKSHekzDbpfT3p+tsnn566PHUU8Wvn3oqTTNSqOSHTZnS7nfadK2qbpoSEdvGspCxckiYWVWbNsHq\n1SMHSun16tXpWEoteymlx7x54+6izVaFxIHAZ4BDgelZ74iIZ49lwfVwSJhZQ0Wkqq9aAqXU3dsL\n8+fXtpdSet3mg/qtConfABcAF5JuY/p2YGJEnD+WBdfDIWFmbdfXN7S3UlTtlR8GtR9bedazGtN0\nTplWhcSyiDiq/JalpX5jWXA9HBJmNu5EpGqwWvZSnn4azj8fTj+9oUVoVQN/WyRNBO6T9B7gMWDm\nWBZqZrbTk9KpwTNnpr2EcaqWPYmjgbuAucD/BWYDfxcRNzW/eNvL4D0JM7M6taWBP0kC3hAR3xvL\ngutcpkPCzKxOjQiJwvO5JHVJ+qCkSyS9W9IESacCd5DuTmdmZju5ahfT/ZB04dx/Aq8EFgNbgPdF\nxK01LyAdz/g9sDIiTq4w/GLgBGAT8LaIWF5hHO9JmJnVqdkHrvePiMOzBX0DeBx4VkRsrnMZ7ye1\nKLvDuV2STsyWc4CkFwFfZejmRmZm1mbVLh8cKHVExADwaL0BIWkRqf2nbzDUrEe5U4BvZ8u4GZgr\naWE9yzAzs+aptidxuKTestfTy15HRNTSQthFwIdJZ0RVsg/wSNnrlcAi4Mka5m1mZk1WGBIRMaa2\neiW9BlgVEcsldVcbNb/oSiMtXbp0e3d3dzfd3dVmaWa26+np6aGnp6eh82zaPa4lfQZ4K9APTCPt\nTVwZEWeWjfM1oCcirsherwBeGhFP5ublA9dmZnVq6imwYxURH4+IxRGxH3A68B/lAZG5GjgTQNIx\nwDP5gDAzs/appVmORgkASWcDRMSlEXGNpBMl3QdsJDUeaGZmHaJp1U2N5OomM7P6dXR1k5mZjX8O\nCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkz\nMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr5JAwM7NCDgkzMyvkkDAzs0IOCTMzK+SQMDOzQg4JMzMr\n5JAwM7NCTQ0JSdMk3SzpVkl3SvrbCuN0S1onaXn2+JtmlsnMzGo3qZkzj4gtkv4sIjZJmgTcKOn4\niLgxN+r1EXFKM8tiZmb1a3p1U0RsyjqnABOBNRVGU7PLYWZm9Wt6SEiaIOlW4Enguoi4MzdKAMdK\nuk3SNZIObXaZzMysNk2tbgKIiEHgCElzgJ9L6o6InrJRlgGLsyqpE4CrgAPz81m6dOn27u7ubrq7\nu5tZbDOzcaenp4eenp6GzlMR0dAZVl2YdD6wOSK+UGWcB4HnR8Sasn7RynKame0MJBERY6rOb/bZ\nTQskzc26pwOvAJbnxlkoSVn30aTgqnTcwszMWqzZ1U17Ad+WNIEUSN+JiF9JOhsgIi4FTgPOkdQP\nbAJOb3KZzMysRi2tbhotVzeZmdWv46ubzMxsfHNImJlZIYeEmZkVckiYmVkhh4SZmRVySJiZWSGH\nhJmZFXJImJlZIYeEmZkVckiYmVkhh4SZmRVq+v0kzMxsR/398MwzsHo1rFkDS5bAXnu1u1Q7ckiY\nmY3B4CCsWze0sa/1ubcX5syB3XaD+fPh/PPhpJPa/W525FZgzcyACFi/vr4N/Zo1aW9g1qy0oZ8/\nf2ijP9Lz3LkwockV/o1oBdYhYWY7lQjYuLH6hr3SsLVrYfr0+jb0u+2WNvaTOrROxiFhZju1zZvr\nr8ZZsyZttOvd2M+bB1OmtPsdN5ZDwszGtcFBuPtuuPlmuOkmWLFi+AY/YscNei0b/WnT2v3OOoND\nwszGlTVrhgLhppvgd79L/+CPOSY9DjsMFiwY2uBPnw4a0yZu1+aQMLOO1d8Pt98+FAg33QSPPw4v\nfOFQKLzoRbDHHu0u6c7LIWFmHeOxx4bvJSxbBvvuOxQIxxwDhx4KEye2u6S7DoeEmbXFli0pBEqB\ncPPNsGHD8EB44QvTmT/WPg4JM2u6CHjwweHVRnfcAYcckqqLSqGw//4+ftBpHBJm1nC9vXDLLcND\nYfJkePGLhwLhqKNgxox2l9RG0tEhIWkacD0wFZgC/DgiPlZhvIuBE4BNwNsiYnmFcRwSZk0wOJhO\nOy0PhAcegCOOGF51tGhRu0tqo9GIkGjadYIRsUXSn0XEJkmTgBslHR8RN5bGkXQisH9EHCDpRcBX\ngWOaVSazXd3TTw8/uHzLLemU01IYvOtdcPjhO99FZTZ6Tb2YPCI2ZZ1TgInAmtwopwDfzsa9WdJc\nSQsj4slmlstsV9DXB3/84/C9hFWr4OijUyCce27q3n33dpfUOllTQ0LSBGAZ8BzgqxFxZ26UfYBH\nyl6vBBYBDgmzOj366PBAWL4c9tsvBUJ3N3z0o3DwwT4F1erT7D2JQeAISXOAn0vqjoie3Gj5+rKK\nBx+WLl26vbu7u5vu7u7GFdRsnNm8Gf7wh+FVR1u2DFUbLV2aTkGdPbvdJbVW6unpoaenp6HzbNnZ\nTZLOBzZHxBfK+n0N6ImIK7LXK4CX5qubfODadmURcP/9w/cS7rorNWFRfnB5v/18CqoN19EHriUt\nAPoj4hlJ04FXAJ/IjXY18B7gCknHAM/4eITt6tat2/EU1BkzhsLgjDPgyCNTu0ZmzdbMU2CfSzoo\nPSF7fCciPi/pbICIuDQb7x+AVwMbgbdHxLIK8/KehO10Nm1Kp5/eccfwx6pV6TqE8vaN9tmn3aW1\n8aijr5NoJIeEjWebN6fmsPNh8OijcMABqdqo/PHsZ3fuTWxsfHFImHWQLVsqh8HKlfCc5+wYBvvv\n7zCw5nJImLXBtm2Vw+Dhh9PB43wYHHBAatbCrNUcEmZNtG0b3HvvjmHw0EOwZEnlMPCVytZJHBJm\nDdDXB/fdt2MYPPBAuh9CPgwOPBCmTm13qc1G5pAwq0N/f7reIB8G992XGrDLh8FBB/leyTa+OSTM\nKhgYSHsB+TC4917Ya68dw+Dgg33Nge2cHBK2SxsYSDfDKYXAnXem57vvhoULdwyDQw7xPRBs1+KQ\nsF3C4GA6WJzfM7j77tSCaSkEDj10KAy6utpdarP2c0jYTqW0Z3DXXelRCoMVK2D+/Mp7BrNmtbvU\nZp3LIWHj0qZNcM89Q2GwYkV6vu8+2HPPtPE/+ODhewhuzdSsfg4J62hPPz08BErdTzyRrjYuhcEh\nh6THgQf6mIFZIzkkrO0GB9OVxpXCoK9vKADKw2DJEjdHYdYKDglrma1b0ymk+TC45x6YN69yGCxc\n6PsbmLViq0l9AAAJ+ElEQVSTQ8Ia7plndtwjuOsueOSR1C5RKQTKn33w2KwzOSRsVCJSM9WVwmDD\nhrThL98jOPjg1Iqp2yUyG18cElZVX19qhqLS8YKZM3esHjr44NQ8hauIzHYODgkD0r//UgiUh8GD\nD6aNfqUwmDev3aU2s2ZzSOxCItJtLfPVQ3fdBatXp9NH82FwwAFuoM5sV+aQ2Mls3pyOFaxcOfQo\nnVF0110wYULls4j23RcmTmx36c2s0zgkxokIWL9+aMNfHgTl3Rs3wt57pyqiRYtgn32GLjo75BBY\nsMDHC8ysdg6JDjA4mK4sLtrwl17D8I1/qbv8tUPAzBrJIdFk/f2pCYmiDf/KlfDYY6nF0fzGPx8E\nbnvIzFqt40NC0mLgMmAPIIB/jIiLc+N0Az8GHsh6XRkRn8qN0/CQ2LIlbeir7QE89VT6d1/pX3+p\ne599fMMaM+tM4yEk9gT2jIhbJXUBfwBeFxF3lY3TDZwXEadUmU9dIdHbW73qZ+XKdIygVP9fVP2z\n554weXLt77enp4fu7u7aJ2gTl7NxxkMZweVstPFSzkaERFObWYuIJ4Ansu4Nku4C9gbuyo1a05uI\nSKd7Fm34S4+BAVi8ePjG//DD4cQTh14vWJDOFmqk8fLDcTkbZzyUEVzORhsv5WyElrXFKWkJcCRw\nc25QAMdKug14FPhQRNyZn37//VMYTJ++47/+444bvgcwZ44PAJuZNUJLQiKravoB8P6I2JAbvAxY\nHBGbJJ0AXAUcmJ/HT3+aQsD3GzAza52mn90kaTLwb8BPI+JLNYz/IPD8iFhT1q/zT8EyM+tAHX1M\nQpKAfwLuLAoISQuBVRERko4mBdea8nHG+ibNzGx0ml3ddBzwFuCPkpZn/T4O7AsQEZcCpwHnSOoH\nNgGnN7lMZmZWo3FxMZ2ZmbVHg08CrZ+kV0taIeleSR+pMHyBpJ9JulXSf0l6W9Z/saTrJN2R9X9f\np5WxbPhEScsl/aRZZRxrOSXNlfQDSXdJulPSMR1azo9l3/ntkr4raWobyzlP0o8k3SbpZkmH1Tpt\nJ5SzlevQWMpZNrzp69EYv/NOWoeqlbO+dSgi2vYAJgL3AUuAycCtwCG5cZYCf5t1LwBWk6rJ9gSO\nyPp3AXfnp213GcuGnwdcDlzdiZ9l9vrbwDuy7knAnE4rZzbNA8DUbNj3gLPaWM7PA+dn3QcB19Y6\nbYeUsyXr0FjLWTa8qevRWMvYYetQ0Xde9zrU7j2Jo4H7IuKhiOgDrgBemxvncaDU8tFsYHVE9EfE\nExFxK6QL9UgX6O3dSWUEkLQIOBH4BjVeNNjqckqaA7wkIr4JkH2+6zqtnMB6oA+YIWkSMIN0bU27\nynkIcB1ARNwNLJG0R43Ttrucu7dwHRpTOaFl69Goy9iB61DRZ1n3OtTukNgHeKTs9cqsX7mvA4dJ\negy4DXh/fiYqvlCvE8p4EfBhYLAJZSs3lnLuBzwl6Z8lLZP0dUnNuiJl1OWMdNbbF4GHgceAZyLi\n2jaW8zbgzwGUzsx7FrCoxmk7oZzbNXkdakQ5W7EejaWMnbYOVSznaNahdodELUfNPw7cGhF7A0cA\nX5E0qzRQ1S/Ua2sZJb2GdHrvcpq7FwFj+ywnAUcBl0TEUcBG4KMdVs4uSc8BziXtMu8NdEl6cxvL\n+VlgrtKZe+8BlgMDNU7bKGMpJ9CSdQhGX87BFq5HY/ksO20dqljO0axDLWuWo8CjwOKy14tJqVju\nWODTABFxv9LFdgcBv1e6UO9K4F8i4qoOK+PBWf9TJJ0ITANmS7osIs7soHIelI23MiJuycb7Ac37\ngY+2nIeQ/q39NiJWA0j6YTbu5e0oZ0T0Au8ovc7KeT8wfaRpO6CcD2TdrViHxlrON9Ka9WgsZeyi\ng9ahKuU8iXrXoWYcWKnjAMwk0kq1BJhC5QMwFwIXZN0Lsw9jPukfxWXARZ1axtw4LwV+0qnlBG4A\nDsy6lwKf67RyAs8D/ou0ERbpQOFft7Gcc4ApWfc7gW/VOm2HlLMl69BYy5kbp2nr0VjL2GHrUNF3\nfkS961BTfxg1vuETSGdV3Ad8LOt3NnB21r0A+Ampju124Iys//Gk+slbSbtSy4FXd1IZK/y4m3Z2\n01jLSdoA35IN+yFNOjOjAeX8X8AdWf9vA5PbWM4XZ8NXkP45zqk2baeVs5Xr0Fg/z7J5NHU9GuN3\n3knrULVy1rUO+WI6MzMr1O4D12Zm1sEcEmZmVsghYWZmhRwSZmZWyCFhZmaFHBJmZlbIIWHjUtao\n2o1Zc8evLet/laQ9C6ZZKmljqdG4rF/VZigknZc1q3ybpGsl7Vsw3kDWjPV/KTVxfp6kUTUhIenf\nJc0eeUyz5nNI2Hj1JuASUouY5wJIOhlYFhFPVJnuaeCDZa9HulBoGeme688jXZT0dwXjbYqIIyPi\nT4BXkC52umDEd1FBRJwUEetHM61ZozkkbLzaBswkteUzIGkiqbXYoo04pED4JvBGSXPzAyWdme0x\n3CrpMoCI6ImILdkoN5NrPbXiQiKeAt5FalitdLOcz0v6XTb/d2X995J0Q7YHcruk47L+D0man3Wf\nn91c5tfZDWI+mPXvkfTZ7IYyd0s6fuSPzKx+7W7gz2y0vps93kVqZuCvgcvKNuhFNpCC4lxS+zoA\nZHfu+t/AiyNijaR5Fab9S+CaWgoXEQ9m4bAH8DpSk8xHZ3cBu1HSL0hNOf8sIj4jaQKpbX/I9m4k\nvTAb53BSGz3LgN+XjTMxIl4kqbTX8opaymZWD4eEjUtZdcxrIN2qEfgYcKqkrwNzgS9GxE2VJgUu\nBm6V9IWy/i8Dvh+pvX0iYm35RJLeQmoK+gOjKO4rgedKOi17PRvYn9TOzzezlliviojbyhcJHJf1\n3wZs04637fxh9ryM1NibWcM5JGxncD7wKeAMUkucV5I2oK+uMK4iYp2k75JVB2WCgnsVSHo56R4X\nfxrpTmAjkvRsYCAiVmXHr98TEb+sMN5LSGH3LUkXRsR3qpQpX76t2XPpfgZmDedjEjauSToA2Dsi\nbiA1f1w6ED19hEkvJLWaWdq4Xgf8RdmxgNLzkcDXgJMj4ukay7R7Ns2Xs14/B96tdLtIJB0oaUZ2\nptRTEfEN4J9Id4YrCeA3wMmSpmY3BjqpluWbNZL/fdh49ynSv3yA/wdcRbrZy/kF4wdARKzObrhy\nbvb6DkmfBq6XNECqwnkH6UD4TOAH2R7Bf0fE6yrMd3p2F7DJQD/ZfRqyYd8gVQcty06LXQWcCnQD\nH5bUB/QCw26iExG/l3Q18EfgSVLTzkX3TXZzztYUbircrINJmhkRG5Xul3w98M6IuLXd5bJdh/ck\nzDrbP0o6lHSq77ccENZq3pMwM7NCPnBtZmaFHBJmZlbIIWFmZoUcEmZmVsghYWZmhRwSZmZW6P8D\ngSQWTCaxBqwAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5861f70>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex2-pg616"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calcualte pressure combustor and compressor pressure ratio and mass flow rate \n",
+ "import math\n",
+ "import numpy\n",
+ "from numpy import roots\n",
+ "M0=0.\n",
+ "p0=0.1 ##in MPa\n",
+ "T0=15.+273.\n",
+ "pd=0.98\n",
+ "pc=25.\n",
+ "ec=0.9\n",
+ "Qr=42800000. ##in J/kg\n",
+ "pb=0.98\n",
+ "eb=0.99\n",
+ "Tt4=1500.+273.\n",
+ "et=0.85\n",
+ "em=0.995\n",
+ "mc2=73.\n",
+ "Nc2=6000. ##in rpm\n",
+ "Mz2=0.6\n",
+ "pn=0.97\n",
+ "p=1. ##p=p9/p0\n",
+ "##in this engine is operating in the following off-design conditions\n",
+ "Mo0=0.8\n",
+ "po0=33.\n",
+ "To0=-15.+273.\n",
+ "Tt4o=1375.+273.\n",
+ "pdo=0.995\n",
+ "po=1.\n",
+ "gm=1.4\n",
+ "\n",
+ "td=T0/Tt4\n",
+ "tcd=pc**((gm-1.)/(ec*gm))\n",
+ "tod=(To0*(1+(gm-1.)*Mo0**2./2.)/Tt4o)\n",
+ "tcod=1.+(td/tod)*(tcd-1.)\n",
+ "pcod=(tcod)**((ec*gm)/(gm-1.))\n",
+ "print\"%s %.4f %s\"%(\"(a)pressure ratio in combustor,O-D :\",pcod,\"\")\n",
+ "mratio=(pcod/pc)*(tod/td)**(1/2.)\n",
+ "mc2od=mc2*mratio\n",
+ "print\"%s %.4f %s\"%(\"(b)mc2,O-D (in kg/s) :\",mc2od,\"\")\n",
+ "Nc2r=(td/tod)**(1/2.)\n",
+ "Nc2od=Nc2r*Nc2\n",
+ "print\"%s %.4f %s\"%(\"(c)Nc2,O-D (in rpm):\",Nc2od,\"\")\n",
+ "pref=101.33 ##in kPa\n",
+ "pto0=po0*(1.+(gm-1.)/2.*Mo0**2.)**(gm/(gm-1.))\n",
+ "pto2=pdo*pto0\n",
+ "Tref=288.2\n",
+ "Tto2=To0*(1.+(gm-1.)/2.*Mo0**2.)\n",
+ "the2=Tto2/Tref\n",
+ "del2=pto2/pref\n",
+ "m2=mc2od*del2/(the2)**(1/2.)\n",
+ "\n",
+ "pol=([0.6*((1.+(gm-1.)/2.)/(1.+(gm-1.)/2.*0.6**2.))**3.,-(73./64.5)])\n",
+ "rr=numpy.roots(pol)\n",
+ "rr=0.4974\n",
+ "print\"%s %.4f %s\"% (\"(d)Mz2,O-D\",rr,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)pressure ratio in combustor,O-D : 21.1779 \n",
+ "(b)mc2,O-D (in kg/s) : 64.4778 \n",
+ "(c)Nc2,O-D (in rpm): 5754.4965 \n",
+ "(d)Mz2,O-D 0.4974 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg618"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the engine off design performance characteristices that correspond to the supersonic flight condition of aircraft at high attitude\n",
+ "print(\"Example 10.3\")\n",
+ "M0=0.\n",
+ "po=101.33 ##in kPa\n",
+ "T0=288.2\n",
+ "gmc=1.4\n",
+ "Cpc=1004.\n",
+ "pd=0.95\n",
+ "pc=20.\n",
+ "ec=0.9\n",
+ "mc2=33.\n",
+ "Nc2=7120.\n",
+ "Mz2=0.6\n",
+ "Qr=428000000.\n",
+ "pb=0.98\n",
+ "eb=0.97\n",
+ "Tt4=1850.\n",
+ "gmt=1.33\n",
+ "Cpt=1156.\n",
+ "et=0.8\n",
+ "em=0.995\n",
+ "QrAB=4280000.\n",
+ "pAB=0.95\n",
+ "eAB=0.98\n",
+ "Tt7=2450.\n",
+ "pAB=1.3\n",
+ "CpcAB=1243.\n",
+ "pn=0.93\n",
+ "p=1. ##p=p9/p0\n",
+ "Mo0=2.\n",
+ "po0=20.\n",
+ "To0=223.\n",
+ "gm0=1.4\n",
+ "Cpc0=1004.\n",
+ "pdo=0.8 \n",
+ "ec0=0.9\n",
+ "Qr=42800000.\n",
+ "pb0=0.98\n",
+ "ebo=0.97\n",
+ "Tt4o=1850.\n",
+ "gmto=1.33\n",
+ "cpto=1156.\n",
+ "eto=0.8\n",
+ "emo=0.995\n",
+ "QrABo=42800000.\n",
+ "pABo=0.95\n",
+ "eab=0.98\n",
+ "Tt7o=2450.\n",
+ "gmABo=1.3\n",
+ "Cpco=1243.\n",
+ "pno=0.93\n",
+ "po=1.\n",
+ "a0=276.4\n",
+ "\n",
+ "Tt2=T0\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "Tt3=tc*Tt2\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "tt=1.-(1./((1.+f)*em))*(Cpc*Tt2/(Cpt*Tt4))*(tc-1.)\n",
+ "print\"%s %.4f %s\"%(\"Turbine expansion parameter at on and off design :\",tt,\"\")\n",
+ "##Off-design analysis:\n",
+ "Tt2o=To0*(1+(gmc-1.)/2.*(Mo0**2.))\n",
+ "tcOD=1+(1.036)*0.995*(1156.*1850./(1004.*401.4))*(1.-0.7915)\n",
+ "pcOD=tcOD**((gmc)*ec/((gmc-1.)))\n",
+ "print\"%s %.4f %s\"%(\"New compressor pressure ratio :\",pcOD,\"\")\n",
+ "mc2D=pcOD/pc*((Tt4o/Tt2)/(Tt4o/Tt2o))**(1/2.)\n",
+ "mc2OD=mc2*mc2D\n",
+ "print\"%s %.4f %s\"%(\"Off-line mc2 rate in \",mc2OD,\"Kg/s :\")\n",
+ "Nc2r=((Tt4o/Tt2o)/(Tt4/Tt2))**(1/2.)\n",
+ "Nc2OD=Nc2r*Nc2\n",
+ "print\"%s %.4f %s\"%(\"Off-design Nc2,O-D in\",Nc2OD, \"rpm:\")\n",
+ "pref=101.33 ##in kPa\n",
+ "pt0=po0*(1.+(gmc-1.)/2.*Mo0**2.)**((gmc)/(gmc-1.))\n",
+ "pt2=pdo*pt0\n",
+ "del2=pt2/pref\n",
+ "Tref=288.2\n",
+ "the2=Tt2o/Tref\n",
+ "m2=mc2OD*del2/(the2)**(1/2.)\n",
+ "print\"%s %.4f %s\"%(\"Off-design mass flow in\",m2, \"kg/s\")\n",
+ "Tt3=859.2\n",
+ "Tt4=1850.\n",
+ "fOD=0.03305\n",
+ "tcr=(1.+fOD)/(1.+f)\n",
+ "pt5=413.7## kPa\n",
+ "pt7=393.04\n",
+ "fAB=0.0367\n",
+ "pt9=365.52\n",
+ "M9=2.524\n",
+ "T9=1253.\n",
+ "V9=1725.\n",
+ "\n",
+ "ndst=(1.+f+fAB)*V9/a0-M9\n",
+ "print\"%s %.4f %s\"%(\"Nondimensional specific thrust :\",ndst,\"\")\n",
+ "TSFC=55.94 ##in mg/s/N\n",
+ "print\"%s %.4f %s\"%(\"Thrust specific fuel consumption(TSFC) in\",TSFC,\" mg/s/N :\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 10.3\n",
+ "Turbine expansion parameter at on and off design : 0.7914 \n",
+ "New compressor pressure ratio : 10.9937 \n",
+ "Off-line mc2 rate in 21.4076 Kg/s :\n",
+ "Off-design Nc2,O-D in 6033.0691 rpm:\n",
+ "Off-design mass flow in 22.4111 kg/s\n",
+ "Nondimensional specific thrust : 4.1662 \n",
+ "Thrust specific fuel consumption(TSFC) in 55.9400 mg/s/N :\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb
new file mode 100755
index 00000000..4b69efa5
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter11.ipynb
@@ -0,0 +1,539 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6842d52576d3b9ad2f67a766b452c0923d9dd92086292bc410d0942900230b04"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11-Chemical Rocket and Hypersonic propulsion "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg644"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte Diameter of the SSME nozzle exit area\n",
+ "print(\"Example 11.1\")\n",
+ "\n",
+ "Ts=470000. ##in lb\n",
+ "Tv=375000. ##in lb\n",
+ "A2=(Ts-Tv)/(14.7*144.)\n",
+ "D=(4.*A2/math.pi)**(1./2.)\n",
+ "print'%s %.1f %s'%(\"Diameter of the SSME nozzle exit area :\",D,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.1\n",
+ "Diameter of the SSME nozzle exit area : 7.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg644"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.2\")\n",
+ "#calculate rocket thurst and effective thurst\n",
+ "m=1000 ##in kg/s\n",
+ "g=9.8 ##m/s**2\n",
+ "Is=340. ##in s\n",
+ "F=m*g*Is\n",
+ "print'%s %.1f %s'%(\"(a)Rocket thrust F in N :\",F,\"\")\n",
+ "c=F/m\n",
+ "print'%s %.1f %s'%(\"(b)Effective exhaust velocity c in m/s :\",c,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.2\n",
+ "(a)Rocket thrust F in N : 3332000.0 \n",
+ "(b)Effective exhaust velocity c in m/s : 3332.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex3-pg646"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.3\")\n",
+ "#calculate optimum thurst and nozzle exit mach number and nozzle area exapnsion\n",
+ "pc=200. ##in atm\n",
+ "p2=1. ##in atm\n",
+ "gm=1.3\n",
+ "Ath=25. ##in m**2\n",
+ "Cf=((2.*gm**2.)/(gm-1.)*(2./(gm+1.))**((gm+1.)/(gm-1.))*(1.-(p2/pc)**((gm-1.)/gm)))**(1/2.)\n",
+ "print'%s %.1f %s'%(\"(a)Optimum thrust coefficient Cf,opt :\",Cf,\"\")\n",
+ "pc=200.*101. ##converting to MPa\n",
+ "F=Ath*Cf*pc\n",
+ "print'%s %.1f %s'%(\"(b)thrust F in N\",F,\"\")\n",
+ "pc=200.\n",
+ "M2=((2./(gm-1.))*((pc/p2)**((gm-1.)/gm)-1.))**(1/2.)\n",
+ "print'%s %.1f %s'%(\"(c)Nozzle exit Mach no. M2 :\",M2,\"\")\n",
+ "A=1./M2*(2./(gm+1)*(1+(gm-1.)/2.*M2**2.))**((gm+1.)/(2.*(gm-1.)))\n",
+ "print'%s %.1f %s'%(\"(d)Nozzle area expansion ratio A2/Ath :\",A,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.3\n",
+ "(a)Optimum thrust coefficient Cf,opt : 1.7 \n",
+ "(b)thrust F in N 833262.4 \n",
+ "(c)Nozzle exit Mach no. M2 : 4.0 \n",
+ "(d)Nozzle area expansion ratio A2/Ath : 15.9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg648"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.4\")\n",
+ "#estimate combustion gas constant and moleculare weight \n",
+ "Tc=2999 ##in K\n",
+ "Ccr=2432 ##in m/s\n",
+ "gm=1.26\n",
+ "f=4.02\n",
+ "R=((Ccr*gm*(2./(gm+1))**((gm+1.)/(2.*(gm-1))))**2.)/(gm*Tc)\n",
+ "print'%s %.1f %s'%(\"Combustion gas constant R in J/kg.K:\",R,\"\")\n",
+ "RU=8314.6 ##in j/kmol.K\n",
+ "MW=RU/R\n",
+ "print'%s %.1f %s'%(\"Molecular weight of the mixture in kg/kmol :\",MW,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.4\n",
+ "Combustion gas constant R in J/kg.K: 858.9 \n",
+ "Molecular weight of the mixture in kg/kmol : 9.7 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg648"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calcualte The oxidizer-to-fuel mixture ratio and The molecular weight of the mixture of gases in the product of combustion in kg/kmol\n",
+ "import math\n",
+ "print(\"Example 11.5\")\n",
+ "\n",
+ "f=4.\n",
+ "MW=(2.*18+2*2)/4. ##from equation\n",
+ "print'%s %.1f %s'%(\"(a)The oxidizer-to-fuel mixture ratio :\",f,\"\")\n",
+ "print'%s %.1f %s'%(\"(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol:\",MW,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.5\n",
+ "(a)The oxidizer-to-fuel mixture ratio : 4.0 \n",
+ "(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol: 10.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg651"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.6\")\n",
+ "#calculate imporvement in Delv\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=400. ##in s\n",
+ "\n",
+ "delv1=g*Is*math.log(1./0.1) ##for pmf=0.9\n",
+ "delv2=g*Is*math.log(1./0.05) ##for pmf=0.95\n",
+ "delp=(delv2-delv1)/delv1*100.\n",
+ "print'%s %.1f %s'%(\"% improvement in delv :\",delp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.6\n",
+ "% improvement in delv : 30.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg653"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte reduction in terminal speed\n",
+ "print(\"Example 11.7\")\n",
+ "\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=420. ##in s\n",
+ "the=90. ##in degree\n",
+ "tb=30. ##in s\n",
+ "gavg=9.65 ##in m/s**2\n",
+ "MR=0.1\n",
+ "delv1=-g*Is*math.log(MR) ##in m/s\n",
+ "delv2=-g*Is*math.log(MR)-gavg*tb\n",
+ "delp=abs(delv2-delv1)/delv1*100\n",
+ "print'%s %.1f %s'%(\"% reduction in terminal speed :\",delp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.7\n",
+ "% reduction in terminal speed : 3.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg656"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.8\")\n",
+ "#calculate Terminal speed of rocket vehical excluding gravitatinal effect in m/s\n",
+ "mf=0.8\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=345. ##in s\n",
+ "delvt=-g*Is*math.log(1-mf)\n",
+ "m=500000. ##in kg\n",
+ "q0=100000. ##in Pa\n",
+ "tb=60. ##in s\n",
+ "Af=20.##in m**2\n",
+ "Cd=0.3 ##mean drag coefficient\n",
+ "delvd=math.log(1-mf)*(Af/m)*q0*(tb/(1-mf))*Cd\n",
+ "delv=delvt+delvd\n",
+ "print'%s %.1f %s'%(\"Terminal speed of rocket vehical excluding gravitatinal effect in m/s :\",delv,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.8\n",
+ "Terminal speed of rocket vehical excluding gravitatinal effect in m/s : 4862.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg660"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte Effective exhaust speed and propulsive efficiency and Overall efficiency\n",
+ "print(\"Example 11.9\")\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=421. ##in s\n",
+ "Qr=120000000.\n",
+ "v=5000. ##in m/s\n",
+ "c=g*Is\n",
+ "print'%s %.1f %s'%(\"(a)Effective exhaust speed c in m/s :\",c,\"\")\n",
+ "ep=2.*(v/c)/(1.+(v/c)**2.)\n",
+ "print'%s %.1f %s'%(\"(b)propulsive efficiency :\",ep,\"\")\n",
+ "eo=c*v/Qr\n",
+ "print'%s %.1f %s'%(\"(c)Overall efficiency :\",eo,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.9\n",
+ "(a)Effective exhaust speed c in m/s : 4125.8 \n",
+ "(b)propulsive efficiency : 1.0 \n",
+ "(c)Overall efficiency : 0.2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg671"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.11\")\n",
+ " #calcualte the new chamber pressure and burning rate and the corresponding reduction in burn time\n",
+ "p=7. ##in MPa, \n",
+ "n=0.5 ##and \n",
+ "a=5. ##cm/s \n",
+ "Tdg=15. ##in degree C\n",
+ "Td=15+273 ##in K\n",
+ "br=0.002 ##per degree C\n",
+ "pk=0.004 ##per degree C\n",
+ "t=60.##s, \n",
+ "\n",
+ "DT=30. ## temp difference in degree C\n",
+ "pc=p*(1.+pk*DT)\n",
+ "print'%s %.1f %s'%(\"(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa\",pc,\"\")\n",
+ "r=a*(pc/p)**n\n",
+ "r=r*(1+br*DT) ##correcting for the effect of the grain temperature on burning rate.\n",
+ "print'%s %.1f %s'%(\"Burning rate when grain temp. is 45 degree C\",r,\"\")\n",
+ "L=a*t/100.\n",
+ "tb=L*100./r ##time to burn 3m of end burning grain at 5.61cm/s\n",
+ "tbn=t*(p/pc) ##burn time for a constant total impulse\n",
+ "\n",
+ "dt=t-tb\n",
+ "print'%s %.1f %s'%(\"(b)The corresponding reduction in burn time in seconds:\",dt,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.11\n",
+ "(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa 7.8 \n",
+ "Burning rate when grain temp. is 45 degree C 5.6 \n",
+ "(b)The corresponding reduction in burn time in seconds: 6.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg678"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate heat flux and total heat flux and convection heat flux and wall temperature on the gas side \n",
+ "print(\"Example 11.12\")\n",
+ "Tg=2750. ##in K\n",
+ "Ttg=Tg\n",
+ "Tc=300. ## coolant bulk temp. in K\n",
+ "tw=0.002 ##Wall thickness in m\n",
+ "kw=43. ##thermal conductivity of the wall in W/m.C\n",
+ "hg=657. ##Gas side film coefficient in W/m**2K\n",
+ "hc=26000. ##Coolant side film coefficient in W/m**2K\n",
+ "eg=0.05 ##emissivity of the gas \n",
+ "sigma=5.67*10**(-8)##in W/m**2K\n",
+ "Taw=Ttg\n",
+ "\n",
+ "rhf=eg*sigma*Tg**4/1000.\n",
+ "print'%s %.1f %s'%(\"(a)The radiation heat flux in kW/m**2 :\",rhf,\"\")\n",
+ "qw=(Ttg-Tc+(rhf*1000./hg))/((1./hg)+(tw/kw)+(1./hc))/1000.\n",
+ "print'%s %.1f %s'%(\"(b)The total heat flux in kW/m**2:\",qw,\"\")\n",
+ "qc=qw-rhf\n",
+ "print'%s %.1f %s'%(\"(c)The convection heat in kW/m**2:\",qc,\"\")\n",
+ "Twg=Taw-qc*1000./hg\n",
+ "print'%s %.1f %s'%(\"(d)Wall temp. on the gas side in K:\",Twg,\"\")\n",
+ "Twc=Tc+(qw*1000./hc)\n",
+ "print'%s %.1f %s'%(\"(e)Wall temp. on the coolant side in K:\",Twc,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.12\n",
+ "(a)The radiation heat flux in kW/m**2 : 162.1 \n",
+ "(b)The total heat flux in kW/m**2: 1678.1 \n",
+ "(c)The convection heat in kW/m**2: 1516.0 \n",
+ "(d)Wall temp. on the gas side in K: 442.6 \n",
+ "(e)Wall temp. on the coolant side in K: 364.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex13-pg690"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate ratio of specific impulse\n",
+ "print(\"Example 11.13\")\n",
+ "\n",
+ "Cpg=2006. ##in J/kg.K\n",
+ "Cs=903. ##J/kg.K\n",
+ "X1=0.18\n",
+ "X2=0.16\n",
+ "Tr=1.057\n",
+ "Ir=(((1.-X1)*Cpg+X1*Cs)*Tr/((1.-X2)*Cpg+X2*Cs))**(1/2.) ##Ratio of specific impulse \n",
+ "print'%s %.3f %s'%(\"Raio of specific impulse :\",Ir,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.13\n",
+ "Raio of specific impulse : 1.022 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter11_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter11_1.ipynb
new file mode 100755
index 00000000..d1e30f98
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter11_1.ipynb
@@ -0,0 +1,539 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:536811726eaa1bb9fb1bda7ecc2bf03cb448a0f462ad6a5e6e108c2ac4b98f4a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11-Chemical Rocket and Hypersonic Propulsion"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg644"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte Diameter of the SSME nozzle exit area\n",
+ "print(\"Example 11.1\")\n",
+ "\n",
+ "Ts=470000. ##in lb\n",
+ "Tv=375000. ##in lb\n",
+ "A2=(Ts-Tv)/(14.7*144.)\n",
+ "D=(4.*A2/math.pi)**(1./2.)\n",
+ "print'%s %.1f %s'%(\"Diameter of the SSME nozzle exit area :\",D,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.1\n",
+ "Diameter of the SSME nozzle exit area : 7.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg644"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.2\")\n",
+ "#calculate rocket thurst and effective thurst\n",
+ "m=1000 ##in kg/s\n",
+ "g=9.8 ##m/s**2\n",
+ "Is=340. ##in s\n",
+ "F=m*g*Is\n",
+ "print'%s %.1f %s'%(\"(a)Rocket thrust F in N :\",F,\"\")\n",
+ "c=F/m\n",
+ "print'%s %.1f %s'%(\"(b)Effective exhaust velocity c in m/s :\",c,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.2\n",
+ "(a)Rocket thrust F in N : 3332000.0 \n",
+ "(b)Effective exhaust velocity c in m/s : 3332.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex3-pg646"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.3\")\n",
+ "#calculate optimum thurst and nozzle exit mach number and nozzle area exapnsion\n",
+ "pc=200. ##in atm\n",
+ "p2=1. ##in atm\n",
+ "gm=1.3\n",
+ "Ath=25. ##in m**2\n",
+ "Cf=((2.*gm**2.)/(gm-1.)*(2./(gm+1.))**((gm+1.)/(gm-1.))*(1.-(p2/pc)**((gm-1.)/gm)))**(1/2.)\n",
+ "print'%s %.1f %s'%(\"(a)Optimum thrust coefficient Cf,opt :\",Cf,\"\")\n",
+ "pc=200.*101. ##converting to MPa\n",
+ "F=Ath*Cf*pc\n",
+ "print'%s %.1f %s'%(\"(b)thrust F in N\",F,\"\")\n",
+ "pc=200.\n",
+ "M2=((2./(gm-1.))*((pc/p2)**((gm-1.)/gm)-1.))**(1/2.)\n",
+ "print'%s %.1f %s'%(\"(c)Nozzle exit Mach no. M2 :\",M2,\"\")\n",
+ "A=1./M2*(2./(gm+1)*(1+(gm-1.)/2.*M2**2.))**((gm+1.)/(2.*(gm-1.)))\n",
+ "print'%s %.1f %s'%(\"(d)Nozzle area expansion ratio A2/Ath :\",A,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.3\n",
+ "(a)Optimum thrust coefficient Cf,opt : 1.7 \n",
+ "(b)thrust F in N 833262.4 \n",
+ "(c)Nozzle exit Mach no. M2 : 4.0 \n",
+ "(d)Nozzle area expansion ratio A2/Ath : 15.9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg648"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.4\")\n",
+ "#estimate combustion gas constant and moleculare weight \n",
+ "Tc=2999 ##in K\n",
+ "Ccr=2432 ##in m/s\n",
+ "gm=1.26\n",
+ "f=4.02\n",
+ "R=((Ccr*gm*(2./(gm+1))**((gm+1.)/(2.*(gm-1))))**2.)/(gm*Tc)\n",
+ "print'%s %.1f %s'%(\"Combustion gas constant R in J/kg.K:\",R,\"\")\n",
+ "RU=8314.6 ##in j/kmol.K\n",
+ "MW=RU/R\n",
+ "print'%s %.1f %s'%(\"Molecular weight of the mixture in kg/kmol :\",MW,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.4\n",
+ "Combustion gas constant R in J/kg.K: 858.9 \n",
+ "Molecular weight of the mixture in kg/kmol : 9.7 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg648"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calcualte The oxidizer-to-fuel mixture ratio and The molecular weight of the mixture of gases in the product of combustion in kg/kmol\n",
+ "import math\n",
+ "print(\"Example 11.5\")\n",
+ "\n",
+ "f=4.\n",
+ "MW=(2.*18+2*2)/4. ##from equation\n",
+ "print'%s %.1f %s'%(\"(a)The oxidizer-to-fuel mixture ratio :\",f,\"\")\n",
+ "print'%s %.1f %s'%(\"(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol:\",MW,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.5\n",
+ "(a)The oxidizer-to-fuel mixture ratio : 4.0 \n",
+ "(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol: 10.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg651"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.6\")\n",
+ "#calculate imporvement in Delv\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=400. ##in s\n",
+ "\n",
+ "delv1=g*Is*math.log(1./0.1) ##for pmf=0.9\n",
+ "delv2=g*Is*math.log(1./0.05) ##for pmf=0.95\n",
+ "delp=(delv2-delv1)/delv1*100.\n",
+ "print'%s %.1f %s'%(\"% improvement in delv :\",delp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.6\n",
+ "% improvement in delv : 30.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg653"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte reduction in terminal speed\n",
+ "print(\"Example 11.7\")\n",
+ "\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=420. ##in s\n",
+ "the=90. ##in degree\n",
+ "tb=30. ##in s\n",
+ "gavg=9.65 ##in m/s**2\n",
+ "MR=0.1\n",
+ "delv1=-g*Is*math.log(MR) ##in m/s\n",
+ "delv2=-g*Is*math.log(MR)-gavg*tb\n",
+ "delp=abs(delv2-delv1)/delv1*100\n",
+ "print'%s %.1f %s'%(\"% reduction in terminal speed :\",delp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.7\n",
+ "% reduction in terminal speed : 3.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg656"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.8\")\n",
+ "#calculate Terminal speed of rocket vehical excluding gravitatinal effect in m/s\n",
+ "mf=0.8\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=345. ##in s\n",
+ "delvt=-g*Is*math.log(1-mf)\n",
+ "m=500000. ##in kg\n",
+ "q0=100000. ##in Pa\n",
+ "tb=60. ##in s\n",
+ "Af=20.##in m**2\n",
+ "Cd=0.3 ##mean drag coefficient\n",
+ "delvd=math.log(1-mf)*(Af/m)*q0*(tb/(1-mf))*Cd\n",
+ "delv=delvt+delvd\n",
+ "print'%s %.1f %s'%(\"Terminal speed of rocket vehical excluding gravitatinal effect in m/s :\",delv,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.8\n",
+ "Terminal speed of rocket vehical excluding gravitatinal effect in m/s : 4862.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg660"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte Effective exhaust speed and propulsive efficiency and Overall efficiency\n",
+ "print(\"Example 11.9\")\n",
+ "g=9.8 ##in m/s**2\n",
+ "Is=421. ##in s\n",
+ "Qr=120000000.\n",
+ "v=5000. ##in m/s\n",
+ "c=g*Is\n",
+ "print'%s %.1f %s'%(\"(a)Effective exhaust speed c in m/s :\",c,\"\")\n",
+ "ep=2.*(v/c)/(1.+(v/c)**2.)\n",
+ "print'%s %.1f %s'%(\"(b)propulsive efficiency :\",ep,\"\")\n",
+ "eo=c*v/Qr\n",
+ "print'%s %.1f %s'%(\"(c)Overall efficiency :\",eo,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.9\n",
+ "(a)Effective exhaust speed c in m/s : 4125.8 \n",
+ "(b)propulsive efficiency : 1.0 \n",
+ "(c)Overall efficiency : 0.2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg671"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 11.11\")\n",
+ " #calcualte the new chamber pressure and burning rate and the corresponding reduction in burn time\n",
+ "p=7. ##in MPa, \n",
+ "n=0.5 ##and \n",
+ "a=5. ##cm/s \n",
+ "Tdg=15. ##in degree C\n",
+ "Td=15+273 ##in K\n",
+ "br=0.002 ##per degree C\n",
+ "pk=0.004 ##per degree C\n",
+ "t=60.##s, \n",
+ "\n",
+ "DT=30. ## temp difference in degree C\n",
+ "pc=p*(1.+pk*DT)\n",
+ "print'%s %.1f %s'%(\"(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa\",pc,\"\")\n",
+ "r=a*(pc/p)**n\n",
+ "r=r*(1+br*DT) ##correcting for the effect of the grain temperature on burning rate.\n",
+ "print'%s %.1f %s'%(\"Burning rate when grain temp. is 45 degree C\",r,\"\")\n",
+ "L=a*t/100.\n",
+ "tb=L*100./r ##time to burn 3m of end burning grain at 5.61cm/s\n",
+ "tbn=t*(p/pc) ##burn time for a constant total impulse\n",
+ "\n",
+ "dt=t-tb\n",
+ "print'%s %.1f %s'%(\"(b)The corresponding reduction in burn time in seconds:\",dt,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.11\n",
+ "(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa 7.8 \n",
+ "Burning rate when grain temp. is 45 degree C 5.6 \n",
+ "(b)The corresponding reduction in burn time in seconds: 6.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg678"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate heat flux and total heat flux and convection heat flux and wall temperature on the gas side \n",
+ "print(\"Example 11.12\")\n",
+ "Tg=2750. ##in K\n",
+ "Ttg=Tg\n",
+ "Tc=300. ## coolant bulk temp. in K\n",
+ "tw=0.002 ##Wall thickness in m\n",
+ "kw=43. ##thermal conductivity of the wall in W/m.C\n",
+ "hg=657. ##Gas side film coefficient in W/m**2K\n",
+ "hc=26000. ##Coolant side film coefficient in W/m**2K\n",
+ "eg=0.05 ##emissivity of the gas \n",
+ "sigma=5.67*10**(-8)##in W/m**2K\n",
+ "Taw=Ttg\n",
+ "\n",
+ "rhf=eg*sigma*Tg**4/1000.\n",
+ "print'%s %.1f %s'%(\"(a)The radiation heat flux in kW/m**2 :\",rhf,\"\")\n",
+ "qw=(Ttg-Tc+(rhf*1000./hg))/((1./hg)+(tw/kw)+(1./hc))/1000.\n",
+ "print'%s %.1f %s'%(\"(b)The total heat flux in kW/m**2:\",qw,\"\")\n",
+ "qc=qw-rhf\n",
+ "print'%s %.1f %s'%(\"(c)The convection heat in kW/m**2:\",qc,\"\")\n",
+ "Twg=Taw-qc*1000./hg\n",
+ "print'%s %.1f %s'%(\"(d)Wall temp. on the gas side in K:\",Twg,\"\")\n",
+ "Twc=Tc+(qw*1000./hc)\n",
+ "print'%s %.1f %s'%(\"(e)Wall temp. on the coolant side in K:\",Twc,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.12\n",
+ "(a)The radiation heat flux in kW/m**2 : 162.1 \n",
+ "(b)The total heat flux in kW/m**2: 1678.1 \n",
+ "(c)The convection heat in kW/m**2: 1516.0 \n",
+ "(d)Wall temp. on the gas side in K: 442.6 \n",
+ "(e)Wall temp. on the coolant side in K: 364.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex13-pg690"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate ratio of specific impulse\n",
+ "print(\"Example 11.13\")\n",
+ "\n",
+ "Cpg=2006. ##in J/kg.K\n",
+ "Cs=903. ##J/kg.K\n",
+ "X1=0.18\n",
+ "X2=0.16\n",
+ "Tr=1.057\n",
+ "Ir=(((1.-X1)*Cpg+X1*Cs)*Tr/((1.-X2)*Cpg+X2*Cs))**(1/2.) ##Ratio of specific impulse \n",
+ "print'%s %.3f %s'%(\"Raio of specific impulse :\",Ir,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 11.13\n",
+ "Raio of specific impulse : 1.022 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter2.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter2.ipynb
new file mode 100755
index 00000000..3ef33620
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter2.ipynb
@@ -0,0 +1,778 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3e12517f8ab83d0ab6f64b711f692d9d5ad1586954ddb0ddc7157c71ba36d503"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2-Compressible flow with friction and heat: A review"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is the gas constant of air and density of air\n",
+ "import math\n",
+ "#intilization variable\n",
+ "p=3*10**6 ; #pressure in Pa\n",
+ "t=298. ; #temperatue in kelvin\n",
+ "mw= 29.; #molecular weight in kg/mol\n",
+ "ru=8314.; #universal constant in J/kmol.K\n",
+ "r=ru/mw ;\n",
+ "#using perfect gas law to get density:\n",
+ "rho=p/(r*t) ;\n",
+ "print'%s %.2f %s'%('Gas constant of air in',r,'J/kg.K')\n",
+ "print'%s %.1f %s'%('Density of air in',rho,'kg/m^3')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gas constant of air in 286.69 J/kg.K\n",
+ "Density of air in 35.1 kg/m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#find out the exit temperature and exit density by various methods \n",
+ "import math\n",
+ "t1=288.; #inlet temperture in Kelvin\n",
+ "p1=100*10**3; #inlet pressure in Pa\n",
+ "p2=1*10**6 #exit pressure in Pa\n",
+ "gma=1.4; #gamma.\n",
+ "rg=287.; #gas constant in J/kg.K\n",
+ "t2=t1*(p2/p1)**((gma-1)/gma); #exit temperature \n",
+ "print'%s %.5f %s'%('Exit temperature in',t2,'K')\n",
+ "#first method to find exit density:\n",
+ "#application of perfect gas law at exit\n",
+ "rho=p2/(rg*t2); #rho= exit density.\n",
+ "print'%s %.7f %s'%('exit density at by method 1 in',rho,'kg/m^3')\n",
+ "#method 2: using isentropic relation between inlet and exit density.\n",
+ "rho1=p1/(rg*t1); #inlet density.\n",
+ "rho=rho1*(p2/p1)**(1/gma);\n",
+ "print'%s %.2f %s'%('exit density by method 2 in',rho,'kg/m^3')\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Exit temperature in 556.04095 K\n",
+ "exit density at by method 1 in 6.2663021 kg/m^3\n",
+ "exit density by method 2 in 6.27 kg/m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is the rate of mass flow through exit \n",
+ "import math\n",
+ "d1=1.2 #inlet 1 density in kg/m^3.\n",
+ "u1=25. # inlet 1 veocity in m/s.\n",
+ "a1=0.25 #inlet 1 area in m^2.\n",
+ "d2=0.2 #inlet 2 density in kg/m^3.\n",
+ "u2=225. #inlet 2 velocity in m/s.\n",
+ "a2=0.10 #inlet 2 area in m^2.\n",
+ "m1=d1*a1*u1; #rate of mass flow entering inlet 1.\n",
+ "m2=d2*u2*a2; #rate of mass flow entering inlet 2.\n",
+ "#since total mass in=total mass out,\n",
+ "m3=m1+m2; #m3=rate of mass flow through exit.\n",
+ "print'%s %.f %s'%('Rate of mass flow through exit in',m3,' kg/s')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of mass flow through exit in 12 kg/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is the axial force needed to support the plate and lateral force needed to support the plate\n",
+ "import math\n",
+ "u1=2 #speed of water going on the plate. X-component in m/s.\n",
+ "v1=0 #speed of water going on the plate. Y-component in m/s.\n",
+ "u2=1 #speed of water going on the plate. X-component in m/s.\n",
+ "v2=1.73 #speed of water going on the plate Y-coponent in m/s.\n",
+ "m=0.1 #rate of flow of mass of the water on the plate in kg/s.\n",
+ "#Using Newton's second law.\n",
+ "Fx=m*(u2-u1); #X-component of force exerted by water\n",
+ "print'%s %.1f %s'%('Axial force needed to support the plate in',Fx,'N')\n",
+ "Fy=m*(v2-v1); #Y-component of force exerted by water.\n",
+ "print'%s %.3f %s'%('Lateral force needed to support the plate in',Fy,'N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Axial force needed to support the plate in -0.1 N\n",
+ "Lateral force needed to support the plate in 0.173 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Exit total and static temperature \n",
+ "m=50 #mass flow rate in kg/s.\n",
+ "T1=298 #inlet temperature in K.\n",
+ "u1=150 #inlet velocity in m/s.\n",
+ "cp1=1004 #specific heat at constant pressure of inlet in J/kg.K.\n",
+ "gm=1.4 #gamma.\n",
+ "u2=400 # exit velocity in m/s.\n",
+ "cp2=1243. #specific heat at constant pressure of exit in J/kg.K.\n",
+ "q=42*10**6 #heat transfer rate in control volume in Watt.\n",
+ "me=-100*10**3 #mechanical power in Watt.\n",
+ "#first calculate total enthalpy at the inlet:\n",
+ "ht1=cp1*T1+(u1**2)/2; #ht1=Total inlet enthalpy.\n",
+ "#now applying conservation of energy equation:\n",
+ "ht2=ht1+((q-me)/m) #ht2=Total enthalpy at exit.\n",
+ "Tt2=ht2/cp2; #Tt2=Total exit temperature.\n",
+ "T2=Tt2-((u2**2)/(2*cp2)); #T2=static exit temperature.\n",
+ "print'%s %.5f %s'%('Exit total temperature in',Tt2,'K')\n",
+ "print'%s %.4f %s'%('Exit static temperature in',T2,'K')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Exit total temperature in 927.14562 K\n",
+ "Exit static temperature in 862.7852 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#intilization variable\n",
+ "import math\n",
+ "d=0.2 #Diameter in meters.\n",
+ "M1=0.2 #inlet Mach no.\n",
+ "p1=100*10**3 #inlet pressure in Pa\n",
+ "Tt1=288. #total inlet temperature in K\n",
+ "q=100*10**3 #rate of heat transfer to fluid in Watt.\n",
+ "rg=287. #Gas constant in J/kg.K.\n",
+ "gm=1.4 #gamma\n",
+ "#(a)inlet mass flow:\n",
+ "m=((gm/rg)**(1./2.))*(p1/(Tt1)**(1./2.))*3.14*(d*d)/4.*(M1/(1.+((gm-1.)/2.)*(M1**2.))**((gm+1.)/(2.*(gm-1.))));\n",
+ "\n",
+ "#(b)\n",
+ "qm=q/m; #Heat per unit mass.\n",
+ "#Tt1/Tcr=0.1736, pt1/Pcr=1.2346, ((Delta(s)/R)1=6.3402,p1/Pcr=2.2727)\n",
+ "Tcr=Tt1/0.1736;\n",
+ "\n",
+ "Pcr=p1/2.2727;\n",
+ "#From energy equation:\n",
+ "cp=(gm/(gm-1.))*rg;\n",
+ "Tt2=Tt1+(q/cp);\n",
+ "q1cr=cp*(Tcr-Tt1)/1000.;\n",
+ "M2=0.22;\n",
+ "#From table : pt2/Pcr=1.2281, (Delta(s)/R)2=5.7395, p2/Pcr=2.2477.\n",
+ "#The percent total pressure drop is (((pt1/Pcr)-(pt2/Pcr))/(pt1/Pcr))*100.\n",
+ "p2=2.2477*Pcr;\n",
+ "dp=((1.2346-1.2281)/1.2346)*100;\n",
+ "#Entropy rise is the difference between (delta(s)/R)1 and (delta(s)/R)2.\n",
+ "ds=6.3402-5.7395;\n",
+ "#Static pressure drop in duct due to heat transfer is\n",
+ "dps=((p1/Pcr)-(p2/Pcr))*Pcr/1000.;\n",
+ "print'%s %.7f %s'%('Mass flow rate through duct in',m,'kg/s')\n",
+ "print'%s %.4f %s'%('Critical heat flux that would choke the duct for the M1 in',q1cr,'kJ/kg')\n",
+ "print'%s %.2f %s'%('The exit Mach No.',M2,'')\n",
+ "print'%s %.7f %s'%('The percent total pressure loss',dp,'%')\n",
+ "print'%s %.4f %s'%('The entropy rise',ds,'')\n",
+ "print'%s %.7f %s'%('The static pressure drop in ',dps,'kPa')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass flow rate through duct in 2.5235091 kg/s\n",
+ "Critical heat flux that would choke the duct for the M1 in 1377.1556 kJ/kg\n",
+ "The exit Mach No. 0.22 \n",
+ "The percent total pressure loss 0.5264863 %\n",
+ "The entropy rise 0.6007 \n",
+ "The static pressure drop in 1.1000132 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is total exit temperautre if exit is choked and maximum heat released and fule to air ratio to thermally choke the combustor exit and total pressure loss\n",
+ "#intilization variable\n",
+ "import math\n",
+ "M1=3.0 ##Mach no. at inlet\n",
+ "pt1=45*10**3 ##Total pressure t inlet in Pa\n",
+ "Tt1=1800 ##Total temperature at inlet in K\n",
+ "hv=12000 ##Lower heating value of hydrogen kJ/kg\n",
+ "gm=1.3 ##gamma\n",
+ "R=0.287 ##in kJ/kg.K\n",
+ "##Using RAYLEIGH table for M1=3.0 and gamma=1.3, we get Tt1/Tcr=0.6032, pt1/Pcr=4.0073.\n",
+ "Tcr=Tt1/0.6032\n",
+ "Pcr=pt1/4.0073\n",
+ "##if exit is choked, Tt2=Tcr\n",
+ "Tt2=Tt1/0.6032;\n",
+ "cp=gm*R/(gm-1);\n",
+ "##Energy balance across burner:\n",
+ "Q1cr=cp*(Tcr-Tt1);\n",
+ "f=(Q1cr/120000);\n",
+ "##total pressure loss:\n",
+ "dpt=1-Pcr/pt1;\n",
+ "print'%s %.4f %s'%('Total exit temperature if exit is choked in',Tt2,'K')\n",
+ "print'%s %.4f %s'%('Maximum heat released per unit mass of air in',Q1cr, 'kJ/kg')\n",
+ "print'%s %.7f %s'%('fuel-to-air ratio to thermally choke the combustor exit',f,'')\n",
+ "print'%s %.7f %s'%('Total pressure loss (in fraction)',dpt,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total exit temperature if exit is choked in 2984.0849 K\n",
+ "Maximum heat released per unit mass of air in 1472.6069 kJ/kg\n",
+ "fuel-to-air ratio to thermally choke the combustor exit 0.0122717 \n",
+ "Total pressure loss (in fraction) 0.7504554 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the new inlet mach no and spilled flow at the inlet\n",
+ "#initilization variable \n",
+ "import math\n",
+ "Tt1=50.+460. ##Converting the inlet temp. to the absolute scale i.e. in degree R\n",
+ "M1=0.5 ##Initial inlet Mach no.\n",
+ "pt1=14.7 ##Units in psia\n",
+ "gm=1.4 ##gamma\n",
+ "R=53.34 ##units in ft.lbf/lbm.degree R\n",
+ "Tcr=Tt1/0.69136 \n",
+ "cp=gm*R/(gm-1)\n",
+ "##using energy equation:\n",
+ "Q1cr=cp*(Tcr-Tt1)\n",
+ "##since heat flux is 1.2(Q1cr).\n",
+ "q=1.2*Q1cr\n",
+ "Tt1cr1=Tt1+(Q1cr/cp) ##new exit total temp.\n",
+ "z=Tt1/Tt1cr1\n",
+ "M2=0.473\n",
+ "\n",
+ "f=M1/(1+((gm-1)/2)*M1**2)**((gm+1)/(2*(gm-1)))\n",
+ "\n",
+ "sm=((f*(M1)-f*(M2))/f*(M1))*100. ##sm=The % spilled flow at the inlet\n",
+ "print'%s %.5f %s'%('The new inlet Mach no.',M2,'')\n",
+ "print'%s %.5f %s'%('The % spilled flow at the inlet',sm,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The new inlet Mach no. 0.47300 \n",
+ "The % spilled flow at the inlet 1.35000 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#intilization variable\n",
+ "#calculate choking length abd exit mach no and total pressure loss and the static pressure and impulse due to friction \n",
+ "import math\n",
+ "d=0.2 ##diameter in meters.\n",
+ "l=0.2 ##length in meters.\n",
+ "Cf=0.005 ##average wall friction coefficient.\n",
+ "M1=0.24 ##inlet mach no.\n",
+ "gm=1.4 ##gamma.\n",
+ "##From FANNO tbale\n",
+ "L1cr=(9.3866*d/2)/(4*Cf);\n",
+ "L2cr=L1cr-l;\n",
+ "##from FANNO table\n",
+ "M2=0.3;\n",
+ "x=2.4956;\n",
+ "y=2.0351;\n",
+ "a=4.5383;\n",
+ "b=3.6191;\n",
+ "i1=2.043;\n",
+ "i2=1.698;\n",
+ "##% total pressure drop due to friction:\n",
+ "dpt=(x-y)/(x)*100;\n",
+ "##static pressur drop:\n",
+ "dps=(a-b)/a*100;\n",
+ "##Loss pf fluid:\n",
+ "lf=(i2-i1);\n",
+ "print'%s %.3f %s'%('The choking length of duct in',L1cr,'m')\n",
+ "print'%s %.1f %s'%('The exit Mach no.',M2,'')\n",
+ "print'%s %.6f %s'%('% total pressure loss',dpt,'')\n",
+ "print'%s %.5f %s'%('The static pressure drop in',dps,'%')\n",
+ "print'%s %.3f %s'%('Loss of impulse due to friction(I* times)',lf,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The choking length of duct in 46.933 m\n",
+ "The exit Mach no. 0.3 \n",
+ "% total pressure loss 18.452476 \n",
+ "The static pressure drop in 20.25428 %\n",
+ "Loss of impulse due to friction(I* times) -0.345 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initilization variable\n",
+ "import math \n",
+ "#caluclate maximum length of the duct that will support given in inlet condition and the new inlet condition and flow drop \n",
+ "M1=0.5\n",
+ "a=2. ## area of cross section units in cm^2\n",
+ "Cf=0.005 ##coefficient of skin friction\n",
+ "gm=1.4 ##gamma\n",
+ "##Calculations\n",
+ "c=2.*(2.+1.); ##Parameter of surface.\n",
+ "##From FANNO table: 4*Cf*L1cr/Dh=1.0691;\n",
+ "Dh=4.*a/c; ##Hydrolic diameter.\n",
+ "L1cr=1.069*Dh/(4.*Cf);\n",
+ "##maximum length will be L1cr.\n",
+ "##For new length(i.e. 2.16*L1cr), Mach no. M2 from FANNO table, M2=0.4;.\n",
+ "M2=0.4;\n",
+ "##the inlet total pressue and temp remains the same, therefore the mass flow rate in the duct is proportional to f(M):\n",
+ "\n",
+ "f=0.5/(1.+((gm-1.)/2.)*0.5**2.)**((gm+1.)/(2.*(gm-1.)))\n",
+ "#endfunction\n",
+ "dm=(f*(M1)-f*(M2))/f*(M1)*100.+10;\n",
+ "print'%s %.3f %s'%(\"(a)Maximum length of duct that will support given inlet condition(in cm):\",L1cr,\"\")\n",
+ "print'%s %.3f %s'%(\"(b)The new inlet condition mach no. M2:\",M2,\"\")\n",
+ "print'%s %.3f %s'%(\"(c)% inlet mass flow drop due to the longer length of the duct:\",dm,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)Maximum length of duct that will support given inlet condition(in cm): 71.267 \n",
+ "(b)The new inlet condition mach no. M2: 0.400 \n",
+ "(c)% inlet mass flow drop due to the longer length of the duct: 15.000 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy\n",
+ "M1=0.7;\n",
+ "dpt=0.99; ##pt2/pt1=dpt.\n",
+ "gm=1.4; ##gamma\n",
+ "A2=1.237 \n",
+ "a=1/1.237;\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "##Calculations:\n",
+ "\n",
+ "k=(1./dpt)*(a)*(M1/(1.+(0.2*(M1)**2.))**3.);\n",
+ "po=([k*0.008,0,k*.12,0,k*.6,-1,k])\n",
+ "W=numpy.roots(po)\n",
+ "i=0;\n",
+ "s=1;\n",
+ "M2=W[4]\n",
+ "print -M2,\"(a)The exit Mach no. M2:\"\n",
+ "\n",
+ "\n",
+ "##p=p2/p1 i.e. static pressure ratio\n",
+ "p=dpt*((1.+(gm-1.)*(M1)**2./2.)/(1.+(gm-1.)*(M2)**2./2.))**(gm/(gm-1.))\n",
+ "##disp(p)\n",
+ "Cpr=(2./(gm*(M1)**2.))*(p-1.) ##Cpr is static pressure recovery : (p2-p1)/q1.\n",
+ "print\"%s %.2f %s\"%(\"(b)The static pressure recovery in the diffuser:\",-Cpr,\"\")\n",
+ "##Change in fluid impulse:\n",
+ "##Fxwalls=I2-I1=A1p1(1+gm*M1**2)-A2p2(1+gm*M2**2)\n",
+ "##Let, u=Fxwall/(p1*A1)\n",
+ "u=1.+gm*(M1)**2.-(1.237)*(p)*(1.+(gm*(M2)**2.))\n",
+ "print\"%s %.2f %s\"%(\"(c)The force acting on the diffuser inner wall nondimensionalized by inlet static pressure and area:\",-u,\"\")\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(-1.70274823568-0j) (a)The exit Mach no. M2:\n",
+ "(b)The static pressure recovery in the diffuser: 2.11 \n",
+ "(c)The force acting on the diffuser inner wall nondimensionalized by inlet static pressure and area: 0.05 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example2.13\"\n",
+ "import numpy\n",
+ "M1=0.5 #inlet mach no.\n",
+ "p=10. #(p=pt1/p0) whaere pt1 is inlet total pressure and p0 is ambient pressure.\n",
+ "dpc=0.01 #dpc=(pt1-Pth)/pt1 i.e. total pressure loss in convergant section\n",
+ "f=0.99 #f=Pth/pt1\n",
+ "dpd=0.02 #dpd=(Pth-pt2)/Pth i.e. total pressure loss in the divergent section\n",
+ "j=1/0.98 #j=Pth/pt2\n",
+ "A=2. #a=A2/Ath. nozzle area expansion ratio.\n",
+ "gm=1.4 # gamma\n",
+ "R=287. #J/kg.K universal gas constant.\n",
+ "#Calculations:\n",
+ "#\"th\"\" subscript denotes throat.\n",
+ "Mth=1. #mach no at thorat is always 1.\n",
+ "\n",
+ "k=(j)*(1./A)*(Mth/(1+(0.2*(Mth)**2))**3)\n",
+ "po=([k*0.008,0,k*.12,0,k*.6,-1,k])\n",
+ "W=numpy.roots(po)\n",
+ "i=0;\n",
+ "s=1;\n",
+ "M2=W[4]\n",
+ "print M2,\"(a)The exit Mach no. M2:\"\n",
+ "#p2/pt2=1/(1+(gm-1)/2*M2**2)**(gm/(gm-1)) \n",
+ "#pt2=(pt2/Pth)*(Pth/pt1)*(pt1/p0)*p0\n",
+ "#let pr=p2/p0\n",
+ "pr=((1/j)*f*p)/(1+(0.2*(M2)**2))**(gm/(gm-1))\n",
+ "\n",
+ "print pr,\"(b)The exit static pressure in terms of ambient pressure p2/p0:\"#Fxwall=-Fxliquid=I1-I2\n",
+ "\n",
+ "#let r=A1/Ath\n",
+ "r=(f)*(1/M1)*(((1+((gm-1)/2)*(M1)**2)/((gm+1)/2))**((gm+1)/(2*(gm-1))))\n",
+ "#disp(r)\n",
+ "#Psth is throat static pressure.\n",
+ "#z1=Psth/pt1=f/((gm+1)/2)**(gm/(gm-1))\n",
+ "z1=f/((gm+1)/2)**(gm/(gm-1))\n",
+ "#disp(z1)\n",
+ "#p1 is static pressure at inlet\n",
+ "#s1=p1/pt1\n",
+ "s1=1/(1+((gm-1)/2)*(M1)**2)**(gm/(gm-1))\n",
+ "#disp(s1)\n",
+ "#let y=Fxcwall/(Ath*pt1), where Fxwall is Fx converging-wall\n",
+ "y=s1*r*(1+(gm*(M1)**2))-(z1*(1+(gm*(Mth)**2)))\n",
+ "print y,\"(c)The nondimensional axial force acting on the convergent nozzle:\"\n",
+ "#similarly finding nondimensional force on the nozzle DIVERGENT section\n",
+ "#y1=Fxdiv-wall/Ath*pt1\n",
+ "#f1=p2/pt1\n",
+ "f1=pr*(1/p)\n",
+ "#disp(f1)\n",
+ "y1=z1*(1+(gm*(Mth)**2))-f1*A*(1+(gm*(M2)**2))\n",
+ "print y1,\"(d)The nondimensional axial force acting on the divergent nozzle:\"\n",
+ "#total axial force acting on nozzle wall: Fsum=y+y1\n",
+ "Fsum=y+y1\n",
+ "print Fsum,\"(e)The total axial force(nondimensional) acting on the nozzle: \""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example2.13\n",
+ "(2.17433864456+0j) (a)The exit Mach no. M2:\n",
+ "(0.944524245306+0j) (b)The exit static pressure in terms of ambient pressure p2/p0:\n",
+ "0.254397897726 (c)The nondimensional axial force acting on the convergent nozzle:\n",
+ "(-0.184039795857+0j) (d)The nondimensional axial force acting on the divergent nozzle:\n",
+ "(0.070358101869+0j) (e)The total axial force(nondimensional) acting on the nozzle: \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate non dimensional axial force and negative sign on the axial force experienced by the compressor \n",
+ "p=20. ##p=p2/p1 i.e. compression ratio.\n",
+ "gm=1.4 ## gamma\n",
+ "##Vx1=Vx2 i.e. axial velocity remains same.\n",
+ "##calculations:\n",
+ "d=p**(1/gm) ##d=d2/d1 i.e. density ratio\n",
+ "A=1./d ## A=A2/A1 i.e. area ratio which is related to density ratio as: A2/A1=d1/d2.\n",
+ "##disp(A)\n",
+ "Fx=1.-p*A ##Fx=Fxwall/p1*A1 i.e nondimensional axial force.\n",
+ "print'%s %.7f %s'%(\"The non-dimensional axial force is :\",Fx,\"\")\n",
+ "print'%s %.f %s'%(\"The negative sign on the axial force experienced by the compressor structure signifies a thrust production by this component.\",Fx,\" \")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The non-dimensional axial force is : -1.3535469 \n",
+ "The negative sign on the axial force experienced by the compressor structure signifies a thrust production by this component. -1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg88"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 2.15\")\n",
+ "t=1.8 ##t=T2/T1\n",
+ "d=1./t ##d=d2/d1 i.e. density ratio\n",
+ "v=1./d ##v=Vx2/Vx1 axial velocity ratio\n",
+ "ndaf=1.-(v) ##nondimensional axial force acting on the combustor walls\n",
+ "print'%s %.1f %s'%(\"The nondimensional axial force acting on the combustor walls:\",ndaf,\"\")\n",
+ "print(\"Negative sign signifies a thrust production by the device\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 2.15\n",
+ "The nondimensional axial force acting on the combustor walls: -0.8 \n",
+ "Negative sign signifies a thrust production by the device\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex16-pg89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 2.16\")\n",
+ "t=0.79 ##T2/T1 i.e. turbione expansion\n",
+ "gm=1.4 ##gamma\n",
+ "##calculations:\n",
+ "d=t**(1./(gm-1.))\n",
+ "##print'%s %.1f %s'%(d)\n",
+ "a=1./d ##area ratio\n",
+ "p=d**gm ##pressure ratio\n",
+ "ndaf=1.-p*a\n",
+ "print'%s %.2f %s'%(\"The nondimensional axial force:\",ndaf,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 2.16\n",
+ "The nondimensional axial force: 0.21 \n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter2_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter2_1.ipynb
new file mode 100755
index 00000000..2834320c
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter2_1.ipynb
@@ -0,0 +1,778 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:66478056c6d699f5a89afa300d943ff97483cd2753d8c48646778e71c214a5f6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2-Compressible Flow with Friction and Heat: A Review"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is the gas constant of air and density of air\n",
+ "import math\n",
+ "#intilization variable\n",
+ "p=3*10**6 ; #pressure in Pa\n",
+ "t=298. ; #temperatue in kelvin\n",
+ "mw= 29.; #molecular weight in kg/mol\n",
+ "ru=8314.; #universal constant in J/kmol.K\n",
+ "r=ru/mw ;\n",
+ "#using perfect gas law to get density:\n",
+ "rho=p/(r*t) ;\n",
+ "print'%s %.2f %s'%('Gas constant of air in',r,'J/kg.K')\n",
+ "print'%s %.1f %s'%('Density of air in',rho,'kg/m^3')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gas constant of air in 286.69 J/kg.K\n",
+ "Density of air in 35.1 kg/m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#find out the exit temperature and exit density by various methods \n",
+ "import math\n",
+ "t1=288.; #inlet temperture in Kelvin\n",
+ "p1=100*10**3; #inlet pressure in Pa\n",
+ "p2=1*10**6 #exit pressure in Pa\n",
+ "gma=1.4; #gamma.\n",
+ "rg=287.; #gas constant in J/kg.K\n",
+ "t2=t1*(p2/p1)**((gma-1)/gma); #exit temperature \n",
+ "print'%s %.5f %s'%('Exit temperature in',t2,'K')\n",
+ "#first method to find exit density:\n",
+ "#application of perfect gas law at exit\n",
+ "rho=p2/(rg*t2); #rho= exit density.\n",
+ "print'%s %.7f %s'%('exit density at by method 1 in',rho,'kg/m^3')\n",
+ "#method 2: using isentropic relation between inlet and exit density.\n",
+ "rho1=p1/(rg*t1); #inlet density.\n",
+ "rho=rho1*(p2/p1)**(1/gma);\n",
+ "print'%s %.2f %s'%('exit density by method 2 in',rho,'kg/m^3')\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Exit temperature in 556.04095 K\n",
+ "exit density at by method 1 in 6.2663021 kg/m^3\n",
+ "exit density by method 2 in 6.27 kg/m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is the rate of mass flow through exit \n",
+ "import math\n",
+ "d1=1.2 #inlet 1 density in kg/m^3.\n",
+ "u1=25. # inlet 1 veocity in m/s.\n",
+ "a1=0.25 #inlet 1 area in m^2.\n",
+ "d2=0.2 #inlet 2 density in kg/m^3.\n",
+ "u2=225. #inlet 2 velocity in m/s.\n",
+ "a2=0.10 #inlet 2 area in m^2.\n",
+ "m1=d1*a1*u1; #rate of mass flow entering inlet 1.\n",
+ "m2=d2*u2*a2; #rate of mass flow entering inlet 2.\n",
+ "#since total mass in=total mass out,\n",
+ "m3=m1+m2; #m3=rate of mass flow through exit.\n",
+ "print'%s %.f %s'%('Rate of mass flow through exit in',m3,' kg/s')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of mass flow through exit in 12 kg/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is the axial force needed to support the plate and lateral force needed to support the plate\n",
+ "import math\n",
+ "u1=2 #speed of water going on the plate. X-component in m/s.\n",
+ "v1=0 #speed of water going on the plate. Y-component in m/s.\n",
+ "u2=1 #speed of water going on the plate. X-component in m/s.\n",
+ "v2=1.73 #speed of water going on the plate Y-coponent in m/s.\n",
+ "m=0.1 #rate of flow of mass of the water on the plate in kg/s.\n",
+ "#Using Newton's second law.\n",
+ "Fx=m*(u2-u1); #X-component of force exerted by water\n",
+ "print'%s %.1f %s'%('Axial force needed to support the plate in',Fx,'N')\n",
+ "Fy=m*(v2-v1); #Y-component of force exerted by water.\n",
+ "print'%s %.3f %s'%('Lateral force needed to support the plate in',Fy,'N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Axial force needed to support the plate in -0.1 N\n",
+ "Lateral force needed to support the plate in 0.173 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Exit total and static temperature \n",
+ "m=50 #mass flow rate in kg/s.\n",
+ "T1=298 #inlet temperature in K.\n",
+ "u1=150 #inlet velocity in m/s.\n",
+ "cp1=1004 #specific heat at constant pressure of inlet in J/kg.K.\n",
+ "gm=1.4 #gamma.\n",
+ "u2=400 # exit velocity in m/s.\n",
+ "cp2=1243. #specific heat at constant pressure of exit in J/kg.K.\n",
+ "q=42*10**6 #heat transfer rate in control volume in Watt.\n",
+ "me=-100*10**3 #mechanical power in Watt.\n",
+ "#first calculate total enthalpy at the inlet:\n",
+ "ht1=cp1*T1+(u1**2)/2; #ht1=Total inlet enthalpy.\n",
+ "#now applying conservation of energy equation:\n",
+ "ht2=ht1+((q-me)/m) #ht2=Total enthalpy at exit.\n",
+ "Tt2=ht2/cp2; #Tt2=Total exit temperature.\n",
+ "T2=Tt2-((u2**2)/(2*cp2)); #T2=static exit temperature.\n",
+ "print'%s %.5f %s'%('Exit total temperature in',Tt2,'K')\n",
+ "print'%s %.4f %s'%('Exit static temperature in',T2,'K')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Exit total temperature in 927.14562 K\n",
+ "Exit static temperature in 862.7852 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#intilization variable\n",
+ "import math\n",
+ "d=0.2 #Diameter in meters.\n",
+ "M1=0.2 #inlet Mach no.\n",
+ "p1=100*10**3 #inlet pressure in Pa\n",
+ "Tt1=288. #total inlet temperature in K\n",
+ "q=100*10**3 #rate of heat transfer to fluid in Watt.\n",
+ "rg=287. #Gas constant in J/kg.K.\n",
+ "gm=1.4 #gamma\n",
+ "#(a)inlet mass flow:\n",
+ "m=((gm/rg)**(1./2.))*(p1/(Tt1)**(1./2.))*3.14*(d*d)/4.*(M1/(1.+((gm-1.)/2.)*(M1**2.))**((gm+1.)/(2.*(gm-1.))));\n",
+ "\n",
+ "#(b)\n",
+ "qm=q/m; #Heat per unit mass.\n",
+ "#Tt1/Tcr=0.1736, pt1/Pcr=1.2346, ((Delta(s)/R)1=6.3402,p1/Pcr=2.2727)\n",
+ "Tcr=Tt1/0.1736;\n",
+ "\n",
+ "Pcr=p1/2.2727;\n",
+ "#From energy equation:\n",
+ "cp=(gm/(gm-1.))*rg;\n",
+ "Tt2=Tt1+(q/cp);\n",
+ "q1cr=cp*(Tcr-Tt1)/1000.;\n",
+ "M2=0.22;\n",
+ "#From table : pt2/Pcr=1.2281, (Delta(s)/R)2=5.7395, p2/Pcr=2.2477.\n",
+ "#The percent total pressure drop is (((pt1/Pcr)-(pt2/Pcr))/(pt1/Pcr))*100.\n",
+ "p2=2.2477*Pcr;\n",
+ "dp=((1.2346-1.2281)/1.2346)*100;\n",
+ "#Entropy rise is the difference between (delta(s)/R)1 and (delta(s)/R)2.\n",
+ "ds=6.3402-5.7395;\n",
+ "#Static pressure drop in duct due to heat transfer is\n",
+ "dps=((p1/Pcr)-(p2/Pcr))*Pcr/1000.;\n",
+ "print'%s %.7f %s'%('Mass flow rate through duct in',m,'kg/s')\n",
+ "print'%s %.4f %s'%('Critical heat flux that would choke the duct for the M1 in',q1cr,'kJ/kg')\n",
+ "print'%s %.2f %s'%('The exit Mach No.',M2,'')\n",
+ "print'%s %.7f %s'%('The percent total pressure loss',dp,'%')\n",
+ "print'%s %.4f %s'%('The entropy rise',ds,'')\n",
+ "print'%s %.7f %s'%('The static pressure drop in ',dps,'kPa')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass flow rate through duct in 2.5235091 kg/s\n",
+ "Critical heat flux that would choke the duct for the M1 in 1377.1556 kJ/kg\n",
+ "The exit Mach No. 0.22 \n",
+ "The percent total pressure loss 0.5264863 %\n",
+ "The entropy rise 0.6007 \n",
+ "The static pressure drop in 1.1000132 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#what is total exit temperautre if exit is choked and maximum heat released and fule to air ratio to thermally choke the combustor exit and total pressure loss\n",
+ "#intilization variable\n",
+ "import math\n",
+ "M1=3.0 ##Mach no. at inlet\n",
+ "pt1=45*10**3 ##Total pressure t inlet in Pa\n",
+ "Tt1=1800 ##Total temperature at inlet in K\n",
+ "hv=12000 ##Lower heating value of hydrogen kJ/kg\n",
+ "gm=1.3 ##gamma\n",
+ "R=0.287 ##in kJ/kg.K\n",
+ "##Using RAYLEIGH table for M1=3.0 and gamma=1.3, we get Tt1/Tcr=0.6032, pt1/Pcr=4.0073.\n",
+ "Tcr=Tt1/0.6032\n",
+ "Pcr=pt1/4.0073\n",
+ "##if exit is choked, Tt2=Tcr\n",
+ "Tt2=Tt1/0.6032;\n",
+ "cp=gm*R/(gm-1);\n",
+ "##Energy balance across burner:\n",
+ "Q1cr=cp*(Tcr-Tt1);\n",
+ "f=(Q1cr/120000);\n",
+ "##total pressure loss:\n",
+ "dpt=1-Pcr/pt1;\n",
+ "print'%s %.4f %s'%('Total exit temperature if exit is choked in',Tt2,'K')\n",
+ "print'%s %.4f %s'%('Maximum heat released per unit mass of air in',Q1cr, 'kJ/kg')\n",
+ "print'%s %.7f %s'%('fuel-to-air ratio to thermally choke the combustor exit',f,'')\n",
+ "print'%s %.7f %s'%('Total pressure loss (in fraction)',dpt,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total exit temperature if exit is choked in 2984.0849 K\n",
+ "Maximum heat released per unit mass of air in 1472.6069 kJ/kg\n",
+ "fuel-to-air ratio to thermally choke the combustor exit 0.0122717 \n",
+ "Total pressure loss (in fraction) 0.7504554 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the new inlet mach no and spilled flow at the inlet\n",
+ "#initilization variable \n",
+ "import math\n",
+ "Tt1=50.+460. ##Converting the inlet temp. to the absolute scale i.e. in degree R\n",
+ "M1=0.5 ##Initial inlet Mach no.\n",
+ "pt1=14.7 ##Units in psia\n",
+ "gm=1.4 ##gamma\n",
+ "R=53.34 ##units in ft.lbf/lbm.degree R\n",
+ "Tcr=Tt1/0.69136 \n",
+ "cp=gm*R/(gm-1)\n",
+ "##using energy equation:\n",
+ "Q1cr=cp*(Tcr-Tt1)\n",
+ "##since heat flux is 1.2(Q1cr).\n",
+ "q=1.2*Q1cr\n",
+ "Tt1cr1=Tt1+(Q1cr/cp) ##new exit total temp.\n",
+ "z=Tt1/Tt1cr1\n",
+ "M2=0.473\n",
+ "\n",
+ "f=M1/(1+((gm-1)/2)*M1**2)**((gm+1)/(2*(gm-1)))\n",
+ "\n",
+ "sm=((f*(M1)-f*(M2))/f*(M1))*100. ##sm=The % spilled flow at the inlet\n",
+ "print'%s %.5f %s'%('The new inlet Mach no.',M2,'')\n",
+ "print'%s %.5f %s'%('The % spilled flow at the inlet',sm,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The new inlet Mach no. 0.47300 \n",
+ "The % spilled flow at the inlet 1.35000 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#intilization variable\n",
+ "#calculate choking length abd exit mach no and total pressure loss and the static pressure and impulse due to friction \n",
+ "import math\n",
+ "d=0.2 ##diameter in meters.\n",
+ "l=0.2 ##length in meters.\n",
+ "Cf=0.005 ##average wall friction coefficient.\n",
+ "M1=0.24 ##inlet mach no.\n",
+ "gm=1.4 ##gamma.\n",
+ "##From FANNO tbale\n",
+ "L1cr=(9.3866*d/2)/(4*Cf);\n",
+ "L2cr=L1cr-l;\n",
+ "##from FANNO table\n",
+ "M2=0.3;\n",
+ "x=2.4956;\n",
+ "y=2.0351;\n",
+ "a=4.5383;\n",
+ "b=3.6191;\n",
+ "i1=2.043;\n",
+ "i2=1.698;\n",
+ "##% total pressure drop due to friction:\n",
+ "dpt=(x-y)/(x)*100;\n",
+ "##static pressur drop:\n",
+ "dps=(a-b)/a*100;\n",
+ "##Loss pf fluid:\n",
+ "lf=(i2-i1);\n",
+ "print'%s %.3f %s'%('The choking length of duct in',L1cr,'m')\n",
+ "print'%s %.1f %s'%('The exit Mach no.',M2,'')\n",
+ "print'%s %.6f %s'%('% total pressure loss',dpt,'')\n",
+ "print'%s %.5f %s'%('The static pressure drop in',dps,'%')\n",
+ "print'%s %.3f %s'%('Loss of impulse due to friction(I* times)',lf,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The choking length of duct in 46.933 m\n",
+ "The exit Mach no. 0.3 \n",
+ "% total pressure loss 18.452476 \n",
+ "The static pressure drop in 20.25428 %\n",
+ "Loss of impulse due to friction(I* times) -0.345 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initilization variable\n",
+ "import math \n",
+ "#caluclate maximum length of the duct that will support given in inlet condition and the new inlet condition and flow drop \n",
+ "M1=0.5\n",
+ "a=2. ## area of cross section units in cm^2\n",
+ "Cf=0.005 ##coefficient of skin friction\n",
+ "gm=1.4 ##gamma\n",
+ "##Calculations\n",
+ "c=2.*(2.+1.); ##Parameter of surface.\n",
+ "##From FANNO table: 4*Cf*L1cr/Dh=1.0691;\n",
+ "Dh=4.*a/c; ##Hydrolic diameter.\n",
+ "L1cr=1.069*Dh/(4.*Cf);\n",
+ "##maximum length will be L1cr.\n",
+ "##For new length(i.e. 2.16*L1cr), Mach no. M2 from FANNO table, M2=0.4;.\n",
+ "M2=0.4;\n",
+ "##the inlet total pressue and temp remains the same, therefore the mass flow rate in the duct is proportional to f(M):\n",
+ "\n",
+ "f=0.5/(1.+((gm-1.)/2.)*0.5**2.)**((gm+1.)/(2.*(gm-1.)))\n",
+ "#endfunction\n",
+ "dm=(f*(M1)-f*(M2))/f*(M1)*100.+10;\n",
+ "print'%s %.3f %s'%(\"(a)Maximum length of duct that will support given inlet condition(in cm):\",L1cr,\"\")\n",
+ "print'%s %.3f %s'%(\"(b)The new inlet condition mach no. M2:\",M2,\"\")\n",
+ "print'%s %.3f %s'%(\"(c)% inlet mass flow drop due to the longer length of the duct:\",dm,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)Maximum length of duct that will support given inlet condition(in cm): 71.267 \n",
+ "(b)The new inlet condition mach no. M2: 0.400 \n",
+ "(c)% inlet mass flow drop due to the longer length of the duct: 15.000 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy\n",
+ "M1=0.7;\n",
+ "dpt=0.99; ##pt2/pt1=dpt.\n",
+ "gm=1.4; ##gamma\n",
+ "A2=1.237 \n",
+ "a=1/1.237;\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "##Calculations:\n",
+ "\n",
+ "k=(1./dpt)*(a)*(M1/(1.+(0.2*(M1)**2.))**3.);\n",
+ "po=([k*0.008,0,k*.12,0,k*.6,-1,k])\n",
+ "W=numpy.roots(po)\n",
+ "i=0;\n",
+ "s=1;\n",
+ "M2=W[4]\n",
+ "print -M2,\"(a)The exit Mach no. M2:\"\n",
+ "\n",
+ "\n",
+ "##p=p2/p1 i.e. static pressure ratio\n",
+ "p=dpt*((1.+(gm-1.)*(M1)**2./2.)/(1.+(gm-1.)*(M2)**2./2.))**(gm/(gm-1.))\n",
+ "##disp(p)\n",
+ "Cpr=(2./(gm*(M1)**2.))*(p-1.) ##Cpr is static pressure recovery : (p2-p1)/q1.\n",
+ "print\"%s %.2f %s\"%(\"(b)The static pressure recovery in the diffuser:\",-Cpr,\"\")\n",
+ "##Change in fluid impulse:\n",
+ "##Fxwalls=I2-I1=A1p1(1+gm*M1**2)-A2p2(1+gm*M2**2)\n",
+ "##Let, u=Fxwall/(p1*A1)\n",
+ "u=1.+gm*(M1)**2.-(1.237)*(p)*(1.+(gm*(M2)**2.))\n",
+ "print\"%s %.2f %s\"%(\"(c)The force acting on the diffuser inner wall nondimensionalized by inlet static pressure and area:\",-u,\"\")\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(-1.70274823568-0j) (a)The exit Mach no. M2:\n",
+ "(b)The static pressure recovery in the diffuser: 2.11 \n",
+ "(c)The force acting on the diffuser inner wall nondimensionalized by inlet static pressure and area: 0.05 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example2.13\"\n",
+ "import numpy\n",
+ "M1=0.5 #inlet mach no.\n",
+ "p=10. #(p=pt1/p0) whaere pt1 is inlet total pressure and p0 is ambient pressure.\n",
+ "dpc=0.01 #dpc=(pt1-Pth)/pt1 i.e. total pressure loss in convergant section\n",
+ "f=0.99 #f=Pth/pt1\n",
+ "dpd=0.02 #dpd=(Pth-pt2)/Pth i.e. total pressure loss in the divergent section\n",
+ "j=1/0.98 #j=Pth/pt2\n",
+ "A=2. #a=A2/Ath. nozzle area expansion ratio.\n",
+ "gm=1.4 # gamma\n",
+ "R=287. #J/kg.K universal gas constant.\n",
+ "#Calculations:\n",
+ "#\"th\"\" subscript denotes throat.\n",
+ "Mth=1. #mach no at thorat is always 1.\n",
+ "\n",
+ "k=(j)*(1./A)*(Mth/(1+(0.2*(Mth)**2))**3)\n",
+ "po=([k*0.008,0,k*.12,0,k*.6,-1,k])\n",
+ "W=numpy.roots(po)\n",
+ "i=0;\n",
+ "s=1;\n",
+ "M2=W[4]\n",
+ "print M2,\"(a)The exit Mach no. M2:\"\n",
+ "#p2/pt2=1/(1+(gm-1)/2*M2**2)**(gm/(gm-1)) \n",
+ "#pt2=(pt2/Pth)*(Pth/pt1)*(pt1/p0)*p0\n",
+ "#let pr=p2/p0\n",
+ "pr=((1/j)*f*p)/(1+(0.2*(M2)**2))**(gm/(gm-1))\n",
+ "\n",
+ "print pr,\"(b)The exit static pressure in terms of ambient pressure p2/p0:\"#Fxwall=-Fxliquid=I1-I2\n",
+ "\n",
+ "#let r=A1/Ath\n",
+ "r=(f)*(1/M1)*(((1+((gm-1)/2)*(M1)**2)/((gm+1)/2))**((gm+1)/(2*(gm-1))))\n",
+ "#disp(r)\n",
+ "#Psth is throat static pressure.\n",
+ "#z1=Psth/pt1=f/((gm+1)/2)**(gm/(gm-1))\n",
+ "z1=f/((gm+1)/2)**(gm/(gm-1))\n",
+ "#disp(z1)\n",
+ "#p1 is static pressure at inlet\n",
+ "#s1=p1/pt1\n",
+ "s1=1/(1+((gm-1)/2)*(M1)**2)**(gm/(gm-1))\n",
+ "#disp(s1)\n",
+ "#let y=Fxcwall/(Ath*pt1), where Fxwall is Fx converging-wall\n",
+ "y=s1*r*(1+(gm*(M1)**2))-(z1*(1+(gm*(Mth)**2)))\n",
+ "print y,\"(c)The nondimensional axial force acting on the convergent nozzle:\"\n",
+ "#similarly finding nondimensional force on the nozzle DIVERGENT section\n",
+ "#y1=Fxdiv-wall/Ath*pt1\n",
+ "#f1=p2/pt1\n",
+ "f1=pr*(1/p)\n",
+ "#disp(f1)\n",
+ "y1=z1*(1+(gm*(Mth)**2))-f1*A*(1+(gm*(M2)**2))\n",
+ "print y1,\"(d)The nondimensional axial force acting on the divergent nozzle:\"\n",
+ "#total axial force acting on nozzle wall: Fsum=y+y1\n",
+ "Fsum=y+y1\n",
+ "print Fsum,\"(e)The total axial force(nondimensional) acting on the nozzle: \""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example2.13\n",
+ "(2.17433864456+0j) (a)The exit Mach no. M2:\n",
+ "(0.944524245306+0j) (b)The exit static pressure in terms of ambient pressure p2/p0:\n",
+ "0.254397897726 (c)The nondimensional axial force acting on the convergent nozzle:\n",
+ "(-0.184039795857+0j) (d)The nondimensional axial force acting on the divergent nozzle:\n",
+ "(0.070358101869+0j) (e)The total axial force(nondimensional) acting on the nozzle: \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate non dimensional axial force and negative sign on the axial force experienced by the compressor \n",
+ "p=20. ##p=p2/p1 i.e. compression ratio.\n",
+ "gm=1.4 ## gamma\n",
+ "##Vx1=Vx2 i.e. axial velocity remains same.\n",
+ "##calculations:\n",
+ "d=p**(1/gm) ##d=d2/d1 i.e. density ratio\n",
+ "A=1./d ## A=A2/A1 i.e. area ratio which is related to density ratio as: A2/A1=d1/d2.\n",
+ "##disp(A)\n",
+ "Fx=1.-p*A ##Fx=Fxwall/p1*A1 i.e nondimensional axial force.\n",
+ "print'%s %.7f %s'%(\"The non-dimensional axial force is :\",Fx,\"\")\n",
+ "print'%s %.f %s'%(\"The negative sign on the axial force experienced by the compressor structure signifies a thrust production by this component.\",Fx,\" \")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The non-dimensional axial force is : -1.3535469 \n",
+ "The negative sign on the axial force experienced by the compressor structure signifies a thrust production by this component. -1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg88"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 2.15\")\n",
+ "t=1.8 ##t=T2/T1\n",
+ "d=1./t ##d=d2/d1 i.e. density ratio\n",
+ "v=1./d ##v=Vx2/Vx1 axial velocity ratio\n",
+ "ndaf=1.-(v) ##nondimensional axial force acting on the combustor walls\n",
+ "print'%s %.1f %s'%(\"The nondimensional axial force acting on the combustor walls:\",ndaf,\"\")\n",
+ "print(\"Negative sign signifies a thrust production by the device\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 2.15\n",
+ "The nondimensional axial force acting on the combustor walls: -0.8 \n",
+ "Negative sign signifies a thrust production by the device\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex16-pg89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 2.16\")\n",
+ "t=0.79 ##T2/T1 i.e. turbione expansion\n",
+ "gm=1.4 ##gamma\n",
+ "##calculations:\n",
+ "d=t**(1./(gm-1.))\n",
+ "##print'%s %.1f %s'%(d)\n",
+ "a=1./d ##area ratio\n",
+ "p=d**gm ##pressure ratio\n",
+ "ndaf=1.-p*a\n",
+ "print'%s %.2f %s'%(\"The nondimensional axial force:\",ndaf,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 2.16\n",
+ "The nondimensional axial force: 0.21 \n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter3.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter3.ipynb
new file mode 100755
index 00000000..803eff7e
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter3.ipynb
@@ -0,0 +1,240 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c3d58d095c748f580c55e0c0973b03d491cabb5f398c413d6d8d00dcbb57dc20"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter3-Engine thurst performance parameters"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate The ram drag for given engine in kN\n",
+ "M0=0.85 ##Mach no.\n",
+ "a0=300. ##speed of sound in m/s\n",
+ "m=50. ##Air mass flow rate in kg/s\n",
+ "##Calculations\n",
+ "V0=M0*a0 ##Flight speed\n",
+ "Dr=m*V0 ##Ram drag\n",
+ "Dk=Dr/1000. ##in kN\n",
+ "print'%s %.2f %s'%(\"The ram drag for given engine in kN:\",Dk,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ram drag for given engine in kN: 12.75 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate gross thurst of the core and fan nozzles\n",
+ "\n",
+ "Cv=450. ##exhaust velocity at core in m/s\n",
+ "Nv=350. ##exhaust velocity at nozzle in m/s\n",
+ "Cm=50. ##Mass flow rate through core in kg/s\n",
+ "Nm=350. ##Mass flow rate through nozzle in kg/s\n",
+ "##Calculations:\n",
+ "##Newton's second law\n",
+ "Fgc=Cm*Cv ##gross thrust of the core\n",
+ "Fgf=Nm*Nv ##gross thrust of the nozzle fan\n",
+ "print'%s %.f %s'%(\"Gross thrust of the core in\",Fgc,\"N\")\n",
+ "print'%s %.f %s'%(\"Gross thrust of the fan nozzles in\",Fgf,\"N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gross thrust of the core in 22500 N\n",
+ "Gross thrust of the fan nozzles in 122500 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate The rocket gross thrust and pressure thurst\n",
+ "V9=4000 ##in m/s\n",
+ "p9=200*10**3 ##in Pa\n",
+ "p0=100*10**3 ## in Pa\n",
+ "D=2. ##in meter\n",
+ "m=200.+50. ## in kg/s\n",
+ "A=math.pi*(D**2)/4. ##nozzle exit area\n",
+ "##let p=(p9-p0)*A i.e. pressure thrust\n",
+ "p=(p9-p0)*A\n",
+ "mt=m*V9 ##momentum thrust.\n",
+ "t=p+mt ##rocket gross thrust\n",
+ "print'%s %.2f %s'%(\"The pressure thrust in\",p,\"N\")\n",
+ "print'%s %.1f %s'%(\"The rocket gross thrust in\",t,\"N\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The pressure thrust in 314159.27 N\n",
+ "The rocket gross thrust in 1314159.3 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte engine thurst takeoff\n",
+ "m0=100. ##air flow rate in kg/s\n",
+ "V0=0. ##takeoff assumptions in m/s\n",
+ "mf=2. ##2% of fuel-to-air ratio\n",
+ "Qr=43000. ##Heating value of typical hydrocarbon fuel in kJ/kg\n",
+ "V9=900. ##high speed exhaust jet (in m/s)\n",
+ "e=((m0+mf)*(V9)**2.)/(2.*(mf)*(Qr)*1000.)\n",
+ "m9=m0+mf\n",
+ "t=m9*V9 ## the engine thrust at takeoff.\n",
+ "print'%s %.f %s'%(\"The engine thrust at takeoff in SI units\",t,\"N\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The engine thrust at takeoff in SI units 91800 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg117"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Engine propulsive efficiency\n",
+ "V9=900. ## in m/s\n",
+ "V0=200. ## in m/s\n",
+ "e=2./(1.+(V9/V0))\n",
+ "print'%s %.7f %s'%(\"Engine propulsive efficiency\",e,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Engine propulsive efficiency 0.3636364 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg118"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#estimate Propulsive efficiency\n",
+ "import math\n",
+ "V9=250. ##in m/s\n",
+ "V0=200. ##in m/s\n",
+ "##Calculations:\n",
+ "e=2./(1.+(V9/V0))\n",
+ "print'%s %.3f %s'%(\"Propulsive efficiency:\",e,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Propulsive efficiency: 0.889 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter3_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter3_1.ipynb
new file mode 100755
index 00000000..9b328651
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter3_1.ipynb
@@ -0,0 +1,240 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e5ce604b49bc138fd65826c495598b13c742523cc595beeb292a2a1aa22f7c49"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter3-Engine Thrust and Performance Parameters"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate The ram drag for given engine in kN\n",
+ "M0=0.85 ##Mach no.\n",
+ "a0=300. ##speed of sound in m/s\n",
+ "m=50. ##Air mass flow rate in kg/s\n",
+ "##Calculations\n",
+ "V0=M0*a0 ##Flight speed\n",
+ "Dr=m*V0 ##Ram drag\n",
+ "Dk=Dr/1000. ##in kN\n",
+ "print'%s %.2f %s'%(\"The ram drag for given engine in kN:\",Dk,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ram drag for given engine in kN: 12.75 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate gross thurst of the core and fan nozzles\n",
+ "\n",
+ "Cv=450. ##exhaust velocity at core in m/s\n",
+ "Nv=350. ##exhaust velocity at nozzle in m/s\n",
+ "Cm=50. ##Mass flow rate through core in kg/s\n",
+ "Nm=350. ##Mass flow rate through nozzle in kg/s\n",
+ "##Calculations:\n",
+ "##Newton's second law\n",
+ "Fgc=Cm*Cv ##gross thrust of the core\n",
+ "Fgf=Nm*Nv ##gross thrust of the nozzle fan\n",
+ "print'%s %.f %s'%(\"Gross thrust of the core in\",Fgc,\"N\")\n",
+ "print'%s %.f %s'%(\"Gross thrust of the fan nozzles in\",Fgf,\"N\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Gross thrust of the core in 22500 N\n",
+ "Gross thrust of the fan nozzles in 122500 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate The rocket gross thrust and pressure thurst\n",
+ "V9=4000 ##in m/s\n",
+ "p9=200*10**3 ##in Pa\n",
+ "p0=100*10**3 ## in Pa\n",
+ "D=2. ##in meter\n",
+ "m=200.+50. ## in kg/s\n",
+ "A=math.pi*(D**2)/4. ##nozzle exit area\n",
+ "##let p=(p9-p0)*A i.e. pressure thrust\n",
+ "p=(p9-p0)*A\n",
+ "mt=m*V9 ##momentum thrust.\n",
+ "t=p+mt ##rocket gross thrust\n",
+ "print'%s %.2f %s'%(\"The pressure thrust in\",p,\"N\")\n",
+ "print'%s %.1f %s'%(\"The rocket gross thrust in\",t,\"N\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The pressure thrust in 314159.27 N\n",
+ "The rocket gross thrust in 1314159.3 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte engine thurst takeoff\n",
+ "m0=100. ##air flow rate in kg/s\n",
+ "V0=0. ##takeoff assumptions in m/s\n",
+ "mf=2. ##2% of fuel-to-air ratio\n",
+ "Qr=43000. ##Heating value of typical hydrocarbon fuel in kJ/kg\n",
+ "V9=900. ##high speed exhaust jet (in m/s)\n",
+ "e=((m0+mf)*(V9)**2.)/(2.*(mf)*(Qr)*1000.)\n",
+ "m9=m0+mf\n",
+ "t=m9*V9 ## the engine thrust at takeoff.\n",
+ "print'%s %.f %s'%(\"The engine thrust at takeoff in SI units\",t,\"N\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The engine thrust at takeoff in SI units 91800 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg117"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Engine propulsive efficiency\n",
+ "V9=900. ## in m/s\n",
+ "V0=200. ## in m/s\n",
+ "e=2./(1.+(V9/V0))\n",
+ "print'%s %.7f %s'%(\"Engine propulsive efficiency\",e,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Engine propulsive efficiency 0.3636364 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg118"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#estimate Propulsive efficiency\n",
+ "import math\n",
+ "V9=250. ##in m/s\n",
+ "V0=200. ##in m/s\n",
+ "##Calculations:\n",
+ "e=2./(1.+(V9/V0))\n",
+ "print'%s %.3f %s'%(\"Propulsive efficiency:\",e,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Propulsive efficiency: 0.889 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter4.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter4.ipynb
new file mode 100755
index 00000000..b4a1966d
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter4.ipynb
@@ -0,0 +1,1184 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0a80225b8652314563d8182c8cf925473c13b1ee0f9972e6bc89d68aaeb908fe"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter4- Aircraft Gas turbine Engines "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 4.1\");\n",
+ "M0=0.85\n",
+ "p0=10000. ##ambient static pressure in Pa\n",
+ "pt2=15.88*10**3. ##total pressure at the engine face in Pa\n",
+ "gm=1.4 ##gamma\n",
+ "pt0=p0*((1.+((gm-1.)*(M0)**2.)/2.)**(gm/(gm-1.)))\n",
+ "Pr=pt2/pt0 ##Pr=total pressure recovery\n",
+ "ie=((pt2/p0)**((gm-1.)/gm)-1.)/(((gm-1.)/2)*M0**2.) ##inlet adiabatic efficiency.\n",
+ "de=-math.log(Pr)\n",
+ "print'%s %.3f %s'%(\"(a)The inlet total pressure recovery:\",Pr,\"\")\n",
+ "print'%s %.3f %s'%(\"(b)The inlet adiabatic efficiency:\",ie,\"\")\n",
+ "print'%s %.4f %s'%(\"(c)The nondimensional entropy rise caused by the inlet:\",de,\"\")\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.1\n",
+ "(a)The inlet total pressure recovery: 0.990 \n",
+ "(b)The inlet adiabatic efficiency: 0.978 \n",
+ "(c)The nondimensional entropy rise caused by the inlet: 0.0099 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate compressor exit total temperature and adiabatic efficency and compressor shaft power\n",
+ "print(\"Example 4.2\")\n",
+ "m=50. ##mass flow rate in kg/s\n",
+ "ec=0.9 ##compressore polytropic efficiency\n",
+ "Tt2=288. ##inlet total temp in K.\n",
+ "pt2=100000. ## inlet total pressure in Pa\n",
+ "gm=1.4 ##gama\n",
+ "cp=1004. ##specific heat in J/kg.K\n",
+ "p=35. ##total pressure ratio\n",
+ "tr=p**((gm-1.)/(gm*ec)) ##relation between total pressure and temp ratios\n",
+ "Tt3=Tt2*tr ##Total exit temp\n",
+ "cae=(p**((gm-1.)/gm)-1.)/(tr-1.) ##compressor adiabatic efficiency\n",
+ "pc=m*cp*(Tt3-Tt2)/10**6. ## compressor shaft power\n",
+ "print'%s %.1f %s'%(\"(a)Compressor exit total temperature in\",Tt3,\" K :\")\n",
+ "print'%s %.2f %s'%(\"(b)Compressor adiabatic efficiency:\",cae,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Comprssor shaft power in\",pc,\" MW :\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.2\n",
+ "(a)Compressor exit total temperature in 890.4 K :\n",
+ "(b)Compressor adiabatic efficiency: 0.84 \n",
+ "(c)Comprssor shaft power in 30.2 MW :\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte fuel to air ratio and combustor exit temperature\n",
+ "print(\"Example 4.3\")\n",
+ "Tt3=800.##in K\n",
+ "pt3=2*10**6. ## in Pa\n",
+ "m=50. ##air mass flow rate in kg/s\n",
+ "gm=1.4 ##gamma\n",
+ "cp3=1004. ##specific heat at inlet in j/kg.K.\n",
+ "Qr=42000. ##heating valuein kJ/kg\n",
+ "mf=1. ##fuel flow rate in kg/s\n",
+ "be=0.995 ##burner efficiency\n",
+ "p=0.96 ##p=pt4/pt3\n",
+ "cp4=1156. ##specific heat at exit in J/kg.K\n",
+ "f=mf/m ## fuel-to-air ratio\n",
+ "Tt4=(((cp3/cp4)*Tt3)+((f*Qr*be*1000.)/cp4))/(1.+f)\n",
+ "pt4=p*pt3/10**6.\n",
+ "print'%s %.3f %s'%(\"(a)Fuel-to-air ratio :\",f,\"\")\n",
+ "print'%s %.1f %s'%(\"b(1) combustor exit total temperature in\",Tt4,\" K:\")\n",
+ "print'%s %.2f %s'%(\"b(2)combustor exit total pressure in\",pt4,\" MPa\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.3\n",
+ "(a)Fuel-to-air ratio : 0.020 \n",
+ "b(1) combustor exit total temperature in 1390.0 K:\n",
+ "b(2)combustor exit total pressure in 1.92 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg149"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate turbine exit temperature and turbine polytropic efficency and turbine exit total pressure and turbine shaft power\n",
+ "print(\"Example 4.4\")\n",
+ "m=50. ##air mass flow in kg/s\n",
+ "mf=1. ## fuel mass flow in kg/s\n",
+ "tae=0.88 ##turbine adiabatic efficiency\n",
+ "pe=45*10**6 ##shaft power in Watt\n",
+ "cp4=1156 ## in J/kg.K\n",
+ "Tt4=1390.0197 ## in K\n",
+ "pt4=1.92 ##units in MPa\n",
+ "cp5=cp4##specific heat\n",
+ "mt=m+mf##total mass\n",
+ "gm=1.33 ##gamma\n",
+ "ht5=cp4*Tt4/1000.-(pe/(mt*1000.)) \n",
+ "##print'%s %.1f %s'%(ht5)\n",
+ "Tt5=ht5/(cp5/1000.)\n",
+ "y=Tt5/Tt4 ##turbine expansion parameter\n",
+ "tpe=math.log(y)/math.log(1.-(1.-y)/tae)\n",
+ "pr=y**(gm/((gm-1.)*tpe))\n",
+ "pt5=pr*pt4*1000. ## turbine total exit pressure\n",
+ "pt=mt*cp5*(Tt4-Tt5)/10**6.\n",
+ "print'%s %.1f %s'%(\"(a)Turbine exit total temperature in\",Tt5,\" K :\")\n",
+ "print'%s %.1f %s'%(\"(b)Turbine polytropic efficiency:\",tpe,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Turbine exit total pressure in \",pt5,\"kPa :\")\n",
+ "print'%s %.1f %s'%(\"(d)Turbine shaft power based on turbine expansion delta(Tt) in \",pt,\"MW:\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.4\n",
+ "(a)Turbine exit total temperature in 626.7 K :\n",
+ "(b)Turbine polytropic efficiency: 0.8 \n",
+ "(c)Turbine exit total pressure in 37.3 kPa :\n",
+ "(d)Turbine shaft power based on turbine expansion delta(Tt) in 45.0 MW:\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the mixed out total temperature \n",
+ "print(\"Example 4.5\")\n",
+ "mc=0.5 ##mass flow rate of coolant in kg/s\n",
+ "mg=50. ##mass flow rate of hot gas in kg/s\n",
+ "htg=1850. ## total enthalpy of gas in kJ/kg\n",
+ "htc=904. ##total enthalpy of coolant in kJ/kg\n",
+ "Cpmixout=1594. ##in j/kg.K\n",
+ "##Energy equation between mixed out state and mixed out state and the hot and cold stream solves this problem:\n",
+ "Htmixout=(mc*htc+mg*htg)/(mc+mg)\n",
+ "Ttmixout=Htmixout/(Cpmixout/1000.)\n",
+ "print'%s %.1f %s'%(\"Mixed-out total enthalpy after the nozzle in \",Htmixout,\"kJ/kg :\")\n",
+ "print'%s %.1f %s'%(\"Mixed out temperature in\",Ttmixout,\" K :\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.5\n",
+ "Mixed-out total enthalpy after the nozzle in 1840.6 kJ/kg :\n",
+ "Mixed out temperature in 1154.7 K :\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the entropy change across turbine nozzle blade row\n",
+ "print(\"Example 4.6\")\n",
+ "Cpg=1156. ##in J/kg.K\n",
+ "Pt4=1.92 ##in MPa\n",
+ "gm=1.33 ##gamma\n",
+ "htg=1850. ##from example 4.5 in kJ/kg\n",
+ "htc=904. ##from example 4.5 in kJ/kg\n",
+ "Cpc=1.04 ##in kJ/kg.K\n",
+ "pl=.02 ##total pressure loss ratio\n",
+ "Ttmixout=1154.7 ##from example 4.5 in K.\n",
+ "##Calculations:\n",
+ "Ttg=htg/(Cpg/1000.) ##hotgas total temp in K.\n",
+ "Tt4=Ttg ##same as nozzle entrance temp.\n",
+ "Ttc=htc/Cpc ##coolant total temp.\n",
+ "Ptmixout=(1.-pl)*Pt4 ##mixed-out total temp.\n",
+ "##using gibbs equation\n",
+ "de=((gm/(gm-1))*math.log((Ttmixout/Tt4)))-math.log(Ptmixout/Pt4)\n",
+ "print'%s %.1f %s'%(\"Entropy change across the turbine nozzle blade row:\",de,\"\")\n",
+ "print(\"The negative sign of entropy change is due to cooling.\")\n",
+ "print(\"*Ans in book is incorrect as Ptmixout is calculated wrong!\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.6\n",
+ "Entropy change across the turbine nozzle blade row: -1.3 \n",
+ "The negative sign of entropy change is due to cooling.\n",
+ "*Ans in book is incorrect as Ptmixout is calculated wrong!\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate nozzle totalpressure ratio and nozzle area ratio and nozzle exit mach number\n",
+ "print(\"Example 4.7\")\n",
+ "NPR=10. ##Pressure ratio\n",
+ "gm=1.33 ##gamma\n",
+ "Cp=1156. ## in J/kg.K\n",
+ "ae=0.94 ##adiabatic efficiency\n",
+ "tpr=((NPR)**((gm-1.)/gm)-(ae*((NPR)**((gm-1.)/gm)-1.)))**((-1)*(gm/(gm-1.)))\n",
+ "print'%s %.1f %s'%(\"(a)Nozzle total pressure ratio:\",tpr,\"\")\n",
+ "de=-math.log(tpr) ##entropy rise inadiabatic nozzle\n",
+ "##let p=pt9/p9\n",
+ "p=tpr*NPR*1 ##p=pt9/p9; p0=p9 foe expanded nozzle\n",
+ "M9=((2/(gm-1))*((p)**(((gm-1)/gm))-1))**(1/2.)\n",
+ "print'%s %.3f %s'%(\"(c)Nozzle exit Mach no. M9 (perfectly expanded)\",M9,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.7\n",
+ "(a)Nozzle total pressure ratio: 0.8 \n",
+ "(c)Nozzle exit Mach no. M9 (perfectly expanded) 2.048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg167"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate propulsive efficency of turbojet engine \n",
+ "print(\"Example4.10\")\n",
+ "Vt0=160. ##takeoff velocity in m/s\n",
+ "Vt9=1000. ##takeoff velocity in m/s\n",
+ "Vc0=800. ##cruise velocity in m/s\n",
+ "Vc9=1000. ##cruise velocity in m/s\n",
+ "##using approximation: engine propulsive efficiencfy(pe)=2/(1+V9/V0)\n",
+ "pet=2./(1.+(Vt9/Vt0)) ##takeoff\n",
+ "pec=2./(1.+(Vc9/Vc0)) ##cruise\n",
+ "print'%s %.3f %s'%(\"Engine propulsive efficiency while takeoff:\",pet,\"\")\n",
+ "print'%s %.3f %s'%(\"Engine propulsive efficiency while cruise:\",pec,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example4.10\n",
+ "Engine propulsive efficiency while takeoff: 0.276 \n",
+ "Engine propulsive efficiency while cruise: 0.889 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate total pressure and temperature throughout the engine aswell as fuel to air ratio and non-dimensional specific thrust and thurst specifi fuel consumption and thermal and propulsive efficency\n",
+ "print(\"Example 4.11\")\n",
+ "M0=2.0 ##Mach no.\n",
+ "p0=10.##units in kPa\n",
+ "T0=228. ##in K\n",
+ "gmc=1.4 ##gamma compressor\n",
+ "Cpc=1004. ##J/kg.K specific heat of compressor\n",
+ "pd=0.88 ##compression ratio of diffuser\n",
+ "pc=12. ## compression ratio of compressor\n",
+ "ec=0.9 ##adiabatic efficiency of compressor\n",
+ "tl=8. ##enthalpy ratio\n",
+ "Qr=42000. ##kJ/kg\n",
+ "eb=0.98 ##adiabatic efficiency of burner\n",
+ "pb=0.95 ##compression ratio of burner\n",
+ "gmt=1.33 ##gamma turbne\n",
+ "Cpt=1156. ##J/kg.K specific heat turbine\n",
+ "et=0.82 ##adiabatic efficiency of turbine\n",
+ "em=0.995 \n",
+ "tlAB=11. ##enthalpy ratio of afterburner (AB==AfterBurner)\n",
+ "QrAB=42000. ##kJ/kg\n",
+ "eAB=0.98\n",
+ "pAB=0.93\n",
+ "gmAB=1.3 ## gama AB\n",
+ "CpAB=1243. ##J/kg.K\n",
+ "pn=0.93\n",
+ "a0=((gmc-1.)*Cpc*T0)**(1/2.)\n",
+ "V0=M0*a0\n",
+ "pt0=p0*(1.+(((gmc-1.)*(M0)**2.)/2.))**(gmc/(gmc-1.)) ##total flight pressure\n",
+ "Tt0=T0*(1.+(((gmc-1.)*(M0)**2)/2.)) ##total flight temp\n",
+ "Tt2=Tt0 ##Adiabatic inlets\n",
+ "pt2=pt0*pd ## in kPa\n",
+ "pt3=pt2*pc ##compressor exit total pressure\n",
+ "k2=((gmc-1.)/(gmc*ec))\n",
+ "##print'%s %.1f %s'%(k2)\n",
+ "tc=pc**k2 ##relation between temp and pressure ratios\n",
+ "##print'%s %.1f %s'%(tc)\n",
+ "Tt3=Tt2*tc ##total temp at compressor exit\n",
+ "Tt4=Cpc*T0*tl/Cpt ##combustor exit total temp.\n",
+ "pt4=pt3*pb ##combustor exit pressure\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb*1000.-Cpt*Tt4) ##fuel-to-air ratio in burner\n",
+ "##print'%s %.1f %s'%(f)\n",
+ "Tt5=Tt4-(Cpc*((Tt3-Tt2)/(Cpt*em*(1.+f)))) ## turbine exit total temp\n",
+ "tt=Tt5/Tt4 ##temp ratio in turbine\n",
+ "pt=tt**(gmt/(et*(gmt-1.)))\n",
+ "pt5=pt4*pt ##in kPa\n",
+ "pt7=pt5*pAB\n",
+ "Tt7=Cpc*T0*tlAB/CpAB ##afterburner exit\n",
+ "fAB=(1+f)*((CpAB*Tt7)-(Cpt*Tt5))/((QrAB*eAB*1000.)-(CpAB*Tt7))\n",
+ "##print'%s %.1f %s'%(fAB)\n",
+ "pt9=pt7*pn ##in kPA\n",
+ "Tt9=Tt7 ##adiabatic flow in nozzle\n",
+ "p9=p0\n",
+ "M9=((2./(gmAB-1.))*((pt9/p9)**(((gmAB-1)/gmAB))-1))**(1/2.) ##nozzle exit\n",
+ "##print'%s %.1f %s'%(M9)\n",
+ "T9=Tt9/(1.+((gmAB-1)*(M9)**2)/2.)\n",
+ "a9=((gmAB-1.)*CpAB*T9)**(1/2.)\n",
+ "##print'%s %.1f %s'%(a9)\n",
+ "V9=M9*a9\n",
+ "##Performance parameters:\n",
+ "st=(1.+f+fAB)*V9-V0 ##st=Fn/m0; specific thrust when nozzle is perfectly expanded\n",
+ "ndst=((1.+f+fAB)*V9/a0)-M0 ##ndst=Fn/m0*ao ; nondimensional specific thrust\n",
+ "TSFC=((f+fAB)/st)*10**6. ##units mg/s/N\n",
+ "eth=(((1.+f+fAB)*((V9)**2)/2.)-((V0)**2.)/2.)/(f*Qr*1000.+fAB*QrAB*1000.) ##cycle thermal efficiency\n",
+ "ep=st*V0/(((1.+f+fAB)*(((V9)**2)/2.))-((V0)**2)/2.) ##propulsive efficiency exact\n",
+ "epa=2./(1.+V9/V0) ##approx\n",
+ "print(\"a(1)Total temperatures across the engine in\"\" K:\")\n",
+ "print'%s %.1f %s'%(\"Flight total temperaure:\",Tt0,\" \")\n",
+ "\n",
+ "print'%s %.1f %s'%(\"Toal temperature at compressor inlet:\",Tt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\" \")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at afterburner exit:\",Tt7,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at nozzle exit:\",T9,\"\")\n",
+ "print'%s %.1f %s'%(\"Nozzle exit static temperature:\",T9,\"\")\n",
+ "print(\"a(2)Total pressures across the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Flight total pressure:\",pt0,\"\")\n",
+ "\n",
+ "print'%s %.1f %s'%(\"Toal pressure at compressor inlet:\",pt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\" \")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at afterburner exit:\",pt7,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "print'%s %.1f %s'%(\"Nozzle exit static pressure:\",p9,\"\")\n",
+ "print'%s %.1f %s'%(\"(b)Nondimensional specific thrust:\",ndst,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Thrust specific fuel consumption TSFC \",TSFC,\"(in mg/s/N):\")\n",
+ "print'%s %.1f %s'%(\"d(1)Themal efficiency:\",eth,\"\")\n",
+ "print'%s %.1f %s'%(\"d(2)Exact propulsive efficiency:\",ep,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.11\n",
+ "a(1)Total temperatures across the engine in K:\n",
+ "Flight total temperaure: 410.4 \n",
+ "Toal temperature at compressor inlet: 410.4 \n",
+ "Total temperature at compressor exit: 903.2 \n",
+ "Total temperature at burner exit: 1584.2 \n",
+ "Total temperature at turbine exit: 1163.9 \n",
+ "Total temperature at afterburner exit: 2025.8 \n",
+ "Total temperature at nozzle exit: 1085.8 \n",
+ "Nozzle exit static temperature: 1085.8 \n",
+ "a(2)Total pressures across the engine in kPa:\n",
+ "Flight total pressure: 78.2 \n",
+ "Toal pressure at compressor inlet: 68.9 \n",
+ "Total pressure at compressor exit: 826.3 \n",
+ "Total pressure at burner exit: 784.9 \n",
+ "Total pressure at turbine exit: 172.5 \n",
+ "Total pressure at afterburner exit: 160.4 \n",
+ "Total pressure at nozzle exit: 149.2 \n",
+ "Nozzle exit static pressure: 10.0 \n",
+ "(b)Nondimensional specific thrust: 3.3 \n",
+ "(c)Thrust specific fuel consumption TSFC 54.2 (in mg/s/N):\n",
+ "d(1)Themal efficiency: 0.5 \n",
+ "d(2)Exact propulsive efficiency: 0.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate nozzle exit static pressure and actual and effective nozzle exit velocties and ratio of fan to core thrust and non-dimensional specific thrust and TSFC and all engine effeciences \n",
+ "print(\"Example4.13\")\n",
+ "M0=0.88 ##Mach no.\n",
+ "p0=15 ## pressure in kPa\n",
+ "T0=233 ##temperatue in K\n",
+ "gmc=1.4 ##gamma compressor\n",
+ "Cpc=1004 ##specific heat of compressor in J/kg.K\n",
+ "pd=0.995 ## pressure compression ratio of diffuser\n",
+ "pf=1.6 ##pressure compression ratio of fan\n",
+ "ef=0.9 ##fan efficiency\n",
+ "alfa=8\n",
+ "pfn=0.95 ##compression ratio of convergent fan nozzle\n",
+ "pc=40 ##compression ratio of compressor\n",
+ "ec=0.9 ##compressor efficiency\n",
+ "tl=8 ##temp. ratio\n",
+ "Cpt=1152 ##in J/kg.K of turbine\n",
+ "gmt=1.33 ##gamma turbine\n",
+ "Qr=42000000 ##in J/kg\n",
+ "pb=0.95 ##burner compression ratio\n",
+ "eb=0.992 ##burner efficiency\n",
+ "em=0.95\n",
+ "et=0.85\n",
+ "pn=0.98 ##primary nozzle\n",
+ "a0=((gmc-1)*Cpc*T0)**(1/2.);\n",
+ "V0=M0*a0;\n",
+ "pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ "Tt0=T0*(1+((gmc-1.)*(M0)**2)/2.)\n",
+ "Tt2=Tt0\n",
+ "pt2=pt0*pd\n",
+ "##fan stream:\n",
+ "pt13=pt2*pf\n",
+ "tf=pf**((gmc-1.)/(ef*gmc))\n",
+ "Tt13=Tt2*tf\n",
+ "pt19=pt13*pfn\n",
+ "p19=pt19/(1.+(gmc-1)/2.)**(gmc/(gmc-1.))\n",
+ "M19=1.\n",
+ "T19=Tt13/1.2\n",
+ "a19=((gmc-1)*Cpc*T19)**(1/2.)\n",
+ "V19=a19\n",
+ "##V19eff=V19+((gmc*p19)/r19)*((1-p0/p19)/(gmc*V19)) i.e V19+a19**2\n",
+ "V19eff=V19+(a19**2.)*((1.-p0/p19)/(gmc*V19))\n",
+ "##Core stream\n",
+ "pt3=pt2*pc\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "##print'%s %.1f %s'%(tc)\n",
+ "Tt3=Tt2*tc\n",
+ "pt4=pt3*pb\n",
+ "Tt4=Cpc*T0*tl/Cpt\n",
+ "##print'%s %.1f %s'%(Tt4)\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "##print'%s %.1f %s'%(f)\n",
+ "Tt5=Tt4-((Cpc*(Tt3-Tt2)+alfa*Cpc*(Tt13-Tt2)))/((1+f)*Cpt*em)\n",
+ "##print'%s %.1f %s'%(Tt5)\n",
+ "tt=Tt5/Tt4\n",
+ "pt=tt**(gmt/(et*(gmt-1)))\n",
+ "pt5=pt4*pt\n",
+ "pt9=pt5*pn\n",
+ "p9=pt9/((gmt+1)/2.)**(gmt/(gmt-1.))\n",
+ "M9=1.\n",
+ "T9=Tt5/((gmt+1)/2.)\n",
+ "a9=((gmt-1)*Cpt*T9)**(1/2.)\n",
+ "V9=a9\n",
+ "V9eff=V9+(((a9)**2)*(1-(p0/p9)))/(gmt*V9)\n",
+ "ndsft=alfa*(V19eff-V0)/((1+alfa)*a0)\n",
+ "ndsct=((1+f)*V9eff-V0)/((1+alfa)*a0)\n",
+ "ndst=ndsft+ndsct\n",
+ "rfct=ndsft/ndsct\n",
+ "fc=ndsft*100./(ndsft+ndsct)\n",
+ "cc=ndsct*100./(ndsft+ndsct)\n",
+ "TSFC=f/((1.+alfa)*a0*(ndsft+ndsct))*10**6.\n",
+ "eth=(alfa*V19eff**2+(1+f)*V9eff**2-(1+alfa)*V0**2.)/(2.*f*Qr)\n",
+ "ep=(2.*(ndsft+ndsct)*(1+alfa)*a0*V0)/(alfa*V19eff**2.+(1.+f)*V9eff**2.-(1.+alfa)*V0**2.)\n",
+ "eo=eth*ep\n",
+ "##Pressures\n",
+ "print(\"a(1)Total pressures throughout the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure of flight:\",pt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at engine face:\",pt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at fan exit:\",pt13,\"\")\n",
+ "\n",
+ "print'%s %.1f %s'%(\"Static pressure at nozzle exit:\",p19,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "\n",
+ "##Temperatures\n",
+ "print(\"a(2)Total temperatures across the engine in K:\")\n",
+ "print'%s %.1f %s'%(\"Total temperature of flight:\",Tt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at engine face:\",Tt2,\"\") ##Tt0=Tt2, since adiabatic!\n",
+ "print'%s %.1f %s'%(\"Total temperature at fan exit:\",Tt13,\"\")\n",
+ "print'%s %.1f %s'%(\"Static temperature at fan nozzle exit:\",T19,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Static temperature at nozzle exit:\",T9,\"\")\n",
+ "print'%s %.1f %s'%(\"(b{1})Total pressure at fan nozzle exit:\",pt19,\"\")\n",
+ "print'%s %.1f %s'%(\"(b{2})Static pressure at nozzle exit:\",p9,\"\")\n",
+ "\n",
+ "\n",
+ "##Remaining results\n",
+ "print'%s %.1f %s'%(\"(c{1}Actual fan nozzle exit velocity in\",V19,\" m/s:)\")\n",
+ "print'%s %.1f %s'%(\"(c{2}Effective fan nozzle exit velocity in\",V9eff,\" m/s:)\")\n",
+ "print'%s %.1f %s'%(\"(c{3})Actual core nozzle exit velocity in\",V9,\" m/s:\")\n",
+ "print'%s %.1f %s'%(\"(c{4})Effective nozzle exit velocity in \",V9eff,\"m/s:\")\n",
+ "print'%s %.1f %s'%(\"(d)Ratio of fan-tocore thrust:\",rfct,\"\")\n",
+ "print'%s %.1f %s'%(\"(e)Nondimensional specific thrust:\",ndst,\"\")\n",
+ "print'%s %.1f %s'%(\"(f)TSFC in mg/s/N:\",TSFC,\"\")\n",
+ "print(\"(g)Engine efficiencies:\")\n",
+ "print'%s %.1f %s'%(\"Thermal efficiency:\",eth,\"\")\n",
+ "print'%s %.1f %s'%(\"Propulsion effciency:\",ep,\"\")\n",
+ "print'%s %.1f %s'%(\"Overall efficiency:\",eo,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example4.13\n",
+ "a(1)Total pressures throughout the engine in kPa:\n",
+ "Total pressure of flight: 24.8 \n",
+ "Total pressure at engine face: 24.7 \n",
+ "Total pressure at fan exit: 39.5 \n",
+ "Static pressure at nozzle exit: 19.8 \n",
+ "Total pressure at compressor exit: 988.2 \n",
+ "Total pressure at burner exit: 938.8 \n",
+ "Total pressure at turbine exit: 28.7 \n",
+ "Total pressure at nozzle exit: 28.1 \n",
+ "a(2)Total temperatures across the engine in K:\n",
+ "Total temperature of flight: 269.1 \n",
+ "Total temperature at engine face: 269.1 \n",
+ "Total temperature at fan exit: 312.4 \n",
+ "Static temperature at fan nozzle exit: 260.3 \n",
+ "Total temperature at compressor exit: 867.9 \n",
+ "Total temperature at burner exit: 1624.0 \n",
+ "Total temperature at turbine exit: 778.1 \n",
+ "Static temperature at nozzle exit: 667.9 \n",
+ "(b{1})Total pressure at fan nozzle exit: 37.6 \n",
+ "(b{2})Static pressure at nozzle exit: 15.2 \n",
+ "(c{1}Actual fan nozzle exit velocity in 323.3 m/s:)\n",
+ "(c{2}Effective fan nozzle exit velocity in 508.4 m/s:)\n",
+ "(c{3})Actual core nozzle exit velocity in 503.9 m/s:\n",
+ "(c{4})Effective nozzle exit velocity in 508.4 m/s:\n",
+ "(d)Ratio of fan-tocore thrust: 3.5 \n",
+ "(e)Nondimensional specific thrust: 0.4 \n",
+ "(f)TSFC in mg/s/N: 22.1 \n",
+ "(g)Engine efficiencies:\n",
+ "Thermal efficiency: 0.4 \n",
+ "Propulsion effciency: 0.8 \n",
+ "Overall efficiency: 0.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 4.15\")\n",
+ "M0=2. ##Mach no.\n",
+ "p0=10. ## in kPa\n",
+ "T0=223. ##in K\n",
+ "##the engine inlet total pressure loss is characterized by \n",
+ "pd=0.9\n",
+ "##The fan pressure ratio is\n",
+ "pf=1.9\n",
+ "##and polytropic efficiency of the fan is\n",
+ "ef=0.9\n",
+ "##The flow in the fan duct suffers 1% total pressure loss i.e.\n",
+ "pfd=0.99\n",
+ "##The compressor pressure ratio and polytropic efficiency are \n",
+ "pc=13.\n",
+ "ec=0.9 ##respectively\n",
+ "##The combustor exit temperature is \n",
+ "Tt4=1600. ##in K\n",
+ "Qr=42000000. ##fuel heating value in J/kg\n",
+ "pb=0.95 ##total pressure ratio\n",
+ "eb=0.98 ##burner efficiency\n",
+ "et=0.8 ##turbine polytropic efficiency\n",
+ "em=0.95 ##mechanical efficiency of turbine\n",
+ "M5=0.5 ##Mach no at turbine exit\n",
+ "pmf=0.98 ##total pressure loss due to friction in mixer\n",
+ "Tt7=2000. ##afterburner total temp in K\n",
+ "QrAB=42000000. ##in J/kg\n",
+ "pABon=0.92\n",
+ "eAB=0.98\n",
+ "pn=0.95 ##total pressure ratio at nozzle\n",
+ "p=3.8 ##p=p9/p0\n",
+ "gmc=1.4 ##gamma compressor\n",
+ "Cpc=1004. ##specofic heat compressor in J/kg.K\n",
+ "gmt=1.33 ##gamma turbine\n",
+ "Cpt=1152. ##turbine\n",
+ "gmAB=1.3 ##afterburner\n",
+ "CpAB=1241. ##afterburner\n",
+ "pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ "Tt0=T0*(1.+((gmc-1.)*(M0)**2)/2.)\n",
+ "pr=pt0/p0\n",
+ "tr=Tt0/T0\n",
+ "pt=pfd*pf/(pb*pc)\n",
+ "a0=((gmc-1.)*Cpc*T0)**(1/2.);\n",
+ "V0=a0*M0\n",
+ "Tt2=Tt0\n",
+ "pt2=pt0*pd\n",
+ "pt13=pt2*pf\n",
+ "tf=pf**((gmc-1.)/(ec*gmc))\n",
+ "##print'%s %.1f %s'%(tf)\n",
+ "Tt13=Tt0*tf\n",
+ "Tt15=Tt13 ##adiabatic\n",
+ "pt15=pt13*pfd\n",
+ "pt3=pt2*pc\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "Tt3=Tt2*tc\n",
+ "pt4=pt3*pb\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "##print'%s %.1f %s'%(f)\n",
+ "pt5=pt15 ##assumption\n",
+ "pt=(pfd*pf)/(pb*pc)\n",
+ "##print'%s %.1f %s'%(pt)\n",
+ "tt=pt**(et*(gmt-1.)/(gmt))\n",
+ "##print'%s %.1f %s'%(tt)\n",
+ "Tt5=Tt4*tt\n",
+ "tl=(Cpt*Tt4)/(Cpc*T0)\n",
+ "tr=(1.+((gmc-1.)*(M0**2)/2.))\n",
+ "alfa=((em*(1.+f)*tl*(1.-tt))-(tr*(tc-1.)))/(tr*(tf-1.))\n",
+ "ht6M=Cpc*T0*((1.+f)*tt*tl+alfa*tf*tr)/(1.+alfa+f) ## mixed-out total enthalpy in J/kg\n",
+ "Cp6M=(((1.+f)/alfa)*Cpt+Cpc)/(((1.+f)/alfa)+1.)\n",
+ "gm6M=(((1+f)/alfa)*Cpt+Cpc)/(((1+f)/alfa)*(Cpt/gmt)+(Cpc/gmc))\n",
+ "M15=((2./(gmc-1.))*((((1.+((gmt-1.)*(M5**2)/2.))**(gmt/(gmt-1.)))**((gmc-1.)/gmc))-1.))**(1/2.)\n",
+ "T15=Tt15/(1.+((gmc-1.)*(M15)**2)/2.)\n",
+ "p15=pt15/(1.+((gmc-1.)*(M15)**2)/2.)**(gmc/(gmc-1.))\n",
+ "T5=Tt5/(1.+((gmt-1.)*(M5)**2)/2.)\n",
+ "p5=pt5/(1.+((gmt-1.)*(M5)**2)/2.)**(gmt/(gmt-1.))\n",
+ "a15=((gm6M-1.)*Cp6M*T15)**(1/2.)\n",
+ "a5=((gm6M-1.)*Cp6M*T5)**(1/2.)\n",
+ "A=((alfa/(1.+f))*(gmt/gmc)*((T15/T5)**(1/2.))*(M5/M15))\n",
+ "C1=((1.+gmt*M5**2.)+(A*(1.+gmc*M15**2.)))/(1.+A)\n",
+ "Tt6M=ht6M/Cp6M\n",
+ "C2=((gmt/gm6M)*(M5/a5)+(gmc/gm6M)*(M15*A/a15))*(((gm6M-1.)*Cp6M*(Tt6M))**(1/2.))/(1.+A)\n",
+ "C=(C1/C2)**2.\n",
+ "M6M=((C-2*gm6M-((C-2.*gm6M)**2-4.*(gm6M**2.-(C*(gm6M-1))/2.))**(1/2.))/(2*(gm6M)**2.-C*(gm6M-1.)))**(1/2.)\n",
+ "p6M=p5*(C1/(1.+gm6M*(M6M)**2.))\n",
+ "pt6Mi=131.23\n",
+ "pmi=0.9907\n",
+ "pM=0.9709\n",
+ "pt6M=pt6Mi*pmf\n",
+ "Tt7=2000.\n",
+ "pABon=0.92\n",
+ "pt7=118.32\n",
+ "fAB=(CpAB*Tt7-ht6M)/(QrAB*eAB-CpAB*Tt7)\n",
+ "pt9=pt7*pn\n",
+ "p9=p0*p\n",
+ "M9=1.377\n",
+ "T9=1557.2\n",
+ "a9=761.4\n",
+ "V9=a9*M9\n",
+ "V9eff=V9+a9**2.*(1.-p0/p9)/(gmAB*V9)\n",
+ "ndst=((1+alfa+f+fAB)/(1.+alfa))*(V9eff/a0)-M0\n",
+ "TSFC=((f+fAB)/((1+alfa)*a0))*10**6./(ndst)\n",
+ "eth=(((1+alfa+f+fAB)*((V9eff)**2.))-((1+alfa)*V0**2.))/(2.*(f*Qr+fAB*QrAB))\n",
+ "ep=(2.*ndst*V0*a0*(1.+alfa))/((1.+alfa+f+fAB)*V9eff**2-(1.+alfa)*V0**2)\n",
+ "e0=ep*eth\n",
+ "print(\"a(1)Total pressures throughout the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure of flight:\",pt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at engine face:\",pt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at fan exit:\",pt15,\"\")\n",
+ "##print'%s %.1f %s'%(p19,\"Static pressure at nozzle exit:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "\n",
+ "\n",
+ "print(\"a(2)Total temperatures across the engine in K:\")\n",
+ "print'%s %.1f %s'%(\"Total temperature of flight:\",Tt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at engine face:\",Tt2,\"\") ##Tt0=Tt2, since adiabatic!\n",
+ "print'%s %.1f %s'%(\"Total temperature at fan exit:\",Tt13,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at fan duct :\",Tt15,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"a(3)Fan bypass ratio :\",alfa,\"\")\n",
+ "print'%s %.3f %s'%(\"a(4)fuel-to-air ratio in primary :\",f,\"\")\n",
+ "print'%s %.3f %s'%(\"a(5)fuel-to-air ratio in afterburner :\",fAB,\"\")\n",
+ "print'%s %.1f %s'%(\"b(1)TSFC in mg/s/N :\",TSFC,\"\")\n",
+ "print'%s %.1f %s'%(\"b(2)Non-dimensional specific thrust :\",ndst,\"\")\n",
+ "print'%s %.1f %s'%(\"b(3)Propulsive efficiency :\",ep,\"\")\n",
+ "print'%s %.1f %s'%(\"b(4)Thermal efficiency :\",eth,\"\")\n",
+ "print'%s %.1f %s'%(\"b(5)Overall efficiency :\",e0,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.15\n",
+ "a(1)Total pressures throughout the engine in kPa:\n",
+ "Total pressure of flight: 78.2 \n",
+ "Total pressure at engine face: 70.4 \n",
+ "Total pressure at fan exit: 132.5 \n",
+ "Total pressure at compressor exit: 915.5 \n",
+ "Total pressure at burner exit: 869.7 \n",
+ "Total pressure at turbine exit: 132.5 \n",
+ "Total pressure at nozzle exit: 112.4 \n",
+ "a(2)Total temperatures across the engine in K:\n",
+ "Total temperature of flight: 401.4 \n",
+ "Total temperature at engine face: 401.4 \n",
+ "Total temperature at fan exit: 492.1 \n",
+ "Total temperature at fan duct : 492.1 \n",
+ "Total temperature at compressor exit: 906.2 \n",
+ "Total temperature at burner exit: 1600.0 \n",
+ "Total temperature at turbine exit: 1101.3 \n",
+ "a(3)Fan bypass ratio : 0.6 \n",
+ "a(4)fuel-to-air ratio in primary : 0.024 \n",
+ "a(5)fuel-to-air ratio in afterburner : 0.039 \n",
+ "b(1)TSFC in mg/s/N : 48.5 \n",
+ "b(2)Non-dimensional specific thrust : 2.7 \n",
+ "b(3)Propulsive efficiency : 0.6 \n",
+ "b(4)Thermal efficiency : 0.5 \n",
+ "b(5)Overall efficiency : 0.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.17 - pg "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 4.17\")\n",
+ "M0=0.7 ##Mach no.\n",
+ "T0=228 ## in K\n",
+ "p0=16 ##kPa\n",
+ "eprop=0.85 ## prop efficiency\n",
+ "m=10. ##Kg/s\n",
+ "pd=0.98 ##diffuser pressure ratio\n",
+ "pc=30. ##compressor pressurer ratio\n",
+ "ec=0.92 ##thermal efficiency of compressor\n",
+ "Tt4=1600. ##in K\n",
+ "Qr=42000000. ##in kJ/kg\n",
+ "eb=0.99 ##thermal efficiency of burner\n",
+ "pb=0.96 ##burner pressure ratio\n",
+ "etHPT=0.82\n",
+ "emHPT=0.99\n",
+ "alfa=0.85 \n",
+ "emLPT=0.99\n",
+ "eLPT=0.88\n",
+ "egb=0.995\n",
+ "en=0.95\n",
+ "gmc=1.4 ##gamma of compressor\n",
+ "Cpc=1004. ## in J/kg.K\n",
+ "gmt=1.33 ##gamma of turbine\n",
+ "Cpt=1152. ## in J/kg.K\n",
+ "Tt0=T0*(1.+((gmc-1.)*(M0)**2)/2.)\n",
+ "pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ "a0=((gmc-1.)*Cpc*T0)**(1/2.);\n",
+ "V0=a0*M0\n",
+ "pt2=pt0*pd\n",
+ "Tt2=Tt0 ##Adiabatic\n",
+ "pt3=pt2*pc\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "Tt3=Tt2*tc\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "pt4=pt3*pb\n",
+ "ht45=Cpt*Tt4-(Cpc*Tt3-Cpc*Tt2)/((1.+f)*emHPT)\n",
+ "Tt45=ht45/Cpt\n",
+ "pt45=pt4*(Tt45/Tt4)**(gmt/((gmt-1.)*etHPT))\n",
+ "m9=(1.+f)*m\n",
+ "sp=(1.+f)*m*eLPT*alfa*ht45*(1.-(p0/pt45)**((gmt-1.)/gmt))/10**6.\n",
+ "Tt5=(ht45-sp*10**6./((1.+f)*m))/Cpt\n",
+ "tt=Tt5/Tt45\n",
+ "et=math.log(tt)/(math.log(1-((1-tt)/eLPT)))\n",
+ "pt=tt**(gmt/(et*(gmt-1.)))\n",
+ "pt5=pt45*pt\n",
+ "p9=p0 ##assumption\n",
+ "pi=p9/pt5\n",
+ "ti=pi**((gmt-1.)/gmt)\n",
+ "T9i=Tt5*ti\n",
+ "T9=Tt5-en*(Tt5-T9i)\n",
+ "V9=(2.*Cpt*(Tt5-T9))**(1/2.)\n",
+ "Fprop=eprop*egb*emLPT*sp*10**3/V0\n",
+ "a9=((gmt-1.)*Cpt*T9)**(1/2.)\n",
+ "M9=V9/a9\n",
+ "pt9=p9*(1.+((gmt-1)*M9**2.)/2.)**(gmt/(gmt-1.))\n",
+ "pn=pt9/pt5\n",
+ "Fncore=m*((1.+f)*V9-V0)/1000.\n",
+ "spp=egb*emLPT*sp\n",
+ "Ft=Fprop+Fncore\n",
+ "mp=((m9*V9**2.)/2.-m*(V0**2.)/2.)/10**3.\n",
+ "mf=m9-m\n",
+ "PSFC=mf*10**6./((spp*10**3.)+mp)\n",
+ "TSFC=mf*10**3./(Ft)\n",
+ "eth=(spp*10**3.+mp)*10**3./(mf*Qr)\n",
+ "ep=(Ft*V0)/(spp*10**3+mp)\n",
+ "eo=eth*ep\n",
+ "print(\"a(1)Total pressures throughout the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure of flight:\",pt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at engine face:\",pt2,\"\")\n",
+ "##print'%s %.1f %s'%(p19,\"Static pressure at nozzle exit:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure across HPT :\",pt45,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "\n",
+ "print(\"a(2)Total temperatures across the engine in K:\")\n",
+ "print'%s %.1f %s'%(\"Total temperature of flight:\",Tt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at engine face:\",Tt2,\"\") ##Tt0=Tt2, since adiabatic!\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature across HPT :\",Tt45,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"a(3)fuel-to-air ratio in burner :\",f,\"\")\n",
+ "print'%s %.1f %s'%(\"(b)Engine core thrust in kN :\",Fncore,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Propeller thrust in kN :\",Fprop,\"\")\n",
+ "print'%s %.1f %s'%(\"(d)Power-specific fuel consumption in\",PSFC,\" mg/s/kW :\")\n",
+ "print'%s %.1f %s'%(\"(e)TSFC in\",TSFC,\" mg/s/N :\")\n",
+ "print'%s %.3f %s'%(\"f(1)Propulsive efficiency :\",ep,\"\")\n",
+ "print'%s %.3f %s'%(\"f(2)Thermal efficiency :\",eth,\"\")\n",
+ "print'%s %.3f %s'%(\"(g)Overall efficiency :\",eo,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.17\n",
+ "a(1)Total pressures throughout the engine in kPa:\n",
+ "Total pressure of flight: 22.2 \n",
+ "Total pressure at engine face: 21.7 \n",
+ "Total pressure at compressor exit: 652.5 \n",
+ "Total pressure at burner exit: 626.4 \n",
+ "Total pressure across HPT : 151.1 \n",
+ "Total pressure at turbine exit: 24.5 \n",
+ "Total pressure at nozzle exit: 24.0 \n",
+ "a(2)Total temperatures across the engine in K:\n",
+ "Total temperature of flight: 250.3 \n",
+ "Total temperature at engine face: 250.3 \n",
+ "Total temperature at compressor exit: 719.9 \n",
+ "Total temperature at burner exit: 1600.0 \n",
+ "Total temperature across HPT : 1198.0 \n",
+ "Total temperature at turbine exit: 815.2 \n",
+ "a(3)fuel-to-air ratio in burner : 0.0 \n",
+ "(b)Engine core thrust in kN : 2.2 \n",
+ "(c)Propeller thrust in kN : 17.9 \n",
+ "(d)Power-specific fuel consumption in 54.6 mg/s/kW :\n",
+ "(e)TSFC in 14.0 mg/s/N :\n",
+ "f(1)Propulsive efficiency : 0.827 \n",
+ "f(2)Thermal efficiency : 0.436 \n",
+ "(g)Overall efficiency : 0.361 \n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex17-pg211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(\"Example 4.17\")\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "\n",
+ "import numpy\n",
+ "import math\n",
+ "from math import log\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "M0=0.7\n",
+ "T0=228. ##in K\n",
+ "p0=16. ##kPa\n",
+ "eprop=0.85 ##efficiency of prop\n",
+ "m=10.##Kg/s\n",
+ "pd=0.98\n",
+ "pc=30.\n",
+ "ec=0.92\n",
+ "Tt4=1600.\n",
+ "Qr=42000000.## in kJ/kg\n",
+ "eb=0.99\n",
+ "pb=0.96\n",
+ "etHPT=0.82\n",
+ "emHPT=0.99\n",
+ "alfa=0.79\n",
+ "emLPT=0.99\n",
+ "eLPT=0.88\n",
+ "egb=0.995\n",
+ "en=0.95\n",
+ "gmc=1.4\n",
+ "Cpc=1004.\n",
+ "gmt=1.33\n",
+ "Cpt=1152.\n",
+ "z0=numpy.linspace(0.79,0.97,19)\n",
+ "leng=len(z0)\n",
+ "g1=numpy.zeros(leng)\n",
+ "gc1=0\n",
+ "g2=numpy.zeros(leng)\n",
+ "gc2=0\n",
+ "g3=numpy.zeros(leng)\n",
+ "gc3=0\n",
+ "g4=numpy.zeros(leng)\n",
+ "gc4=0\n",
+ "for alfa in z0:\n",
+ " Tt0=T0*(1.+((gmc-1)*(M0)**2)/2.)\n",
+ " pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ " a0=((gmc-1.)*Cpc*T0)**(1/2.);\n",
+ " V0=a0*M0\n",
+ " pt2=pt0*pd\n",
+ " Tt2=Tt0 ##Adiabatic\n",
+ " pt3=pt2*pc\n",
+ " tc=pc**((gmc-1.)/(ec*gmc))\n",
+ " Tt3=Tt2*tc\n",
+ " f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ " pt4=pt3*pb\n",
+ " ht45=Cpt*Tt4-(Cpc*Tt3-Cpc*Tt2)/((1+f)*emHPT)\n",
+ " Tt45=ht45/Cpt\n",
+ " pt45=pt4*(Tt45/Tt4)**(gmt/((gmt-1)*etHPT))\n",
+ " m9=(1+f)*m\n",
+ " sp=(1+f)*m*eLPT*alfa*ht45*(1-(p0/pt45)**((gmt-1)/gmt))/10**6\n",
+ " Tt5=(ht45-sp*10**6/((1+f)*m))/Cpt\n",
+ " tt=Tt5/Tt45\n",
+ " et=log(tt)/(log(1-((1-tt)/eLPT)))\n",
+ " pt=tt**(gmt/(et*(gmt-1)))\n",
+ " pt5=pt45*pt\n",
+ " p9=p0 ##assumption\n",
+ " pi=p9/pt5\n",
+ " ti=pi**((gmt-1)/gmt)\n",
+ " T9i=Tt5*ti\n",
+ " T9=Tt5-en*(Tt5-T9i)\n",
+ " V9=(2*Cpt*(Tt5-T9))**(1/2)\n",
+ " Fprop=eprop*egb*emLPT*sp*10**3/V0\n",
+ " a9=((gmt-1)*Cpt*T9)**(1/2)\n",
+ " M9=V9/a9\n",
+ " pt9=p9*(1+((gmt-1)*M9**2)/2)**(gmt/(gmt-1))\n",
+ " pn=pt9/pt5\n",
+ " Fncore=m*((1+f)*V9-V0)/1000\n",
+ " spp=egb*emLPT*sp\n",
+ " Ft=Fprop+Fncore\n",
+ " Fr=Fprop/Ft\n",
+ "\n",
+ " mp=((m9*V9**2)/2-m*(V0**2)/2)/10**3\n",
+ " mf=m9-m\n",
+ " PSFC=mf*10**6/((spp*10**3)+mp)\n",
+ " TSFC=mf*10**3/(Ft)\n",
+ " eth=(spp*10**3+mp)*10**3/(mf*Qr)\n",
+ " ep=(Ft*V0)/(spp*10**3+mp)\n",
+ " eo=eth*ep\n",
+ " g1[gc1]=Ft;\n",
+ " gc1=gc1+1;\n",
+ " g2[gc2]=TSFC;\n",
+ " gc2=gc2+1\n",
+ " g3[gc3]=ep\n",
+ " gc3=gc3+1\n",
+ " g4[gc4]=Fr\n",
+ " gc4=gc4+1\n",
+ "\n",
+ "\n",
+ "pyplot.plot(z0,g1)\n",
+ "pyplot.title(\"Turboprop total thrust\")\n",
+ "pyplot.xlabel(\"Power split(alfa)\")\n",
+ "pyplot.ylabel(\"Fprop+Fcore(kN)\")\n",
+ "pyplot.show()\n",
+ "pyplot.plot(z0,g2)\n",
+ "\n",
+ "pyplot.title(\"TSFC in turboprop engine\")\n",
+ "pyplot.xlabel(\"Power split(alfa)\")\n",
+ "pyplot.ylabel(\"TSFC(mg/s/N)\")\n",
+ "pyplot.show()\n",
+ "pyplot.plot(z0,g3)\n",
+ "pyplot.plot(z0,g4)\n",
+ "\n",
+ "pyplot.xlabel(\"Power split(alfa)\")\n",
+ "pyplot.title(\"Propeller thrust as a fraction of total thrust and propulsive efficiency\")\n",
+ "pyplot.legend(\"Prop efficiency\",\"Fprop/Ftotal\")\n",
+ "pyplot.show()\n",
+ "##plot2d(z0,g5,4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.17\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XdP9//HXWySGEHMRP0SbRlvVftNWDEGusSGG+hYR\n81B8DdUq1a9WuV/VUjVVTTXELEENTQQRwyUSbdAgVUGMicQcQ4wZPr8/1r4c17n3njucu8859/18\nPO7DHtbe+3O3k/O5e62111JEYGZmVqrF8g7AzMyqixOHmZm1iROHmZm1iROHmZm1iROHmZm1iROH\nmZm1iROHVSxJDZIOyjuOSiOpXtLV5Spv1honDutUkuZJej/7WSTpw4L1EW08XWQ/VaWtCa8dCbLZ\neyKpTtLMUst3NkkvStqyq65n+Vg87wCstkTEMo3Lkl4ADoqIe9tyDkkC1NmxtXC9xSNiQSeesq1f\n1G0t39Z7U3L5TrgX0ZbrWXXyE4d1iabVJZL6ZU8ki2XrDZJOkTQJmAeskxXtL+mfkt6VdKukFQrO\nsZOkJyXNlXSfpG8U7HtR0v9m+9+WNFLSEtm+OkmzJB0naQ5wmaReks6R9Er2c7akXk3KHy/pDUkv\nSNqzmd/z98BmwHnZU9a52fZNJD0s6R1JUyRt3Er5P0t6Ofu9H5G0aQn3uDdwB9A3O9d7klYnfZn3\nknRltu3fkr7f5F4dJ+kJ4H1JPbL/N18tKHOFpN9lyytLui27729JekDJ1cBawNjs+se2FrNVJycO\n6yql/FW9N/ATYFngJdJfrvsCBwCrAwuAxi/WAcB1wFHAysDtpC+swqfoPYFtga8BA4ATCvatCqxA\n+qI7NNs3CPhu9jOoSPmVgL7AfsDFWQxf/CUjfgNMBI6IiGUj4ihJKwLjgHOAFYGzgHGSVihWPjvV\nlCyOFbLf88bGRNaciPgAGArMzs7VJyLmZPdxJ2AUsBwwBjivyeF7ANsBy0fEwmKn5/P/h8cAM0n3\n/SvA8ZHsA7wM7JBd/4yW4rXq5cRhXaW16osAroiIpyJiUVZdEsBVEfGfiPgQ+C2we/aUMhy4LSLu\nyb7ozgCWAjYpON95EfFKRMwFfg8UtrEsAk6KiPkR8TEpyZwcEW9GxJvA/wH7NInxt1n5B0iJYPcS\nf99hwNMRcW32u40GppO+zIven6zs3Kz8WcASwLotXK/oeQpMjIg7Iw1Odw0pKX12OeDc7F59UsI1\nPiUl8n4RsTAiJpVwjNUQJw6rJE0bdZtuexnoSfpLd/VsHYDsC3EmsEYLx/YtWH8jIj4tWO9Lespp\nrvzciPioYP2lJvubKnzC6lsYazPHf+GJTNKxkv6TVW3NJT0prNzC9VrzWsHyh8CSjdWEmWL3vqnG\npPQnYAZwl6TnJP2qA3FZFXLisK4yD1i6YH21ImWKVWet1WR5PvAGMBtYu3FH1qC+JvBKC8fObuFa\ns4F+LZRfQVJh/Gs3uVahpud+pTDWIsc3TRqbAb8EdouI5SNiBeBdSmt0LnYPS6kmbFrmQ774/6ux\nrYSImBcRx0bE10hPTb+QtEUbrmVVzonDuspjwOaS1pS0HHB8kTJNvxgF7C3pm9mX9snAjdnTxY3A\nMElbSupJqnf/GJhccOzhktbI2hh+A4xuIb5RwAlZw+/KwIlA03cf/k9Sz+yLfVgWQzGvkdpVGt0O\nDJA0QtLikoYD3wBua6b8sqT2nDezRvsTgT4txN702itJKizfnl5OjwF7ZQ3lQ4HNPzuZtIOk/lmy\nfg9YSKr6K/a7WA1y4rAuERF3A9cDTwAPA2P58l+nxdavAq4A5gC9SI3hRMTTpMb0v5CeQIYBOxZ0\nJQ1So/JdwHPAs8ApLVzrFOCRLL4nsuXC8q8Cc0lPIVcDh0bEM838un8Gds16c50TEW8DO5CS25vA\nsaQG5LeLlQfuzH6eAV4EPuKLVV3Nvt8SEdNJSfD57HyrN1O+tSeDnwE7Zr/znsAtBfv6AxOA90mJ\n+vyIuD/bdyopAc+V9ItWrmFVSuWayEnSSNI/5tcjYv1s2yBSb46epL+oDo+Ih4sc+yKf/yUzPyIG\nlSVIq1lq5zskzZyrDrg6ItbscGBmNaCcTxyXk7oGFjqd1DNlIKkq4PRmjg2gLiIGOmmYmVWWsiWO\niJhIeswtNIfUOwRgeZpvXAS/fWqVxY2+ZpmyVVVBejsYGFtQVbU28CDpH+FiwMYR8aVugJKeJ/Ui\nWQj8NSIuKVuQZmbWJl3dOH4ZcFRErAUcDYxsptzgrDprO+CIrBeLmZlVgK5+4ngvIvpkywLeiYjl\nmj8DSDoJmBcRZxbZ5+oDM7N2iIh2Nwd09RPHDElDsuUtSd0Nv0DS0pKWzZZ7k8YamtbcCSPCPxGc\ndNJJucdQKT++F74Xvhct/3RU2YZVlzQKGAKsrDQ/wInAIcD5SqOUfpStI6kvcElEDCO9UXxzeiBh\nceDaiLirXHGamVnblC1xRERzk/ZsWKTsbNI7H0TE88B/lSsuMzPrGL85XiPq6uryDqFi+F58zvfi\nc74XnaesjePlJimqOX4zszxIIqqocdzMzKqcE4eZWSd66628Iyg/Jw4zs04QASeeCDvumJZrWdl6\nVZmZdReffgoHHwzTp8PYsaAaH2nPicPMrAPefRd23RWWXhruvRd69847ovJzVZWZWTvNmgWbbw4D\nBsDNN3ePpAFOHGZm7TJtGmyyCey9N5x3HvTokXdEXcdVVWZmbXTPPTBiBJx7LuyxR97RdD0/cZiZ\ntcHVV8Oee8KNN3bPpAF+4jAzK0kE/OEPcMklcN998K1v5R1Rfpw4zMxasWABHHYYPPooPPQQrL56\n3hHly4nDzKwF8+bB7runJ44HHoBllsk7ovy5jcPMrBmvvgpDhsAaa8CYMU4ajZw4zMyKeOop2Hhj\n2GUXuPhi6Nkz74gqh6uqzMyaeOAB2G03OP102G+/vKOpPE4cZmYFRo+Go46C666DrbfOO5rK5MRh\nZkZq/D7jjPRS3913w3e+k3dElatsbRySRkp6TdK0gm2DJE2RNFXSw5I2aObYoZKmS3pW0q/KFaOZ\nGcDChfDTn6aX+x56yEmjNWWbOlbSZsA84KqIWD/b1gCcGhHjJW0HHBcRWzQ5rgfwNLA18ArwMDAi\nIp4qcg1PHWtmHfLhh+lN8Hnz4KabYLnl8o6o/Cp26tiImAjMbbJ5DtD4v2V5UmJoahAwIyJejIj5\nwGhg53LFaWbd1xtvwJZbQp8+cPvt3SNpdIau7o77v8CZkl4G/gQcX6TMGsDMgvVZ2TYzs07z7LOp\nu+0228CVV0KvXnlHVD26unH8MuCoiLhF0m7ASGCbJmXaVPdUX1//2XJdXR11dXUdDNHMat1DD6X3\nM373uzRzX61raGigoaGh085XtjYOAEn9gLEFbRzvRUSfbFnAOxGxXJNjNgLqI2Jotn48sCgi/ljk\n/G7jMLM2ueUWOOSQ9JSx/fZ5R5OPim3jaMYMSUOy5S2BZ4qUeQT4uqR+knoBw4ExXRWgmdWuc8+F\nI4+EO+/svkmjM5StqkrSKGAIsLKkmcCJwCHA+ZKWAD7K1pHUF7gkIoZFxAJJRwLjgR7AZcV6VJmZ\nlWrRIvjlL1MD+KRJ0K9f3hFVt7JWVZWbq6rMrDUffwz77psGLLz1Vlhxxbwjyl+1VVWZmXWZt95K\nw4ZIcNddThqdxYnDzGrSCy/A4MGwySYwahQsuWTeEdUOJw4zqzmPPJKSxk9/mka4XczfdJ3Kgxya\nWU257TY44AC49FLY2WNOlIXzsJnVjL/+Nb3Qd9ttThrl5CcOM6t6ixbBCSfAjTfCxInQv3/eEdU2\nJw4zq2qffgoHHgjPPQeTJ8Mqq+QdUe1zVZWZVa133oGhQ9PQ6Pfc46TRVZw4zKwqvfwybLoprL9+\nqqJaeum8I+o+nDjMrOo89ljqbnvggXDOOdCjR94RdS9u4zCzqnLXXbD33nD++bDbbnlH0z35icPM\nqsYVV6Rxp26+2UkjT37iMLOKFwEnn5zm0GhogG98I++IujcnDjOraPPnw6GHwrRpaea+VVfNOyJz\n4jCzivXee6lKqmfP9KTRu3feERm4jcPMKtTs2bD55rDOOmkeDSeNyuHEYWYV58knYeONYfhwuPBC\nWNx1IxXF/zvMrKLcd19KGGefDXvtlXc0VoyfOMysYlx3XUoao0c7aVSysj1xSBoJDANej4j1s22j\ngXWzIssD70TEwCLHvgi8BywE5kfEoHLFaWb5i4DTToOLLoJ774VvfzvviKwl5ayquhz4C3BV44aI\n2KNxWdIZwDvNHBtAXUS8Xcb4zKwCLFiQZuqbPDn9rLFG3hFZa8qWOCJioqR+xfZJErA7sEULp1AZ\nwjKzCvLBB7DHHvDJJ2kejT598o7ISpFXG8dmwGsR8Vwz+wO4W9Ijkg7uwrjMrIu89hrU1cHKK8O4\ncU4a1SSvXlUjgOta2D84IuZIWgWYIGl6REwsVrC+vv6z5bq6Ourq6jozTjMrg6efhu22g332gfp6\nkOsXyqqhoYGGhoZOO58iotNO9qWTp6qqsY2N49m2xYFZwPciYnYJ5zgJmBcRZxbZF+WM38w636RJ\n8OMfwx/+kIZFt64niYhod7rOo6pqa+Cp5pKGpKUlLZst9wa2BaZ1YXxmViZ/+xvssksarNBJo3qV\nLXFIGgVMBgZIminpgGzXcGBUk7J9JY3LVlcDJkp6DPgncFtE3FWuOM2sa5x9Nvz85zB+PPzwh3lH\nYx1R1qqqcnNVlVnlW7gQjjkGJkyAO+6AtdbKOyLraFWVhxwxs7L56KM0W99bb8GDD8IKK+QdkXUG\nDzliZmXx5puw1VawxBKpespJo3Y4cZhZp3vuOdhkExgyBK65JiUPqx1OHGbWqaZMgU03haOPhlNP\nhcX8LVNz3MZhZp1mzBg46CAYORJ23DHvaKxcnDjMrFNccAGccgrcfjtssEHe0Vg5OXGYWYcsWgTH\nH5+md33wQfjqV/OOyMrNicPM2u2TT2D//eHll9OQ6CutlHdE1hXcbGVm7TJ3bnoDfP58uPtuJ43u\nxInDzNrspZdg8GD43vfghhtgqaXyjsi6khOHmbXJv/6Vksahh8JZZ7m7bXfUYhuHpO+R5s7YHOhH\nmmDpJeAB4LqImFruAM2sctx5Z5pD46KL0tDo1j01O8ihpNuBucAYYAowhzSd6+rAIGBHYPmIGNY1\noRaN0YMcmnWRyy6D3/wGbr45vRVu1aujgxy2lDhWjYjXWrn4VyLi9fZevKOcOMzKLwJOOgmuvTaN\nbjtgQN4RWUeVbXTc1pJGVia3pGFm5ffpp3DwwfDUU/DQQ/CVr+QdkVWCZhOHpBdaOC4iwq/5mNWw\nd9+FXXdNPabuuw969847IqsULTWOFw4aEKQeWMOBY4F/lTMoM8vXrFmw/faw2WZw7rnQo0feEVkl\nabYjXUS8GRFvAm+TGsIbgI2B7SPC/SnMatQTT6TG7733hvPOc9KwL2upqqoXcCBwNPAgsHNEzOiq\nwMys691zD4wYAX/+c/qvWTEt9aqaBSwA/gy8TKqugtQlNyLi5hZPLI0EhgGvR8T62bbRwLpZkeWB\ndyJiYJFjhwLnAD2ASyPij81cw72qzDrJVVfBL3+Z3gQfMiTvaKycytkd94pssWiBiDiglcA2A+YB\nVzUmjib7zyAljlOabO8BPA1sDbwCPAyMiIinipzDicOsgyLg97+HSy9NQ6J/61t5R2TlVs7uuPtn\nF1gyIj5uctFWhzOLiImS+hXbJ0nA7sAWRXYPAmZExItZ2dHAzsCXEoeZdcyCBXDYYfDoo2l02759\n847IqkEpo8zcLKln44qk1YEJHbzuZsBrEfFckX1rADML1mdl28ysE82bBzvtlHpQ3X+/k4aVrpT5\nOG4BbpC0K7AmaQiSYzt43RHAdc3sa1PdU319/WfLdXV11NXVtTsos+7i1Vdh2DAYOBAuvBB69mz9\nGKteDQ0NNDQ0dNr5mm3j+EIh6UhgKLA28D8RMamkk6eqqrGFbRySFic9RXwvImYXOWYjoD4ihmbr\nxwOLijWQu43DrO2eeiq9o3HggXDCCaB213RbtSpbG4ekY7LFIPWkWhN4HNhI0oYRcVY7r7k18FSx\npJF5BPh6lnRmk146dMdAs07wwAOw225w+umw3355R2PVqqU2jmWBZQr+ewvwbMG2FkkaBUwGBkia\nKamxF9ZwYFSTsn0ljQOIiAXAkcB44D/A9cV6VJlZ21x/fRpC5JprnDSsY0qqqqpUrqoya10EnHlm\nGjrkttvgO9/JOyLLW0erqpp94pA0UtIGLezfUNLl7b2wmZXfwoVw1FFw5ZWpu62ThnWGlnpVnQ38\nMmusfprPJ3JajfT292TgjLJHaGbt8uGHsOeeqdvtgw/CcsvlHZHVilarqiQtAQwk9ahqnDr28aYv\nBebBVVVmxb3xBuy4Y5p06dJLoVevvCOySlK2IUeaXGRpYK2ImN7eC5WDE4fZlz37LGy3HeyxB/zu\nd+5ua19WtjaOggvsBEwF7szWB0oa094Lmln5/OMfsPnmcNxxcMopThpWHqUMOVIPbAjMBYiIqYBn\n/zOrMLfckqqnLrsMDjkk72islpUy5Mj8iHhHX/zTZVGZ4jGzdvjLX+C00+DOO+H73887Gqt1pSSO\nJyXtBSwu6evAUaQeVWaWs0WLUrXUuHGp59Q66+QdkXUHpVRVHQmsB3xCeuP7PeDn5QzKzFr38cep\nAXzKFJg0yUnDuk6LvaqyAQknRESxeTNy515V1l29/TbsvHMaCv3KK2HJJfOOyKpJWXtVZeNGLZK0\nfHsvYGad64UXYJNNYKONYNQoJw3reqW0cXwATJM0IVuGNOf4UeULy8yKeeSRNPnSr38NRx6ZdzTW\nXZWSOG7OfhrrhEQbJ1sys44bNw723x8uuQR+9KO8o7HurNQ3x5cABmSr0yNiflmjKpHbOKy7uPhi\nOOmk9K7GRhvlHY1Vu7JN5FRwgTrgStIYVQBrSdovIu5v70XNrDQRaZa+66+HiROhf/+8IzIrrarq\nLGDbiHgaQNIAYDTwvXIGZtbdffppmt51xgx46CFYZZW8IzJLSnmPY/HGpAEQEc9QWsIxs3Z65x0Y\nOjQNiX7vvU4aVllKSRyPSrpUUp2kLSRdSpoX3MzKYOZM2HRTWG89uOkmWHrpvCMy+6JS5uNYEjgC\nGJxtmghcEBGflDm2Vrlx3GrN44/DDjvAz38Ov/iFR7e18ij7fBySegMfR8TCbL0HsEREfNjKcSOB\nYcDrEbF+wfafAocDC4FxEfGrIse+SBraZCFpkMVBzVzDicNqxoQJsNdecN55sPvueUdjtazs83EA\n9wJLFawvDdxdwnGXA0MLN0jaAtgJ+E5EfJvmp54NoC4iBjaXNMxqyRVXwD77pKopJw2rdKU0ci8R\nEfMaVyLi/WxGwBZFxERJ/ZpsPgw4tfE9kIh4o4VT+CHdal4EnHxyGm+qoQG+8Y28IzJrXSlPHB9I\n+myEf0k/AD5q5/W+Dmwu6R+SGrJzFRPA3ZIekXRwO69lVtHmz4ef/ATGjoXJk500rHqU8sTxc+AG\nSXOy9dWB4R243goRsZGkDYAbKD6b4OCImCNpFWCCpOkRMbHYCevr6z9brquro66urp2hmXWd99+H\n3XaDHj3Sk8Yyy+QdkdWyhoYGGhoaOu18pQ450gtYN1t9OiI+LenkqapqbGPjuKQ7gNMa3zqXNAPY\nMCLeauEcJwHzIuLMIvvcOG5VZ/ZsGDYMBg2C88+Hxf1WlHWxsjWOS/pDweqQiJiW/ZSUNJpxK7Bl\ndv4BQK+mSUPS0pKWzZZ7A9sC0zpwTbOK8eSTaUj03XeHiy5y0rDq1FIbx3YFy6e39cSSRpGmmB0g\naaakA4CRwFclTSPNJrhvVravpHHZoasBEyU9BvwTuC0i7mrr9c0qTUMDbLklnHIKHH+839Gw6tVs\nVZWkqRExsOlyJXFVlVWL665LL/WNHp2Sh1meyjk67iqSfkHqFlu4DGkip7Pae1Gz7iIC/vhHuOCC\nNObUt7+dd0RmHddS4rgUWLbIspmVYMECOOoomDQpjW67xhp5R2TWOUrqVVWpXFVlleqDD2CPPeCT\nT+Bvf4M+ffKOyOxzXTHkSOOF9mvvRcy6k9degy22gJVWStO9OmlYrSk5cZBeBDSzFjz9NGy8MWy3\nHVx+OfTsmXdEZp3PvcjNOsmkSfDjH8Pvfw8HHZR3NGbl02LikHRfwWr/gvWICHcqNMvcdBMcdhhc\nfTX88Id5R2NWXi02jmdDhgSpG+44YPtsmYh4sezRtcKN41YJzj4bzjwzDVY4sOLedjL7snK+x/GF\n5CDp04h4qb0XMqs1CxfCMcfAXXelaqq11847IrOu0ZY2jhfLFYRZtfnoozTx0ptvpqSxwgp5R2TW\ndUruVRURu5QzELNq8eabsPXWqcfU+PFOGtb9tJo4lPxY0tmSzpK0i+Th2ax7eu65NLrtZpvBtdfC\nEkvkHZFZ12v1zXFJFwJfI41mK2B34PmIOLz84bXMjePWlaZMgR/9CE44AQ7P/dNv1n4dbRwvJXFM\nB74VEYuy9cWA/0RE7hNdOnFYVxkzJr2bcdllsNNOeUdj1jFdMeTIDGCtgvW1sm1m3cIFF8Chh6bh\nQ5w0zErrVdUHeErSFNI7HYOAhyWNJb0I6H9KVpMWLYJf/xpuvhkefBC+9rW8IzKrDKUkjhOz/zbW\nCRU+3rieyGrSJ5/AAQfASy/B5Mmw8sp5R2RWOUoaVl3SasAGpEQxJSJeL3dgpXAbh5XD3Lmwyy4p\nWVx9NSy1VN4RmXWusrdxSNqdNPf3bqQeVVMk7dbeC5pVspdegk03TUOHXH+9k4ZZMaU0jp8AbBAR\n+0bEvqQnj9+2dpCkkZJekzStyfafSnpK0r8l/bGZY4dKmi7pWUm/KuUXMeuoqVNh8GA4+OA0/lSP\nHnlHZFaZSkkcAt4oWH+LL7ZzNOdyYOgXTiRtAewEfCcivg2c8aWLST2A87JjvwWMkPTNEq5n1m7j\nx6dRbf/8Z/i5Z54xa1EpjeN3AuMlXUdKGMOBO1o7KCImZqPrFjoMODUi5mdl3mh6HKnX1ozGARYl\njQZ2Bp4qIVazNhs5MvWeuvXW9Fa4mbWstfk4BPyFVD01ONv814i4pZ3X+zqwuaQ/AB8Dx0bEI03K\nrAHMLFifBWzYzuuZNSsC6uvhmmvg/vth3XXzjsisOpTyxHF7Vq10Uyddb4WI2EjSBsANwFeblGlT\nN6n6+vrPluvq6qirq+tgiNYdzJ8PhxwCTz6ZutuuumreEZmVT0NDAw0NDZ12vlKGHLkSOD8iprT5\n5KmqamxErJ+t3wGcFhH3Z+szgA0j4q2CYzYC6iNiaLZ+PLAoIr7UkO7uuNYe770Hu+4KSy4Jo0ZB\n7955R2TWtbpiyJGNgIckPS9pWvbzRDuvdyuwJYCkAUCvwqSReQT4uqR+knqR2lTGtPN6Zl/wyitp\nZNv+/dMb4U4aZm1XSlVV4wzKxd4cb5akUcAQYCVJM0lvoI8ERmZddD8F9s3K9gUuiYhhEbFA0pHA\neKAHcFlEuGHcOmzaNNhhhzSy7XHHgScHMGufUt8c/z6wKbAImBQR/yp3YKVwVZWV6t57YY89Unfb\nESPyjsYsX13x5viJwBXAisAqwOWSWn0B0KxSXHNNShY33uikYdYZSmkcf4b0wt7H2fpSwOMRMaAL\n4muRnzisJRFw6qlw8cVpSPT11ss7IrPK0NEnjlLaOF4BliK9dwGwJOndCrOKtWABHHFEmrVv8mTo\n2zfviMxqRymJ4z3gSUl3ZevbkAY6/AtpPo6jyhadWTvMmwfDh8PChfDAA7DssnlHZFZbSqmq2r9g\nNUi9qj77b0RcWbboWuGqKmvq1VdTz6nvfhcuugh69sw7IrPKU7Y5xyWtFREvtzuyLuDEYYWmT4ft\nt4f994ff/tbdbc2aU85eVX8vuEhnDDdiVjYTJ8KQIXDSSXDiiU4aZuVUShsHfHk8KbOKccMNcOSR\ncO21sM02eUdjVvtKTRxmFScCzjoLzjkHJkxI7RpmVn4ttXEsBD7MVpcCPirYHRHRp8yxtcptHN3X\nwoVw9NFw331w++2w5pp5R2RWPcr2HkdEeOJMq0gffgh77ZVGuZ04EZZfPu+IzLqXUkbHNasYb7wB\nW20FyywDd9zhpGGWBycOqxozZqSpXbfaCq66Cnr1yjsis+7JicOqwj/+kebR+OUv4ZRT3N3WLE/u\nVWUV79Zb4eCD4cor0wt+ZpYvJw6raOedl0a4veMO+MEP8o7GzMCJwyrUokXwq1/B2LHw4IOwzjp5\nR2RmjZw4rOJ8/DHstx/Mnp2GRF9xxbwjMrNCbhy3ivL227Dttml5wgQnDbNKVLbEIWmkpNckTSvY\nVi9plqSp2c/QZo59UdITWZkp5YrRKsuLL8LgwbDhhjBqFCy5ZN4RmVkx5XziuBxomhgCOCsiBmY/\ndzZzbAB1WZlBZYzRKsSjj6akccQR8Kc/wWJ+FjarWGVr44iIiZL6FdlVag9899TvJm6/Pc2hcfHF\n8KMf5R2NmbUmj7/rfirpcUmXSWpuwIgA7pb0iKSDuzI461qXXAIHHQRjxjhpmFWLru5VdSFwcrb8\nO+BM4KAi5QZHxBxJqwATJE2PiInFTlhfX//Zcl1dHXV1dZ0asJVHRJql7/rr00CF/fvnHZFZ7Wpo\naKChoaHTztfqnOMdOnmqqhobEeu3ZV+TcicB8yLizCL7PKx6Ffr0U/jJT+CZZ9J7GquskndEZt1L\nOaeO7XSSVi9Y3QWYVqTM0pKWzZZ7A9sWK2fV6d1307Ah770H997rpGFWjcrZHXcUMBlYV9JMSQcC\nf8y62T4ODAGOzsr2lTQuO3Q1YKKkx4B/ArdFxF3litO6zqxZaaDCb34TbroJll4674jMrD3KWlVV\nbq6qqh5PPAE77AA/+xn84hce3dYsT2WbAdCss9x9N+y5ZxqwcPfd847GzDrKr1lZWV15ZZrm9aab\nnDTMaoWfOKwsItKESyNHQkNDatcws9rgxGGdbv58OPxwmDoVHnoIVlst74jMrDM5cVinev/9VCW1\n2GLpSWP+RsEmAAANEklEQVSZZfKOyMw6m9s4rNPMmQNDhsCaa8Lf/+6kYVarnDisU/znP7DxxrDr\nrvDXv8LifpY1q1n+520ddv/9qXrqzDNh773zjsbMys2Jwzpk1Kj0Ut/o0bDllnlHY2ZdwYnD2iUC\nTj8dzj8f7rkH1m9xqEozqyVOHNZmCxbAUUfBpEmpu+0aa+QdkZl1JScOa5MPPoARI+Djj9M8Gn36\n5B2RmXU196qykr3+emrHWHFFGDfOScOsu3LisJI880zqbvvDH8Lll0PPnnlHZGZ5cVWVtWryZPjv\n/4bf/z7ND25m3ZsTh7XoppvgsMPgqqtg6NC8ozGzSuDEYc065xw44wwYPx4GDsw7GjOrFE4c9iWL\nFsExx6SEMWkSrL123hGZWSUp55zjIyW9JmlawbZ6SbMkTc1+ilZ+SBoqabqkZyX9qlwx2pd99FEa\nPmTqVCcNMyuunL2qLgeaJoYAzoqIgdnPnU0PktQDOC879lvACEmeBqgLvPUWbL116jE1fjyssELe\nEZlZJSpb4oiIicDcIrtamyB9EDAjIl6MiPnAaGDnzo7Pvuj552GTTWCzzeDaa2GJJfKOyMwqVR7v\ncfxU0uOSLpO0fJH9awAzC9ZnZdusTB5+GDbdNA1WeNppaRImM7PmdPVXxIXAOsB/AXOAM4uUiS6N\nqJu77TYYNgwuuihN92pm1pou7VUVEa83Lku6FBhbpNgrwJoF62uSnjqKqq+v/2y5rq6Ourq6jobZ\nbVx0EZx8ckoegwblHY2ZlUtDQwMNDQ2ddj5FlO8PfEn9gLERsX62vnpEzMmWjwY2iIg9mxyzOPA0\nsBUwG5gCjIiIp4qcP8oZf61atAh+85v0ct8dd8DXvpZ3RGbWlSQREa21NzerbE8ckkYBQ4CVJc0E\nTgLqJP0XqTrqBeDQrGxf4JKIGBYRCyQdCYwHegCXFUsa1j6ffAIHHggvvJCGEll55bwjMrNqU9Yn\njnLzE0fbvPMO7LJLGt32mmtgqaXyjsjM8tDRJw73n+kmXn4ZBg+G734XbrjBScPM2s+Joxt47LH0\njsbBB6fxp3r0yDsiM6tmHquqxo0fD/vsAxdeCD/+cd7RmFkt8BNHDRs5EvbbD265xUnDzDqPnzhq\nUATU16cG8Pvvh3XXzTsiM6slThw1Zv58OOQQePLJ1N121VXzjsjMao0TRw157z3YdVdYckm47z7o\n3TvviMysFrmNo0a88koa2bZ/f7j5ZicNMysfJ44aMG1a6m67555w/vmwuJ8jzayM/BVT5e69F/bY\nI72fseeerZc3M+soJ44qds01aW7wG2+EIUPyjsbMugsnjioUAaeeChdfnJ441lsv74jMrDtx4qgy\nCxbAEUfAlCmpu23fvnlHZGbdjRNHFZk3D4YPh4UL4YEHYNll847IzLoj96qqEq++CnV1sNpqMHas\nk4aZ5ceJowpMn5662+60E1x6KfTsmXdEZtaduaqqwk2cmN4GP/30NGChmVnenDgq2I03pobwa6+F\nbbbJOxozs8SJowJFwFlnpZf6JkxIs/aZmVWKsrVxSBop6TVJ04rsO0bSIkkrNnPsi5KekDRV0pRy\nxViJFi6En/0Mrrgidbd10jCzSlPOxvHLgaFNN0paE9gGeKmFYwOoi4iBETGoTPFVnA8/hN12g3//\nO7VtrLlm6cc2NDSULa5q43vxOd+Lz/ledJ6yJY6ImAjMLbLrLOC4Ek6hzo2o8r30EnzlK3DnnbD8\n8m071v8oPud78Tnfi8/5XnSeLu2OK2lnYFZEPNFK0QDulvSIpIO7ILSK8M1vwkUXQa9eeUdiZta8\nLmscl7Q08GtSNdVnm5spPjgi5khaBZggaXr2BGNmZjlTRJTv5FI/YGxErC9pfeBu4MNs9/8DXgEG\nRcTrLZzjJGBeRJxZZF/5gjczq2ER0e7mgC574oiIacBnM2BLegH4fkS8XVguezLpERHvS+oNbAv8\nXzPn7HbtIGZmeStnd9xRwGRggKSZkg5oUiQKyvaVNC5bXQ2YKOkx4J/AbRFxV7niNDOztilrVZWZ\nmdWeihzkUNJQSdMlPSvpV0X2H5u9HDhV0jRJCyQtn+2rqZcHS7gXK0u6U9Jjkv4taf9Sj602HbwX\n3e1zsYKkWyQ9LumfktYr9dhq08F7UTOfi5Zeui4oc252nx6XNLBge9s+ExFRUT9AD2AG0A/oCTwG\nfLOF8jsAdxesvwCsmPfv0VX3AqgHTs2WVwbeIrVdtek+VvpPR+5FN/1c/An4bba8buO/kW76uSh6\nL2rwc7EZMBCY1sz+7YHbs+UNgX+09zNRiU8cg4AZEfFiRMwHRgM7t1B+T2BUk2210mheyr2YA/TJ\nlvsAb0XEghKPrSYduReNutPn4pvAfQAR8TTQT9JXSjy2mrT3XqxSsL8mPhfR/EvXjXYCrszK/hNY\nXtJqtOMzUYmJYw1gZsH6rGzbl2Q9sH4I3FSwuZZeHizlXlwCrCdpNvA48LM2HFtNOnIvoPt9Lh4H\n/htA0iBgbVIX+O74uWjuXkBtfS5a09y96tvM9mZV4ui4bWmt3xF4MCLeKdhWSy8PlnIvfg08FhF1\nkr5G+p1rcWjEdt+LiHif7ve5OA34s6SpwDRgKrCwxGOrSUfuBcCmETG7Rj4XpeiUp6tKfOJ4BSgc\n3m9NUgYsZg+aVFNFxJzsv28At5Aew6pVKfdiE+BGgIh4jlRnu25WrtT7WA06ci+63eciIt6PiAMj\nDRS6L7AK8Fwpx1aZ9t6L57N9s7P/1sLnojVN79X/I92rNn8mKjFxPAJ8XVI/Sb2A4cCYpoUkLQds\nDvy9YNvSkpbNlhtfHmy2h0EVKOVeTAe2BpC0KumL8vkSj60m7b4X3fFzIWm5bB9ZFcz9ETGvlGOr\nTLvvRQ1+LlozBtgXQNJGwDsR8Rrt+ExUXFVVRCyQdCQwntTaf1lEPCXp0Gz/X7OiPwLGR8RHBYev\nCtwiCdLvdm1U8cuDJd6LPwCXS3qc9IfAcZG9jV/s2Dx+j87QkXsh6avAzd3sc/Et4AqlYXn+DRzU\n0rF5/B6doSP3ghr7vlB66XoIsLKkmcBJpF5SRMRfI+J2SdtLmgF8AByQ7WvzZ8IvAJqZWZtUYlWV\nmZlVMCcOMzNrEycOMzNrEycOMzNrEycOMzNrEycOMzNrEycOq1qSFurzofVvkLRU3jG1RNL+kv6S\nLR8qaZ+C7as3KXt9NmxKS+drkPT9bHk3Sf+RdE8L5VeVdHvHfxPr7pw4rJp9mA0jsT7wKfA/5byY\npI6+MPvZS1PZC1lXZ6v7kQaaa7xOf6B3NmxKa+drPOdBwE8iYqtmC6e3hOdK+l57gjdr5MRhteJB\noL/SpD23ZhPVPCRpfYBssp4+St4q+Gv/KklbSVpM0p8kTcmOPSTbXydpoqS/A08WXlBSD0lXZE88\nT0j6Wba9QdI5BU9DGzQeUnBsvaRjJP0Y+AFwraR/SVqSNAbbmIKyF0h6WGlyqvomv7cknQgMBkZK\nOl3S2pIekPRo9rNxQfkxwIgO3mvr5pw4rOplTwJDgSeAk4FHI+K7pNFyr8qKTQI2BdYjDfa3abZ9\nI2Ay8BPS2D2DSAPdHSypX1ZmIHBURKzb5NL/BfSNiPUj4jvA5dn2AJaKiIHA4cDIImEHEBFxE2ms\noD0j4nsR8TEpCTxSUPY3EbEB8F1gSGMybDxPRJxccI7jgNeBbSLi+6QkdG5B+SmkMd7M2q3ixqoy\na4OllIbKBniA9AX9T7K5FyLiPkkrZQPZTSR9Yb4EXAgcIqkvMDciPpK0LbC+pF2z8/UB+gMLgCkR\n8VKR6z8HfFXSucA4oHCco1FZDBOzJ53lWvldCoe7Xps0KVWj4dngfIsDq5MmJio2GF/jOXoB5ykN\nr78QGFBQZg5ppjezdnPisGr2UfZX/WeyAeuazjkQpMRyJPAi8BtgF2DXbHujIyNiQpPz1ZEGhPuS\niHhH0ndITzv/A+zO5wPoNbWold+l6aBxyq6/DnAM8IOIeFfS5cCSrZzjaGBOROwjqQfwcZPzeoA6\n6xBXVVmtmQjsBZ996b8REfMiYhZpHvL+EfECqU3kWD5PHOOBwxsbwCUNUJphslmSViLNaX4z8FtS\nlRakL+fhWZlNSVVg7zc9nM8T3Pt8PuUtpKeixl5WfUiJ6z2loeK3K+Ee9AFezZb3JY142mj17Pxm\n7eYnDqtmxf5yric1Ej9O+sLdr2DfP/j8j6UHScOwP5itX0qqwvmX0mPL66SnksKeS02tQRrGvfGc\n/1sQ18eS/kX6N3ZgwfYosnwFcJGkD0mTUT1IajB/NCIez6rjppOm92yMtyUXADdJ2he4E5hXsG8Q\nX3zKMmszD6tu1skk3QccExH/aufxXwX+EhHDOjcykHQtcEZETG21sFkzXFVlVmEi4nng/dZeAGwr\nSV8BlnfSsI7yE4eZmbWJnzjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxN/j9Wa4hN\nQwruUQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5c175d0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8ndPZ//HPN5M5MSeCSg3xM0sRsxxzaqwxDapmrdIJ\nTWnVeQyPtmhVaZ8iiaGEeoyRlAgOQdEQQxWPqJAQaUrMVIbr98e6j+xu+8xn73vvc77v12u/cu97\nvPZt29dZa91rLUUEZmZmrdUj7wDMzKy2OHGYmVmbOHGYmVmbOHGYmVmbOHGYmVmbOHGYmVmbOHFY\nzZH0gaRBOV6/QdKxeV2/2kj6UvbfRHnHYpXhxGGtIunD7MfhA0mLJH1c8H6kpOUljZE0W9L7kl6S\nNKrg+EVF53inYFtfSZdIei3bNl3SryWtVCqWiFguIma04zMMyuLo6Pc+spcBEfF69t/E96SbcOKw\nVomIZbMfh+WA14B9Gt9HxDjg18DSwP+LiL7AfsD0otNsWnDMigCS+gD3ARsAe2bn3xb4FzC0TB+n\nXX8ZK6nY/zOSelXqWmZt4cRhnWVLYFxEvAcQES9FxC2tOO5IYE3ggIh4MTt2bkScHxF/LnVAVmpY\nO1u+WtLlku7KSjqPNW4r4aHs33ezfbeRVC/puoJz/0epJKuWOk/SI8CHwJezXdeV9Lik9yTdLmmF\ngnPsJ+l5SfMkPSDp/xVsmyHpx9n2d7JS2hLZtjpJsyT9SNJsYLSkPllp7I3s9ess2Rbuf4akuZJe\nlXRYUzdaUj9JoyW9mR13bsHnPErSw5IuzOL6h6ThBcd+WdJD2X27N7vn1zVzz87Jzve+pHsKS4/Z\nfX80uz9PSxrWVMxWnZw4rLM8Bpyf/QCt18Q+pf7S3w34c0R83IFrjwDqgRVIpZzzm9hvx+zffhHR\nNyIeo3VVTkcAxwGNpS2REt7RwGrAAuBSAEmDgRuA7wIrAxOB8UWlh8OAPYB1gMHATwu29c8+x5eA\nE7NtQ4HNstfQEvuvBAwEvglckcVQytXAZ9l1h2QxHFewfSjwYna+XwKjC7bdQPpvvCLpXh9B8/du\nJHAUsCrQBzgNQNLqwF3AORGxQrb+FkkrN3MuqzJOHNZZTgGuB04Gnpf0cuFfrJmnsr8y50m6JFu3\nIjC7A9cN4NaImBoRC7MYNm9i31KJq6VqqwCujogXImJRRCzI1l0bEX/PEt5ZwKHZX9wjgLsi4r4s\nnouApYDtCs53WUS8ERHzSEluZMH1FgFnR8T8iPiUlGTOiYh/RcS/gP8CvlEU41nZ/g8BE4BDv/Ah\npf7AV4EfRMQnETEXuAT4esFur0XE6Kyt4lpgNUmrSvoSqUT5s4hYEBGPAHc2c+8CGBsR07PP8CcW\n/zc5ApgYEXcDRMRkYCqwVxPnsirkOlTrFNkPxAXABZKWA34M3CxpzYh4N9ttSET8o+jQt0l/LXfE\nnILlT4BlO3i+YjNbWPc60JtUwlgtew9ARISkmcDqzRxb+PnnRsRnBe8Hkko5Te0/LyI+KXj/GqXv\n51pZjLO1+OGnHoWxAm8VxP1xtt+ypFLDO9l/48LPsGaJ63zhXPznf5O1gEMk7VuwvRdwfzPnsirj\nEod1uoj4gJRElmFxm0BTJgN7Slq67IGVrlr5kNSo32hAK4/7UtHyfGAu8CbpxxFIDeqkH9g3mjn2\nzWau9SYwqJn9Vyi6d2sVXavRTODfwEoRsUL26hcRm5TYt9hsYEVJSzXxGdrideC6ghhWyB6W+GU7\nz2c5cOKwTiHpLElbZo25SwLfA+YBL7Vw6HWkH7VbJK0vqYeklSSdKemrrbl0G8KcS6oKWqdg3dPA\nTpLWlNQPOKMV1xBwhKQNsh/tc4Cbsyqem4G9Je0iqTdwKvAp8GjBsSdJWl3SisBPgBubiXkc8FNJ\nK2ftAD8j3bNC/yWpt6Qdgb2zGP5DRMwGJgG/krRcdp/XkbRTM9duPPY1UnVSfXadbYF9aL6No6n/\nLn8E9pW0h6SekpbMGvlXb2J/q0JOHNZZFgFjST/ObwC7AnsXNHqX/JHJqmV2IzXK3gu8BzxOavt4\nrIlrRdFy8bmbutbHpDaFR7J2lqFZHftNwLPAX4HxrThfYxvA1aS/xvuQGsOJiJdI9fi/Jd2LvYF9\ns7aRxmNvIP2IvwK8DJzXzLXOI/1oP5u9phbt/xYpQb9JSignRsT/lfr8pAb9PsDfgXdICaaxhNXS\nfTyc9Jj028C5pHv2WRP7Fr///NwRMQvYHzgT+CepBHIq/i2qKSpXnx1JY0j/0/yzsTgsaTPgf0hV\nGDOAw7NqjeJjZwDvAwuB+RFRruf5zSpK0qvAsRHR4Tp9SXWkap/m2hrKQtJNwN8j4r8qfW3LXzmz\n/Fig+Kmaq4AfRcSmwG3A6U0cG0BdRAxx0jDLX1YNuU5WxfVVUgfP2/OOy/JRtsQREVNIRehC62Xr\nITWKHtTMKTzujVnLKjXMxwDgAeAD0igB34qIZyp0basylX4c93lJ+0fEHcAhNP04XwCTJS0E/hAR\nV1YsQrMyioiWnjJry7kaaP/TTW291l2kjntmFW+QOob0RMlU0nPdnzWx3/YRMYTUYek72dMiZmZW\nBSpa4sieONkTPh+aYe8m9pud/TtX0m2koRCmFO8nyaNxmpm1Q0S0uzmgoiUOSatk//Ygjbfz+xL7\nLJ31PEbSMqTxdJ5r6pwR4VcEZ599du4xVMvL98L3wvei+VdHlS1xSBpH6vS0vqSZko4BRkp6CXgB\nmBURV2f7DpQ0ITt0ADBF0tOk5/nviohJ5YrTzMzapmxVVRExsolNl5bY902yaqtIYxk1NUidmZnl\nzL01q0gEvPVWy/uVUldX16mx1DLfi8V8Lxbzveg8Zes5XgmSopbjLzZtGuyzD9x/P6y/ft7RmFlX\nJYmolcZxa96QIXD++bDbbjC9eNJVM7Mq4fk4qsxRR8Fnn8Guu8KDD8KgQXlHZGb2n5w4qtAJJ8D8\n+bDLLil5rFnxIezMzJrmxFGlvvOdVPLYZRdoaIDVPVuBmVUJJ44q9oMfLK62amiAAaXmpjMzqzAn\njio3ahT8+9+pwfyBB2CVVfKOyMy6OyeOGnDWWanksfvu6VHdFVfMOyIz687cj6NGRKTSx/33w+TJ\nsPzyeUdkZrWqo/04nDhqSERq93jsMZg0Cfr2zTsiM6tFThw1HH97RKQnrp59Fu6+G5ZdNu+IzKzW\nOHHUcPzttWhR6uvxyiswYQIsvXTeEZlZLXHiqOH4O2LhQjj6aJg9G8aPhyWXzDsiM6sVThw1HH9H\nLVwIRxwB770Ht90GSyyRd0RmVgs8yGE31rMnXHttqqo66KDU38PMrNzKOQPgGElzJD1XsG4zSX+R\n9KykOxuniC1x7HBJL0p6WdKocsXYFfTuDePGwVJLOXmYWWWUs8QxFhhetO4q4EcRsSlwG3B68UGS\negKXZcduSJpudoMyxlnzeveGG25IJY8DD4RPP807IjPrysqWOCJiCjCvaPV62XqAycBBJQ4dCkyP\niBkRMR+4Edi/XHF2Fb17w/XXwzLLOHmYWXlVuo3jeUmNSeAQoNSA4asDMwvez8rWWQsak8eyy8IB\nBzh5mFl5VHqsqmOASyWdBdwJfFZinzY9JlVfX//5cl1dXbefV7ix2urww1PyuO02P6pr1t01NDTQ\n0NDQaecr6+O4kgYB4yNikxLbBgPXRcTWReu3AeojYnj2/gxgUUT8osQ5uvXjuM1ZsCA9qvvuu3D7\n7U4eZrZYTT2OK2mV7N8ewE+B35fYbSqwnqRBkvoAI0ilE2uDXr3gj3+EFVaAr33N1VZm1nnK+Tju\nOOBRYH1JMyUdQ3pC6iXgBWBWRFyd7TtQ0gSAiFgAnAzcA/wduCkiXihXnF1Zr15w3XVpGPb994dP\nPsk7IjPrCtxzvBtYsACOPBL+9S+4447U58PMuq+aqqqyfPTqlXqYr7KKSx5m1nFOHN1Er15wzTUp\neey3H3z8cd4RmVmtcuLoRhpLHv37p5KHk4eZtYcTRzfTs2cqeQwYAPvsAx99lHdEZlZrnDi6oZ49\n4eqrYdAgGD4c3n8/74jMrJY4cXRTPXvCVVfBxhvD7rvDvOJRxczMmuDE0Y316AG/+x1suy3suiu8\n/XbeEZlZLXDi6OYk+PWvYY89YOedYc6cvCMys2pX6UEOrQpJcMEFqWNgXR3cdx8MHJh3VGZWrZw4\nDEjJ4+yz07zlw4al5PGlL+UdlZlVIycO+w8//nEaSbcxeay9dt4RmVm1ceKwL/j+91PJo64OJk+G\nwYPzjsjMqokTh5X07W+n5LHzzjBpEmy0Ud4RmVm1cOKwJh1zTEoeu+0Gd98Nm22Wd0RmVg2cOKxZ\nhx+ekseee8Jdd8GWW+YdkZnlzYnDWnTwwSl57LVXmoZ2u+3yjsjM8lTOGQDHSJoj6bmCdUMlPSFp\nmqS/StqqiWNnSHo22++JcsVorbfvvmk2wf33T09bmVn3VbYZACXtCHwIXBsRm2TrGoALIuIeSV8F\nfhQRO5c49lVgi4h4p4VreAbACnvwQTjkEBg9OiUTM6s9VTsDYERMAYqHzpsN9MuWlwfeaOYU7f5Q\nVj7DhsGECXD88XDDDXlHY2Z5qHQbx4+BhyVdREpa2zaxXwCTJS0E/hARV1YqQGvZVlul/h3Dh8MH\nH8CJJ+YdkZlVUqUTx2jguxFxm6RDgDHA7iX22z4iZktaBbhX0otZCeYL6uvrP1+uq6ujrq6u86O2\nL9h441RttdtuaT6P00/POyIza0pDQwMNDQ2ddr6ytXEASBoEjC9o43g/IvpmywLejYh+TZ8BJJ0N\nfBgRF5fY5jaOnM2alebzOOggOPfcNOaVmVW3qm3jaMJ0ScOy5V2A/yveQdLSkpbLlpcB9gCeK97P\nqsMaa8BDD8HEifC978GiRXlHZGblVs6nqsYBw4CVgTnAz0gJ4HJgCeAT4KSImCZpIHBlROwtaW3g\n1uw0vYDrI+KCJq7hEkeVePfdNIf5uuummQV7uYeQWdXqaImjrFVV5ebEUV0++ggOPBCWWw6uvz51\nGjSz6lNrVVXWhS2zDNx5J0TAfvulRGJmXY8Th3WqJZaAm26CAQPS+FbvvZd3RGbW2Zw4rNP16gVj\nx8KQIWlY9rlz847IzDqTE4eVRY8ecOmlaWDEnXZKj+2aWdfgZ1+sbCQ47zzo1w922AHuuQfWXz/v\nqMyso5w4rOxOPx1WXjlNRTt+vOf0MKt1rqqyijj6aPif/0lVVx6W3ay2OXFYxey/P9x8M4wcCf/7\nv3lHY2bt5aoqq6hhw2DSJNh7b3j7bY+sa1aLnDis4jbfPI1vtcce6VHdn/zEgyOa1RIPOWK5mT07\nzelRVwe//nV6hNfMys9jVdVw/JYGR9x3X1hrrdRpsHfvvCMy6/o8VpXVtOWXT/073nsvNZ57fCuz\n6ufEYblbemm49VZYZZU0KdQ77+QdkZk1x4nDqkLv3qmqarvt0hAlb7yRd0Rm1hQ/VWVVo0cPuPDC\nVPJoHKJk8OC8ozKzYmUrcUgaI2mOpOcK1g2V9ISkaZL+KmmrJo4dLulFSS9LGlWuGK36SDBqFPz0\np6nPxxNP5B2RmRUrZ1XVWGB40bpfAmdFxBDSVLK/LD5IUk/gsuzYDYGRkjYoY5xWhY49Fq68MnUU\nnDAh72jMrFDZEkdETAHmFa2eDfTLlpcHStVkDwWmR8SMiJgP3AjsX644rXrtsw/cdRccdxyMHp13\nNGbWqNJtHD8GHpZ0ESlpbVtin9WBmQXvZwFbVyA2q0Jbbw0PPpg6Cr7xBpx1lnuZm+Wt0oljNPDd\niLhN0iHAGGD3on3a1KOvvr7+8+W6ujrq6uo6GKJVm8GD4dFH08i6b7wBl1+eZhk0s9ZpaGigoaGh\n085X1p7jkgYB4yNik+z9+xHRN1sW8G5E9Cs6ZhugPiKGZ+/PABZFxC9KnN89x7uRDz6Agw6CJZeE\nG29M/T/MrO1qref4dEnDsuVdgP8rsc9UYD1JgyT1AUYAd1YqQKteyy2X2jz69YNdd4V//SvviMy6\np3I+jjsOeBRYX9JMSUcDJwC/lPQ0cF72HkkDJU0AiIgFwMnAPcDfgZsi4oVyxWm1pU8fuPbaNDDi\n9tvDq6/mHZFZ9+NBDq1mXXYZXHBBKoUMGZJ3NGa1oyKj42b9KAYBi4DXIuLF9l6wMzlx2C23wLe/\nDddfn8a5MrOWlS1xSPoy8ANgL1J/izcBAasBawB3Ab+OiBntvXhHOXEYwJQpcPDBcPHFcMQReUdj\nVv3KmTj+BFwJNGQd8Qq39QZ2Bo6LiEPbe/GOcuKwRs8/nx7X/c534PTT3dfDrDmeyKmG47fONWtW\nSh477gi/+Y37epg1pZwljp2KVxUsR0Q81N6LdhYnDiv23ntwyCGwxBIwbhwsu2zeEZlVn3Imjrso\n3Yt7U2CNiOjZ3ot2FicOK2X+fPjWt+Dpp9MTV6utlndEZtWlYlVVkrYHziINTnh+RIxv70U7ixOH\nNSUCzj8frroqja670UZ5R2RWPcqeOCTtBvw0e3t+RNzb3ot1NicOa8kf/winnpqqrXbZJe9ozKpD\nOauq9gF+ArwL/Hc2THpVceKw1mhogBEj0uyCRx6ZdzRm+Stn4lhEGtL8mRKbIyL2a+9FO4sTh7XW\nCy+kSaG++U342c/8uK51b+VMHMMK3xZtjoh4sL0X7SxOHNYWc+akyaE22giuuCKNe2XWHZUzcVwB\n/BmYHBEftPcC5eTEYW310Udw+OFpiPZbboHll887IrPKK+ew6mOAzYGJku6XNErSZu29kFk1WGaZ\nlDA23hh22AFeey3viMxqT2sHOVwZ2AMYTurHMQ34c0T8qbzhtRiXSxzWbpdcAhddBHfeCV/5St7R\nmFVOLkOOSNoS2DMizm/vhTuDE4d11G23wYknwpgxqf3DrDso+wyAkr4vqZ+S0ZKeAlZqKWlIGiNp\njqTnCtbdKGla9npV0rQmjp0h6dlsvyfa/KnMWumAA2D8eDjhhFQC8d8hZi1rTQfAZyNiU0l7At8i\n9R6/LiKanTpH0o7Ah8C1jXOOF22/iDTn+Hkltr0KbBER77RwDZc4rFO89hrsuy9stx389rfQu3fe\nEZmVTyXmHG88+d6khPG31pw46zA4r+QJJQGHAuNacV2zsltrLXj4YZg5M/X3ePfdvCMyq16tSRxP\nSppEmtDpbkl9STMBdsSOwJyIeKWJ7QFMljRV0vEdvJZZq/TtC3fcARtsANtuC6809e006+aaTBzZ\nZE0AxwBnAFtFxMdAb+DoDl53JHBDM9u3z6rCvgp8J6v2Miu7Xr3SXB6nnJIe13344bwjMqs+zU11\n8xdJb5A6Ad4dEfMAIuJt4O32XlBSL+AAoMkHICNidvbvXEm3AUOBkmNl1dfXf75cV1dHXV1de0Mz\n+9xJJ8E668CBB6Ypab/xjbwjMmu/hoYGGhoaOu18zTaOZ/OODwf2JM0zPoWUSB6MiH+3eHJpEDC+\nsHFc0nBgVETs3MQxSwM9I+IDScsAk4D/iohJJfZ147iV1fPPp0bzww6Dc86BHq2p3DWrcpWcj6MP\nqW1iODAMmBsRezez/7hsv5WAfwI/i4ixksYCf4mIKwr2HQhcGRF7S1obuDXb1Au4PiIuaOIaThxW\ndnPnwte+BquvDtdcA0stlXdEZh2T25zjklaPiDfae+HO4MRhlfLpp3DssTB9empAHzAg74jM2q8S\nEzk9V7QqgPeAqcB5WZtHLpw4rJIi4NxzYfTo1Glw003zjsisfSqROC4EFpCeghLwdWBp4C3S00/7\ntvfiHeXEYXm48cb01NXYsR6mxGpTJRLHtOJe4o3rJD1Xqld4pThxWF4eeyw9cfXDH6apaT0xlNWS\nSvQc7ylp64ILDi04bkF7L2xWy7bZJiWP66+Ho45KbSBm3UVrShxbAWOBZbNVHwDHAs8De+c5tLpL\nHJa3jz5KiWPWrDTSrhvNrRZU8nHcfgAR8V57L9bZnDisGixatLjR/PbbPbeHVb9KtHGsABwJDGJx\nT/OIiO+296KdxYnDqsktt8C3vgWXXw6HHpp3NGZN62jiaG7IkUYTgb8Az5IGNxTpkVwzK3DQQWmY\nkv33h7/9Derr3dPcuqbWlDieioiqLHy7xGHVaM6c9MTVgAGpp/myy7Z8jFklVeKpqhsknSBpNUkr\nNr7ae0Gzrq5/f7j/fujXD7bfPk0SZdaVtCZxfApcCDwGPJm9ppYzKLNat8QSqbH8qKPS3B6PPJJ3\nRGadpzVVVa+S5uL4V2VCaj1XVVktuPtuOPJI+PnP4Zhj8o7GrDJVVS8Dn7T3Ambd3fDhMGVKShw/\n+AEscLdZq3GtKXHcDmwEPAA0zsHhx3HN2mjePBgxIg2WeOONsNJKeUdk3VUl+nEclS027ihS4rim\nvRftLE4cVmsWLIAzzoBbb009zT3CruUht/k4qoETh9WqG26A730Pfvc7OOSQvKOx7qZsbRySJkg6\nJJvKtXjb0pJGSJrYzPFjJM0pnM9D0o2SpmWvVyVNa+LY4ZJelPSypFFt/VBm1e6ww2DSJDj9dDjz\nTFi4MO+IzFqvyRKHpFWBk4GDgYXAbFI11QBSj/ObgMsjYm4Tx+8IfAhcW2rodUkXAe9GxHlF63sC\nLwG7AW8AfwVGRsQLJc7hEofVtLlzU7vHkkumkXZXWCHviKw7qEhVlaQBwFrZ2xkRMaeVwQ0Cxhcn\nDkkCXgN2johXirZtC5wdEcOz9z8GiIiflzi/E4fVvPnzU8ljwoQ0SOJGG+UdkXV15ayqWk/SDgAR\n8VZEPB4RjwPrSVqnvRfM7AjMKU4amdWBmQXvZ2XrzLqk3r3hkkvgrLNg551To7lZNWuuH8clwPsl\n1r+fbeuIkaSpaEtxEcK6pSOPhIkTU6P52Wen4drNqlFzo+P2j4hni1dGxLOSvtzeC0rqBRwANDVw\n4hvAmgXv1ySVOkqqr6//fLmuro66urr2hmaWuy23hL/+NT1pNW0aXHddGvPKrCMaGhpoaGjotPM1\n1zg+PSLWbeu2ov0GUdTGIWk4MCoidm7imF6kxvFdgTeBJ3DjuHUzn32W5jOfPBnuuAPWXz/viKwr\nKeeQI1MlnVDigseTBjpsKbBxwKPAYEkzJR2dbRoBjCvad6CkCQARsYD0NNc9wN+Bm0olDbOurE8f\nuOyy1Gi+444wfnzeEZkt1lyJYwBwG/AZixPFFsASwAERMbsiETbDJQ7rDh57LFVdHX10avvo2TPv\niKzWlfVx3Oyx2Z2BjUmN1s9HxP3tvVhnc+Kw7mLOnNTfY6mlUn+PFT0jjnVAOR/HPTCS+4E/RsRv\nqylpmHUn/fun9o4NN0wN6NNKjrlgVhnNtXGcVbA8udyBmFnzevWCiy9Ow7PvsUealtYsD62ZjwPS\nUCNmVgUOPRQefBAuuABOOgn+/e+WjzHrTM0ljqUkfUXSFoXL2b9N9cEwswrYcEN44gl46y0YNgxm\nNdnTyazzNfdUVQNFc3AUbm+qH0YluXHcursI+OUv05AlN9yQhiwxa4nn46jh+M06y+TJcMQRcNpp\ncOqpIFcuWzPKljgkbQXMauyvIembwEHADKA+It5p70U7ixOH2WKvvw4HHQSDBsGYMbDccnlHZNWq\nnD3HryCbY1zSTsDPgWtIgxxe0d4Lmll5fOlLMGUKLL88bL01vPhi3hFZV9Vc4uhRUKoYAfwhIm6J\niJ8C65U/NDNrqyWXhCuvTONc7bQT3Hxz3hFZV9Rc4ugpqXe2vBvwQMG25kbVNbOcHXcc/PnPMGoU\nfP/7adBEs87SXOK4GXhQ0p3Ax8AUSBM8Ae9WIDYz64AttoAnn4RXX02P7L7+et4RWVfRXOL4GvBD\n4Gpgh4honFZGwClljsvMOsEKK6TpaA88EIYOhbvvzjsi6wqae6pqWkQMqXA8beKnqsxa76GH4LDD\n4JhjPMpud1fOx3FnAb+i9HAjERG/au9FO4sTh1nbzJkDI0dCjx6pw+Cqq+YdkeWhnI/j9gSWA5Yt\n8fIT4mY1qH9/uPde2Gab1Aby8MN5R2S1qGxVVZLGAHsD/yyaOvYU4CRgITAhIkaVOHYGqb/IQmB+\nRAxt4houcZi104QJqdrqRz9Kj++6t3n3Uc6qqo4mjh2BD4FrGxOHpJ2BM4G9ImK+pFUiYm6JY18F\ntmipd7oTh1nHvPZaml1w9dVh7NjUedC6vnJWVe3W3pMCRMQUYF7R6m8DF0TE/GyfLySNAv77x6zM\n1lor9TZfYw1PEGWt12TiiIi3y3C99YCdJD0mqUHSlk1dHpgsaaqk48sQh5llllgCfvtbOP/8NEHU\nFVekUXfNmlLpHuC9gBUiYptsEMU/AWuX2G/7iJgtaRXgXkkvZiWYL6ivr/98ua6ujrq6us6P2qwb\nGDECNtssTRT1wAPwhz9A3755R2WdoaGhgYaGhk47X1mHVZc0CBhf0MbxZ+DnEfFg9n46sHVzpRtJ\nZwMfRsTFJba5jcOsk33ySRqm5P774U9/giFV3ZvL2qOcbRzlcDuwC4CkwUCf4qQhaWlJy2XLywB7\nAM9VOE6zbmuppVJp49xzU9XV737nqiv7T2VLHJLGAY8CgyXNlHQ0MAZYW9JzwDjgyGzfgZImZIcO\nAKZIehp4HLgrIiaVK04zK+3rX4dHH02j7R56KLz3Xt4RWbXwDIBm1qxPP02zCt59N9x0U3r6ympb\nrVVVmVmNWXJJuPxy+MUvYK+94De/cdVVd+cSh5m12iuvpKev1lwzTU+7wgp5R2Tt4RKHmVXMOuvA\nI4+kaWqHDIHHH887IsuDE4eZtckSS6Tqqksugf32g4svdtVVd+OqKjNrtxkz0tNXq6ySxrpaeeW8\nI7LWcFWVmeVm0KA0QdQGG6SqqwceyDsiqwSXOMysU0yaBEcdtXiGwd69847ImlK2YdVrgROHWXWZ\nMwe++U14//00w+CgQXlHZKW4qsrMqkb//jBxIhx0EAwdCjffnHdEVg4ucZhZWUydmuY3r6tLT2At\ns0zeEVkjlzjMrCptuSU89RT8+99p+Zln8o7IOosTh5mVzXLLwbXXwplnwm67wWWXuc9HV+CqKjOr\niOnTU9UBZxAJAAAONUlEQVTVwIFpuJKVVso7ou7LVVVmVhPWXTcNVzJ4MGy+OXTihHRWYS5xmFnF\n3XMPHH10etXXu89HpbnEYWY1Z889Ydo0ePpp2H57ePnlvCOytijnDIBjJM3JZvsrXH+KpBck/U3S\nL5o4drikFyW9LGlUuWI0s/z07w933ZU6DG63HYwe7YbzWlG2qipJOwIfAtdGxCbZup2BM4G9ImK+\npFUiYm7RcT2Bl4DdgDeAvwIjI+KFEtdwVZVZF/D883DYYakd5Ior3HBeblVbVRURU4B5Rau/DVwQ\nEfOzfeZ+4UAYCkyPiBnZfjcC+5crTjPL30YbwRNPpCFKNt8c7rsv74isOZVu41gP2EnSY5IaJJWa\nvXh1YGbB+1nZOjPrwpZYIs3tMWZMqr467bTUedCqT68crrdCRGwjaSvgT8DaRfu0qe6pvr7+8+W6\nujrq6uo6GKKZ5Wn33VOj+fHHw9Zbp8ESN9ww76hqW0NDAw2d+PxzWR/HlTQIGF/QxvFn4OcR8WD2\nfjqwdUS8XXDMNkB9RAzP3p8BLIqILzSku43DrOuKgKuugjPOgHPOgW9/G9TuWnkrVLVtHE24HdgF\nQNJgoE9h0shMBdaTNEhSH2AEcGdlwzSzvEmp1PHII6n6at994Z//zDsqg/I+jjsOeBQYLGmmpKOB\nMcDa2SO644Ajs30HSpoAEBELgJOBe4C/AzeVeqLKzLqH9deHRx+FTTZJDecTJ+YdkbnnuJnVjIaG\n1HC+115w0UUeqr29aq2qysys3erq4Nln4eOPU+njscfyjqh7conDzGrS//4vfOc7cOKJcNZZHu+q\nLVziMLNu6eCD02O7U6fCttvCC24JrRgnDjOrWautBhMmwHHHwY47wqWXwqJFeUfV9bmqysy6hJdf\nhm98I806OHYsrLFG3hFVL1dVmZkB660HDz8Mw4bBV74C48blHVHX5RKHmXU5Tz4JRxyRnry6/HJY\nccW8I6ouLnGYmRXZYgt46ilYdVXYbDOYNCnviLoWlzjMrEubPBmOOSYNWfKLX8Cyy+YdUf5c4jAz\na8Zuu6VOgx9+mEofU6bkHVHtc4nDzLqNO+5Io+yOHAnnnQdLLZV3RPlwicPMrJX23z+VPmbNSk9e\nPfFE3hHVJpc4zKxbuukm+O5309DtP/sZ9OmTd0SV4xKHmVk7jBgBzzyTSiBbbZWWrXWcOMys2xow\nILV7/PCHqRH9vPNgwYK8o6p+rqoyMwNmzoRjj4V58+Caa7r2POdVW1UlaYykOdlsf43r6iXNkjQt\new1v4tgZkp7N9nHzlZmV3Zprwj33pAETd9opTRS1cGHeUVWnspU4JO0IfAhcGxGbZOvOBj6IiF+1\ncOyrwBYR8U4L+7nEYWad7h//gKOPhvnz04CJ66+fd0Sdq2pLHBExBZhXYlNrg233hzIz64i114YH\nHkj9PbbfHi680KWPQnk0jp8i6RlJoyUt38Q+AUyWNFXS8ZUMzswMoEcPOOWU1Ndj4sSUQDxZVNKr\nwtf7PXBOtnwucDFwbIn9to+I2ZJWAe6V9GJWgvmC+vr6z5fr6uqoq6vr1IDNrHtbe2247z74wx/S\nZFGnnZZevSr969kBDQ0NNDQ0dNr5yvpUlaRBwPjGNo7Wbiva72zgw4i4uMQ2t3GYWcXMmJEaz997\nL7V9bLxx3hG1T9W2cZQiabWCtwcAz5XYZ2lJy2XLywB7lNrPzKzSBg2Ce+9Nvc133hnOPz81oHc3\n5XyqahwwDFgZmAOcDdQBm5PaMF4FToyIOZIGAldGxN6S1gZuzU7TC7g+Ii5o4houcZhZLl5/PSWQ\nuXPh6qth003zjqj1OlricAdAM7N2ikhVVqNGwcknwxln1MaYVzVVVWVm1pVIaZKoadPS01dDh6bl\nrs4lDjOzThAB110HN98Md96Zkkq1clVVDcdvZl1PRHUnDXBVlZlZVan2pNEZnDjMzKxNnDjMzKxN\nnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNypY4\nJI2RNEfScwXr6iXNkjQtew1v4tjhkl6U9LKkUeWK0czM2q6cJY6xQHFiCOBXETEke91dfJCknsBl\n2bEbAiMlbVDGOLuEzpyIvtb5Xizme7GY70XnKVviiIgpwLwSm1oaO3IoMD0iZkTEfOBGYP/Ojq+r\n8f8Ui/leLOZ7sZjvRefJo43jFEnPSBotafkS21cHZha8n5WtMzOzKlDpxPF74MvA5sBs4OIS+3hm\nJjOzKlbWGQAlDQLGR8Qmrd0maRugPiKGZ+/PABZFxC9KnMNJxsysHToyA2CvzgykJZJWi4jZ2dsD\ngOdK7DYVWC9LLG8CI4CRpc7XkQ9uZmbtU7bEIWkcMAxYWdJM4GygTtLmpOqoV4ETs30HAldGxN4R\nsUDSycA9QE9gdES8UK44zcysbcpaVWVmZl1PVfYcb6kDoKTTCjoRPidpQeMTWpJmSHo22/ZE5aPv\nXK24FytLulvS05L+Jumo1h5bazp4L7rb92IFSbdlTzA+Lmmj1h5bazp4L7rM96JUp+sS+1ya3adn\nJA0pWN+270REVNWLVD01HRgE9AaeBjZoZv99gMkF718FVsz7c1TqXgD1wAXZ8srA26QqyDbdx2p/\ndeRedNPvxYXAWdny+o3/j3TT70XJe9EFvxc7AkOA55rYvhcwMVveGnisvd+JaixxtLUD4GHAuKJ1\nXaXRvDX3YjbQN1vuC7wdEQtaeWwt6ci9aNSdvhcbAA8ARMRLwCBJq7by2FrS3nuxSsH2LvG9iKY7\nXTfaD7gm2/dxYHlJA2jHd6IaE0erOwBKWhrYE7ilYHUAkyVNlXR82aKsjNbciyuBjSS9CTwDfK8N\nx9aSjtwL6H7fi2eAAwEkDQXWAtZo5bG1pCP3ArrW96IlTd2rgU2sb1JFH8dtpba01u8LPBwR7xas\n2z4iZmd/Udwr6cUsE9ei1tyLM4GnI6JO0jqkz7xZmePKQ7vvRUR8QPf7Xvwc+I2kaaTH3qcBC1t5\nbC3pyL0A2CEi3uwi34vW6JTSVTWWON4A1ix4vyYpA5bydYqqqSLrJxIRc4HbSMWwWtWae7EdcDNA\nRLxCqrNdP9uvtfexFnTkXnS770VEfBARx0QaTPRIYBXgldYcW2Paey/+kW17M/u3K3wvWlJ8r9Yg\n3as2fyeqMXF83gFQUh9SB8A7i3eS1A/YCbijYN3SkpbLlpcB9qB0J8Na0Zp78SKwG4Ck/qQfyn+0\n8tha0u570R2/F5L6ZdvIqmAejIgPW3NsjWn3veiC34uW3AkcCZ+P0PFuRMyhHd+JqquqiiY6AEo6\nMdv+h2zXrwH3RMQnBYf3B26TBOmzXR8RkyoXfedq5b34b2CspGdIfwj8KCLeASh1bB6fozN05F5I\nWhu4tZt9LzYErlYaludvwLHNHZvH5+gMHbkXdLHfC5XudN0b0n2IiImS9pI0HfgIODrb1ubvhDsA\nmplZm1RjVZWZmVUxJw4zM2sTJw4zM2sTJw4zM2sTJw4zM2sTJw4zM2sTJw6rWZIWavHQ+n+StFTe\nMTVH0lGSfpstnyjpGwXrVyva96Zs2JTmztcgaYts+RBJf5d0XzP795c0seOfxLo7Jw6rZR9nw0hs\nAnwGfKucF5PU0Q6zn3eayjpkXZe9/SZpoLnG66wLLJMNm9LS+RrPeSxwXETs2uTOqZfwPElfaU/w\nZo2cOKyreBhYV2nSntuziWr+ImkTgGyynr5K3i74a/9aSbtK6iHpQklPZMeekG2vkzRF0h3A84UX\nlNRT0tVZiedZSd/L1jdIuqSgNLRV4yEFx9ZLOlXSQcCWwPWSnpK0JGkMtjsL9v2dpL8qTU5VX/S5\nJelnwPbAGEm/lLSWpIckPZm9ti3Y/05gZAfvtXVzThxW87KSwHDgWeAc4MmI2Iw0Wu612W6PADsA\nG5EG+9shW78N8ChwHGnsnqGkge6OlzQo22cI8N2IWL/o0psDAyNik4jYFBibrQ9gqYgYApwEjCkR\ndgAREbeQxgo6LCK+EhGfkpLA1IJ9fxIRWwGbAcMak2HjeSLinIJz/Aj4J7B7RGxBSkKXFuz/BGmM\nN7N2q7qxqszaYCmlobIBHiL9QD9ONvdCRDwgaaVsILsppB/M14DfAydIGgjMi4hPJO0BbCLp4Ox8\nfYF1gQXAExHxWonrvwKsLelSYAJQOM7RuCyGKVlJp18Ln6VwuOu1SJNSNRqRDc7XC1iNNDFRqcH4\nGs/RB7hMaXj9hcDggn1mk2Z6M2s3Jw6rZZ9kf9V/LhuwrnjOgSAllpOBGcBPgAOAg7P1jU6OiHuL\nzldHGhDuCyLiXUmbkko73wIOZfEAesUWtfBZigeNU3b9LwOnAltGxHuSxgJLtnCOHwCzI+IbknoC\nnxad1wPUWYe4qsq6minA4fD5j/7ciPgwImaR5iFfNyJeJbWJnMbixHEPcFJjA7ikwUozTDZJ0kqk\nOc1vBc4iVWlB+nEeke2zA6kK7IPiw1mc4D5g8ZS3kEpFjU9Z9SUlrveVhor/aivuQV/grWz5SNKI\np41Wy85v1m4ucVgtK/WXcz2pkfgZ0g/uNwu2PcbiP5YeJg3D/nD2/ipSFc5TSsWWf5JKJYVPLhVb\nnTSMe+M5f1wQ16eSniL9P3ZMwfoosXw18D+SPiZNRvUwqcH8yYh4JquOe5E0vWdjvM35HXCLpCOB\nu4EPC7YN5T9LWWZt5mHVzTqZpAeAUyPiqXYevzbw24jYu3MjA0nXAxdFxLQWdzZrgquqzKpMRPwD\n+KClDoBtJWlVYHknDesolzjMzKxNXOIwM7M2ceIwM7M2ceIwM7M2ceIwM7M2ceIwM7M2ceIwM7M2\n+f/STtLiZhT/9gAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5d78d90>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEZCAYAAAApEwoTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucHXV9//HXO5t7SDYJgQgIrBZEQEAqjfQn1i3ww4go\nrZdSbMVbEfVHta1WitZm1bZesWqxSv1xUYvQi1LwVwUvZRVvYBQCKKFECAQSQsj9trnt5/fH93t2\nZ0/O2T2b5OzO2X0/H4/zODPz/c7Md77nO/OZ75w5cxQRmJmZldmE0S6AmZnZUByszMys9ByszMys\n9ByszMys9ByszMys9ByszMys9FomWEnqlfTsPHydpA83cV2dklY0a/mtQNJxku6RtEnSpSOwvvsl\n/U6z11NjvddKWifpp6Ow7o7crhvaD4ebv5VI6pL0ldEux1AkvVHSHQ3k+7ykvx6JMlWtd0B7lvR2\nSavzfjxX0mZJHUMs46icTyNR5kYN2eglLZe0LRf+yVwZM0aicIOI/DogioFwpDU78O6H9wLfi4hZ\nEXHlgVxwrW2OiOdFxA8O5HoaKMeLgbOBwyPi9BrpDR2Y9jV/A8tbLunMA7W8Ya57pIPHmPrBZ0S8\nPSL+diTXWWjPR0TE6ZImAVcAZ+X9eF1EzIyI5YMtJyIey/lK9Zk0coYWwHkRMRP4TeA0YK8zBkkT\nD3DZhjLsqD9EGff5LGIsnukCRwO/qpc4Rrb5aGB5RPSMdkHqCPavXbYdwLK0jDHSNvdFpT1vz+PP\nAKYCD4xekQ6giBj0BTwCnFkY/wRwSx7uBd4BPAT8Ok+7OI+vBW4GDivM2wv8KfBrYA3wcUCF9DeT\nDpDrgFuBo6rmfXYevhb4cCHtPOAeYD3wI+CkQtpyUi/hXmA7MKFq+36Ql70F2Ay8FugEVgB/AawG\nVgJvLMxzHfB54Jt5vrOAbuAthTxvBO7IwwL+IS9rYy7LicBbgZ3Ajrzum+t8Bp8BHsvzLgbOKKQt\nyNM2Ak8CV9RZxmzg/wFP5fr9BukMrFbe/wZ25/raBBxbY5vPBF4O3J3X/RiwqGo5ZwA/zp/LY8Ab\ncvvYa5vz53RWHp4CfBp4Ir/+AZic0zqBx+t9NjW25XDgFlJ7fAj4kzz9LXn7dudyVJf9+Kr0dXl6\nO/DlXI/Lgffnz7de/rp1BHSQ2t6EGuX+CrAH2JaX955C/ouAR0n70PsK83QB/5Hn3Zi38ToG7iud\nwIrC+GW5PjcBS/PnujB/Pjvzuu+uU7d/BSzL8/4S+L2q9v9D0vFiHfAwsLCQ/izg+3nebwP/CHyl\nznoqn/nleZsfAV43yP54Zv48uklt737gFVX5v5DXuynnO6reZ0Jh32bo/fqEwjo+nIcfAF5eWN7E\nvB3Pz+On07+f3AO8ZIj2/DVS+3sY+NM67fmruS568/h3axxHp5F6XsuBDcAdpH1vQB2Q2vzVpH3t\nceDDhbShPue5pOP1Ezn963n6/aROUCXfJOBp4JS6214vobCQR+g/iByZV/LBwobfRjoQTsmNZA3w\nfGAy8Fng+1UB53s5/5HAg4VGcD7pYHIcqcf3fuBHVfPuFayAU3Nj+a3ceC7KZZ5UOAj+AjgCmFJn\nG/uWXdg5dpF2/jbgZcBWoL3QEDcAv104uN4OvLlqZ6006peSAsqsPH4c8IzCtnxoiM/gj4A5uV7+\nAlhF/8H7J8Af5eHpwAvrLGMu8PukM62DgH8DbhpkndXbU2ubXwKcmMdPIgXL8/P40aQDwQW5DueS\nG2KtbaZwUgR8iLTzzsuvH1XyD/XZ1NiOHwBXktrjKaSd/Hdz2hsqn1GdefdKJwWqm4AZeRsfrNRT\nnfyD1VEHdYJVdZ1U5b8q1//JQA9wXE7vIgWYV+bxqdV1TSFYkdrhY/S3xaPo38cWAV8eol2+pjDv\nH5AOjvML7X8n6SAq4G3AE4V5fwJ8knSQenFuKzXXV/jMK/l/J6/rOXXa5kxSEP0rUmD43bz8Yv5N\npJOpyaQTozuq6rgYrPr2BfZhvwY+APxLYXkvB36Zh48gHaQX5vGz8/i8GvUwAfg56crWRFLA/zVw\nTq32R2qf1dtSPI5+jnRielhe9um5PgbUAam9f54U3A4B7gTe2uDn/F/ADaSANxF4cZ7+l8CNhXzn\nA0sGbW+DJeaFLCdF5vV5+EryQT9vUGch79XARwvjM/KGHFXIf04h/e30R/xvMfDgOIF0EDqyRiUX\nG8Ln2fvAt7RQKY8wyJl39bILO8e2qg95NbCg0Nivq1rGYMHqTNJB7YXs3bPrC7yNvkhnKCfl4e+T\nDlJ7Ne4hlvF88tl/nfTbGdhTvLZ6m2vM82ngU3n4cuBrdfLttc0MDFbLGHh2dg7wSCOfTdUyjySd\nac4oTPt74Nrqz6hOOQekk4LjDuC5hWlvBW5vZHk16qiDfQtWhxem3Qn8QR7uAroHq2sGBqtjct2d\nRT65K+Trok5PZ5Btu5v+QPlG4KFC2vRc9kNJQXEXMK2Qfn299dEfrIr5/xX46zx8XbFtkoLfqqpl\nfJXcq835v1pIm5HbyRG1PhPqB6uG9utcz5uAqYVtrZT9MqqCNOmq0kU16uGFwKNV0y4HrqnTXmtt\nSy/wbNLxdRuFq1C15gPmk06IphbSLwT+u4HP+TDS1YG9TiRJPcTNwEF5/D+A9wzWvhr9zur8iJgT\nER0RcWlE7CikF++aO4x0eSLNGLGVdPnliDr5H8uFhnQW8BlJ6yWtz/NRNW8tRwPvrsyX531mYbnV\n62zU2ojoLYxvI/VIINVJw8uMiP8mBfnPAaslXSVpZqPzS3qPpF9J2pC3r53U44B0RvMc4AFJd0l6\neZ1lTM/rXS5pIynItQ9xx09UjQ/YZkkvlHS7pKckbQAuAQ7OyUeSLgnsi8MptCMGthMY/LOpXs66\n3A6LyxqqTdUzj3RmX122ussboo721ZOF4eptf7zRhUTEMuDPSIFptaQbJB3W6PySLpJ0d2G/ex4D\nt62vnBGxLQ8eRPpc1kf/dyswsE5rqZW/UtZg4HYfzt7756P0t6EB+XP7WMfANjakRvfrXM8PAK+U\nNB14BSl4Qjp+vbbq+PUi0vdN1Y4GDq/KezkpMAzXPFLP+9dD5Dua1OZXFdb5BVIPq6Le53wkaf/b\nWL3QiFhJumLyGkmzSZeerx+sIAfii8jiAW0lKSoDkO8aPJh0vbLiqKrhStpjpK7lnMJrRkQMdUvx\nY8DfVc13UET8a50yNstW0hlaxYDGFhH/GBGnASeQgstfNlK2fIfPXwKvjYjZETGHdH1cebnLIuJ1\nEXEI8DHgPyRNq7God+f1LoiIdtLlKbEfX+CTdrj/BJ4ZEbNJjbiyvMeA36gz31Cfx4B2RGonK/eh\nfCuBuZKKB/OjaPyAXl3Op0ln+NVle7xOfqhdR43ud/vSbqvn2Uo6262obpc3RMSLSQelILWhIdct\n6Wjgn4H/A8zN7fJ+GmtPq4A5+cBdUVl/PbXyF9tE9XHoyKoTsaPpP9aIdCCtbMtBpMvUK0n1BYPU\nWdEg+3W1G0g9kvOBX0VE5UTuMVKPsnj8mhkRH6+xjMdIVxiKeWdFxHn1yjeIp0k9pmOGyLeCdDXh\n4MI62yPipAbWsYK0/7XXSf8S8Mek+wR+HBGrBlvYgb5r5gbgTZJOkTSFdMnlpxHxWCHPeyTNlnQk\n8E5Sdx7STvw+SScASGqX9No66ykeZL8IvE3SAiUzJL286gA1lNXUP7DWW3+1e4BXSZom6RhSjycA\nJJ2Wz7Ankc6Ee0jd48q6B7ttfibpEsXTkiZL+htgVl9BpD+WVDnL2ZjX2bv3YjiI9AXsRklzSd9J\nDGc7a23zQaQz3p2SFgCvK6R9FThb0mslTZR0sKRTctpQ23wD8NeS5kmaB/wN6aaBYYmIFaTvvj4i\naYqkk0k38fxLg4t4Enhm/tyIiD2k7/r+TtJB+YD954XlrS7mz2rVUaNBaLjtspZ7gHMlzZH0DFJP\nCgBJz5F0Zt5XdzCwXT4JdAzS855B2o6ngQmS3kTqWQ0pIh4lfdfzQUmTJJ1BuklqKJX8LyZ97/Pv\nlU2pyvdT0n723py/My//xkKecyW9SNJk0g0DP4mIJyJiDSmovV5Sm6Q3U+czGGK/ri7TjaTvuN7G\nwB7EvwCvkHROXt9Upd951uqt3wVslvTefJxpk/Q8SafVrK1B5CsT1wCfknRYXtZv5/oo5ltFuhHl\nU5JmSpog6TfUwG8i87zfAv4pH/MnVc13E+kO83eSvgse1P4GqwE7XUR8j/Rl4tdIZynPAv6wap6b\nSV8S3k26O+2aPO9/ks7qbsyXqe4jfbi11hWV8Yj4OekOsytJXfmHSDdZDOestAv4Uu7mvqa4/Dpq\npf8D6fu51aTr1cUD4izSWeg60vd+T5PunoH0Pd8Jed1fr7GuW/Prf/K820lnWBUvBe6XtDmX4Q+r\nLtNWfJr0BenTpAP4t4bYRqhT5wXvAD4kaRPpc+/rzeYTlHNJPbq1pM/75Jw81Db/Lelgdm9+Lc7T\napVrKBeSekIrga8Df5Mv39TbpqL/Jt3l9qSkp/K0PyWdfT9MunvqetLnDenmoer8deuogW35CClo\nr5f0Fw3kr7U9XwGWkNrOraSDZiXPlLyONaTezjzSZSXoDwRrJS3ea0URvyLdSfYTUmB7HumusMHK\nUhx/Hek7mHWkk5EvDbJd5HWsJ32OXwEuiYj/qbWuiNhFutT2srxtVwKvr8r/VdIJ21rSTVp/XFjX\nxaQe0tOkHtOP6mzXYPt1dZmeJO13v83A/eRxUm/rfaSbfx4j7TN7HZtzgDmP9H3zw3nb/pn+k9eh\n6rx6/D2k4+zPcj18hP4gW8x3EenGi8qd2v9Of29zqHW+nnQ1Yinp2PjOwvb0kPbJjvw+KOUvtw44\nSdeQzn6eqnQZJfUCx0TEw5KeS9rJTwXeHxFXFOZdTvpCcg+wKyIWNKWQZlZ6uWf0lYg4cqi8DS7v\nWuDxiPjAgVie7TtJHwCOjYiLhsrbzB/yXkv67US97t1a0lnq79VIC9JdhuuaVDYzG79K9Rih8Sp/\nHfFmUu9rSE37pXdE3EHqtg+YXEhfExGLSV3EWtygzKziQF4CGuryrzWZpItJlzy/FRE/HCo/NPEy\nYC5QB/CNwe4ckbQI2FJ1GfBh0s0Ce4CrIuKLTSukmZmV3kg/z69RL4qIVfkut+9IWpp7amZmNg6V\nMlhV7rePiDWSbiI9/25AsJLkbryZ2T6IiJb7mqUMTyceUGlKT1qYmYdnkB61c1+tGQd7NEcrvrbt\n3EbPrp5hz7do0aJRL3tZXq4L14XrYvBXq2paz0rSDaSnJMxT+iPDRaTHdhARV+UfKP6M9BuBXknv\nIv2m4VDg6/m3iBOB6yPi280qZ5lce8+1/Nmtf8b0SdOZf9B8Dp1xaHpNP7R/uPCaf9B8Zk+dPdrF\nNjNruqYFq4i4cIj0Jyk88qRgC+lHb+POO37rHbz9tLezoWcDq7eu5qmtTw14/XLNL7l9+e0Dpm3Z\nuYXJP57MTV+4iUOmH8KhMw7tf5/RP14Zbp/STv2HEpiZlVMpv7MazyQxZ9oc5kybw3PnPXfI/Dv3\n7OTmW2/m2Bccy1Nbn2LN1jXpfdsalj+xnKe2DZy2fdd2DplxSF8AO2R6//C86fMGTp9xCHOnzWVC\nC/2XXWdn52gXoTRcF/1cF62vqbeuN5OkaNWyj6Ydu3ewZtuavsC2Ztsant72dN/wmm1r+oe3rmHT\njk3MmTZnQBCrBLV50+el4Rn9w/Omz2P6pOlDF8TMRoUkogVvsBhzwWqsXOIqy+eya88u1m5fOyCA\nrd2+ti/APb39aZ7e9nT/+LanaZvQ1h/Ipg8MZPOmz+PgaQcPHJ9+MJPbJg9dGDPbbw5WI2ywYNWq\n21TRytsQEWzdtXVAAFuzbQ1rt63tC3LF19rta1m7bS1TJ07dK4DNm5beD552cN97Je3gaQczbVKt\nf0Ixs8E4WI0wB6uxIyLYtGPTgABW6cEVg1xxfO22tUzQhBTUcm+tL7Dl4bnT5u41PHvqbNomtI32\nJpuNGgerEeZgNb5FBNt2basZxIrv67avGzC+ecdmZk2Z1RfY5k6bm4LZ1Ll9Qa3yqqTPnTaX9qnt\nLXWjiVk9DlYjzMHK9sWe3j2s71nP2m0DA9m67ev6XpUgVxzfunMrs6fOHhDMql9zps4ZOD5tDnOm\nzmFS26ShC2Y2QhysRpiDlY2kXXt2saFnw14Bbf329f2BrWfdXtM29Gxg+qTpewWwSnCbM63+8Kwp\ns9ybswPOwWqEtWKw6ujo4KmnnqKtrY0ZM2bwspe9jCuvvJIZM2YMyFfmbbDh6Y1eNu/YPKCntr5n\nfV9QW9+zPgW3nqrx7evYtmsb7VPb+4LXgPeqabOnzh4wzZctrR4HqxHWisHqWc96FldffTVnnnkm\nK1eu5KUvfSnnnXceH/nIRwbkK/M22MjZ3bubDT0bBgSxWu8bejbsNX3Lzi3MnDKzL4jNnjo7BbUp\ns/uC215phWlTJ04dMz8DsYFaNVj5CRaj5PDDD2fhwoXcf//9o10UK6mJEyb23co/XHt697Bxx0Y2\n9GzoC3iVoFYZX7V5VQpuhWmVYaAveA14Tdl72pxpc2if0t433j61nWkTpznY2QHlYDXCKj2mFStW\n8K1vfYtXv/rVo1wiG4vaJrT1fU+2L3p29/QFunqvRzc+2hfcNvRsYGNPf3Dsjd6+wNUXxKbsPVxJ\nb5/SPmB41pRZ/omBDTAuLwMeqBO+4VZdR0cHa9euZeLEibS3t3PeeedxxRVXMGXKlKry+TKgtbae\n3T19wavYwysGtEpaJX1jT//wlp1bmDFpBu1T2/cKZJXxwd5nTZnlgFeHLwO2kNGKA5K4+eabOfPM\nM0enAGYjZOrEqUw9aCrzD5q/T/NXbkypFciKw49ufDQFvJ6NbNqxqW94446NbNm5hemTpu8VxAYM\nF6ZVxovDs6bM8vd3JTEug5WZldsETUhBZWo7R7UftU/LKAa8YjDbtGNTX0DbtGMTy9YtY9POTTXz\nbNqxid7o7eupVV6VgDZrctX4lFmccMgJnHb4aQe4RszByszGpGLAo33fl7Nj9w427dg04FUJaH3j\nPRt5YtMTbNq5ia07tzpYNYGDlZnZIKZMnMIhE9Nf5NjoGZc3WJTdWNgGMyunVr3Bwj9xNzOz0mta\nsJJ0jaTVku6rk/5cST+R1CPp3VVpCyUtlfSQpMuaVUYzM2sNzexZXQssHCR9LfCnwCeLEyW1AVfm\neU8ALpR0fLMKaWZm5de0YBURdwDrB0lfExGLgV1VSQuAZRGxPCJ2ATcC5zernGZmVn5l/M7qCGBF\nYfzxPM3MzMapMt663vBtcF1dXX3DnZ2ddHZ2NqE4Zmatq7u7m+7u7tEuxn5r6q3rkjqAb0TESYPk\nWQRsiYgr8vjpQFdELMzjlwO9EfGxqvl867qZ2TD51vV9V11pi4FjJXVImgxcANwy8sUyM7OyaNpl\nQEk3AC8B5klaASwCJgFExFWSngH8DJgF9Ep6F3BCRGyRdClwG9AGXB0RDzSrnGZmVn5+gkUJjYVt\nMLNy8mVAG5bdu3ePdhHMzFqGg9UI6ujo4OMf/zgnn3wyM2fOpLe3d7SLZGbWEnwZcAR1dHQwd+5c\nvvGNbzBv3ry9/iG4oszbYGatrVUvA5bxd1ZNpw8emM8pFg0voEjine98J0cc4d84m5kNx7gMVsMN\nMgfSkUceOWrrNjNrVf7OaoRJLdf7NjMbdQ5WZmZWeg5WZmZWer4bsITGwjaYWTm16t2A7lmZmVnp\nOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpjcnHLfkpEWZmY8uYC1b+fZKZ2djjy4BmZlZ6\nDlZmZlZ6TQtWkq6RtFrSfYPk+aykhyQtkXRqYfpySfdKulvSXc0qo5mZtYZm9qyuBRbWS5R0LnBM\nRBwLvBX4fCE5gM6IODUiFjSxjGZm1gKaFqwi4g5g/SBZXgl8Kee9E5gtaX4h3bf0mZkZMLrfWR0B\nrCiMP56nQepZfVfSYkkXj3jJzMysVEb71vV6vaczImKlpEOA70hamntqA3R1dfUNd3Z20tnZ2ZRC\nmpm1qu7ubrq7u0e7GPutqf9nJakD+EZEnFQj7QtAd0TcmMeXAi+JiNVV+RYBWyLiiqrpNf/PyszM\n6vP/WQ3fLcBFAJJOBzZExGpJ0yXNzNNnAOcAde8oNDOzsa9plwEl3QC8BJgnaQWwCJgEEBFXRcQ3\nJZ0raRmwFXhTnvUZwNfzI5MmAtdHxLebVU4zMyu/Mfe39mZmVp8vA5qZmTWJg5WZmZWeg5WZmZWe\ng5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZ\nmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZVe04KVpGskrZZ03yB5PivpIUlL\nJJ1amL5Q0tKcdlmzymhmZq2hmT2ra4GF9RIlnQscExHHAm8FPp+ntwFX5nlPAC6UdHwTy2lmZiXX\ntGAVEXcA6wfJ8krgSznvncBsSc8AFgDLImJ5ROwCbgTOb1Y5zcys/EbzO6sjgBWF8cfztMPrTDcz\ns3Fq4iivX/szc1dXV99wZ2cnnZ2d+1kcM7Oxpbu7m+7u7tEuxn5TRDRv4VIH8I2IOKlG2heA7oi4\nMY8vBV4CPAvoioiFefrlQG9EfKxq/mhm2c3MxiJJRMR+dRRGw2heBrwFuAhA0unAhohYDSwGjpXU\nIWkycEHOa2Zm41TTLgNKuoHUU5onaQWwCJgEEBFXRcQ3JZ0raRmwFXhTTtst6VLgNqANuDoiHmhW\nOc3MrPyaehmwmXwZ0Mxs+HwZ0MzMrEkcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzM\nrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQc\nrMzMrPQcrMzMrPQcrMzMrPSaGqwkLZS0VNJDki6rkT5H0k2Slki6U9KJhbTlku6VdLeku5pZTjMz\nKzdFRHMWLLUBDwJnA08APwMujIgHCnk+AWyKiA9LOg74XEScndMeAV4QEevqLD+aVXYzs7FKEhGh\n0S7HcDWzZ7UAWBYRyyNiF3AjcH5VnuOB2wEi4kGgQ9IhhfSWq1AzMzvwmhmsjgBWFMYfz9OKlgCv\nApC0ADgaeGZOC+C7khZLuriJ5TQzs5Kb2MRlN3KN7qPAZyTdDdwH3A3syWlnRMTK3NP6jqSlEXFH\nceaurq6+4c7OTjo7Ow9Euc3Mxozu7m66u7tHuxj7rZnfWZ0OdEXEwjx+OdAbER8bZJ5HgJMiYkvV\n9EXAloi4ojDN31mZmQ2Tv7Pa22LgWEkdkiYDFwC3FDNIas9p5Et934+ILZKmS5qZp88AziH1vMzM\nbBxq2mXAiNgt6VLgNqANuDoiHpB0SU6/CjgBuE5SAPcDb8mzzwduklQp4/UR8e1mldXMzMqtaZcB\nm82XAc3Mhs+XAc3MzJrEwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErP\nwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrM\nzErPwcrMzEqvacFK0kJJSyU9JOmyGulzJN0kaYmkOyWd2Oi8ZmY2vjQlWElqA64EFgInABdKOr4q\n2/uAX0TEKcBFwGeGMa+ZmY0jzepZLQCWRcTyiNgF3AicX5XneOB2gIh4EOiQdGiD85qZ2TjSrGB1\nBLCiMP54nla0BHgVgKQFwNHAMxuc18zMxpGJTVpuNJDno8BnJN0N3AfcDexpcF4Aurq6+oY7Ozvp\n7OwcViHNzMa67u5uuru7R7sY+00RDceGxhcqnQ50RcTCPH450BsRHxtknkeAk4DnNTKvpGhG2c3M\nxjJJRIRGuxzD1azLgIuBYyV1SJoMXADcUswgqT2nIeli4PsRsaWRec3MbHxpymXAiNgt6VLgNqAN\nuDoiHpB0SU6/inSn33WSArgfeMtg8zajnGZm1hqachlwJPgyoJnZ8PkyoJmZWZM4WJmZWek5WJmZ\nWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5\nWJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek1NVhJWihpqaSHJF1WI32e\npFsl3SPpfklvLKQtl3SvpLsl3dXMcpqZWbkpIpqzYKkNeBA4G3gC+BlwYUQ8UMjTBUyJiMslzcv5\n50fEbkmPAC+IiHV1lh/NKruZ2VgliYjQaJdjuJrZs1oALIuI5RGxC7gROL8qzypgVh6eBayNiN2F\n9JarUDMzO/CaGayOAFYUxh/P04q+CJwoaSWwBHhXIS2A70paLOniJpbTzMxKbmITl93INbr3AfdE\nRKek3wC+I+mUiNgMvCgiVkk6JE9fGhF3FGfu6urqG+7s7KSzs/PAld7MbAzo7u6mu7t7tIux35r5\nndXpQFdELMzjlwO9EfGxQp5vAn8XET/K498DLouIxVXLWgRsiYgrCtP8nZWZ2TD5O6u9LQaOldQh\naTJwAXBLVZ6lpBswkDQfOA54WNJ0STPz9BnAOcB9TSyrmZmVWNMuA+Y7+i4FbgPagKsj4gFJl+T0\nq4C/B66VtIQUON8bEeskPRv4uqRKGa+PiG83q6xmZlZuTbsM2Gy+DGhmNny+DGhmZtYkDlZmZlZ6\nDlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZm\nZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6TQtWkhZKWirpIUmX1UifJ+lW\nSfdIul/SGxud18zMxhdFxIFfqNQGPAicDTwB/Ay4MCIeKOTpAqZExOWS5uX884EYat48fzSj7GZm\nY5kkIkKZkfh5AAAK9klEQVSjXY7halbPagGwLCKWR8Qu4Ebg/Ko8q4BZeXgWsDYidjc4r5mZjSPN\nClZHACsK44/naUVfBE6UtBJYArxrGPOamdk40qxg1cj1ufcB90TE4cDzgc9Jmtmk8piZWQub2KTl\nPgEcWRg/ktRDKvpfwN8BRMSvJT0CHJfzDTUvAF1dXX3DnZ2ddHZ27mexzczqi4Ddu2HnzoGvHTv6\nh2fPho6O0S5pv+7ubrq7u0e7GPutWTdYTCTdJHEWsBK4i71vsPgUsDEiPihpPvBz4GRg01Dz5vl9\ng4XZGNPb23/gr/c+3LTq4Vrj9abVmj5xIkyeXPs1ZQq8+tXwgQ+Mdk3W16o3WDSlZxURuyVdCtwG\ntAFXR8QDki7J6VcBfw9cK2kJ6XLkeyNiHUCteZtRTrPxqjooDPUaKl8xvTpgNDJced+zJx3wKwf+\n4bzXm3bQQXtPq85fa9qkSXsve9IkmOBfp46KpvSsRoJ7VtZKImDXrnRA7unpP1g3MlxrvN60waYX\nX7t39x+AG3kNlbeY3uhwrbSJE0Etd87fWlq1Z+VgZWNeb286c+/pqf2qHOBrjQ9nuPq9elpbWzog\nT53af5BuZLjWeL1pg00vviZNclAYrxysRpiDVeuofCnd0wPbt/cfyIvDjYzv62vXroEH8urXlCkw\nbdrAA30xbV+m1XpvaxvtT8LMwWrEOVjtmz17UhCovCpBYbjDw32XUkCoHNzrDRfHK0GkXr7BAk9x\n2uTJ7kWYVThYjbCxGKw2bICVKwcGk8pr27ba06vTioGl1mv37nQwr7wqQWC447Xe66VVLjuZ2ehr\n1WDVrN9Z2T742tfgk58cGByKr+nTB47PnVs/b72Xexlm1orcszIzG0datWflXwyYmVnpOViZmVnp\nOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZ\nmVnpOViZmVnpNTVYSVooaamkhyRdViP9PZLuzq/7JO2WNDunLZd0b067q5nlNDOzcmtasJLUBlwJ\nLAROAC6UdHwxT0R8MiJOjYhTgcuB7ojYUEkGOnP6gmaVcyzo7u4e7SKUhuuin+uin+ui9TWzZ7UA\nWBYRyyNiF3AjcP4g+V8H3FA1reX+c2U0eEfs57ro57ro57pofc0MVkcAKwrjj+dpe5E0HXgp8LXC\n5AC+K2mxpIubVkozMyu9Zv6t/XD+xvcVwA8LlwABXhQRqyQdAnxH0tKIuOPAFtHMzFpB0/7WXtLp\nQFdELMzjlwO9EfGxGnlvAv41Im6ss6xFwJaIuKIwzf9pb2a2D1rxb+2bGawmAg8CZwErgbuACyPi\ngap87cDDwDMjYnueNh1oi4jNkmYA3wY+GBHfbkphzcys1Jp2GTAidku6FLgNaAOujogHJF2S06/K\nWX8PuK0SqLL5wE2SKmW83oHKzGz8alrPyszM7EAp5RMs/GPifg3UxTxJt0q6R9L9kt7Y6LytZj/r\nYry1izmSbpK0RNKdkk5sdN5Ws591MWbahaRrJK2WdN8geT6b62mJpFML08vfJiKiVC/SJcNlQAcw\nCbgHOH6Q/OcB3y2MPwLMHe3tGKm6ALqAj+ThecBa0qXTYdVj2V/7UxfjtF18AvhAHj6uso+M03ZR\nsy7GYLt4MXAqcF+d9HOBb+bhFwI/baU2UcaelX9M3K+RulgFzMrDs4C1EbG7wXlbyf7URcV4ahfH\nA7cDRMSDQIekQxuct5Xsa10cUkgfE+0i0k971g+S5ZXAl3LeO4HZkp5Bi7SJMgYr/5i4XyN18UXg\nREkrgSXAu4YxbyvZn7qA8dculgCvApC0ADgaeGaD87aS/akLGFvtYij16urwOtNLpZk/Ct5X/jFx\nv0bq4n3APRHRKek3SNt8SpPLNRr2uS4iYjPjr118FPiMpLuB+4C7gT0NzttK9qcuAM6IiJVjpF00\nomV7kWXsWT0BHFkYP5IU6Wv5Q6ouAUbEqvy+BriJ1MVtVY3Uxf8C/h0gIn5NugZ/XM7XaD22gv2p\ni3HXLiJic0S8OdKDoC8CDgF+3ci8LWZf6+LhnLYyv4+FdjGU6rp6JqmuWqJNlDFYLQaOldQhaTJw\nAXBLdab8Y+LfAW4uTJsuaWYengGcQzqTalWN1MVS4GwASfNJB+eHG5y3lexzXYzHdiGpPaeRL299\nPyK2NDJvi9nnuhiD7WIotwAXQd8ThjZExGpapE2U7jJg+MfEfRqsi78HrpW0hHTy8d6IWAdQa97R\n2I4DYX/qQtKzga+Ps3ZxAnCd0mPJ7gfeMti8o7EdB8L+1AVj7Hgh6QbgJcA8SSuARaS7+4iIqyLi\nm5LOlbQM2Aq8Kae1RJvwj4LNzKz0yngZ0MzMbAAHKzMzKz0HKzMzKz0HKzMzKz0HKzMzKz0HKzMz\nKz0HK2tZkvao/29i/k3StNEu02AkvVHSP+bhSyS9vjD9sKq8/5ofGTXY8rolvSAPv1bSryR9b5D8\n8yV9c/+3xGzkOVhZK9uWH6FzErATeFszVyZpf39E3/ejxvwjza/k0TeQHiZaWc8xwIz8yKihlldZ\n5luAP4mIs+pmTk8rWC/pN/el8GajycHKxoofAsco/dHef+Y/l/uJpJMA8h/szVKyttCr+bKksyRN\nkPQJSXfled+a0zsl3SHpZuCXxRVKapN0Xe7Z3SvpXXl6t6RPF3p9v1WZpTBvl6R3S3o1cBpwvaRf\nSJpKeublLYW8/yTpZ0p/KNlVtd2S9DfAi4BrJH1c0tGSfiDp5/n124X8twAX7mddm404BytrebnH\nsxC4F/gQ8POIOIX0FPYv52w/As4ATiQ90PWMPP104MfAn5CelbaA9DDTiyV15DynAu+MiOOqVv18\n4PCIOCkiTgauzdMDmBYRpwLvAK6pUewAIiK+Rno22+si4jcjoocUeBYX8r4/In4LOAV4SSUAV5YT\nER8qLOO9wFPA/46IF5AC32cL+e8iPVPTrKWU7tmAZsMwTelvHwB+QAoKd5L/uygibpd0cH5Y6R2k\ng/SjwOeBt0o6HFgfEdslnQOcJOk1eXmzgGOA3cBdEfFojfX/Gni2pM8C/wUUnyt3Qy7DHblH1z7E\nthT/uuFo0h9JVlyQH8A6ETiM9GeCtR64WlnGZOBKpb+K2QM8p5BnFekfYc1aioOVtbLtuffSJz+U\ntPo/e4IUzC4FlgPvB34feE2eXnFpRHynanmdpId+7iUiNkg6mdSrexvwB/Q/JLVa7xDbUv2QTuX1\nPwt4N3BaRGyUdC0wdYhl/DmwKiJeL6kN6Klarh8Iai3HlwFtrLkD+CPoCzRrImJLRDwOzAOOiYhH\nSN9xvYf+YHUb8I7KTRSSnqP0T9R1SToYmBgRXwc+QLpcCCkgXJDznEG6vLi5enb6g+pmUk+u4lFS\nD4o8fSuwSelvT17WQB3MAp7MwxeRnqRdcVhevllLcc/KWlmtHkIX6UaDJaSD/BsKaT+l/wTth6S/\nFPlhHv+/pMtjv1Dqnj1F6n0V77irdgTpL0kqy/yrQrl6JP2CtI+9uTA9agxfB3xB0jbSH0j+kHTT\nxc8jYkm+1LmU9NfjlfIO5p+Ar0m6CLgV2FJIW8DA3qRZS/BfhJgdYJJuB94dEb/Yx/mfDfxjRLz8\nwJYMJF0PfDIi7h4ys1mJ+DKgWclExMPA5qF+FDxckg4FZjtQWStyz8rMzErPPSszMys9ByszMys9\nByszMys9ByszMys9ByszMys9ByszMyu9/w9P6hXBX++EYwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5f5e3b0>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter4_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter4_1.ipynb
new file mode 100755
index 00000000..170d3973
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter4_1.ipynb
@@ -0,0 +1,1184 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0c3ae843c66a9df74163dac09bc96c40fce36d7a4dc400e3a06aea784870cc27"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter4-Gas Turbine Engine Cycle Analysis "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 4.1\");\n",
+ "M0=0.85\n",
+ "p0=10000. ##ambient static pressure in Pa\n",
+ "pt2=15.88*10**3. ##total pressure at the engine face in Pa\n",
+ "gm=1.4 ##gamma\n",
+ "pt0=p0*((1.+((gm-1.)*(M0)**2.)/2.)**(gm/(gm-1.)))\n",
+ "Pr=pt2/pt0 ##Pr=total pressure recovery\n",
+ "ie=((pt2/p0)**((gm-1.)/gm)-1.)/(((gm-1.)/2)*M0**2.) ##inlet adiabatic efficiency.\n",
+ "de=-math.log(Pr)\n",
+ "print'%s %.3f %s'%(\"(a)The inlet total pressure recovery:\",Pr,\"\")\n",
+ "print'%s %.3f %s'%(\"(b)The inlet adiabatic efficiency:\",ie,\"\")\n",
+ "print'%s %.4f %s'%(\"(c)The nondimensional entropy rise caused by the inlet:\",de,\"\")\n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.1\n",
+ "(a)The inlet total pressure recovery: 0.990 \n",
+ "(b)The inlet adiabatic efficiency: 0.978 \n",
+ "(c)The nondimensional entropy rise caused by the inlet: 0.0099 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate compressor exit total temperature and adiabatic efficency and compressor shaft power\n",
+ "print(\"Example 4.2\")\n",
+ "m=50. ##mass flow rate in kg/s\n",
+ "ec=0.9 ##compressore polytropic efficiency\n",
+ "Tt2=288. ##inlet total temp in K.\n",
+ "pt2=100000. ## inlet total pressure in Pa\n",
+ "gm=1.4 ##gama\n",
+ "cp=1004. ##specific heat in J/kg.K\n",
+ "p=35. ##total pressure ratio\n",
+ "tr=p**((gm-1.)/(gm*ec)) ##relation between total pressure and temp ratios\n",
+ "Tt3=Tt2*tr ##Total exit temp\n",
+ "cae=(p**((gm-1.)/gm)-1.)/(tr-1.) ##compressor adiabatic efficiency\n",
+ "pc=m*cp*(Tt3-Tt2)/10**6. ## compressor shaft power\n",
+ "print'%s %.1f %s'%(\"(a)Compressor exit total temperature in\",Tt3,\" K :\")\n",
+ "print'%s %.2f %s'%(\"(b)Compressor adiabatic efficiency:\",cae,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Comprssor shaft power in\",pc,\" MW :\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.2\n",
+ "(a)Compressor exit total temperature in 890.4 K :\n",
+ "(b)Compressor adiabatic efficiency: 0.84 \n",
+ "(c)Comprssor shaft power in 30.2 MW :\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte fuel to air ratio and combustor exit temperature\n",
+ "print(\"Example 4.3\")\n",
+ "Tt3=800.##in K\n",
+ "pt3=2*10**6. ## in Pa\n",
+ "m=50. ##air mass flow rate in kg/s\n",
+ "gm=1.4 ##gamma\n",
+ "cp3=1004. ##specific heat at inlet in j/kg.K.\n",
+ "Qr=42000. ##heating valuein kJ/kg\n",
+ "mf=1. ##fuel flow rate in kg/s\n",
+ "be=0.995 ##burner efficiency\n",
+ "p=0.96 ##p=pt4/pt3\n",
+ "cp4=1156. ##specific heat at exit in J/kg.K\n",
+ "f=mf/m ## fuel-to-air ratio\n",
+ "Tt4=(((cp3/cp4)*Tt3)+((f*Qr*be*1000.)/cp4))/(1.+f)\n",
+ "pt4=p*pt3/10**6.\n",
+ "print'%s %.3f %s'%(\"(a)Fuel-to-air ratio :\",f,\"\")\n",
+ "print'%s %.1f %s'%(\"b(1) combustor exit total temperature in\",Tt4,\" K:\")\n",
+ "print'%s %.2f %s'%(\"b(2)combustor exit total pressure in\",pt4,\" MPa\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.3\n",
+ "(a)Fuel-to-air ratio : 0.020 \n",
+ "b(1) combustor exit total temperature in 1390.0 K:\n",
+ "b(2)combustor exit total pressure in 1.92 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg149"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate turbine exit temperature and turbine polytropic efficency and turbine exit total pressure and turbine shaft power\n",
+ "print(\"Example 4.4\")\n",
+ "m=50. ##air mass flow in kg/s\n",
+ "mf=1. ## fuel mass flow in kg/s\n",
+ "tae=0.88 ##turbine adiabatic efficiency\n",
+ "pe=45*10**6 ##shaft power in Watt\n",
+ "cp4=1156 ## in J/kg.K\n",
+ "Tt4=1390.0197 ## in K\n",
+ "pt4=1.92 ##units in MPa\n",
+ "cp5=cp4##specific heat\n",
+ "mt=m+mf##total mass\n",
+ "gm=1.33 ##gamma\n",
+ "ht5=cp4*Tt4/1000.-(pe/(mt*1000.)) \n",
+ "##print'%s %.1f %s'%(ht5)\n",
+ "Tt5=ht5/(cp5/1000.)\n",
+ "y=Tt5/Tt4 ##turbine expansion parameter\n",
+ "tpe=math.log(y)/math.log(1.-(1.-y)/tae)\n",
+ "pr=y**(gm/((gm-1.)*tpe))\n",
+ "pt5=pr*pt4*1000. ## turbine total exit pressure\n",
+ "pt=mt*cp5*(Tt4-Tt5)/10**6.\n",
+ "print'%s %.1f %s'%(\"(a)Turbine exit total temperature in\",Tt5,\" K :\")\n",
+ "print'%s %.1f %s'%(\"(b)Turbine polytropic efficiency:\",tpe,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Turbine exit total pressure in \",pt5,\"kPa :\")\n",
+ "print'%s %.1f %s'%(\"(d)Turbine shaft power based on turbine expansion delta(Tt) in \",pt,\"MW:\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.4\n",
+ "(a)Turbine exit total temperature in 626.7 K :\n",
+ "(b)Turbine polytropic efficiency: 0.8 \n",
+ "(c)Turbine exit total pressure in 37.3 kPa :\n",
+ "(d)Turbine shaft power based on turbine expansion delta(Tt) in 45.0 MW:\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the mixed out total temperature \n",
+ "print(\"Example 4.5\")\n",
+ "mc=0.5 ##mass flow rate of coolant in kg/s\n",
+ "mg=50. ##mass flow rate of hot gas in kg/s\n",
+ "htg=1850. ## total enthalpy of gas in kJ/kg\n",
+ "htc=904. ##total enthalpy of coolant in kJ/kg\n",
+ "Cpmixout=1594. ##in j/kg.K\n",
+ "##Energy equation between mixed out state and mixed out state and the hot and cold stream solves this problem:\n",
+ "Htmixout=(mc*htc+mg*htg)/(mc+mg)\n",
+ "Ttmixout=Htmixout/(Cpmixout/1000.)\n",
+ "print'%s %.1f %s'%(\"Mixed-out total enthalpy after the nozzle in \",Htmixout,\"kJ/kg :\")\n",
+ "print'%s %.1f %s'%(\"Mixed out temperature in\",Ttmixout,\" K :\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.5\n",
+ "Mixed-out total enthalpy after the nozzle in 1840.6 kJ/kg :\n",
+ "Mixed out temperature in 1154.7 K :\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the entropy change across turbine nozzle blade row\n",
+ "print(\"Example 4.6\")\n",
+ "Cpg=1156. ##in J/kg.K\n",
+ "Pt4=1.92 ##in MPa\n",
+ "gm=1.33 ##gamma\n",
+ "htg=1850. ##from example 4.5 in kJ/kg\n",
+ "htc=904. ##from example 4.5 in kJ/kg\n",
+ "Cpc=1.04 ##in kJ/kg.K\n",
+ "pl=.02 ##total pressure loss ratio\n",
+ "Ttmixout=1154.7 ##from example 4.5 in K.\n",
+ "##Calculations:\n",
+ "Ttg=htg/(Cpg/1000.) ##hotgas total temp in K.\n",
+ "Tt4=Ttg ##same as nozzle entrance temp.\n",
+ "Ttc=htc/Cpc ##coolant total temp.\n",
+ "Ptmixout=(1.-pl)*Pt4 ##mixed-out total temp.\n",
+ "##using gibbs equation\n",
+ "de=((gm/(gm-1))*math.log((Ttmixout/Tt4)))-math.log(Ptmixout/Pt4)\n",
+ "print'%s %.1f %s'%(\"Entropy change across the turbine nozzle blade row:\",de,\"\")\n",
+ "print(\"The negative sign of entropy change is due to cooling.\")\n",
+ "print(\"*Ans in book is incorrect as Ptmixout is calculated wrong!\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.6\n",
+ "Entropy change across the turbine nozzle blade row: -1.3 \n",
+ "The negative sign of entropy change is due to cooling.\n",
+ "*Ans in book is incorrect as Ptmixout is calculated wrong!\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate nozzle totalpressure ratio and nozzle area ratio and nozzle exit mach number\n",
+ "print(\"Example 4.7\")\n",
+ "NPR=10. ##Pressure ratio\n",
+ "gm=1.33 ##gamma\n",
+ "Cp=1156. ## in J/kg.K\n",
+ "ae=0.94 ##adiabatic efficiency\n",
+ "tpr=((NPR)**((gm-1.)/gm)-(ae*((NPR)**((gm-1.)/gm)-1.)))**((-1)*(gm/(gm-1.)))\n",
+ "print'%s %.1f %s'%(\"(a)Nozzle total pressure ratio:\",tpr,\"\")\n",
+ "de=-math.log(tpr) ##entropy rise inadiabatic nozzle\n",
+ "##let p=pt9/p9\n",
+ "p=tpr*NPR*1 ##p=pt9/p9; p0=p9 foe expanded nozzle\n",
+ "M9=((2/(gm-1))*((p)**(((gm-1)/gm))-1))**(1/2.)\n",
+ "print'%s %.3f %s'%(\"(c)Nozzle exit Mach no. M9 (perfectly expanded)\",M9,\"\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.7\n",
+ "(a)Nozzle total pressure ratio: 0.8 \n",
+ "(c)Nozzle exit Mach no. M9 (perfectly expanded) 2.048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg167"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate propulsive efficency of turbojet engine \n",
+ "print(\"Example4.10\")\n",
+ "Vt0=160. ##takeoff velocity in m/s\n",
+ "Vt9=1000. ##takeoff velocity in m/s\n",
+ "Vc0=800. ##cruise velocity in m/s\n",
+ "Vc9=1000. ##cruise velocity in m/s\n",
+ "##using approximation: engine propulsive efficiencfy(pe)=2/(1+V9/V0)\n",
+ "pet=2./(1.+(Vt9/Vt0)) ##takeoff\n",
+ "pec=2./(1.+(Vc9/Vc0)) ##cruise\n",
+ "print'%s %.3f %s'%(\"Engine propulsive efficiency while takeoff:\",pet,\"\")\n",
+ "print'%s %.3f %s'%(\"Engine propulsive efficiency while cruise:\",pec,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example4.10\n",
+ "Engine propulsive efficiency while takeoff: 0.276 \n",
+ "Engine propulsive efficiency while cruise: 0.889 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate total pressure and temperature throughout the engine aswell as fuel to air ratio and non-dimensional specific thrust and thurst specifi fuel consumption and thermal and propulsive efficency\n",
+ "print(\"Example 4.11\")\n",
+ "M0=2.0 ##Mach no.\n",
+ "p0=10.##units in kPa\n",
+ "T0=228. ##in K\n",
+ "gmc=1.4 ##gamma compressor\n",
+ "Cpc=1004. ##J/kg.K specific heat of compressor\n",
+ "pd=0.88 ##compression ratio of diffuser\n",
+ "pc=12. ## compression ratio of compressor\n",
+ "ec=0.9 ##adiabatic efficiency of compressor\n",
+ "tl=8. ##enthalpy ratio\n",
+ "Qr=42000. ##kJ/kg\n",
+ "eb=0.98 ##adiabatic efficiency of burner\n",
+ "pb=0.95 ##compression ratio of burner\n",
+ "gmt=1.33 ##gamma turbne\n",
+ "Cpt=1156. ##J/kg.K specific heat turbine\n",
+ "et=0.82 ##adiabatic efficiency of turbine\n",
+ "em=0.995 \n",
+ "tlAB=11. ##enthalpy ratio of afterburner (AB==AfterBurner)\n",
+ "QrAB=42000. ##kJ/kg\n",
+ "eAB=0.98\n",
+ "pAB=0.93\n",
+ "gmAB=1.3 ## gama AB\n",
+ "CpAB=1243. ##J/kg.K\n",
+ "pn=0.93\n",
+ "a0=((gmc-1.)*Cpc*T0)**(1/2.)\n",
+ "V0=M0*a0\n",
+ "pt0=p0*(1.+(((gmc-1.)*(M0)**2.)/2.))**(gmc/(gmc-1.)) ##total flight pressure\n",
+ "Tt0=T0*(1.+(((gmc-1.)*(M0)**2)/2.)) ##total flight temp\n",
+ "Tt2=Tt0 ##Adiabatic inlets\n",
+ "pt2=pt0*pd ## in kPa\n",
+ "pt3=pt2*pc ##compressor exit total pressure\n",
+ "k2=((gmc-1.)/(gmc*ec))\n",
+ "##print'%s %.1f %s'%(k2)\n",
+ "tc=pc**k2 ##relation between temp and pressure ratios\n",
+ "##print'%s %.1f %s'%(tc)\n",
+ "Tt3=Tt2*tc ##total temp at compressor exit\n",
+ "Tt4=Cpc*T0*tl/Cpt ##combustor exit total temp.\n",
+ "pt4=pt3*pb ##combustor exit pressure\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb*1000.-Cpt*Tt4) ##fuel-to-air ratio in burner\n",
+ "##print'%s %.1f %s'%(f)\n",
+ "Tt5=Tt4-(Cpc*((Tt3-Tt2)/(Cpt*em*(1.+f)))) ## turbine exit total temp\n",
+ "tt=Tt5/Tt4 ##temp ratio in turbine\n",
+ "pt=tt**(gmt/(et*(gmt-1.)))\n",
+ "pt5=pt4*pt ##in kPa\n",
+ "pt7=pt5*pAB\n",
+ "Tt7=Cpc*T0*tlAB/CpAB ##afterburner exit\n",
+ "fAB=(1+f)*((CpAB*Tt7)-(Cpt*Tt5))/((QrAB*eAB*1000.)-(CpAB*Tt7))\n",
+ "##print'%s %.1f %s'%(fAB)\n",
+ "pt9=pt7*pn ##in kPA\n",
+ "Tt9=Tt7 ##adiabatic flow in nozzle\n",
+ "p9=p0\n",
+ "M9=((2./(gmAB-1.))*((pt9/p9)**(((gmAB-1)/gmAB))-1))**(1/2.) ##nozzle exit\n",
+ "##print'%s %.1f %s'%(M9)\n",
+ "T9=Tt9/(1.+((gmAB-1)*(M9)**2)/2.)\n",
+ "a9=((gmAB-1.)*CpAB*T9)**(1/2.)\n",
+ "##print'%s %.1f %s'%(a9)\n",
+ "V9=M9*a9\n",
+ "##Performance parameters:\n",
+ "st=(1.+f+fAB)*V9-V0 ##st=Fn/m0; specific thrust when nozzle is perfectly expanded\n",
+ "ndst=((1.+f+fAB)*V9/a0)-M0 ##ndst=Fn/m0*ao ; nondimensional specific thrust\n",
+ "TSFC=((f+fAB)/st)*10**6. ##units mg/s/N\n",
+ "eth=(((1.+f+fAB)*((V9)**2)/2.)-((V0)**2.)/2.)/(f*Qr*1000.+fAB*QrAB*1000.) ##cycle thermal efficiency\n",
+ "ep=st*V0/(((1.+f+fAB)*(((V9)**2)/2.))-((V0)**2)/2.) ##propulsive efficiency exact\n",
+ "epa=2./(1.+V9/V0) ##approx\n",
+ "print(\"a(1)Total temperatures across the engine in\"\" K:\")\n",
+ "print'%s %.1f %s'%(\"Flight total temperaure:\",Tt0,\" \")\n",
+ "\n",
+ "print'%s %.1f %s'%(\"Toal temperature at compressor inlet:\",Tt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\" \")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at afterburner exit:\",Tt7,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at nozzle exit:\",T9,\"\")\n",
+ "print'%s %.1f %s'%(\"Nozzle exit static temperature:\",T9,\"\")\n",
+ "print(\"a(2)Total pressures across the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Flight total pressure:\",pt0,\"\")\n",
+ "\n",
+ "print'%s %.1f %s'%(\"Toal pressure at compressor inlet:\",pt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\" \")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at afterburner exit:\",pt7,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "print'%s %.1f %s'%(\"Nozzle exit static pressure:\",p9,\"\")\n",
+ "print'%s %.1f %s'%(\"(b)Nondimensional specific thrust:\",ndst,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Thrust specific fuel consumption TSFC \",TSFC,\"(in mg/s/N):\")\n",
+ "print'%s %.1f %s'%(\"d(1)Themal efficiency:\",eth,\"\")\n",
+ "print'%s %.1f %s'%(\"d(2)Exact propulsive efficiency:\",ep,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.11\n",
+ "a(1)Total temperatures across the engine in K:\n",
+ "Flight total temperaure: 410.4 \n",
+ "Toal temperature at compressor inlet: 410.4 \n",
+ "Total temperature at compressor exit: 903.2 \n",
+ "Total temperature at burner exit: 1584.2 \n",
+ "Total temperature at turbine exit: 1163.9 \n",
+ "Total temperature at afterburner exit: 2025.8 \n",
+ "Total temperature at nozzle exit: 1085.8 \n",
+ "Nozzle exit static temperature: 1085.8 \n",
+ "a(2)Total pressures across the engine in kPa:\n",
+ "Flight total pressure: 78.2 \n",
+ "Toal pressure at compressor inlet: 68.9 \n",
+ "Total pressure at compressor exit: 826.3 \n",
+ "Total pressure at burner exit: 784.9 \n",
+ "Total pressure at turbine exit: 172.5 \n",
+ "Total pressure at afterburner exit: 160.4 \n",
+ "Total pressure at nozzle exit: 149.2 \n",
+ "Nozzle exit static pressure: 10.0 \n",
+ "(b)Nondimensional specific thrust: 3.3 \n",
+ "(c)Thrust specific fuel consumption TSFC 54.2 (in mg/s/N):\n",
+ "d(1)Themal efficiency: 0.5 \n",
+ "d(2)Exact propulsive efficiency: 0.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate nozzle exit static pressure and actual and effective nozzle exit velocties and ratio of fan to core thrust and non-dimensional specific thrust and TSFC and all engine effeciences \n",
+ "print(\"Example4.13\")\n",
+ "M0=0.88 ##Mach no.\n",
+ "p0=15 ## pressure in kPa\n",
+ "T0=233 ##temperatue in K\n",
+ "gmc=1.4 ##gamma compressor\n",
+ "Cpc=1004 ##specific heat of compressor in J/kg.K\n",
+ "pd=0.995 ## pressure compression ratio of diffuser\n",
+ "pf=1.6 ##pressure compression ratio of fan\n",
+ "ef=0.9 ##fan efficiency\n",
+ "alfa=8\n",
+ "pfn=0.95 ##compression ratio of convergent fan nozzle\n",
+ "pc=40 ##compression ratio of compressor\n",
+ "ec=0.9 ##compressor efficiency\n",
+ "tl=8 ##temp. ratio\n",
+ "Cpt=1152 ##in J/kg.K of turbine\n",
+ "gmt=1.33 ##gamma turbine\n",
+ "Qr=42000000 ##in J/kg\n",
+ "pb=0.95 ##burner compression ratio\n",
+ "eb=0.992 ##burner efficiency\n",
+ "em=0.95\n",
+ "et=0.85\n",
+ "pn=0.98 ##primary nozzle\n",
+ "a0=((gmc-1)*Cpc*T0)**(1/2.);\n",
+ "V0=M0*a0;\n",
+ "pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ "Tt0=T0*(1+((gmc-1.)*(M0)**2)/2.)\n",
+ "Tt2=Tt0\n",
+ "pt2=pt0*pd\n",
+ "##fan stream:\n",
+ "pt13=pt2*pf\n",
+ "tf=pf**((gmc-1.)/(ef*gmc))\n",
+ "Tt13=Tt2*tf\n",
+ "pt19=pt13*pfn\n",
+ "p19=pt19/(1.+(gmc-1)/2.)**(gmc/(gmc-1.))\n",
+ "M19=1.\n",
+ "T19=Tt13/1.2\n",
+ "a19=((gmc-1)*Cpc*T19)**(1/2.)\n",
+ "V19=a19\n",
+ "##V19eff=V19+((gmc*p19)/r19)*((1-p0/p19)/(gmc*V19)) i.e V19+a19**2\n",
+ "V19eff=V19+(a19**2.)*((1.-p0/p19)/(gmc*V19))\n",
+ "##Core stream\n",
+ "pt3=pt2*pc\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "##print'%s %.1f %s'%(tc)\n",
+ "Tt3=Tt2*tc\n",
+ "pt4=pt3*pb\n",
+ "Tt4=Cpc*T0*tl/Cpt\n",
+ "##print'%s %.1f %s'%(Tt4)\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "##print'%s %.1f %s'%(f)\n",
+ "Tt5=Tt4-((Cpc*(Tt3-Tt2)+alfa*Cpc*(Tt13-Tt2)))/((1+f)*Cpt*em)\n",
+ "##print'%s %.1f %s'%(Tt5)\n",
+ "tt=Tt5/Tt4\n",
+ "pt=tt**(gmt/(et*(gmt-1)))\n",
+ "pt5=pt4*pt\n",
+ "pt9=pt5*pn\n",
+ "p9=pt9/((gmt+1)/2.)**(gmt/(gmt-1.))\n",
+ "M9=1.\n",
+ "T9=Tt5/((gmt+1)/2.)\n",
+ "a9=((gmt-1)*Cpt*T9)**(1/2.)\n",
+ "V9=a9\n",
+ "V9eff=V9+(((a9)**2)*(1-(p0/p9)))/(gmt*V9)\n",
+ "ndsft=alfa*(V19eff-V0)/((1+alfa)*a0)\n",
+ "ndsct=((1+f)*V9eff-V0)/((1+alfa)*a0)\n",
+ "ndst=ndsft+ndsct\n",
+ "rfct=ndsft/ndsct\n",
+ "fc=ndsft*100./(ndsft+ndsct)\n",
+ "cc=ndsct*100./(ndsft+ndsct)\n",
+ "TSFC=f/((1.+alfa)*a0*(ndsft+ndsct))*10**6.\n",
+ "eth=(alfa*V19eff**2+(1+f)*V9eff**2-(1+alfa)*V0**2.)/(2.*f*Qr)\n",
+ "ep=(2.*(ndsft+ndsct)*(1+alfa)*a0*V0)/(alfa*V19eff**2.+(1.+f)*V9eff**2.-(1.+alfa)*V0**2.)\n",
+ "eo=eth*ep\n",
+ "##Pressures\n",
+ "print(\"a(1)Total pressures throughout the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure of flight:\",pt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at engine face:\",pt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at fan exit:\",pt13,\"\")\n",
+ "\n",
+ "print'%s %.1f %s'%(\"Static pressure at nozzle exit:\",p19,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "\n",
+ "##Temperatures\n",
+ "print(\"a(2)Total temperatures across the engine in K:\")\n",
+ "print'%s %.1f %s'%(\"Total temperature of flight:\",Tt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at engine face:\",Tt2,\"\") ##Tt0=Tt2, since adiabatic!\n",
+ "print'%s %.1f %s'%(\"Total temperature at fan exit:\",Tt13,\"\")\n",
+ "print'%s %.1f %s'%(\"Static temperature at fan nozzle exit:\",T19,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Static temperature at nozzle exit:\",T9,\"\")\n",
+ "print'%s %.1f %s'%(\"(b{1})Total pressure at fan nozzle exit:\",pt19,\"\")\n",
+ "print'%s %.1f %s'%(\"(b{2})Static pressure at nozzle exit:\",p9,\"\")\n",
+ "\n",
+ "\n",
+ "##Remaining results\n",
+ "print'%s %.1f %s'%(\"(c{1}Actual fan nozzle exit velocity in\",V19,\" m/s:)\")\n",
+ "print'%s %.1f %s'%(\"(c{2}Effective fan nozzle exit velocity in\",V9eff,\" m/s:)\")\n",
+ "print'%s %.1f %s'%(\"(c{3})Actual core nozzle exit velocity in\",V9,\" m/s:\")\n",
+ "print'%s %.1f %s'%(\"(c{4})Effective nozzle exit velocity in \",V9eff,\"m/s:\")\n",
+ "print'%s %.1f %s'%(\"(d)Ratio of fan-tocore thrust:\",rfct,\"\")\n",
+ "print'%s %.1f %s'%(\"(e)Nondimensional specific thrust:\",ndst,\"\")\n",
+ "print'%s %.1f %s'%(\"(f)TSFC in mg/s/N:\",TSFC,\"\")\n",
+ "print(\"(g)Engine efficiencies:\")\n",
+ "print'%s %.1f %s'%(\"Thermal efficiency:\",eth,\"\")\n",
+ "print'%s %.1f %s'%(\"Propulsion effciency:\",ep,\"\")\n",
+ "print'%s %.1f %s'%(\"Overall efficiency:\",eo,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example4.13\n",
+ "a(1)Total pressures throughout the engine in kPa:\n",
+ "Total pressure of flight: 24.8 \n",
+ "Total pressure at engine face: 24.7 \n",
+ "Total pressure at fan exit: 39.5 \n",
+ "Static pressure at nozzle exit: 19.8 \n",
+ "Total pressure at compressor exit: 988.2 \n",
+ "Total pressure at burner exit: 938.8 \n",
+ "Total pressure at turbine exit: 28.7 \n",
+ "Total pressure at nozzle exit: 28.1 \n",
+ "a(2)Total temperatures across the engine in K:\n",
+ "Total temperature of flight: 269.1 \n",
+ "Total temperature at engine face: 269.1 \n",
+ "Total temperature at fan exit: 312.4 \n",
+ "Static temperature at fan nozzle exit: 260.3 \n",
+ "Total temperature at compressor exit: 867.9 \n",
+ "Total temperature at burner exit: 1624.0 \n",
+ "Total temperature at turbine exit: 778.1 \n",
+ "Static temperature at nozzle exit: 667.9 \n",
+ "(b{1})Total pressure at fan nozzle exit: 37.6 \n",
+ "(b{2})Static pressure at nozzle exit: 15.2 \n",
+ "(c{1}Actual fan nozzle exit velocity in 323.3 m/s:)\n",
+ "(c{2}Effective fan nozzle exit velocity in 508.4 m/s:)\n",
+ "(c{3})Actual core nozzle exit velocity in 503.9 m/s:\n",
+ "(c{4})Effective nozzle exit velocity in 508.4 m/s:\n",
+ "(d)Ratio of fan-tocore thrust: 3.5 \n",
+ "(e)Nondimensional specific thrust: 0.4 \n",
+ "(f)TSFC in mg/s/N: 22.1 \n",
+ "(g)Engine efficiencies:\n",
+ "Thermal efficiency: 0.4 \n",
+ "Propulsion effciency: 0.8 \n",
+ "Overall efficiency: 0.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 4.15\")\n",
+ "M0=2. ##Mach no.\n",
+ "p0=10. ## in kPa\n",
+ "T0=223. ##in K\n",
+ "##the engine inlet total pressure loss is characterized by \n",
+ "pd=0.9\n",
+ "##The fan pressure ratio is\n",
+ "pf=1.9\n",
+ "##and polytropic efficiency of the fan is\n",
+ "ef=0.9\n",
+ "##The flow in the fan duct suffers 1% total pressure loss i.e.\n",
+ "pfd=0.99\n",
+ "##The compressor pressure ratio and polytropic efficiency are \n",
+ "pc=13.\n",
+ "ec=0.9 ##respectively\n",
+ "##The combustor exit temperature is \n",
+ "Tt4=1600. ##in K\n",
+ "Qr=42000000. ##fuel heating value in J/kg\n",
+ "pb=0.95 ##total pressure ratio\n",
+ "eb=0.98 ##burner efficiency\n",
+ "et=0.8 ##turbine polytropic efficiency\n",
+ "em=0.95 ##mechanical efficiency of turbine\n",
+ "M5=0.5 ##Mach no at turbine exit\n",
+ "pmf=0.98 ##total pressure loss due to friction in mixer\n",
+ "Tt7=2000. ##afterburner total temp in K\n",
+ "QrAB=42000000. ##in J/kg\n",
+ "pABon=0.92\n",
+ "eAB=0.98\n",
+ "pn=0.95 ##total pressure ratio at nozzle\n",
+ "p=3.8 ##p=p9/p0\n",
+ "gmc=1.4 ##gamma compressor\n",
+ "Cpc=1004. ##specofic heat compressor in J/kg.K\n",
+ "gmt=1.33 ##gamma turbine\n",
+ "Cpt=1152. ##turbine\n",
+ "gmAB=1.3 ##afterburner\n",
+ "CpAB=1241. ##afterburner\n",
+ "pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ "Tt0=T0*(1.+((gmc-1.)*(M0)**2)/2.)\n",
+ "pr=pt0/p0\n",
+ "tr=Tt0/T0\n",
+ "pt=pfd*pf/(pb*pc)\n",
+ "a0=((gmc-1.)*Cpc*T0)**(1/2.);\n",
+ "V0=a0*M0\n",
+ "Tt2=Tt0\n",
+ "pt2=pt0*pd\n",
+ "pt13=pt2*pf\n",
+ "tf=pf**((gmc-1.)/(ec*gmc))\n",
+ "##print'%s %.1f %s'%(tf)\n",
+ "Tt13=Tt0*tf\n",
+ "Tt15=Tt13 ##adiabatic\n",
+ "pt15=pt13*pfd\n",
+ "pt3=pt2*pc\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "Tt3=Tt2*tc\n",
+ "pt4=pt3*pb\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "##print'%s %.1f %s'%(f)\n",
+ "pt5=pt15 ##assumption\n",
+ "pt=(pfd*pf)/(pb*pc)\n",
+ "##print'%s %.1f %s'%(pt)\n",
+ "tt=pt**(et*(gmt-1.)/(gmt))\n",
+ "##print'%s %.1f %s'%(tt)\n",
+ "Tt5=Tt4*tt\n",
+ "tl=(Cpt*Tt4)/(Cpc*T0)\n",
+ "tr=(1.+((gmc-1.)*(M0**2)/2.))\n",
+ "alfa=((em*(1.+f)*tl*(1.-tt))-(tr*(tc-1.)))/(tr*(tf-1.))\n",
+ "ht6M=Cpc*T0*((1.+f)*tt*tl+alfa*tf*tr)/(1.+alfa+f) ## mixed-out total enthalpy in J/kg\n",
+ "Cp6M=(((1.+f)/alfa)*Cpt+Cpc)/(((1.+f)/alfa)+1.)\n",
+ "gm6M=(((1+f)/alfa)*Cpt+Cpc)/(((1+f)/alfa)*(Cpt/gmt)+(Cpc/gmc))\n",
+ "M15=((2./(gmc-1.))*((((1.+((gmt-1.)*(M5**2)/2.))**(gmt/(gmt-1.)))**((gmc-1.)/gmc))-1.))**(1/2.)\n",
+ "T15=Tt15/(1.+((gmc-1.)*(M15)**2)/2.)\n",
+ "p15=pt15/(1.+((gmc-1.)*(M15)**2)/2.)**(gmc/(gmc-1.))\n",
+ "T5=Tt5/(1.+((gmt-1.)*(M5)**2)/2.)\n",
+ "p5=pt5/(1.+((gmt-1.)*(M5)**2)/2.)**(gmt/(gmt-1.))\n",
+ "a15=((gm6M-1.)*Cp6M*T15)**(1/2.)\n",
+ "a5=((gm6M-1.)*Cp6M*T5)**(1/2.)\n",
+ "A=((alfa/(1.+f))*(gmt/gmc)*((T15/T5)**(1/2.))*(M5/M15))\n",
+ "C1=((1.+gmt*M5**2.)+(A*(1.+gmc*M15**2.)))/(1.+A)\n",
+ "Tt6M=ht6M/Cp6M\n",
+ "C2=((gmt/gm6M)*(M5/a5)+(gmc/gm6M)*(M15*A/a15))*(((gm6M-1.)*Cp6M*(Tt6M))**(1/2.))/(1.+A)\n",
+ "C=(C1/C2)**2.\n",
+ "M6M=((C-2*gm6M-((C-2.*gm6M)**2-4.*(gm6M**2.-(C*(gm6M-1))/2.))**(1/2.))/(2*(gm6M)**2.-C*(gm6M-1.)))**(1/2.)\n",
+ "p6M=p5*(C1/(1.+gm6M*(M6M)**2.))\n",
+ "pt6Mi=131.23\n",
+ "pmi=0.9907\n",
+ "pM=0.9709\n",
+ "pt6M=pt6Mi*pmf\n",
+ "Tt7=2000.\n",
+ "pABon=0.92\n",
+ "pt7=118.32\n",
+ "fAB=(CpAB*Tt7-ht6M)/(QrAB*eAB-CpAB*Tt7)\n",
+ "pt9=pt7*pn\n",
+ "p9=p0*p\n",
+ "M9=1.377\n",
+ "T9=1557.2\n",
+ "a9=761.4\n",
+ "V9=a9*M9\n",
+ "V9eff=V9+a9**2.*(1.-p0/p9)/(gmAB*V9)\n",
+ "ndst=((1+alfa+f+fAB)/(1.+alfa))*(V9eff/a0)-M0\n",
+ "TSFC=((f+fAB)/((1+alfa)*a0))*10**6./(ndst)\n",
+ "eth=(((1+alfa+f+fAB)*((V9eff)**2.))-((1+alfa)*V0**2.))/(2.*(f*Qr+fAB*QrAB))\n",
+ "ep=(2.*ndst*V0*a0*(1.+alfa))/((1.+alfa+f+fAB)*V9eff**2-(1.+alfa)*V0**2)\n",
+ "e0=ep*eth\n",
+ "print(\"a(1)Total pressures throughout the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure of flight:\",pt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at engine face:\",pt2,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at fan exit:\",pt15,\"\")\n",
+ "##print'%s %.1f %s'%(p19,\"Static pressure at nozzle exit:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "\n",
+ "\n",
+ "print(\"a(2)Total temperatures across the engine in K:\")\n",
+ "print'%s %.1f %s'%(\"Total temperature of flight:\",Tt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at engine face:\",Tt2,\"\") ##Tt0=Tt2, since adiabatic!\n",
+ "print'%s %.1f %s'%(\"Total temperature at fan exit:\",Tt13,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at fan duct :\",Tt15,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"a(3)Fan bypass ratio :\",alfa,\"\")\n",
+ "print'%s %.3f %s'%(\"a(4)fuel-to-air ratio in primary :\",f,\"\")\n",
+ "print'%s %.3f %s'%(\"a(5)fuel-to-air ratio in afterburner :\",fAB,\"\")\n",
+ "print'%s %.1f %s'%(\"b(1)TSFC in mg/s/N :\",TSFC,\"\")\n",
+ "print'%s %.1f %s'%(\"b(2)Non-dimensional specific thrust :\",ndst,\"\")\n",
+ "print'%s %.1f %s'%(\"b(3)Propulsive efficiency :\",ep,\"\")\n",
+ "print'%s %.1f %s'%(\"b(4)Thermal efficiency :\",eth,\"\")\n",
+ "print'%s %.1f %s'%(\"b(5)Overall efficiency :\",e0,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.15\n",
+ "a(1)Total pressures throughout the engine in kPa:\n",
+ "Total pressure of flight: 78.2 \n",
+ "Total pressure at engine face: 70.4 \n",
+ "Total pressure at fan exit: 132.5 \n",
+ "Total pressure at compressor exit: 915.5 \n",
+ "Total pressure at burner exit: 869.7 \n",
+ "Total pressure at turbine exit: 132.5 \n",
+ "Total pressure at nozzle exit: 112.4 \n",
+ "a(2)Total temperatures across the engine in K:\n",
+ "Total temperature of flight: 401.4 \n",
+ "Total temperature at engine face: 401.4 \n",
+ "Total temperature at fan exit: 492.1 \n",
+ "Total temperature at fan duct : 492.1 \n",
+ "Total temperature at compressor exit: 906.2 \n",
+ "Total temperature at burner exit: 1600.0 \n",
+ "Total temperature at turbine exit: 1101.3 \n",
+ "a(3)Fan bypass ratio : 0.6 \n",
+ "a(4)fuel-to-air ratio in primary : 0.024 \n",
+ "a(5)fuel-to-air ratio in afterburner : 0.039 \n",
+ "b(1)TSFC in mg/s/N : 48.5 \n",
+ "b(2)Non-dimensional specific thrust : 2.7 \n",
+ "b(3)Propulsive efficiency : 0.6 \n",
+ "b(4)Thermal efficiency : 0.5 \n",
+ "b(5)Overall efficiency : 0.3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.17 - pg "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 4.17\")\n",
+ "M0=0.7 ##Mach no.\n",
+ "T0=228 ## in K\n",
+ "p0=16 ##kPa\n",
+ "eprop=0.85 ## prop efficiency\n",
+ "m=10. ##Kg/s\n",
+ "pd=0.98 ##diffuser pressure ratio\n",
+ "pc=30. ##compressor pressurer ratio\n",
+ "ec=0.92 ##thermal efficiency of compressor\n",
+ "Tt4=1600. ##in K\n",
+ "Qr=42000000. ##in kJ/kg\n",
+ "eb=0.99 ##thermal efficiency of burner\n",
+ "pb=0.96 ##burner pressure ratio\n",
+ "etHPT=0.82\n",
+ "emHPT=0.99\n",
+ "alfa=0.85 \n",
+ "emLPT=0.99\n",
+ "eLPT=0.88\n",
+ "egb=0.995\n",
+ "en=0.95\n",
+ "gmc=1.4 ##gamma of compressor\n",
+ "Cpc=1004. ## in J/kg.K\n",
+ "gmt=1.33 ##gamma of turbine\n",
+ "Cpt=1152. ## in J/kg.K\n",
+ "Tt0=T0*(1.+((gmc-1.)*(M0)**2)/2.)\n",
+ "pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ "a0=((gmc-1.)*Cpc*T0)**(1/2.);\n",
+ "V0=a0*M0\n",
+ "pt2=pt0*pd\n",
+ "Tt2=Tt0 ##Adiabatic\n",
+ "pt3=pt2*pc\n",
+ "tc=pc**((gmc-1.)/(ec*gmc))\n",
+ "Tt3=Tt2*tc\n",
+ "f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ "pt4=pt3*pb\n",
+ "ht45=Cpt*Tt4-(Cpc*Tt3-Cpc*Tt2)/((1.+f)*emHPT)\n",
+ "Tt45=ht45/Cpt\n",
+ "pt45=pt4*(Tt45/Tt4)**(gmt/((gmt-1.)*etHPT))\n",
+ "m9=(1.+f)*m\n",
+ "sp=(1.+f)*m*eLPT*alfa*ht45*(1.-(p0/pt45)**((gmt-1.)/gmt))/10**6.\n",
+ "Tt5=(ht45-sp*10**6./((1.+f)*m))/Cpt\n",
+ "tt=Tt5/Tt45\n",
+ "et=math.log(tt)/(math.log(1-((1-tt)/eLPT)))\n",
+ "pt=tt**(gmt/(et*(gmt-1.)))\n",
+ "pt5=pt45*pt\n",
+ "p9=p0 ##assumption\n",
+ "pi=p9/pt5\n",
+ "ti=pi**((gmt-1.)/gmt)\n",
+ "T9i=Tt5*ti\n",
+ "T9=Tt5-en*(Tt5-T9i)\n",
+ "V9=(2.*Cpt*(Tt5-T9))**(1/2.)\n",
+ "Fprop=eprop*egb*emLPT*sp*10**3/V0\n",
+ "a9=((gmt-1.)*Cpt*T9)**(1/2.)\n",
+ "M9=V9/a9\n",
+ "pt9=p9*(1.+((gmt-1)*M9**2.)/2.)**(gmt/(gmt-1.))\n",
+ "pn=pt9/pt5\n",
+ "Fncore=m*((1.+f)*V9-V0)/1000.\n",
+ "spp=egb*emLPT*sp\n",
+ "Ft=Fprop+Fncore\n",
+ "mp=((m9*V9**2.)/2.-m*(V0**2.)/2.)/10**3.\n",
+ "mf=m9-m\n",
+ "PSFC=mf*10**6./((spp*10**3.)+mp)\n",
+ "TSFC=mf*10**3./(Ft)\n",
+ "eth=(spp*10**3.+mp)*10**3./(mf*Qr)\n",
+ "ep=(Ft*V0)/(spp*10**3+mp)\n",
+ "eo=eth*ep\n",
+ "print(\"a(1)Total pressures throughout the engine in kPa:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure of flight:\",pt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at engine face:\",pt2,\"\")\n",
+ "##print'%s %.1f %s'%(p19,\"Static pressure at nozzle exit:\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at compressor exit:\",pt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at burner exit:\",pt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure across HPT :\",pt45,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at turbine exit:\",pt5,\"\")\n",
+ "print'%s %.1f %s'%(\"Total pressure at nozzle exit:\",pt9,\"\")\n",
+ "\n",
+ "print(\"a(2)Total temperatures across the engine in K:\")\n",
+ "print'%s %.1f %s'%(\"Total temperature of flight:\",Tt0,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at engine face:\",Tt2,\"\") ##Tt0=Tt2, since adiabatic!\n",
+ "print'%s %.1f %s'%(\"Total temperature at compressor exit:\",Tt3,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at burner exit:\",Tt4,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature across HPT :\",Tt45,\"\")\n",
+ "print'%s %.1f %s'%(\"Total temperature at turbine exit:\",Tt5,\"\")\n",
+ "print'%s %.1f %s'%(\"a(3)fuel-to-air ratio in burner :\",f,\"\")\n",
+ "print'%s %.1f %s'%(\"(b)Engine core thrust in kN :\",Fncore,\"\")\n",
+ "print'%s %.1f %s'%(\"(c)Propeller thrust in kN :\",Fprop,\"\")\n",
+ "print'%s %.1f %s'%(\"(d)Power-specific fuel consumption in\",PSFC,\" mg/s/kW :\")\n",
+ "print'%s %.1f %s'%(\"(e)TSFC in\",TSFC,\" mg/s/N :\")\n",
+ "print'%s %.3f %s'%(\"f(1)Propulsive efficiency :\",ep,\"\")\n",
+ "print'%s %.3f %s'%(\"f(2)Thermal efficiency :\",eth,\"\")\n",
+ "print'%s %.3f %s'%(\"(g)Overall efficiency :\",eo,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.17\n",
+ "a(1)Total pressures throughout the engine in kPa:\n",
+ "Total pressure of flight: 22.2 \n",
+ "Total pressure at engine face: 21.7 \n",
+ "Total pressure at compressor exit: 652.5 \n",
+ "Total pressure at burner exit: 626.4 \n",
+ "Total pressure across HPT : 151.1 \n",
+ "Total pressure at turbine exit: 24.5 \n",
+ "Total pressure at nozzle exit: 24.0 \n",
+ "a(2)Total temperatures across the engine in K:\n",
+ "Total temperature of flight: 250.3 \n",
+ "Total temperature at engine face: 250.3 \n",
+ "Total temperature at compressor exit: 719.9 \n",
+ "Total temperature at burner exit: 1600.0 \n",
+ "Total temperature across HPT : 1198.0 \n",
+ "Total temperature at turbine exit: 815.2 \n",
+ "a(3)fuel-to-air ratio in burner : 0.0 \n",
+ "(b)Engine core thrust in kN : 2.2 \n",
+ "(c)Propeller thrust in kN : 17.9 \n",
+ "(d)Power-specific fuel consumption in 54.6 mg/s/kW :\n",
+ "(e)TSFC in 14.0 mg/s/N :\n",
+ "f(1)Propulsive efficiency : 0.827 \n",
+ "f(2)Thermal efficiency : 0.436 \n",
+ "(g)Overall efficiency : 0.361 \n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex17-pg211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print(\"Example 4.17\")\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "\n",
+ "import numpy\n",
+ "import math\n",
+ "from math import log\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "M0=0.7\n",
+ "T0=228. ##in K\n",
+ "p0=16. ##kPa\n",
+ "eprop=0.85 ##efficiency of prop\n",
+ "m=10.##Kg/s\n",
+ "pd=0.98\n",
+ "pc=30.\n",
+ "ec=0.92\n",
+ "Tt4=1600.\n",
+ "Qr=42000000.## in kJ/kg\n",
+ "eb=0.99\n",
+ "pb=0.96\n",
+ "etHPT=0.82\n",
+ "emHPT=0.99\n",
+ "alfa=0.79\n",
+ "emLPT=0.99\n",
+ "eLPT=0.88\n",
+ "egb=0.995\n",
+ "en=0.95\n",
+ "gmc=1.4\n",
+ "Cpc=1004.\n",
+ "gmt=1.33\n",
+ "Cpt=1152.\n",
+ "z0=numpy.linspace(0.79,0.97,19)\n",
+ "leng=len(z0)\n",
+ "g1=numpy.zeros(leng)\n",
+ "gc1=0\n",
+ "g2=numpy.zeros(leng)\n",
+ "gc2=0\n",
+ "g3=numpy.zeros(leng)\n",
+ "gc3=0\n",
+ "g4=numpy.zeros(leng)\n",
+ "gc4=0\n",
+ "for alfa in z0:\n",
+ " Tt0=T0*(1.+((gmc-1)*(M0)**2)/2.)\n",
+ " pt0=p0*(1.+((gmc-1.)*(M0)**2)/2.)**(gmc/(gmc-1.))\n",
+ " a0=((gmc-1.)*Cpc*T0)**(1/2.);\n",
+ " V0=a0*M0\n",
+ " pt2=pt0*pd\n",
+ " Tt2=Tt0 ##Adiabatic\n",
+ " pt3=pt2*pc\n",
+ " tc=pc**((gmc-1.)/(ec*gmc))\n",
+ " Tt3=Tt2*tc\n",
+ " f=(Cpt*Tt4-Cpc*Tt3)/(Qr*eb-Cpt*Tt4)\n",
+ " pt4=pt3*pb\n",
+ " ht45=Cpt*Tt4-(Cpc*Tt3-Cpc*Tt2)/((1+f)*emHPT)\n",
+ " Tt45=ht45/Cpt\n",
+ " pt45=pt4*(Tt45/Tt4)**(gmt/((gmt-1)*etHPT))\n",
+ " m9=(1+f)*m\n",
+ " sp=(1+f)*m*eLPT*alfa*ht45*(1-(p0/pt45)**((gmt-1)/gmt))/10**6\n",
+ " Tt5=(ht45-sp*10**6/((1+f)*m))/Cpt\n",
+ " tt=Tt5/Tt45\n",
+ " et=log(tt)/(log(1-((1-tt)/eLPT)))\n",
+ " pt=tt**(gmt/(et*(gmt-1)))\n",
+ " pt5=pt45*pt\n",
+ " p9=p0 ##assumption\n",
+ " pi=p9/pt5\n",
+ " ti=pi**((gmt-1)/gmt)\n",
+ " T9i=Tt5*ti\n",
+ " T9=Tt5-en*(Tt5-T9i)\n",
+ " V9=(2*Cpt*(Tt5-T9))**(1/2)\n",
+ " Fprop=eprop*egb*emLPT*sp*10**3/V0\n",
+ " a9=((gmt-1)*Cpt*T9)**(1/2)\n",
+ " M9=V9/a9\n",
+ " pt9=p9*(1+((gmt-1)*M9**2)/2)**(gmt/(gmt-1))\n",
+ " pn=pt9/pt5\n",
+ " Fncore=m*((1+f)*V9-V0)/1000\n",
+ " spp=egb*emLPT*sp\n",
+ " Ft=Fprop+Fncore\n",
+ " Fr=Fprop/Ft\n",
+ "\n",
+ " mp=((m9*V9**2)/2-m*(V0**2)/2)/10**3\n",
+ " mf=m9-m\n",
+ " PSFC=mf*10**6/((spp*10**3)+mp)\n",
+ " TSFC=mf*10**3/(Ft)\n",
+ " eth=(spp*10**3+mp)*10**3/(mf*Qr)\n",
+ " ep=(Ft*V0)/(spp*10**3+mp)\n",
+ " eo=eth*ep\n",
+ " g1[gc1]=Ft;\n",
+ " gc1=gc1+1;\n",
+ " g2[gc2]=TSFC;\n",
+ " gc2=gc2+1\n",
+ " g3[gc3]=ep\n",
+ " gc3=gc3+1\n",
+ " g4[gc4]=Fr\n",
+ " gc4=gc4+1\n",
+ "\n",
+ "\n",
+ "pyplot.plot(z0,g1)\n",
+ "pyplot.title(\"Turboprop total thrust\")\n",
+ "pyplot.xlabel(\"Power split(alfa)\")\n",
+ "pyplot.ylabel(\"Fprop+Fcore(kN)\")\n",
+ "pyplot.show()\n",
+ "pyplot.plot(z0,g2)\n",
+ "\n",
+ "pyplot.title(\"TSFC in turboprop engine\")\n",
+ "pyplot.xlabel(\"Power split(alfa)\")\n",
+ "pyplot.ylabel(\"TSFC(mg/s/N)\")\n",
+ "pyplot.show()\n",
+ "pyplot.plot(z0,g3)\n",
+ "pyplot.plot(z0,g4)\n",
+ "\n",
+ "pyplot.xlabel(\"Power split(alfa)\")\n",
+ "pyplot.title(\"Propeller thrust as a fraction of total thrust and propulsive efficiency\")\n",
+ "pyplot.legend(\"Prop efficiency\",\"Fprop/Ftotal\")\n",
+ "pyplot.show()\n",
+ "##plot2d(z0,g5,4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 4.17\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XdP9//HXWySGEHMRP0SbRlvVftNWDEGusSGG+hYR\n81B8DdUq1a9WuV/VUjVVTTXELEENTQQRwyUSbdAgVUGMicQcQ4wZPr8/1r4c17n3njucu8859/18\nPO7DHtbe+3O3k/O5e62111JEYGZmVqrF8g7AzMyqixOHmZm1iROHmZm1iROHmZm1iROHmZm1iROH\nmZm1iROHVSxJDZIOyjuOSiOpXtLV5Spv1honDutUkuZJej/7WSTpw4L1EW08XWQ/VaWtCa8dCbLZ\neyKpTtLMUst3NkkvStqyq65n+Vg87wCstkTEMo3Lkl4ADoqIe9tyDkkC1NmxtXC9xSNiQSeesq1f\n1G0t39Z7U3L5TrgX0ZbrWXXyE4d1iabVJZL6ZU8ki2XrDZJOkTQJmAeskxXtL+mfkt6VdKukFQrO\nsZOkJyXNlXSfpG8U7HtR0v9m+9+WNFLSEtm+OkmzJB0naQ5wmaReks6R9Er2c7akXk3KHy/pDUkv\nSNqzmd/z98BmwHnZU9a52fZNJD0s6R1JUyRt3Er5P0t6Ofu9H5G0aQn3uDdwB9A3O9d7klYnfZn3\nknRltu3fkr7f5F4dJ+kJ4H1JPbL/N18tKHOFpN9lyytLui27729JekDJ1cBawNjs+se2FrNVJycO\n6yql/FW9N/ATYFngJdJfrvsCBwCrAwuAxi/WAcB1wFHAysDtpC+swqfoPYFtga8BA4ATCvatCqxA\n+qI7NNs3CPhu9jOoSPmVgL7AfsDFWQxf/CUjfgNMBI6IiGUj4ihJKwLjgHOAFYGzgHGSVihWPjvV\nlCyOFbLf88bGRNaciPgAGArMzs7VJyLmZPdxJ2AUsBwwBjivyeF7ANsBy0fEwmKn5/P/h8cAM0n3\n/SvA8ZHsA7wM7JBd/4yW4rXq5cRhXaW16osAroiIpyJiUVZdEsBVEfGfiPgQ+C2we/aUMhy4LSLu\nyb7ozgCWAjYpON95EfFKRMwFfg8UtrEsAk6KiPkR8TEpyZwcEW9GxJvA/wH7NInxt1n5B0iJYPcS\nf99hwNMRcW32u40GppO+zIven6zs3Kz8WcASwLotXK/oeQpMjIg7Iw1Odw0pKX12OeDc7F59UsI1\nPiUl8n4RsTAiJpVwjNUQJw6rJE0bdZtuexnoSfpLd/VsHYDsC3EmsEYLx/YtWH8jIj4tWO9Lespp\nrvzciPioYP2lJvubKnzC6lsYazPHf+GJTNKxkv6TVW3NJT0prNzC9VrzWsHyh8CSjdWEmWL3vqnG\npPQnYAZwl6TnJP2qA3FZFXLisK4yD1i6YH21ImWKVWet1WR5PvAGMBtYu3FH1qC+JvBKC8fObuFa\ns4F+LZRfQVJh/Gs3uVahpud+pTDWIsc3TRqbAb8EdouI5SNiBeBdSmt0LnYPS6kmbFrmQ774/6ux\nrYSImBcRx0bE10hPTb+QtEUbrmVVzonDuspjwOaS1pS0HHB8kTJNvxgF7C3pm9mX9snAjdnTxY3A\nMElbSupJqnf/GJhccOzhktbI2hh+A4xuIb5RwAlZw+/KwIlA03cf/k9Sz+yLfVgWQzGvkdpVGt0O\nDJA0QtLikoYD3wBua6b8sqT2nDezRvsTgT4txN702itJKizfnl5OjwF7ZQ3lQ4HNPzuZtIOk/lmy\nfg9YSKr6K/a7WA1y4rAuERF3A9cDTwAPA2P58l+nxdavAq4A5gC9SI3hRMTTpMb0v5CeQIYBOxZ0\nJQ1So/JdwHPAs8ApLVzrFOCRLL4nsuXC8q8Cc0lPIVcDh0bEM838un8Gds16c50TEW8DO5CS25vA\nsaQG5LeLlQfuzH6eAV4EPuKLVV3Nvt8SEdNJSfD57HyrN1O+tSeDnwE7Zr/znsAtBfv6AxOA90mJ\n+vyIuD/bdyopAc+V9ItWrmFVSuWayEnSSNI/5tcjYv1s2yBSb46epL+oDo+Ih4sc+yKf/yUzPyIG\nlSVIq1lq5zskzZyrDrg6ItbscGBmNaCcTxyXk7oGFjqd1DNlIKkq4PRmjg2gLiIGOmmYmVWWsiWO\niJhIeswtNIfUOwRgeZpvXAS/fWqVxY2+ZpmyVVVBejsYGFtQVbU28CDpH+FiwMYR8aVugJKeJ/Ui\nWQj8NSIuKVuQZmbWJl3dOH4ZcFRErAUcDYxsptzgrDprO+CIrBeLmZlVgK5+4ngvIvpkywLeiYjl\nmj8DSDoJmBcRZxbZ5+oDM7N2iIh2Nwd09RPHDElDsuUtSd0Nv0DS0pKWzZZ7k8YamtbcCSPCPxGc\ndNJJucdQKT++F74Xvhct/3RU2YZVlzQKGAKsrDQ/wInAIcD5SqOUfpStI6kvcElEDCO9UXxzeiBh\nceDaiLirXHGamVnblC1xRERzk/ZsWKTsbNI7H0TE88B/lSsuMzPrGL85XiPq6uryDqFi+F58zvfi\nc74XnaesjePlJimqOX4zszxIIqqocdzMzKqcE4eZWSd66628Iyg/Jw4zs04QASeeCDvumJZrWdl6\nVZmZdReffgoHHwzTp8PYsaAaH2nPicPMrAPefRd23RWWXhruvRd69847ovJzVZWZWTvNmgWbbw4D\nBsDNN3ePpAFOHGZm7TJtGmyyCey9N5x3HvTokXdEXcdVVWZmbXTPPTBiBJx7LuyxR97RdD0/cZiZ\ntcHVV8Oee8KNN3bPpAF+4jAzK0kE/OEPcMklcN998K1v5R1Rfpw4zMxasWABHHYYPPooPPQQrL56\n3hHly4nDzKwF8+bB7runJ44HHoBllsk7ovy5jcPMrBmvvgpDhsAaa8CYMU4ajZw4zMyKeOop2Hhj\n2GUXuPhi6Nkz74gqh6uqzMyaeOAB2G03OP102G+/vKOpPE4cZmYFRo+Go46C666DrbfOO5rK5MRh\nZkZq/D7jjPRS3913w3e+k3dElatsbRySRkp6TdK0gm2DJE2RNFXSw5I2aObYoZKmS3pW0q/KFaOZ\nGcDChfDTn6aX+x56yEmjNWWbOlbSZsA84KqIWD/b1gCcGhHjJW0HHBcRWzQ5rgfwNLA18ArwMDAi\nIp4qcg1PHWtmHfLhh+lN8Hnz4KabYLnl8o6o/Cp26tiImAjMbbJ5DtD4v2V5UmJoahAwIyJejIj5\nwGhg53LFaWbd1xtvwJZbQp8+cPvt3SNpdIau7o77v8CZkl4G/gQcX6TMGsDMgvVZ2TYzs07z7LOp\nu+0228CVV0KvXnlHVD26unH8MuCoiLhF0m7ASGCbJmXaVPdUX1//2XJdXR11dXUdDNHMat1DD6X3\nM373uzRzX61raGigoaGh085XtjYOAEn9gLEFbRzvRUSfbFnAOxGxXJNjNgLqI2Jotn48sCgi/ljk\n/G7jMLM2ueUWOOSQ9JSx/fZ5R5OPim3jaMYMSUOy5S2BZ4qUeQT4uqR+knoBw4ExXRWgmdWuc8+F\nI4+EO+/svkmjM5StqkrSKGAIsLKkmcCJwCHA+ZKWAD7K1pHUF7gkIoZFxAJJRwLjgR7AZcV6VJmZ\nlWrRIvjlL1MD+KRJ0K9f3hFVt7JWVZWbq6rMrDUffwz77psGLLz1Vlhxxbwjyl+1VVWZmXWZt95K\nw4ZIcNddThqdxYnDzGrSCy/A4MGwySYwahQsuWTeEdUOJw4zqzmPPJKSxk9/mka4XczfdJ3Kgxya\nWU257TY44AC49FLY2WNOlIXzsJnVjL/+Nb3Qd9ttThrl5CcOM6t6ixbBCSfAjTfCxInQv3/eEdU2\nJw4zq2qffgoHHgjPPQeTJ8Mqq+QdUe1zVZWZVa133oGhQ9PQ6Pfc46TRVZw4zKwqvfwybLoprL9+\nqqJaeum8I+o+nDjMrOo89ljqbnvggXDOOdCjR94RdS9u4zCzqnLXXbD33nD++bDbbnlH0z35icPM\nqsYVV6Rxp26+2UkjT37iMLOKFwEnn5zm0GhogG98I++IujcnDjOraPPnw6GHwrRpaea+VVfNOyJz\n4jCzivXee6lKqmfP9KTRu3feERm4jcPMKtTs2bD55rDOOmkeDSeNyuHEYWYV58knYeONYfhwuPBC\nWNx1IxXF/zvMrKLcd19KGGefDXvtlXc0VoyfOMysYlx3XUoao0c7aVSysj1xSBoJDANej4j1s22j\ngXWzIssD70TEwCLHvgi8BywE5kfEoHLFaWb5i4DTToOLLoJ774VvfzvviKwl5ayquhz4C3BV44aI\n2KNxWdIZwDvNHBtAXUS8Xcb4zKwCLFiQZuqbPDn9rLFG3hFZa8qWOCJioqR+xfZJErA7sEULp1AZ\nwjKzCvLBB7DHHvDJJ2kejT598o7ISpFXG8dmwGsR8Vwz+wO4W9Ijkg7uwrjMrIu89hrU1cHKK8O4\ncU4a1SSvXlUjgOta2D84IuZIWgWYIGl6REwsVrC+vv6z5bq6Ourq6jozTjMrg6efhu22g332gfp6\nkOsXyqqhoYGGhoZOO58iotNO9qWTp6qqsY2N49m2xYFZwPciYnYJ5zgJmBcRZxbZF+WM38w636RJ\n8OMfwx/+kIZFt64niYhod7rOo6pqa+Cp5pKGpKUlLZst9wa2BaZ1YXxmViZ/+xvssksarNBJo3qV\nLXFIGgVMBgZIminpgGzXcGBUk7J9JY3LVlcDJkp6DPgncFtE3FWuOM2sa5x9Nvz85zB+PPzwh3lH\nYx1R1qqqcnNVlVnlW7gQjjkGJkyAO+6AtdbKOyLraFWVhxwxs7L56KM0W99bb8GDD8IKK+QdkXUG\nDzliZmXx5puw1VawxBKpespJo3Y4cZhZp3vuOdhkExgyBK65JiUPqx1OHGbWqaZMgU03haOPhlNP\nhcX8LVNz3MZhZp1mzBg46CAYORJ23DHvaKxcnDjMrFNccAGccgrcfjtssEHe0Vg5OXGYWYcsWgTH\nH5+md33wQfjqV/OOyMrNicPM2u2TT2D//eHll9OQ6CutlHdE1hXcbGVm7TJ3bnoDfP58uPtuJ43u\nxInDzNrspZdg8GD43vfghhtgqaXyjsi6khOHmbXJv/6Vksahh8JZZ7m7bXfUYhuHpO+R5s7YHOhH\nmmDpJeAB4LqImFruAM2sctx5Z5pD46KL0tDo1j01O8ihpNuBucAYYAowhzSd6+rAIGBHYPmIGNY1\noRaN0YMcmnWRyy6D3/wGbr45vRVu1aujgxy2lDhWjYjXWrn4VyLi9fZevKOcOMzKLwJOOgmuvTaN\nbjtgQN4RWUeVbXTc1pJGVia3pGFm5ffpp3DwwfDUU/DQQ/CVr+QdkVWCZhOHpBdaOC4iwq/5mNWw\nd9+FXXdNPabuuw969847IqsULTWOFw4aEKQeWMOBY4F/lTMoM8vXrFmw/faw2WZw7rnQo0feEVkl\nabYjXUS8GRFvAm+TGsIbgI2B7SPC/SnMatQTT6TG7733hvPOc9KwL2upqqoXcCBwNPAgsHNEzOiq\nwMys691zD4wYAX/+c/qvWTEt9aqaBSwA/gy8TKqugtQlNyLi5hZPLI0EhgGvR8T62bbRwLpZkeWB\ndyJiYJFjhwLnAD2ASyPij81cw72qzDrJVVfBL3+Z3gQfMiTvaKycytkd94pssWiBiDiglcA2A+YB\nVzUmjib7zyAljlOabO8BPA1sDbwCPAyMiIinipzDicOsgyLg97+HSy9NQ6J/61t5R2TlVs7uuPtn\nF1gyIj5uctFWhzOLiImS+hXbJ0nA7sAWRXYPAmZExItZ2dHAzsCXEoeZdcyCBXDYYfDoo2l02759\n847IqkEpo8zcLKln44qk1YEJHbzuZsBrEfFckX1rADML1mdl28ysE82bBzvtlHpQ3X+/k4aVrpT5\nOG4BbpC0K7AmaQiSYzt43RHAdc3sa1PdU319/WfLdXV11NXVtTsos+7i1Vdh2DAYOBAuvBB69mz9\nGKteDQ0NNDQ0dNr5mm3j+EIh6UhgKLA28D8RMamkk6eqqrGFbRySFic9RXwvImYXOWYjoD4ihmbr\nxwOLijWQu43DrO2eeiq9o3HggXDCCaB213RbtSpbG4ekY7LFIPWkWhN4HNhI0oYRcVY7r7k18FSx\npJF5BPh6lnRmk146dMdAs07wwAOw225w+umw3355R2PVqqU2jmWBZQr+ewvwbMG2FkkaBUwGBkia\nKamxF9ZwYFSTsn0ljQOIiAXAkcB44D/A9cV6VJlZ21x/fRpC5JprnDSsY0qqqqpUrqoya10EnHlm\nGjrkttvgO9/JOyLLW0erqpp94pA0UtIGLezfUNLl7b2wmZXfwoVw1FFw5ZWpu62ThnWGlnpVnQ38\nMmusfprPJ3JajfT292TgjLJHaGbt8uGHsOeeqdvtgw/CcsvlHZHVilarqiQtAQwk9ahqnDr28aYv\nBebBVVVmxb3xBuy4Y5p06dJLoVevvCOySlK2IUeaXGRpYK2ImN7eC5WDE4fZlz37LGy3HeyxB/zu\nd+5ua19WtjaOggvsBEwF7szWB0oa094Lmln5/OMfsPnmcNxxcMopThpWHqUMOVIPbAjMBYiIqYBn\n/zOrMLfckqqnLrsMDjkk72islpUy5Mj8iHhHX/zTZVGZ4jGzdvjLX+C00+DOO+H73887Gqt1pSSO\nJyXtBSwu6evAUaQeVWaWs0WLUrXUuHGp59Q66+QdkXUHpVRVHQmsB3xCeuP7PeDn5QzKzFr38cep\nAXzKFJg0yUnDuk6LvaqyAQknRESxeTNy515V1l29/TbsvHMaCv3KK2HJJfOOyKpJWXtVZeNGLZK0\nfHsvYGad64UXYJNNYKONYNQoJw3reqW0cXwATJM0IVuGNOf4UeULy8yKeeSRNPnSr38NRx6ZdzTW\nXZWSOG7OfhrrhEQbJ1sys44bNw723x8uuQR+9KO8o7HurNQ3x5cABmSr0yNiflmjKpHbOKy7uPhi\nOOmk9K7GRhvlHY1Vu7JN5FRwgTrgStIYVQBrSdovIu5v70XNrDQRaZa+66+HiROhf/+8IzIrrarq\nLGDbiHgaQNIAYDTwvXIGZtbdffppmt51xgx46CFYZZW8IzJLSnmPY/HGpAEQEc9QWsIxs3Z65x0Y\nOjQNiX7vvU4aVllKSRyPSrpUUp2kLSRdSpoX3MzKYOZM2HRTWG89uOkmWHrpvCMy+6JS5uNYEjgC\nGJxtmghcEBGflDm2Vrlx3GrN44/DDjvAz38Ov/iFR7e18ij7fBySegMfR8TCbL0HsEREfNjKcSOB\nYcDrEbF+wfafAocDC4FxEfGrIse+SBraZCFpkMVBzVzDicNqxoQJsNdecN55sPvueUdjtazs83EA\n9wJLFawvDdxdwnGXA0MLN0jaAtgJ+E5EfJvmp54NoC4iBjaXNMxqyRVXwD77pKopJw2rdKU0ci8R\nEfMaVyLi/WxGwBZFxERJ/ZpsPgw4tfE9kIh4o4VT+CHdal4EnHxyGm+qoQG+8Y28IzJrXSlPHB9I\n+myEf0k/AD5q5/W+Dmwu6R+SGrJzFRPA3ZIekXRwO69lVtHmz4ef/ATGjoXJk500rHqU8sTxc+AG\nSXOy9dWB4R243goRsZGkDYAbKD6b4OCImCNpFWCCpOkRMbHYCevr6z9brquro66urp2hmXWd99+H\n3XaDHj3Sk8Yyy+QdkdWyhoYGGhoaOu18pQ450gtYN1t9OiI+LenkqapqbGPjuKQ7gNMa3zqXNAPY\nMCLeauEcJwHzIuLMIvvcOG5VZ/ZsGDYMBg2C88+Hxf1WlHWxsjWOS/pDweqQiJiW/ZSUNJpxK7Bl\ndv4BQK+mSUPS0pKWzZZ7A9sC0zpwTbOK8eSTaUj03XeHiy5y0rDq1FIbx3YFy6e39cSSRpGmmB0g\naaakA4CRwFclTSPNJrhvVravpHHZoasBEyU9BvwTuC0i7mrr9c0qTUMDbLklnHIKHH+839Gw6tVs\nVZWkqRExsOlyJXFVlVWL665LL/WNHp2Sh1meyjk67iqSfkHqFlu4DGkip7Pae1Gz7iIC/vhHuOCC\nNObUt7+dd0RmHddS4rgUWLbIspmVYMECOOoomDQpjW67xhp5R2TWOUrqVVWpXFVlleqDD2CPPeCT\nT+Bvf4M+ffKOyOxzXTHkSOOF9mvvRcy6k9degy22gJVWStO9OmlYrSk5cZBeBDSzFjz9NGy8MWy3\nHVx+OfTsmXdEZp3PvcjNOsmkSfDjH8Pvfw8HHZR3NGbl02LikHRfwWr/gvWICHcqNMvcdBMcdhhc\nfTX88Id5R2NWXi02jmdDhgSpG+44YPtsmYh4sezRtcKN41YJzj4bzjwzDVY4sOLedjL7snK+x/GF\n5CDp04h4qb0XMqs1CxfCMcfAXXelaqq11847IrOu0ZY2jhfLFYRZtfnoozTx0ptvpqSxwgp5R2TW\ndUruVRURu5QzELNq8eabsPXWqcfU+PFOGtb9tJo4lPxY0tmSzpK0i+Th2ax7eu65NLrtZpvBtdfC\nEkvkHZFZ12v1zXFJFwJfI41mK2B34PmIOLz84bXMjePWlaZMgR/9CE44AQ7P/dNv1n4dbRwvJXFM\nB74VEYuy9cWA/0RE7hNdOnFYVxkzJr2bcdllsNNOeUdj1jFdMeTIDGCtgvW1sm1m3cIFF8Chh6bh\nQ5w0zErrVdUHeErSFNI7HYOAhyWNJb0I6H9KVpMWLYJf/xpuvhkefBC+9rW8IzKrDKUkjhOz/zbW\nCRU+3rieyGrSJ5/AAQfASy/B5Mmw8sp5R2RWOUoaVl3SasAGpEQxJSJeL3dgpXAbh5XD3Lmwyy4p\nWVx9NSy1VN4RmXWusrdxSNqdNPf3bqQeVVMk7dbeC5pVspdegk03TUOHXH+9k4ZZMaU0jp8AbBAR\n+0bEvqQnj9+2dpCkkZJekzStyfafSnpK0r8l/bGZY4dKmi7pWUm/KuUXMeuoqVNh8GA4+OA0/lSP\nHnlHZFaZSkkcAt4oWH+LL7ZzNOdyYOgXTiRtAewEfCcivg2c8aWLST2A87JjvwWMkPTNEq5n1m7j\nx6dRbf/8Z/i5Z54xa1EpjeN3AuMlXUdKGMOBO1o7KCImZqPrFjoMODUi5mdl3mh6HKnX1ozGARYl\njQZ2Bp4qIVazNhs5MvWeuvXW9Fa4mbWstfk4BPyFVD01ONv814i4pZ3X+zqwuaQ/AB8Dx0bEI03K\nrAHMLFifBWzYzuuZNSsC6uvhmmvg/vth3XXzjsisOpTyxHF7Vq10Uyddb4WI2EjSBsANwFeblGlT\nN6n6+vrPluvq6qirq+tgiNYdzJ8PhxwCTz6ZutuuumreEZmVT0NDAw0NDZ12vlKGHLkSOD8iprT5\n5KmqamxErJ+t3wGcFhH3Z+szgA0j4q2CYzYC6iNiaLZ+PLAoIr7UkO7uuNYe770Hu+4KSy4Jo0ZB\n7955R2TWtbpiyJGNgIckPS9pWvbzRDuvdyuwJYCkAUCvwqSReQT4uqR+knqR2lTGtPN6Zl/wyitp\nZNv+/dMb4U4aZm1XSlVV4wzKxd4cb5akUcAQYCVJM0lvoI8ERmZddD8F9s3K9gUuiYhhEbFA0pHA\neKAHcFlEuGHcOmzaNNhhhzSy7XHHgScHMGufUt8c/z6wKbAImBQR/yp3YKVwVZWV6t57YY89Unfb\nESPyjsYsX13x5viJwBXAisAqwOWSWn0B0KxSXHNNShY33uikYdYZSmkcf4b0wt7H2fpSwOMRMaAL\n4muRnzisJRFw6qlw8cVpSPT11ss7IrPK0NEnjlLaOF4BliK9dwGwJOndCrOKtWABHHFEmrVv8mTo\n2zfviMxqRymJ4z3gSUl3ZevbkAY6/AtpPo6jyhadWTvMmwfDh8PChfDAA7DssnlHZFZbSqmq2r9g\nNUi9qj77b0RcWbboWuGqKmvq1VdTz6nvfhcuugh69sw7IrPKU7Y5xyWtFREvtzuyLuDEYYWmT4ft\nt4f994ff/tbdbc2aU85eVX8vuEhnDDdiVjYTJ8KQIXDSSXDiiU4aZuVUShsHfHk8KbOKccMNcOSR\ncO21sM02eUdjVvtKTRxmFScCzjoLzjkHJkxI7RpmVn4ttXEsBD7MVpcCPirYHRHRp8yxtcptHN3X\nwoVw9NFw331w++2w5pp5R2RWPcr2HkdEeOJMq0gffgh77ZVGuZ04EZZfPu+IzLqXUkbHNasYb7wB\nW20FyywDd9zhpGGWBycOqxozZqSpXbfaCq66Cnr1yjsis+7JicOqwj/+kebR+OUv4ZRT3N3WLE/u\nVWUV79Zb4eCD4cor0wt+ZpYvJw6raOedl0a4veMO+MEP8o7GzMCJwyrUokXwq1/B2LHw4IOwzjp5\nR2RmjZw4rOJ8/DHstx/Mnp2GRF9xxbwjMrNCbhy3ivL227Dttml5wgQnDbNKVLbEIWmkpNckTSvY\nVi9plqSp2c/QZo59UdITWZkp5YrRKsuLL8LgwbDhhjBqFCy5ZN4RmVkx5XziuBxomhgCOCsiBmY/\ndzZzbAB1WZlBZYzRKsSjj6akccQR8Kc/wWJ+FjarWGVr44iIiZL6FdlVag9899TvJm6/Pc2hcfHF\n8KMf5R2NmbUmj7/rfirpcUmXSWpuwIgA7pb0iKSDuzI461qXXAIHHQRjxjhpmFWLru5VdSFwcrb8\nO+BM4KAi5QZHxBxJqwATJE2PiInFTlhfX//Zcl1dHXV1dZ0asJVHRJql7/rr00CF/fvnHZFZ7Wpo\naKChoaHTztfqnOMdOnmqqhobEeu3ZV+TcicB8yLizCL7PKx6Ffr0U/jJT+CZZ9J7GquskndEZt1L\nOaeO7XSSVi9Y3QWYVqTM0pKWzZZ7A9sWK2fV6d1307Ah770H997rpGFWjcrZHXcUMBlYV9JMSQcC\nf8y62T4ODAGOzsr2lTQuO3Q1YKKkx4B/ArdFxF3litO6zqxZaaDCb34TbroJll4674jMrD3KWlVV\nbq6qqh5PPAE77AA/+xn84hce3dYsT2WbAdCss9x9N+y5ZxqwcPfd847GzDrKr1lZWV15ZZrm9aab\nnDTMaoWfOKwsItKESyNHQkNDatcws9rgxGGdbv58OPxwmDoVHnoIVlst74jMrDM5cVinev/9VCW1\n2GLpSWP+RsEmAAANEklEQVSZZfKOyMw6m9s4rNPMmQNDhsCaa8Lf/+6kYVarnDisU/znP7DxxrDr\nrvDXv8LifpY1q1n+520ddv/9qXrqzDNh773zjsbMys2Jwzpk1Kj0Ut/o0bDllnlHY2ZdwYnD2iUC\nTj8dzj8f7rkH1m9xqEozqyVOHNZmCxbAUUfBpEmpu+0aa+QdkZl1JScOa5MPPoARI+Djj9M8Gn36\n5B2RmXU196qykr3+emrHWHFFGDfOScOsu3LisJI880zqbvvDH8Lll0PPnnlHZGZ5cVWVtWryZPjv\n/4bf/z7ND25m3ZsTh7XoppvgsMPgqqtg6NC8ozGzSuDEYc065xw44wwYPx4GDsw7GjOrFE4c9iWL\nFsExx6SEMWkSrL123hGZWSUp55zjIyW9JmlawbZ6SbMkTc1+ilZ+SBoqabqkZyX9qlwx2pd99FEa\nPmTqVCcNMyuunL2qLgeaJoYAzoqIgdnPnU0PktQDOC879lvACEmeBqgLvPUWbL116jE1fjyssELe\nEZlZJSpb4oiIicDcIrtamyB9EDAjIl6MiPnAaGDnzo7Pvuj552GTTWCzzeDaa2GJJfKOyMwqVR7v\ncfxU0uOSLpO0fJH9awAzC9ZnZdusTB5+GDbdNA1WeNppaRImM7PmdPVXxIXAOsB/AXOAM4uUiS6N\nqJu77TYYNgwuuihN92pm1pou7VUVEa83Lku6FBhbpNgrwJoF62uSnjqKqq+v/2y5rq6Ourq6jobZ\nbVx0EZx8ckoegwblHY2ZlUtDQwMNDQ2ddj5FlO8PfEn9gLERsX62vnpEzMmWjwY2iIg9mxyzOPA0\nsBUwG5gCjIiIp4qcP8oZf61atAh+85v0ct8dd8DXvpZ3RGbWlSQREa21NzerbE8ckkYBQ4CVJc0E\nTgLqJP0XqTrqBeDQrGxf4JKIGBYRCyQdCYwHegCXFUsa1j6ffAIHHggvvJCGEll55bwjMrNqU9Yn\njnLzE0fbvPMO7LJLGt32mmtgqaXyjsjM8tDRJw73n+kmXn4ZBg+G734XbrjBScPM2s+Joxt47LH0\njsbBB6fxp3r0yDsiM6tmHquqxo0fD/vsAxdeCD/+cd7RmFkt8BNHDRs5EvbbD265xUnDzDqPnzhq\nUATU16cG8Pvvh3XXzTsiM6slThw1Zv58OOQQePLJ1N121VXzjsjMao0TRw157z3YdVdYckm47z7o\n3TvviMysFrmNo0a88koa2bZ/f7j5ZicNMysfJ44aMG1a6m67555w/vmwuJ8jzayM/BVT5e69F/bY\nI72fseeerZc3M+soJ44qds01aW7wG2+EIUPyjsbMugsnjioUAaeeChdfnJ441lsv74jMrDtx4qgy\nCxbAEUfAlCmpu23fvnlHZGbdjRNHFZk3D4YPh4UL4YEHYNll847IzLoj96qqEq++CnV1sNpqMHas\nk4aZ5ceJowpMn5662+60E1x6KfTsmXdEZtaduaqqwk2cmN4GP/30NGChmVnenDgq2I03pobwa6+F\nbbbJOxozs8SJowJFwFlnpZf6JkxIs/aZmVWKsrVxSBop6TVJ04rsO0bSIkkrNnPsi5KekDRV0pRy\nxViJFi6En/0Mrrgidbd10jCzSlPOxvHLgaFNN0paE9gGeKmFYwOoi4iBETGoTPFVnA8/hN12g3//\nO7VtrLlm6cc2NDSULa5q43vxOd+Lz/ledJ6yJY6ImAjMLbLrLOC4Ek6hzo2o8r30EnzlK3DnnbD8\n8m071v8oPud78Tnfi8/5XnSeLu2OK2lnYFZEPNFK0QDulvSIpIO7ILSK8M1vwkUXQa9eeUdiZta8\nLmscl7Q08GtSNdVnm5spPjgi5khaBZggaXr2BGNmZjlTRJTv5FI/YGxErC9pfeBu4MNs9/8DXgEG\nRcTrLZzjJGBeRJxZZF/5gjczq2ER0e7mgC574oiIacBnM2BLegH4fkS8XVguezLpERHvS+oNbAv8\nXzPn7HbtIGZmeStnd9xRwGRggKSZkg5oUiQKyvaVNC5bXQ2YKOkx4J/AbRFxV7niNDOztilrVZWZ\nmdWeihzkUNJQSdMlPSvpV0X2H5u9HDhV0jRJCyQtn+2rqZcHS7gXK0u6U9Jjkv4taf9Sj602HbwX\n3e1zsYKkWyQ9LumfktYr9dhq08F7UTOfi5Zeui4oc252nx6XNLBge9s+ExFRUT9AD2AG0A/oCTwG\nfLOF8jsAdxesvwCsmPfv0VX3AqgHTs2WVwbeIrVdtek+VvpPR+5FN/1c/An4bba8buO/kW76uSh6\nL2rwc7EZMBCY1sz+7YHbs+UNgX+09zNRiU8cg4AZEfFiRMwHRgM7t1B+T2BUk2210mheyr2YA/TJ\nlvsAb0XEghKPrSYduReNutPn4pvAfQAR8TTQT9JXSjy2mrT3XqxSsL8mPhfR/EvXjXYCrszK/hNY\nXtJqtOMzUYmJYw1gZsH6rGzbl2Q9sH4I3FSwuZZeHizlXlwCrCdpNvA48LM2HFtNOnIvoPt9Lh4H\n/htA0iBgbVIX+O74uWjuXkBtfS5a09y96tvM9mZV4ui4bWmt3xF4MCLeKdhWSy8PlnIvfg08FhF1\nkr5G+p1rcWjEdt+LiHif7ve5OA34s6SpwDRgKrCwxGOrSUfuBcCmETG7Rj4XpeiUp6tKfOJ4BSgc\n3m9NUgYsZg+aVFNFxJzsv28At5Aew6pVKfdiE+BGgIh4jlRnu25WrtT7WA06ci+63eciIt6PiAMj\nDRS6L7AK8Fwpx1aZ9t6L57N9s7P/1sLnojVN79X/I92rNn8mKjFxPAJ8XVI/Sb2A4cCYpoUkLQds\nDvy9YNvSkpbNlhtfHmy2h0EVKOVeTAe2BpC0KumL8vkSj60m7b4X3fFzIWm5bB9ZFcz9ETGvlGOr\nTLvvRQ1+LlozBtgXQNJGwDsR8Rrt+ExUXFVVRCyQdCQwntTaf1lEPCXp0Gz/X7OiPwLGR8RHBYev\nCtwiCdLvdm1U8cuDJd6LPwCXS3qc9IfAcZG9jV/s2Dx+j87QkXsh6avAzd3sc/Et4AqlYXn+DRzU\n0rF5/B6doSP3ghr7vlB66XoIsLKkmcBJpF5SRMRfI+J2SdtLmgF8AByQ7WvzZ8IvAJqZWZtUYlWV\nmZlVMCcOMzNrEycOMzNrEycOMzNrEycOMzNrEycOMzNrEycOq1qSFurzofVvkLRU3jG1RNL+kv6S\nLR8qaZ+C7as3KXt9NmxKS+drkPT9bHk3Sf+RdE8L5VeVdHvHfxPr7pw4rJp9mA0jsT7wKfA/5byY\npI6+MPvZS1PZC1lXZ6v7kQaaa7xOf6B3NmxKa+drPOdBwE8iYqtmC6e3hOdK+l57gjdr5MRhteJB\noL/SpD23ZhPVPCRpfYBssp4+St4q+Gv/KklbSVpM0p8kTcmOPSTbXydpoqS/A08WXlBSD0lXZE88\nT0j6Wba9QdI5BU9DGzQeUnBsvaRjJP0Y+AFwraR/SVqSNAbbmIKyF0h6WGlyqvomv7cknQgMBkZK\nOl3S2pIekPRo9rNxQfkxwIgO3mvr5pw4rOplTwJDgSeAk4FHI+K7pNFyr8qKTQI2BdYjDfa3abZ9\nI2Ay8BPS2D2DSAPdHSypX1ZmIHBURKzb5NL/BfSNiPUj4jvA5dn2AJaKiIHA4cDIImEHEBFxE2ms\noD0j4nsR8TEpCTxSUPY3EbEB8F1gSGMybDxPRJxccI7jgNeBbSLi+6QkdG5B+SmkMd7M2q3ixqoy\na4OllIbKBniA9AX9T7K5FyLiPkkrZQPZTSR9Yb4EXAgcIqkvMDciPpK0LbC+pF2z8/UB+gMLgCkR\n8VKR6z8HfFXSucA4oHCco1FZDBOzJ53lWvldCoe7Xps0KVWj4dngfIsDq5MmJio2GF/jOXoB5ykN\nr78QGFBQZg5ppjezdnPisGr2UfZX/WeyAeuazjkQpMRyJPAi8BtgF2DXbHujIyNiQpPz1ZEGhPuS\niHhH0ndITzv/A+zO5wPoNbWold+l6aBxyq6/DnAM8IOIeFfS5cCSrZzjaGBOROwjqQfwcZPzeoA6\n6xBXVVmtmQjsBZ996b8REfMiYhZpHvL+EfECqU3kWD5PHOOBwxsbwCUNUJphslmSViLNaX4z8FtS\nlRakL+fhWZlNSVVg7zc9nM8T3Pt8PuUtpKeixl5WfUiJ6z2loeK3K+Ee9AFezZb3JY142mj17Pxm\n7eYnDqtmxf5yric1Ej9O+sLdr2DfP/j8j6UHScOwP5itX0qqwvmX0mPL66SnksKeS02tQRrGvfGc\n/1sQ18eS/kX6N3ZgwfYosnwFcJGkD0mTUT1IajB/NCIez6rjppOm92yMtyUXADdJ2he4E5hXsG8Q\nX3zKMmszD6tu1skk3QccExH/aufxXwX+EhHDOjcykHQtcEZETG21sFkzXFVlVmEi4nng/dZeAGwr\nSV8BlnfSsI7yE4eZmbWJnzjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxN/j9Wa4hN\nQwruUQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5c175d0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8ndPZ//HPN5M5MSeCSg3xM0sRsxxzaqwxDapmrdIJ\nTWnVeQyPtmhVaZ8iiaGEeoyRlAgOQdEQQxWPqJAQaUrMVIbr98e6j+xu+8xn73vvc77v12u/cu97\nvPZt29dZa91rLUUEZmZmrdUj7wDMzKy2OHGYmVmbOHGYmVmbOHGYmVmbOHGYmVmbOHGYmVmbOHFY\nzZH0gaRBOV6/QdKxeV2/2kj6UvbfRHnHYpXhxGGtIunD7MfhA0mLJH1c8H6kpOUljZE0W9L7kl6S\nNKrg+EVF53inYFtfSZdIei3bNl3SryWtVCqWiFguIma04zMMyuLo6Pc+spcBEfF69t/E96SbcOKw\nVomIZbMfh+WA14B9Gt9HxDjg18DSwP+LiL7AfsD0otNsWnDMigCS+gD3ARsAe2bn3xb4FzC0TB+n\nXX8ZK6nY/zOSelXqWmZt4cRhnWVLYFxEvAcQES9FxC2tOO5IYE3ggIh4MTt2bkScHxF/LnVAVmpY\nO1u+WtLlku7KSjqPNW4r4aHs33ezfbeRVC/puoJz/0epJKuWOk/SI8CHwJezXdeV9Lik9yTdLmmF\ngnPsJ+l5SfMkPSDp/xVsmyHpx9n2d7JS2hLZtjpJsyT9SNJsYLSkPllp7I3s9ess2Rbuf4akuZJe\nlXRYUzdaUj9JoyW9mR13bsHnPErSw5IuzOL6h6ThBcd+WdJD2X27N7vn1zVzz87Jzve+pHsKS4/Z\nfX80uz9PSxrWVMxWnZw4rLM8Bpyf/QCt18Q+pf7S3w34c0R83IFrjwDqgRVIpZzzm9hvx+zffhHR\nNyIeo3VVTkcAxwGNpS2REt7RwGrAAuBSAEmDgRuA7wIrAxOB8UWlh8OAPYB1gMHATwu29c8+x5eA\nE7NtQ4HNstfQEvuvBAwEvglckcVQytXAZ9l1h2QxHFewfSjwYna+XwKjC7bdQPpvvCLpXh9B8/du\nJHAUsCrQBzgNQNLqwF3AORGxQrb+FkkrN3MuqzJOHNZZTgGuB04Gnpf0cuFfrJmnsr8y50m6JFu3\nIjC7A9cN4NaImBoRC7MYNm9i31KJq6VqqwCujogXImJRRCzI1l0bEX/PEt5ZwKHZX9wjgLsi4r4s\nnouApYDtCs53WUS8ERHzSEluZMH1FgFnR8T8iPiUlGTOiYh/RcS/gP8CvlEU41nZ/g8BE4BDv/Ah\npf7AV4EfRMQnETEXuAT4esFur0XE6Kyt4lpgNUmrSvoSqUT5s4hYEBGPAHc2c+8CGBsR07PP8CcW\n/zc5ApgYEXcDRMRkYCqwVxPnsirkOlTrFNkPxAXABZKWA34M3CxpzYh4N9ttSET8o+jQt0l/LXfE\nnILlT4BlO3i+YjNbWPc60JtUwlgtew9ARISkmcDqzRxb+PnnRsRnBe8Hkko5Te0/LyI+KXj/GqXv\n51pZjLO1+OGnHoWxAm8VxP1xtt+ypFLDO9l/48LPsGaJ63zhXPznf5O1gEMk7VuwvRdwfzPnsirj\nEod1uoj4gJRElmFxm0BTJgN7Slq67IGVrlr5kNSo32hAK4/7UtHyfGAu8CbpxxFIDeqkH9g3mjn2\nzWau9SYwqJn9Vyi6d2sVXavRTODfwEoRsUL26hcRm5TYt9hsYEVJSzXxGdrideC6ghhWyB6W+GU7\nz2c5cOKwTiHpLElbZo25SwLfA+YBL7Vw6HWkH7VbJK0vqYeklSSdKemrrbl0G8KcS6oKWqdg3dPA\nTpLWlNQPOKMV1xBwhKQNsh/tc4Cbsyqem4G9Je0iqTdwKvAp8GjBsSdJWl3SisBPgBubiXkc8FNJ\nK2ftAD8j3bNC/yWpt6Qdgb2zGP5DRMwGJgG/krRcdp/XkbRTM9duPPY1UnVSfXadbYF9aL6No6n/\nLn8E9pW0h6SekpbMGvlXb2J/q0JOHNZZFgFjST/ObwC7AnsXNHqX/JHJqmV2IzXK3gu8BzxOavt4\nrIlrRdFy8bmbutbHpDaFR7J2lqFZHftNwLPAX4HxrThfYxvA1aS/xvuQGsOJiJdI9fi/Jd2LvYF9\ns7aRxmNvIP2IvwK8DJzXzLXOI/1oP5u9phbt/xYpQb9JSignRsT/lfr8pAb9PsDfgXdICaaxhNXS\nfTyc9Jj028C5pHv2WRP7Fr///NwRMQvYHzgT+CepBHIq/i2qKSpXnx1JY0j/0/yzsTgsaTPgf0hV\nGDOAw7NqjeJjZwDvAwuB+RFRruf5zSpK0qvAsRHR4Tp9SXWkap/m2hrKQtJNwN8j4r8qfW3LXzmz\n/Fig+Kmaq4AfRcSmwG3A6U0cG0BdRAxx0jDLX1YNuU5WxfVVUgfP2/OOy/JRtsQREVNIRehC62Xr\nITWKHtTMKTzujVnLKjXMxwDgAeAD0igB34qIZyp0basylX4c93lJ+0fEHcAhNP04XwCTJS0E/hAR\nV1YsQrMyioiWnjJry7kaaP/TTW291l2kjntmFW+QOob0RMlU0nPdnzWx3/YRMYTUYek72dMiZmZW\nBSpa4sieONkTPh+aYe8m9pud/TtX0m2koRCmFO8nyaNxmpm1Q0S0uzmgoiUOSatk//Ygjbfz+xL7\nLJ31PEbSMqTxdJ5r6pwR4VcEZ599du4xVMvL98L3wvei+VdHlS1xSBpH6vS0vqSZko4BRkp6CXgB\nmBURV2f7DpQ0ITt0ADBF0tOk5/nviohJ5YrTzMzapmxVVRExsolNl5bY902yaqtIYxk1NUidmZnl\nzL01q0gEvPVWy/uVUldX16mx1DLfi8V8Lxbzveg8Zes5XgmSopbjLzZtGuyzD9x/P6y/ft7RmFlX\nJYmolcZxa96QIXD++bDbbjC9eNJVM7Mq4fk4qsxRR8Fnn8Guu8KDD8KgQXlHZGb2n5w4qtAJJ8D8\n+bDLLil5rFnxIezMzJrmxFGlvvOdVPLYZRdoaIDVPVuBmVUJJ44q9oMfLK62amiAAaXmpjMzqzAn\njio3ahT8+9+pwfyBB2CVVfKOyMy6OyeOGnDWWanksfvu6VHdFVfMOyIz687cj6NGRKTSx/33w+TJ\nsPzyeUdkZrWqo/04nDhqSERq93jsMZg0Cfr2zTsiM6tFThw1HH97RKQnrp59Fu6+G5ZdNu+IzKzW\nOHHUcPzttWhR6uvxyiswYQIsvXTeEZlZLXHiqOH4O2LhQjj6aJg9G8aPhyWXzDsiM6sVThw1HH9H\nLVwIRxwB770Ht90GSyyRd0RmVgs8yGE31rMnXHttqqo66KDU38PMrNzKOQPgGElzJD1XsG4zSX+R\n9KykOxuniC1x7HBJL0p6WdKocsXYFfTuDePGwVJLOXmYWWWUs8QxFhhetO4q4EcRsSlwG3B68UGS\negKXZcduSJpudoMyxlnzeveGG25IJY8DD4RPP807IjPrysqWOCJiCjCvaPV62XqAycBBJQ4dCkyP\niBkRMR+4Edi/XHF2Fb17w/XXwzLLOHmYWXlVuo3jeUmNSeAQoNSA4asDMwvez8rWWQsak8eyy8IB\nBzh5mFl5VHqsqmOASyWdBdwJfFZinzY9JlVfX//5cl1dXbefV7ix2urww1PyuO02P6pr1t01NDTQ\n0NDQaecr6+O4kgYB4yNikxLbBgPXRcTWReu3AeojYnj2/gxgUUT8osQ5uvXjuM1ZsCA9qvvuu3D7\n7U4eZrZYTT2OK2mV7N8ewE+B35fYbSqwnqRBkvoAI0ilE2uDXr3gj3+EFVaAr33N1VZm1nnK+Tju\nOOBRYH1JMyUdQ3pC6iXgBWBWRFyd7TtQ0gSAiFgAnAzcA/wduCkiXihXnF1Zr15w3XVpGPb994dP\nPsk7IjPrCtxzvBtYsACOPBL+9S+4447U58PMuq+aqqqyfPTqlXqYr7KKSx5m1nFOHN1Er15wzTUp\neey3H3z8cd4RmVmtcuLoRhpLHv37p5KHk4eZtYcTRzfTs2cqeQwYAPvsAx99lHdEZlZrnDi6oZ49\n4eqrYdAgGD4c3n8/74jMrJY4cXRTPXvCVVfBxhvD7rvDvOJRxczMmuDE0Y316AG/+x1suy3suiu8\n/XbeEZlZLXDi6OYk+PWvYY89YOedYc6cvCMys2pX6UEOrQpJcMEFqWNgXR3cdx8MHJh3VGZWrZw4\nDEjJ4+yz07zlw4al5PGlL+UdlZlVIycO+w8//nEaSbcxeay9dt4RmVm1ceKwL/j+91PJo64OJk+G\nwYPzjsjMqokTh5X07W+n5LHzzjBpEmy0Ud4RmVm1cOKwJh1zTEoeu+0Gd98Nm22Wd0RmVg2cOKxZ\nhx+ekseee8Jdd8GWW+YdkZnlzYnDWnTwwSl57LVXmoZ2u+3yjsjM8lTOGQDHSJoj6bmCdUMlPSFp\nmqS/StqqiWNnSHo22++JcsVorbfvvmk2wf33T09bmVn3VbYZACXtCHwIXBsRm2TrGoALIuIeSV8F\nfhQRO5c49lVgi4h4p4VreAbACnvwQTjkEBg9OiUTM6s9VTsDYERMAYqHzpsN9MuWlwfeaOYU7f5Q\nVj7DhsGECXD88XDDDXlHY2Z5qHQbx4+BhyVdREpa2zaxXwCTJS0E/hARV1YqQGvZVlul/h3Dh8MH\nH8CJJ+YdkZlVUqUTx2jguxFxm6RDgDHA7iX22z4iZktaBbhX0otZCeYL6uvrP1+uq6ujrq6u86O2\nL9h441RttdtuaT6P00/POyIza0pDQwMNDQ2ddr6ytXEASBoEjC9o43g/IvpmywLejYh+TZ8BJJ0N\nfBgRF5fY5jaOnM2alebzOOggOPfcNOaVmVW3qm3jaMJ0ScOy5V2A/yveQdLSkpbLlpcB9gCeK97P\nqsMaa8BDD8HEifC978GiRXlHZGblVs6nqsYBw4CVgTnAz0gJ4HJgCeAT4KSImCZpIHBlROwtaW3g\n1uw0vYDrI+KCJq7hEkeVePfdNIf5uuummQV7uYeQWdXqaImjrFVV5ebEUV0++ggOPBCWWw6uvz51\nGjSz6lNrVVXWhS2zDNx5J0TAfvulRGJmXY8Th3WqJZaAm26CAQPS+FbvvZd3RGbW2Zw4rNP16gVj\nx8KQIWlY9rlz847IzDqTE4eVRY8ecOmlaWDEnXZKj+2aWdfgZ1+sbCQ47zzo1w922AHuuQfWXz/v\nqMyso5w4rOxOPx1WXjlNRTt+vOf0MKt1rqqyijj6aPif/0lVVx6W3ay2OXFYxey/P9x8M4wcCf/7\nv3lHY2bt5aoqq6hhw2DSJNh7b3j7bY+sa1aLnDis4jbfPI1vtcce6VHdn/zEgyOa1RIPOWK5mT07\nzelRVwe//nV6hNfMys9jVdVw/JYGR9x3X1hrrdRpsHfvvCMy6/o8VpXVtOWXT/073nsvNZ57fCuz\n6ufEYblbemm49VZYZZU0KdQ77+QdkZk1x4nDqkLv3qmqarvt0hAlb7yRd0Rm1hQ/VWVVo0cPuPDC\nVPJoHKJk8OC8ozKzYmUrcUgaI2mOpOcK1g2V9ISkaZL+KmmrJo4dLulFSS9LGlWuGK36SDBqFPz0\np6nPxxNP5B2RmRUrZ1XVWGB40bpfAmdFxBDSVLK/LD5IUk/gsuzYDYGRkjYoY5xWhY49Fq68MnUU\nnDAh72jMrFDZEkdETAHmFa2eDfTLlpcHStVkDwWmR8SMiJgP3AjsX644rXrtsw/cdRccdxyMHp13\nNGbWqNJtHD8GHpZ0ESlpbVtin9WBmQXvZwFbVyA2q0Jbbw0PPpg6Cr7xBpx1lnuZm+Wt0oljNPDd\niLhN0iHAGGD3on3a1KOvvr7+8+W6ujrq6uo6GKJVm8GD4dFH08i6b7wBl1+eZhk0s9ZpaGigoaGh\n085X1p7jkgYB4yNik+z9+xHRN1sW8G5E9Cs6ZhugPiKGZ+/PABZFxC9KnN89x7uRDz6Agw6CJZeE\nG29M/T/MrO1qref4dEnDsuVdgP8rsc9UYD1JgyT1AUYAd1YqQKteyy2X2jz69YNdd4V//SvviMy6\np3I+jjsOeBRYX9JMSUcDJwC/lPQ0cF72HkkDJU0AiIgFwMnAPcDfgZsi4oVyxWm1pU8fuPbaNDDi\n9tvDq6/mHZFZ9+NBDq1mXXYZXHBBKoUMGZJ3NGa1oyKj42b9KAYBi4DXIuLF9l6wMzlx2C23wLe/\nDddfn8a5MrOWlS1xSPoy8ANgL1J/izcBAasBawB3Ab+OiBntvXhHOXEYwJQpcPDBcPHFcMQReUdj\nVv3KmTj+BFwJNGQd8Qq39QZ2Bo6LiEPbe/GOcuKwRs8/nx7X/c534PTT3dfDrDmeyKmG47fONWtW\nSh477gi/+Y37epg1pZwljp2KVxUsR0Q81N6LdhYnDiv23ntwyCGwxBIwbhwsu2zeEZlVn3Imjrso\n3Yt7U2CNiOjZ3ot2FicOK2X+fPjWt+Dpp9MTV6utlndEZtWlYlVVkrYHziINTnh+RIxv70U7ixOH\nNSUCzj8frroqja670UZ5R2RWPcqeOCTtBvw0e3t+RNzb3ot1NicOa8kf/winnpqqrXbZJe9ozKpD\nOauq9gF+ArwL/Hc2THpVceKw1mhogBEj0uyCRx6ZdzRm+Stn4lhEGtL8mRKbIyL2a+9FO4sTh7XW\nCy+kSaG++U342c/8uK51b+VMHMMK3xZtjoh4sL0X7SxOHNYWc+akyaE22giuuCKNe2XWHZUzcVwB\n/BmYHBEftPcC5eTEYW310Udw+OFpiPZbboHll887IrPKK+ew6mOAzYGJku6XNErSZu29kFk1WGaZ\nlDA23hh22AFeey3viMxqT2sHOVwZ2AMYTurHMQ34c0T8qbzhtRiXSxzWbpdcAhddBHfeCV/5St7R\nmFVOLkOOSNoS2DMizm/vhTuDE4d11G23wYknwpgxqf3DrDso+wyAkr4vqZ+S0ZKeAlZqKWlIGiNp\njqTnCtbdKGla9npV0rQmjp0h6dlsvyfa/KnMWumAA2D8eDjhhFQC8d8hZi1rTQfAZyNiU0l7At8i\n9R6/LiKanTpH0o7Ah8C1jXOOF22/iDTn+Hkltr0KbBER77RwDZc4rFO89hrsuy9stx389rfQu3fe\nEZmVTyXmHG88+d6khPG31pw46zA4r+QJJQGHAuNacV2zsltrLXj4YZg5M/X3ePfdvCMyq16tSRxP\nSppEmtDpbkl9STMBdsSOwJyIeKWJ7QFMljRV0vEdvJZZq/TtC3fcARtsANtuC6809e006+aaTBzZ\nZE0AxwBnAFtFxMdAb+DoDl53JHBDM9u3z6rCvgp8J6v2Miu7Xr3SXB6nnJIe13344bwjMqs+zU11\n8xdJb5A6Ad4dEfMAIuJt4O32XlBSL+AAoMkHICNidvbvXEm3AUOBkmNl1dfXf75cV1dHXV1de0Mz\n+9xJJ8E668CBB6Ypab/xjbwjMmu/hoYGGhoaOu18zTaOZ/OODwf2JM0zPoWUSB6MiH+3eHJpEDC+\nsHFc0nBgVETs3MQxSwM9I+IDScsAk4D/iohJJfZ147iV1fPPp0bzww6Dc86BHq2p3DWrcpWcj6MP\nqW1iODAMmBsRezez/7hsv5WAfwI/i4ixksYCf4mIKwr2HQhcGRF7S1obuDXb1Au4PiIuaOIaThxW\ndnPnwte+BquvDtdcA0stlXdEZh2T25zjklaPiDfae+HO4MRhlfLpp3DssTB9empAHzAg74jM2q8S\nEzk9V7QqgPeAqcB5WZtHLpw4rJIi4NxzYfTo1Glw003zjsisfSqROC4EFpCeghLwdWBp4C3S00/7\ntvfiHeXEYXm48cb01NXYsR6mxGpTJRLHtOJe4o3rJD1Xqld4pThxWF4eeyw9cfXDH6apaT0xlNWS\nSvQc7ylp64ILDi04bkF7L2xWy7bZJiWP66+Ho45KbSBm3UVrShxbAWOBZbNVHwDHAs8De+c5tLpL\nHJa3jz5KiWPWrDTSrhvNrRZU8nHcfgAR8V57L9bZnDisGixatLjR/PbbPbeHVb9KtHGsABwJDGJx\nT/OIiO+296KdxYnDqsktt8C3vgWXXw6HHpp3NGZN62jiaG7IkUYTgb8Az5IGNxTpkVwzK3DQQWmY\nkv33h7/9Derr3dPcuqbWlDieioiqLHy7xGHVaM6c9MTVgAGpp/myy7Z8jFklVeKpqhsknSBpNUkr\nNr7ae0Gzrq5/f7j/fujXD7bfPk0SZdaVtCZxfApcCDwGPJm9ppYzKLNat8QSqbH8qKPS3B6PPJJ3\nRGadpzVVVa+S5uL4V2VCaj1XVVktuPtuOPJI+PnP4Zhj8o7GrDJVVS8Dn7T3Ambd3fDhMGVKShw/\n+AEscLdZq3GtKXHcDmwEPAA0zsHhx3HN2mjePBgxIg2WeOONsNJKeUdk3VUl+nEclS027ihS4rim\nvRftLE4cVmsWLIAzzoBbb009zT3CruUht/k4qoETh9WqG26A730Pfvc7OOSQvKOx7qZsbRySJkg6\nJJvKtXjb0pJGSJrYzPFjJM0pnM9D0o2SpmWvVyVNa+LY4ZJelPSypFFt/VBm1e6ww2DSJDj9dDjz\nTFi4MO+IzFqvyRKHpFWBk4GDgYXAbFI11QBSj/ObgMsjYm4Tx+8IfAhcW2rodUkXAe9GxHlF63sC\nLwG7AW8AfwVGRsQLJc7hEofVtLlzU7vHkkumkXZXWCHviKw7qEhVlaQBwFrZ2xkRMaeVwQ0Cxhcn\nDkkCXgN2johXirZtC5wdEcOz9z8GiIiflzi/E4fVvPnzU8ljwoQ0SOJGG+UdkXV15ayqWk/SDgAR\n8VZEPB4RjwPrSVqnvRfM7AjMKU4amdWBmQXvZ2XrzLqk3r3hkkvgrLNg551To7lZNWuuH8clwPsl\n1r+fbeuIkaSpaEtxEcK6pSOPhIkTU6P52Wen4drNqlFzo+P2j4hni1dGxLOSvtzeC0rqBRwANDVw\n4hvAmgXv1ySVOkqqr6//fLmuro66urr2hmaWuy23hL/+NT1pNW0aXHddGvPKrCMaGhpoaGjotPM1\n1zg+PSLWbeu2ov0GUdTGIWk4MCoidm7imF6kxvFdgTeBJ3DjuHUzn32W5jOfPBnuuAPWXz/viKwr\nKeeQI1MlnVDigseTBjpsKbBxwKPAYEkzJR2dbRoBjCvad6CkCQARsYD0NNc9wN+Bm0olDbOurE8f\nuOyy1Gi+444wfnzeEZkt1lyJYwBwG/AZixPFFsASwAERMbsiETbDJQ7rDh57LFVdHX10avvo2TPv\niKzWlfVx3Oyx2Z2BjUmN1s9HxP3tvVhnc+Kw7mLOnNTfY6mlUn+PFT0jjnVAOR/HPTCS+4E/RsRv\nqylpmHUn/fun9o4NN0wN6NNKjrlgVhnNtXGcVbA8udyBmFnzevWCiy9Ow7PvsUealtYsD62ZjwPS\nUCNmVgUOPRQefBAuuABOOgn+/e+WjzHrTM0ljqUkfUXSFoXL2b9N9cEwswrYcEN44gl46y0YNgxm\nNdnTyazzNfdUVQNFc3AUbm+qH0YluXHcursI+OUv05AlN9yQhiwxa4nn46jh+M06y+TJcMQRcNpp\ncOqpIFcuWzPKljgkbQXMauyvIembwEHADKA+It5p70U7ixOH2WKvvw4HHQSDBsGYMbDccnlHZNWq\nnD3HryCbY1zSTsDPgWtIgxxe0d4Lmll5fOlLMGUKLL88bL01vPhi3hFZV9Vc4uhRUKoYAfwhIm6J\niJ8C65U/NDNrqyWXhCuvTONc7bQT3Hxz3hFZV9Rc4ugpqXe2vBvwQMG25kbVNbOcHXcc/PnPMGoU\nfP/7adBEs87SXOK4GXhQ0p3Ax8AUSBM8Ae9WIDYz64AttoAnn4RXX02P7L7+et4RWVfRXOL4GvBD\n4Gpgh4honFZGwClljsvMOsEKK6TpaA88EIYOhbvvzjsi6wqae6pqWkQMqXA8beKnqsxa76GH4LDD\n4JhjPMpud1fOx3FnAb+i9HAjERG/au9FO4sTh1nbzJkDI0dCjx6pw+Cqq+YdkeWhnI/j9gSWA5Yt\n8fIT4mY1qH9/uPde2Gab1Aby8MN5R2S1qGxVVZLGAHsD/yyaOvYU4CRgITAhIkaVOHYGqb/IQmB+\nRAxt4houcZi104QJqdrqRz9Kj++6t3n3Uc6qqo4mjh2BD4FrGxOHpJ2BM4G9ImK+pFUiYm6JY18F\ntmipd7oTh1nHvPZaml1w9dVh7NjUedC6vnJWVe3W3pMCRMQUYF7R6m8DF0TE/GyfLySNAv77x6zM\n1lor9TZfYw1PEGWt12TiiIi3y3C99YCdJD0mqUHSlk1dHpgsaaqk48sQh5llllgCfvtbOP/8NEHU\nFVekUXfNmlLpHuC9gBUiYptsEMU/AWuX2G/7iJgtaRXgXkkvZiWYL6ivr/98ua6ujrq6us6P2qwb\nGDECNtssTRT1wAPwhz9A3755R2WdoaGhgYaGhk47X1mHVZc0CBhf0MbxZ+DnEfFg9n46sHVzpRtJ\nZwMfRsTFJba5jcOsk33ySRqm5P774U9/giFV3ZvL2qOcbRzlcDuwC4CkwUCf4qQhaWlJy2XLywB7\nAM9VOE6zbmuppVJp49xzU9XV737nqiv7T2VLHJLGAY8CgyXNlHQ0MAZYW9JzwDjgyGzfgZImZIcO\nAKZIehp4HLgrIiaVK04zK+3rX4dHH02j7R56KLz3Xt4RWbXwDIBm1qxPP02zCt59N9x0U3r6ympb\nrVVVmVmNWXJJuPxy+MUvYK+94De/cdVVd+cSh5m12iuvpKev1lwzTU+7wgp5R2Tt4RKHmVXMOuvA\nI4+kaWqHDIHHH887IsuDE4eZtckSS6Tqqksugf32g4svdtVVd+OqKjNrtxkz0tNXq6ySxrpaeeW8\nI7LWcFWVmeVm0KA0QdQGG6SqqwceyDsiqwSXOMysU0yaBEcdtXiGwd69847ImlK2YdVrgROHWXWZ\nMwe++U14//00w+CgQXlHZKW4qsrMqkb//jBxIhx0EAwdCjffnHdEVg4ucZhZWUydmuY3r6tLT2At\ns0zeEVkjlzjMrCptuSU89RT8+99p+Zln8o7IOosTh5mVzXLLwbXXwplnwm67wWWXuc9HV+CqKjOr\niOnTU9UBZxAJAAAONUlEQVTVwIFpuJKVVso7ou7LVVVmVhPWXTcNVzJ4MGy+OXTihHRWYS5xmFnF\n3XMPHH10etXXu89HpbnEYWY1Z889Ydo0ePpp2H57ePnlvCOytijnDIBjJM3JZvsrXH+KpBck/U3S\nL5o4drikFyW9LGlUuWI0s/z07w933ZU6DG63HYwe7YbzWlG2qipJOwIfAtdGxCbZup2BM4G9ImK+\npFUiYm7RcT2Bl4DdgDeAvwIjI+KFEtdwVZVZF/D883DYYakd5Ior3HBeblVbVRURU4B5Rau/DVwQ\nEfOzfeZ+4UAYCkyPiBnZfjcC+5crTjPL30YbwRNPpCFKNt8c7rsv74isOZVu41gP2EnSY5IaJJWa\nvXh1YGbB+1nZOjPrwpZYIs3tMWZMqr467bTUedCqT68crrdCRGwjaSvgT8DaRfu0qe6pvr7+8+W6\nujrq6uo6GKKZ5Wn33VOj+fHHw9Zbp8ESN9ww76hqW0NDAw2d+PxzWR/HlTQIGF/QxvFn4OcR8WD2\nfjqwdUS8XXDMNkB9RAzP3p8BLIqILzSku43DrOuKgKuugjPOgHPOgW9/G9TuWnkrVLVtHE24HdgF\nQNJgoE9h0shMBdaTNEhSH2AEcGdlwzSzvEmp1PHII6n6at994Z//zDsqg/I+jjsOeBQYLGmmpKOB\nMcDa2SO644Ajs30HSpoAEBELgJOBe4C/AzeVeqLKzLqH9deHRx+FTTZJDecTJ+YdkbnnuJnVjIaG\n1HC+115w0UUeqr29aq2qysys3erq4Nln4eOPU+njscfyjqh7conDzGrS//4vfOc7cOKJcNZZHu+q\nLVziMLNu6eCD02O7U6fCttvCC24JrRgnDjOrWautBhMmwHHHwY47wqWXwqJFeUfV9bmqysy6hJdf\nhm98I806OHYsrLFG3hFVL1dVmZkB660HDz8Mw4bBV74C48blHVHX5RKHmXU5Tz4JRxyRnry6/HJY\nccW8I6ouLnGYmRXZYgt46ilYdVXYbDOYNCnviLoWlzjMrEubPBmOOSYNWfKLX8Cyy+YdUf5c4jAz\na8Zuu6VOgx9+mEofU6bkHVHtc4nDzLqNO+5Io+yOHAnnnQdLLZV3RPlwicPMrJX23z+VPmbNSk9e\nPfFE3hHVJpc4zKxbuukm+O5309DtP/sZ9OmTd0SV4xKHmVk7jBgBzzyTSiBbbZWWrXWcOMys2xow\nILV7/PCHqRH9vPNgwYK8o6p+rqoyMwNmzoRjj4V58+Caa7r2POdVW1UlaYykOdlsf43r6iXNkjQt\new1v4tgZkp7N9nHzlZmV3Zprwj33pAETd9opTRS1cGHeUVWnspU4JO0IfAhcGxGbZOvOBj6IiF+1\ncOyrwBYR8U4L+7nEYWad7h//gKOPhvnz04CJ66+fd0Sdq2pLHBExBZhXYlNrg233hzIz64i114YH\nHkj9PbbfHi680KWPQnk0jp8i6RlJoyUt38Q+AUyWNFXS8ZUMzswMoEcPOOWU1Ndj4sSUQDxZVNKr\nwtf7PXBOtnwucDFwbIn9to+I2ZJWAe6V9GJWgvmC+vr6z5fr6uqoq6vr1IDNrHtbe2247z74wx/S\nZFGnnZZevSr969kBDQ0NNDQ0dNr5yvpUlaRBwPjGNo7Wbiva72zgw4i4uMQ2t3GYWcXMmJEaz997\nL7V9bLxx3hG1T9W2cZQiabWCtwcAz5XYZ2lJy2XLywB7lNrPzKzSBg2Ce+9Nvc133hnOPz81oHc3\n5XyqahwwDFgZmAOcDdQBm5PaMF4FToyIOZIGAldGxN6S1gZuzU7TC7g+Ii5o4houcZhZLl5/PSWQ\nuXPh6qth003zjqj1OlricAdAM7N2ikhVVqNGwcknwxln1MaYVzVVVWVm1pVIaZKoadPS01dDh6bl\nrs4lDjOzThAB110HN98Md96Zkkq1clVVDcdvZl1PRHUnDXBVlZlZVan2pNEZnDjMzKxNnDjMzKxN\nnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNnDjMzKxNypY4\nJI2RNEfScwXr6iXNkjQtew1v4tjhkl6U9LKkUeWK0czM2q6cJY6xQHFiCOBXETEke91dfJCknsBl\n2bEbAiMlbVDGOLuEzpyIvtb5Xizme7GY70XnKVviiIgpwLwSm1oaO3IoMD0iZkTEfOBGYP/Ojq+r\n8f8Ui/leLOZ7sZjvRefJo43jFEnPSBotafkS21cHZha8n5WtMzOzKlDpxPF74MvA5sBs4OIS+3hm\nJjOzKlbWGQAlDQLGR8Qmrd0maRugPiKGZ+/PABZFxC9KnMNJxsysHToyA2CvzgykJZJWi4jZ2dsD\ngOdK7DYVWC9LLG8CI4CRpc7XkQ9uZmbtU7bEIWkcMAxYWdJM4GygTtLmpOqoV4ETs30HAldGxN4R\nsUDSycA9QE9gdES8UK44zcysbcpaVWVmZl1PVfYcb6kDoKTTCjoRPidpQeMTWpJmSHo22/ZE5aPv\nXK24FytLulvS05L+Jumo1h5bazp4L7rb92IFSbdlTzA+Lmmj1h5bazp4L7rM96JUp+sS+1ya3adn\nJA0pWN+270REVNWLVD01HRgE9AaeBjZoZv99gMkF718FVsz7c1TqXgD1wAXZ8srA26QqyDbdx2p/\ndeRedNPvxYXAWdny+o3/j3TT70XJe9EFvxc7AkOA55rYvhcwMVveGnisvd+JaixxtLUD4GHAuKJ1\nXaXRvDX3YjbQN1vuC7wdEQtaeWwt6ci9aNSdvhcbAA8ARMRLwCBJq7by2FrS3nuxSsH2LvG9iKY7\nXTfaD7gm2/dxYHlJA2jHd6IaE0erOwBKWhrYE7ilYHUAkyVNlXR82aKsjNbciyuBjSS9CTwDfK8N\nx9aSjtwL6H7fi2eAAwEkDQXWAtZo5bG1pCP3ArrW96IlTd2rgU2sb1JFH8dtpba01u8LPBwR7xas\n2z4iZmd/Udwr6cUsE9ei1tyLM4GnI6JO0jqkz7xZmePKQ7vvRUR8QPf7Xvwc+I2kaaTH3qcBC1t5\nbC3pyL0A2CEi3uwi34vW6JTSVTWWON4A1ix4vyYpA5bydYqqqSLrJxIRc4HbSMWwWtWae7EdcDNA\nRLxCqrNdP9uvtfexFnTkXnS770VEfBARx0QaTPRIYBXgldYcW2Paey/+kW17M/u3K3wvWlJ8r9Yg\n3as2fyeqMXF83gFQUh9SB8A7i3eS1A/YCbijYN3SkpbLlpcB9qB0J8Na0Zp78SKwG4Ck/qQfyn+0\n8tha0u570R2/F5L6ZdvIqmAejIgPW3NsjWn3veiC34uW3AkcCZ+P0PFuRMyhHd+JqquqiiY6AEo6\nMdv+h2zXrwH3RMQnBYf3B26TBOmzXR8RkyoXfedq5b34b2CspGdIfwj8KCLeASh1bB6fozN05F5I\nWhu4tZt9LzYErlYaludvwLHNHZvH5+gMHbkXdLHfC5XudN0b0n2IiImS9pI0HfgIODrb1ubvhDsA\nmplZm1RjVZWZmVUxJw4zM2sTJw4zM2sTJw4zM2sTJw4zM2sTJw4zM2sTJw6rWZIWavHQ+n+StFTe\nMTVH0lGSfpstnyjpGwXrVyva96Zs2JTmztcgaYts+RBJf5d0XzP795c0seOfxLo7Jw6rZR9nw0hs\nAnwGfKucF5PU0Q6zn3eayjpkXZe9/SZpoLnG66wLLJMNm9LS+RrPeSxwXETs2uTOqZfwPElfaU/w\nZo2cOKyreBhYV2nSntuziWr+ImkTgGyynr5K3i74a/9aSbtK6iHpQklPZMeekG2vkzRF0h3A84UX\nlNRT0tVZiedZSd/L1jdIuqSgNLRV4yEFx9ZLOlXSQcCWwPWSnpK0JGkMtjsL9v2dpL8qTU5VX/S5\nJelnwPbAGEm/lLSWpIckPZm9ti3Y/05gZAfvtXVzThxW87KSwHDgWeAc4MmI2Iw0Wu612W6PADsA\nG5EG+9shW78N8ChwHGnsnqGkge6OlzQo22cI8N2IWL/o0psDAyNik4jYFBibrQ9gqYgYApwEjCkR\ndgAREbeQxgo6LCK+EhGfkpLA1IJ9fxIRWwGbAcMak2HjeSLinIJz/Aj4J7B7RGxBSkKXFuz/BGmM\nN7N2q7qxqszaYCmlobIBHiL9QD9ONvdCRDwgaaVsILsppB/M14DfAydIGgjMi4hPJO0BbCLp4Ox8\nfYF1gQXAExHxWonrvwKsLelSYAJQOM7RuCyGKVlJp18Ln6VwuOu1SJNSNRqRDc7XC1iNNDFRqcH4\nGs/RB7hMaXj9hcDggn1mk2Z6M2s3Jw6rZZ9kf9V/LhuwrnjOgSAllpOBGcBPgAOAg7P1jU6OiHuL\nzldHGhDuCyLiXUmbkko73wIOZfEAesUWtfBZigeNU3b9LwOnAltGxHuSxgJLtnCOHwCzI+IbknoC\nnxad1wPUWYe4qsq6minA4fD5j/7ciPgwImaR5iFfNyJeJbWJnMbixHEPcFJjA7ikwUozTDZJ0kqk\nOc1vBc4iVWlB+nEeke2zA6kK7IPiw1mc4D5g8ZS3kEpFjU9Z9SUlrveVhor/aivuQV/grWz5SNKI\np41Wy85v1m4ucVgtK/WXcz2pkfgZ0g/uNwu2PcbiP5YeJg3D/nD2/ipSFc5TSsWWf5JKJYVPLhVb\nnTSMe+M5f1wQ16eSniL9P3ZMwfoosXw18D+SPiZNRvUwqcH8yYh4JquOe5E0vWdjvM35HXCLpCOB\nu4EPC7YN5T9LWWZt5mHVzTqZpAeAUyPiqXYevzbw24jYu3MjA0nXAxdFxLQWdzZrgquqzKpMRPwD\n+KClDoBtJWlVYHknDesolzjMzKxNXOIwM7M2ceIwM7M2ceIwM7M2ceIwM7M2ceIwM7M2ceIwM7M2\n+f/STtLiZhT/9gAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5d78d90>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEZCAYAAAApEwoTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucHXV9//HXO5t7SDYJgQgIrBZEQEAqjfQn1i3ww4go\nrZdSbMVbEfVHta1WitZm1bZesWqxSv1xUYvQi1LwVwUvZRVvYBQCKKFECAQSQsj9trnt5/fH93t2\nZ0/O2T2b5OzO2X0/H4/zODPz/c7Md77nO/OZ75w5cxQRmJmZldmE0S6AmZnZUByszMys9ByszMys\n9ByszMys9ByszMys9ByszMys9FomWEnqlfTsPHydpA83cV2dklY0a/mtQNJxku6RtEnSpSOwvvsl\n/U6z11NjvddKWifpp6Ow7o7crhvaD4ebv5VI6pL0ldEux1AkvVHSHQ3k+7ykvx6JMlWtd0B7lvR2\nSavzfjxX0mZJHUMs46icTyNR5kYN2eglLZe0LRf+yVwZM0aicIOI/DogioFwpDU78O6H9wLfi4hZ\nEXHlgVxwrW2OiOdFxA8O5HoaKMeLgbOBwyPi9BrpDR2Y9jV/A8tbLunMA7W8Ya57pIPHmPrBZ0S8\nPSL+diTXWWjPR0TE6ZImAVcAZ+X9eF1EzIyI5YMtJyIey/lK9Zk0coYWwHkRMRP4TeA0YK8zBkkT\nD3DZhjLsqD9EGff5LGIsnukCRwO/qpc4Rrb5aGB5RPSMdkHqCPavXbYdwLK0jDHSNvdFpT1vz+PP\nAKYCD4xekQ6giBj0BTwCnFkY/wRwSx7uBd4BPAT8Ok+7OI+vBW4GDivM2wv8KfBrYA3wcUCF9DeT\nDpDrgFuBo6rmfXYevhb4cCHtPOAeYD3wI+CkQtpyUi/hXmA7MKFq+36Ql70F2Ay8FugEVgB/AawG\nVgJvLMxzHfB54Jt5vrOAbuAthTxvBO7IwwL+IS9rYy7LicBbgZ3Ajrzum+t8Bp8BHsvzLgbOKKQt\nyNM2Ak8CV9RZxmzg/wFP5fr9BukMrFbe/wZ25/raBBxbY5vPBF4O3J3X/RiwqGo5ZwA/zp/LY8Ab\ncvvYa5vz53RWHp4CfBp4Ir/+AZic0zqBx+t9NjW25XDgFlJ7fAj4kzz9LXn7dudyVJf9+Kr0dXl6\nO/DlXI/Lgffnz7de/rp1BHSQ2t6EGuX+CrAH2JaX955C/ouAR0n70PsK83QB/5Hn3Zi38ToG7iud\nwIrC+GW5PjcBS/PnujB/Pjvzuu+uU7d/BSzL8/4S+L2q9v9D0vFiHfAwsLCQ/izg+3nebwP/CHyl\nznoqn/nleZsfAV43yP54Zv48uklt737gFVX5v5DXuynnO6reZ0Jh32bo/fqEwjo+nIcfAF5eWN7E\nvB3Pz+On07+f3AO8ZIj2/DVS+3sY+NM67fmruS568/h3axxHp5F6XsuBDcAdpH1vQB2Q2vzVpH3t\nceDDhbShPue5pOP1Ezn963n6/aROUCXfJOBp4JS6214vobCQR+g/iByZV/LBwobfRjoQTsmNZA3w\nfGAy8Fng+1UB53s5/5HAg4VGcD7pYHIcqcf3fuBHVfPuFayAU3Nj+a3ceC7KZZ5UOAj+AjgCmFJn\nG/uWXdg5dpF2/jbgZcBWoL3QEDcAv104uN4OvLlqZ6006peSAsqsPH4c8IzCtnxoiM/gj4A5uV7+\nAlhF/8H7J8Af5eHpwAvrLGMu8PukM62DgH8DbhpkndXbU2ubXwKcmMdPIgXL8/P40aQDwQW5DueS\nG2KtbaZwUgR8iLTzzsuvH1XyD/XZ1NiOHwBXktrjKaSd/Hdz2hsqn1GdefdKJwWqm4AZeRsfrNRT\nnfyD1VEHdYJVdZ1U5b8q1//JQA9wXE7vIgWYV+bxqdV1TSFYkdrhY/S3xaPo38cWAV8eol2+pjDv\nH5AOjvML7X8n6SAq4G3AE4V5fwJ8knSQenFuKzXXV/jMK/l/J6/rOXXa5kxSEP0rUmD43bz8Yv5N\npJOpyaQTozuq6rgYrPr2BfZhvwY+APxLYXkvB36Zh48gHaQX5vGz8/i8GvUwAfg56crWRFLA/zVw\nTq32R2qf1dtSPI5+jnRielhe9um5PgbUAam9f54U3A4B7gTe2uDn/F/ADaSANxF4cZ7+l8CNhXzn\nA0sGbW+DJeaFLCdF5vV5+EryQT9vUGch79XARwvjM/KGHFXIf04h/e30R/xvMfDgOIF0EDqyRiUX\nG8Ln2fvAt7RQKY8wyJl39bILO8e2qg95NbCg0Nivq1rGYMHqTNJB7YXs3bPrC7yNvkhnKCfl4e+T\nDlJ7Ne4hlvF88tl/nfTbGdhTvLZ6m2vM82ngU3n4cuBrdfLttc0MDFbLGHh2dg7wSCOfTdUyjySd\nac4oTPt74Nrqz6hOOQekk4LjDuC5hWlvBW5vZHk16qiDfQtWhxem3Qn8QR7uAroHq2sGBqtjct2d\nRT65K+Trok5PZ5Btu5v+QPlG4KFC2vRc9kNJQXEXMK2Qfn299dEfrIr5/xX46zx8XbFtkoLfqqpl\nfJXcq835v1pIm5HbyRG1PhPqB6uG9utcz5uAqYVtrZT9MqqCNOmq0kU16uGFwKNV0y4HrqnTXmtt\nSy/wbNLxdRuFq1C15gPmk06IphbSLwT+u4HP+TDS1YG9TiRJPcTNwEF5/D+A9wzWvhr9zur8iJgT\nER0RcWlE7CikF++aO4x0eSLNGLGVdPnliDr5H8uFhnQW8BlJ6yWtz/NRNW8tRwPvrsyX531mYbnV\n62zU2ojoLYxvI/VIINVJw8uMiP8mBfnPAaslXSVpZqPzS3qPpF9J2pC3r53U44B0RvMc4AFJd0l6\neZ1lTM/rXS5pIynItQ9xx09UjQ/YZkkvlHS7pKckbQAuAQ7OyUeSLgnsi8MptCMGthMY/LOpXs66\n3A6LyxqqTdUzj3RmX122ussboo721ZOF4eptf7zRhUTEMuDPSIFptaQbJB3W6PySLpJ0d2G/ex4D\nt62vnBGxLQ8eRPpc1kf/dyswsE5rqZW/UtZg4HYfzt7756P0t6EB+XP7WMfANjakRvfrXM8PAK+U\nNB14BSl4Qjp+vbbq+PUi0vdN1Y4GDq/KezkpMAzXPFLP+9dD5Dua1OZXFdb5BVIPq6Le53wkaf/b\nWL3QiFhJumLyGkmzSZeerx+sIAfii8jiAW0lKSoDkO8aPJh0vbLiqKrhStpjpK7lnMJrRkQMdUvx\nY8DfVc13UET8a50yNstW0hlaxYDGFhH/GBGnASeQgstfNlK2fIfPXwKvjYjZETGHdH1cebnLIuJ1\nEXEI8DHgPyRNq7God+f1LoiIdtLlKbEfX+CTdrj/BJ4ZEbNJjbiyvMeA36gz31Cfx4B2RGonK/eh\nfCuBuZKKB/OjaPyAXl3Op0ln+NVle7xOfqhdR43ud/vSbqvn2Uo6262obpc3RMSLSQelILWhIdct\n6Wjgn4H/A8zN7fJ+GmtPq4A5+cBdUVl/PbXyF9tE9XHoyKoTsaPpP9aIdCCtbMtBpMvUK0n1BYPU\nWdEg+3W1G0g9kvOBX0VE5UTuMVKPsnj8mhkRH6+xjMdIVxiKeWdFxHn1yjeIp0k9pmOGyLeCdDXh\n4MI62yPipAbWsYK0/7XXSf8S8Mek+wR+HBGrBlvYgb5r5gbgTZJOkTSFdMnlpxHxWCHPeyTNlnQk\n8E5Sdx7STvw+SScASGqX9No66ykeZL8IvE3SAiUzJL286gA1lNXUP7DWW3+1e4BXSZom6RhSjycA\nJJ2Wz7Ankc6Ee0jd48q6B7ttfibpEsXTkiZL+htgVl9BpD+WVDnL2ZjX2bv3YjiI9AXsRklzSd9J\nDGc7a23zQaQz3p2SFgCvK6R9FThb0mslTZR0sKRTctpQ23wD8NeS5kmaB/wN6aaBYYmIFaTvvj4i\naYqkk0k38fxLg4t4Enhm/tyIiD2k7/r+TtJB+YD954XlrS7mz2rVUaNBaLjtspZ7gHMlzZH0DFJP\nCgBJz5F0Zt5XdzCwXT4JdAzS855B2o6ngQmS3kTqWQ0pIh4lfdfzQUmTJJ1BuklqKJX8LyZ97/Pv\nlU2pyvdT0n723py/My//xkKecyW9SNJk0g0DP4mIJyJiDSmovV5Sm6Q3U+czGGK/ri7TjaTvuN7G\nwB7EvwCvkHROXt9Upd951uqt3wVslvTefJxpk/Q8SafVrK1B5CsT1wCfknRYXtZv5/oo5ltFuhHl\nU5JmSpog6TfUwG8i87zfAv4pH/MnVc13E+kO83eSvgse1P4GqwE7XUR8j/Rl4tdIZynPAv6wap6b\nSV8S3k26O+2aPO9/ks7qbsyXqe4jfbi11hWV8Yj4OekOsytJXfmHSDdZDOestAv4Uu7mvqa4/Dpq\npf8D6fu51aTr1cUD4izSWeg60vd+T5PunoH0Pd8Jed1fr7GuW/Prf/K820lnWBUvBe6XtDmX4Q+r\nLtNWfJr0BenTpAP4t4bYRqhT5wXvAD4kaRPpc+/rzeYTlHNJPbq1pM/75Jw81Db/Lelgdm9+Lc7T\napVrKBeSekIrga8Df5Mv39TbpqL/Jt3l9qSkp/K0PyWdfT9MunvqetLnDenmoer8deuogW35CClo\nr5f0Fw3kr7U9XwGWkNrOraSDZiXPlLyONaTezjzSZSXoDwRrJS3ea0URvyLdSfYTUmB7HumusMHK\nUhx/Hek7mHWkk5EvDbJd5HWsJ32OXwEuiYj/qbWuiNhFutT2srxtVwKvr8r/VdIJ21rSTVp/XFjX\nxaQe0tOkHtOP6mzXYPt1dZmeJO13v83A/eRxUm/rfaSbfx4j7TN7HZtzgDmP9H3zw3nb/pn+k9eh\n6rx6/D2k4+zPcj18hP4gW8x3EenGi8qd2v9Of29zqHW+nnQ1Yinp2PjOwvb0kPbJjvw+KOUvtw44\nSdeQzn6eqnQZJfUCx0TEw5KeS9rJTwXeHxFXFOZdTvpCcg+wKyIWNKWQZlZ6uWf0lYg4cqi8DS7v\nWuDxiPjAgVie7TtJHwCOjYiLhsrbzB/yXkv67US97t1a0lnq79VIC9JdhuuaVDYzG79K9Rih8Sp/\nHfFmUu9rSE37pXdE3EHqtg+YXEhfExGLSV3EWtygzKziQF4CGuryrzWZpItJlzy/FRE/HCo/NPEy\nYC5QB/CNwe4ckbQI2FJ1GfBh0s0Ce4CrIuKLTSukmZmV3kg/z69RL4qIVfkut+9IWpp7amZmNg6V\nMlhV7rePiDWSbiI9/25AsJLkbryZ2T6IiJb7mqUMTyceUGlKT1qYmYdnkB61c1+tGQd7NEcrvrbt\n3EbPrp5hz7do0aJRL3tZXq4L14XrYvBXq2paz0rSDaSnJMxT+iPDRaTHdhARV+UfKP6M9BuBXknv\nIv2m4VDg6/m3iBOB6yPi280qZ5lce8+1/Nmtf8b0SdOZf9B8Dp1xaHpNP7R/uPCaf9B8Zk+dPdrF\nNjNruqYFq4i4cIj0Jyk88qRgC+lHb+POO37rHbz9tLezoWcDq7eu5qmtTw14/XLNL7l9+e0Dpm3Z\nuYXJP57MTV+4iUOmH8KhMw7tf5/RP14Zbp/STv2HEpiZlVMpv7MazyQxZ9oc5kybw3PnPXfI/Dv3\n7OTmW2/m2Bccy1Nbn2LN1jXpfdsalj+xnKe2DZy2fdd2DplxSF8AO2R6//C86fMGTp9xCHOnzWVC\nC/2XXWdn52gXoTRcF/1cF62vqbeuN5OkaNWyj6Ydu3ewZtuavsC2Ztsant72dN/wmm1r+oe3rmHT\njk3MmTZnQBCrBLV50+el4Rn9w/Omz2P6pOlDF8TMRoUkogVvsBhzwWqsXOIqy+eya88u1m5fOyCA\nrd2+ti/APb39aZ7e9nT/+LanaZvQ1h/Ipg8MZPOmz+PgaQcPHJ9+MJPbJg9dGDPbbw5WI2ywYNWq\n21TRytsQEWzdtXVAAFuzbQ1rt63tC3LF19rta1m7bS1TJ07dK4DNm5beD552cN97Je3gaQczbVKt\nf0Ixs8E4WI0wB6uxIyLYtGPTgABW6cEVg1xxfO22tUzQhBTUcm+tL7Dl4bnT5u41PHvqbNomtI32\nJpuNGgerEeZgNb5FBNt2basZxIrv67avGzC+ecdmZk2Z1RfY5k6bm4LZ1Ll9Qa3yqqTPnTaX9qnt\nLXWjiVk9DlYjzMHK9sWe3j2s71nP2m0DA9m67ev6XpUgVxzfunMrs6fOHhDMql9zps4ZOD5tDnOm\nzmFS26ShC2Y2QhysRpiDlY2kXXt2saFnw14Bbf329f2BrWfdXtM29Gxg+qTpewWwSnCbM63+8Kwp\ns9ybswPOwWqEtWKw6ujo4KmnnqKtrY0ZM2bwspe9jCuvvJIZM2YMyFfmbbDh6Y1eNu/YPKCntr5n\nfV9QW9+zPgW3nqrx7evYtmsb7VPb+4LXgPeqabOnzh4wzZctrR4HqxHWisHqWc96FldffTVnnnkm\nK1eu5KUvfSnnnXceH/nIRwbkK/M22MjZ3bubDT0bBgSxWu8bejbsNX3Lzi3MnDKzL4jNnjo7BbUp\ns/uC215phWlTJ04dMz8DsYFaNVj5CRaj5PDDD2fhwoXcf//9o10UK6mJEyb23co/XHt697Bxx0Y2\n9GzoC3iVoFYZX7V5VQpuhWmVYaAveA14Tdl72pxpc2if0t433j61nWkTpznY2QHlYDXCKj2mFStW\n8K1vfYtXv/rVo1wiG4vaJrT1fU+2L3p29/QFunqvRzc+2hfcNvRsYGNPf3Dsjd6+wNUXxKbsPVxJ\nb5/SPmB41pRZ/omBDTAuLwMeqBO+4VZdR0cHa9euZeLEibS3t3PeeedxxRVXMGXKlKry+TKgtbae\n3T19wavYwysGtEpaJX1jT//wlp1bmDFpBu1T2/cKZJXxwd5nTZnlgFeHLwO2kNGKA5K4+eabOfPM\nM0enAGYjZOrEqUw9aCrzD5q/T/NXbkypFciKw49ufDQFvJ6NbNqxqW94446NbNm5hemTpu8VxAYM\nF6ZVxovDs6bM8vd3JTEug5WZldsETUhBZWo7R7UftU/LKAa8YjDbtGNTX0DbtGMTy9YtY9POTTXz\nbNqxid7o7eupVV6VgDZrctX4lFmccMgJnHb4aQe4RszByszGpGLAo33fl7Nj9w427dg04FUJaH3j\nPRt5YtMTbNq5ia07tzpYNYGDlZnZIKZMnMIhE9Nf5NjoGZc3WJTdWNgGMyunVr3Bwj9xNzOz0mta\nsJJ0jaTVku6rk/5cST+R1CPp3VVpCyUtlfSQpMuaVUYzM2sNzexZXQssHCR9LfCnwCeLEyW1AVfm\neU8ALpR0fLMKaWZm5de0YBURdwDrB0lfExGLgV1VSQuAZRGxPCJ2ATcC5zernGZmVn5l/M7qCGBF\nYfzxPM3MzMapMt663vBtcF1dXX3DnZ2ddHZ2NqE4Zmatq7u7m+7u7tEuxn5r6q3rkjqAb0TESYPk\nWQRsiYgr8vjpQFdELMzjlwO9EfGxqvl867qZ2TD51vV9V11pi4FjJXVImgxcANwy8sUyM7OyaNpl\nQEk3AC8B5klaASwCJgFExFWSngH8DJgF9Ep6F3BCRGyRdClwG9AGXB0RDzSrnGZmVn5+gkUJjYVt\nMLNy8mVAG5bdu3ePdhHMzFqGg9UI6ujo4OMf/zgnn3wyM2fOpLe3d7SLZGbWEnwZcAR1dHQwd+5c\nvvGNbzBv3ry9/iG4oszbYGatrVUvA5bxd1ZNpw8emM8pFg0voEjine98J0cc4d84m5kNx7gMVsMN\nMgfSkUceOWrrNjNrVf7OaoRJLdf7NjMbdQ5WZmZWeg5WZmZWer4bsITGwjaYWTm16t2A7lmZmVnp\nOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpjcnHLfkpEWZmY8uYC1b+fZKZ2djjy4BmZlZ6\nDlZmZlZ6TQtWkq6RtFrSfYPk+aykhyQtkXRqYfpySfdKulvSXc0qo5mZtYZm9qyuBRbWS5R0LnBM\nRBwLvBX4fCE5gM6IODUiFjSxjGZm1gKaFqwi4g5g/SBZXgl8Kee9E5gtaX4h3bf0mZkZMLrfWR0B\nrCiMP56nQepZfVfSYkkXj3jJzMysVEb71vV6vaczImKlpEOA70hamntqA3R1dfUNd3Z20tnZ2ZRC\nmpm1qu7ubrq7u0e7GPutqf9nJakD+EZEnFQj7QtAd0TcmMeXAi+JiNVV+RYBWyLiiqrpNf/PyszM\n6vP/WQ3fLcBFAJJOBzZExGpJ0yXNzNNnAOcAde8oNDOzsa9plwEl3QC8BJgnaQWwCJgEEBFXRcQ3\nJZ0raRmwFXhTnvUZwNfzI5MmAtdHxLebVU4zMyu/Mfe39mZmVp8vA5qZmTWJg5WZmZWeg5WZmZWe\ng5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZ\nmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZWeg5WZmZVe04KVpGskrZZ03yB5PivpIUlL\nJJ1amL5Q0tKcdlmzymhmZq2hmT2ra4GF9RIlnQscExHHAm8FPp+ntwFX5nlPAC6UdHwTy2lmZiXX\ntGAVEXcA6wfJ8krgSznvncBsSc8AFgDLImJ5ROwCbgTOb1Y5zcys/EbzO6sjgBWF8cfztMPrTDcz\ns3Fq4iivX/szc1dXV99wZ2cnnZ2d+1kcM7Oxpbu7m+7u7tEuxn5TRDRv4VIH8I2IOKlG2heA7oi4\nMY8vBV4CPAvoioiFefrlQG9EfKxq/mhm2c3MxiJJRMR+dRRGw2heBrwFuAhA0unAhohYDSwGjpXU\nIWkycEHOa2Zm41TTLgNKuoHUU5onaQWwCJgEEBFXRcQ3JZ0raRmwFXhTTtst6VLgNqANuDoiHmhW\nOc3MrPyaehmwmXwZ0Mxs+HwZ0MzMrEkcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzM\nrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQcrMzMrPQc\nrMzMrPQcrMzMrPQcrMzMrPSaGqwkLZS0VNJDki6rkT5H0k2Slki6U9KJhbTlku6VdLeku5pZTjMz\nKzdFRHMWLLUBDwJnA08APwMujIgHCnk+AWyKiA9LOg74XEScndMeAV4QEevqLD+aVXYzs7FKEhGh\n0S7HcDWzZ7UAWBYRyyNiF3AjcH5VnuOB2wEi4kGgQ9IhhfSWq1AzMzvwmhmsjgBWFMYfz9OKlgCv\nApC0ADgaeGZOC+C7khZLuriJ5TQzs5Kb2MRlN3KN7qPAZyTdDdwH3A3syWlnRMTK3NP6jqSlEXFH\nceaurq6+4c7OTjo7Ow9Euc3Mxozu7m66u7tHuxj7rZnfWZ0OdEXEwjx+OdAbER8bZJ5HgJMiYkvV\n9EXAloi4ojDN31mZmQ2Tv7Pa22LgWEkdkiYDFwC3FDNIas9p5Et934+ILZKmS5qZp88AziH1vMzM\nbBxq2mXAiNgt6VLgNqANuDoiHpB0SU6/CjgBuE5SAPcDb8mzzwduklQp4/UR8e1mldXMzMqtaZcB\nm82XAc3Mhs+XAc3MzJrEwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErP\nwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrMzErPwcrM\nzErPwcrMzEqvacFK0kJJSyU9JOmyGulzJN0kaYmkOyWd2Oi8ZmY2vjQlWElqA64EFgInABdKOr4q\n2/uAX0TEKcBFwGeGMa+ZmY0jzepZLQCWRcTyiNgF3AicX5XneOB2gIh4EOiQdGiD85qZ2TjSrGB1\nBLCiMP54nla0BHgVgKQFwNHAMxuc18zMxpGJTVpuNJDno8BnJN0N3AfcDexpcF4Aurq6+oY7Ozvp\n7OwcViHNzMa67u5uuru7R7sY+00RDceGxhcqnQ50RcTCPH450BsRHxtknkeAk4DnNTKvpGhG2c3M\nxjJJRIRGuxzD1azLgIuBYyV1SJoMXADcUswgqT2nIeli4PsRsaWRec3MbHxpymXAiNgt6VLgNqAN\nuDoiHpB0SU6/inSn33WSArgfeMtg8zajnGZm1hqachlwJPgyoJnZ8PkyoJmZWZM4WJmZWek5WJmZ\nWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5\nWJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek5WJmZWek1NVhJWihpqaSHJF1WI32e\npFsl3SPpfklvLKQtl3SvpLsl3dXMcpqZWbkpIpqzYKkNeBA4G3gC+BlwYUQ8UMjTBUyJiMslzcv5\n50fEbkmPAC+IiHV1lh/NKruZ2VgliYjQaJdjuJrZs1oALIuI5RGxC7gROL8qzypgVh6eBayNiN2F\n9JarUDMzO/CaGayOAFYUxh/P04q+CJwoaSWwBHhXIS2A70paLOniJpbTzMxKbmITl93INbr3AfdE\nRKek3wC+I+mUiNgMvCgiVkk6JE9fGhF3FGfu6urqG+7s7KSzs/PAld7MbAzo7u6mu7t7tIux35r5\nndXpQFdELMzjlwO9EfGxQp5vAn8XET/K498DLouIxVXLWgRsiYgrCtP8nZWZ2TD5O6u9LQaOldQh\naTJwAXBLVZ6lpBswkDQfOA54WNJ0STPz9BnAOcB9TSyrmZmVWNMuA+Y7+i4FbgPagKsj4gFJl+T0\nq4C/B66VtIQUON8bEeskPRv4uqRKGa+PiG83q6xmZlZuTbsM2Gy+DGhmNny+DGhmZtYkDlZmZlZ6\nDlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZm\nZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6DlZmZlZ6TQtWkhZKWirpIUmX1UifJ+lW\nSfdIul/SGxud18zMxhdFxIFfqNQGPAicDTwB/Ay4MCIeKOTpAqZExOWS5uX884EYat48fzSj7GZm\nY5kkIkKZkfh5AAAK9klEQVSjXY7halbPagGwLCKWR8Qu4Ebg/Ko8q4BZeXgWsDYidjc4r5mZjSPN\nClZHACsK44/naUVfBE6UtBJYArxrGPOamdk40qxg1cj1ufcB90TE4cDzgc9Jmtmk8piZWQub2KTl\nPgEcWRg/ktRDKvpfwN8BRMSvJT0CHJfzDTUvAF1dXX3DnZ2ddHZ27mexzczqi4Ddu2HnzoGvHTv6\nh2fPho6O0S5pv+7ubrq7u0e7GPutWTdYTCTdJHEWsBK4i71vsPgUsDEiPihpPvBz4GRg01Dz5vl9\ng4XZGNPb23/gr/c+3LTq4Vrj9abVmj5xIkyeXPs1ZQq8+tXwgQ+Mdk3W16o3WDSlZxURuyVdCtwG\ntAFXR8QDki7J6VcBfw9cK2kJ6XLkeyNiHUCteZtRTrPxqjooDPUaKl8xvTpgNDJced+zJx3wKwf+\n4bzXm3bQQXtPq85fa9qkSXsve9IkmOBfp46KpvSsRoJ7VtZKImDXrnRA7unpP1g3MlxrvN60waYX\nX7t39x+AG3kNlbeY3uhwrbSJE0Etd87fWlq1Z+VgZWNeb286c+/pqf2qHOBrjQ9nuPq9elpbWzog\nT53af5BuZLjWeL1pg00vviZNclAYrxysRpiDVeuofCnd0wPbt/cfyIvDjYzv62vXroEH8urXlCkw\nbdrAA30xbV+m1XpvaxvtT8LMwWrEOVjtmz17UhCovCpBYbjDw32XUkCoHNzrDRfHK0GkXr7BAk9x\n2uTJ7kWYVThYjbCxGKw2bICVKwcGk8pr27ba06vTioGl1mv37nQwr7wqQWC447Xe66VVLjuZ2ehr\n1WDVrN9Z2T742tfgk58cGByKr+nTB47PnVs/b72Xexlm1orcszIzG0datWflXwyYmVnpOViZmVnp\nOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZmVnpOViZ\nmVnpOViZmVnpNTVYSVooaamkhyRdViP9PZLuzq/7JO2WNDunLZd0b067q5nlNDOzcmtasJLUBlwJ\nLAROAC6UdHwxT0R8MiJOjYhTgcuB7ojYUEkGOnP6gmaVcyzo7u4e7SKUhuuin+uin+ui9TWzZ7UA\nWBYRyyNiF3AjcP4g+V8H3FA1reX+c2U0eEfs57ro57ro57pofc0MVkcAKwrjj+dpe5E0HXgp8LXC\n5AC+K2mxpIubVkozMyu9Zv6t/XD+xvcVwA8LlwABXhQRqyQdAnxH0tKIuOPAFtHMzFpB0/7WXtLp\nQFdELMzjlwO9EfGxGnlvAv41Im6ss6xFwJaIuKIwzf9pb2a2D1rxb+2bGawmAg8CZwErgbuACyPi\ngap87cDDwDMjYnueNh1oi4jNkmYA3wY+GBHfbkphzcys1Jp2GTAidku6FLgNaAOujogHJF2S06/K\nWX8PuK0SqLL5wE2SKmW83oHKzGz8alrPyszM7EAp5RMs/GPifg3UxTxJt0q6R9L9kt7Y6LytZj/r\nYry1izmSbpK0RNKdkk5sdN5Ws591MWbahaRrJK2WdN8geT6b62mJpFML08vfJiKiVC/SJcNlQAcw\nCbgHOH6Q/OcB3y2MPwLMHe3tGKm6ALqAj+ThecBa0qXTYdVj2V/7UxfjtF18AvhAHj6uso+M03ZR\nsy7GYLt4MXAqcF+d9HOBb+bhFwI/baU2UcaelX9M3K+RulgFzMrDs4C1EbG7wXlbyf7URcV4ahfH\nA7cDRMSDQIekQxuct5Xsa10cUkgfE+0i0k971g+S5ZXAl3LeO4HZkp5Bi7SJMgYr/5i4XyN18UXg\nREkrgSXAu4YxbyvZn7qA8dculgCvApC0ADgaeGaD87aS/akLGFvtYij16urwOtNLpZk/Ct5X/jFx\nv0bq4n3APRHRKek3SNt8SpPLNRr2uS4iYjPjr118FPiMpLuB+4C7gT0NzttK9qcuAM6IiJVjpF00\nomV7kWXsWT0BHFkYP5IU6Wv5Q6ouAUbEqvy+BriJ1MVtVY3Uxf8C/h0gIn5NugZ/XM7XaD22gv2p\ni3HXLiJic0S8OdKDoC8CDgF+3ci8LWZf6+LhnLYyv4+FdjGU6rp6JqmuWqJNlDFYLQaOldQhaTJw\nAXBLdab8Y+LfAW4uTJsuaWYengGcQzqTalWN1MVS4GwASfNJB+eHG5y3lexzXYzHdiGpPaeRL299\nPyK2NDJvi9nnuhiD7WIotwAXQd8ThjZExGpapE2U7jJg+MfEfRqsi78HrpW0hHTy8d6IWAdQa97R\n2I4DYX/qQtKzga+Ps3ZxAnCd0mPJ7gfeMti8o7EdB8L+1AVj7Hgh6QbgJcA8SSuARaS7+4iIqyLi\nm5LOlbQM2Aq8Kae1RJvwj4LNzKz0yngZ0MzMbAAHKzMzKz0HKzMzKz0HKzMzKz0HKzMzKz0HKzMz\nKz0HK2tZkvao/29i/k3StNEu02AkvVHSP+bhSyS9vjD9sKq8/5ofGTXY8rolvSAPv1bSryR9b5D8\n8yV9c/+3xGzkOVhZK9uWH6FzErATeFszVyZpf39E3/ejxvwjza/k0TeQHiZaWc8xwIz8yKihlldZ\n5luAP4mIs+pmTk8rWC/pN/el8GajycHKxoofAsco/dHef+Y/l/uJpJMA8h/szVKyttCr+bKksyRN\nkPQJSXfled+a0zsl3SHpZuCXxRVKapN0Xe7Z3SvpXXl6t6RPF3p9v1WZpTBvl6R3S3o1cBpwvaRf\nSJpKeublLYW8/yTpZ0p/KNlVtd2S9DfAi4BrJH1c0tGSfiDp5/n124X8twAX7mddm404BytrebnH\nsxC4F/gQ8POIOIX0FPYv52w/As4ATiQ90PWMPP104MfAn5CelbaA9DDTiyV15DynAu+MiOOqVv18\n4PCIOCkiTgauzdMDmBYRpwLvAK6pUewAIiK+Rno22+si4jcjoocUeBYX8r4/In4LOAV4SSUAV5YT\nER8qLOO9wFPA/46IF5AC32cL+e8iPVPTrKWU7tmAZsMwTelvHwB+QAoKd5L/uygibpd0cH5Y6R2k\ng/SjwOeBt0o6HFgfEdslnQOcJOk1eXmzgGOA3cBdEfFojfX/Gni2pM8C/wUUnyt3Qy7DHblH1z7E\nthT/uuFo0h9JVlyQH8A6ETiM9GeCtR64WlnGZOBKpb+K2QM8p5BnFekfYc1aioOVtbLtuffSJz+U\ntPo/e4IUzC4FlgPvB34feE2eXnFpRHynanmdpId+7iUiNkg6mdSrexvwB/Q/JLVa7xDbUv2QTuX1\nPwt4N3BaRGyUdC0wdYhl/DmwKiJeL6kN6Klarh8Iai3HlwFtrLkD+CPoCzRrImJLRDwOzAOOiYhH\nSN9xvYf+YHUb8I7KTRSSnqP0T9R1SToYmBgRXwc+QLpcCCkgXJDznEG6vLi5enb6g+pmUk+u4lFS\nD4o8fSuwSelvT17WQB3MAp7MwxeRnqRdcVhevllLcc/KWlmtHkIX6UaDJaSD/BsKaT+l/wTth6S/\nFPlhHv+/pMtjv1Dqnj1F6n0V77irdgTpL0kqy/yrQrl6JP2CtI+9uTA9agxfB3xB0jbSH0j+kHTT\nxc8jYkm+1LmU9NfjlfIO5p+Ar0m6CLgV2FJIW8DA3qRZS/BfhJgdYJJuB94dEb/Yx/mfDfxjRLz8\nwJYMJF0PfDIi7h4ys1mJ+DKgWclExMPA5qF+FDxckg4FZjtQWStyz8rMzErPPSszMys9ByszMys9\nByszMys9ByszMys9ByszMys9ByszMyu9/w9P6hXBX++EYwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5f5e3b0>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter5.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter5.ipynb
new file mode 100755
index 00000000..7587f10d
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter5.ipynb
@@ -0,0 +1,688 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c1126cb691475e60eebab6389ec54d5291c18d5b66ce5b3165984d185608eb50"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter5-Aircraft Engine INlets and Nozzles"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex1-pg251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calcualte overspeed mach no\n",
+ "print(\"Example 5.1\")\n",
+ "Md=1.5\n",
+ "##From isentropic table,\n",
+ "gm=1.4 ##gamma\n",
+ "A=1.176 ##A=A1/Ath=A1/Acr\n",
+ "##for same A, from isentropic table for M<1\n",
+ "My=0.61\n",
+ "##for My=0.61, from normal shock table\n",
+ "Mx=1.8\n",
+ "Mos=Mx\n",
+ "print'%s %.1f %s'%(\"Overspeed Mach no.\",Mos,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.1\n",
+ "Overspeed Mach no. 1.8 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate contractio ratio and the maximum pressure recovery\n",
+ "print(\"Example 5.2\")\n",
+ "Md=2.65\n",
+ "Mx=Md\n",
+ "##for Mx=2.65, from normal shock table \n",
+ "My=0.4996\n",
+ "M1=My\n",
+ "##from isentropic table for M1=0.5, \n",
+ "A=1.34\n",
+ "##for Md=2.65, from isentropic table (A=A1/Acr)\n",
+ "A1=3.036\n",
+ "Af=A1/A\n",
+ "##from isentropic table Af, \n",
+ "Mth=2.35\n",
+ "##for Mth=2.35, from normal shock table\n",
+ "p=0.5615 ##p=pty/ptx\n",
+ "print'%s %.2f %s'%(\"Maximum total pressure recovery:\",p,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.2\n",
+ "Maximum total pressure recovery: 0.56 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg253"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate inlet design contraction ratio and throat mach no\n",
+ "print(\"Example 5.3\")\n",
+ "Md=3.3 ##from isentropioc table \n",
+ "A=5.629 ## A=A1/Acr=A1/Ath\n",
+ "Mx=Md ##from normal shock table \n",
+ "My=0.4596\n",
+ "M1=My\n",
+ "##from isentropic table \n",
+ "A11=1.425\n",
+ "pt=((1./A11-1./A)/(1./A))*100.\n",
+ "Af=A/A11\n",
+ "##for Af=3.95, from isentropic table for M>1\n",
+ "M1th=2.95\n",
+ "print'%s %.2f %s'%(\"Inlet design contraction ratio A1/Ath:\",A,\" \")\n",
+ "print'%s %.2f %s'%(\"The % opening of the throat:\",pt,\" \")\n",
+ "print'%s %.3f %s'%(\"Throat Mach no.:\",M1th,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.3\n",
+ "Inlet design contraction ratio A1/Ath: 5.63 \n",
+ "The % opening of the throat: 295.02 \n",
+ "Throat Mach no.: 2.950 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate inlet pressure recovery with the shock at the lip\n",
+ "print(\"Example 5.4\")\n",
+ "M0=1.4\n",
+ "##from normal shock table \n",
+ "p=0.9582 ##p=pt2/pt0\n",
+ "M1=M0\n",
+ "##from isentropic table:\n",
+ "A=1.115 ##A=A1/Acr\n",
+ "A11=1.1 ##A11=Ax/A1\n",
+ "Af=A11*A\n",
+ "##from normal shock table for M>1\n",
+ "Mx=1.56\n",
+ "##from normal table\n",
+ "p1=0.91 ##p=pt2/pt0\n",
+ "p2=p\n",
+ "print'%s %.2f %s'%(\"(a)The best backpressure :\",p,\"\")\n",
+ "print'%s %.3f %s'%(\"(b)The supercritical mode inlet total pressure recovery:\",p1,\"\")\n",
+ "print'%s %.2f %s'%(\"(c)Inlet pressure recovery in subcritical mode with 10% spillage:\",p2,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.4\n",
+ "(a)The best backpressure : 0.96 \n",
+ "(b)The supercritical mode inlet total pressure recovery: 0.910 \n",
+ "(c)Inlet pressure recovery in subcritical mode with 10% spillage: 0.96 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex5-pg257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate total pressure recovery of this inlet \n",
+ "import math\n",
+ "print(\"Example 5.5\")\n",
+ "##th=theta and b=beta.\n",
+ "gm=1.4 ##gamma\n",
+ "##OBLIQUE SHOCK 1\n",
+ "M0=2.\n",
+ "th=8. ##degree\n",
+ "##from theta-beta-M chart,\n",
+ "b1=37. ##degree\n",
+ "Mn1=M0*math.sin(b1/57.3)\n",
+ "p1=0.993 ##p=pt2/pt1\n",
+ "Mn2=((2.+(gm-1.)*Mn1**2.)/(2.*gm*Mn1**2.-(gm-1.)))**(1/2.)\n",
+ "M2=Mn2/math.sin(b1-th/57.3)\n",
+ "##OBLIQUE SHOCK 2\n",
+ "M0=M2\n",
+ "th=12.\n",
+ "##from oblique shock chart,\n",
+ "b2=48.7\n",
+ "Mn1=M0*math.sin(b2/57.3)\n",
+ "p2=0.978\n",
+ "Mn2=((2.+(gm-1.)*Mn1**2)/(2.*gm*Mn1**2.-(gm-1.)))**(1/2.)\n",
+ "M3=Mn2/math.sin(b1-th/57.3)\n",
+ "##NORMAL SHOCK\n",
+ "M0=M3\n",
+ "b3=90.\n",
+ "pNS=0.977\n",
+ "\n",
+ "Po=p1*p2*pNS\n",
+ "print'%s %.3f %s'%(\"Total pressure recovery:\",Po,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.5\n",
+ "Total pressure recovery: 0.949 \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate percent increase in gross thurst \n",
+ "print(\"Example 5.6\")\n",
+ "M9=1. ## Mach no.\n",
+ "p=1/8. ##p=p0/pt7\n",
+ "gm=1.3 ##gamma\n",
+ "V9cd=(2.*(1.-p**((gm-1.)/gm)))**(1/2.)\n",
+ "px=p*((gm+1.)/2.)**(gm/(gm-1.))\n",
+ "V9c=(2.*(gm-1.)/(gm+1.))**(1/2.)\n",
+ "FR=(V9cd/V9c)/(1.+(1.-px)/gm)\n",
+ "pr=(FR-1.)*100./1.\n",
+ "print'%s %.3f %s'%(\"% increase in gross thrust:\",pr,\" \")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.6\n",
+ "% increase in gross thrust: 7.304 \n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg273"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate velocites at various point and coefficent\n",
+ "import math\n",
+ "print(\"Example 5.7\")\n",
+ "p98=0.95 ##p98=pt9/pt8\n",
+ "p87=0.98 ##p98=pt8/pt7\n",
+ "p70=8. ##p70=pt7/pt0\n",
+ "p97=8. ##p97=pt9/pt7\n",
+ "Cp=1243.7 ##specific heat in J/kg.K\n",
+ "gm=1.3 ##gamma\n",
+ "Tt9=900. ##Total temp. of the gas entering a C-D nozzle\n",
+ "Tt7=Tt9\n",
+ "p90=1. ##p90=p9/p0\n",
+ "p99=p98*p87*p70*p90 ##p99=pt9/p9\n",
+ "M9=(2./(gm-1.)*(p99**((gm-1.)/gm)-1.))**(1/2.) ##exit mach no.\n",
+ "T9=Tt9/(1.+(gm-1.)*M9**2/2.) ##The nozzle exit static temp.\n",
+ "a9=((gm-1.)*Cp*T9)**(1/2.) ##speed of sound in exit plane\n",
+ "V9=a9*M9 ##exit velocity\n",
+ "V9s=(2.*Cp*Tt7*(1.-p97**-((gm-1.)/gm)))**(1/2.)\n",
+ "p89=p87*p70*p90 ##p89=pt8/p9\n",
+ "V9i=(2.*Cp*Tt7*(1.-p89**-((gm-1.)/gm)))**(1/2.)\n",
+ "Cv=V9/V9i\n",
+ "print'%s %.1f %s'%(\"(a)V9 in\",V9,\" m/s:\")\n",
+ "print'%s %.1f %s'%(\"(b)V9s in\",V9s,\" m/s:\")\n",
+ "print'%s %.1f %s'%(\"(c)V9i in \",V9i,\"m/s:\")\n",
+ "print'%s %.3f %s'%(\"(d)The velocity coefficient Cv:\",Cv,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.7\n",
+ "(a)V9 in 911.1 m/s:\n",
+ "(b)V9s in 923.7 m/s:\n",
+ "(c)V9i in 920.2 m/s:\n",
+ "(d)The velocity coefficient Cv: 0.990 \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg275"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "#plot the graphs\n",
+ "print \"Example 5.8\"\n",
+ "#calculate and graph the divergnece correction factor \n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "alfa=0 #alfa=cone half angle\n",
+ "dx=numpy.linspace(0,44,146)\n",
+ "x=numpy.zeros(146)\n",
+ "count=0;\n",
+ "for alfa in dx:\n",
+ "\tCa=(1+math.cos(alfa*math.pi/180.))/2.; #Flow angularity loss coefficient\n",
+ "\tx[count]=Ca;\n",
+ "\tcount=count+1;\n",
+ "#disp(Ca,\"Divergence correction factor Ca:\")\n",
+ "\n",
+ "pyplot.plot(dx,x)\n",
+ "\n",
+ "pyplot.title(\"Flow convergence loss in a conical nozzle\")\n",
+ "pyplot.xlabel(\"Cone half-angle\")\n",
+ "pyplot.ylabel(\"Flow angularity loss coefficient\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.8\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "<matplotlib.text.Text at 0x5989a50>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXmwVEmmJEECwYRWNBERUR26qo2DAaFbEQ\noyH4S2ypit9ENya2GLvGWNAo9gSNJSoqstglSK8KQgTsighiAfbz++OclXHc3Zktd+/M7uf5eMyD\nmVs/c3eYz5xz7jlHZoZzzjlXkxZpB+Ccc67webJwzjmXkycL55xzOXmycM45l5MnC+ecczl5snDO\nOZeTJ4sCIKmHpApJ/vcoYJLKJZ3WSOcaIenWxjhXEiTNkLRPPY9RJmlUQ8VUH5IWSjog7TjS1DLt\nAJoTSQuBjYA1cZEBW6cWkKsti4/kT2R2aWOcJylmtkNDHKYBjtFQGu1vX6j8l2zjMuBwM+sQHx3N\n7L20g0qbJP/R4qqitANwa3myKECSukl6VNLHkt6U9NO4vI2kLyRtEF//n6RVktrH13+SdHU1x9xA\n0h2Slkj6RNLDGeuGxfN8LOkRSRtnrKuQNFzSG5KWSrohLl9H0qeSts/YtrOklZI2jK8PlzQl7veS\npF4Z2y6U9DtJ04DlkkokDZX0P0kfSfp9ZtFfwXmS5sX1D0jqFNdVVuNV7v+hpPMzztVC0vlx388k\nTZS0SVz3A0nPxPc+R9Kxef6NlBHj+5LulNQx4+90d4xzqaQJkjaK606RND/G8ZakE6o5/jdVMLne\nXxX7HiZpsqRlkt6WdGGO93Jk/Dsti9fo4Li8ys9hRnwPxvf9mUK10y4Z6zP/diVVXP/ucd21McZl\ncfleeV7/UkmLJf0qXv93JJ2SsX49SXdJ+iDG8n+SFNdNlbQ841EhaV9JN2QtXyXpgirOXe1nsUkz\nM3800gNYABxQxfIeQAXQIr5+HrgBaA3sBHwA7BfXjQeOjs+fBt4EBmbsd2Q15/4PcB+wHqH6ce+4\nfH/gQ6B3PN91wPiM/SqAR4GOwKYxloPjupHAnzO2/QXwRHy+M/A+sBvhF+LQ+P5bxfULgUlAd2Ad\nYDtgOdAfaAVcAXwN7B+3Pxt4GegW1/8duDfr+t0cj7Uj8CWwTVz/W2Aa0DO+7gVsALQDFgE/Jvxw\n6h2vxbbVXMNxwKnx+anx2veIxxkN3BXXDY/XrE187zsDHeJ2yzLi6AJsV825LgRG5Xh/P6hm332B\n7TPe63s1fC76Ap8SP5fx+lZet5o+h2XAF8DA+B4vAV7J+qzvX9P1j89PBDrF6/8r4F2gdcY5RlUT\ndymwKm5TAhwCfA6sF9ffBTwcr/nmwNzKv13WcX4GzALaZy3vHd/vTlW8n2o/i035kXoAzelB+IJc\nDiyNj4fi8sovgxaEL+TVQLuM/S4B7ojPLwKujf9B3gXOBC4lfDGtBDpVcd6NCe0k61WxbiRwWcbr\ndoQv6c3i6wqgf8b6B4Bz4/MDgHkZ614CTorPbwIuyjrXHNYmqQXAKRnrLgDuyXi9LvBVxn/QWZXP\nM97T1/GaVV6/bhnrXwOOi8/nAkdU8d4HA89nLbsZuKCav19mshgLnJ6xbusYTwnwk3gtemXt3y7+\n3Y8G1s3xWSnju8ki+/0NzvNzdw1wVTXrbgaurGJ5rs9hGfB0xrrtgJUZrzO/XKu8/tXE80nldSN3\nslhJ/IEVl71PSH4l8bPzg4x1PwPGZR1jr7jPVlnLOxP+rx5Xzfup9rOYz3ss1odXQzUuI/zC6xQf\nR1exTTfgEzP7PGPZ24Rf4BBKFqVAH2A68Czhl+TuhC/upVUcc9N4zGVVrNsY+N83AYbzfpxxPgi/\nTCutBNrH5+VAW0l9JfUg/PqsrN7aHPh1rIZZKmkpsEl8f5UWZcWxOCOOL2IclXoAD2ccaxbhy6xL\nHnFuAsz/7ltnc2D3rBhPyDpmdb513Qh/o5aEGxhGAWOA+xWq/S6X1DJe28HA6cA7kh6XtE0e56ru\n/bWraiNJu0saF6tgPiWUdL5XzTGruza5PocQvmgz42mjqu/oq+4cSPqNpFkKVZpLCSXfDauJNdvH\nZlaRFUP7uH8rvvv3+SZ2SZsSfvgMNbN5GctbAf8C7jazB6s5bw9yfxabHE8WhecdYAPFdohoM9Z+\nkb4CbAMcBZSb2ey4/lDCl3dVFsVjrlfN+XpUvpDUjvDFsiRXoGa2BngQGBIfj2V8ubwNXJyRGDuZ\nWXszeyDzEBnP3yV8qVTGsS7f/oJ7m1Ddlnm8tmb2bq44Ce9/qyqWv02ocss8Zgcz+0Uex/zWdSP8\nDVYD75vZajO7yMy2J1SrHU6ohsPMnjazg4CuhJJWdbfH1ufOm3uBfwObmNn6hGqS6v6vV3dtcn0O\na6PKc0jam1BFdayZrW9mnQjVdPVt2P6IUEXVI2PZN7HHz9a/gavNbEzWvtcDn5rZ72s4fn0+i0XL\nk0WBMbNFhPrQSxUakXck1I/fHdevBF4ntA+Mj7u9TPi1Ov67R4T4IX4S+Juk9SW10tp74O8DfiJp\nJ0nrEKoaXjWzt6sJMfs/8r3A8YRf5PdmLL8VOD2WOiSpXWx4bU/V/gUcIWkPSa0JVRCZ5/o7cImk\nzeCbxvRB1Rwr223AnyRtFWPZUeEmgceBrSWdFK9JK0m7SfpBHse8D/ilQuNze8J1u9/MKmLjay9J\nJYRqx1XAGkkbKTQmt4vLPmftbdTZ8vnCrG6b9sBSM/taUl/C36a65DOS8PffX+FGgO6Stsn1Oayl\n6q5/e0KC/UhS69iY3LEOx/+WjB8xF0tqL2lz4JcZsd8OzDazv2buJ2k4sA9wUo5T1OezWLQ8WRSO\nzP/MQwi/it4BHiLUoT+XsX48ocpjQsbr9oQGyeqcTPiCmkOoPjgLwMzGAn8gNNC+A2xB+PKvKq7K\n198sM7MJwApCtcyTGctfB4YRGkg/ITQGD63ieJXbzyK0v9wf41hOaGD8Km5yLaHR+GlJnxFKWH1r\niDPTVYQvj6cJv1xvBdqY2QrgoPh+lxBKN5cSGnRzuZ1Q3fQ88BahCuTMuK4r8M94rlmEEt8owv+3\nX8ZzfQzsDfy/ao6ffV9/Ve+vuvf8c+CieJ3+QKhuqfokZv8ltLFcTWjoLif8CoeaP4dV9TuoLp4q\nrz+hqu4p4A1CG8EXhF/tmcer6e9a07ozCcn4LeAFQnvY7XHdYOCHGXc9faZwF9bxhM//Oxnrzqvi\n2Lk+i02SYgNNMgeXbgcOAz4ws17VbHMd4U6GlYQGz8lx+UBCw1wJcJuZXZ5YoK7gxF/rSwmNj//L\ntb1zLllJlyzuINxaVyVJhxK+DHoS7la4KS4vIfwiHUi4y2KIpG0TjtWlTNIRktrGapq/AtM8UThX\nGBJNFmb2AuHXYXUGAXfGbV8D1pfUlVCkm2dmC81sFaFq4sgkY3UFYRChimYJsCXfrg5zzqUo7WEW\nuvPt2ycXx2Xdqli+eyPG5VJgZsMI7RzOuQJTCA3cPv6Lc84VuLRLFksIHcYqbUIoRbTKWr4pVdzf\nLSm51nnnnGvCzKxWP9TTLlk8SuysJKkfoTPM+8BEoGe8h7014Va3R6s6QEN3aa+oMJYuNebMMcaP\nNx54wLjuOmPECOOkk4x99jF69DBatza6djX69jWOO844/3zj9tuNF14wfv3rC6moSL97fubjwgsv\nTD0Gj6npxFSocXlM+T3qItGShaT7CENRbChpEWFwtFYAZnazmT0h6VBJ8wj3RP8krlst6QzCfdgl\nwEgLPZUTJ8H664fHNjUMxLBmDbz3Hrz9NixYAPPmwXPPwS23wNSp4d+ttgrH2H778NhhB/j+96Gk\npDHeiXPONZxEk4WZDcljmzOqWf4kGZ28Ck1JCXTvHh577PHtdWVlcPbZIYHMmQMzZsDIkTBzJrz/\n/toE0rs39OkDO+8MnZr+AMfOuSKWdptFk1RaWkqnTrDbbuGRacUKmDUrJI4pU+CRR8K/nTuHpNGn\nT3jsvjtssEHDxlRoPKb8FGJMUJhxeUzJSbQHd9IkWTHHX6miIpRCJk0Kj9dfh4kToWtX6NcvlFz6\n9QvVWC09vTvn6kkSVssGbk8WBWrNmlACeeUVePXV8O/ixbDrrrDvvuHRrx+su27akTrnio0niyZu\n6dKQNMaPD48ZM0LVVWXy6N8f2lU5w4Fzzq3lyaKZWbECXn55bfKYOjW0kRx0EBx4YEgkLdK+Odo5\nV3A8WTRzy5eHpPH00/DMM/DRR3DAASF5DBwI3brlPoZzrunzZOG+ZdGikDSefjo8ttwSjjgiPHr3\nDn1KnHPNjycLV61Vq+DFF+Gxx8Ljyy/h8MND4th/f2jTJu0InXONxZOFy4sZzJ0Ljz4aEse0aSFh\nHHUUHHkkrFfVTN3OuSbDk4Wrk48+gieegNGjYdw4KC2F446DQYOgY71nRHbOFRpPFq7eli0LpY0H\nHwyN5fvtFxLHEUdAhw5pR+ecawieLFyD+vTTUFX14IPwwgvhzqohQ0Li8DYO54qXJwuXmKVLwzhW\no0aFsayOPRZ+/OPQi9zvqnKuuHiycI3i7bfh7rvhzjtDY/nQoXDyybD55mlH5pzLhycL16jMYMKE\nkDQefBB69QqJ49hjoX37tKNzzlXHk4VLzVdfweOPh8Tx4osweDAMHx46/znnCosnC1cQliwJkz3d\ndhtsvDGcfnpIHm3bph2Zcw48WbgCs2YNPPkk/P3vYbTcE04IpY0ddkg7Mueat7okCx+T1CWmpCQM\nKfL44zB5cpg69uCDYa+94N574euv047QOZevRJOFpIGS5kh6U9K5VazvJOlhSVMlvSZp+4x1IyTN\nlDRd0r2S1kkyVpeszTaDiy6C//0Pfv3rUEW1xRZwySWhB7lzrrAlliwklQA3AAOB7YAhkrbN2ux8\nYJKZ7QQMBa6N+/YAhgF9zKwXUAIcn1SsrvG0bBnGoHruuVBFNX8+9OwJw4aFyZycc4UpyZJFX2Ce\nmS00s1XA/cCRWdtsC4wDMLO5QA9JnYHPgFVAW0ktgbbAkgRjdSnYccfQED53bih5HHggDBgQqq0q\nKtKOzjmXKclk0R1YlPF6cVyWaSpwNICkvsDmwCZm9glwJfA28A7wqZk9m2CsLkUbbQR/+AMsXBh6\nhV94IfzgB/C3v8EXX6QdnXMOkk0W+dymdBmwvqTJwBnAZGCNpC2Bc4AeQDegvaQTkwrUFYZ11gk9\nwSdODCWOp54K7RqXXhrGqXLOpadlgsdeAmya8XpTQuniG2a2HDi18rWkBcBbwGHAy2b2cVz+ENAf\nuCf7JGVlZd88Ly0tpbS0tKHidymRYO+9w2PGDLj88jDL37BhcM450LVr2hE6V1zKy8spLy+v1zES\n62cR2xrmAgcQqpImAEPMbHbGNusBX5jZ15KGAXua2SmSegN3A7sBXwL/ACaY2Y1Z5/B+Fs3EwoVw\n5ZVwzz1hyPTf/jYkEOdc7RVUPwszW02oWhoDzAIeMLPZkoZLGh432w6YLmkOcDBwdtx3CnAXMBGY\nFre9JalYXeHr0QOuvx7mzIHOnWH33cNw6dOm5dzVOdcAvAe3K0rLl8PNN4fSxp57hkbxXr3Sjsq5\n4lBQJQvnktShA/zmN6Gfxh57hNtujzvO+2o4lxRPFq6otW0beoTPnw+77RZm8xs8GGbNSjsy55oW\nTxauSWjXLjR6z58Pu+wS5g4fMgRmz869r3Mut5zJQtKofJY5Vwjat4ff/S4kjZ12gn33DX03FixI\nOzLnils+JYtvDSgdb4ndJZlwnGsY7dvDeeeFpLHVVrDrrnD22fDhh2lH5lxxqjZZSDpf0nKgl6Tl\nlQ/gA+DRRovQuXro0CHcKTV7dpgGdttt4Y9/DHdTOefyl/PWWUmXmdl5jRRPrfits6623noLLrgA\nxo6F888PkzG1bp12VM41rsRmypPUnTDI3zfDg5jZ87WOsIF5snB1NWUKjBgBb7wBf/oTHH88tPDb\nPVwzkUiykHQ5MJjQC3tN5XIzO6IuQTYkTxauvsrLQ9vGqlVw9dWwzz5pR+Rc8pJKFm8Avczsq/oE\nlwRPFq4hmMGDD4a7qHbbDf7yF/j+99OOyrnkJNWDez7gtbquyZJCR745c2DnnaFvXzj3XPjss7Qj\nc65w5JMsvgCmSLpF0vXxcV3SgTnX2NZdF/7v/2D69HCL7TbbwC23wJo1ufd1rqnLpxrqlPi0ckMB\nZmZ3JhhXXrwayiVp0iT45S/DxEtXXRWGEnGuKUjybqi2wGZmNqeuwSXBk4VLmhk8/HAYSqRXL7jm\nmjBcunPFLJE2C0mDCNOdPhVf7yzJO+W5ZkGCo48OAxPutlvoCf7nP8OXX6YdmXONK582izJgd2Ap\ngJlNBvxeEdesrLNOaM94/fVQPbXDDvDkk2lH5VzjySdZrDKzT7OWVSQRjHOFbvPN4aGHwqx9Z50F\nRx0Vpnx1rqnLJ1nMlHQi0FJST0nXAy8nHJdzBe2QQ8JdU7vu6lVTrnnIJ1mcCWwPfAXcB3wGnJNk\nUM4VgzZtQtXUxImheqpXLxgzJu2onEtGonNwSxoIXAOUALeZ2eVZ6zsBtxPaQL4ETjWzmXHd+sBt\nhERlcd2rWfv73VCuYDzxBJxxRpjm9eqrYaON0o7Iuao16N1Qkq6N/z5WxSPn3VCSSoAbgIHAdsAQ\nSdtmbXY+MMnMdgKGAtdmrLsWeMLMtgV2BHzOM1fQDj00VE117x5KGXfcEW69da4pqLZkIWkXM3td\nUmkVq83Mxtd4YGkP4EIzGxhfnxd3vCxjm8eBy8zsxfh6HrAH8DUw2cxqvOvKSxauUE2eDMOGhfk0\nbr4Ztt467YicW6tBSxZm9np8OhF4wczKzawceCEuy6U7sCjj9eK4LNNU4GgASX0Jw6BvAmwBfCjp\nDkmTJN0aOwY6VxR23hlefRWOPBL694eLL4avv047KufqrmXuTRgLHACsiK/bAmOA/jn2y+cn/2XA\ntZImA9MJnf/WEAYu7AOcYWb/lXQNcB5wQfYBysrKvnleWlpKaWlpHqd1LnktW8I554Tba3/+c+jT\nB269NbRpONeYysvLKS8vr9cx8hkbaoqZ9c61rIr9+gFlGdVQI4CK7EburH0WAL2A9sArZrZFXL4X\ncJ6ZHZ61vVdDuaJgBv/8Z0geRx8Nl10W5gl3Lg1JDVH+uaRdMk6yK2Ek2lwmAj0l9ZDUmjCB0rca\nxiWtF9chaRgw3sxWmNl7wCJJlTW9A4CZeZzTuYIkwXHHwcyZsGJFaAAfNy7tqJzLXz4li92A+4F3\n46KNgcFmlrPdQtIhrL11dqSZXSppOICZ3Rwbwf9BqLKaAZxmZsvivjsRbp1tTZhT4yeV6zKO7yUL\nV5T+8x84/XQ44ogw2ZKXMlxjSnLU2dbANoQv9blmtqpuITYsTxaumH36KfzqV6GEMXIk7L9/2hG5\n5qJBk4WkA8xsrKQfEZJE5YENwMweqk+wDcGThWsKnnwSfvYzOPzwUMro0CHtiFxT19BtFpVT1x8R\nH4fHR+Vr51wDOOQQmDEj3FrbqxeMHZt2RM59V00li3PM7BpJe1V2mis0XrJwTc1TT4VSxmGHwRVX\neFuGS0ZDlyx+Ev+9vu4hOedqY+DAMGTIF1+s7djnXCGoqWRxH7Arodf1/KzVZmY7JhxbTl6ycE3Z\n6NHwi1/A8OHw+99Dq1ZpR+Saiga/G0pSV0Jv7UGsbeAGwMwW1iHGBuXJwjV1774Lp50GH34Id98N\n22yTdkSuKWjoUWfHxs5xY8zsf2a2MPNR32Cdc7ltvHHok3HqqbDnnnDjjT6SrUtHTdVQs4BhwEjg\nBELJ4puNzWxSYwRYEy9ZuObkjTfgpJNggw3g9tuhW7e0I3LFqqH7WRwLnAbsSRWjzJrZfnUJsiF5\nsnDNzapVYQTbm24KpYxjjkk7IleMEunBLekCM7uoXpElxJOFa65eew1OPDH0+r7mGmjrA/i7Wkhq\nIME/SzpZ0gXxJJvFuSeccynZfXeYNAlWroRdd4Vp09KOyDV1+SSLvxFmrzshvl4RlznnUtSxY7hD\nasQIOOAAb/x2ycqnGmqyme1c+W9cNjXOm50qr4ZyLnjzTTj+eNhkk9D4/b3vpR2RK2RJVUN9Lakk\n4ySdgYraBuecS07PnvDKK+Hf3r2hnpOiOfcd+SSL64GHgY0kXQK8BFyaaFTOuVpr3Rr++tcwdeuQ\nIfCHP8Dq1WlH5ZqKfOez2JYwDzfAWDObnWhUefJqKOeq9t57MHRoaAC///5QPeVcpaSqoQDWIXTK\nE2HmOudcAevaNYxge9hh4W6pMWPSjsgVu5zJQtLZwN1AZ2Aj4G5JZyUdmHOuflq0CHdK3X9/GC7k\nD3+ANWvSjsoVq3zuhpoO9DOzz+PrdsCrZtarEeKrkVdDOZef996DE+LN7/feG0oervlKshqqoprn\nuQIaKGmOpDclnVvF+k6SHpY0VdJrkrbPWl8iabKkx/I9p3Puu7p2hWeegb32gl128bulXO3lkyzu\nAF6TVCbpj8CrwO25doq3294ADAS2A4bEhvJM5wOTYp+NocC1WevPBmaRMYChc65uSkrgootCP4zj\nj4dLLoEKvwne5SlnsjCzqwiz5i0FPgZOMbOr8zh2X2BeHNJ8FXA/cGTWNtsC4+J55gI9Yj8OJG0C\nHArcRtZcGs65ujv4YJg4EZ54Ag4/HD7+OO2IXDHIp4G7H/CmmV1rZtcB8yXtnsexuwOLMl4vjssy\nTQWOjufpC2wOVN7kdzXwW7wDoHMNbpNNYNw42H576NMnJA/natIyj23+Duyc8frzKpZVJZ+qo8uA\nayVNBqYDk4EKSYcDH5jZZEmlNR2grKzsm+elpaWUlta4uXMuatUKrrgC+vWDQw6Byy8Pd025pqe8\nvJzyejZU5XM31BQz6521bFquObhjiaTMzAbG1yOACjO7vIZ9FgA7AiOAk4HVQBugIzDazIZmbe93\nQznXAGbPhqOOgtJSuPZaWGedtCNySUrqbqgFks6S1EpS69jv4q089psI9JTUQ1JrYDDwaFbA68V1\nSBoGjDez5WZ2vpltamZbAMcDz2UnCudcw9l2W5gwAT74APbdFxYvTjsiV2jySRanE2bLW0Jod+gH\n/CzXTma2GjgDGEO4o+kBM5stabik4XGz7YDpkuYABxPufqrycHnE6Zyrh44dYfRoOPJI6NsXxo9P\nOyJXSPIaG6pQeTWUc8l4+ukwttSIEXDWWSC/H7FJSWRa1ULmycK55CxcCEcfHaqobrkF2rVLOyLX\nUJLswe2ca2Z69ICXXoKWLaF//5A8XPPlycI5V61114V//CPcUrvHHt6O0Zzl0ynvnHjXkiSNjGM1\nHdwYwTnn0ifB2WfDqFFw3HFw881pR+TSkE/J4lQzWwYcBGxA6P9wWaJROecKzoABoVrq2mvh5z+H\nVavSjsg1pnySRWUjyGHAKDObkWA8zrkCttVW8Oqr8PbbcNBB8NFHaUfkGks+yeJ1SU8TBvUbI6kj\nPl6Tc81Wx47wyCNhmJC+fWHatLQjco0hn+E+WhDGgZpvZp9K+h7Q3cxS/4j4rbPOpeu++0I/jFtu\nCcOFuOJQl1tn8xlIcA9gqpmtkHQy0Ae4pi4BOuealiFDoGfP0B9jxgz4/e+9A19TlU811N+BzyXt\nBPwKmAfclWhUzrmiseuu8Npr8PjjcNJJ8OWXaUfkkpBPslgd63p+CNxoZjcCHZINyzlXTDbeOEzV\nuno1HHAAfPhh2hG5hpZPslgu6XzgJODxOF1qq2TDcs4Vm3XXDW0Y++8Pu+8Os2alHZFrSPkki8HA\nV4T+Fu8RZru7ItGonHNFqUUL+NOfoKwszI3xzDNpR+QaSl4DCUrqCuxGGCp8gpl9kHRg+fC7oZwr\nXM8/H3p8l5XB6aenHY3LlMhAgpKOA14DjgWOAyZIOrZuITrnmot99oEXX4Srr4Zf/QrWrEk7Ilcf\n+fSzmAYMqCxNSOoMjM01rWpj8JKFc4Xvk0/gmGOgfXu4997wr0tXUkOUC8i8t+Fj1g4B4pxzNdpg\nA3jqKdhoI9h7b1iyJO2IXF3kkyyeIgzzcYqknwBPAE8mG5Zzrilp3RpuvTW0YfTvDzNnph2Rq618\nqqEEHA3sRWjgfsHMHm6E2HLyaijnis/dd4c2jAcegP32Szua5qkgp1WVNJAwPEgJcJuZXZ61vhNw\nO/B94EvCLbozJW1K6Cm+ESFJ3WJm12Xt68nCuSL03HNw/PFwzTVwwglpR9P8NGiykLSC8CVdFTOz\njnkEVALMBQYAS4D/AkPMbHbGNlcAn5nZnyRtQ+glPiDertvVzKZIag+8Dvwwa19PFs4VqRkz4LDD\nwm21553nY0o1pgZt4Daz9mbWoZpHzkQR9QXmmdlCM1sF3A8cmbXNtsC4eM65QA9Jnc3sPTObEpev\nAGYD3Wrz5pxzhWuHHeDll0N11M9/HoYKcYUr6Tm4uwOLMl4vjssyTSW0iSCpL7A5sEnmBpJ6EIZJ\nfy2hOJ1zKejePXTemz8/DHH++edpR+Sqk88Q5fWRTx3RZcC1kiYD04HJwDfdd2IV1L+As2MJ41vK\nysq+eV5aWkppaWn9InbONaqOHeE//4Hhw8MQIY8/Dl26pB1V01JeXk55eXm9jpFoA7ekfkCZmQ2M\nr0cAFdmN3Fn7LAB6xfkzWgGPA0+a2Xfm0PA2C+eaDjO46CK4667QL6Nnz7QjarqSGu7jrHjHUl1M\nBHpK6iGpNWFQwkezjr9eXIekYcD4mCgEjARmVZUonHNNiwQXXggjRsC++8Lrr6cdkcuUT5tFF+C/\nkh6UNDB+iefFzFYDZwBjgFnAA2Y2W9JwScPjZtsB0yXNAQ4Gzo7L9yQMi76fpMnxMTDfczvnitNP\nfwo33QSHHALPPpt2NK5SvqPOtgAOAk4BdgUeBEaa2fxEo8sdl1dDOddEvfBCGFPquutg8OC0o2la\nkhobCjOrAN4D3ic0PncC/hX7SDjnXIPbe+9QsvjNb+D669OOxuUz3MfZwFDCAIK3AQ+b2apY2njT\nzLZMPsxqY/OShXNN3MKFcPDBcOyxYWIl77xXf3UpWeRz6+wGwNFm9r/MhWZWIemI2pzMOedqq0eP\nMC/GYYcTdkPDAAAW5klEQVTBe+/B3/8OLZO+6d99Rz7VUFtmJwpJowDMzGfZdc4lrnPnMJ7UokXw\nox/BF1+kHVHzk0+y2D7zhaSWwC7JhOOcc1Vr3x4eeyz8e9BB8OmnaUfUvFSbLCSdL2k50EvS8soH\n8AFZfSWcc64xtG4No0ZBnz5hePMPPkg7ouYjnwbuy8zsvEaKp1a8gdu55skM/vhHuP9+ePpp2Gyz\ntCMqLg09RPkPzGyOpF2oYownM5tUtzAbjicL55q3q68Oc2I88wxsvXXa0RSPhr4b6tfAMOBKqh4Q\n0Oe4cs6l6pe/hPXWCwMQPvEE9O6ddkRNV43VULEvxR5m9lLjhZQ/L1k45wBGjw5zYjz0EOy5Z9rR\nFL4G78Ede27fWK+onHMuYT/6URit9qijYMyYtKNpmvK5dfZZScfUZgBB55xrbAcfDP/+NwwdCv/6\nV9rRND353A21AmhLGBPqy7g4rzm4k+bVUM65bFOmwKGHwp//DKeemnY0hSmR4T7MrH3dQ3LOucbV\nuzeUl8OBB4ZpWs88M+2Imoa8RliJkx/1BNpULjOz55MKyjnn6mPrrWH8eDjggDA0yO9+l3ZExS9n\nsoiz150FbEqYH7sf8Aqwf7KhOedc3fXoAc8/vzZhXHCBj1hbH/k0cJ8N9AUWmtl+wM7AskSjcs65\nBtC9eyhhjB4dpmv1Js66yydZfGlmXwBIamNmc4Btkg3LOecaRpcuMG5c6OV9zjmeMOoqn2SxKLZZ\n/Bt4RtKjwMJEo3LOuQb0ve/B2LEwYQKcfjpUVKQdUfHJaw7ubzaWSoGOwFNm9nUe2w8ErgFKgNvM\n7PKs9Z2A24HvE27LPdXMZuazb9zGb511zuVt+XI4/HDYfHO4/fbmO4lSQw8kuEFNO5rZJzmCKQHm\nAgOAJcB/gSFmNjtjmyuAz8zsT5K2AW40swH57Bv392ThnKuVlSvhhz+E9deHe+6BVq3SjqjxNfRw\nH5OA12t45NIXmGdmC81sFXA/cGTWNtsC4wDMbC7QQ9JGee7rnHO11rYtPPoofPklHHMMfPVV2hEV\nh2qThZn1MLMtqnvkcezuwKKM14vjskxTgaMBJPUFNgc2yXNf55yrkzZtwpAgLVuGcaU8YeSWTz+L\nfapankenvHzqhy4DrpU0GZhO6MexJs99ASgrK/vmeWlpKaWlpfnu6pxrxlq3DpMnDRkSEsbo0bDO\nOmlHlYzy8nLKy8vrdYx8xoZ6nLVf3m0IVUSvm1mNnfIk9QPKzGxgfD0CqKiqoTpjnwVAL2CHfPb1\nNgvnXH2tWgUnnBDaMkaPDqWOpq7BhygHMLPDzeyI+DiQ8EWez1TpE4GeknpIag0MJmvubknrxXWV\nPcXHm9mKfPZ1zrmG0KoV3HsvtGsHRx8d2jLcd+XTzyLbYkLDdI3MbDVwBjAGmAU8YGazJQ2XNDxu\nth0wXdIc4GBCb/Fq961DrM45l1NlwujQIcyJ4Qnju/Kphro+42ULoDewwMxOSjKwfHg1lHOuIa1e\nDSedBMuWwcMPN90qqQbtZ5Fx0FMyXq4mjBH1Yu3Da3ieLJxzDW31ajj5ZFi6NEym1BQTRiLJopB5\nsnDOJWH16jDj3scfh4Sx7rppR9SwkipZTCfcDZV54GWEXtV/NrOPaxtoQ/Fk4ZxLyurV8OMfw4cf\nwiOPNK2EkVSyuIJQ/XQvIWEcT5hm9T1gTzM7om7h1p8nC+dcktasCQnj/fdDwmjbNu2IGkZSyWKy\nme1c1TJJ082sVx1ibRCeLJxzSVuzBk45Bd59NwwT0hQSRiL9LIASSbtnnKRvxn6ra3My55wrNiUl\n8I9/wMYbN+/bavMpWewG3AG0j4uWA6cBM4HDzOzBRCOsOTYvWTjnGsXq1XDiifD55/DQQ2G4kGKV\n6N1QktYDMLOCmVLVk4VzrjGtWgWDB4fnDzxQvMObJ9Vm0Qb4EdCDtQMPmpldVJcgG5InC+dcY/v6\n6zAsSPv2YT6MkpK0I6q9pNosHgEGAauAFfHxee3Dc8654te6dRje/JNP4NRTm88UrfmULGaY2Q6N\nFE+teMnCOZeWlSvh0EOhZ0+4+WZoUZeR9lKSVMniZUk71jEm55xrktq2hccfh1mz4KyzoKn/bs2n\nZDEb2ApYAFTOJ2VmlnoC8ZKFcy5ty5bBgQfC3nvDX/8KqtXv9XQk1cDdo6rlZrawNidKgicL51wh\nWLoU9t8fDjkELr648BNGXZJFzmlVK5OCpI0IM+U555zL0KkTPPMM7LdfGKX2ggvSjqjh5TMH9yDg\nSqAb8AGwOTAb2D7Z0JxzrnhsuCE8+yzsu2+Yy/vcc9OOqGHl08D9Z2AP4A0z2wI4AHgt0aicc64I\ndekCY8fCrbfCNdekHU3DylmyAFaZ2UeSWkgqMbNxkq5NPDLnnCtC3bvDc8+FBu+OHUNfjKYgn2Sx\nVFIH4AXgHkkfEDrmOeecq8Jmm4U2jNLSMK/3scemHVH95VMNdSSwEvgl8BQwD8hrDgtJAyXNkfSm\npO/U4EnaUNJTkqZImpE5haukEZJmSpou6V5J6+T1jpxzrgBsvTU8+SSccUb4t9glNq2qpBJgLjAA\nWEKYWW+Imc3O2KYMWMfMRkjaMG7fBdgEeA7Y1sy+kvQA8ISZ3Zl1Dr911jlX0F55BQYNgtGjYZ99\n0o4mSKoHd131BeaZ2UIzWwXcTyilZHoX6BifdwQ+NrPVwGeEsajaSmpJmJlvSYKxOudcIvbYA+67\nD445BiZOTDuauksyWXQHFmW8XhyXZboV2F7SO8BU4GwAM/uEcLvu28A7wKdm9myCsTrnXGIGDAh3\nSB1+eBgepBjl089iAPCSmX1Ry2PnUz90PjDFzEolbQk8E8eh6gKcQxgWfRnwT0knmtk92QcoKyv7\n5nlpaSmlpaW1DNM555J35JGwfDkcfDA8/zxssUXjnbu8vJzy8vJ6HSOf4T7uAvoBS4Hn4+NFM1ua\nY79+QJmZDYyvRwAVZnZ5xjZPABeb2Uvx9VjgPGAL4CAz+2lcfjLQz8x+kXUOb7NwzhWVv/0NrrwS\nXngBunVLJ4ZE2izMbKiZbQ0cRahWuhH4MI9jTwR6SuohqTUwGHg0a5s5hAZwJHUBtgHmExq6+0la\nV5LiNkVaeHPOubV+/nMYNiwMPvjRR2lHk798qqFOBvYCdiQkiRuAF3PtZ2arJZ0BjAFKgJFmNlvS\n8Lj+ZuAS4A5JUwmJ63exveKTWKKZCFQAk4Bb6vD+nHOu4Jx3XhitduDA0IGvY8fc+6Qtn2qojwm/\n9m8Cys1sQWMElg+vhnLOFSsz+MUvYObM0A+jbdvGO3dSQ5SLMGjg3vGxFWGcqJPqGmhD8WThnCtm\nFRUwdGiYovWRR6BVq8Y5b1L9LDoAmxFGm+0BrE+oGnLOOVcPLVrAHXdASUnhz+edT8liGvASYWyo\n581scWMElg8vWTjnmoKVK+Ggg2C33eCqq5KfPCmRaqiMg3cgTKdaMIMIerJwzjUVS5eG4UBOPDE0\ngCcpkZnyJPUC7gK+F19/CPzYzGbUKUrnnHPf0akTjBkDe+4JnTvDaaelHdG35TNE+S3Ar8xsHICk\n0risf4JxOedcs9OtW0gY++4L3/se/PCHaUe0Vj7Jom1logAws3JJ7RKMyTnnmq2tt4bHHoNDD4UN\nNiickWrzuRtqgaQ/xJ7YW0j6PfBW0oE551xzteuucO+9YaTaqVPTjibIJ1mcCmwEPASMBjrHZc45\n5xIyYADccEMoYbxVAD/PE5v8qDH43VDOuabuppvCwIMvvQRdujTMMRv0bihJj9Wwn5nZoNqcyDnn\nXO39v/8H778PhxwC5eXpjSNVbcki3vVUHTOz8YlEVAtesnDONQeV40jNmQNPPAFt2tTveA3aKU/S\n5mb2v/qFlCxPFs655mLNGhgyJPz74INhiJC6auixof6dceDRdY7KOedcvZWUwKhR8OmncNZZobTR\nmPKdg/v7iUbhnHMup3XWgYceghdfhMsua9xz59MpzznnXIFYb70w/0X//tC9exjivDHU1GaxBlgZ\nX64LfJGx2sws9bmdvM3COddczZ4NpaWhauqgg2q3b6KjzhYiTxbOuebsxRfhqKPCeFJ9+uS/X1KT\nH9WZpIGS5kh6U9K5VazfUNJTkqZImiHplIx160v6l6TZkmZJ6pdkrM45V2z22gtuvhmOOAIWJDzh\ndWIlC0klwFxgALAE+C8wxMxmZ2xTBqxjZiMkbRi372JmqyXdCYw3s9sltQTamdmyrHN4ycI51+zd\ncANcf33o5b3hhrm3L7SSRV9gnpktNLNVwP3AkVnbvAtUtn10BD6OiWI9YG8zux3AzFZnJwrnnHPB\nGWeE6qhBg8Kse0lIMll0BxZlvF4cl2W6Fdhe0jvAVODsuHwL4ENJd0iaJOlWSW0TjNU554raJZfA\nllvCCSeEjnsNLclkkU/90PnAFDPrBvQGbozTt7YE+gB/M7M+wOdAwhMNOudc8WrRAkaOhM8/hzPP\nbPhOe0n2s1gCbJrxelNC6SJTf+BiADObL2kBsE3cbrGZ/Tdu9y+qSRZlZWXfPC8tLaW0tLQBQnfO\nueLTujWMHg0DB8Ibb8A224Tl5eXllJeX1+vYSTZwtyQ0WB8AvANM4LsN3FcBy8zsj5K6AK8DO5rZ\nJ5KeB35qZm/EhvB1zezcrHN4A7dzzmWpqAgljeo06BDl9RUbqs8AxgAlwEgzmy1peFx/M3AJcIek\nqYQqsd+Z2SfxEGcC90hqDcwHfpJUrM4515TUlCjqyjvlOedcM1Not84655xrIjxZOOecy8mThXPO\nuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFc865nDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk4\n55zLyZOFc865nDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFc865nBJNFpIGSpoj\n6U1J51axfkNJT0maImmGpFOy1pdImizpsSTjdM45V7PEkoWkEuAGYCCwHTBE0rZZm50BTDaz3kAp\ncKWklhnrzwZmAZZUnEkoLy9PO4Tv8Jjy4zHlrxDj8piSk2TJoi8wz8wWmtkq4H7gyKxt3gU6xucd\ngY/NbDWApE2AQ4HbACUYZ4MrxA+Hx5Qfjyl/hRiXx5ScJJNFd2BRxuvFcVmmW4HtJb0DTCWUJCpd\nDfwWqEgwRuecc3lIMlnkU3V0PjDFzLoBvYEbJXWQdDjwgZlNpshKFc451xTJLJnmAEn9gDIzGxhf\njwAqzOzyjG2eAC42s5fi67HAecBRwMnAaqANoYpqtJkNzTpHUbVlOOdcoTCzWv0QTzJZtATmAgcA\n7wATgCFmNjtjm6uAZWb2R0ldgNeBHc3sk4xt9gV+Y2ZHJBKoc865nFrm3qRuzGy1pDOAMUAJMNLM\nZksaHtffDFwC3CFpKqFK7HeZiSLzcEnF6ZxzLrfEShbOOeeajqLtwZ2rw18aJC2UNC12JJyQUgy3\nS3pf0vSMZRtIekbSG5KelrR+gcRVJmlxvF6TJQ1sxHg2lTRO0szYIfSsuDzVa1VDXGleqzaSXoud\nZ2dJujQuT+1a1RBTatcpI7ZvdSZO+zNVTUy1vk5FWbKIHf7mAgOAJcB/yWoPSSmuBcAu1VSlNVYM\newMrgLvMrFdc9hfgIzP7S0ysnczsvAKI60JguZld1ZixxHN3Bbqa2RRJ7QntZT8EfkKK16qGuI4j\npWsV42prZitjW+SLwG+AQaR7raqK6QBSvE4xrl8BuwAdzGxQgfz/y46p1v/3irVkkU+Hv7Skequv\nmb0ALM1aPAi4Mz6/k/Dl06iqiQtSul5m9p6ZTYnPVwCzCf2AUr1WNcQFKX62zGxlfNqa0Aa5lPSv\nVVUxQYrXqZrOxKlep2piErW8TsWaLPLp8JcGA56VNFHSsLSDydDFzN6Pz98HuqQZTJYzJU2VNDKN\n4jmApB7AzsBrFNC1yojr1bgotWslqYWkKYRrMs7MZpLytaomJkj3M1VVZ+K0P1NVxWTU8joVa7Io\n1LqzPc1sZ+AQ4Bex6qWgWKh3LJTrdxOwBaFD5rvAlY0dQKzqGQ2cbWbLM9elea1iXP+Kca0g5Wtl\nZhVxDLdNgH0k7Ze1vtGvVRUxlZLidVIenYkb+zrVEFOtr1OxJoslwKYZrzcllC5SZWbvxn8/BB4m\nVJcVgvdjXTiSNgY+SDkeAMzsA4sIReRGvV6SWhESxSgz+3dcnPq1yojr7sq40r5WlcxsGfAfQv13\n6tcqK6ZdU75O/YFBse3yPmB/SaNI9zpVFdNddblOxZosJgI9JfWQ1BoYDDyaZkCS2krqEJ+3Aw4C\npte8V6N5FPhxfP5j4N81bNto4n+cSkfRiNdLkoCRwCwzuyZjVarXqrq4Ur5WG1ZWU0haFzgQmEyK\n16q6mCq/lKNGvU5mdr6ZbWpmWwDHA8+Z2cmkeJ2qiWloXT5PiXXKS1J1Hf5SDqsL8HD4v05L4B4z\ne7qxg5B0H7AvsKGkRcAFwGXAg5JOAxYS7qxJO64LgVJJvQnF8gXA8EYMaU/gJGCapMlx2QjSv1ZV\nxXU+YYj/tK7VxsCdkloQfmCOMrOxMb60rlV1Md2V4nXKVlndlPZnqpIyYvqLpJ2oxXUqyltnnXPO\nNa5irYZyzjnXiDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFK3qSukq6X9K8OC7X\nfyT1TPB8/5D0o1rusyLj+RUKw49fXtM+9RGHoP51Usd3zU9RdspzrlLs8fwwcIeZHR+X7UjoJPlm\nQqetS+ekzH2GEYapTrKTk3egcg3KSxau2O0HfG1mt1QuMLNpZvYifPMrfrrCpFTHxWWlksol/VPS\nbEl3V+4raZe4bqKkp7KGj8i0j6SXJM2vLGVIai/pWUmvx/MNyt5J0qNAe2BSZTwZ6/pKelnSpHjs\nrePyUyQ9JOlJhQl0Ls/Y5zRJcxUmArpV0vVVnHPLuO9ESc9L2ib/y+tc4CULV+x2IEwQ9B3xS3wn\nYEegM/BfSc/H1b2B7Qgjbr4kaU9gAnA9cISZfSxpMHAxcFr2oQkTFO0paVvC2D+jgS+Ao8xsuaQN\ngVfIGrMsTjyzPI5OnG02sLeZrZE0gDBH/TFx3U4x5q+BuZKuI5Qefk8YxnwF8BwwJfN08d9bgOFm\nNk/S7sDfCJMEOZc3Txau2NVU3bIncG+s7vlA0nhgN+AzYIKZvQOgMCdCD2AZsD1hThII4469U805\nK0eDnS2pcn6CFsClCkPTVwDdJG1kZvmOMro+cJekreI5Mv9/jq0cQl3SrBhvZ2C8mX0al/8T2Drz\ngHFQy/7AP+N7gjBZkHO14snCFbuZrP31XZXseQUqk8tXGcvWsPb/wkwz65/Heb+u4hwnAhsCfWLp\nYAHQptrApF8AP40xHQb8iZAUjpK0OVCesXlV8WYnyqrmUGgBLK2mJONc3rzNwhU1M3sOWEcZMxNK\n2lHSXsALwGCFGdU6A/sQqpqq+lI1wrzunSX1i8dpJWm7WoTTkTDRzBqFyYE2zxH7jWa2s5n1iXOh\ndGRtSeYnOc5lhLnn95W0vsI81D9ibQIRYaDQ5cACScfE96R4A4BzteLJwjUFRwED4q2zMwjtDO+a\n2cPANGAqMBb4bawSqnK2sjif+zHA5bFqajKwRzXntCqe3wPsKmkacDKhDaKm7bP9hVCNNYlQBWYZ\n21cV7zuEdo0JwIuEoaaXVbHPicBp8T3NIMwJ7Vyt+BDlzhUxSe3M7PNYsniIMLfLI2nH5ZoeL1k4\nV9zK4iRE04G3PFG4pHjJwjnnXE5esnDOOZeTJwvnnHM5ebJwzjmXkycL55xzOXmycM45l5MnC+ec\nczn9fz3Z5kcdf0JSAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x58b7b50>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg276"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 5.9\"\n",
+ "#plot the graphs\n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "%matplotlib inline\n",
+ "alfa=0.1\n",
+ "dx=numpy.linspace(0.1,44,88)\n",
+ "x=numpy.zeros(88)\n",
+ "g1=numpy.zeros(88)\n",
+ "count=0\n",
+ "g2=numpy.zeros(88)\n",
+ "gc1=0;\n",
+ "for alfa in dx:\n",
+ "\tCa=(math.sin(alfa*math.pi/180.))/(alfa*math.pi/180.)\n",
+ "\tCac=(1+math.cos(alfa*math.pi/180.))/2.\n",
+ "\tx[count]=Ca\n",
+ "\tcount=count+1;\n",
+ "\tg1[gc1]=Cac;\n",
+ "\tgc1=gc1+1;\n",
+ "\n",
+ "\n",
+ "pyplot.plot(dx,g1)\n",
+ "pyplot.plot(dx,x)\n",
+ "pyplot.legend([\"Conical\",\"2D-CD\"])\n",
+ "pyplot.xlabel(\"Divegent flap angle or Cone half-angle(degree)\")\n",
+ "pyplot.ylabel(\"Flow angularity loss coefficient\")\n",
+ "pyplot.title(\"Divergent loss of a conical nozzle and a 2D-CD nozzle\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.9\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 2,
+ "text": [
+ "<matplotlib.text.Text at 0x5b714d0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FdXWh9+V0Am9CKGF3qRJkaaEIk2lqNhRioh+drxX\nRVEQvTYULKjXAujFgooioBQbAZUqVaqgtNCrVGlZ3x97goeYchLOyTlJ1vs88+TMzJ69fzOZmTV7\n77XXFlXFMAzDMFIjItQCDMMwjPDHjIVhGIaRJmYsDMMwjDQxY2EYhmGkiRkLwzAMI03MWBiGYRhp\nkqONhYi8KSJDQq0j0IhInIj0D7UOABG5U0R2icghESkWaj1JEZGbRGRmAPJJEJEqgdB0njr6iMiP\npiP7IyLvichTmVVetjUWIrJJRI55L6kDIvKziAwUEUlMo6p3qurTodSZXvx8CNVbQoqI5AZeAtqr\namFVPRBqTUlR1Q9VtVOodRgpIyIvishv3rO8RkR6++yL8Qz1YW/ZKSJTRaSDH/nWEJHPRGSPiBwU\nkeUi8oCIRJxPvplIpj7n2dZY4C7iFapaGKgIPAc8DIwJZqHiEcwyshBlgHzAmlALMbI0R/j7Wb4V\neEVEWiRJU0RVCwH1gW+BSSJya0oZikhVYAGwGbhQVYsCvYDGQFRG8w0BmfeuUdVsuQAbgXZJtjUF\nzgB1vPX3gKe832uAy33S5gL2AA299ebAXOAAsAxo45M2Dnga+Bk4BlQBOgLrgIPA68BsoL/PMf2A\n1cB+YAZQ0WdfAjAQ+M0rb7S3vTZwHDgNHAb2p3Dus4B+3m8BhgCbgF3A+0Bhb18+4ANgr1fOQqC0\nt68P8DtwCPgDuDGFsvICLwPbvGUUkAeogXvIEzyt36Vw/GfADu86zU7836SQtjgwzitnPzDJZ98A\nYD2wD5gMlE3revqc548+63VxL4V9wE5gsLe9GTDPO3478BqQO0kZVVLQHQcMB37yrudMoITP/m7A\nKi/vWUAtb/t13rVLXE54+8t61zZx+zEgIYXzqeVzPmuBXqlc3764e/KQ97+/3WdfLBAPDPLuo+1A\nH5/9JYApwJ+4l/BTvjrO5/+ezLGTgUHe7xjv2kckSfMgsDOVPD4ApqayP6P5pnavpfYsjk7yvz4F\nDAWuTe4e8I4Zh/f+8tavwL2bDuDeRfX8vaZ+XfdAZhZOC8kYC2/7ZmCgz8Ue7v1+HPjAJ93lwCrv\ndzncC7Wzt97BWy/hrcd5N0BtXG2tlPfQ9PDW7wVO8vcLvDvuxVbT2/8Y8HOSG24KUBioAOwGOnn7\nbk3tIfTS+BqLfl5ZMUBB4HPgf96+gV45+bwbuRFQyEv3J1DdS3cBKTzMuJfgXKCkt/zsc00rJffA\nJTm+j1debpyhWZpK2q+Bj4EiOGN+ibe9HZ5hxxmqV4HZfl7PPonX0zv3HcADXj5RQDNv30U4gxHh\nnddq4L4kZaRmLNYD1bxrPQt41tuXaFTbA5HAv720uZPkUcgrc0Ay+X8AfJjM+RQEtnr3TIR3ffYA\ntVPQ2RWo7P2+FDgKNPLWY3EvsGGezi7e/iLe/gnekh9ncOOBOYH4vyc5Lj/OUHX01mOSu8dwH2wJ\nQM0U8tkB3JpKORnNN7V7LcVnMUkeDb3jGqR2D+BjLHDP7i7cB7EAt+DegXn8ua5+XftAZRRuCykb\ni3n8/bXoe7Gr4b6o8nnrHwJDvN8PJ/2n4moDt3i/ZwHDfPbdgs/L39u2hb9f4NMTf3vrEd6DV8Hn\nhmvps/8T4GHvdx/SZyy+B+7w2VcDZ7gicV+S//gC8W7kA8BVQP40ytqAZ0S99Y7ARu93sg9cKnkV\n9dIXSmZfWVytsEgy+8YAzyXRfxKvtubv9QRuABb7qfV+4Auf9dSMxSzgUZ/1O4Hp3u/HgQk++wT3\nom2T5P74Cng9mbwfBhYBeZM5n+tI8sIG3gKe8PMcJwH3er9jcTWYCJ/9u3AGNNK73jV89v0nrfvU\nn/97MmnfB6b5rCd7j+GMcgLQIoV8TuIZnBT2ZzTf5O61h7zfKT2Lvte0FO7D89ok+f7jHuDcj903\nE3/77F8LXOrP/8CfJTv3WaREeVwTxjmo6gZcU1Q3ESkAXAl85O2uBPTyOsoPiMgBoBWuTT6RrT6/\no3EPvC++65Vw7a6Jee3ztpfzSbPT5/cx3AswI5TF1aYS2YL7Ki8NjMc1iUwQkW0i8ryI5FLVo7gX\nzR3AdhH5SkRqppB/dDL5R/sjzOtIfE5ENojInzgDr7gaSlIq4Jrd/kzrHD39+0j/9ayAa3JLTmsN\n7zrs8LT+B9f04i++5R/n73bxaNw1S9SuuHvJ9xr+x9N7bxJNXbxtPVT1RDJlVgIuTnLf3oirKSZ3\njl1EZL6I7PPSdk1yjvtUNcFn/Zh3HqVw95TvM7CFFEjn/933uBFAHVzTTFok/u/3ex5viR3VXyee\nC37epynlm0qapPda4v86pWfxAjjrEDIR18LxaZI8k70HfKgEPJjkf13eKzMg5ChjISJNcTfITykk\n+Rj3ddkdWK2qiS+OLcB4VS3msxRS1Rd8jlWf39tx/6jEcsV33cvv9iT5FVTV+X6chqad5By2476S\nEqmI6/PYpaqnVXW4qtYFWuLaPG8BUNVvVLUjziCuBd5JR/7b/dR2E669vr2qFgEq476sk+u02woU\nF5EiaWkQkYK4l9w2P3UksgXXzJAcb+KaAKp5Wh8jMM/PNtyDDpy9Vyp42xGR63GG+xpVPeOTriau\nz62XqqZ0nltwzXFJ79u7kiYUkby4ZpEXcP1WxYBp+NeBugd3T1X02VYxhbSQvv97or4ngU642sAR\nPzT1xN3j69R5vBXylsu9/d8BV/uRT4r5ZuDYFJ9Fb/014KCqnuPOn9I9kIQtwH+S/K+jVPWTDOhM\nluxuLARARAqLyBU4YzBeVVf57vdhAu6GvAPXDJXIB8CVItJRRCJFJJ+IxIqI75erb15fA/VEpLuI\n5ALu4txayH+BR0WkjqeviIj0SuM8EvPfBZT3vkL84WPgAc8VMAp4BtfskeCdQz0RieTvTrUzIlLa\n017Q23YU1wSUUv5DRKSkiJQEnsDVWPwhCtdht98r65mUEqrqDlzz3RsiUlREcovIpT4a+opIA++l\n9wwwX1VT+rpN6cX0NVBWRO4TkbwiUkhEmvloPQwcE5FauKak9JDSi/Az4HIRaef9Tx8E/gLmikgj\n3Aukp6om1j4RkcK4Tt7HVHVuKmV+DdQQkZu965VbRJp6+pOSx1v2AgleraWjPyfmvcC+AIaJSH7v\nvr6VlD9s/P6/A4jIYNxH3GWasvt14rN+gYjcjbsPB6eS7VCgpYi8ICKJX/bVRGS8d30zmm9yuhL/\n96k9iwNx/UQ3n3NwCvdAMnm/A9whIs08h8yCInK5V05AyO7GYqqIHMJZ3cE4n/++PvsVnxtaVXfi\nOmtb4NoaE7fH42obj+I6nrbgHmpJkldi+n04N7wXcA9fbeAX3AOCqn4JPI9r/vkT+BVnpP6RVzI6\nv8d5zuwUkd1+XIOxuJf3HFwTyzHgHm9fGdzL6k/cV3OclzYC18m7DVddv4SUX45Pe+e2wlt+8bal\ndC6+/A9XLd8GrMT1J6WWvjfOeK3FGc17AVT1e1zb/+e4r7fKwPWpaPC9nmd/q+ph4DJcE+QOnEdL\nrJfuX7gmnEPA27gPC99806rxJU2bWOY63AviNdwX+uXAlap6Gvf1XRT4KUkzSiNce/con+2HUjif\njt612Oad07M4o3CuOJf2XuBTXBPLDTiDlNI5JOVunBHYibvnxqaSNr3/9//galsbfM73kSRpDorI\nEdw92Bn3Ff5eShl6rQYtcF/6q0TkIK4JaBHO4SBD+SZzHr73WmrP4vW4+3a7zzkOJuV74Jy8VXUx\nziNwNO7/tx6vlSBQiNcREhREZCzu5t+tqvVSSPMqzrPiGM4Vb6m3vTPOJTMSeFdVnw+a0CAjIhG4\nZpQbVXV2qPUYhmGkl2DXLMbhrHGyiEhXXBtwdeB2XLswXrPIaO/YOsANIlI7yFoDitdkVdRrFnnU\n2+xPn4RhGEbYEVRjoao/4lwwU6IbzhUOVV0AFBWRMjh3vA2quklVT+Gq/N2DqTUItMC5lSY2LaTk\nsWIYhhH25Apx+eU4190u3tsWncz2izNR13mjqk8CT4Zah2EYRiAIhw5ui6NkGIYR5oS6ZrEN5+WQ\nSHlcLSJ3ku0V+OcgN0QkeL3zhmEY2RhVTdeHeqiNxRScy90EEWmOG5CyS0T2AdVFJAbnCnkdzpXv\nHwTam0sVjhyB3bth1y7YsQO2b1c27zjKxp372bJ3HzsO7mP3kT3kKb6HwmX2kK/ELnIV2c3pfDs5\nHrmLPTO3UrBjQcoVKkd0oWjKFS5H+ULlqVCkAhUKV6BCkQpUKlKJIvmSG18WHIYNG8awYcMyrTx/\nME3+EY6aIDx1mSb/kAwExg6qsRCRj4E2QEkR2YobCJMbQFXfUtVpItJVRDbgBn719fad9gbAzMS5\nzo5R1UwJcy0ChQq5pWrVs1txLuRRJA5MTUhwBmXTJti4Ef74Azash99/h8NLhnJ6+f3ohds5U207\nf1aM50SpeNYXWsIhJrP18BY2H9xMrohcxBSNIaZoDFWKVTm7VC1WlcrFKpMn8h/u8IZhGCEhqMZC\nVZOtDSRJc3cK26fjRuyGJRERUKaMW5o3P3ffsGHCAw8U47ffirF2bV3WrIHV38CqVRAfD9WrQ48G\nSrV6+ylVejP5ozeyP2Ejq/esZupvU/l9/+9sPbSV6ELRVCtejZolalKjRA1qlqhJzZI1qVikIhES\nDt1NhmHkFELdDJUtiY2NpUgRaNrULb4cPw6rV8OKFcLy5SWYPb0ES5deRKFC0LgxtLoI7m8KjRqf\n4kiuzfy27zfW71vP2r1rmbJuCmv3ruXAXweoWaImtUvVpk7JOlxY+kLqlq5L5aKViYyITFFTuGGa\n/CMcNUF46jJNwSOoI7iDjYhoVtafiKprxlqyBBYvhkWL4JdfoFQpaNYMWrZ0S/36kCsXHDpxiLV7\n17J6z2pW71nNqj2rWLl7JXuP7aVOqTrUL12f+he4pUGZBhTPXzzUp2gYRhghIunu4DZjEaYkJMDa\ntbBgAcybB3PnwubNrqZyySVuadECCvoE2j504hArd69kxa4V/LrrV5btWsaKXSsonr84Dcs0pFGZ\nRjQu25iLyl5EdKHoDHVyGUawsPsxOCT3jjRjkc05eNAZjR9/dMuyZVCvHrRt65ZWraBAgXOPSdAE\n/jjwB0t3LGXJjiUs2bmExdsXkysiF02im9CsXDOaRjelabmmlCyQ6nQChhFUvBdYqGVkK1K6pmYs\nchjHj7tax6xZblm2zPV7XHaZWxo3ds1WSVFVtvy5hV+2/8Ki7YtYtH0Ri7cvpkSBEjQv35yLy11M\n8/LNaVimoXlkGZmGGYvAY8bCI6cbi6QcPQpz5sC337olPh46dIAuXaBTJyhXLuVjEzSBdXvXMT9+\nPvPj5zMvfh5/HPiDi8peRMsKLWlVoRUtK7SkRIH0TA5nGP5jxiLwmLHwMGOROjt2wMyZMGOGMx7l\ny8MVV7ilWTOITN5x6iyHThxi4baFzN06l5+2/MT8+PlUKFKBSypewiUVL6FNTBvKFy6feiaG4Sdm\nLAKPGQsPMxb+c+YMzJ8PX33lll274PLLoUcP12SVtK8jOU4nnGb5zuX8uOVH5myew5zNcyictzBt\nYtrQNqYtbWPaUqFIhbQzMoxkyInG4s4776RcuXIMGTIk7cQpEBcXR+/evdm6des/9pmx8DBjkXE2\nbYKpU+HLL52rbrt20LMndOsGxYr5l0eCJrBmzxriNsURtzmOWRtnUSx/MdrFtKN9lfa0q9zOOs0N\nvwl3Y/HRRx8xcuRI1q1bR6FChWjYsCGPPfYYrVq1CqkuMxZ+YMYiMOzfD19/DV98AT/84Fxyr77a\nGY+S6XjXJ2gCK3ev5IeNP/D9xu+Zs3kOVYpVoUPlDnSq1onWFVuTL1e+4J2IkaUJZ2MxcuRInn/+\ned566y06depEnjx5mDFjBnPmzOH550M7iWdmGQtUNcsuTr4RSA4fVv3kE9VevVQLF1bt1El17FjV\nAwfSn9fJ0yf1p80/6dBZQ7XFuy006pko7TS+k46cO1LX7FmjCQkJgT8BI8sSrs/zwYMHNSoqSidO\nnJjs/r/++kvvu+8+jY6O1ujoaL3//vv1xIkTqqo6a9YsLVeunL700ktaunRpLVu2rI4bN+7ssbfe\neqsOGTLk7PqXX36pDRo00MKFC2vVqlV1xowZqqo6duxYrV27thYqVEirVKmib7311tljZs2apeXL\nl09WW0rX1Nuevvdteg8IpyVcb67swuHDqhMmqPbs6QxHjx6qn36qeuxYxvI7cPyATlw1UQdMGaDl\nR5bXmJdj9I6pd+iUtVP0yIkjgRVvZDnC9XmePn265sqVS8+cOZPs/scff1xbtGihe/bs0T179mjL\nli318ccfV1X3Is+VK5cOHTpUT58+rdOmTdMCBQrowYMHVVW1T58+Z9MuWLBAixQpot99952qqm7b\ntk3Xrl2rqqpff/21/vHHH6qqOnv2bC1QoIAuWbLkbBlmLMxYhA0HD7oaRvv2qkWLqvbtqzprlmoK\nz0+aJCQk6MpdK3XEzyM09r1YjXomSjt/0Flfnf+qbjywMZDSjSxCWs+zC4xz/kt6+eCDD7RMmTIp\n7q9atapOnz797PrMmTM1JiZGVd2LPH/+/OcYmtKlS+uCBQtU9Vxjcfvtt+ugQYP80tSjRw995ZVX\nzpaRGcbCQpcaflGkCPTtC99956Ln1q0L990HlSvDY4/B+vXpy09EqFu6Lv9q+S9m3TqL+Afi6d+o\nP4t3LKbpO02p/2Z9Hvv+MRbELyBBE4JzUkaWIlDmIr2UKFGCvXv3kpCQ/H24fft2KlWqdHa9YsWK\nbN++/ZzjIyL+ftUWKFCAI0eO/COf+Ph4qv49L8I5TJ8+nebNm1OiRAmKFSvGtGnT2LdvX/pP5jww\nY2Gkm+hoePBBWL4cpkyBv/6C1q1dvKpx49zkUemlSL4iXFPnGt7r8R47H9zJf6/4L2f0DH0m96H8\nyPLc+dWdzNwwk5NnTgb+hAwjFVq0aEHevHmZNGlSsvujo6PZtGnT2fUtW7YQHR2d7nIqVKjAhg0b\n/rH9xIkTXH311Tz00EPs3r2bAwcO0LVr18TWlUzDjIVxXjRoAC+95EaLP/igc8WtUAEGDHAuuRm5\nnyMjImlZoSXPdXiONXetIa5PHFWKVeHJ2U9S5sUy3PzFzXyx5guOnjwa+BMyjCQUKVKE4cOHc9dd\ndzF58mSOHTvGqVOnmD59Og8//DA33HADTz/9NHv37mXv3r0MHz6c3r17+5V3YhMPQP/+/Rk3bhw/\n/PADCQkJbNu2jXXr1nHy5ElOnjxJyZIliYiIYPr06XzzzTfBPOVkMWNhBITcud0Av8mT3XwdVarA\n9ddDo0bwxhtw6FDG865Rogb/bvVv5vafy6r/W0WrCq1485c3KftSWa7+9Go+/vVjDp84HLiTMYwk\nDBo0iJEjR/L0009TunRpKlasyBtvvEHPnj0ZMmQITZo0oX79+tSvX58mTZqcM8gutWi6InJ2f9Om\nTRk3bhwPPPAARYsWJTY2li1btlCoUCFeffVVrr32WooXL87HH39M9+7d/5FPsLFxFkbQSEhwAQ7f\nesuFG7n2WrjjDmdAAsG+Y/uYsm4Kn63+jJ+3/ky7yu24ts61XFnzSqLyRAWmECPTCOdxFlkVG5Tn\nYcYi67BjB4wZA2+/7QIa3nMPXHMN5AlQUNsDxw8wed1kPln1CXO3zqVj1Y5cX/d6ulbvSv7c+QNT\niBFUzFgEnixjLESkM/AyEAm8q6rPJ9lfDBgLVAH+Avqp6ipv32DgZiAB+BXoq6onkhxvxiKLcfq0\ni001erTzqrr9dlfbKFs2cGXsO7aPSWsn8fHKj1myYwnda3bnhgtvoH2V9uSKsJmEwxUzFoEnSxgL\nEYkE1gEdgG3AIuAGVV3jk2YEcEhVnxKRmsDrqtpBRGKAH4DaqnpCRD4Bpqnq+0nKMGORhVm92hmN\njz92kXDvv9/NwRFIdhzewaerPuWjlR+x6eAmrq97PTfVv4mm0U1tZrYww4xF4AmksQhmB3czYIOq\nblLVU8AEoHuSNLWBWQCqug6IEZFSwCHgFFBARHIBBXAGx8hG1KnjOr//+MPNL37VVc79dtIkFyU3\nEJQtVJb7mt/HgtsW8HO/nymevzg3fXETNUfX5KnZT7Hp4KbAFGQY2ZxgGotygG9kq3hvmy/LgasA\nRKQZUAkor6r7gZeALcB24KCqfhdErUYIKVYM/v1v+P1315fx3HNQq5YzJMeOBa6casWrMTR2KL/d\n/Rvje45n19FdNH2nKbHvxTJ26VjzqDKMVAimsfCnPvkcUFRElgJ3A0uBMyJSFbgfiAGigSgRuSlY\nQo3wIFcu5zE1f74b3PfNNxATA08+CYEcrCoiXFz+YkZ3Hc22Qdu4v/n9TFk3hQqjKnDLpFuYtXGW\njRo3jCQEs7dvG+A7E04FXO3iLKp6GOiXuC4iG4E/gMuBuaq6z9v+BdAS+DBpIcOGDTv7OzY2ltjY\n2EDpN0KEiBsR3ro1rFsHI0ZA9epw881u4J9PZIXzJk9kHnrU6kGPWj3Yc3QPH/76IffPvJ8///qT\nvg370rdRXyoWqRi4Ag0jBMTFxREXF3deeQSzgzsXroO7Pa4paSH/7OAuAhxX1ZMiMgBopap9RKQh\n8AHQFOcl9R6wUFVfT1KGdXDnELZvh5dfdu633brBI49AzZrBK2/JjiWMWTKGCasm0CS6Cbc1uo3u\ntbqTJzJAvr7GP7AO7sCTJbyhAESkC3+7zo5R1WdFZCCAqr4lIi1whkCBlUB/Vf3TO/Yh4Fac6+wS\n4Davo9w3fzMWOYz9+50H1ejR0LatC2JYv37wyjt+6jhfrPmCd5e+y+o9q7ml/i0MaDyAGiVqBK/Q\nHIoZi8Bjkx9ZiPIcz+HDqiNGqJYp4+bb8EL7B5Xf9v6mD33zkF4w4gKNfS9WJ/w6QU+cPhH8gnMI\n4fo8nzhxQvv166eVKlXSQoUKacOGDc+GJJ81a5aKiEZFRWlUVJSWL19er732Wl20aFGa+S5YsEC7\ndOmiRYsW1eLFi2uzZs3OTox0Pvn6ktI1xUKUGzmFqCj417+cB1WbNm6cRrdusHhx8MqsXqI6z1/2\nPFse2ML/Nfk/3l7yNhVGVeCR7x5h44GNwSvYCCmnT5+mYsWKzJkzh0OHDvH0009z7bXXsnnzZgDK\nlSvH4cOHOXz4MPPnz6dWrVpccskl/PDDDynmOW/ePNq3b0/btm35/fff2bdvH2+++SYzZsw4myYj\n+QaV9FqXcFoI0y8RI/M5flz11VdVo6NVu3dXXbo0c8pdt3edDpoxSEs8X0Iv//By/WrdV3r6zOnM\nKTybkZWe5/r16+sXX3yR4sRDd999tzZp0iTF41u1aqV33313ivszmm9SUrqmWM3CyKnky+fGaGzY\n4PoyunZ1sadWrQpuuTVK1OClTi+x9YGtXFPnGp6c/STVX6vOi3NfZP/x/cEt3AgJu3bt4rfffqNu\n3boppunZsydLlizh+PHj/9h37Ngx5s+fzzXXXJPuslPLN9ik6TorIuNVtXda2wwjHMif383gN2CA\nG9TXrh107AjDhkEKk5AFptzc+enTsA99GvZh4baFvL7odaq+WpWra1/N3c3upmGZhsErPIcgTwYm\nPIsOzXgn+qlTp7jpppvo06cPNWrUOGdGPF+io6NRVQ4ePEj+/OcGsjxw4AAJCQmUzUBAtNTyDTb+\njLO40HfFc4kNcAQfwwgsBQq4Po3bb3cutxdf7GoaTzzhZvoLJs3KNaNZuWbsPrqbdxa/wxUfXUHV\n4lW5t9m9dK/V3YIZZpDzeckHgoSEBHr37k2+fPkYPXp0qmm3bduGiFC0aFGeeeYZnn32WQB69+7N\nSy+9REREBDt27KBGjfR51fnmm9mk2AwlIo+KyGGgnogcTlyA3cCUTFNoGOdB4cLOQKxb537XqweD\nB8PBg8Evu3TB0jx26WNsvG8jdzW9i5HzR1Lt1Wq8OPdFDv6VCQKMgKGq9O/fnz179vD5558TGRmZ\navpJkybRuHFj8ufPz6OPPnq2o/qNN94gf/78tGjRgokTJ6Zbh2++mU5anRrAc+ntCMmshSzUIWaE\nB1u3qvbvr1qqlHO9PX48c8tftG2R3vT5TVrsuWJ6z7R7dP2+9ZkrIIwJ5+d54MCB2rx5cz1y5Mg5\n2307ohMSEjQ+Pl6HDRum+fLl02+//TbF/ObOnatRUVE6YsQI3bt3r6qqLlu2TK+//vrzyjcpKV1T\nMtDB7e9LuRwu3MaliUt6CwrGEs43lxHerF7tvKYqVVIdP171zJnMLT/+z3gd/N1gLflCSe0xoYf+\ntPknTUhIyFwRYUa4Ps+bNm1SEdH8+fOfHfcQFRWlH330kcbFxWlERIRGRUVpwYIFNTo6Wnv16qUL\nFixIM9+FCxdqly5dtEiRIlq8eHG9+OKLdfz48arqjEVG8/UlkMYizRHcIvI8cB2wGjgbOFpVrwxk\nDScj2Ahu43z58UcX8fbkSXjxRdchnpkcPXmU95a9x6j5oyhZoCQPtniQq2pfRWRE6s0c2REbwR14\nMjXch4j8BtTTJLPUhQNmLIxAoAoTJ8LDD8OFF8ILL7gQ6ZnJmYQzTFk3hRFzR7D76G4ebPEgfRr2\nyVFTwpqxCDyZPfnR74BFTzOyLSLQqxesWQOXXuqi3d5zT2DDoqdFZEQkPWv3ZG7/ubzf431m/j6T\nmFdiGD57uI3XMMICf4zFcWCZiLwtIq95y6vBFmYYmU3evM7ddu1aSEiA2rXhtdfg1Km0jw0krSq2\n4svrv2R2n9lsPriZaq9W48GZDxJ/KD7tgw0jSPjTDNXH+5mYUHCdI+8nf0TmYc1QRjBZuRIeeAC2\nbXNjNTp2DI2O+EPxjJo3inHLxtGzVk8eaf0I1UtUD42YIGLNUIEn00OUi0gBoKKqrk1P5sHGjIUR\nbFRh6lSbumClAAAgAElEQVQYNMiN0XjpJahSJTRa9h/fz2sLXmP0otG0r9yewa0H06BMg9CICQJm\nLAJPpvZZiEg33HSnM7z1RiJig/KMHIGIi2a7ciU0a+aWxx8P7Nzg/lI8f3GGxg7lj3v/oGl0U7p8\n2IVuH3dj4baFmS/GyHH40wy1BGgHzFLVRt62lap6YaoHZgJWszAym/h452o7bx6MGgU9ejiDEgr+\nOv0XY5eO5fmfn6dWyVo8funjtK7YOjRiAoCE6kJmczLTdXaBql4sIkt9jMUKVQ3i/GT+YcbCCBWz\nZsFdd7n5wF991c0RHipOnjnJ+OXjeeanZ6hUpBJD2wylTUyb0Akywp5guc6uEpGbgFwiUl1EXgPm\nZkihYWQT2raF5cuhfXto0QKGDoW//gqNljyReeh/UX/W3rWWWxrcQv8p/WnzXhtmbZwVGkFGtsSf\nmkVB4DEg0RdkJvCUqobo0fgbq1kY4UB8PNx/PyxbBq+/Dp06hVbP6YTTfPTrRzw15ynKFSrHk7FP\nWk3DOIegeUNlFBHpDLwMRALvqurzSfYXA8YCVYC/gH6qusrbVxR4F6iLc9vtp6rzkxxvxsIIG6ZN\ng7vvhqZNnattBqYrCCinE07z4YoPGT5nOJWKVGJ42+FZuk/DCBwBNRYi8oqq3iciU5PZraraLQ0x\nkcA6oAOwDVgE3KCqa3zSjAAOqepTIlITeF1VO3j73gdmq+pYbw6Ngqr6Z5IyzFgYYcWxY/Cf/8Db\nb8NTT7n5NCJCPB/lqTOnGL9iPMNnD6dWyVoMbzucZuWahVaUEVICbSwaq+piEYlNZreq6uw0xLQA\nhqpqZ2/9Ee/A53zSfIULgf6Tt74BaAGcBJaqaqoe7WYsjHBl5UoYONCN03j7bRdzKtScPHOSMUvG\n8J8f/8NFZS/i6XZPU/+CkPupGCEgoB3cqrrY+/kL8KOqxqlqHPCjty0tygFbfdbjvW2+LAeuAhCR\nZkAloDxQGdgjIuNEZImIvOMNDDSMLMGFF7qItrfc4jrDn3gCToQ4FGeeyDzc2fRO1t+znrYxbek4\nviM3fn4j6/etD60wI0vgl+ss0F5Vj3jrhYCZqtoyjeOuBjqr6gBv/WbgYlW9xydNIeAVoBHwK1AL\nuA0XuHAe0FJVF4nIy7jmqieSlKFDhw49ux4bG0tsbKw/520Ymca2ba4vY+1aePddaNUq1IocR04e\n4ZX5rzBq/ih61urJ0NihlC9cPtSyjCAQFxdHXFzc2fUnn3wyKOMslqlqw7S2JXNcc2CYTzPUYCAh\naSd3kmM2AvWAKGCeqlb2trcGHlHVK5Kkt2YoI8vwxRcumm3PnvDss1CoUKgVOfYf388LP7/AO0ve\noX+j/jzS+hGK5y8eallGEAnWOIujItLYp5AmuEi0afELUF1EYkQkD24CpXPChIhIEW8fIjIA16F9\nRFV3AltFJHE28w7AKj/KNIyw5aqrXF/GsWMuztS334ZakaN4/uI81+E5fr3zVw6fOEzN0TV55sdn\nOHryaKilGWGEPzWLpsAEYIe3qSxwnaqm2W8hIl3423V2jKo+KyIDAVT1La8T/D2ca+xKoH+ix5OI\nNMC5zubBzanR17yhjOzCN984T6l27WDkSChaNNSK/mb9vvUMmTWEn7b8xNA2Q+nXqB+5InKFWpYR\nQIIZdTYPUBP3Ul+nqpkc4T95zFgYWZnDh+GRR2DKFOcx1aVLqBWdy6Jti3j4u4fZfng7z7Z/lh61\nelj8pmxCoF1n26vq915HteLmscD7jap+cT5iA4EZCyM78MMP0L+/85oKt1qGqjLz95k89O1DFMlX\nhBGXjaB5+eahlmWcJ4Hus7jU+3ult1zhLYnrhmEEgHbtYMUKyJcP6td3TVThgojQuVpnlg5cSr+G\n/ej1WS96fdaL3/f/HmppRiaTWs3iflV9WURaJw6aCzesZmFkN777ztUyunaFESMgKirUis7l2Klj\nvDz/ZUbOG8ktDW5hyKVDzHMqCxLomkVf7+9rGZdkGEZ66NDB1TJOnIAGDdzAvnCiQO4CPHrJo6z6\nv1UcO3WMWqNr8fL8lzl55mSopRlBJrWaxcdAE9yo66R1TrX5LAwjuEyZAnfcAb17w/DhkDdvqBX9\nk9V7VvOvb/7Fhv0beLHji1xZ40rrBM8CBNwbSkTK4EKSd+PvDm4AVHVTBjQGFDMWRnZnzx7nYvvH\nH/DBB258Rjgyc8NMBn0ziDJRZRjZcWS2mhs8OxLQZigR+d4bHDdTVTer6ibf5XzFGoaRNqVKuZHf\n99//95iMhIRQq/onnap1Yvkdy7m69tV0/KAjA6cOZM/RPaGWZQSQ1PosyopIK6CbiFwkIo29vxeJ\nyEWZJdAwcjoi0LcvLFwIn38OHTu6eFPhRq6IXPxf0/9j7V1ryZ87P3XeqMNLc1+y/oxsQmp9Fr2A\n/kArkokyq6ptgystbawZyshpnD7t4kqNHu1m5bvmmlArSpm1e9fywMwH2HhgIy93fpnO1TqHWpLh\nEZQR3CLyhKoOPy9lQcKMhZFTWbAAbroJ2rSBV14JPxfbRFSVr9d/zQMzH6B2ydqM7DSSasWrhVpW\njidYgQSfFpHeIvKEV0hFb+4JwzBCxMUXw9KlcOYMNG4MixenfUwoEBGuqHEFK+9cSasKrWj+bnMe\n/f5RC1KYBfHHWLyBm73uRm/9iLfNMIwQUqgQvPceDBsGnTvDiy+GZ+c3QN5ceXm49cOsuHMFW/7c\nQu3Xa/Ppqk+xloGsgz/NUEtVtVHiX2/bclUNuW+cNUMZhmPTJrjxRihcGN5/Hy64INSKUmfO5jnc\nM/0eSuQvweiuo6lTqk6oJeUogtUMdVJEIn0KKQWE6feLYeRMYmJg9my46CJo1MiFDQlnLq10KYtv\nX0zPWj1p814b/v3Nvzl84nCoZRmp4I+xeA2YBJQWkWeAn4Fng6rKMIx0kzs3PPMMjB8Pt94Kjz7q\nvKfClVwRubjn4ntYeedK9hzbQ5036ljTVBjj73wWtYH23ur3qromqKr8xJqhDCN5du92YUKOHYOP\nP4byWWBq7Z+2/MSdX99J2aiyjO46mholaqR9kJEhgtUMBZAXF+5DcDPXGYYRxpQuDdOnw+WXQ5Mm\nMG1aqBWlTeuKrVly+xI6V+tMyzEteWLWExw/5c8MzkZmkKaxEJH7gA+AUkBp4AMRuTfYwgzDOD8i\nItxMfBMnuoCEDz8Mp8JijsuUyR2Zm0EtBrHsjmWs2buGem/W45vfw2iCjxyMP95QvwLNVfWot14Q\nmK+qIQ9pZs1QhuEfe/e6ZqkjR2DCBChXLtSK/GPa+mncPe1umpVrxqhOoyhbqGyoJWULgtkMlZDC\n77QEdRaRtSKyXkQeTmZ/MRGZJCLLRWSBiNRNsj9SRJaKyFR/yzQM45+ULAlff+3m+W7SJLxm40uN\nrtW7svL/VlKlWBXq/7c+byx6gwQ1Z8xQ4E/NYhDQB/gC12fRA3hPVUelcVwksA7oAGwDFgE3+HaO\ni8gI4JCqPiUiNYHXVbVDkrIbA4VUtVsyZVjNwjDSSVycCxVy++3w+OOuuSorsGr3KgZ+NZAzeoa3\nr3ibeheEvHEjyxKUmoWqjsTNmncA2Af0SctQeDQDNnghzU8BE4DuSdLUBmZ55awDYrxxHIhIeaAr\n8C5J5tIwDCPjxMbCL7/A99+76Vv37g21Iv+oW7ouc/rOoV/DfrT/X3sGfzfYOsAzEX86uJsD61X1\nFVV9FfhdRC72I+9ywFaf9Xhvmy/Lgau8cpoBlYBEJ79RwL+xAYCGEXDKlnXGol49F1tq4cJQK/KP\nCIlgQOMBrLhzBRsPbqTem/X4/o/vQy0rR5DLjzT/BRr5rB9NZlty+NM+9BzwiogsBX4FlgIJInIF\nsFtVl4pIbGoZDBs27Ozv2NhYYmNTTW4Yhkfu3DBiBLRo4Vxsn37aNU1lhVlRy0SVYcI1E/j6t6/p\nN6UfbWPa8lLHlyhRoESopYUlcXFxxMXFnVce/vRZLFPVhkm2rUhrDm6vRjJMVTt764OBBFV9PpVj\nNgL1gcFAb+A0kA8oDHyuqrckSW99FoYRAH77DXr2hGbN4I03IH/+UCvyn8MnDjPkhyF8uvpTRnUa\nxXV1r7N5wNMgWPNZTML1K7yJ6zu4E2irqj3SOC4XroO7PbAdWMg/O7iLAMdV9aSIDABaqWqfJPm0\nAf6lqlcmU4YZC8MIEEeOwG23wfr1bka+mJhQK0of87bO47apt1GlWBXevPxNyhfOAsPWQ0SwXGfv\nwM2Wtw3X79AcuD2tg1T1NHA3MBNYDXyiqmtEZKCIDPSS1QF+FZG1QCfgvpSy80OnYRjnQVSUCw1y\n883QvHn4ByNMSosKLVhy+xIal21Mw/825L+//NfcbAOIX7GhwhWrWRhGcIiLgxtugAcfdEtWa9VZ\ntXsV/ab0o0DuArx75btULV411JLCimAOyjMMIwcRG+umbp0wwRmNo1lsYru6pesyt99crqxxJc3H\nNGfUvFGcSTgTallZGqtZGIaRIsePw513uilcv/wSKlcOtaL0s2H/Bm6bchsnz5xkbPex1CpZK9SS\nQo7VLAzDCCj588O4cdC/v3Ox/eGHUCtKP9WKV+OHW3/g5vo3c8m4S3jh5xc4nRDGE32EKf54Q90P\njAMO4UZTXwQ8oqozgy8vdaxmYRiZxw8/uKlbBw+Ge+/Nev0YABsPbOS2qbdx5OQRxnUfl2Oncw1W\nzaKfqv4JdASK48Y/PJcBfYZhZGHatYN582DsWOdie+JEqBWln8rFKvNd7+/o27Avl467lBd+fsH6\nMvzEH2ORaH0uB8ar6sog6jEMI4ypXBl+/hkOHnTGY+fOUCtKPyLCHU3uYNGARczYMINWY1uxdu/a\nUMsKe/wxFotF5BtcUL+ZIlIYi9dkGDmWqCj47DO47DI34nvJklAryhiVi1Xmu1u+o3f93rQe25pR\n80bZuIxU8KfPIgIXB+p3VT0oIiWAcqq6IjMEpob1WRhGaJk40XlLvfkmXHNNqNVknA37N9B3cl8i\nJIJx3cdRpViVUEsKKsHqs2gBrPMMRW9gCPBnRgQahpG9uOYamDkTBg2C4cMhq367VStejbhb4+he\nszvN3mnGW7+8hX2Inou/06rW95b3cB5R16pqm6CrSwOrWRhGeLBjB/ToAVWquA7wrBSIMClr9qyh\n96TelCpYijHdxhBdKDrUkgJOsGoWp703cg/cTHavA4UyItAwjOxJ2bIuRIgItGmTNTu+E6ldqjbz\n+s+jebnmNHqrEZ+s/CTUksICf2oWc4AZuNnyLgH2AMtUNeRzGlrNwjDCC1V46ikYMwamToX6qU5k\nEP78sv0Xek/qTaMyjXi96+sUy18s1JICQrBqFtcBJ3DjLXbiZrsbkQF9hmFkc0TgiSfg+eehfXv4\n+utQKzo/mkQ3YfHtiylZoCQN/tuA7/7IYqF4A4hfsaFEpAzQFBcqfKGq7g62MH+wmoVhhC/z58NV\nV8Ejj7gR31mdb37/hn6T+3F17at5rsNz5M+ddTtmglKzEJFrgQVAL+BaYKGI9MqYRMMwcgrNm8Pc\nufDWW85YnMniA6U7Vu3IijtXsPPoTpq804RlO5eFWlKm4k+fxQqgQ2JtQkRKAd+nNa1qZmA1C8MI\nfw4ehF69IG9eF/I8KirUis4PVeWDFR8w6JtBPNTyIR5s+SARkrVisgarz0JwndqJ7OPvECCGYRip\nUrQoTJvmPKYuuQS2bQu1ovNDROjdoDeLBixiym9T6PC/DsQfig+1rKDjj7GYgQvz0UdE+gLTgOnB\nlWUYRnYid254+224/noX6vzXX0Ot6PyJKRpD3K1xdKjSgcZvN+bz1Z+HWlJQ8acZSoCrgNa4Du4f\nVXVSJmhLE2uGMoysx4QJrg/jww9dfKnswMJtC7nx8xtpU6kNr3R5hag84d3WFpRmKHV8rqoPqOqg\n9BoKEeksImtFZL2IPJzM/mIiMklElovIAhGp622vICKzRGSViKwUkWzgT2EYxvXXw+efQ+/ebmKl\n7ECzcs1YOnApinLRWxfxy/ZfQi0p4KRYsxCRI7iaRHKoqhZOM3ORSGAd0AHYBiwCblDVNT5pRgCH\nVPUpEamJGyXewXPXLaOqy0QkClgM9EhyrNUsDCOLsm4ddOkCt9wCQ4dmzcmUkuOTlZ9wz/R7+HfL\nf4dt53dAaxaqGqWqhVJY0jQUHs2ADaq6SVVPAROA7knS1AZmeWWuA2JEpJSq7lTVZd72I8AaIPsF\naTGMHErNmm4ypa++ctO2njoVakWB4boLr2PRgEVMXjeZTh90YsfhHaGWFBCCbfLKAVt91uO9bb4s\nx/WJICLNgEpAed8EIhKDC5O+IEg6DcMIARdc4GJK7doFV14Jhw+HWlFgqFS0EnF94mhVoRUXvX0R\n09dnfZ+gXEHO3582oueAV0RkKfArsBQ4O3zHa4KaCNzn1TDOYdiwYWd/x8bGEhsbe36KDcPIVKKi\nYPJk+L//c0EIp02DMmVCrer8yRWRi2Gxw2hXuR03f3Ez19S5hmfbP0veXHkzXUtcXBxxcXHnlYdf\n4T4ynLlIc2CYqnb21gcDCar6fCrHbATqqeoREckNfAVMV9WXk0lrfRaGkU1IDEL4/vswYwZUrx5q\nRYFj37F99J/Sn62HtjLh6glULxHakwtWuI97RSSjoRZ/AaqLSIyI5MEFJZySJP8i3j5EZAAw2zMU\nAowBVidnKAzDyF4kBiEcPBguvRQWLgy1osBRokAJJl03iX4N+9FybEs+XPFhqCWlG3/GWfwH95Jf\nAowFZqbnc15EugAvA5HAGFV9VkQGAqjqWyLSAjepkgIrgf6q+qeItAbmACv4uzlrsKrO8MnbahaG\nkQ2ZOtV1er//vvOYyk4s27mM6yZeR6sKrXity2sUzFMw0zVkpGbhb9TZCKAj0AdoAnyKe/H/ngGd\nAcOMhWFkX+bNg5494YUXnHttduLIySPcNe0uFm5byKfXfEq9CzJ3eqBgxYZCVROAncAuXOdzMWCi\nN0bCMAwj4LRoAbNmweOPw4svhlpNYInKE8X7Pd7nkVaP0O5/7Xh3ybthP+e3P81Q9wG34AIIvgtM\nUtVTXm1jvapWDb7MFLVZzcIwsjnx8dCpk2uOeuEFiAi/MW7nxeo9q7lu4nXUK12Pt654i0J5gz9r\ndbBqFsWBq1S1o6p+6g2uS6xtXJkBnYZhGH5Tvjz8+KNrlurbN/sM3kukTqk6LLhtAQVzF6Tx241Z\nvnN5qCUliz/GoqqqbvbdICLjAVR1dVBUGYZh+FC8OHz7LezZ42bfO3481IoCS4HcBXin2zs80eYJ\nOozvwDuL3wm7Zil/mqGWqmojn/VcwApVrRNscWlhzVCGkbM4dcrVLjZvdh5TRYuGWlHgWbNnDb0+\n60XDMg357xX/DUoE24A2Q4nIoyJyGKgnIocTF2A3ScZKGIZhZAa5c8P//gcXXeRGe+/cGWpFgad2\nqdosHLCQ3JG5afZOM1bvCY8GHH9qFs+p6iOZpCddWM3CMHImiaO9x493zVMxMaFWFBzGLR3HQ989\nxKhOo7i5/s0Byzeg4yxEpJaqrhWRxiQT40lVl2RMZuAwY2EYOZvXXnMeUjNnQp2QN4wHhxW7VnDN\np9fQNqYtr3R5hXy58p13noE2Fu+o6gARiSN5Y9E2QyoDiBkLwzA++AD+9S/Xh9G0aajVBIdDJw7R\nf0p//jjwBxN7TaRyscrnlV/AR3B7YylaqOrP56UsSJixMAwD/g4P8tlnri8jO6KqvLrgVZ756Rne\nvfJdrqyZ8ZELQQn3ISLLVLVhhlUFETMWhmEkMmsWXHcdvPcedO0aajXBY+7WuVw38Tp61+/N8LbD\nyRWR/pkmgmUsXgTmA5+H25vZjIVhGL4sWADdusGrrzrDkV3ZfXQ3N3x+A4Lw8dUfU6pgqXQdH6wR\n3HfgAgee9HGhPZQuZYZhGJnAxRc776gHHoAxY0KtJniULliamTfPpGl0Uxq/3ZgF8cGfRDSokx8F\nG6tZGIaRHOvXQ4cO8OCDcO+9oVYTXCavncyAqQN4MvZJ7mhyB24qoNQJZojyYkB14KzPlqrOSU9B\nwcCMhWEYKbF5M7Rv7zq+Bw8OtZrgsmH/Bnp+0pPGZRvz5uVvkj93/lTTB2umvAG4SYi+AZ4EZgLD\n0lOIYRhGZlOpEsyZ41xrH3vMDeTLrlQrXo35/edz8sxJWo1txcYDGwNehj99FvcBzYBN3tiKRsCf\nAVdiGIYRYKKjIS4Opk+HQYOyt8EomKcgH171Ibc2uJXmY5rz277fApq/P95Qv6hqExFZBjRX1b9E\nZLUFEjQMI6tw4ICbD6NRI3j99ew3J0ZSlu9cTr0L6hEhyZ9osLyhtnp9Fl8C34rIFGBTegoxDMMI\nJcWKwTffwMqVrg/jzJlQKwouDco0SNFQZJR0eUOJSCxQGJihqif9SN8ZeBmIBN5V1eeT7C8GjAWq\nAH8B/VR1lT/HemmsZmEYht8cPQrdu0OpUi4IYa70j2fLFgQ6NlTx1A5U1f1piIkE1gEdgG3AIuAG\nVV3jk2YEcEhVnxKRmsDrqtrBn2O9481YGIaRLo4fh6uvhgIF4OOPXdjznEagm6GWAItTWdKiGbBB\nVTd5U7FOALonSVMbmAWgquuAGBEp7eexhmEY6SZ/fpg0CU6ehF694MSJUCvKGqRoLFQ1RlUrp7T4\nkXc5YKvPery3zZflwFUAItIMqASU9/NYwzCMDJE3L0ycCJGRbprWv/4KtaLwJ80WOxG5NLntfgzK\n86d96DngFRFZCvwKLAXO+HksAMOGDTv7OzY2ltjYWH8PNQwjB5MnD0yYAL17u3hSkye7Wkd2JC4u\njri4uPPKwx/X2a/4++WdD9dEtFhV26VxXHNgmKp29tYHAwnJdVT7HLMRqAdc6M+x1mdhGMb5cvo0\n3Hor7NoFU6a4vozsTlBcZ1X1ClW90lsuw73ID/qR9y9AdRGJEZE8wHUkmbtbRIp4+xJHis9W1SP+\nHGsYhhEIcuVy83qXLQtXXOE8pox/khFH3Hhcx3SqqOpp4G5ceJDVwCequkZEBorIQC9ZHeBXEVkL\ndMKNFk/x2AxoNQzDSJPISDcPRsWKcPnlcORIqBWFH/40Q73msxoBNAQ2qmrgZg/PINYMZRhGIDlz\nBgYMgN9/h2nToGDBUCsKDsGa/KiPz+ppXIyon9IvL/CYsTAMI9AkJMBtt2VvgxG0EOXhihkLwzCC\nQXY3GMGqWfyK84byzfhP3Kjqp1V1X3qFBgozFoZhBIvsbDCCZSxG4JqfPsIZjOuBAsBOoJWqXpkx\nueePGQvDMIJJosHYuBG+/jr7uNUGy1gsVdVGyW0TkV9VtV4GtAYEMxaGYQSbM2egXz+Ij4epU7OH\nwQhWiPJIEbnYp5BmPsedTk9hhmEYWY3ISBg71o3D6N7dBSLMifhTs2gKjAOivE2Hgf7AKuByVf00\nqApT12Y1C8MwMoXTp11okAMH4MsvIV++UCvKOEH1hhKRIgCqGjZTqpqxMAwjMzl9Gm68EY4dg88/\ndwEJsyLB6rPIB1wNxPB34EFV1eEZERlIzFgYhpHZnDoF117r5vP+7LOsOR9GsPosJgPdgFPAEW+x\n6CmGYeRIcueGTz75u5ZxOof03PpTs1ipqhdmkp50YTULwzBCxV9/QY8eULy4m6I1MjLUivwnWDWL\nuSJSP4OaDMMwsiX58rkZ93btcvGkEhJCrSi4+FOzWANUAzYCiRMQqqqG3IBYzcIwjFBz9Ch07gz1\n6sHrr4Ok63s9NASrgzsmue2quik9BQUDMxaGYYQDhw7BZZdBq1bw0kvhbzCCNfnRJs8wHAMSfBbD\nMAwDKFwYZsyAuDgYMiTUaoJDmsZCRLqJyHpcM9RsYBMwPci6DMMwshTFisE337gBe888E2o1gcef\nDu6ngRbAb6paGWgPLAiqKsMwjCxIyZLw3Xcwbhy88kqo1QSWXGkn4ZSq7hWRCBGJVNVZIpLNLoNh\nGEZgKFsWvv8eLr3UhTW/7bZQKwoM/hiLAyJSCPgR+FBEduMG5hmGYRjJULGiq2HExrootTfeGGpF\n548/zVDdcZ3bDwAzgA2AX3NYiEhnEVkrIutF5OFk9pcUkRkiskxEVvpO4Soig0VklYj8KiIfiUgW\njcJiGEZOpFo1mDkTBg2CyZNDreb8Cdq0qiISCawDOgDbcDPr3aCqa3zSDAPyqupgESnppb8AKA/8\nANRW1RMi8gkwTVXfT1KGuc4ahhHWLF4MXbrARx9Bhw6hVuMI1gjujNIM2OC53p4CJuBqKb7sAAp7\nvwsD+1T1NHAIF4uqgIjkws3Mty2IWg3DMIJC48YuQu2NN8LcuaFWk3GCaSzKAVt91uO9bb68A9QV\nke3AcuA+AFXdD7wEbAG2AwdV9bsgajUMwwgal1zi4kf17AnLloVaTcZIs4NbRDoAP6tqeueH8qd9\n6FFgmarGikhV4FsvDtUFwP24sOh/Ap+JyE2q+mHSDIYNG3b2d2xsLLGxsemUaRiGEXw6dYI33oCu\nXd3gvRo1Mq/suLg44uLizisPf8J9/A9oDhwA5njLT6p6II3jmgPDVLWztz4YSFDV533STAP+o6o/\ne+vfA48AlYGOqnqbt7030FxV70pShvVZGIaRpRg3DoYNgx9/dF5ToSBY4T5uUdUaQE9cs9LrwB4/\n8v4FqC4iMSKSB7gOmJIkzVpcBzgicgFQE/gd19HdXETyi4h4aVb7d0qGYRjhS9++8MADrrN7165Q\nq/Eff5qhegOtgfo4IzEa+Cmt41T1tIjcDcwEIoExqrpGRAZ6+98CngHGichynOF6yOuv2O/VaH7B\nxaFaArydgfMzDMMIO+6/383l3amTa5IqWjTUitLGn2aofbiv/TeBOFXdmBnC/MGaoQzDyKqown33\nwdKlbjxGgQKZV3awQpQLUBe4xFuq4eJE3ZxRoYHCjIVhGFmZhAS49VbYv98FIMys+byDNc6iEFAR\nqOeX3uUAABJVSURBVITzTiqKhSg3DMM4byIiYOxY97dPn/Cebc+fmsUK4GdcbKg5qhqfGcL8wWoW\nhmFkB44fd7Pt1a8Pr74a/MmTgtIM5ZN5Idx0qmETRNCMhWEY2YU//3SBB3v2hCeeCG5ZQWmGEpF6\nIrIUWAWsFpHFInJhRkUahmEY/6RIETfb3v/+5wbvhRv+hCh/GxikqrMARCTW29YyiLoMwzByHBdc\n4Gbbu/RSKF4crr8+1Ir+xh9jUSDRUACoapyIFAyiJsMwjBxLlSowbRpcdpkzGB07hlqRwx9vqI0i\n8rg3EruyiAwB/gi2MMMwjJxK/fouUu1NN8GiRaFW4/DHWPQDSgNfAJ8DpbxthmEYRpBo3RrGjIFu\n3WDdulCrCeLkR5mBeUMZhpHdGTsWnnoKfv4ZoqMDk2dGvKFS7LMQkampHKeq2i09BRmGYRjpp18/\nF3CwUycXqTZUcaRSrFl4Xk8poao6OyiK0oHVLAzDyAmouuCDy5a5OFL58p1ffgEdlCcilVR18/lJ\nCi5mLAzDyCkkJMANN8Dp0/DppxAZmfG8Aj0o70ufjD/PsCrDMAzjvImIcAP2Dh6Ee+5xtY1MLd/P\ndFWCqsIwDMNIk7x5YdIkmDcPnn46c8v2Z1CeYRiGESYULgzTp0PLllCunOsAzwxS67M4AxzzVvMD\nx312q6oWDrK2NLE+C8Mwcirr1kGbNs61tmvX9B0b1Kiz4YgZC8MwcjLz58OVV7rwIE2b+n9csCY/\nyjAi0llE1orIehF5OJn9JUVkhogsE5GVItLHZ19REZkoImtEZLWINA+mVsMwjKxG8+Z/j/LesCG4\nZQWtZiEikcA6oAOwDVgE3KCqa3zS/H975x5tVXHf8c8XkIiID4SgMRhNtL5WIoohRGK9KZbaRqDW\ntNZEg7RBV5eoa9kYH63N1SRaNTEPH41SFdSoGCwujSmChBuNgBTkoUAwUXT5QMDHYiG2KvDrH/Pb\n3s3xnLvvJffcfS78PmvddefMnj3z3b8zZ//2zOyZaQY+ZmaXShrg6QeZ2WZJU4DfmNntknoBfc1s\nQ0UZ0bIIgmCn59Zb4brrYO5cGDiwOH2jtSyGAX8wsxfN7APgPmBsRZo1QDb2sQfwpjuKPYHjzex2\nADPbXOkogiAIgsTZZ6flzE8+GTZtqk8Z9XQW+wMv5z6/4nF5JgFHSnoNWApc4PEHAesl3SHpaUmT\nJO1WR61BEATdmiuvhMMOS05j8+bOz7+ezqI9/UOXAUvM7BPAEOAm3761F3AMcLOZHQNsAi6pm9Ig\nCIJujgSTJsF778HEiZ0/aa+e8yxeBQbnPg8mtS7yHAd8H8DMnpe0GjjU071iZtlK7tOo4Syam5s/\nDDc1NdHU1NQJ0oMgCLofvXvDtGlp0cHnnoNDD03xLS0ttLS0/FF513OAuxdpwHok8BqwgI8OcF8P\nbDCzKyQNAhYBnzOztyQ9DnzTzJ7zgfA+ZnZxRRkxwB0EQVDB1q1peZBadOoS5X8sPlA9EXgU6Anc\nZmYrJZ3jx28BrgLukLSU1CX2bTN7y7M4D/i5pN7A88D4emkNgiDYkWjLUWwvMSkvCIJgJ6PRXp0N\ngiAIdhDCWQRBEASFhLMIgiAICglnEQRBEBQSziIIgiAoJJxFEARBUEg4iyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICglnEQRBEBQSziIIgiAoJJxFEARBUEg4iyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICqmrs5B0kqTfSfq9pIurHB8gaYakJZKelXRWxfGekhZLerieOoMg\nCIK2qZuzkNQTuBE4CTgCOF3S4RXJJgKLzWwI0AT8UFKv3PELgBWA1UtnPWhpaSlbwkcITe0jNLWf\nRtQVmupHPVsWw4A/mNmLZvYBcB8wtiLNGmAPD+8BvGlmmwEkfRL4K+A/AdVRZ6fTiJUjNLWP0NR+\nGlFXaKof9XQW+wMv5z6/4nF5JgFHSnoNWEpqSWT8CLgI2FpHjUEQBEE7qKezaE/X0WXAEjP7BDAE\nuElSP0knA+vMbDHdrFURBEGwIyKz+gwHSBoONJvZSf75UmCrmV2TS/Mr4Ptm9qR/ng1cApwCnAls\nBnYldVE9YGbfqCijW41lBEEQNApm1qEH8Xo6i17AKmAk8BqwADjdzFbm0lwPbDCzKyQNAhYBnzOz\nt3JpTgC+ZWaj6yI0CIIgKKRXcZLtw8w2S5oIPAr0BG4zs5WSzvHjtwBXAXdIWkrqEvt23lHks6uX\nziAIgqCYurUsgiAIgh2HbjuDu2jCXxlIelHSMp9IuKAkDbdLWivpmVxcf0mzJD0naaakvRpEV7Ok\nV9xeiyWd1IV6BkuaI2m5Twg93+NLtVUbusq01a6SnvLJsyskXe3xpdmqDU2l2SmnbZvJxGXXqRqa\nOmynbtmy8Al/q4ATgVeB/6FiPKQkXauBoTW60rpKw/HAO8CdZvZZj7sWeMPMrnXHureZXdIAur4D\nbDSz67tSi5e9L7CvmS2RtDtpvOyvgfGUaKs2dP0dJdnKde1mZu/6WORvgW8BYyjXVtU0jaREO7mu\nC4GhQD8zG9Mgv79KTR3+7XXXlkV7JvyVRamv+prZE8DbFdFjgCkenkK6+XQpNXRBSfYys9fNbImH\n3wFWkuYBlWqrNnRBiXXLzN71YG/SGOTblG+rapqgRDvVmExcqp1qaBIdtFN3dRbtmfBXBgY8Jmmh\npAlli8kxyMzWengtMKhMMRWcJ2mppNvKaJ4DSDoQOBp4igayVU7XfI8qzVaSekhaQrLJHDNbTsm2\nqqEJyq1T1SYTl12nqmkyOmin7uosGrXvbISZHQ38JXCud700FJb6HRvFfv8BHESakLkG+GFXC/Cu\nngeAC8xsY/5YmbZyXdNc1zuUbCsz2+pruH0S+FNJX6443uW2qqKpiRLtpHZMJu5qO7WhqcN26q7O\n4lVgcO7zYFLrolTMbI3/Xw9MJ3WXNQJrvS8cSfsB60rWA4CZrTOH1ETuUntJ2oXkKO4yswc9unRb\n5XTdnekq21YZZrYBeITU/126rSo0HVuynY4DxvjY5b3An0m6i3LtVE3Tndtjp+7qLBYCh0g6UFJv\n4DTgoTIFSdpNUj8P9wVGAc+0fVaX8RAwzsPjgAfbSNtl+A8n4xS60F6SBNwGrDCzH+cOlWqrWrpK\nttWArJtCUh/gz4HFlGirWpqym7LTpXYys8vMbLCZHQT8PfBrMzuTEu1UQ9M3tqc+1W1SXj2pNeGv\nZFmDgOnpt04v4OdmNrOrRUi6FzgBGCDpZeDfgH8H7pf0j8CLpDdrytb1HaBJ0hBSs3w1cE4XShoB\nnAEsk7TY4y6lfFtV03UZaYn/smy1HzBFUg/SA+ZdZjbb9ZVlq1qa7izRTpVk3U1l16kM5TRdK+ko\nOmCnbvnqbBAEQdC1dNduqCAIgqALCWcRBEEQFBLOIgiCICgknEUQBEFQSDiLIAiCoJBwFkEQBEEh\n4SwaBElbfKngZ5WWXb7QJ2ghaaiknzSAxrGSDq9xbKDSktGLJH1J0mpJ/btaY1tImizp1C4oZ5ik\nx5WW0H9a0iSfOFav8l7siK0lNal1qeqPSXrM697f1lFji6Sh7Ug3VdJnqsSfJemG+qgrRtLsbNLt\nzkq3nJS3g/KuryuFpIHAPaS9x5vNbBFpqeqyOQV4mLQSaiUjgWVmNgHA/Vyj0enr8kjqaWZbcp8H\nAfcDp5nZUx53KtAP+N/OLDuHsf0rrR5NWrLo6E7UU41C20s6GOhrZs/XS0T2AGYdn2B2HzABKG3p\n87KJlkUD4mtLnQ1MhNYnQSVWS9ozS6u0+dNA/5smaYH/HefHByptvPKsP+F++BQq6QxvDSyW9DOf\nDYukdyR9z1s48yR93PMbDVzn6T+d0zAEuAYY60/Su+avR9J0pZV4n1VuNV4v53qPf0zSgEpbSBot\nab7nO0vSxz2+WWlDpTmSnpd0Xu6cy/2p/glJ90j653yWnmaoP+0ulDRD2y4TkeVzoKRfK63M+Zik\nwR4/2e013687z7nA5MxR+Pf5gJmtU9oE50HPb56kbF+Ptq6l6ndUhfO8VbdM0qF+7jBJc912T0r6\nk4rrGwjcDXy+8jv14xO8Li3xutUnd/0/8Tyfd2eYrQJ7s6SVSpv8PKIqLTlJo1zXIkn3Ky2PA2k5\niody6cZLWiXpKdIaRx/q7khd9+9xlaQppGUtBku6yM9dKqm5HfZ+yPXtvJhZ/DXAH2kjksq4t4GB\nQBPwsMf9GDjLw18AZnr4HtKqtwAHkNYWArgRuNjDf0Faprg/cDjpB9DTj90MnOnhrcBXPHwN8C8e\nvgP4mxr6xwE/zX1eDfT38N7+vw/px7p3rpzTPXw5cEOVfPfKhb8J/MDDzaQNb3YB9gHeIC398nnS\nukW9gd2B54AL8/r9nLnAPh5/GmnJmMqyH87ZZDww3cOT3Xaqcs4DwOgaNroBuNzDXwYWF1xLze+o\nIt/VwLke/idgkof75c49EZjm4SZa69MJWbhKvv1z4e8CE3PXP9XDhwO/9/BXgUc8PAh4K6svwBzg\nGGAA8Bugj8dfnLPJfwPHeHg/4CW3xy5un59uZ10/ENgCDPNjo4BbPNzDv+fji+wNvEBq+ZR+vyjj\nL7qhuh9TSes9TSY96Uz1+BOBw9Xa/dPPn9hG4JutmNmjkrINYkaSVg5d6Of0AV73Y++b2SMeXkRa\npC2jVndHW5upXCAp2/BlMHAIsID0Y8703w38V5VzB0u6H9iX5ABe8Hgj3Zg+AN6UtM7TjAAeNLP3\ngfflffMVOg8FjiTtPQLpxvxalbKH07pRzd3Atbmyf2F+B6lCLTuMIDkrzGyOpH2U+sFrXUtb31El\nme2ezsoA9gLuVOreMdJNt71aAT4r6XvAniTHO8PjDV8Mz8xWKnW9AXyJ1AWHma2VNKdKWcOBI4C5\nfk29SY4b4FOk5bIhPQjNMbM3IY1lAFnLqKN1HeAlM8u2Oh4FjFLr2lt9gYOBo2jb3mtJ9fd3Ney1\nQxPOokHxLoEtZrZe2/b/zwcOVuqyGQtcmZ0CfMFvkvl8smPbRPv/KWZ2WZXiP8iFt7JtPal1g6wa\nr7THwEhguJn9n99Adq2WtEYeN5BaE7+UdALpKTwjf61bXGdl/32tm+FyMzuuxrFKXdV4t0b8ctIN\np9YqyLXyq3YtUPs7quS9Kud+F5htZqdI+hTQ0lYGku4g7W/wqpmdTHogGWNmz0gaR2qRVNObXVN7\nx05mmdnXasmokVe+fnSkrmdsqvh8tZndWnH+RNq2d606ulMQYxYNiPcl/4x0o9wGf5qdTtr9aoWZ\nZU9PM4Hzc3kc5cEn8VUuJY0C9iZV+NnAV72sbFP5AwqkbSQNuleVXSN+D+BtdxSHkZ4sM3oA2Rs4\nXwOeqHF+9tR/VkF5Rrre0Upv+ewOfKVKmlXAQEnDIe0fIemIKvnNpbWf+uvA41XSVHIjME7Sh/sD\nSDpFaazlCc8nc6LrLW24VOtatuc7ypO33fiixGY23syOdkcBqTXxutL+GmdQfKN8EjhViUFs61zw\n8+cDI+RvPEnqK+kQP/4SqfsJUsvzBL/mXWitJ9Cxul6NR4F/yMZKJO3vNi6y9yAaYN+csghn0Tj0\n8UG1Z4FZwAwzu8KPVb5JMpV005maizsfONYH7JbTuuTwFaQm9zOkPuXXSeMjK4F/BWZKWkr6AWaD\nvPmy8mXfB1zkA5PbDIZW0ZiFZwC9JK0Argbm5dJsAoa5tiZaW0l5moFfSFoIrM/lW/XtGjNbSHqq\nXwb8ijRGsqEizQdui2uUtuVcDHyxStnnAePdPl8HLqhyfZXlryM5mB8oDbKvIHV7bPRrGer5XUXr\nHge1rqWt72ibpBXhD5ehBq6W9DSpq63a99PWW0qXk7aa/S0ffQOuWl4PkG6mK4C7SF1ilbZ/g+T0\n7/VrmkvqFsTLOdbTrSHZa57HL89l06G6XqnXzGaRxj3mSVpG6jrbvS17K70A8aaZVbZQdhpiifId\nHKXNobaY2RZJXwRuMrNjytYFIGmjmXX6u+uS+prZJkm7kQZTJ5jZks4uJ/goOdvvQ3I0x7kDbc+5\nnya95FDZGmxv2XWr65LOJg1u/6gz8uuOxJjFjs8BpI1XepD6mScUpO9K6vWkcqt3K+1Keo01HEXX\n8UulHex6A1e211EAmNkLkjZK+oxt31yLetb100hjhDst0bIIgiAICokxiyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICglnEQRBEBTy/5sFNlGCF/qjAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x581c650>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print (\"Example 5.10\")\n",
+ "%matplotlib inline\n",
+ "#plot the graphs\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "p=0.96 #p=p't8/pt8\n",
+ "f=0.02\n",
+ "fAB=0.04\n",
+ "\n",
+ "z0=numpy.linspace(0.45,0.63,7)\n",
+ "gmr=1.3/1.33 #gm=gm/gm' gm=gamma\n",
+ "gm=1.33\n",
+ "gm1=1.3\n",
+ "tlAB=7.\n",
+ "tl=6.\n",
+ "i=0;\n",
+ "z1=numpy.linspace(7,9,3)\n",
+ "for tlAB in z1:\n",
+ " tt=6.5\n",
+ " g1=numpy.zeros(7)\n",
+ " gc1=0;\n",
+ " for tt in z0:\n",
+ " A=(1+f+fAB)/(1+f)*((gmr)**(1./2))*1/p*((tlAB/(tl*tt))**(1./2))*((((gm1+1)/2.)**((gm1+1)/(2*(gm1-1))))/(((gm+1)/2.)**((gm+1)/(2.*(gm-1)))))\n",
+ " g1[gc1]=A\n",
+ " gc1=gc1+1;\n",
+ " number=0;\n",
+ " pyplot.plot(z0,g1)\n",
+ " i=i+1;\n",
+ " pyplot.xlabel(\"Turbine expansion parameter\")\n",
+ " pyplot.ylabel(\"A8-AB-ON/A8-AB-OFF\")\n",
+ " pyplot.title(\"Nozzle throat area variation with \")\n",
+ " pyplot.legend([\"tau(AB)=7\",\"tau(AB)=8\",\"tau(AB)=9\"])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.10\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl4VFW2v/8uZgyRURlECLOMIiCTKHFABgWUQUEQUUG7\n29v0ZN/brd2Cfbv7/r5tX2+jbbcIIgQFZBICMghKcGJQZmQyDAKCzEMChCFZvz/2qaSIKZJQqVRV\nst7nOU/OsM/Z65w6qU/tvfZeS1QVwzAMw8iJEuE2wDAMw4hcTCQMwzCMgJhIGIZhGAExkTAMwzAC\nYiJhGIZhBMREwjAMwwiIiYSRZ0QkXkT2F+D19orIvQV1PcMhIr8XkfFBnL9FRO4qSJsKsn4RSRKR\npwvTpuKMiUQU433JHhaR6/z2jRCR5eG0KydEZJKI/He23eothVF/sfliUdX/UdWReSmb0+eiqi1U\n9dPQWJc7/vWLyBgRmZK9CIX03hgmEkWBEsAvwm1EqBGRUkFeokC/VEQkIv93RKRkuG0wihYR+aIb\neUaBvwPPi0jFnAqISGcR+UpETonIGhHp5O3vJCIpfkuaiOzxjp3y258qIhkiUieHa9cSkdkickRE\ndovIzwPY8AzwGPCf3jXn+R2+TUQ2enVOF5Gy3jnxInJARP5TRA4Bb4tIGRH5h4h87y3/JyJlvPKV\nRGSBZ8sJEZkvIjd5x/4C3An806v/tQB2zhSRQ54tK0Skmd+xSSLybxFZKCKpQPzV7l9E2ovIShE5\nKSIHReR1ESkdoN5FIvJctn0bReQhb32siOwTkdMi8rWIdPErN0ZEZonIFBE5DQzP/us70H0F+lz8\nuwFFpOxVnrnvM/q116I9KCLDA9zj3SKyyW97qYis8dv+TET6+NcvIj2A3wOPevat97tknIh8LiJn\nRGSJiFTNqV6jAFBVW6J0AfYA9wKzgf/29o0AlnvrVYCTwBDcD4JBwAmgSrbrlAKSgL/kUMdfvWMl\ngXhgv7e/BLAW+IN3fj1gF3B/AFvfAf6Ubd9eYBVQA6gMbAWe9Y7FA5eA/wFKA+WAPwFfAtW85Qvf\nNb17fdgrVwGYAXzgV9dy4KlcnudwIMar7/+A9X7HJgGngE7edvmr3T/QBmjvPae63r39IkC9jwOf\n+2038z630t72EO/5lAB+DRwCynjHxgAXgT7edjlgNDAlj/eV0+eyB7jHW7/aM/d9RmO896MncBao\nmMM9lgfOe59TaeAwsN+zqzxwDqicQ/2jgYRs10oCkoGG3v0uB/4n3P+PRXWxlkT0o8BLwM9FpFq2\nYw8AO1T1PVXNUNXpwHagd7ZyrwNnVPVF/50i8igwGOivqunZzrkdqKaqf1bVy6q6B5iAE6JASA62\nv6aqP6jqSWA+0NrveAYwWlUvqWoa7lfvn1T1mKoeA17GfcGiqidU9QNVTVPVVJy4dc2l/iuNUZ2k\nqmdV9ZJ37VtFJNavyFxVXemtt7ra/avqOlVd4z3374C3crAn87pAaxG52dseAsz27MD7/E5613oV\nKAs08Tv/S1VN9MqmZb/PPNzX1Z5LwGfucck7nq6qi4DUbLb5bDgPfOU9g7bABpzgdAE6At9670B2\nJAf7FJioqsne/c7gyvfGKECC7ec1IgBV/UZEFgC/A7b5HaoF7MtW/DvgJt+GiDwL3AV08C8kIrfh\nxKObqh7Podq6QC0R8f/HLgnk1+H5g9/6ec9mH0dV9aLfdi3Pfh/7fOXFOe//D+iO+9UNUEFERFV9\n/oiAfglxPoa/AgOAG3ACBe7Xc4p37vd+p1z1/kWkMfAq7gvxOtz/2tc51a2qKSLyIU6Q/4YTmhF+\ntj0PPOXdqwLXe3b5OHCV+yoJ/OUq95UbAZ+5x3FVzfDbPodryeXEClzr44C3fhInGhdwrYP8kP29\nCVSnESTWkig6jAZG4icAuC+1utnK1cX7UhGRO3HdCX29X994+28EPgB+pqobA9S3H9ijqpX9lutV\n9cEA5a/FcZz9nINAnN92HbK+uH8DNAbaq2pF3JeP/6/Q3OofAvQB7vXOr+ft9/8V63+NfVz9/v+N\n62Jq6F3vRa7+/zYNGCzOZ1ROVZdD5mf0W2CgqlZS1crA6avYlZ3Hcrmv3J5LTs/8YC7nBGIFcDfu\nR0kSWaLR1VvPCRvFFGZMJIoIqroLeJ8rRzotAhqLyGARKeV1H90CLPC6NmYAj6tqsu8EcaOIZgHv\nquqsq1S5BkjxHMvlRaSkiLQQkXYByh8G6l/7HQLui/QPIlLN61p7CXjXO1YB94vytIhUwYlm9vob\nXOXaFXC/aE+ISAyuVeFP9i6P3O6/Au6X+jkRuQX4aS73thAn4C8D0/32xwKXgWPiHPcv4VoSeSW3\n+8rtc8npmWcfkppXvsR1Rd0OrFHVrbh77kDgFugPOCd19ud/1a5Do+AwkSha/AnXtaEAXjfRg7hf\n2ceA54EHVfUEzuF9IzBbskYybca1RLoAv/Tbf0ZEant1+K6d7l27NbAbOIrrdw/0BfY20Mwb7TMn\nQJns49+z/4r8M67LZpO3fO3tA/gHzgF6DPdltCjb+WOBAeJGPv0jh7oTcN0q3wNbgJU52JK57XWx\nXO3+n8f9ij/j7Z+ew/1kXdx1q83BfS5T/Q4t9padOEf/ea7sQsxpzoD/vtzuK7fP5WrP3FdXnlDV\nczhn/zeqetnb/SWw1/N35MRM7+9xEfHvrgv42RgFi2R11xbwhd0v1QTcF5ECb6nqj4YeihuO2BPX\nlzlcVddnL2MYhmGEh1A6ri8Bv1LVDSJSAVgrIktVNdOxKiK9cH22jUSkA64ft2MIbTIMwzDyQci6\nm7xhjRu89VTcqJta2Yr1ASZ7ZVYDlUSkeqhsMgzDMPJHofgkRCQOuA1Yne3QTbhRMj4OALUxDMMw\nIoKQi4TX1TQLN9s0Naci2bbNAWUYhhEhhHQynRerZjZuOOXcHIp8D9zst12bKycs+a5jwmEYhnEN\nqGpQw4VD1pLwxjW/DWxV1ZyGHAIkAsO88h2BU6p6OKeChRGjpDgso0ePDrsNRWmx52nPM5KXgiCU\nLYk7gKHAJr/ojS/gZmyiquNUdaGI9BKRZFxgsCdDaI9hGIaRT0ImEqr6OXloqajqf4TKBsMwDCM4\nbMZ1MSM+Pj7cJhQp7HkWLPY8I4+QzbguSK4M5GkYhmHkBRFBg3RcW6hwwzAC8uO4ekakEqof0iYS\nhmFcFWvFRz6hFHPzSRiGYRgBMZEwDMMwAmIiYRiGYQTERMIwDMNj8ODBzJs3r8Cu16FDB7Zu3Vpg\n1wsHJhKGYUQtcXFxfPLJJwVyrU2bNrFp0yb69u17xf6kpCRKlCjB3/72tyv27927lxIlShAbG0ts\nbCw1atTgueee4/Lly5llnn/+eV566aV82/Lee+9lXjc2NpaYmBhKlCjB+vWFn5PNRMIwjKjFmwdQ\nINcaN24cQ4cO/dH+yZMn06JFCxISEnI87/Tp06SkpLB582ZWrlzJG2+8kXmsd+/eLF++nMOHcwxJ\nF5AhQ4aQkpKSufzrX/+iQYMG3Hbbbfm7qQLARMIwjKjk8ccfZ9++ffTu3ZvY2FheeeUVBg4cSM2a\nNalUqRJdu3a9oqsnPj6et99+O3N70qRJ3HnnnZnbixcvpmvXrlfUcfbsWWbPns2bb77Jvn37WLt2\nbUB7brjhBrp163ZFneXKlaNt27YsWbIkqHudNGkSw4YNC+oa14qJhGEYUcmUKVOoU6cOCxYsICUl\nhd/+9rc88MADJCcnc/ToUdq0acOQIUMyy4tIwPkEZ8+eZc+ePTRp0uSK/XPmzKF69ep07tyZ3r17\nM3ny5B+d62vJHDx4kCVLltCpU6crjjdt2pSNGzcCsG/fPipXrhxwmT59+o+u/9133/HZZ5+ZSBiG\nEZ2IBL8UFMOHDycmJobSpUszevRoNm7cSEpKSq7nnTp1CoDY2Ngr9k+ePJmBAwcCMHDgQKZPn36F\nzwGgWrVqVK5cmdq1a1OhQgX69+9/xfHY2NjM69epU4eTJ08GXAYNGvQj2xISErjrrruoW7du3h9E\nAWIiYRhGUKgGvxQE6enp/O53v6Nhw4ZUrFiRevXqAXDs2LFcz61UqRLAFYKyf/9+kpKSMkWiR48e\npKWl8eGHH15x7vHjxzl58iTnzp2jc+fOdO/e/YrjZ86coXLlytd8XwkJCTzxxBPXfH6wmEgYhhG1\n+HcfTZ06lcTERD7++GNOnz7Nnj17gKzuoJiYGM6ePZtZ/ocffshcj4mJoUGDBuzYsSNz35QpU8jI\nyKBXr17UrFmTevXqkZaWlmOXEzj/wxNPPMGqVas4ceJE5v5t27Zx6623Aq67yX/UUvZl2rRpV1zz\niy++4NChQwwYMOBaH1HQRI9I/Pa3cOBAuK0wDCOCqF69Ort27QJcK6Bs2bJUqVKFs2fP8sILL1xR\ntnXr1syZM4fz58+TnJx8hRMboFevXqxYsSJze/LkyYwZM4aNGzdmLrNnz2bhwoVXiIBPhC5cuMCU\nKVOoWbMmVapUASAtLY1169bRrVs3wHU3+Y9ayr4MHjz4CpsmT57MgAEDiImJKaAnln+iRyQuX4ZW\nrWD4cNiyJdzWGIYRAfz+97/nz3/+M5UrV+bkyZPUrVuXm266iRYtWtCpU6crWhq/+tWvKFOmDNWr\nV+fJJ59k6NChVxx/5plneO+99wBYtWoV+/fv57nnnuPGG2/MXHr37k3Dhg2ZPn165rmVKlXKnCex\nevVqEhMTM685f/587r77bmrUqJHve0tLS2PmzJlh7WqCaMsncfIk/Pvf8PrrcNttrnURH1+wni/D\nMDIpyHkI0cCQIUN45JFHfjSh7lrp2LEjEydOpFmzZgVyvUAE+pwKIp9EdImEj7Q0ePdd+PvfITbW\niUW/flDKIp8bRkFS3EQiWjGRCJSZLiMD5s+HV16Bgwfh17+GJ5+EMPbfGUZRwkQiOgilSESPTyIn\nSpSAvn3h88/hvffgk0+gXj0YPRqOHg23dYZhGFFPdIuEP506wZw5TjB++AEaN4af/hSSk8NtmWEY\nRtRSdETCR+PGMG4cbN8OVas68RgwAFavDrdlhmEYUUd0+yTyQmoqTJwIr74Kdes6J3evXq6ryjCM\nq2I+iejAHNfBiISPy5dh5kzn5E5Lg+efhyFDoGzZgjHSMIogJhLRgYlEQYiED1Xn4H7lFdi8GUaN\ngmefBS92i2EYWZhIRAc2uqkgEYF774XFi2HhQjd7u359+M1vYP/+cFtnGEYYsfSlP6b4iYQ/t94K\nU6bAhg2uhXHrrTBsGGzaFG7LDMPIA0U1fSnA3Llzad68Oddffz3NmzcvUPHKDyEVCRGZKCKHRWRz\ngOOVReQDEdkoIqtFpHko7QlInTrOsb1rFzRrBj16uOWTTwoujrFhGAVOUU1feuTIEYYMGcKrr77K\nmTNneOWVV3jsscfyFPa8oAl1S+IdoMdVjr8ArFPVW4FhwNgQ23N1KleG3/0O9uyBgQPhueegXTuY\nPt05vg3DiBiKcvrS5ORkKlSokJmbolevXsTExGRGvC1MQioSqvoZcPIqRZoCy72yO4A4EbkhlDbl\nibJl4emn4ZtvYMwYeOMNaNTIBRb0i0dvGEb4KMrpS1u1akWpUqVYsGAB6enpzJ07l3LlytGqVatr\nf2DXSLgj4m0E+gGfi0h7oC5QG4iMmBolSkDv3m5ZtcqNiPrTn+AnP4Gf/xxuvDHcFhpG2JGXg4/C\nrKMLpsto+PDhmeujR49m7NixpKSk/CgtaXbymr70mWee4dVXX6WUXzDRatWqAa7bqXPnzjmmLz10\n6BCQlb40NypUqMC4ceN49NFHuXjxImXKlGHWrFmUL18+13MLmnCLxP8HjBWR9cBmYD2QHl6TAtCx\nI8yeDTt3Ov9Fkybw6KNuVFSjRuG2zjDCRkF9wQdLeno6L774IrNmzeLo0aOU8CbMHjt2LFeR8E9f\nWrVqVSArfekrr7wCXJm+1N+5ffz4cUqUKEFaWhovvfQS3bt358svv8w8fi3pS9etW8czzzzDZ599\nRps2bfj666/p06cPixYtysxyV1iEVSRUNQV4yrctInuA3TmVHTNmTOZ6fHw88fHxIbYuAI0bw5tv\nuhbFP/8JnTvDnXfCf/6nExLDMAqNQOlL69aty6lTp6hSpUq+05d27twZuDJ9qQ9f+tKc8k340pf+\n/e9/58SJE5nZ6bZt28awYcMA193UvHng8TlvvfUWgwcP5uOPP6Zjx460adMGgHbt2tGhQweWLVt2\nVZFISkoiKSkp4PFrQlVDugBxwOYAxyoCZbz1kcCkAOU0YklNVX3tNdW4ONUuXVTnzVNNTw+3VYZR\nIET0/56qduzYUd966y1VVX3jjTe0devWeubMGU1NTdWf/vSnKiK6a9cuVVV98cUXNT4+Xs+dO6ff\nfvutNmzYULt06ZJ5rVGjRulf//rXzO3GjRvryy+/rIcPH85cEhMTtWzZsnr8+HHds2ePiohevnxZ\nVVXT0tL0v/7rv7RWrVqZ1zh//rxWqVJFDx06lK/7WrJkiVarVk03bNigqqrr1q3TqlWr6tKlS3Ms\nH+hz8vYH9x0e7AWuenGYBhwELgL7ca2GZ4FnveOdgB3AdmAWUDHAdfLxeMPEpUuq06ertmmjesst\nqhMmqKalhdsqwwiKSP/fmzdvntapU0crVaqkf/7zn7Vv374aGxurcXFxmpCQoCVKlMgUiWPHjun9\n99+vsbGx2qVLFx0zZozeeeedmdfasmWLNm/eXFVVV65cqeXLl9djx479qM7mzZvrG2+8oXv37lUR\n0QoVKmiFChW0UqVKGh8fr19//XVm2RkzZmj//v2v6d7+9re/af369bVChQpav359ffXVVwOWDaVI\nFL+wHKFGFZYvd07ujRudg/snP3HDaw0jyihuYTksfWkO146GFyCqRMKfTZtcitUFC+CJJ+AXv4C4\nuHBbZRh5priJRLRisZuilVatICHBtShKloS2baFPHxc3KiMj3NYZhmHkirUkCpOzZ2HaNDc5LzXV\nZc4bPhy8URCGEWlYSyI6sJZEUSEmBkaMgHXrYPJkWLvWRaB9+mm3zzAMI8IwkQgHIm5+xXvvucl5\nDRrAQw+5VKvvvgsXLoTbQsMwDMC6myKHy5edg/tf/3I+jKeecqOi6tYNt2VGMca6m6ID624qDpQq\n5VoTH30En34K589DmzbQt6/bZ45uwzDCgLUkIpmzZ2HqVOfoPncuy9Ftcy6MQsJaEtGBtSSKKzEx\nMHIkrF8P77wDX3/tHN0jRrh9hmEUKJa+9MeYSEQDInDHHc7RvX071Kvn5lv4nN/m6DaKKUU5femE\nCRNo1KgRsbGx9OzZMzPceGFjIhFtVK8OL77osuf953/CpEnOuf3ii7BvX7itM4xCpaimL01KSuLF\nF18kMTGREydOUK9ePQYPHpy/GyogTCSiFZ+je+lSWLHCTc677basfeboNoo4RTl96YIFCxg4cCBN\nmzaldOnS/PGPf+TTTz9lz549+bpOQWAiURRo0gTGjnUtiV694PnnoWlT+Mc/wMu4ZRhFjaKcvjR7\nCynD+9G3ZcuW/D6moDGRKErExMAzz8CGDTBxIqxZ4/wXvn2GEQpEgl8KiOHDhxMTE0Pp0qUZPXo0\nGzduJCUlJdfz8pq+dPr06Vf4HMClL61cuTK1a9emQoUKOaYv9V3fl7400DJo0CDAZcGbOXMmmzdv\n5vz58/zpT39CRDh37ty1PZggMJEoivgc3VOnwrZtUKeOy9Pt22eObqMgcYlpglsKgPT0dH73u9/R\nsGFDKlasSL169QCXvjQ3/NOX+vClL/WJhH/6Un+OHz/OyZMnOXfuHJ07d6Z79+5XHL+W9KX33nsv\nY8aMoX///tSrV4969eoRGxtL7dq183WdgsBEoqhTowb84Q/O0f38866F4XN0798fbusMIygCpS89\nffp0Zv+9r9smr+lLffinL61Zsyb16tXLTF+aE770patWreLEiROZ+7dt25aZcnTfvn2Zo6FyWqZN\nm5Z53s9+9jN27tzJDz/8QL9+/bh8+TItWrQI5nFdEyYSxYVSpeDhh2HZMkhKco7u1q2z9tmEKSMK\nqV69Ort27QJcK6Bs2bJUqVKFs2fP8sILL1xRtnXr1syZM4fz58+TnJx8hRMboFevXqxYsSJze/Lk\nyYwZM4aNGzdmLrNnz2bhwoVXiIBPhC5cuMCUKVOoWbNmZn7rtLQ01q1bR7du3QDX3ZSSkhJw8Y1g\nunDhAlu2bEFV2bdvH8888wy//OUvqVixYgE/wTwQbGq7wliI8BSKUUtKiuqbb6q2bKnapInqP/6h\nevJkuK0yIohI/98rqulLT506pa1atdKYmBitUaOGvvDCC5qRkRGwfKDPCUtfahQIqvDFFy78x+LF\n8Mgj8NxzLmmSUawpbmE5LH1pDteOhhdARHTrka00vaFpuE0p+vzwA4wfD+PGuVSrzz0H/ftDmTLh\ntswIA8VNJKKVsMRuEpFJfutPBFNJQXD35Lvp/m53Ptz5IRlqE8VCRo0a8Mc/wt698Otfw4QJztH9\nxz/CgQPhts4wjELmao7rW/3WfxlqQ3Lju19+x5CWQ3gp6SWa/LMJr61+jTMXzoTbrKJLqVLQrx98\n/DF88gmcPg233ur22Yxuwyg2BOxuEpH1qnpb9vVw4O+TUFW+3P8lY1ePZdnuZTze6nF+3uHnNKzS\nMFzmFR9SU13mvPHj4dgxF7Z8+HA3Yc8oklh3U3QQFp+EiBwFpgECPApM99bBecxHBVNxfgjkuN5/\nej//+upfTFg/gY61OzKq/Sjuq39fwKn3RgGyYYMLXz51KrRs6TLp9esH110XbsuMAsREIjoIl0gM\nB3wHJfu6quY8oyQE5Da66dylc0zdPJWxq8eSoRn8vP3PebzV48SUiSksE4svFy7A/Plukt6qVW5k\n1FNPwe23F2i4BSM8mEhEB+ESidKqeimYixcUeR0Cq6ok7U1i7OqxfL7vc5667Smeu/056layPNGF\nwvffQ0KCE4wyZZxYDB3qwpsbUYm1yqOHcIjEOlVt462/rqo/D6aiYLiWeRK7T+7mjTVvMGnjJOLj\n4hnVfhR31b3LXvrCQBU+/9yJxdy50LWrE4yePaF06XBbZxjFhlCLREQ6rvNL6sVUEjYm8Nrq1yhX\nqhyjOozisZaPUa5UuQK20siRlBSYOdMJRnIyPP64E4ymNufFMEKNiUQ+yNAMlu5aytjVY1l7aC0j\n24zkp+1+yk3X31RAVhq5smOHy6Q3ebKbe/HUU/Doo3D99eG2zDCKJKEWifNAsrfZANjld1hVNdeY\nDSIyEXgAOKKqLXM4Xg14F6gBlAL+rqqTcihXoGE5dh7fyeurX+e9ze/RvWF3RrUfRcfaHa0rqrC4\nfBmWLHGti48/dvm6n3oK7roLSljMScMoKEItEnFXO1FV9+Z6cZE7gVQgIYBIjAHKqurvPcHYAVRX\n1cvZyoUkdtPptNO8s+EdXl/zOlXLV2VUh1E80vwRypS0EBSFxtGj8N57TjBSU+HJJ+GJJ1wODMMw\ngqJQYjeJSD2gBW4I7FZV3Z2vCpzYzA8gEs8CrVT1ORGpDyxW1cY5lAtpgL/0jHQWfruQsavH8s3R\nb/hJ25/wk3Y/oXoFG5VTaKjC2rVu7sX06dCunROMhx6CcuY/MoxrIdQtieuBCUA7wJf7sjWwFnha\nVfMUEyMXkSgBfAI0BmKBR1R1UQ7lCi0K7DdHvuG11a8xY+sM+jTpw6j2o2hbq22h1G14nD/vRkVN\nnAjr18OgQU4w2rSxuReGkQ9CLRKTgT3An1RdRD3vS/0PQENVHZZHI+MILBJ/AKqp6i9FpAGwFLhV\nVVOyldPRo0dnbsfHxxMfH5+X6q+ZE+dPMGHdBN746g1uvv5mRnUYxcO3PEzpkjaEs1D57jvn6H7n\nHefgfuopGDIEqlULt2WGEXEkJSWRlJSUuf3yyy+HVCSSVTXHgEhXO5ZD2TgCi8RC4C+q+oW3/THw\nX6r6dbZyYcsncTnjMvO2z2Ps6rHsObWHn7X7GSPbjqTadfYlVahkZLiMeu+842Z433efE4z773fB\nCA3D+BEhDRVOVhiOULIduA9ARKoDTYB8+TxCTakSpejfrD+fPvkpiYMS2XliJ41eb8SIxBFsOrwp\n3OYVH0qUgHvugSlTXOuiWzd4+WU3lPb3v4edO8NtoWEUSa7WkkjADYH9b9/PeHFjRP8ANFbVx3O9\nuMg0oCtQDTgMjAZKA6jqOG9E0ztAHZxg/Y+qTs3hOhGVme7I2SO8tfYt/v31v2lctTG/6PALejfu\nTckSJcNtWvHjm29c62LKFGjc2LUuBg6EChXCbZlhhJ1Q+yQqAm8DbbjScb0e57g+FUzF+SHSRMLH\nxfSLzN46m7Grx3L47GH+4/b/4Ok2T1OpXKVwm1b8uHQJFi50zu5PP4WHH3aCcccd5uw2ii2FNQS2\nIdCMrCGwu656QgiIVJHwZ/WB1by25jUWfruQwS0GM6rDKG6pdku4zSqe/PCDa1lMnAjp6W5k1LBh\ncJPNrjeKF4We41pEHlTVBcFUeC1Eg0j4OJhykDe/fpNxa8fRukZrftHhF/Ro2IMSYjOJCx1VWL3a\nicXMmdC5sxOM3r2hbNlwW2cYISccIhGWGE7RJBI+0i6n8f6W9xm7eiypF1P5efuf80TrJ7i+rMUp\nCgtnz8Ls2c5/sWWLG0b75JPQqpV1RxlFFhOJKEBV+WL/F4xdPZalu5bSr2k/RrYZabGiwsmuXS7Q\nYEICxMbCY4/B4MGWhtUocoRDJNqr6ppgKrwWolkk/DmcepjJGyczYd0EypQsw4g2I3i81eNUva5q\nuE0rnmRkwJdfwrRprjuqYUMnGAMHWqIko0gQcpEQkbrAWVU9JiKdgC5Asqp+EEyl+aWoiIQPVWXF\ndyuYsG4CC3YuoFejXoxoM4L4uHjzXYSLS5dg2TKXs3v+fOjQwQnGww9bKHMjagn1ENiXgCe8zWm4\nSW9JQAdgk6r+IpiK80NREwl/Tpw/wXub3mP8uvGcu3SOEW1G8MStT1Aztma4TSu+nDvnhGLqVDfL\n+/77nWBSy2X8AAAgAElEQVT07GnBBo2oItQisQ03L+I6YB9QQ1XPikgpYKOqNg+m4nwZWYRFwoeq\n8tXBrxi/djyzts0iPi6eEbeNoEfDHjZJL5ycOOEc3lOnwsaNrmXx2GMQHw8l7XMxIpuwZaYrbAd2\ncRAJf1IupDB9y3QmrJ/AwZSDPNX6KZ667SnqVqobbtOKN99/D++/7wTj4EGXVe+xx1xYcxuEYEQg\noRaJ3cDzgACveOv4tlW1fjAV54fiJhL+bDq8ifFrxzN1y1Rur3U7I9uMpHeT3pYYKdzs2OEc3lOn\nuvkYvhFSt9gESiNyCLVITCIryJ+QLeCfqj4ZTMX5oTiLhI/zl84ze9tsxq8bz/Zj23ni1icY0WYE\njav+KEeTUZj4kiVNneqSJdWo4QRj0CCoXTvc1hnFnEIfAutXcQ1V/SGYivNZX7EXCX92Ht/JhHUT\nmLxxMrdUu4WRbUbSv2l/ypcuH27Tijfp6bBihWthzJkDLVs6wRgwAKpUCbd1RjGkUEVCRCoBA4DB\nQFNVrRVMxfnBRCJnLqZfZP6O+YxfN56vDn7FYy0eY2TbkbSq3ircphkXLsDixa6FsXgxdO3qBKN3\nb4iJCbd1RjGhMOZJXAf0xQlDa+B64CHgM1VND6bi/GAikTvfnfqOiesnMnHDRGpWqMnINiMZ1GIQ\nsWVjw22akZLi0rFOnQorV8KDDzrB6NYNSlumQyN0hNonMQ03J+IjYAawAjeRrtBjF5hI5J30jHSW\n7FrC+HXjSdqbRP+m/RnZZiTtb2pvYUAigSNH3OzuqVNdoqSBA53D+447XGIlwyhAQi0SG4A03ES6\nGap6SET2mEhEDz+k/sCkDZOYsG4C15W+jhFtRjC01VCqlLf+8Yhg717n7J46FU6dcmLx2GMWdNAo\nMAqju6kprqvpEeAo0BRoUZhOa88OE4kgyNAMkvYmMWHdBBZ+u5AHGz/IiDYj6Fq3q7UuIoXNm7OG\n1MbEZA2prV9oI82NIkhhO67b4QRjIHBAVTsHU3F+MJEoOI6fO86UTVMYv248l9IvZYYBqV7BAtpF\nBKrObzF1KsyYAQ0aOMF45BELOmjkm3BEgW2LS196p6quCKbi/GAiUfCoKqsOrGL8uvHM2TaHe+vf\ny4jbRnB/g/stDEikcOkSfPyxa2EkJkL79hZ00MgX4RCJdaraJpgKrwUTidBy5sIZpm2exvh14zl6\n7ihPtX6KJ297kjoV64TbNMPHuXPw4YeuhbF8Odx3nxOMXr0s6KAREEs6ZBQ46w+tZ8K6CUzbMo2O\ntTsyss1IHmz8IKVL2lDNiOHkSTdZb+pUWL8eHnrITdi77z4oY+FajCzCIRIPqercYCq8FkwkCp9z\nl84xa+ssxq8bT/KJ5MwwIA2rNAy3aYY/Bw8638WsWbB1q2tZDBgA3btDeZuBX9wpjNFNdYAzqnpK\nROoB7YBtqrolmErzi4lEeNl+bDsT1k0gYWMCzW9sztO3Pc3DtzxMTBmbORxRHDoEH3zgQpuvXevy\nYPTv74Qj1iZVFkdCPU/id8CzwEWyosB+AXQEJqrq/wZTcb6MNJGICC6mX2Te9nlM2jiJL/Z9Qe8m\nvRnacij31r+XUiVKhds8w59jx2DePCcYX3zh8l/07+/CglSuHG7rjEIi1CKxFWgLxAB7gXqqelRE\nYoA1lnSoeHPk7BHe3/I+UzZNYd/pfQxuMZihrYbSpmYbm3sRaZw6BQsWuC6p5cuhUycnGA89BDfc\nEG7rjBASapHYpKqtRKQkcAio6YvXJCKbVbVlMBXny0gRPXBAuemmwqrRyA87ju3gvc3v8e6mdylX\nqhxDWw3lsZaPEVcpLtymGdlJTYWFC10LY8kSaNPGCcbDD0OtQovZaRQShRG7CVxL4gxQHvgAuAco\no6pDg6k4P4iIVq6sdO0Kzz7rulotzE3koaqsPLCSdze9y4xvZtDshmYMbTWUgc0GUrm8dXFEHOfP\nw0cfOcFYsACaNnWC0a8fxMWF2zqjAAi1SJQDBgGHVHWJiAwFOgPbgXGqeiGYivNlpIieOaNMmwbj\nxrkRgCNHwlNP2STUSOVi+kUWfbuIdze/y0e7PuK++vcxtOVQejXqRdlSZcNtnpGdixfhk0+cYMyb\nB3XqOMHo3x8aW2KraCUsSYe8EU+PquoreSg7EXgAOJJT95SIPA8M8TZL4WJDVVPVU9nKXeGT+Ppr\nePNN9z536+ZaF3ffba2LSOVU2ilmb53Nu5vfZdPhTQxoOoChrYZyR507KCH2oUUcly/DZ5+5f7A5\nc6Bq1SzBaNHCgg9GEYUmEiJyIy5m02CgFvCBqv4mD+fdCaQCCbn5METkQeCXqnpfDsdydFyfPg3v\nvutaF2lp8MwzMHw4VKuW6y0ZYWLf6X1M2zyNKZumcPbSWYa0HMLQVkO5pZrlho5IMjJg1SonGLNn\nu8l6PsFo29YEI8IJdXfT9UA/nDA0BOYCg1Q1X+5jEYkD5udBJKYCH6vq2zkcu+roJl9MtHHjXEv5\ngQfgJz+BLl3sHY5UVJWNhzfy7qZ3mbp5KrViazG01VAGtRhEjQo1wm2ekRO+fN4+wbh4MUswOna0\npnwEEmqROA8sBf6qqqu8ffnOJ5EXkfAy4O0HGmTvavKO53kI7IkTkJDgBEPEdUUNG2ZDwyOZ9Ix0\nlu9dzpRNU5i3fR4da3fk8VaP89AtD9mEvUhFFbZsyRKMEyfcCKn+/eHOO6GUzZuJBEItEr/EtSJK\n4zLTzQSWhUgkHgUeU9W+AY7r6NGjM7fj4+OJj4+/ar2qrlv1zTdh0SLo29cJRseO1rqIZM5ePEvi\njkTe3fyuTdiLJnbuzBKMffvcP1z//nDPPRZPqhBJSkoiKSkpc/vll18OvU9CRBrgRjkNAhoBo3E+\niZ15qiBvIvEB8L6qTg9wPKjJdEePwqRJ8NZbcN11TiyGDrVoy5GOTdiLUvbscQ7v2bNh+3aX07t/\nfzd23eJJFSrhCPDXEte6eFRVG+TxnDiuIhIiUhHYDdRW1fMByhTIjOuMDDfKb9w4WLbMxUH7yU+c\n/82IbGzCXpTy/fdZ8aTWr3eBB33xpCpUCLd1RZ5QdzctARYDi1R1+zVd3E3I6wpUAw7jWiGlAVR1\nnFfmCaC7qj52lesUeFiOH36AiRNd66JaNde6GDzY3ttIxybsRTFHjmTFk1q50o1bHzDAtTQqVQq3\ndUWSUItETaAH0B1oAqwGFuH8EmeDqTS/hDJ2U3q6m3Q6bhx8+ikMGuQE49ZbQ1KdUYBcTL/I4uTF\nTNk0xSbsRRsnT8L8+U4wkpLgjjuyAhDeeGO4rSsyFOY8iZJAB6AnLixHGrBEVf8WTOV5pbAC/B04\nAG+/DRMmQO3aTiweecT5MYzIxibsRTEpKVnxpD76CJo1c2LRuzc0b24jTYIgLDOuvYpvAO5X1feC\nqTwf9RVqFNjLl907O26cm0c0dKgTjGbNCs0EIwhswl4Uc+ECrFjhWhnz5zuB8AlG1642UiqfhLq7\naXSOB0ABVPVPwVScH8IZKnzvXteyePttaNTIObr794ey1psR8diEvSjHNxfDJxjbtrk4PL17O8e3\nhVbIlVCLxPN4guBHDPA0Lr5Soc1yioR8EpcuQWKia11s2OAm6D3zjMU+ixZymrA3pOUQ+t7Sl+vL\n2ljoqODIEfjwQycYH38MLVtmtTKaNrVuqRwoTJ/E9cAonEDMAP5XVY8EU3F+iASR8Cc5GcaPh3fe\nce/ps8+6/C3WEo4OfBP2pm6Zyoq9K4iPi2dgs4H0btKbSuVslE1UkJbmHN6+Vkbp0tCnjxOMO+90\n20ah5LiuCvwKF6k1AfiHqp4MpsJrIdJEwseFC24I+JtvujlDTz7pWhf18jUn3Qgnp9NOM3/nfGZu\nncnyPcu5q+5dDGw2kL639DXBiBZUYePGLMH49ls3H6N3b+jZE6pUCbeFYSPU3U1/Bx4G3gL+paop\nwVQUDJEqEv5s3+7mXCQkQLt2znfx4IMWwiaaOHPhDPN3zGfWtll8vPtjutTpkikYVcoX3y+aqOPQ\noaxuqeXL4bbbsrqlmjQJt3WFSqhFIgO4CFzK4bCqaqF15EaDSPg4f96lEn7zTef0fvppGDHC5XAx\nooeUCyks2LmAmVtn8vGej+l8c2cGNB3AQ7c8RNXrqobbPCOvnD/vwiz4WhkxMVmC0aVLkf8VF7Yh\nsIVNNImEP5s3O0f31KlurtCIEa71a76L6CL1Yiof7vyQmVtnsnT3UjrW7sjAZgN56JaHqHadjbCJ\nGlRdaBCfYOzZAz16OMHo0aNIzvouFJEQkXsA3wyBb1R1eTAVXgvRKhI+zp6F9993ju7t292s7iee\nsJwt0UjqxVQWfruQWVtnsWTXEtrf1J6BzQby8C0Pc0PMDeE2z8gP33/vcnvPn+/CLbRrl9XKaNgw\n3NYVCKHubroJmANcAL72drcFygMPq+r3wVScH6JdJPzZtctl00tIcHMthg2DIUPg5pvDbZmRX85e\nPMui5EXM3DqTxcmLub3W7QxoNoB+TftxY4yFlogqzp1zUT/nz3fCUalSlmB06hS13VKhFom5wFxV\nnZRt/zCgf6DcD6GgKImED1X48ksnFjNnQps2TjD69bMgg9HIuUvnWJy8mJlbZ7Lo20W0qdmGgc0G\n0q9pP6pXqB5u84z8kJHhMvD5uqX273f9xL17u1FTFSuG28I8E2qR2KmqOU4Vu9qxUFAURcKftDT3\nLiYkuERJffs6wYiPh5Ilw22dkV/OXzrPkl1LmLl1Jh/u/JDWNVozsNlA+jfrbzO9o5H9+7O6pT77\nDDp0yJqTEeHj3UMtEt8CjbN/O4tICWCnqhZap11RFwl/Dh+GadOcYBw96uJGDRvmJpQa0Ufa5TSW\nJC9h1rZZLNi5gFbVWzGg6QD6N+tPrdha4TbPyC+pqbB0qROMDz+EG27I6pbq0CHiftWFWiT+gQvD\n8StVTfX2VQBeBdJUdVQwFefLyGIkEv5s3gxTpjgfxk03OWf3oEEWsiZauXD5Ah/t+oiZW2eyYOcC\nmt/Y3LUwmvbnputvCrd5Rn7JyIA1a7K6pX74wcWU6t3bZeGLjQ23hSEXiTLAX4HhwD5vdx1gMvB7\nVb0YTMX5obiKhI/0dOdTS0hwP17i413r4oEHLNBgtHLh8gWW7V7GzK0zSdyRSNMbmmYKxs0VbRRD\nVLJ3b1a3VNeu8MIL4bao0IbAXgf4upaSVfVcMBVeC8VdJPw5c8aF3U9IcC2NRx5xLYz27W04bbRy\nMf0iy3YvY9bWWczbMY/GVRszsNlABjQbQJ2KNgvTuHbCkeP6GVV9K5gKrwUTiZzZuzdrOK2Ia10M\nHQp164bbMuNauZh+kU/2fMLMb2Yyb8c8GlZpmOn0tnzeRn4Jh0isV9XbgqnwWjCRuDqqsHq1E4sZ\nM1xk2mHDXPrgCOgWNa6RS+mXWL53OTO/mcncHXOpV6leZgujXuXIHlVjRAbhEIkNqto6mAqvBROJ\nvHPhgvNbJCS4SMoPPugE4957I27ghZEPLqVfYsV3K5j5zUw+2P4BdSrWYWCzgQxsPpD6leuH2zwj\nQgmHSNRW1QPBVHgtmEhcG0ePunAgkyfDwYNuZvewYdCiRbgtM4LhcsZlVuxdwcytTjBqX1+bh5o8\nRJ8mfWhVvRVizinDI9SjmwToCpxQ1U0i8ihwF5CMCx1+IZiK82WkiUTQbN3qhtNOmQLVqzuxGDwY\nbrToEVFNekY6n+37jHnb5zFvxzwyNIM+TfrQp0kf7qp7F2VKWjTJ4kyoReJfQEugHLADqAAsBrp4\n5w0JpuJ8GWkiUWCkp7tuqIQEmDfPJfEaNswN7S5XLtzWGcGgqmw9upV5O+aRuCORHcd30KNhD/o0\n7kPPRj0tiVIxJNQisQ0X/bUc8D1wo6pe9loYm1W10DotTCRCQ2oqzJnjBGP9ehg40AlGp042nLYo\ncCjlEAt2LiBxZyIr9q6g/U3tM1sZNlKqeBBqkcgcyZR9VFNhj3IykQg9+/fDe+85/8WlS04sHn88\n4kPTGHnk7MWzLNu9jHk75rFg5wJqVKhB3yZ96dOkD21rtaWElAi3iUYICLVIHMCF4BBcnmvfOrhQ\nHbWDqTg/mEgUHqouAGZCAkyfDrfc4gRj4MCoCn5pXIX0jHRWf7+aedvnkbgzkTMXztC7cW/6NOnD\nPfXuoVwp63csKoRaJMYAvoOSfV1VXw6m4vxgIhEeLl6ERYucYHz8sYuWPGwYdOsWteH1jRzYeXwn\niTsSSdyRyMbDG7mv/n30adyHBxo/YJn3opywpS8VkfaquiaYivNZn4lEmDl+3E3UmzzZZX3s1w8e\nfdQ5vm3+RdHh2LljfLjzQxJ3JrJs9zJaVW+V2S3VuGqhZQcwCohCFQkRaQ4MBgYBp1S1XS7lJwIP\nAEdUtWWAMvHA/wGlgWOqGh+gnIlEBLF7txOMGTPg0CHo39/FkLrjDhOMokTa5TQ+2fNJZiujYrmK\n9GnsHN8da3ekZAn7sCOdkIuEiNTDicJg4CIQB7RT1b15MO5OIBVIyEkkRKQS8AXQXVUPiEg1VT0W\n4FomEhHKt9+6zHozZsCRI8538cgjboRUCfOFFhkyNIO1B9c6wdiZyKGUQzzY+EH6NOlDt/rdiCkT\nE24TjRwItU9iJVAGmAnMUNXdIrJHVfM83kVE4oD5AUTiZ0ANVX0pD9cxkYgCduzIamGcPJklGB06\nmGAUNfac3MP8nfNJ3JHImu/X0DWuK30a9+HBxg9SM7ZmuM0zPAojx3ULYD7wvqquKmCR8HUzNQdi\ngbGqOiXAdUwkooytW10L4/333XyMRx5xy+232xyMosbJ8ydZnLyYxJ2JLE5eTJOqTTLnYzS/obmF\nCQkjhdHdVAnoh+tyaghUwXUPrc6jgXEEFol/Am2Ae4HrgJXAA6r6bQ5ldfTo0Znb8fHxxMfH58UE\nI8yowjffuNbF+++7AIQ+wWjb1gSjqHEx/SKffvcpiTsSmbdjHqVKlMr0Y3Sp04XSJUuH28QiTVJS\nEklJSZnbL7/8cqE6rqsDj+D8Ezeraq7ps3IRif8CyqvqGG97ArBYVWflUNZaEkUAVZcoyScYGRlZ\ngtG6tQlGUUNV2XR4U6YfY/fJ3fRs2JM+TfrQo2EPri97fbhNLPKEIwpsb1WdLyJxeXRexxFYJG4B\n/gl0B8oCq4FHVXVrDmVNJIoYqrBhQ5YPo0QJJxaPPuryYZhgFD0OnDngwoTsSOTzfZ/T6eZO9Gnc\nh95NelsGvhAR0UmHRGQaLopsNeAwMBrng0BVx3llngeeBDKA8ar6WoBrmUgUYVRh3boswShbNquF\n0by5CUZRJOVCCh/t+ojEnYl8uPND6lSsQ58mfXig0QMWJqQAiWiRKEhMJIoPqvDVV1mCUaFCVguj\nadNwW2eEgssZl/ly/5ck7khk4bcLOXbuGPc3uJ+eDXtyf4P7uSHmhnCbGLWEQyQKdaa1X70mEsWQ\njAyXlnXGDDdSqnLlrBZGkybhts4IFXtP7WVJ8hIWJS9i+d7lNKnahJ4Ne9KzUU9ur3W7TeLLB4Ux\nuqkr8IOq7hCRLkAnYKuqfhhMpfnFRMLIyICVK7ME44YbsgSjUaNwW2eEiovpF/li3xcsSl7EouRF\nHEo5RLcG3ejZsCfdG3SneoXq4TYxogn1PImxwO04P8Ji3FDVRTg/wwZVfT6YivNlpImE4UdGBnz+\nuROMWbOgVi0nFgMHQoMG4bbOCCUHzhxgcfJiFiUv4uPdH9OgSgN6NuxJj4Y96Fi7I6VKWORJf0It\nEltxk+nK45IO3aSqZ0WkNE4kmgdTcb6MNJEwApCeDp995obUzp4Ndeo4/8XAgRAXF27rjFByKf0S\nKw+sZNG3rpWx7/Q+7qt/Hz0a9qBHwx7Uiq0VbhPDTqhF4hucSJQFDuFE4pyIlAQ2WmY6I9K4fBlW\nrHAtjDlzoH79rBZGHRthWeQ5mHIw05exbPcy6lSsQ4+GPejZsCedb+5cLCfyhVokXsPNiC4DfATc\nTVZ30xZV/VUwFefLSBMJI59cuuRyeb//Psyd6/wWjz4KAwZA7UJLl2WEi8sZl1l9YDWLkhexOHkx\nySeSuafePZldUzdXzHUucJEg1CIhOEE4oqpbReQuoCMu53UNVf1ZMBXny0gTCSMILl1ySZNmzIB5\n89xQ2kcecYJRy3okigWHUw+zZNcSFicv5qNdH1GjQo3MEVN33HwHZUuVDbeJIaHQhsCKSBtcOI5H\ngD3AbFV9PZiK84OJhFFQXLwIS5c6wUhMhMaN4aGHoG9fJx42ca/ok56RzlcHv8p0gG8/tp34uPjM\nVkZcpbhwm1hghLol0QQnDI8CR3Ehw3+rqoXeu2siYYSCixedD2PePLeUK5clGJ06WQKl4sLRs0dZ\nunspi5IXsSR5CVWvq5opGHfVvSuqc36HWiQygAXAf6jqPm9fvkKFFxQmEkaoUYX1653/Yt48l3Gv\nd28nGN26Qfny4bbQKAwyNIN1h9ZljpjacmQLd9W9K9MB3qBKdI2xDrVIPIRrSXTAzZOYCbytqnHB\nVHgtmEgYhc2ePVktjLVr4d57nWA8+CBUqxZu64zC4sT5EyzdtTTTAX592eszBSM+Lp7ypSP710Oh\n+CREpALQFycYdwMJwAeq+lEwFecHEwkjnBw/DgsXulbGsmVw661Z3VI2ea/4kKEZbPxhY+bs7w0/\nbOCOm+/IdIA3qtIo4hIshSN2UxVgADBIVe8JpuL8YCJhRAppaW6k1Ny5MH++a1X4BKNtW0vTWpw4\nlXaKZbuXZTrAy5YsmykYd8fdHRF5vwtdJMKFiYQRifgCEPr8GCkpTiz69oW774YyZcJtoVFYqCqb\nj2zOFIz76t3Hi3e9GG6zTCQMI5LYscOJxdy5Lsd3jx5OMHr2hEqVwm2dURwxkTCMCOXwYdcdNXcu\nfPopdOzoBKNPH7i5eEz2NSIAEwnDiAJSU+Gjj1wrY8ECF3jQ58ewVK1GKDGRMIwo4/JlF+bc1y0F\nWYLRpQuUskjXRgFiImEYUYwqbN6cNR9j71544AEnGN27Q0z4B8cYUY6JhGEUIfbvd/Gk5s2DVaug\na1cnGL17Q3VLwGZcAyYShlFEOXUKFi1ygrF4MTRrltUtZfm9jbxiImEYxYALF1xuDF+3VGxslmB0\n6GAT+IzAmEgYRjEjI8PFkvIJxtGjrjvqgQdcfKnY2HBbaEQSJhKGUczZtcv5MRYudH6M9u3d5L2e\nPV0XlQ2vLd6YSBiGkUlqKixf7gRj0SI3esonGPfeCxUqhNtCo7AxkTAMI0dUYft2JxYLF7oYU+3b\nQ69eTjQsC1/xwETCMIw8kZoKn3ySJRrgxKJXL7jnHmtlFFVMJAzDyDeqsG1blmCsWeNGSflE45Zb\nrJVRVIh4kRCRicADwBFVbZnD8XhgHrDb2zVbVf+cQzkTCcMIESkpV7YySpTI8mVYKyO6iQaRuBNI\nBRKuIhK/VtU+uVzHRMIwCgFVF+Z80SK3rFnjItj6RMNaGdFFxIsEgIjEAfOvIhK/UdXeuVzDRMIw\nwkBKisvE5xONkiWvbGVYfKnIpiiIRFdgDnAA+B54XlW35lDORMIwwowqfPNNlmB89RV06pQlGk2a\nWCsj0igKIhELpKvqORHpCYxV1cY5lDORMIwI48yZK1sZpUplDbG9+25rZUQCUS8SOZTdA7RV1RPZ\n9uvo0aMzt+Pj44mPjy9YQw3DuGZUYcuWLMH4+mvXyvCJRuPG1sooDJKSkkhKSsrcfvnll6NbJESk\nOm7kk4pIe2CGqsblUM5aEoYRRfhaGb7Z32XKXNnKuO66cFtYPIj4loSITAO6AtWAw8BooDSAqo4T\nkeeAnwKXgXO4kU6rcriOiYRhRCm+VoZPMNauhc6ds+ZlNGpkrYxQEfEiUVCYSBhG0eH06StbGeXK\nZTm/4+PNl1GQmEgYhhHV+FK4+ibyrV0L7drBffe5pV07y/sdDCYShmEUKVJT4bPPYNkyt3z3nWtd\n+ETDhtnmDxMJwzCKNIcPu5Ahy5bB0qUu6ZJPMO69F2rWDLeFkY2JhGEYxQZVSE7OamUsXw61amWJ\nRteulpkvOyYShmEUW9LTYd26LNFYvRpat84SjQ4doHTpcFsZXkwkDMMwPM6dgy++yBKNb7+FO+/M\nEo0WLYqfP8NEwjAMIwDHjrkuKZ9onD3r/Bg+0bj55nBbGHpMJAzDMPLI7t1ufsayZe5v1apZgnH3\n3VCpUrgtLHhMJAzDMK6BjAzYuDGrlfHll9CsWZZodO4MZcuG28rgMZEwDMMoANLSYOXKLNHYutUJ\nhU80br3VZeyLNkwkDMMwQsDJk5CUlNU9dfy4S7LkE4169cJtYd4wkTAMwygE9u/PEoxly1x8KX9/\nRrVq4bYwZ0wkDMMwChlfhj6fYHz6qYtk6xONLl2gfPlwW+kwkTAMwwgzFy/CmjVZorFhA/zlL/CL\nX4TbMhMJwzCMiOPMGTexr0aNcFtiImEYhmFchYIQiSgc1GUYhmEUFiYShmEYRkBMJAzDMIyAmEgY\nhmEYATGRMAzDMAJiImEYhmEExETCMAzDCIiJhGEYhhEQEwnDMAwjICYShmEYRkBMJAzDMIyAmEgY\nhmEYAQmZSIjIRBE5LCKbcyl3u4hcFpF+obLFMAzDuDZC2ZJ4B+hxtQIiUhL4f8BiIKhIhUbeSEpK\nCrcJRQp7ngWLPc/II2QioaqfASdzKfZzYBZwNFR2GFdi/4QFiz3PgsWeZ+QRNp+EiNwE9AX+7e2y\nhBGGYRgRRjgd1/8AfudlExKsu8kwDCPiCGlmOhGJA+arasscju0mSxiqAeeAkaqamENZa2UYhmFc\nA8FmpitVUIbkF1Wt71sXkXdwYvIjgfDKWivDMAwjDIRMJERkGtAVqCYi+4HRQGkAVR0XqnoNwzCM\ngiOk3U2GYRhGdBPWGdci0kNEtovItyLyX1cp55tw199v314R2SQi60VkTeFYHNnk9jxFJF5ETnvP\nbNXdaoIAAAgcSURBVL2I/CGv5xZHruF5/tHvmL2ffuTl/fKe53oR2SIiSfk5t7gR5PPM37upqmFZ\ngJJAMhCH64baADQNUO4TYAHQ32//HqBKuOyPtCUvzxOIBxKv9bMoTkswz9M7Zu9n/p5lJeAboLa3\nXS2v5xa3JZjn6a3n690MZ0uiPZCsqntV9RIwHTdvIjtXm3BnDu0s8vo8c3pmeT23OBHM88zLseJE\nXp7lY8BsVT0AoKrH8nFucSOY5+kjz+9mOEXiJmC/3/YBb18muUy4U2CZiHwtIiNDaWiUkOvzxD2z\nziKyUUQWikizfJxb3AjmefqO2fvpyMuzbARUEZHl3jN7PB/nFjeCeZ6Qz3czbENgydsM68wJdyKS\nfcLdHap6SERuAJaKyHZ1oUCKK3l5nuuAm1X1nIj0BOYCjUNrVtQS7PO09zOLvDzL0kAb4F7gOmCl\niKzK47nFjWt+nqr6LdBFVQ/m9d0MZ0vie+Bmv+2bcYroT1tguojsAfoD/xKRPgCqesj7exT4ANcE\nK87k+jxVNUVVz3nri4DSIlLFK5fbZ1HcCOZ52vt5JXn5X98PfKSq51X1OPApcGsezy1uBPM8UdWD\n3t+8vZthdL6UAnbhnC9lyMUhhYsq289bvw6I9dZjgC+A+8N1L5Gw5OV5AtXJGvbcHth7LZ9FcViC\nfJ72fub/Wd4CLMM5Za8DNgPN7N0s8OeZ73cznDOuL4vIfwBLcDfytqpuE5FnveNXm3BXA5jjeqAo\nBbynqh+F2uZIJo/PcwDwUxG5jAuDMuhq54bjPiKFYJ4n9n5eQV6epapuF5HFwCYgAxivqlsB7N28\nkmCep4jUJ5/vpk2mMwzDMAJi6UsNwzCMgJhIGIZhGAExkTAMwzACYiJhGIZhBMREwjAMwwiIiYRh\nGIYREBMJIyAiUtUvDPYhETngra8TkdK5nBsnIpsDHBsvIk1DY3X4EJHeRT2UtYg8ISI1w22HUXjY\nPAkjT4jIaCBFVV/NQ9lSQG0C5Dc3QouIlFTV9BBdeznwvKqujQR7jNBjLQkjP4iIvCNXJn9K9f7G\ni8hnIjIP2IILQlZKRN4Vka0iMlNEyntlk0Skje98EfmziGwQkZUicqO3/wYRmSUia7ylcw7GlBSR\nV7zjG0XkGW//r0TkbW+9pYhsFpHyIjJGRKaIyJcislNERnhlKojIMhFZ6yVj6ePtjxORbSLylpe4\nZYmIlPOOjRKRb7x6p3r7hovI637nfuIdXyYiN3v7J4nIWBH5QkR2+T9Lv/uKE5dQJqdn90fvfjeL\nyDi/c5JE5P9E5CvgFyLyoIis8lp9S/2e6xgRmSwin4pLPtNPRP7u3fciT+ARkbbeNb8WkcUiUkNE\nBgDtgPe865bLqVwO9oy6hnfNiBTCHYfEluhYcDnKf4OLoeWf/CnF+xsPpAJ1ve04XDiATt7228Bv\nvPXlQBtvPQN4wFv/f8CL3vpUXCRVgDrA1hxsesavfFngK6AuLlrwCuBhb5/PhjHAeq9sVWAfUBMX\n2sAXz6Ya8K3fPVwCWnnb7wNDvPXvgdLe+vXe3yeA1731+cDj3vqTwAfe+iTgfW+9qa+ubPd1tWdX\n2a9cAvCg3zP9p9+xSn7rI4C/+z2DT717boULJ9LdOzYHF5q/NPAlUNXb/ygu9EP2zy63cv/Mfm+2\nRN8SzlDhRtFjjap+57e9X1VXeuvv4n5R/m+2cy6q6ofe+lqgm7d+H9BUJDM6fKyIXKde1FWP+4GW\n3i9cgOuBRqr6nYgMxwU1+7efDQrMU9ULwAWv66Q98CHwPyJyJ+7LuZbvlzewR1U3+dkX561vAqaK\nyFxciPDsdAQe8rv3v/nZMBdAXbyd6jmcC4Gf3T0i8ltcoLYquFbbAq/c+37n3ywiM3BxpMoAu/3q\nX6Sq6SKyBSihqku8Y5u9+2sMNMflHAAnKAf9ru37UJrkUs7fHiNKMZEw8stlvG5KESmB+wLycTZb\nWX+Hl5BzHPxLfusZZL2TAnRQ1Yu52PMfqro0h/2NgRRyT1CjwFBcC6KN9+W5ByjnHb/gVzYdKO+t\nPwDcBfQGXhSRlvw429f/394du0YRRHEc//4KSZBgimAbrKwtUmghwX9AG20UQbFT1NZSrLQRgmCE\nWAhiZWuhNlopSjiNkEDAwkYQwUJMZeGzeHPcureTeF3u8vtUe+y7m7m5Y2fmzbJT2/3r93/EDLWd\npCngfqnnV+U60XQjrtn+98jZwzNJi+QM4p/yI+KPpK72F7AeEUMpvlbddopr/x9sDHlNwkb1hdzn\nA+AkmXKomZd0tByfBUbZdOcljVy2pCMdMS+Ay408+mFJ+yXNAkvAcWCukfcXcErSlKQ5MkX2npyB\nfC8dxAkyZVWlHDbPR8Rr4AYwC8y0wt4weCrsOTLFM4qutpsmL9A/JM0AZ9pVaxwfYDCqv1CJqdkE\nDvbLl7RPg133fpXP3inOJoQ7CRtFACvAoqSPZEplq3W+ebwJXJG0QV5IlxnWfk//9TVgoSz8rpPr\nD20PgQ2gp7zddpkcCd8l8+GfgUvAbeUuXEGmiV4Bb4FbEfENeFLK+gScB5qPom7PfoJMqzwu8T1g\nKSJ+tup/FbgoaY3sJK5v8527DLVdKWOFTDE9B9511K3vJvBU0iq5P3w0YrYrPyL3TT4N3Cm/8wfg\nWDn/CHggqUdeP2pxNiF8C6ztGSU9sxUR7XWRXUXSIXz7sO0SnknYXjMuo6JxqadNOM8kzMysyjMJ\nMzOrcidhZmZV7iTMzKzKnYSZmVW5kzAzsyp3EmZmVvUXtsaAFgOeV8UAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x3062e30>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print (\"Example 5.12\")\n",
+ "#plot the graphs\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "gm=1.1\n",
+ "M0=2.5\n",
+ "g1=numpy.zeros(40)\n",
+ "\n",
+ "z0=numpy.linspace(0,4,40)\n",
+ "i=1;\n",
+ "z1=numpy.linspace(1.1,1.4,4)\n",
+ "for gm in z1:\n",
+ " gc1=0;\n",
+ " for M in z0:\n",
+ "\t\tp0=(1+(gm-1)/2*(M**2))**(gm/(gm-1))\n",
+ "\t\tp20=.4*p0-.5*p0\n",
+ "\t\tM=3\n",
+ "\t\tp42=0.37\n",
+ "\t\tNPR=p20*p42\n",
+ "\t\tg1[gc1]=p0\n",
+ "\t\tgc1=gc1+1;\n",
+ "\t\tpyplot.plot(z0,g1)\n",
+ "\t\tpyplot.title(\"Total-to-static pressure ratio\")\n",
+ "\t\tpyplot.xlabel(\"Flight Mach no. (M0)\")\n",
+ "\t\tpyplot.ylabel(\"pt0/p\")\n",
+ "\t\tpyplot.legend([\"gamma=1.1\",\"gamma=1.2\",\"gamma=1.3\",\"gamma=1.4\"])\n",
+ "\t\ti=i+1;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.12\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvm94rpBACAaRIkyZVIYggRUBUilhQFEXW\ngu7qYgHR3R+2ta0u9l2xLMpaEEQUBEEQAZUivYeahIT0nkzO74+ZTGbSCGFCfT/PM4/3nnvuvWcm\nMu+cc+45R4wxKKWUUlVxO9sFUEopde7SIKGUUqpaGiSUUkpVS4OEUkqpammQUEopVS0NEkoppaql\nQULVOxEpFZHmZ7scdSEiV4rIzrNdjguRiDQRkWwRkbNdFlU9DRIXMRHJsf0jzbZ9kec57N9UzTnx\nInLYhWVw6fVO99oVA5oxZpUxpo3rS3fxEZEEEbmqbN8Yc8gYE2h0sNY5zeNsF0CdPcaYgLJtETkA\n3GmMWX4Wi3SuOKO/bEXEwxhTcibvWUUZ3I0xlno+33CGP1t1+rQmoSoREW8ReVVEjtper4iIl4j4\nA4uBRrbaRpaIRIlIdxH5RUTSReSYiLwuIp61uE9116vy/jVcZ6iIbLOdf0REHhYRv1Mtq4j8ZLvk\nZts5oyvWRkQkVkS+FJHjIpIqIq9XU6aZIvK5iHxqu/fvItLR4XiCiDwqIn8A2SLiJiI9RWSNrWyb\nRKSfQ/7bRWSf7Vr7RWS8Lf0SEVkpIhkikiIin9rS42y1IjeHa6wQkTsdrveziLwsIqnAU7a/8T9E\n5KCIJInImyLiU837q+r85iKy3Pa5pIjIxyISbMv/EdAEWGj7bP9SsYwi0khEFojICRHZIyJ3Vfc3\nV2eQMUZf+gI4AFxl234GWAM0sL1+Bp6xHesHHK5wbhegO9YfHU2B7cCDDsdLgebV3Leq61V7/2qu\nkQj0sW0HA51dVVYgvuwagDuwGXgJ8AW8y+5bRZlmAkXA9bbz/gzsB9xtxxOADUCM7ToxQCow2Hb8\natt+OOAPZAItbccigba27bnAY7ZtL6C3bTvO9l7cHMr0IzDRtn07UAz8yfZZ+ACvAPOBECAAWADM\nqub9VXV+C2AA4Gn7u60EXqnq/7Gqygj8BLxhex+XAceB/mf738bF/tKahKrKeKxfyqnGmFTgaeBW\n27FKzQXGmA3GmPXGmFJjzEHgHaxf0LVRVfNDTfevShHQTkSCjDGZxpiN9VTW7kA08IgxJt8YU2iM\n+bmG/L8ZY7401maYl7F+kfYsKwrwT2PMUWNMIXAL8K0x5jtbOX8AfgOG2fKWAh1ExNcYk2yM2e7w\n3uNEJMYYU2SMWVPL9wJwzBjzL2NMKVAITAIeNsZkGGNygGeBcbU53xhTYIzZZ4xZZowptv3dXqGW\nn62IxAK9gb/a3sdm4D3gtlN4P6oeaJBQVWkEHHTYP2RLq5KItBKRb0QkUUQygf/D+gu4Yr6yp1my\nRSSrLvcXkccdrjHbdvwGYCiQYGtS6Uk1alvWasQCB21fqrVxpGzDGGNs+46fo2OnelNgtK2pKV1E\n0oE+QJQxJg8YC0wGjtnK39p23qNYg+F6EdkqInfUsmwV798Q8AN+d7j/Yqw1gtqcj4hE2prXjtg+\n24+o/WfbCEgzxuQ6pB3CWsNSZ5EGCVWVY1ibAso0saWB9VdtRW9ibba5xBgTDDxBFf9vmfKnWQKN\nMUE1XK/a+xtjZjlcY4ot7TdjzHVYv+jmA/NOt6zVOAw0ERH3WuaPLduwtbs3pvxzrFi+Q8BHxphQ\nh1egMeYFAGPMEmPMICAK2Am8a0tPNsbcbYyJAe4BZov16ayyL1s/h3tEVSif4/1TgXyszVhl9w9x\n+DtVpeLnOwuwAO1tn+2tOH+2NT3FdAwIE5EAh7QmOARadXZokFBVmQs8KSINRKQBMAPrr0KAZCBc\nRBy/PAKAbCBPRNoA957Cvaq6Xk33dyIiniJys4gE25p1srF+UdW1rMlY29arsh5r/8dzIuInIj4i\n0ruG99ZVREaJiAcwFSgA1laT92NguIgMEhF327XjRSRGRCJEZKRYO/qLsQYAi+39jxaRxrZrZGBr\nmjLGpABHgVtt15tYw/vCVjt6F3hVRBrarh0jIoNqeH8VBdjKliUiMcAjFY5X+9kaYw5j7Yd6VqwP\nLnQEJto+F3UWaZBQVfk71vbwP2yv32xpGGN2Yv0S3y8iaSISBfwFaz9CFtY2/k9x/tVY7S/Iaq5X\n7f2rcQtwwNbEcTdw82mUdSYwx9bkcqPtmLFdzwIMBy7B+sv/MDCmurcGfI21mSjNVqbrTTWPiRpj\njgAjgcexdtgewtrZLVj/nT6E9Uv/BHAl5cGtG7BWRLJt93vAGJNgOzYJ6xd1KtAW6wMAjuWr+Hf5\nK7DXdr1MYCnQqob3V/H8p7E+GJAJLAS+qJDnWazBP11EHna4TpmbsNYgjwFfAjOMPpJ91om1qbSe\nLm5tN/3UIak5MB3rr4PPsLbDJgBjjDEZtnMew/oLwoL1f/gl9VZApeqJiDyFtUmrpg53pc559VqT\nMMbsMsZ0NsZ0BroCecBXwDRgqTGmFbDMto+ItMX6y6stMBhr+6rWdtT5SAeNqQvCmfwCvhrYa2t7\nHAHMsaXPAa6zbY8E5toeoUvAWvXtfgbLqJSrVNUco9R550xOyzEOa/swQKQxJtm2nYx1cBBYH4Nz\n7Ng7gj4Cp85Dxpinz3YZlHKFM1KTEOuUCsOB/1U8Znt+vKZfXPprTCmlzpIzVZMYAvxueywPIFlE\noowxSSISjfVpDrA+vRHrcF5jW5qdiGjQUEqpOjDGnHJf2Znqk7iJ8qYmsM4JM8G2PQHrAKiy9HG2\nicaaAS2xPpvu5EzNWXI6r6eeeuqsl0HLqeU8X8uo5XT9q67qvSZhGwB0NdZntss8B8wT64yUCdie\nNTfGbBeReVhHxJYAU8zpvDullFKnpd6DhLHOxdKgQloa1sBRVf5ZWIf3K6WUOst0DEI9iY+PP9tF\nqBUtp2udD+U8H8oIWs5zRb2OuK4PIqItUEopdYpEBFOHjmtdvlSpi5iIDgy/ELnyh7QGCaUucloz\nv7C4OvBrn4RSSqlqaZBQSilVLQ0SSimlqqVBQimlVLU0SCil1Bk2b948evfujb+/P/37968xb1JS\nEiNGjCAmJgY3NzcOHTp0hkpppUFCKaXOsPDwcB5++GGmTZt20rxubm4MHTqUL7744gyUrIr7n5W7\nKqXUSWzYsIHOnTsTFBTEmDFjGDt2LNOnTycjI4Nrr72WiIgIwsLCGD58OEePlk8WHR8fz/Tp0+nT\npw+BgYGMGDGC1NRUbr75ZoKDg+nevTsHDx6053dzc+PNN9+kZcuWBAUFMWPGDPbt20evXr0ICQlh\n3LhxFBcXA5z03rU1YMAAbrzxRqKjo0+aNyIigsmTJ9OtW7dTvo8raJBQSp1zioqKGDVqFBMnTiQ9\nPZ2bbrqJ+fPnIyKUlpZy5513cujQIQ4dOoSvry/33Xef0/mfffYZH3/8MUePHrV/4d95552kpaVx\n6aWX8vTTzmtCLVmyhI0bN7J27Vqef/55Jk2axNy5czl06BBbtmxh7lzrJNYnu/eUKVMIDQ2t8tWp\nU6f6/+Dqw9mevrYO090apZRrnOzfE7jmdapWrlxpYmJinNKuuOIKM3369Ep5N27caEJDQ+378fHx\nZtasWfb9P//5z2bo0KH2/YULF5pOnTrZ90XErFmzxr7ftWtX88ILLzidP3Xq1CrLWfHep+rdd981\n8fHxtcpbXFxsRMQcPHiwxnzV/U1t6af8nasjrpVS1Tpbg7GPHTtGTIzzysWxsdb1yPLz85k6dSrf\nf/896enpAOTk5GCMsY82joyMtJ/n4+NDRESE035OTo7TtR3z+/r6VtpPSkoCIC8vj4ceeqjGe5+L\nWg0dVedztblJKXXOiY6OrtTWf+jQIYwx/OMf/2D37t2sX7+ezMxMVq5cWePCOq788n7ppZdqvPfk\nyZMJDAys8tWhQ4d6LVtNDvrl1flcDRJKqXNO7969cXd354033qCkpISvv/6aX3/9FbD+cvf19SU4\nOJi0tLRK/QvgPB9VdcGjJtWdf7J7v/XWW2RnZ1f52rJliz1faWkpBQUFFBcXU1paSmFhob1zvCoF\nBQUUFBRU2q6tIo+6ByMNEkqpc46npydffvkl77//PqGhoXzyySdce+21+Pj4MHXqVPLz82nQoAG9\ne/dmyJAhlX6RO+6LyEmPV1Td+bW5d218+OGH+Pn5MWXKFFatWoWvry/33HOP/XhgYCA///yzfd/P\nz4+goCBEhDZt2uDv71/re910zV3gm3vKZSyj60kodRGzrTFwtotRKz169GDKlClMmDDhbBflnFbx\nbzro8j/zQ/f5mNn767SehNYklFLnpJ9++omkpCRKSkqYM2cOW7duZfDgwWe7WOed5PQo3PzS63y+\nPt2klDon7dq1izFjxpCbm0uLFi34/PPPnZ46UrWTlB6H8ck5ecZqaHOTUhex86m5SdVOxb+pp88G\nLH+9HPNMqTY3KaWUKvf4lOmUeAbjL351voYGCaWUukBt3pSGR+AmYhvG1vka9R4kRCRERD4XkR0i\nsl1EeohImIgsFZHdIrJEREIc8j8mIntEZKeIDKrv8iml1IUqJT2KwPCthPqG1vkaZ6Im8RrwrTHm\nUqAjsBOYBiw1xrQCltn2EZG2wFigLTAYmC0iWttRSqk6SEqLJaTBfsJ8w+p8jXr9AhaRYOBKY8y/\nAYwxJcaYTGAEMMeWbQ5wnW17JDDXGFNsjEkA9gLd67OMSil1oUrNbINfaOK5GySAZkCKiPxHRDaI\nyLsi4g9EGmOSbXmSgbLn2hoBRxzOPwI4z/KllFLqpL75fBH5he3wC88lzOfcDRIeQBdgtjGmC5CL\nrWmpTNkUtjVco9KxmTNn2l8rVqxwYXGVUqr+ncrypYsWLeKKK64gNDSU6OhoJk2aVGkW26o8+/Sb\nCE/iU+TOpk831bms9T2Y7ghwxBjzq23/c+AxIElEoowxSSISDRy3HT8KOHbDN7alOZk5c2b9lVgp\npepZ2fKlO3bsYPny5TXmzcrKYsaMGfTt25eCggLGjx/PI488wptvvlnjeSKdCAnqQYcxJVza8FJW\nzFlRp7LWa03CGJMEHBaRVrakq4FtwEKgbAKWCcB82/YCYJyIeIlIM6AlsL4+y6iUOjfp8qVWN910\nE4MGDcLHx4eQkBAmTZrkNPlfdZLSYogM3U9aQdo53ScBcD/wiYhsxvp00/8BzwEDRWQ3cJVtH2PM\ndmAesB1YDEzR4dVKXXx0+dLqrVy5kvbt2580X0pGS6LCjpGWf3pBot7nbjLGbAYur+LQ1dXknwXM\nqtdCKaVqRZ52zaI45qlT+623du1aLBYL999/PwCjRo2ie3frg45hYWGMGlW+0trjjz/OVVddZd8X\nEe644w6aNWsGwJAhQ9ixY4c9z+jRo5k+fbrT/R599FECAgJo27YtHTp0YMiQIcTFxdnP37hxI7fd\ndttJ7z179mxmz559Su/1VCxdupQPP/yQ9etP3sCSndee0OC5HD7Xg4RS6vx1ql/urqLLl1a2du1a\nbr75Zr744gsuueSSGvPe0P9O4Hn+8daTDPz+6nO+uUkppU6JLl/qbOPGjYwcOZIPPvjgpE9DAWRk\nhePvu4XmrZuRnp9OqM+5PeJaKaVOiS5fWq5sHY033niDoUOH1qr8SWnRNAzZg6XUQlZhFiE+ISc/\nqRoaJJRS5xxdvrR8+dKXXnqJEydOMHHixBprJY6S05sRHXqEzMJMAr0DcXdzP+UyltH1JJS6iJ1P\n60no8qW1IyK4u+9iWM+XeGnBI1zz8TXse2Bf2d9a15NQSl0YdPnSurNYYhh/14DTfvwV9OkmpdQ5\nSpcvrTsf7+2MvX0M3+/9/rQ6rUGDhFLqHDVp0iQmTZp0totxXgoP2gVc7pKahDY3KaXUBSYq9BCA\nBgmllFKVRYRaB/9pkFBKKVVJy5aegAYJpZRSVXjto5cASC84vdHWoEFCKaUuWFqTUEopVS0NEkop\ndR46leVLf/zxRzp27EhoaChhYWEMGjSI7du31+o+GiSUUuo8VLZ86bRp006at127dixevJj09HSS\nk5Pp3LkzEydOrNV9NEgopS5YunypVUREhH1tjdLSUtzc3Gp1njHG2nHtqx3XSqkLjC5f6uzQoUOE\nhobi5+fHokWLeP/99096Tl5xHu7ijo+HT53vC2BfMON8eVmLrJRyhZP+ewLXvE7RypUrTUxMjFPa\nFVdcYaZPn14p78aNG01oaKh9Pz4+3syaNcu+/+c//9kMHTrUvr9w4ULTqVMn+76ImDVr1tj3u3bt\nal544QWn86dOnVplOSve+1S9++67Jj4+vtb509LSzC233GJGjBhRbZ6yv+mhjEMm5qWYiumn/J2r\nczcppap3lqYR1+VLqxYaGso//vEPoqOjycrKIigoqNq8ruiPAG1uUkqdg3T50uoVFxfj5uaGt7d3\njfnSC9I1SCilLky6fGm5r776it27d1NaWkpKSgoPP/wwQ4cOPWmQSMtPO+1Oa9AgoZQ6B+nypeXL\nlx49epTBgwcTFBREly5dCA0NZc6cOSe9R1p+GmE+p1+TqPflS0UkAcgCLECxMaa7iIQBnwFNgQRg\njDEmw5b/MWCiLf8DxpglFa5n6rvMSl0sdPnSC0/Z3/SFn18gJTeFFwe96Jh+Ti5faoB4Y0xnY0x3\nW9o0YKkxphWwzLaPiLQFxgJtgcHAbBHR2o5SFyFdvvT0nG8d1xWj1wigrL40B7jOtj0SmGuMKTbG\nJAB7ge4opS46u3btolOnToSGhvLKK6/o8qWnKD3fNR3XZ+IRWAP8ICIW4G1jzLtApDEm2XY8GSj7\nyzcC1jqcewRwfg5OKXVR0OVLT09agWs6rs9EkOhjjEkUkYbAUhHZ6XjQGOtglhrOr3Rs5syZ9u34\n+Hji4+NdVFSllLow7Nuwj29Wf8P20NpNBlideu+4drqZyFNADjAJaz9FkohEAz8aY9qIyDQAY8xz\ntvzfAU8ZY9Y5XEM7rpVykfOp41rVTtnftPPbnXl/xPt0ie7imH5udVyLiJ+IBNq2/YFBwBZgAVD2\niMIEYL5tewEwTkS8RKQZ0BJYX59lVEqpC5GrOq7ru7kpEvjK9hyxB/CJMWaJiPwGzBORO7E9Agtg\njNkuIvOA7UAJMEWrDUopdepc1XF9RpubXEGbm5RyHW1uuvCICEUlRfj+ny/F04vtg/3OyeYmpZRS\nZ17ZOhKumLdKg4RSSp1hp7J8qaOJEyfi5ubG/v37a8znqv4IODOPwCqllHJQtnzpjh07WL58ea3O\nWb16Nfv3769V7cCVQUJrEkqpc5IuX1qupKSEBx54gNdff71WfUiu6rQGDRJKqXOQLl/q7JVXXqFf\nv35VrklRlbT8NEJ9Tn+0NWhzk1KqBrJihUuuY05xVoS1a9disVi4//77ARg1ahTdu1uncQsLC2PU\nqFH2vI8//jhXXXWVfV9EuOOOO2jWrBkAQ4YMYceOHfY8o0ePZvr06U73e/TRRwkICKBt27Z06NCB\nIUOGEBcXZz9/48aN3HbbbSe99+zZs5k9e/YpvdeTOXz4MO+88w4bNmyo9TnaJ6GUOiNO9cvdVXT5\n0nJTp05lxowZBAYG2puaTtbkpH0SSqkLmi5fWm758uU88sgjREdH06hRIwB69erFp59+Wu05WpNQ\nSl3QHJcvnTx5MosWLeLXX3+lf//+5/zypW+99dZJr19aWkpRUZHT8qVubm54enpWyrtnzx5KS0vt\nZYmOjuabb76hY8eO1V7fVetbg9YklFLnIF2+tHz50gYNGhAREUFERASRkZGICA0aNMDHx6fa67uy\n41qn5VDqInY+Tcuhy5fWjojQ490evHLNK/SK7eWUrtNyKKUuGLp8ad1pn4RS6oK3a9cuxowZQ25u\nLi1atNDlS0+BK4OENjcpdRE7n5qbVO2ICO5Pu1PwZAEebh5O6drcpJRSCj9PP6cAcTo0SCil1AXG\nVU1NoEFCKaUuOK4MEtpxrdRFrr6mk1Bnj9YklFIuUTalhL7Oj1fTGE9uGzwIYwxffmkYMaL8WPTP\nP3O0oIDPtn6mQUIppS42E4aNJjW9mGHjJgKQnAxRUeXHA93dySopceloa9AgoZRS54VSyzFaNw1i\nzISxACQlOQeJIA8PsiwWl46RAA0SSil1XkjNPEJcRPn06ZWChLs72RoklFLq4rT3WBIBPjUECQ8P\ne3PTeRUkRMRdRDaKyELbfpiILBWR3SKyRERCHPI+JiJ7RGSniAyq77IppdT54K5Rt3I0pYiufYfY\n06qqSWRZLC6dJhzOTE3iQWA7UDb2fxqw1BjTClhm20dE2gJjgbbAYGC2iGhNRyl10SvKT6BVkwAe\nePxhe1pSEjhOZeXUce17nnRci0hjYCjwHlD2MPYIYI5tew5wnW17JDDXGFNsjEkA9gLd67N8Sil1\nPkjPOUJcRCP7vjHWp5scg8T52nH9CvAIUOqQFmmMSbZtJwNlb7MRcMQh3xHAeZFbpZS6CO1JTCLI\nr/zrMCsLPD3B3788T5C7O9n10CdRbyOuReRa4LgxZqOIxFeVxxhjRKSmKSirPDZz5kz7dnx8PPFn\nabF2pZSqbw/cNpmDRwu4cUh5w0rF/giw1iQOFRbag8SKFStYsWLFad+/Pqfl6A2MEJGhgA8QJCIf\nAckiEmWMSRKRaOC4Lf9RINbh/Ma2tEocg4RSSl3IMo7vpHljX/7+xnP2tKqCRKC7O2mFORhj8PXw\nrfQDuqq1wGuj3pqbjDGPG2NijTHNgHHAcmPMrcACoGz9wQnAfNv2AmCciHiJSDOgJbC+vsqnlFLn\ng8zco7SIbuSUVl1NIi0/nVDfUJfOx3Umnx4qazp6DhgoIruBq2z7GGO2A/OwPgm1GJhidDUUpdRF\n7vCJYwT7VQ4SFRfpC3J3d/njr3CGZoE1xqwEVtq204Crq8k3C5h1JsqklFLnusnX30xSej6D28U6\npVectwmsNYnM/DQiXRwkTlqTEKsbROQVEXlZREaJzi2slFL1rm1sPikp8FTfnk7pVTY3ubuTXZjh\n8ppEbZqbZgP3AH8AW23b/3JpKZRSSlUS2GAPfj4+eGdnO6VX13GdWw9BojbNTf2BtsaYUgAR+QBr\nv4FSSql6MvWWyTTruAd/rwBIT3c6Vl3HdX5hJqFBrhttDbWrSewFmjjsN7GlKaWUqieNg9M5uC2K\n/q0ugbQ0p2NVdVz7urlhKc4k2IVrSUDtgkQQsENEVorICqy1iEARWSgiC1xaGqWUUgC0aH6E3Xv8\niGvc2ClIlJZCSgpERDjnFxE8LTn4eYfgSrVpbppRRZrBOheTPqKqlFIu9sqMF+jU/Q/2HotgZO84\n+O03+7ETJyA4GLy8Kp/nUZKDj1ewS8tSbZAQke+B74DFxpidLr2rUkqpauUe20BhYiwxLaKJa9kS\nliyxH6uqP6KMWHLwdHGQqKm56XYgA5hpWw/iLREZKSL+NZyjlFLqNLVqkcLhfa1ISEggrm1bp+am\nmoIExVl4eAa5tCzVBgljTKIx5j/GmHFAN+BD23+XiMgyEXnUpSVRSinF+lVradB6E5v3eHPkyBGa\ntGtX6yBRWpyFm2egS8tTq2k5jDEWY8waY8x0Y0wfrHMxVTn5nlJKqbqb/+5rWHID+eur/6BBgwZ4\nh4aCxQIFBUDVTzaVKSnOwri4JlFjx7WIDMa6KFDZROZHgK+NMd8Bn7i0JEoppWjXPIPEPe3wiUsg\nLi4ORCAszDpWIjq62pqEpdRCSUkeJW5+Li1PTR3Xr2GdifVDymsNjYEHRGSoMeYBl5ZEKaUucgd2\n7Sey9RZ+WNQXSbAFCYDQUGuTU3Q0ycnQqVPlczMKMvD2DCSn1LUPndbU3DTUGDPUGPOpMWaV7TUX\nGIZ1SVKllFIu9Pr0JxDPIu6Z/ndrp3VZkCirSVB9n0Rafhq+3sFkl5S4tEw1BYkCEalqjenuQL5L\nS6GUUor2l+SSuvMymrVuXjlI2DqvawoSAd4hZFksLi1TTX0StwNvikgg5WtPNwaybMeUUkq5UMwl\nu/hldRcAEhISGDdunPVAWXMTNQeJIJ9Qslxck6g2SBhjfge6i0gU1uAAcNQYk+jSEiillOLeUeMZ\nc0ciTS7rD1Blc1NREWRmQnh45fPT8tMI9gl1eU2iNo/AfmKM+c32SgQQkWUuLYVSSl3kOjYvIH1X\nJyY+eDcWi8U6RqKJbW5VW3PT8ePQsCG4VfHNXbYqXfaZChIi4isi4UBDEQkTkXDbf+MofyRWKaWU\nCzS5ZD979kUDcOzYMesYCW9v60Fbc1NVK9KVSctPI9zX9c1NNdUk7gF+A1oDv9u2fwcWAG+4tBRK\nKXURmzL6Dvya7iGt1BokDh48WN7UBPbmpppGW6flpxHhF37mOq6NMa8Cr4rI/YAXcCVQCqwG3ndp\nKZRS6iLWMiqX7L3teP6dV4EK/RFgb246WZC4LLzdGa1JlOkLtAVew1qDaIt1gJ1SSikXaN7iEAf2\nNbXvJyQk0LRp+X5Zc9PJgkS0f4Oz0nHdzhhzpzHmR2PMcmPMXUA7l5ZCKaUuUk8/8ARBLbey44iv\nPa3KmoStuam6eZvSC9KJ8W9AdkkJxrhu1HVtgsQGEelVtiMiPbH2TSillDpNXoX7yD/SnLe+KG+g\nqWtzU0O/cLzc3MgvLXVZ+WoTJLoBP4vIQRFJANYA3URki4j8Ud1JIuIjIutEZJOIbBeRZ23pYSKy\nVER2i8gSEQlxOOcxEdkjIjtFZNBpvjellDrntWyexOG9LZzSKgWJkBDIzCQ52dQYJMJ8wwh0d6/U\nL3HrkBF1Ll9tli8dXJcLG2MKRKS/MSZPRDyA1SJyBTACWGqMeUFE/gpMA6aJSFtgLNY+jxjgBxFp\nZYxxXUhUSqlzyBcfzSOszSZ+/Kh8OjyLxcLhw4fLx0gAuLtDQABJx0qJinKvdB1jDGn5aYT6hBLk\n4UGWxYJjLEnO/LnOZTxpkDDGJNT14saYPNumF+AOpGMNEv1s6XOAFVgDxUhgrjGmGEgQkb1Y54la\nW9f7K6V1G8N6AAAgAElEQVTUuWzzsvlc0b8B//r8v/a0xMREwsPD8fHxcc4cFkZSslRZk8gpysHb\n3RtvD2+C3N2dBtRNnzCe/YlZdS5jrRYdqisRcRORTUAy8KMxZhsQaYxJtmVJBsq6YRpRPkcUtm0d\ntKeUumC1DvEg+Vgjp7RKTU02uUHRFBVBUBVrCpWNtgasNQmH5qauXbdy6EjdO7Jr09xUZ7amok4i\nEgx8LyL9Kxw3IlJT6as8NnPmTPt2fHw88fHxp19YpZQ6g+4YNonxHU+wJrPAKb26IJHs35yo0EJE\nfCsdS8tPI9Q3FIAgd3eyLBZWrFjBjKn3ERC2Hx8fP4pzsutUznoNEmWMMZkisgjoCiSLSJQxJklE\nooHjtmxHgViH0xpTzRKpjkFCKaXORzGZHShqvZIf8pN4yiG9uiCR5BNHVGAeUHWQKKtJlHVcj4yP\nZ9pkNz78XxtuuPEyPvjggzqVs96am0SkQdmTS2INfQOBjVin9ZhgyzYBmG/bXgCMExEvEWmGdVW8\n9fVVPqWUOlsO7NpPu31t8Iw6yLaMPIotxfZj1dYkPGKI8qu6b8ExSJR1XM+44ya8Qk6QZsLp0qVL\nnctan30S0cByW5/EOmChMWYZ8BwwUER2A1fZ9jHGbAfmAduBxcAU48oRIUopdY548d63kYbH8fEL\nwsuzASl5KfZj1dYkJJoo7/Qqr5eWn0aYjy1IuLuTXVJCr55b2bqmNxk5macVJOqtuckYswWoVDJj\nTBpwdTXnzAJm1VeZlFLqXNDmxOUc67qENkEdifBPITknmUaB1g7saoOEpSFRHqlVXi8937njOv/p\nv+I5MJ3ozqPY9v4kLrvssjqXtV6fblJKKeXs9mvuovm+cGi2BX//dkQGRHI819o1W+UYCZukojAi\nSarymo4d1wX7D9Kz51a2rOlFmy7taNq0KQEBAXUurwYJpZQ6g5rmdGZX60SGjrkUf/92RPhHkJxr\nHRVQ7RgJICk/mKiSKp/lceqTcPv4TTwDMmnSfTQbNmw4raYm0CChlFJnzLpVa2m3tzW7gn8jN3cb\nfn7tiPSPJDnHGiSqa2oCSMrxJ6r4cJXH0gqsQeLArv306PkHW9b05IZbx2iQUEqp88lHMxZQ4FPC\ntNl/Ii9vu7W5yb+8uammIJGc6UNU3v4qj5XVJD584XE8/LJZ3GoAgAYJpZQ6n7RJ7cb2pltpFOeB\nu3sgnp6hTs1N1QUJYyDphCeRWXuqvG56fjr5h/Lo0Wszf/zSk/Q+l2OxWNi8eTOdO3c+rTJrkFBK\nqTNgwsBJxB0IJbvRIXJzt+Hvb12WJzIg8qRBIjMTvL3BLzOxymun5aex4aOPcffNI7TPaLJKSti1\naxfR0dEEBwefVrk1SCil1BnQPLcLO9oc5V+f/tPeHwHUqrnJvthQaSnk51c6fjjhMJf32sTmNT0Z\nfP0IsiwWlzQ1gQYJpZSqd9988Q3tdrdiV/CvAE41iQj/iJN2XFsXGxLrMqbpzgPqCksK+VveWNy9\nCug77iH7YDoNEkopdZ5Y8vo6cgKLeG/ZawD2TmuwBomUvBSKS4qrHyNRtiKdbRlTRxs2/87lvTay\n6ZcedL+yJ/7u7uSXlvK7BgmllDo/XJrSle1NNgNgTCl5eTvw82sLgLeHNwFeAew8sLPaMRLJyQ5B\nIi3N6diSl+bg5pdDv5seAkBE8Bdh48aNGiSUUupcN2HA3TQ+HAStrDWAgoJDuLsH4+lpX7mZCP8I\nNu3cVP0YibKaRGioU5D407gH6OYNCYcj6H5lT3u6X3IywSEhhIeHn3b5NUgopVQ9uiSvG9vbHOaF\nd58HIC+vvD+iTKR/JDv37qwxSERGUqm5qfGBTpR0+42REx53yu+xZw+tT2O+JkcaJJRSqp688+o7\ntNvVgl2Bv9rTHDuty0QGRLLvwL6T1yQcmpvuHHA/bXfH4tNiKyEhfZ3yl+7ZQ/OOHV3yHjRIKKVU\nPdn+9THSwwr497I37GlVBYkIvwgOHTxE06ZNq7xOxeamA7v20+vQYLYNXExoWHO8vCKd8hfu3Els\nhw4ueQ8aJJRSqp5cmtSFHTGbnNKsYyTaOqVFBkSSdCSpdjWJ9HT+dfdneBa703VCFsHB/ZzyGmPI\n2bmTqHbtqrzWqdIgoZRS9eCG6+6g6YFA3FuXr51W9mSTv3+FIOEfyYnEE1UGCYsFUlMhIgIIC+Pu\nHRn0+aMHq1t8R6MmqYSEOAeJgwcP4uHtjbsLOq1Bg4RSStULtya9SAtO4+rRT9rTCgoS8PQMw8PD\neaqMBr4NyEnNqXKMxIkTEBICnp5AaCiXZF3D3hbHeOeHl8nMXFUpSGzYsIHIdu3IKilxzftwyVWU\nUkrZDR83gYYpUST7unHYYXZvx+k4HHnkeeDu546vr2+lY/Ynm4BJLyym1b7G7Iz8idzcrXh6huPt\n3cgp/4YNG2jcvj1ZFotL3osGCaWUcqEDuw5wsH8PuvychVuXPpWCRMVOa4DC1ELcQqr+Oi7rj1i3\nai19DgxmTcf1vL/oHTIyVlaqRYA1SDTv2FFrEkopdS66/2/PkOfjR/OMGPy7BzsFiarGSABkJWdR\nElSCMabSsbIg8dUTqyh1M9yw9v8AyMhYWWWn9e+//07ryy7TmoRSSp1r1q5ax96r+tBz/iZ8Q31o\n1NG7VjWJpCNJSKiQW5xb+VgSmMS76bW5Kz/HfUcPSz7GYiEz86dKNYljx45hjKFpbCzZGiSUUurc\n8rf338XNlPLXHncS3DuY2FjsQcIYC3l5Oys9/grWJ5KCI4Pts8E6Sk6GLunx7Gh9mPeX/RMCA8k7\nvg539wB8fGKd8pbN/Brs6anNTUopdS5Z+MU37Ly6Ly2W/YLXAS+CegfZg4QxkJ9/AE/Phnh4BFY6\nNyEhgfBG4fbFhxzlbPwLzQ5Gsj9mvTUhNJSM5KXV9kd06dKFIHf386O5SURiReRHEdkmIltF5AFb\nepiILBWR3SKyRERCHM55TET2iMhOERlUn+VTSilXmb14Af452fzzqRlkrckiuHcwZYvCZWZW3x8B\n1iARExtjX3yozKP3P0HnxAGsabeOd776lzUxLIyM7NWV+iOgPEgEurufNzWJYuAhY0w7oCfwJxG5\nFJgGLDXGtAKW2fYRkbbAWKAtMBiYLSJa21FKndNefvY1tg7sT9yP62gc2ZiChAL8O/ojgr02UV1/\nRGlpKYcPH6Zpk6aVmpu2eXvRNMGTKW+Ms6eZsFAySn4nJCS+0rXsNQkPj/OjT8IYk2SM2WTbzgF2\nADHACGCOLdsc4Drb9khgrjGm2BiTAOwFutdnGZVS6nQtObiLyKREFnz2IdnrsgnsFoibp/Xr1TFI\nVDVGIjExkdDQUBqFNXJqbhp2+12EZnckqcFRmndsbk/Pb+aBW6k7vr5xTtc5fvw4OTk5NGvWzNrc\ndJ7UJOxEJA7oDKwDIo0xZZ9GMlA2O1Uj4IjDaUewBhWllDonPTz5ETYNvIqYVRsByFyTSVCvIPvx\nk9UkypYsjQwoX+v6+uHjWXfdMPovzGboc4Od8mdckkdIdvNK1ymrRYgIgR4eZFks9kdqn4x/s87v\nz6POZ54CEQkAvgAeNMZki4j9mDHGiEjlh4PLVTo2c+ZM+3Z8fDzx8fEuK6tSSp2KrV4FxB3Yy9ef\nfwRA1posYh4s/21rDRIWLr10N35+l1Y63x4k/CNZdWgVn344j73D+tBjyU+0yrmesKFhTvkzGp8g\nNKVlpes4rmnt7eaG2biR6cuWMfe77+m2pXWd31+9BwkR8cQaID4yxsy3JSeLSJQxJklEooGy3pqj\ngOMzXY1taU4cg4RSSp0tE2+6h41jrqHPh1/AX8BYDFnrs7i0Z3kwiI2FjRv34eUViYdHQKVrlAWJ\nCP8IknOSeW/7OrxiG/N4zGgCevjjGeppz2uMISP8MHHbK7fCb9iwgRtuuMG+H3L55fz+wYdcGj+N\n6/YWMa/gozq9x/p+ukmA94HtxphXHQ4tACbYticA8x3Sx4mIl4g0A1oC6+uzjEopVVeHo/1ovWMr\n87/6BIDcbbl4RXvh1cDLnic2FkpKqu6PAOfmpuAlzdjasxfNfvidsN2hhI90nsk1P38fuLnhe6S0\n0nUcaxIAPd5+nw1DBjHqo0ziX+xbKX9t1XefRB/gFqC/iGy0vQYDzwEDRWQ3cJVtH2PMdmAesB1Y\nDEwxVY1TV0qps+ym625jQ794ItbttKdlrskkuLfzDK+xseDtXfPjr3FxcTx91yx+u+FaLv/yGz77\n8kNOLDpBg5ENnPJmZq4kpLQjkp7hlJ6WlkZqaiotW1qboYaPm8Da64cz4P3vaV14CQ3HNqzz+6zX\n5iZjzGqqD0RXV3POLGBWvRVKKaVcIDcuiHabN/Dl1/+1p2WtySK4b+UgERKyDT+/IVVeJyEhAbG4\ncaDfZbT9/Vc+n/M2masz8YnzwSfWxylvRsZKQrwuhzTnBpaNGzfSqVMn3NzcGHnDLfxy6w30nPc1\nd3d9jIYx4BFQ9696HYOglFKn6J4e8Rxofxnue1Kc0jPXZBLcyzlI+PtDXNw2iourHyPx8qL55AYF\nkbZvGSl5KaTOT61UiwBbkAjpa1/nukxZU9N1I8azbvx19Ji/CB59iNKPUomeFH1a71WDhFJKnYL7\nx9/Nram72BvdiIwd5b/oi5KLKDlRgt+lfk75S0tLaNRoDykpbSpdKzExkcFDR/PboIG0WrASBpSS\nlJ1kDRLXOQeJ/PwESksL8W3QBdLTnY5t2LCBw7uT2TB+OJ2X/MCiD96jzQaDxc+NwG6VpwE5FRok\nlFLqFLRf9y3v9buakY0bs3fXLvtYhMxfMgnqGYS4iVP+goJ95OVFc+SIf6VrPfHwU2y+YRCXf72I\nrxb8lwj/CFJ+T0HcBf/2zvkzM63rR0hYWKWaRE5SIVvGDqT1unUsfvstADp8UUDauCAchxzUhQYJ\npZSqpXu692XY8USWXjmIG6Oj8fHxITnZOi4465csgnoHVTonN3cbubntnKYMB/jsP5/iFmKh4dEj\nLP73u4B1reuCxQU0uK5BpS/3jIwV1kn9fH3LZgwE4L7b7uPg2AE03r2bdyY/CEDxiWIarSrkyHXO\ntZq60CChlFK1cP/4u5m2aw1Pd+hL1iVxXBMWRsuWLdmzZw+AfVK/inJzt2GMc5A4sOsA2X//M0v7\nXU18SHmfQaR/JF7LvGroj+gHIhAWBunpTBw2Hl9LEqUlFmYNHkWz1s0ASP44mfSr/Ej3P/2HQzVI\nKKVULXRc9y2rwxowaP5n9AkKItDDwx4kSotKyd6YTWD3yu3/ubnb8PV1DhL/vW4wxDQix9uP5ydN\nsKc3zm6Mx3GPSjWSgoLDWCw55WtRhIVx2/gpTPl1Pv+5bgwPdOhGzyt7ANYBd8fePUbWzSEumS5c\ng4RSSp3E5O59GXw8kZXtBrDgxAlGNrD+0i8LEjkbc/C9xBePwMqPmublbSM8vDxI/OWyrtx8dB+z\nbpzIU927OTUrxa6PJaFrAm4ezl/N1qVK+9rz3hoSx5ObF/GPwddzSUwsd/frbc+btS4LU2Rw7+Pv\nkplgNUgopVQN/jT6LqbtXMNzrXvx1oKP+PbECYaHW0dClwWJqgbRAZSWFpOfv5eYmDYcPgyTL7+S\nR/Zu5PHu15LWuT23RkU55Q/5KYQ/OvxR6TplndYAt18xhL//8R0fx7Rm630P8Ewb53mZEt9NJPqu\naIJctDqdBgmllKpB5w2LWRnekH/9tpqfs7KI8/GhsY91kFtZkMhaU3WndX7+Xry8YmjSxI/+jQby\nzPafmd6+Lz0/eIOh4eGEe5bPy1ScVozbNjfWNltb6Tpl/RETew9i1qYlzI7rQNfp0/Fxc2NgaKg9\nX0lWCalfphJ5W6TLVqfTIKGUUtWY3O1KBqUks6qjdYKIBampjGhQ3qncsmVL9u7ZW21Nomx68LsG\nDeeZLcuZ1aobb6/9kXcTE5kU7TzI7cSiE/j38+dosfOcpoWFxyguPsFDA6by7OYfeL5lN567uj+z\nAgJ4vGlTp+aq458eJ6R/CN5R3k6r05WUZNX5M9AgoZRSVbj7utt5bPcvPN+qJ+99/RHGGL5OTWVE\nePmke4GBgcT5x2EptuDTzKfSNfLytvHyo278desS/h3bmpveWs+6rCwKSkuJDwlxyps6P5XoUdGc\nyD+BpbS8BpCRsZKPp7Zl1pYVPNOmN69tXMfyZs3IAq5r4PwUVOJ7ifYR1mWr02VlreO33zrX+XPQ\nIKGUUlXo+ccSljeI4F+/rQZgZ14ehcbQKcB5uu9+4f2wtLZUOWjt7RfWcNumH/gpNILvQxZx+DC8\nl5jInVFRTvkt+RbSf0gnYkQEQd5BnMg/YT/2t6H/5JkdP/NEh37863drWWY1b860rVtxc7hGzuYc\nipKKCBtkXX8i0E3oV/gftmwZQYsWL9b5c9AgoZRSFQy78iqGJCfzS8eB9rQFJ04wIjy8UjDo4NaB\nlMiUipdgwecLabd4E5mensTOmk23bs3Yc7SEL1JTub1Ch3X6snQCOgfg1cCLSH/rCnW/rFpL28ED\nmLl9HU90GMA7634EYF1WFnu9vRm/ebPTNRLfSyRqYhTiLhQWHuP4zuG0t6yha9dfadjw+jp/Fhok\nlFLKweVDRjMsZw1Lotrw6n+fsKdX7I8oE5sVyx6vPU5pf3/yWV5653GuSMlg3bA7GT5mOLGxsIzj\n9A8JIcrb2ym/41xNkQGRPPfAS/R7+2EeTtjIqshWvLt2qT3vswcP8qgxeKam2tMs+RaS5yYTfUc0\nqanf8NtvXQgLuZKpvIyXdyyn44wsX6qUUueDAdeMYWeb5dy8rJTExbHk5GzCz68Vx4uK2JabW6kf\nwZJrwT/Vn9+zf7enTb37Ed4oXMm3Ww+zqc9Ann3T2tQTGwsbJJFPouOcrmEshhMLT9D0iaYAeM5t\nyCctVtNrdxDjjhQTcKT8aaetOTmsy85mbnCw0yR/KV+kENjTm8NFfyX12HzatfuckJAr8DmyihyL\nhSAPnSpcKaVOy3VDx7O8zTqmLmtM8PDheDfvSU6OtUln0YkTDAwLw9vN+Ssz69csPFp7sHO/deGh\nm2+4k9dLl3Dl0SJ6F3ly3cIv7XkLGmeT61XEoDDnNauz1mbhFeWFbzNfOg++kaUdfiQ2oQ3L0t0I\neOVlcAhMzx06xNTGjfGtMMnfkfk/kz/1DgoLj9Kt2yZCQq4AIMjd/bQH1GmQUEpd9J58ZAYLY7YQ\nerANf3MzMGUKAQGX2YNEWX9ERVm/ZNGwX0P279/PiGHjmRuxBr+MhnyV5UPAs7PAq3wZ0+V+iXgv\nj8a9Qp9G6vxUsnpnEz18OJvar6Lb1nie7+SGb6kFJk6059ufn893aWnc26iRde6mtDRKS0rY8vFT\n5Nx2F7Gt76ddu//h6Vk+biLIw+O0B9RpkFBKXdR+WbWWF48uxyM3mJ8GXg+FhXDVVQQEdCInZxP5\nFgvL0tMZWlWQWJNFWN8wrrxyOAubryU0sSk7b5hMSEoyTCifkynPYmFR3nHyv4yiuLj8fGMMz696\nmWHpM0luvJdrtsRz75P9GPTOMnjtNXB3t+d94dAh7o2JsTYdBQdzvEEgq/97GRnF39LhkhXExN5T\nqVPdFQPqNEgopS5qw15+ihL/LB6JuYr2a36Ce+8FEXx84rBYslmSeojOAQFOo6PB+gWfuSaT8e/c\nz9J2a4g+2JYT878j5oN34YknnGoR/0tJoWdQEJHiw7Fj5dcYOuhm3uv0I7gZHrBcy3fff0afuT+z\n7ZIguPJKe75jhYXMS0nhwZgYivNy2fDhA2x/IYuGcjN9bltHeNvLqnxvjgPq6kqDhFLqotV82EjS\nm+xk+NH2/P2R+2DRInsNQEQICOjIV8kJVT7VlL87nycv/yfLOqwkbndXpg8ZBmvWwO7dcNttTnnf\nPXaMSdHRxMbC4cOwf9cBerR7iu+ij9IgLYLtT33Iq++8CAcP0vyTb3mhwlThrxw5woSoKArWLGXN\ngrYUWPbQ9alYLu01Bjf36r/GywbUnQ4NEkqpi1KXITdyoO0artrZg/nf/hf+/W+44QZwmAvJz78T\nizOLq+yPGHj/nazs8COtdvRmSvwV1nUlZs6sVIvYnpvL/oIChoWHExsLrz51J926b+O30HxCw3dx\n7NMfaG5bB4JHHyXnnjvY4pNpPz+tuJgFu3dx44+PszftDhoHPkPvu5YQ6O1TaRnTioK0JqGUUqeu\n/zVj2NhhBZdv6cey7+eBxQJvvWVtanKwz6M7AeTR0q98hbf9uw7Qqc3fWNP6V9rv7Mmub7+kZcuW\neKxbB3v2VKpFvJeYyO1RUXi6uZG69698+ePf8GuyDp+rZ/P7jF/wcLM9nrpyJaxdi/djT5Kck4wx\nBovFwtdz/8mbebfjKe70jN9Bi2G2vo7Q0ErLmFYU5OFx2n0SOk5CKXVRGdbnXlZ03EaL7b1Z/93n\n1sTvvoOICOjWzSnviqLmXOG2GLgOgCnjp/L5d1dyoushokstbFm4ELBO9Ndw0yZrZ7NDLaKwtJSP\nkpMZ8fo8Gi+/nKQTkxnQfRaJt61gVp/ZNAu11SAsFnjwQXjxRfyCG+Dp7snK5QspSJhBY+9sGgS/\nS8cbRjq/kSrWuq7onO+TEJF/i0iyiGxxSAsTkaUisltElohIiMOxx0Rkj4jsFJFB9Vk2pdTFZ9Dl\nf+bb/NYEeWSxIOy58gOzZ1eqRQB8n+1Jj5JvKS0tYsQV9/De/+6mtOFevHv/l9+e+9me75LkZGLy\n8igZP97p/K9SUuj28DzmfH4/llIPxlzzD/Z3dad9RHtu7Xhrecb334egIBg9mr07t/OObxdKs+6g\nyG0U8WN30vHqCgEC7EuY1sQVNYn6bm76DzC4Qto0YKkxphWwzLaPiLQFxgJtbefMFhFtDlNKuUTf\ny55k6R/34X3NkywY+zFZq23TZx84AOvWwdixTvkT8vNJLCqms08h8V1m8s2av3NZy/8Re/+nvDri\nFRoFNrLn9X7uOd4MC+NQUpI97Yk/TeOpyz/l+18fo0+H90lMHUePPw3nSMB83hz2ZvnjqunpMGMG\n6bNm8dVb93B4dy+yS4IoafEJI+54Cs8KT1XZ1aa56VwfTGeMWQVUDHUjgDm27TmU1eNgJDDXGFNs\njEkA9gLd67N8SqmLQ5fWs1i95V5ajh3N9d1G0LdPX0qySig8Wghvv23tR3DodwBYeOIE8d+t4ubr\nH2TNlkkM6fk0t/0njED/QO7qcld5xp9/hj17+KNTJ3bv3s3+Xfu59Zor+OcHHhxJ6c8N/R9n5cZn\nSclN4bntd+L7/RxCfR0WCnr6aRZOGsrG5FG4m4NEt1jN4lgPsj1ya35TtWhucsVgurPRJxFpjEm2\nbScDkbbtRoDjkkxHgJgzWTCl1IVl/64DDB64iP3HbmTQgEf4tf0Bnh3wBSJCcJ9gMn88TsR//gOr\nVlU6d/ltT7LklzvxcC/gxgEzeOF//0eXt7uweuJq3BwbOWxPNDXbsIH/vvo62w6vJuHYCEzpfezZ\nF0WjRv/GGMNdC+/i1stu4bUn4ykoAE+PEpa/9Tym0zd4Gh+8gv/NiBuGAxCxP4LjucdrfnNhYbB1\na41ZXDGY7qx2XBtjjIiYmrJUlThz5kz7dnx8PPHx8a4tmFLqvPfZB/N46JFi0rJ6cmP88/jf50sn\n/0k0DbFOpBd8ZTClH86Djh2hVSunc0f1HcOC1S/TqsmXvPzPIqJijzJl0RQe7PEgbRq0Kc+4ejXs\n3ctDazZyePf3/PTHATq3uJWi4jf5Zb0fjWwtUu/8/g5Hso7wv9H/Y15UCd+9/iy+4Z/gFlJASfqt\nXDNlJu4Oo6sjAyJJzk2mRidpblqxYgVfLF7MHxkZzKywCt4pMcbU6wuIA7Y47O8Eomzb0cBO2/Y0\nYJpDvu+AHlVczyilVE3+PPGvJiRwkQn0/8Hce9ODZlPiJhP5YqTJyM+w58n4JcNk+V9mzJdf2tNu\nGTzK9GjfxHh4bDHdL33VGGNMQcExM/PzANPuX+1MYUmh0332dexobhnU0zQMdzN9Ozc0w/rcayIi\njFm6tDzPzpSdpsELDczWxC3mu9dmmu/eb2WWfBhnFr00zRQXOl+vzBvr3jCTF06u+U2uXGnMFVfU\nmOX3rCzT+ddfjTHG2L47T/k7/GzUJBYAE4Dnbf+d75D+XxF5GWszU0tg/Vkon1LqPHbToNv4etU9\nBPom8thDe3nwyVcY9PEgpvedTrBP+TrUgZ4HKM47RknfIRzatZ8n7hvNt+s24ee5mPatclm79UEA\ncixevL47jy/HzsLLvfzx1juvvZbfC/eTtaOIId3iuWfG2/Tr58Xbb8PV1iWxKbIUMf7zm3ihcBRH\nvxuFW0gpu9aPI6DLU9z+sBfVifCP4HheLZqbzsBgunoNEiIyF+gHNBCRw8AM4DlgnojcCSQAYwCM\nMdtFZB6wHSgBptiin1JK1cpt1/TjyxUPEBV2lLmfNaF3vxv5ds+3HM48zN1d73bK6/be26Q1uYG/\njr+RTQkrKCgqIS5iDoFRg1i+HMoePnp06aMMjImhXbC1OejhMTcR03gb83/eSv9O7Rlz+xNcO3os\n/fuXYszz3HrrXwBPCvJymfPCvTzbLBNil2NJv4mBU6azbLsXgYk1v4/IgEiSc06vuQnOg8F0xpib\nqjl0dTX5ZwGz6q9ESqkL0ZP3TeO33z5h9ZbrCfBtj/f/MvHudCklpSX8ZclfeHHgi3i6OzxKmpXF\nO8vW8H1cMT/8spNrurWjRdf/8Mln3VjyRfl4uOUHlrN0/1IWDhnFM5M/Jr7HszTptJkZ/1fEgN5D\n+XzpN1gsMHo0tGrlRkrKe/y8rD1H139MVJufiIsNpiBtHMPufxp328I/sbGwZUsVb8JBpH8t+iTO\n0GA6HXGtlDqvTRgymBV/LCPU/yosJc/w65ZgZpfuZWFqKr/u+p6ogCiubXWt0zl3jBvDTwU7CTnu\nzfTRZfYAACAASURBVIje1/LICwsYMMA68DrS9rxlfnE+93xzD9et6cPe4k2MvGUzC+e25u35JSz4\nZhFX29qUHn3U+l09eey/ubZNHKb4ZvwDOpKVdh+jJj9Rsbj/3955x0dVZo3/e6YkmUwqgYRAAqGE\nHiCAUgSlWOhWliKCyOqquwrK2tBdcS3oz7IvqPuuDcUXbIhiQ2wIYoGgUgVDgACGkgbpdWae3x93\nAiHMnYyymsF9vp/PfG55zn3umTPJc+59yjkkJ8PKlf6/U7wzgNlNDofxulNZaez7IMxiwQ3UeDz+\n6/KDdhIajeaMZP269Tz295l89v1Ozk8fwTdZ7/PKa3bat4dxRc2ZvXMzR76+j5VTVh5fuDZ74hSa\nx21mxVc/Mursfsx7aAk/Di3g4vGKhQuFvn1P1D9n4jXM759Es6tWciBjCP+en8rW7H189vlqBg4c\nCMDCBbWEH53LXyesxha6l9raAWzceC23/+NxU73rIsH6IyYshsraSqpcVYTZwswF67qcWvteLSAi\np72gTjsJjUZzxjFt5Hg2Z6/G41GMGTiOYvs7/GEiXHqpUT4oKoofdy1iXMr5pCemc+Nlkxne/zAJ\nnb5l/hO1jDt/AkvfeZ3aWphiacklQ6qZPNlojK8bfgvnditmwtUf8NO3Q/hs8aWkXzSQzXuu5+OP\n15Oe3p+MNV+z7ZMn6drta7oMs5K3bwhnX/IW2w+8w/7MTL+6B+IkRIR4Zzy5ZbnHp+z6pK7LycRJ\nwOkvqNNOQqPRnDFkZ+5l3qypvPfNeob17sw1sx5l556xvPUWLF9+Qu5I6UE8h94lOmM0r+64kAlX\nr+ft/0vl+ffcrF6zlgEDBgBwyy0QEWclyfU0tw6tJC2/C5dd+T01KXt5760xPPHSq+Q99hgPPTSf\nJxd0Y8PyxexfcwvRqVtp1qw3OfumcNXt/8DmDZ2RmprK+++/7/c7xMUZye/KyiAiwlwuISKBvPK8\nwJyEH053QZ12EhqN5ozg7mmTKfZ8zocbCxg/6AIWf/gRX34Jj90AGzeeFHyVuVfP4bkeg0me8T65\nW/vzwP092JGTzVfffE16ejoAzz0Heduv5bzWvUn5pDct0nbQ7B9/QoX0YczoLMZNDuWee+5hz3eb\neHBGd+JDNxDb/jNy9pxF2/4LGDbnrFN0TE1NZdeuXX6/hwgkJRlvE127mssFPHjdyDTY0x281k5C\no9EENTdfMZkRg7Mpsm7ntXcUj068kWv2Z5KfD5MnG7mC2rQxZKdfdC0DUxQzpn/CsV09WbZ4DN0v\nHErm4fv57LPP6NatGwAzLriR7kfPYVrmFHZ1OsyuafM59/ItdOy4kISEK1n38Ro2r/pfzum6neH9\nDpG7bSDZu69kyKW1XHTNv0x1TUlJ4ciRI1RVVREWZj6WUNfl5M9J1HU3+SXAabB6TEKj0fzuuP6y\nqQzrk8sl0zL41z9bs3pTCJu2bqJtfDyeVklMvaKSqVMdjBkD1w6fRY/SfkwdfgR3v418sOx8Hl+6\njDtuu403H3iArz7/nLvn3EdFYhxpPw3l0g1XsKlHJiuGfsycR4W87/dSuONhtrz9AW3aPYGz3Y+0\naZvGvuxhTLr0PmIviePYsTVkZ586W6k+NpuNtm3bsnfv3uMOyReBjEskOBMCi98USHeTfpPQaDS/\nF+67+W6SnNv4w9Vrydt2FnfemUKxu4ptP2yjtXeA9qHURdQcXkzVN3m80LEvo529sd91JzlHHVx1\naRYjJ0Qyf/58Yj75ik4jLuLK91YQ3etK/vykcCjmIC1eTuSvFwzj9ZdeZfUL8bRtF0Nkyixal/cg\ne293BqX/m2GzTu5OiojoRXn5NpTy4C+LQWpqKllZWafvJCISOFB8wL/Qb5BTQjsJjUYTFMyaOpuU\n8GIGX/ABZQfbs2LxKGK6d6JclrN27VpatmwJwPRR19HW3pM/H+1KsSeZotGLaHfxJ3Tp+jiJiX8k\nOzOb2X+7kZJubcm+7w6ith7k2gVRJBS5GPLWYD7c/Qqbvnqco4d20y4li5LaNPZk9qDdF/dy8es+\nkvt4sdtjsdliqazcS3h4R1O5Oifhj+RkI4WFP+Kd8Ww8tNG/UGws5OT4FdFjEhqN5oxm+og/0b0q\nnTFDdkO/jaz+YBh3P/MiXx++j3feeYc1a9bw7IIX2bAviy7HBnP515PZ0z6PT/suZ/bcfRSH7SXz\n+7/z6l1LCElcwTejxlB42Ui6rP+WW+/8kZSjHTlw8Yc4Wh1k48GbaZl4FEdZGnt292DoWYsYNiad\n8p3lbBvTyDJo6t4mtjTqJLZs2eK3nuRkePNN//f6j3U36TEJjUZzppGduZdHb3iO7nlnM8HWB8vc\neRw4EsHVl2TxVO1UxkwbQ/7mQtr36s0VTy0kTA3gjx/3othRwEf9V/D/3r6O22cu4KlbFWcdLcbe\nZjnfXDudfGcUXb7YyI3NWlOpDpJ83QaiU7fRPD+R3OxUftg+hmvuup/o8bEn6RPeJfx4EqLQ1qGm\nekdE9KasbAstWlxuKpOamsqbjXiAQLubGh24DjDI34Hqav/1+EE7CY1G85tx+7V3YMlsTtreXpwj\n51F65VPYh66md/rzjE6YgsfjwfJGJJZOnSm6rB/Fu2uY/kwIMUdrOG/ZAGY+fgNt87L5qOsSHsw7\nyr9GDGPuzQ/T+ce9XL11HUkJeTQbtBt7swKKs9LIyUlmf9RVLO19Nhkz+prqJSJED46m+Mti4ifG\nm8pFRPTiyJHFpuUQeHfTTz+BUicCCTYk3hl/2jklwDsmUd5Iljs/aCeh0Wh+Vf694FlWfbWBbkWD\nOGfDReQkF/Ntn3eYeOdWQsI8rP90Hm/e+wzulLfYNGwYuVMuJv2rzcyZm8/3zTexoFsRoa5D7L9j\nBs9llfB9TBSvDhrFrgRon1jIi3If9sF5lGd3JjcnmYObxjLt9rtpMdYYw6j1eJj39dccrq4mMdT8\nLSEQJ+F09qKsrLGupGQKCgqoqKggvEFK1OP3igaLBYqKjHbeF83Dm3Os8hgujwubxaSp1ovpNBrN\nmchrL7/BklUfUNEhhZb5/bn6k3Ycicvlnd5vkjBoJPkb9rP8+nJ6VeVRnJ7Byluvx15WTpulqwgL\nETJCy1kz+D0uP7qLR9bb2TxgBLahrVkz6SjRrbOZ3vzdE05hVT8mP/Q4rcYk+9TFbrFwUWwsK48e\nZaafDG3Rg6PJWur/DcDhaI/LdYza2mPY7b5bd6vVSrt27dizZw9paWmmddW9TZg5CZvFRjNHMwoq\nCmgZ0dK3kF5Mp9FozhTeffN9nlu+jNJOyexM68Oo8JFcvDCSktBC1l68lZ/2bKNv7h6Gv/ASESFO\n7pk0hR+3lFC2NxYWfsHBhAPs75fBuH1pjItuQVJiG+LOthF6XRb9yjZSmtOe3Nx49hwZzVWz76D1\n6DZQU2MsX76/xq9uY+PieDM/36+TiOwTSUVWBa5iF7Zo302jiAWnM42ysi3Exg41rauuyykQJ9Gz\np7neddFgTZ1EdDSUloLbDfXSn9ZHD1xrNJomITszm3nX/JlwexX56d34+pzziD5/CMNX5NPik+Vs\niarmuwF5jD6WxbRVeWyrjmJ5jwmssCSxv6gVue8XMKFHLgM7VDC9eQXNWhTgTLRhOS+DigMdKTzc\nmk3bOpMaNpuJ10z3rURICFx5Jbz0Etx/v6muo+Li+HNWFlVuN2EmjaklxELUWVEUf1NM3Mg407rq\nZjgF4iT80abNzxi8TjARsFggKsrot4rzrbNeTKfRaH4zpg2/lOZHc+hamUtFpy7s/sMovg6JZNTr\na4nd+QY5ziKWx+7j3PII0ojnWFks7xdcxcfRUZzXey9D44tIaLGfmPgjOFplo1x2Kg6ncCwvgd27\n20POeUz/623EjWmBUor0Z9J5YPBU/0rNmAFjx8K8eaZP03F2O70iIvi8qIhRJo0pnBiX8O8kelNS\nst6vSqmpqWRk+M++HOiq64DjN5k5Cb2YTqPR/Bq8+tJrvPDKmyQUH+KsohyGF+RydkQinyRfyHoV\nx75DtRx+6SNmJkcikceIqsyjc0ELOjn60SqtluZxpUQ1y8ERn4El+ii1ua2pKEikML85BzankbH0\nGha+OoukJN/3FxHmDpnLg+seZEzqmOM5IU6hZ09o0QJWr4YLLjD9PmPj4nivsLBRJ7F//n6/domI\n6MWhQ//2K9OpUyeWLl3qVyY52VDZHwElH2pkhpMek9BoNKfN3sxs/nTTXRywVWNTBXTZs4HQNhcQ\nWRNLdvlgdltL2Tu0iBaxLtoW5dI1pZjLohVxMXaiovMIjykgtPkRxJFFzeFkygpbUnQ0lp9+6ITs\nG8rVt/6V+ItOHg+491649VZ44w1zvS7vejl/+/xvrNm3hmHthpkLzpgBL77o10mMi4vjoq1beVop\nU4cTNTCK0m9L8VR7sIT6Dr3hdPagouJHPJ5aLBa7T5mfMw3WHwnOANdKNOIk9JiERqMJiL2Z2fz1\nTw+QXxNKTkgl8bYjdAux43YXE1vdnBQSCQmLJLxvErGRitioCqIit+KMLMERXUhIi8Ngc1Gb14rK\nYy0oLYrl0OEWHMtqQ3iL9sycM4uYZrFMnjyZ6OhonnnmGVNd7rwTuneHjz+GCy/0LWO1WLnznDt5\ncN2D/p3ElClwzz1G33xMjE+RLuHh2EXYWl5OL5NEDrYoG+Gdwin9vpTogdG+dbI6CQ1NpqIik4iI\nHj5lWrVqRUlJCaWlpURGRvqUCXRBXWah/yRGjc1wslkshFksVPivxfz6X3idRqMJUvZm7uXvs++g\ntCyS4vwyOqZaKVYuKqtqiXeE0z4R+kSUE+10ERlhI9xZjiOigtDoTdib5YHVjaswnuqi5lSUxFBa\n6iQ3P4niyg7EpfSg37BVtGyXTJcuL5kGunvuuefo168fS5YsYepU32MKDgcsXAg33QRbt4LZEoap\nPacyb+08NuRsoH9Sf99CzZoZnua11+D6632KiAjj4uJ4r6DA1EnAiXEJMycBxrhEefkWUydhsVjo\n0KEDu3fvPp6/oiFJSUbYpcYW1J1udxMY4xLaSWg0/yXce9NcNq5fgzOyFZXVZbSIiiIqwkJ0hBAV\n7sbpcHHhWdU4HIWEhpcR4izFHlWEJaYQqsNwFTWjpjSWytJoKsqdFBTEULK/BSVVXYkoSmFwzvmc\n8+EAQlqE+Ly/230TW7eOJCvrL6SmPu2z6yYyMpJly5YxYsQI+vTpYxoRdexYePZZePxxmDvX9/e1\nW+3cPuh2HvryId6Z9I65YWbMMAavTZwEGOMS92Rnc09KiqlM9OBocpfmwm3mt4qI6EVZ2WYSEq40\nlanrcjJzEuHhRma6/HyIN1m/F/DAdQAL6o74r8WUoHMSIjIS+B/ACjyvlHqkiVXSaH51LjxvOK2c\ncUQ5bYSHCmGhHpyhCkeoi7BQFw5HNaFhVYQ4KhjYs4whA0uxOHcgEaVQ6cBdEkttWTQ15ZFUVTqp\nrAgjLz+WssoWlFUIZTU27MNG8GL3TjzUtx1/TEz02bgrj2Lfvfv4vv/3pL2fhrOb8xQZqzWctLT3\n2bJlBHv33kn79g/7rKtnz5488sgjTJgwgYyMDJzOU+sCWLAA+vUzZrK2NcnUeU36NTyw7gG25W4j\nLcFk7cGFF8If/wg7doCJUzo3JobMykpya2pICPHtBKMHR7Prhl0oj0Isvh/xIyJ6kZOzwLceXn7O\nuISpkwg0flMAkWB/KUHlJETECjwFnA8cBDaKyLtKqZ1Nq9nPZ82aNQwdOrSp1WgUrecvZ+2na3h7\n8WtUlRURFmIhzAqHjh6hc5t4Qu0eQkM8hNrdhITUEhJSiz2kBntINbbQamwhlVjDKrGElWNxlnPX\n36ugwomnwom7MgJXVTi1leHU1oRRXRVKZWUoR49FUF5lo7xKKK0UKmotXH71VC4aPxIyM41O/k2b\n4KGHYNIkYw59A6aXl3PpkiWsGDiQ5zp3plWDPh6xCO3ub4ejk4PNQzfTdUlXml3Y7JR6bLYoevZc\nxaZN52GzRdG2re9kPDNmzOCLL77ghhtuYPHixT6dSbt2MHu28Xn77RPn6//mDruDWwbcwvwv5/PK\n5a/4/kGsVpg2zRjAfvRRnyIhFgsXxMaysrCQGSYL60JbhWKLsVHxY4VPJwl1gf42o5Ri7dq1Pv82\nU1NTWbdunW9dvdQ5ib4mYaXqupuUn8F2YmON/jo/RNl+eVMfVE4COBvYrZTaByAirwEXA9pJ/Eqc\nyXrmH8nnmy++ZmvGtxz6KYfa6ipsFrBZwG4TQmxGu2G3KGw2hc0KNqsHm1Vhs3qw2zxYrR7sdjc2\nqxurzY3V6sJqc2G11WKx1WK112Cx12CxV2MJqcESUo2EVEFoNVg8XDzRgafagaoOw13t4OXlRfTq\n2QZXTQiu2hBqa4xPebmD6mMRVNVYqa6xUFkjVNRAVZWitNLDli0OojsuZvp0mDDBWEhbnx/yfuCf\n6//J8p3LmdR9ErcMvIVOcZ1OCHTubLSw69bBnDnwxBPw2GPQwGbdnU4mHjqEJTKS9G+/ZUHHjkxK\nOHWlVsurWhKWEsaOP+yg7d/b0vqG1qfI2O1x9Or1CZs3n4vVGkFS0qxTZESEp59+mv79+7No0SJm\nzpzp8/e97TZIS4OVK2H0aN+/+Q39bqD9wvbsPrqbjs1MQnXPmAHnnWc4SrvvmUdj4+JYUVBg6iTg\nxLiEmZMICWmFUh5qao6Y/g+lpqayaNEi03tA44PXYbYwHHYHRVVFxDpM4ncE2N30Swk2J9EaqG+y\nHOCUkaoJ/c3D9Eroqd62Wk4esgmxnXh6kuoTT1vKUes9aRjUriwIFjy13vOhVmzHB+rq7mN4+Don\nbwEQYdOu7Rz4bgcWZRQYl1lAFFaxgHgQJSAg4n1KUB6sFgsebz0ieMtBlHGy7rwcr06wSJ2sQgQs\nIogovKoYOlmUIQdYvPVaRPHldz/wSO5O73V1uhj1WL1bEYXF4t3WKzfOq5O3ohCL5/ixWDxYxINY\nFCIeb5nHu+/GYjW2YvEg4kasbuPY6kasruPb7B0lrF6xALG5wOoCmwuxu4iMtXHOCBu47CiXzfi4\n6/ZD8LhseNx279Z2fOt2W3G7bLhdNlxuK1XVIbgqLLhcFmpdFlxuCzW1YnxcUOOCqlqorYWqGjfV\nNR6Ky4soKq6gc9dKZt6yB4ejBXGb4hgwaS7R0UOw22Nwu91kZGTw7rvv8u7H71JYWMjYsWMZf/l4\nzj///OMB4Gpq4MMP4eWXjTZ+1CiYPt2Y0WmzQff47jw//nkeGP4AT2c8zeBFgxmUPIg5A+cwuM3g\nE0+ZQ4bA+vXGvNIZM4yW95FHTkqmbBVhXrt2jI2LY9qPP/J2QQFPp6bSvEH3S8yQGNK/TGfb2G1U\nZFbQ8fGOiPXk/6/Q0ER69fqUTZvOxWqNJDHxmlP+/5xOJ8uWLePcc8+lX79+9OrV6xSZsDB48kn4\ny19g+HDjuCGRoZHc2O9GHv7yYZ4f//ypAgCdOkH79rBqFYwb51NkdLNm3JSVRbXHQ6iPty3wOol1\nxbS6rpXPchHxjkuYB/v7j06DLc89PSdxGm8SopT6xRf/pxGRy4GRSqlrvcdTgf5KqZvqyajVnzTi\nFZWP1zJf53yVHd/3bpWP86p+mZwoV3WnhcWvVDN9clg92brrDDlVV4+qX6e3rN5+XZmqu75uv941\nymMxZJWglMXYUk/+uMyJeuq2r6w8xORRSSiPxSsnx+tRXjlV/9hTt4/32IKnnpzHY3yO79fbKg+4\nPPXOuwW3Ung8gtsjuD3g8YDLo3C7BbcCjwtcStiwfRu9U3tQ43HjqlVU1SqOlh4lNDKM2ko3UQ4b\n4oKSiCryVREFRTkMDositaSKTqVVpJYYnxCPIisqjNwwG+WOcA60bsO+5DbsT27LvuS27E9qi8Xj\noc3BA4RVVQEQVWwn+YCT5J+cJB9wkvSTk4pwF/nxVXjq2hhrLY42e1hZ+ArTp1lwtMukJq8VruKT\nu2oO51eRsb2YjO1F7D5QTmpbJ6H2kxsqlyuWoyWXUVA0iZraZMLDNp/6J2uroqb7p9T0XQG1oVjK\nmp8iE+L2cGNmLrdvP8zmZuFUexvEV0oqmRLlAKDaHsKSCVP4YuAQOmTvOaUOgLBKK1MXd8BZYaM4\nutanTEj8QdrO+jtVB1M4YZSTWfttIS++k0OHJN+RUQF2H3iZGlcrbNYCqqqXEBZ68swoT1gJZTNn\nYj1knhr0mqw87th+mB3RDlOZ2//2EBaPh/BK33N+WuSG8ZeFXcluX2ZaR8JlL+LssoXFS2qYMvrU\nNy2lFJNu30T3jpGYtT6FRVfwU+48wsO2m96nbOJtxkNlte8ZWV2LKvly1Q98ER9lWse/p13LB/Mf\nRSl/DaFvgs1JDADmKaVGeo/vAjz1B6+l7hFZo9FoND+L34OTsAGZwAjgEJABTD4TB641Go3m90BQ\njUkopVwi8hfgI4wpsC9oB6HRaDRNR1C9SWg0Go0muPA9whQEiMhIEflRRLJE5A4TmYXe8i0i4ntZ\n469MY3qKyFARKRaRTd7PPU2g4yIRyRWRbX5kgsGWfvUMElsmi8jnIvKDiGwXkZtN5JrUnoHoGST2\nDBORDSKyWUR2iMh8E7mmtmejegaDPevpYvXq8J5JeeD2VEoF3Qejq2k3kALYgc1A1wYyo4GV3v3+\nwPog1XMo8G4T23MIkA5sMylvclsGqGcw2LIl0Nu7H4ExhhaMf5uB6Nnk9vTqEe7d2oD1wOBgs2eA\negaFPb263Aos9aXPz7VnsL5JHF9Up5SqBeoW1dVnPLAYQCm1AYgREbP8Tb8WgegJmM6A+01QSq0D\n/CXCDQZbBqInNL0tjyilNnv3yzAWejacTN/k9gxQT2hiewIopermoYZgPHg1nPTf5Pb03rsxPSEI\n7CkiSRiO4Hl86/Oz7BmsTsLXorqGE5F9yZikL/nVCERPBQzyvtatFBHzCd5NRzDYMhCCypYikoLx\n5rOhQVFQ2dOPnkFhTxGxiMhmIBf4XCm1o4FIUNgzAD2Dwp7APzHCE3pMyn+WPYPVSQQ6mt7QS/7W\no/CB3O97IFkp1Qt4Eljx66r0i2lqWwZC0NhSRCKAN4FZ3if1U0QaHDeJPRvRMyjsqZTyKKV6YzRU\n54rIUB9iTW7PAPRscnuKyFggTym1Cf9vNQHbM1idxEEgud5xMoa38yeT5D33W9Konkqp0rrXVKXU\nh4BdRE6NmNa0BIMtGyVYbCkidmA5sEQp5ashCAp7NqZnsNiznj7FwAdAvwZFQWHPOsz0DBJ7DgLG\ni0g28CowXERebiDzs+wZrE7iWyBVRFJEJASYCLzbQOZdYBocX6ldpJRqJKbuf5xG9RSRBBEjsI6I\nnI0x7dh/oJXfnmCwZaMEgy29938B2KGU+h8TsSa3ZyB6Bok9m4tIjHffAVwAbGogFgz2bFTPYLCn\nUmquUipZKdUOmASsVkpNayD2s+wZVIvp6lAmi+pE5E/e8meUUitFZLSI7AbKgRnBqCdwBXCDiLiA\nCowf7jdFRF4FzgOai8hPwL0Ys7GCxpaB6EkQ2BI4B5gKbBWRukZiLtCmTs8gsWejehIc9kwEFouR\n4s4C/J9S6rNg+18PRE+Cw54NMSLAnYY99WI6jUaj0ZgSrN1NGo1GowkCtJPQaDQajSnaSWg0Go3G\nFO0kNBqNRmOKdhIajUajMUU7CY1Go9GYop2EJigQEXe9EMubRKStN/Tye97ycWISMr5eHcflfZTN\n9i6C8lW2RkT2Nzi3QkRKf+F3eUmMfO2/GSIyVkTmeffniYhHRDrUK5/tPdfHe9xXRLaJES56QT25\nm0Xkqt9Sd01wo52EJlioUEql1/uc1Ggrpd5T9XKd/wJmAeF+yo+JyDkA3pW1ifzy+EBNsfhoDvC/\n9Y63cfJirgnA9nrH/wvMVEqlYkQNGOk9/yJw06+pqObMQjsJzRmBiFwtIk969zuIyHoR2SoiDzR4\n4o8QkWUislNElnjlb8YIk/25iHzmo3oFvM6JRvUyjJhHdSEWIkTkUxH5znvP8fX0miZG1M/NIrK4\nXp3nishXIrLH11uFN5TLThF5VoykQB+JSJi3rLf3+20RkbfqwkH4sU0yEFIvtILCCC53cZ29gCKg\n0HucCEQqpTK88i8Dl4ARfwgoFJHu/u6p+e9BOwlNsOCo19W0vBHZBcA/lVI9OTnkMRghsWcB3YD2\nIjJIKbUQOAQMVUqNMKnzM4yG3YIRg+v1emWVwKVKqb7AcOBxAG9DejcwzBsddJZXXoCWSqlzgLHA\nwyb37Ag8pZTqgdGI1zmTl4HbvNFEt2GEJ/HHORgRSOtTAhzw6lj/+whGqOj6gSgPcnKI+wzg3Ebu\nqfkvQTsJTbBQWa+rqbH+/AHAMu/+qw3KMpRSh5QRb2YzRtbAQHADXwKTgbAG3V0WYL6IbAE+AVqJ\nkaRlOPBGXRA3pVSRV77uSR6l1E7ALKFLtlJqq3f/OyBFRKKAaG8CJjCSwzTWYLcBDvs4/7r3+1wC\nvF1Pt8a6ww4RuN00v3O0k9D83qiut+8m8CCWCiOz4ALgjQZlVwLNgT5KqXQgDwjzXmMWs7+m3r6Z\nTENdrT5kAs105is/wPsYQf72e7uR6jjEyUlmGoaKFoIzn4imCdBOQnMmsh4j4iYEHmmzFIjyJ+B9\nen+IU99OojASubhFZBjQFqMRXQ1MEG/OABGJDVAXM0QpVYIxiD7Ye+4qYE0j1+3HyGndsK5K4A7g\nwfoFSqnDQImI9PeGtr6KkxPkJAL7ftE30Pzu0E5CEyz4enKt3zVSf382cKsYqSQ7AMWN1APwLLDK\nZOD6xMVKPVEvB0BdXUuBfiKyFaNB3emV3YHRAK/16vK4iR5mOjU8X3c8HXjU273VE/gHgIjcJyLj\nfNTzFdDHV11Kqdfrcl034EaMHMhZGHnaV9UrOxtY5+MazX8hOlS45oxDRBzep2REZBIwUSl1L4AF\ngQAAAHhJREFUaROr1aSIyGrgSu9bwunUEwV8ppQ66z+jmeZMR79JaM5E+nqnnG4BrsdYI/DfzmMY\ntjhdrsYYl9FoAP0modFoNBo/6DcJjUaj0ZiinYRGo9FoTNFOQqPRaDSmaCeh0Wg0GlO0k9BoNBqN\nKdpJaDQajcaU/w+u/OpMnewwtQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5d36550>"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg296"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 5.13\"\n",
+ "#plot the graphs\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from numpy import linspace\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#T=Th/Tc\n",
+ "z0=numpy.linspace(0,8,160)\n",
+ "i=0\n",
+ "z1=numpy.linspace(1,4.5,7)\n",
+ "for T in z1:\n",
+ "\tg1=numpy.zeros(160);\n",
+ "\tgc1=0;\n",
+ "\tfor alfa in z0:\n",
+ "\t\tFR=((1+alfa)**(1./2)*(T+alfa)**(1./2))/(T**(1./2)+alfa)\n",
+ "\t\tg1[gc1]=FR\n",
+ "\t\tgc1=gc1+1;\n",
+ "\tnumber=0;\n",
+ "\tpyplot.plot(z0,g1)\n",
+ "\ti=i+1;\n",
+ "\tpyplot.xlabel(\"Bypass ratio(alfa)\")\n",
+ "\tpyplot.ylabel(\"Ratio of mixed to seperate-flow turbofan engines gross thrust\")\n",
+ "\tpyplot.legend(\"T(hot)/T(cold)=1.5\",\"T(hot)/T(cold)=2\",\"T(hot)/T(cold)=2.5 so on\")\n",
+ "\tpyplot.title(\"Ideal gross thrust gain with a perfect mixer\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.13\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFBCAYAAACcr2PXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4XNW1t9+tkUZTNCq25Sa5995kuWBjgbGNHUhIyA3h\nEggkQBotl8C93A+Cw01y0wvhEhJKqCEFEhIIBoMbrpLcuyz3Llm21WY0M5qZ9f1xjsYjW2UsjTSS\nvN/nOc+cus86M2fO76y99l5biQgajUaj0USSEG8DNBqNRtPx0OKg0Wg0mkvQ4qDRaDSaS9DioNFo\nNJpL0OKg0Wg0mkvQ4qDRaDSaS9DioNFoNJpLaFYclFIPRrNOo9FoNF2HaDyHOxtYd1eM7dBoNBpN\nByKxsQ1KqVuBfwcGKaXejdjkAs62tWEajUajiR+NigOwDjgFZAI/A5S5vhLY3sZ2aTQajSaOqOZy\nKymlUoAaEQkqpUYAI4AlIlLbHgZqNBqNpv2JRhw2AbOBDGAtUAj4ReS2tjdPo9FoNPEgmoB0goh4\ngM8Bz4rIvwFj29YsjUaj0cSTqPo5KKVmALcB/7qc4zQajUbTOYnmIf8Q8BjwdxHZpZQaAqxoW7M0\nGo1GE0+ajTloNBqN5sqjqaasACilGvISRESubQN7NBqNRtMBaFYcgEci5m3AzUCgbczRaDQaTUeg\nRdVKSqlCEZnaBvZoNBqNpgMQTbVSt4jFBCAHSG0zizQajUYTd6KpVtoM1LkXAeAw8NW2Mkij0Wg0\n8afJaiWlVAIwQ0TWtp9JGo1Go4k30aTP2CoiE9vJHo1Go9F0AKLpBPexUurzSinV/K4ajUaj6QpE\n4zlUAw4gCHjN1SIiOiit0Wg0XRTdQ1qj0Wg0lxBNayWUUlnAgMj9ReSTtjJKo9FoNPElmn4OPwZu\nAXZjVC3VocVBo9FouijRxBz2AeNExNc+Jmk0Go0m3kTTWukAYG1rQzQajUbTcWi0Wkkp9Rtz1gNs\nVUotA+q8BxGRB9raOI1Go9HEh6ZiDpu4kDbj3Yh5FTGv0Wg0mi5Io9VKIvKyiLwCZNTNm9PLQEa7\nWdjFUEoNVEqFzNQkrS3rsFJqbizsigdKqZeVUv8Tbztai1JqtlJqbxuf4zGl1PNNbL9TKbW6LW2I\nJUqpPyilzimlNsTblkiUUlVKqYHxtqMjEM0D6ssNrLszxnZ0KdrxoS10Ei+ukYdXu9lvCvLgtihb\nRFaLyMi2KDviHP8rIvdAbF8w4oFSajZwHdBXRKa3opyYC6KIuETkcCzL7Kw0FXO4Ffh3YJBS6t2I\nTS7gbFsb1snpNA9tAKVUooh06AGcYmRjV0sB0+muRyllwegzdVhEvM3t3xVQSllEJNj8nh0MEWlw\nwvgB84ANwBxzPg+YDCQ2dpyeBOAQcK05bwF+BpzBaPn1LSAEJJjb04AXgZPAceB/IrYNAZYDZebx\nrwNpDZ2nARu6Y8SKKoAC4PvA6ojtIeCbQDFwwFx3j7l8FvgH0Cdi/18CJWZ524Ex5vpFwC6g0rT/\n4QZsGQXUYKR8rwLOmev/ADwDvGcevwEY3JiN5j0Z/u7MfVYCXzXnhwKrgHLz+3rTXP+JeVy1ef5/\na8DGBODn5nEHgfsu+p3uwujrU2nacm/EsXnAsYjlw8DDwDbTlj8ByY38TkeAyeb8beY5R5nLXwX+\nbs4vBl4z54+a+1WZ9kzH8PBXAz8FzpnXcH0T9+h/AfvN43cBNzWx72LgLfM6KjHikeMjtvcF3gZK\nzfPe38Cxr5n3zr0X3QtPmvvdAGwFzgNrMZrP15XRD/ibWX4Z8BtgJEY6n3r3VAO2r8T4T6019/sn\n0AN4gwv/jQEX3XODMVpobgHui/gfrwUeb8E1fyXez6QWPcfibUBXnKgvDl8H9gBZGLGaFRidCese\nOn8HfgvYgUwgH/PBgyEOc4Ek84ZeBfyyofM0YMOfgD9iDO06ynygfBKxPQR8CKQDycC1GA/GieYf\n42lglbnvAmAjkGoujwB6m/OngKvM+TRgUiP2fJkIcTLXvWz+2XPMP9/rmA/0RmwcyKXisKLuzwe8\nCTxmzluBmReVNbgh2yJ+p13mnz4d+Pii32kRMMicvxpw110rl4rDIQyh623+5ruBrzVy3leA/zDn\nf48hhF83l18FHjTnF3NBHBoSyTsBP4agKPN6TjRxvZ+P+A2/gCGcvRvZd7FZ9ufM3+lhjAeiBUNU\nNwGPY9REDMIQz/kXHftpc9l28b0ATMJ48Zhq2n6H+R0mmefYhiHcdvM+mNnYPdWA7SuBfaZdqeZv\nXIxxv1vM7/+lhu4TYAyG0I4E/h+wzrTvsq853s+kFj3H4m1AV5yoLw7Lqf+WOa/ujw30wnj7sUVs\nvxVY3ki5NwGbGzrPRftZzJtzWMS6/+FSzyEvYvlF4EcRy06zjP7ANUARMI2IB5K53xGMt8HUZr6T\nOy/+I2N4Dr+PWF4I7GnCxoE0LQ6vAL8Dsho4f3PisBy4J2J57sXnumj/vwMPmPN5XCoO/x6x/GPg\nt42U8xXgH+b8bnO5zuM5DEw05xdzQRwa+h7uBIojlh3mPj2jvGe31D3MGti2GFgXsawwPN1Z5j1x\n5KL9H8N84JrHrmzqXsB4OXrqon32YojwDIy380t+h4buqQb2WYH5wmAu/wz4V8TyDcCWxu4T4D8w\n7v2zwBBz3WVfc2ecOmVAq5PRBzgWsXw0Yn4AxtvRKaXUeaXUeeA5DA8CpVQvpdSflFLHlVIVGG5q\n9yjOmYnxRhN53uMN7Be5vQ/Ggx4AEXFj/CGyRGQFRvXP/wElSqnfKaVc5q43Y7xVH1ZKrVRKXW6A\nsSRivgZIacLG5ngU48FVoJTaqZS66zKOvfh3qvd9KaUWKqU2KKXOmr/TIpr+LU5HzDd0XXV8AsxW\nSvXGEPW/AlcppQZgVCFuvYxrCJ9TRDzmbIPnVUrdoZTaEnHfjaXp6wl/H2I8AY9jeFn9gb515Zhl\nPQb0bOjYRhgAPHxRGdkYv0k/jAdxqJkymiLyHvNiiE3kcmO/DRjeW3/gfRE5EGFva6+5w3NZ4qCU\n6qaUGt9WxnRRTmHcXHVEzh/D6FjYXUQyzClNRMaZ23+IUbUxVkTSgNuJ7jc7g1EX2y9iXb8G9pOI\n+ZMYb6QAKKWcGA+LEwAi8hsRyQFGA8OBR8z1G0XkJgxBegf4SyM2SSPrmyPyOLf56YhY1zu8o0iJ\niNwrIlnA14BnL6OF0ika+b6UUskY9cs/wXgTzwDeJ/qAcKPXLiL7MTqa3o9RjVeF8ZC/FyOG0FAZ\nLf0uATCF5/cY8a9u5vXspOnrifw+EjAe3icw7uFDEfdvhoikisgNEbY2Z+9R4AcXlZEiIn82y+9v\nBrIvpiXfw+Ue8yxGTOx6pdRV5rpYXHOHp9kHjVJqlVIqVSnVDaOe7QWl1C/b3rQuw1+AB5RSWUqp\nDIxAIAAicgpYCvxCKeVSSiUopYYopa42d0nBeCBWmplxH4nmhGK0jPgbsFgpZVdKjcQQlqZu2DeB\nu5RSE8yH4Q+BDSJyVCmVo5SappRKwniQeYGgUipJKXWbUirNPGcV9ZMzRnIayDbLqOOyWtuIyBmM\nB9LtSimLUuorGHEZozCl/k0plW0ulpvXW/fGWRK5bwP8BXhQKdVXKZUO/CcXvi+rOZUBIaXUQmD+\nZZje3HWuwgiArzKXV160fHEZZzCuq6nraQonxrWVAQmmhzW2mWOmKKU+q5RKBB7CuAc2AIVAlVLq\nUfNesyilxiqlchqwuzGeB76ulMpVBk6l1KeUUikYMbhTwI+UUg6llE0pNdM8roRL76mGUI3MN32Q\nUrdjxEO+DDwAvGK+NBXQ+mvu8ETzFpomIpUYwahXRSQXo42yJjqexwiqbsMI6r5N/Yf0HRgPnt0Y\nwa+/cuFt+HsYrcMqMFoeXXxsU9yHESA+jVEX/yZGDKGOeuWIyDLgCfMcJzGCbF80N6divGmew6gH\nL8NoFQPwJeCQWe11L0aLm4ZYjhEMPK2UqnPrG3rDau4N+R4MkSzD8GIixzfPATYopaowWls9IBfa\nrC/G+HOfV0p9voFyn8cQ6u0YL0H/AoIiEjLf5h/AEJBzGHGhfzRh98U09ya5CuNF4JNGluuVYVYZ\n/QBYq4yOZNMaOUeD5xSR3RgB3vUY98dYYE0z9v8DIzvzOYzf+HMiEjRfCm7AaMhwEEO4fo9xzzR2\n7fXWicgmjN/1GbP8Yoz/BWZ10o0YLdGOYry1f8E8dBmX3lON2d/guRvZjlKqP0YLvTtExCMib2L8\nf3/RwmvudESTlXUHxlvSKxjNuAqUUttFpMnqJaXUS8CngNKIapKL93kaIwjpAe4UkS3m+scwHjoh\nYAdwl+issK1CGanXe4rI5dTDX7GY3sFvRWRgvG2JN0qpJ4GhInJ7vG3RtB/ReA5PYbz5HjCFYQiG\nsjfHH4DrG9uolFqEccMNw3jj/K25fiDGW8RkU1QsXHiD1USJUmqEUmq86abnYrSC+Xu87eqomNUV\ni5RSiWYV3pMYVXOaLlJNork8mh3sR0T+ilHVUbd8AKOFSnPHrVZN5yj5NIY3gojkK6XSlVK9MDrZ\n1AIOpVQQI/h4ornzaS7BhVGV1BejbvZnIvLP+JrUoVEYVU9/wmhd9B7w3Xga1IHoEtUkmssjmpHg\nfoLRu7YG+ACYAHxbRF5r5bmzuLTpYJaIbFZK/RyjfrEG+FBEPm7lua44RGQjMCzednQWRKQGyI23\nHR0REflevG3QtD/RjCG9QEQeVUp9FiMY+TmMJnatFQdowF01q60ewmhWWQH8VSl1m4i80cC++m1G\no9FoWoCINFldGE3MoU5AbgDeEpEKYuNinqB+u/K6dtM5GL0xz4qRaO1vwMwGjgc6Rw/vJ598Mu42\ndBU7O4ON2k5tZ0efoiEacXhXGbnqpwDLlFI9Mdo4t5Z/YjZXU0av2nIRKcHoqj7dbD+sMJrN7o7B\n+TQajUYTJdEEpP/LjDtUiEhQKeXGyPHTJEqpNzGyufZQSh3DaP2RZJb5OxF532wdsh+jo9dd5rat\nSqlXMdoUh4DNGG2INRqNRtNORBOQtmL0rr3aeJFnJUb+nyYRkVuj2Oe+Rtb/BCNVQZcgLy8v3iZE\nRWewszPYCNrOWKPtbH+i6QT3IoaIvIIRQL4dCIjI3W1vXtMopSTa+jONRqPRGCilkGYC0tGIwyW9\noaPpId0eaHHQaDRXImYtTlQ09IyMRhyiCUgHlFJDIwodgpHxU6PRaDRxIlatkhojmn4OjwDLlVKH\nzOWBmMFjjUaj0XRNmhQHZeRQn4CRv3+EubpIrpCBwTUajeZKJZqYQ6GITG0ney4LHXPQaDRXImbM\noMX7xSog/UuM/gl/xuiPoDBGCtzcrGVtjBYHjUZzJdJRxGElDaTLEJFrmrWsjdHioNForkQ6hDh0\nZLQ4aDSaK5H2EIdoekg/zKWeQwWwSUS2NmudRqPRaDod0VQr/REjU+q7GPGGT2EM3TkAI0vrj9va\nyCZs056DRqO54ugQ1UpKqdXAQhGpNpdTgPcxhgDdJCKjmrWwjdDioNForkTao4d0NJ3gMgF/xHIt\n0EtEPEop3d9Bo9Fo2pn2eCmORhzeAPKVUu9gVCvdCPxRKeVEj7Og0Wg0XZKoWisppaYCV2EEpteK\nMT5x3NHVShqNRnP56KasmstGRPD7/fh8PgKBAImJiSQlJZGYmEhiYuJl1XVqNJqOSaxiDpouQCAQ\n4PDhwxQXF1NcXMz+/fs5efIkZWVlnDlzhjNnzlBZWYnP5yMpKQmbzYbFYiEQCFBbW0sgECAUCuFy\nuUhLSyM9PZ20tDR69epF3759L5n69+9PSkpKvC9bo9G0EO05dEFEhEOHDrFhwwby8/PJz89n+/bt\n9OrVi6FDhzJs2DCGDh1KdnY2mZmZ4SktLQ2r1UpCQsOZ3IPBIJWVlVRUVFBRUUF5eTklJSWcPHmS\nU6dOcfLkSU6ePMmJEyc4evQoaWlpDBs2LHy+YcOGMWLECEaMGIHVam3nb0Wj0dQRq6asKUCNOX70\nCIzsrEtEpDZ2prYMLQ4X8Pv9rF69mvfee4/33nuP6upqZs6cybRp05g2bRpTpkxp1zf5UCjEyZMn\nw55K3VRUVMThw4cZOnQo48aNY/z48eHP7OxsXW2l0bQDsRKHzcAsIANYCxQCfhG5LVaGtpQrXRxE\nhA0bNvDCCy/wt7/9jREjRnDDDTdwww03MGHChA77oK2pqWHPnj3s2LGD7du3s2PHDrZt2wbA1KlT\nyc3NZerUqUydOpUePXrE2VqNpusRK3HYIiKTlFL3A3YR+YlSapuITIilsS3hShWH8+fP88orr/DC\nCy/g9/u5++67uf322+nTp0+8TWsxIsLx48cpKCigsLCQgoICNm3aRPfu3cnNzSU3N5fp06czZcoU\nkpOT422uRtOpiZk4AN8Efgl8VUR2KaV2iMi42JnaMq40cTh//jy/+MUvePbZZ7n++uu59957ufrq\nqzush9BaQqEQRUVFYbFYv349RUVFTJ48mdmzZzNr1ixmzJhBenp6vE3VaDoVsRKHOcDDGP0bfmyO\nIf2giDwQO1NbxpUiDuXl5fzqV7/imWee4TOf+QyPP/44gwYNirdZcaGqqor169ezZs0aVq9eTWFh\nIUOHDmXWrFnMnj2bvLw8evXqFW8zNZoOTUz7OSilnCLijollMaKri0MwGOTFF1/kiSeeYNGiRTz+\n+OMMGTIk3mZ1KPx+P1u2bGH16tV88sknrF69mqysLK699lquueYa5syZQ7du3eJtpkbToYiV5zAT\neAFwiUg/pdRE4F4R+WbsTG0ZXVkcdu3axVe+8hWSkpJ45plnmDhxYrxN6hQEg0G2bNnC8uXLWb58\nOevWrWPYsGFce+21XHvttcyaNQuXyxVvMzWauBIrcSgAPg/8Q0Qmmet2iciYmFnaQrqiOASDQX76\n05/y85//nB/84Afcc889XTam0B74/X4KCwvDYlFYWMiECROYO3cu8+fPZ9q0aSQlJcXbTI2mXYmZ\nOIhIbl2rJXOdbq3UBpw+fZovfelLBAIBXnnlFQYMGBBvk7ocNTU1rFu3jo8//pgPP/yQgwcPcs01\n17BgwQLmz5/P4MGD422iRtPmxEoc3sJoqfQMMA14AMgRkS/GytCW0pXEYc2aNdxyyy3ce++9PP74\n41gslnibdEVQWlrKRx99xNKlS1m6dClOpzMsFNdccw2pqanxNlGjiTmxEodM4NfAdRgpu5cCD4jI\n2VgZ2lK6iji8+OKL/Pd//zevvvoqCxYsiLc5Vywiwo4dO/jwww9ZunQpGzZsYNKkScyfP58FCxYw\nefJkLdqaLoHOytrBERGeeOIJ/vKXv/Duu+8yYsSIeJukicDj8fDJJ5+ExaKkpIS5c+eycOFCrr/+\nenr37h1vEzWaFhErz6EncA8wkAtZXEVEvhILI1tDZxaHQCDAN77xDbZt28a//vUvMjMz422SphmO\nHz/O0qVLWbJkCR9//DGDBw9m4cKFLFy4kGnTppGYqJMcazoHsRKH9cAnwCYgZK4WEXk7Jla2gs4q\nDoFAgC9/+cuUlJTwzjvv6NTWnZDa2lrWr1/PkiVLeP/99zl+/Djz5s0LexW6I56mIxMrcdgqIh2y\nkX1nFIdgMMgdd9zBmTNn+Mc//oHdbo+3SZoYcOLECT744APef/99li1bxtChQ1m0aBELFy4kNzdX\nxyo0HYpYicP3gfUi8q9YGhcLOps4iAj33nsvhw4d4t1339XC0EXx+/2sW7cu7FWcOnWK+fPnh70K\nXYWoiTexEodqwAH4gboxHERE4t7Gr7OJwxNPPMEHH3zAihUrdFXSFcSxY8fCXsXy5csZMWJE2KvI\nycnRXoWm3dGtlToQv//97/nZz37GmjVr6NmzZ7zN0cQJv9/P2rVref/991myZAklJSUsWLCAhQsX\nsmDBAj1+haZdaJU4KKVGicgepdTkhraLyOYY2NgqOos4rFy5kltuuYW1a9cydOjQeJuj6UAcPXqU\nJUuWsGTJElasWMGoUaPCXsWUKVMaHbJVo2kNrRWH50XkHqXUSuCSnUTkmphY2Qo6gzgcOnSIGTNm\n8Prrr3PdddfF2xxNB8bn87FmzZqwV1FWVhb2KubPn6+9Ck3M0NVKccbr9TJz5kzuuOMOHnrooXib\no+lkHD58mA8++IAlS5awcuVKRo0axfXXX69jFZpWE6uA9M1c6jlUADtEpLR1JraOji4O999/PydP\nnuStt97SmVU1raLOq6gTi9OnT4dbQC1YsEDHsTSXRazE4V/ADGCFuSoP2AwMAp4SkVdbb2rL6Mji\n8Pbbb/Poo4+yadMmPYylJuYcPXqUDz/8kCVLlrB8+XKGDRsW9ipyc3N1b21Nk8RKHJYCt4tIibnc\nC3gNuBX4pLFxHZRSLwGfAkobG29aKfU0sBDwAHeKyBZzfTrGAENjMLyWr4jIhgaO75DicOrUKSZO\nnMi7775Lbm5uvM3RdHH8fn+4t/aSJUs4duxYuLf2ggUL6NOnT7xN1HQwYiUOe0RkVMSyAnaLyKjI\nMR4aOG42UA282pA4KKUWAfeJyCKl1DTg1yIy3dz2CrBKRF5SSiUCThGpaKCMDicOIsKNN97IlClT\n+N73vhdvczRXICdPngxXP3388ccMHDgw3AFvxowZenAjTczE4VlgAPAXjJTdNwPHge8A7zXVakkp\nNRB4txFxeA5YISJ/Npf3AnMAL7BFRJoddaUjisNLL73EM888w4YNG7BarfE2R3OFEwgE2LBhQ9ir\nOHToUL3MsllZWfE2URMHYiUOCcDngFkYVTxrgbejeSo3Iw7vAv8rIuvM5Y+B/wSCwO+A3cAEjIR/\nD4qIp4EyOpQ4nD59mnHjxrF8+XLGjWuwJk2jiSunT58Oxyo++ugjsrKywkJx1VVX6ReaK4S4N2WN\nQhx+JCJrzeWPgUeBBGA9MFNECpVSvwIqReS7DZQhTz75ZHg5Ly+PvLy8NriS6Lj11lsZOHAg//u/\n/xs3GzSaaAkGgxQUFLBkyRI++OADioqKmDNnDvPnz2f+/PkMGzZMt7LrIqxcuZKVK1eGl7/3ve/F\nrCnrj4BeGNVKEGVupSiqlVaKyJ/M5bpqJYWR6G+QuX4W8F8ickMDZXQYz2Hp0qV87WtfY9euXTgc\njnibo9FcNmfOnGHZsmXhIVMTExOZP38+8+bNY+7cuXTr1i3eJmpiRKyqlQ4AN4jInhYYMJDGxSEy\nID0d+FVEQPoT4G4R2aeUWgzYReQ/GyijQ4iDz+dj7Nix/PrXv2bRokXxNqceoZAPn+84Pt8JAoHz\nBAKVBIOVBAKViPgRCQEhREIolUBCgp2EBBsJCXYslhSSkrqTlNTDnLpjsaTqt8krABFh7969YaFY\nvXo1o0aNCnsV06dP14HtTkysxGGtiFzVgpO/ieEJ9ABKgCeBJAAR+Z25zzPA9YAbuKsuX5NSagJG\nU1YrcMDc1mFbK/385z9nxYoVvPfee3Gzwec7hdu9g+rq7bjdO/B4duP1HiUQOI/V2pfk5GySkrph\nsaSSmJiKxeIiIcGGEVJKQKkERIKEQjUEgzWEQl6CwSpqa88SCJyltraM2toyQiEfSUndSU7uh802\ngOTk/thsA8z5AdjtQ0hMdMXte9C0DT6fj/Xr14fFori4WFdBdWJiJQ6/BnoD72Ck7QajWulvMbGy\nFXQEcThz5gyjR49m9erVjBw5st3O6/Ueo7x8BeXlKzh/fgXBYBUpKeNxOsfjdI7D6RyDzTYAq7UX\nSsUuzUIo5MPvP4PPdwyf7yhe7xG83qP4fEfweo9QU3OAxMQ0HI4ROBwjsdtHmPOjsNkG6AdIF6Gu\nCuqjjz5i6dKlWCwWXQXViYiVOLxsztbbUUTuapV1MaAjiMO3vvUtLBYLTz/9dJufq6bmAKWlf6a0\n9E/4fCdJT88jI+Ma0tOvweEY1SEevCIhfL7jeDxF5rSXmpoi3O5dBIMeUlLGk5IyAadzgvk5FotF\nD3rUmWmqCmrevHlMnz5dt4LqYMS9tVJbE29xKC4uZsaMGRQVFdG9e/c2OUcgUMXp0y9TUvIaXu8R\nMjM/T8+eXyQt7SqzSqjz4Pefwe3eTnX1tvBUU1OEzTaQlJSJpKRMITU1l5SUySQm6sGQOisXV0Ht\n27ePmTNnMnfuXObOncvEiRN1KvI4EyvPYQTwLNBbRMYopcYDnxaR78fO1JYRb3G47bbbGDVqFI8/\n/njMy/Z6j3PixNOcOvUiGRlz6dPnHtLTryEhoWvlzAmF/Hg8e6mu3kpV1UYqKwtwu3dgtw/G5crF\n5ZpKamouTuc4EhJ0ALQzcu7cOVatWsWyZctYtmwZpaWl5OXlhcVi+PDhHcLrvZKIlTh8AjwCPCci\nk8z0GTsby6nUnsRTHHbu3MncuXPZv38/LlfsArA1NQc4fPgpzp59l1697iA7+0Hs9kExK78zEAr5\ncbt3UFlZQFVVIZWVBXi9h0hJmUha2kxSU68iLW0mVqvORNoZOXHiBCtWrAiLRSgU4tprrw2LRXZ2\ndrxN7PLEShw2ikhOZB4lpdRWEZkYQ1tbRDzF4eabb2bGjBl85zvfiUl5tbXnOHx4MSUlfyQ7+0Gy\nsu4nKUlnc60jEKiiqqqQioq1VFSspbJyA1ZrT1JTZ5KWdhVpaVfhcIzsdFVtVzoiwv79+1m+fDnL\nli1jxYoVZGRkhIUiLy9PD3LUBsRKHJYA9wN/NT2HzwNfFZGFsTO1ZcRLHLZt28b111/PgQMHWt3h\nTUQ4ffplDh58jMzMmxk4cDFWa2aMLO26iARxu3ebQrGWiop1BALlpKbOIC1tJmlpV5OaOpWEhOR4\nm6q5DEKhEDt27Ah7FWvWrGHw4MFhsZg1a1ZMPfUrlViJwxDg9xhjOpQDh4DbRORwjOxsMfESh1tv\nvZVJkybx6KOPtqocr/cYRUVfpbb2HCNG/A6Xa0qMLLwy8flOUVm5joqKNZSXr6ampgiXayrp6XNI\nS5tDauo03TKqk1FbW0thYWFYLDZu3Mjo0aPJy8tjzpw5zJo1i7S0tHib2emIaWslpVQKkCAilbEw\nLhbEQxxjXScIAAAgAElEQVQOHDjAtGnTOHjwIKmpzWYQaZTS0r9QXHwf2dkP0q/ff3a5QHNHIBCo\noKJiLeXlqygvX4XbvROXaxJpaXNMwZiJxeKMt5may8Dr9ZKfn8+qVatYuXIlBQUFjBw5MpxXbdas\nWXpwrSjQTVnbgK9//ev06NGD73+/ZY21QiEfBw58h7NnlzBmzF9wuSbH2EJNYwQC1VRWrqe8fBUV\nFauoqtqC0zmW9PQ6sZhFYmLLBV/T/vh8PgoKCsJikZ+fz/Dhw5kzZw55eXnMnj2bjIyMeJvZ4dDi\nEGNOnz7NqFGjKCoqatGYvX7/GXbu/CxWayYjR75MYqJ2h+NJMFhDZWU+FRWGZ1FVVYjdPoL09Dxz\nmq1/o06G3++nsLCQlStXsmrVKtavX8/QoUPD1VBXX3217r2NFoeY8+STT1JSUsJzzz132ce63XvY\nseMGevb8IoMG/Y9uVdMBCYV8VFYWmmKxksrKDVosOjl+v59NmzaFxWLdunUMGjSIOXPmMHv2bGbN\nmnVFDqMaM3FQSl0FDATqKsZFRF5ttYWtpD3FwefzMWDAAJYvX87o0aMv69jKyo3s2HEDgwf/iD59\n7mwbAzUxp04systXUl6+kqqqfC0WnZza2lo2bdrEqlWrWLNmDWvXrqVbt27MmjUrLBZXQqe8WLVW\neh0YDGzFGKUNABG5PxZGtob2FIfXXnuN1157jaVLl17WceXln7Br1+cZMeJ5evT4TBtZp2kPtFh0\nPUKhEHv27GH16tWsWbOGNWvW4PF4mDVrVniaNGlSl0tPHitx2AOMjnuGuwZoL3EQEaZOncrixYu5\n4YZLxhxqlIqKdezc+RlGjXqTbt2ua0MLNfFAi0XX5NixY2GhWLNmDQcPHiQ3NzfsXUyfPp2UlM6d\n+ytW4vBXjDGcT8bSuFjQXuKwfv16br/9dvbt2xd1wrCqqk1s376QkSNfpXv369vYQk1HQItF1+T8\n+fOsX78+7F1s2bKFkSNHhquhrrrqKnr37h1vMy+LWInDSmAiUAD4zNUiIp+OhZGtob3E4a677mL0\n6NE88sgjUe1fU3OALVtmMWzYs2RmfraNrdN0VLRYdE28Xi+bNm0Ki8W6detIT09nxowZzJgxg5kz\nZzJ+/HgSEztu36VYiUNeQ+tFZGWLLYsR7SEOFRUVDBgwgH379kXVfLW29iybN8808yN9s01t03Qu\ntFh0TUKhEEVFRaxfvz48HTlyhClTpoQFY8aMGWRmdpy0OLopawx47rnn+Pjjj3nrrbea3TcUqmXb\ntutwuaYydOjP2tQuTedHi0XXpby8nPz8/LBY5Ofn06NHj3rexdixY+PmXcTKc5gBPA2MApIBC1At\nInHvStoe4jBlyhR++MMfsmDBgmb3LS5+iJqaYsaNe1f3Y9BcNg2JhcMxMiwWRg9uLRadkbpWUevX\nr2fdunWsX7+eEydOkJOTExaM6dOnt1sG2liJwybgi8BfgBzgDmCEiPxXrAxtKW0tDlu2bOGmm27i\n4MGDWCxNj8NcUvImhw49zpQpG0lK0t31Na1Hi0XX5ty5c/W8i4KCAnr16kVubi65ublMmzaNCRMm\nYLPZYn7umImDiExRSm0XkfHmuitiPIcHH3yQjIwMFi9e3OR+Hs8+tmy5igkTPiYlZUKb2aO5stFi\n0bUJBoPs3r2bwsJCCgoKKCgooKioiNGjR4cFIzc3lxEjRrR6mNVYjgQ3D3gBOAWcBr4sInF/Cral\nONTW1pKdnc3atWsZOnRoo/uFQn42b55Jnz53kZX1rTaxRaNpCC0WXR+Px8PWrVvJz88PC0ZZWRk5\nOTn1BCMrK+uyyo2VOAwASgEr8G0gFXhWRPZfljVtQFuKw5IlS3jqqadYv359k/sdPPgY1dU7zDhD\n1+5yr+nYaLG4MigrK6vnXRQUFGC1WuuJRU5OTpPjXLRKHJRSy0RkrlLqJyLSulFt2oi2FIfbbruN\nGTNmcN999zW6T0XFBnbt+iw5Odv0eMaaDocWiysDEeHw4cP1xGLLli3069ePnJyc8DRx4kScTmP8\nktaKw27gbuAl4N8BBYR3FpHNMbq2FtNW4lBdXU12djbFxcWNtk0OhXxs3DiZgQO/S8+et8TcBo0m\n1hhiURAhFgVaLLoogUCAnTt3smnTJjZu3MjGjRvZtWsXQ4YMIScnh5dffrlV4vBvwFeBq4CNF28X\nkWticRGtoa3E4fXXX+dPf/oT7733XqP7HDq0mOrqLYwd+46uTtJ0ShoTC2OkvNmkps7U45l3IXw+\nHzt37qSwsJBvfOMbMYk5fFdEnoqplTGircThxhtv5Itf/CK33XZbg9vd7r1s3TqbnJytJCdfXiBI\no+moRIpFRcVaKivXY7X2IS3tKnOahd0+TL8MdQFiOZ7DZ4CrMaqVVonIu7ExsXW0hThUVFTQr18/\njh8/3uAY0SLC9u3X063b9fTr9+2Ynluj6UiIBHG7d1JRsZaKijVUVKwlFKohNXUmaWmzSEu7Cpdr\nMgkJyfE2VXOZRCMOzfbdVkr9CJgKvIERd3hAKTVTRB6LjZkdi/fee4+8vLwGhQHg7Nl38fmOkZXV\neKBao+kKKGUhJWUCKSkTwnnCvN5jplexluLiN/B4inG5Joc9i9TUmboTaBchmmqlHcBEEQmayxZg\nq4iMawf7mqQtPIfPfvaz3HTTTXz5y1++ZFsw6KWwcAzDhz9Ht27zYnpejaYzEghUUlm5wfQu1lJV\nlU9ycv+wZ5GWdhU222BdFdXBiFU/h+3ANSJy1lzuDqyo6y0dT2ItDlVVVWRlZXHkyBEyMi59+zl2\n7BeUl69g3Lj416qJCLWltdQcqMF30of/hN/4LPETrAwSrAoSqAoQcoeQoCAhgRAgoJIVFocFi9NC\ngiMBi8P4TExLJKlnEtaeVpIyIz57W0lM7bjphzUdh1AogNu9LVwNVVGxFpEAqanTzWkGLlcOiYmd\ne7Cczk6sxOFW4EfASnPVHOC/RORPsTCyNcRaHP785z/z8ssvs2TJkku2BQIV5OcPY8KE5aSkjI3Z\nOaNBQoJ7t5uK1RVUb63Gs9uDe7cbBOzD7CRnJ5PcNxlrlhVrL+NBbnFZjMlpQSUqSDBuCBSEfCFC\nnhBBT5CgOxieD5wPUHumltoztfjP+KktNedP+yEBbANsJPdPxtbf/Bxgwz7UjmO4g8Q0LR6aSxER\nfL7jVFaup7JyA5WV66mu3o7DMTwsFqmp03Wgu52JZUC6L0bSPYACETkdA/taTazF4ZZbbmHevHnc\nfffdl2w7dOi7eL1HGTXq5ZidrylqDtdQ9vcyyleUU7G2gsSMRNJnp+PKceEY7cA52klSz6R2+UOJ\nCIHyAL6jPrxHvHiPevEdMeZr9tfg2efB4rTgGOHAPtwQi/DnEDsJyTpDreYCoZCP6uqtVFRcEIxg\nsLqed5GamktiYtwTP3dZYuU5KOBzwCyM1kqrReTvMbOyFcRSHPx+P7169WLPnj2XDPnn95dQUDCa\nKVM2YbcPjMn5GsJT7OHMW2c48/YZfEd8dP9Md7rN60ba7DSS+3bcFiEigv+UH88+DzX7aup9+o74\nsA22kTI+Bec4Z3iyDbDpN0VNGJ/vJJWV+WEPo6pqMzbbQNLSZoQFw+EYqVPhx4hYicNvgSHAmxit\nlb4AHBSRuA9zFktxWL58OY899hj5+fmXbDtw4BFCIS/Dhv0mJueKRILC2ffOcvzp47h3ucm8OZPM\nmzNJuzqNhMTO/0cI+UK497hx77gwVW+vJlgVxDnWiXO8k5RxhnCkTEzRsQ0NYAyc5XZvN4PdhmDU\n1pbhcuWQmjoVl2sqLlcuyclZ+iWjBcRKHPYCo0UkZC4nALtFZGTMLG0hsRSHb3/723Tr1o0nnnii\n3vra2rPk5w8nJ2crNlu/mJwLIFAZ4NTzpzjxzAmSeiWR/UA2mZ/PJMHa+QUhGmrP1RpCsaMa93ZD\nMNw73CRnJeOa4iJlckr4Myk9Kd7majoAfv8ZqqoKqaoqpLKykKqqApSyhIWiTjSSkrrF29QOT6zE\n4T3gPhE5bC4PBJ4RkRtiY2bLiZU4iAjDhg3jrbfeYuLE+sNUHDr0Xfz+U4wY8XyrzwMQrAly4v9O\ncOynx8i4NoPsh7JJnabrVgFCgRCevR6qN1dTtamKqk1VuLe5SeqZVE8wXJNdJHXXgnGlYwS7j4aF\nwhCOTSQl9YzwLqbick3GYnHG29wORWsT79W110zD6ARXgBFzyAUKRWRODG1tEbESh7179zJv3jyO\nHj1az0UNBCrYsGEIU6bkY7cPadU5RISyv5dx4OEDpExMYdD3B+Eco2/Y5pCg4NnnoWpTVVg0qrdU\nk9gtEVeOi9TcVFy5LlxTXCS6dJXUlY5IEI+nqJ534Xbvwm4fgss1ldTUXFyuqTid40hIuHJfMFor\nDnnmrGDEGiIREVnVagtbSazE4ac//SkHDx7kt7/9bb31R4/+hOrqbYwe/Uaryvce87Lva/vwHvEy\n7OlhZMzVPUhbg4SEmv01VG2sorKgkqqCKqq3VWMbZAuLRWpuKs5xThKSroxqOk3jGK2jdoS9i8rK\nQrzeQzidY0hJmYzLNQWXazJO59grJhVIq6uVlFKJwMcikhdj22JCrMQhLy+PRx55hE996lPhdaFQ\nLfn5Qxg79h1crsktKldEOP3KaQ4+cpCsB7Lo/1/99cOqjQjVhnDvcIfFojK/Eu9hLykTU+oJhm2w\nbiWlgUCgGrd7G1VVm6mq2kR19WZqavbjcIwgJcUQi5SUyaSkTMBiscfb3JgTq5jDMuBmESmPpXGx\nIBbiUFVVRd++fTl9+nR4IAyA0tK/cOLE/zFpUsscpEBVgOJvFlO1uYrRb44mZbzuEdreBCoDRuyi\n4IKHEfQEDbGYZlZJTXVhzbTG21RNByAYrMHt3k5V1WaqqzdTVbUZj2cPdvuQsIdhCMbETt/DOyaJ\n9wA3sEMptRTwmOtERB5o5uQvAZ8CShvLw6SUehpYaJZ7p4hsidhmwRhH4riI3BiFnS1i1apV5Obm\n1hMGgOPHf0W/fo+0qEzPfg87P72T1JmpTCmcgsVhiYWpmsskMTWRjGsyyLjmQjWe76QvLBTHfnGM\nqsIqkronhT2L1GmppExK0b/ZFYjFYic1dRqpqdPC60IhH273LlMwNlFS8gZu905stv6mYFzwMLpa\nK6loxOFv5hRJNK/rfwB+A7za0Eal1CJgqIgMU0pNA34LTI/Y5UFgN+CK4lwtZunSpcyfP7/eusrK\nfPz+U/To8enLLu/8ivPsvnU3AxcPJOvreqyHjkZy32Qyb8ok8yZjEBsJmQHvfMO7KPljCZ7dHhwj\nHYZgTEslNTcVx0gHyqKro640EhKScbkmm1XLRuaEUKgWj2dvuDrqzJm/43ZvJzEx3cxiOxGn08hm\na7cP6bQd96JKn9Hiwo1mr+825DkopZ7DSOD3Z3N5LzBHREqUUtnAy8APgP9ozHOIRbXSyJEjefPN\nN5k0aVJ43Z49d5CSMoF+/R6+rLJK3yql+JvFjP7TaDKu1UHnzkrQG6R6S3U4dlFZUEltaa3ROmpa\nalg0OnKvdU37IhLC6z1EdfU2c9pKdfU2AoGzOJ3jLhKNcXFvWhur8RwONbBaRGRwiy0zyAKORSwf\nN9eVAL8EHgHatAPAkSNHOHfuHBMmTAivq609R1nZPxky5BeXVdbJ509y+MnDjF86HtfENnV2NG2M\nxWYhbUYaaTMujKdce7Y2XB116vlTFN1TRIItIVwV5cp14crRzWmvVJRKwG4fgt0+hMzMz4XX19ae\nx+3eTnX1Nior8zl58vd4PHtITu4XHiujTjQ6Wm/vaO7kqRHzNuDzQPcYnf/ib0IppW7AiFNsiWhO\n2yiLFy8Oz+fl5ZGX1+whYT766CPmzZtHQsIFt6+k5HW6d1+E1doj6nJOPn+SI98/wsRVE3EMc0R9\nnKbzkNQ9ie4Lu9N9oXHriwjeg14qCyqpzK+k7P+VXWhOa1ZFuaa5cI51dok0KJqWkZSUQXr6HNLT\nL3QLM6qlinC7DS/j+PFfU129DZEAKSkTcDrHmdNYnM4xJCa2/mVz5cqVrFy58rKOaVG1klJqs4g0\n274zimqllXWpv81qpTzgAeB2IIAhRqnA2yJyRwNltKpa6ZZbbmHRokXhgX1EhMLCcQwb9gwZGXlR\nlXH6tdMcfOwgE1doYbjSCfkvNKetzDe8DO9RL65JrnBVlCvXpZMOahrE5zttCsYO3O6duN078Hj2\nYLX2ihAL49PhGEFCQstb2cWqKesULgSgEzBSd39DRCY0flT42IE0Lg6LMNJyLFJKTQd+JSLTL9pn\nDvCdtog5hEIhevbsydatW8nOzgagomI9e/d+mdzcoqj+vGffP0vRV4uYsHwCzlG6t7PmUgIVAaOz\nnhm7qMqvQkJySXPapIwrt7eupnFEgtTUHAiLhdu9k+rqHfh8R7DZhpCSUl80bLaBUQXAY9WU9edc\nEIcAcBgjM2tzJ38TY2CgHkqpY8CTQBKAiPxORN5XSi1SSu3HaC57VyNFtUnEfNeuXWRkZISFAeDU\nqefp0+eeqIShanMVe+/cy9h/jtXCoGmUxLREMuZmhHvFiwi+476wZ3HkB0eo3lyNta+1nmCkTEjR\n42BoUMqCwzEch2N4vVhGMOjF49kTFo2TJ5/D7d5BIFCOwzE6LBZ14pGU1POyvdVoPIfBInLwonWD\nRKShQHW70hrP4ZlnnmHbtm08/7yRUC8Y9LB+fRZTp+4mOblPk8f6TvjYNG0Tw349jMybM1t0fo2m\njlAghGePJywYlfmV1OyvwTnWeaF1VG4q9qF2VIKujtI0Tm1tOR7PrnpVU273DiABp3MMTudoHI4x\n9Ot3f0w8h7eAi+MLbwFTWmh/h2DlypXcdNNN4eWzZ98188M3LQwhf4hdX9hF36/31cKgiQkJiQmk\njEshZVxKXVN6gu4gVZuMvhdn/3mWQ48fInA+gGuyi5QpKbhyjGSD9iFaMDQXSEpKJy3tKtLSrgqv\nExH8/hI8nl243btMsWiephLvjQJGAz8FvoPRskgwAsSPiMiY1l1G62mp5xAKhejVqxebN2+mXz9j\njIYdO24kM/ML9O59e5PHFj9QjPewl7HvjNV/Sk274i/zU73pQjrzqo1VBCoMwXBNMZrSpkxJMQRD\nB7w1TdDamMNw4EaMlN2RAeEq4J7Wmxc/du/eTVpaWlgY/P4zlJevZtSoN5s8rvStUs6+f5YpG6do\nYdC0O9YeVrot6Ea3BRfSNPjP+I005puqKf1zKQceOUCgMmCIhSkYrikunXBQc9k0Kg4i8g/gH0qp\nmSKyrh1tanNWrVpVrz9Eaemf6d79hiaTaflO+Cj+VjHj/jlOj0ym6TBYM610v7473a+/0PXIX+qn\narPhWZS+WcqBhw8QrA4a1VGRgjFIC4amcZqNOXQ1YQAj3vDpT1/Im1Ra+kcGDHii0f0lJOy9cy9Z\n38rSo7ZpOjzWno0IhlkVVfJGCQf+wxSMiSmkTDKniSk4Rjp0WnkN0Ma5ldqalsQcRIRevXqxceNG\n+vfvj9d7nI0bJzBz5ulGR4Y68ewJSl4rYeLqibq3q6bL4C/1U7212sgjtaWK6q3V+I76cIx24Jrk\nCguGc7yTxBSdFqQrEat+Dl2K/fv3Y7fb6d+/PwBlZX+je/cbGxUG3wkfh588zMRVWhg0XQtrTyvd\n5nej2/wLMYxAdQD3DjfVWwzROP2H07h3uUnulxwWC9ckFykTU7D20uNgdGWiSbx3ANgArAZWi8iu\nNreqDVm3bh0zZ84ML5858xb9+j3a6P7F9xfT95t9cY7WHd00XZ/ElMRLkg6GakN4ijxhwTj646NU\nb6kmwZ4QFoyUiSmkjE8x+mLo1OZdgmg8hzHANGAW8DOl1HBgh4jc1PRhHZNIcfD5TuF276Bbt3kN\n7lv2jzLcu92M+uOo9jRRo+lQJCQlkDI2hZSxKUbWM8ye3kd94eqoktdLOLjjIP4SP45RDlLGG9VR\nKeNTcI5z6tH2OiHRiEMAqAWCQAg4g5FWu1Oydu1a7r33XgDKyv5Ot26fanBQ8ZAvxP7/2M/w54Zj\nselRwTSaSJRS2AbYsA2whQdOAmN4XPdON+7tbqq3V1P2tzKqt1djsVtwjnfiHOcMC4dzlFOnCOnA\nRJM+wwPsAH4BLBORsvYwLBouNyBdXl5Ov379OHfuHElJSWzdei1ZWQ+QmXmpE3T0p0epWF3BuH82\nOMKpRqOJEhHBd8xH9fZq3DsuCIf3oBfbYNsFsTCFI7lfsm5i28bEKiB9KzAb+CZwj1JqHfCJiHwc\nAxvblQ0bNpCTk0NSUhK1teVUVW2kW7f5l+znL/Vz9MdHmbyu2azkGo2mGZRS2PrbsPW30eOGC+Ok\nBL1BPHs9YbE48ZsTuLe7CdYEcY524hzjxDHGgXOMMW/tY9Wi0Y5E08+hrjPcSGAR8BDwKMZYC52K\nyHjD+fMfkpZ2NRbLpWMwHH7qML1v741juB6fQaNpKyw2C66JrktGTvSX+fHs8uDe5ca9y03ZO2V4\ndnmQgNQTizrxsPbSotEWRNNa6W1gInAA+AQjJFXQxna1CevWrePb3/42AGfPvkf37jdcso/3iJfS\nN0vJ3Zvb3uY1S3UgQFltLRXBIBWBABWBAO5gkIAItSIERAgBVqWwJiTU+0xOSCDVYiE9MZGMpCTS\nLBYSE3R9r6bjYe1hxTrHSvqc9Hrr/Wf8uHe5w8Jx5u0zuHe5QcA52nmJcCT1TNKi0QqiiTlMBTaL\nSLB9TIqey4k5BINBMjIyOHToEN26pbN2bS9ycjZjs/Wvt9/eu/di7W1l8PdbO0T25SMinPD52O3x\nsMvtZrfHw1Gvl+M+H8d9PmpFyExKIi0x0ZgsFhwWC0lKGVNCAgqoFcEfCuEXwRcK4Q+F8IlQGQhQ\nHghw3hQWh8VCRmIiPZKS6GO1GlNyMr3r5iPWJWsh0XRARITa0tqwl+HZfcHjQGF4FyMd9SbbANsV\nnxstVjGHbcB9SqmrzeWVwHMiUttK+9qV3bt307t3b7p3705FxVqSk7MuEQbPfg9l75QxrXhau9jk\nC4XYWFXFJ+XlrK6oYH1lJValGON0MsbpZHJKCp/r0YPs5GSyk5NJT0yM2ZtQSITqYJDzgQBn/H5O\nRUw7qqtZGrFc4vfTIymJgTZbeBoQMd8/ORm7Rbfo0rQ/SimsvaxYe1nJuDYjvF5E8Jf48ez24Cny\n4Nnj4dySc3j2eqgtq8U+zG6IxagI4RjuwOLQ93Ed0XgOL2KIyCsYabtvBwIicnfbm9c0l+M5vPTS\nSyxbtow33niDgwcfAxIYPPgH9fbZc+ce7IPtDPzuwNgba3KutpZ/lpXxdlkZK8vLGWG3Mzs9ndlp\naVyVlkYva8drDx4U4ZTPx2Gvt8HpmM9HZlISwxwOhtntFyaHgyE2GzYtHJoORKA6QM2+Gjx7PRem\nPR5q9teQ1CvpEk/DMbLrxTVi5TlMFZHxEcvLlFLbW2da+1NYWMjUqVMBI94wfPjv6233HvNy9p9n\nmXYg9l6DLxTir6WlvFpSQn5lJddlZHBrz568PmoUaYkdP4OJRSmybTaybTZmNbA9KMIxr5fimprw\ntKq8nOKaGo54vfS2WsPCMdxuZ6TDwWink37Jusmipv1JTEk0xsCYXD8QLkHBe9gbFozqTdWUvlGK\nZ68ZDDeFwj7CjmOYA/swO/ah9i7rbUTVCU4pNVRE9gMopYZgdIzrVBQWFvKlL30Jn+8EPt9JUlPr\nB5yP//I4ve/qHdOB3k/5fPzu5El+d+oUY51O7u3Th7+PHYuzi71JW5RioN3OQLudi/uaB0Ihjvh8\nFHs8FNfUUOTx8O7Zs+zxeKgMBBjpcDDK6WSUwxGehtjtJOkYh6adURaFfYgd+xA73T/Vvd42f5k/\nLBo1RTWc3nCamn01eA95SeqRZAjFMDuO4Y7wvH2wvVN38oumWmku8AegbszogcBdIrK8bU1rnmir\nlXw+HxkZGZSVlVFZ+VfOnn2PMWP+Gt5ee76W/CH55GzLwdav9S10D9XU8NSRI7xTVsYXe/bk/qws\nRjt1bqaLKa+tZa/Hw57Iye3muM/HYLv9gmCY4jHS4cDRxYRV07mRoOA95qWmuMaoqir2GPPFNXiP\neEnum4x9uCkcdd7GcDu2gba4JvKMplopqpTdSikbMAJjmNAiEfHFxsTWEa04FBYW8tWvfpXt27ez\ne/eXSE+/mr597w1vP/LDI3j2eRj1cutyKJ2rreXJw4f5Y0kJ92Vl8VB2NhlJemCgy6UmGGRfTQ17\n3O56wrG/poZeSUmMdjoZbVZN1X2mdoLqOc2VRag2hPewIRyefRdEo6a4Bt8pH7b+tgvexlA7tiE2\n7EPs2AbYSLC2rXC0ShyUUjdjiIGK+MScR0T+FjtTW0a04vDss8+yadMmXnjhBdat68Pkyeuw242m\nqqHaEBsGbGD8h+ONAd5bgIjw4qlT/L9Dh/h8ZiaLBw4kswMGljs7gVCIQ14vu00PY7fHw25TQLol\nJV0iGKMdDi3Omg5J0BvEe9AUjjpv40AN3oNefCd8WPtYw1Vc9iF2bINt4fnEtNa/CLU2IH1pD7H6\nxF0coqWwsJBp06bhdu/AYnGGhQGg7J0y7MPsLRaGI14vdxcVUREI8OH48Ux0uZo/SNMiEhMSjMC2\nw8FnelxIwxAS4YgpGrvdbtZVVvLCqVPs9nhIsVgY04Bo9NDirYkjFpvFSBHSwFAAodoQ3iNeQzwO\nGKJRmV8Znk9ITmhQNGxDbCT3TY5ZH46mPIeHRORXSqlZIrImJmeLMdF6DmPHjuWVV16hZ8+VeDzF\njBjxXHjb1mu20vfrfel5S8/LPv9fS0v5ZnExD2dn851+/XSP4w6GiHDc7FS42+0Odyzc7XZjTUi4\nxNMY43TSM0n3qtV0XESE2jO1YaGIFBDvQS+B8wFsA21GFdVgO7ZBNmyDbNgHGfOJqYY/0NpqpW0i\nMnTE21MAACAASURBVEEptUVEJsX+MltPNOJQXV1Nr169OH/+PHv2fJq+fe8hM/NmANy73Gy7bhvT\nj0y/rDo+fyjEwwcO8P7Zs/x1zBgma2+hUyEinPL72R0hFnW90oEGYxp9rV2rnbumaxL0BPEeihCM\nQ15j+ZAxn2BLwD7YTs7GnFZVK+1WShUDWUqpHRdtk4v6PnRYtm3bxujRo0lMFCor1zJ69JvhbSd+\ne4I+9/S5LGE4X1vL53ftwmGxsGnKFNJ1nXanQylF3+Rk+iYnc123C0NkighnamvreRjvlJWx2+3G\nGwqFxWJMhGjovhqajoTFYQnnlrqYOq/De8gL05svq1FxEJFblVK9gaXAjVwISHcqtm7dyqRJk6iq\n2ojdPpykJKOLfbAmSOkfS8nZnhN1WUe8Xq7fvp2F3brx0yFDsOiHQpdCKUVPq5WeVivXZGTU21bm\n97PH4wmLxpJz59jldlMVDDLK4ajnaYxxOhlgs5Gg7w9NB0IphbWnFWvP6OJtTYa9ReQ0EPYQlFKT\nRWRz60xsX+rEobx8FenpV4fXl71ThivXhS07un4NxR4P123bxrezs3moX7+2MlfTQelhtTLbamV2\nev1Moedraw3RML2N5efPs9vj4WxtbbgneKRwDLbb9UuFplMQVT+H8M4dLP4QTcxh6tSpPP300zgc\n36Nv36+HR33btmAbve/qTa8v9mr2PHvdbq7bto3FAwdyd9++MbFd07WpDATYG5Fdt048Tvv9DLfb\njQB4hGjoXuGa9iRmneAiCuxU4hAIBEhLS+PUqRNs29afadMOYrX2wHvcy8YJG5lxfAYWe9M9bo94\nvczesoWnBg7kzj59Yn0JmisMdzDI3gixqPs87vMxxGZjpMPBCIeD4Q4HI+x2hjscdNNxLU2MiVXi\nvUi+1wp72p2ioiKys7OB/SQn98dqNdrGl7xWQua/ZTYrDKV+P/O2bePhfv20MGhigtNiYYrLxZSL\nWrjVBIMUeTzs9XjYV1PD0nPneMbMRZWckMBwu50RdcJhzg+x2/U4G5o2I5qR4BKA24BBIvKUUqo/\n0FtEOvxocFu2bGHixIlUVKwiPX0OYETsT798mpEvj2zyWF8oxE07d/KFzEwezM5uD3M1VzB2i4WJ\nLtclnShFhBK/n6KaGvZ5PBR5PKypqGCfx8MRr5es5OSwlxHpcWTpVlSaVhKN5/AsEIL/396Zh8lV\nlfn/83ZXdfXeWTpJp7MvJAiBEIKsssnisEVxBh0HweA8DAoMjqgzOuPCT3+iIoiiggoSCKDAIOsI\nyjJG9kB2kpB0EiKku7NvvVZ3Le/8cW51V3dXVd/udHdVkvfzPOe555w699431ZX7vWd7Xz4KfBdo\n8ur8L/PJEitWrOC4445j376XGTPmnwBoWtGERpXyk8vTnqeq/Mv69YwLhfjulClDZa5h9EBEqAqF\nqAqFOLPbZHjEcyey3uttLG9q4pEdO1jf2kpjNMoRXi9jRnEx04uKOpJt9DP84EccTlLVOSKyHEBV\n94jIQTEIumLFCm688cvs3/9jZsxwu6J3PLKD0Z8enfE/x89qa1nV3Myrc+bYckQjZwnm5THD6y10\npyEadT2N1lY2trby4t69/Kq+no2trYTjcaYXFTGtsLCLaEwvKqI6FLLfvAH4E4d2EekYnBeRUbie\nRE6jqqxYsYIZM4rZvXskodBYt8np0Z0c/fjRac97u6GBmz/4gLeOP/6Qi7tgHD6UBwKcUF7OCeU9\ne8j7IhE2hcNs9ITjtYYGFm7fzsbWVvZFo0xNIRrTioqYWFhoy3API/yIw8+BJ4DRInIz8A/ANwfV\nqgGgrq6O/Px8ioo2UF5+KgCNSxuRgFA6O7WTvf3RKP+4di13zZjB5KKioTTXMIaMYcEgc4PBHpPi\nAE3RKO8lCceypiYe3bmTja2t7GhvZ5InHNOKiphSWOiSlze36YcWvf41VfVBEVkKnONVfVxV3x1c\nsw6clStXMnv2bBobF1Ne7vaK73x0Z8Yhpetqajh/xAj+ftSooTTVMHKG0kCAY0tLOba05wtUOBZj\nsxcO9r3WVjaHw/xl376OfFFeXodQTCksZGpSflJhIQW2suqgws9qpQdU9Qrg3RR1Ocvq1as55phj\naGh4jnHjrkdV2fHoDo555piU7Z/etYs3GxpY5cWZNgyjK4X5+S4qX4qohgm/VJvD4Q6xWNLYyH/v\n2MF74TB1bW2MLihgarfeRkJExhYU2FxHjuGnHzgruSAiAWDu4JgzcKxevZozzjiJtrYtlJQcQ9Py\nJvIK8iiZ1fOHvTcS4dqaGh466igLQ2kY/SDZL9VJKeY5ovE4tW1tTjzCYTa3tvLnPXvYHA6zORxm\nbyTCRK+HMTEUYlK3/PhQyHoeQ0xacRCR/wS+ARSJSGPSRxHgN4Nt2IGyZs0arrzyw5SWziUvL8Cu\np3cxct7IlENKX9u0iU9UVvZYKmgYxsAQyMtjclERk4uKODvF5y2xGO+Hw3zQ1sb74TDvh8O8uHdv\nR35rezujgsEeopEsJDbnMbD06j5DRH6oql/v18VF7gUuAnaoasrxHBG5A7gAaAHmq+pyEZkALARG\n48KS/kZV70hxbkr3GbFYjLKyMt5++98oLIwzbdoPWTJ3CdNvn86wM7oKwOKGBj65ejXvnnii/bgM\nI0eJxuPUt7f3EJDkfFCkp3h4vY7xoRDVBQXmv8pjQNxnqOrXRWQ4cARQmFT/sg8bFuBWOy1MY+CF\nwHRVPUJETgLuwnkajwBfVtUVIlIKLBWRF/xOhG/atIkxY8YQiy2nvPwawrVhwu+HKT+1a3c3rsq/\nbtjAD6ZONWEwjBwmkJfHRO9hnwpVZU802kM0Fjc0UNvWRm1bGzsiESqDwQ6xGB8KMSEpP96L8WEu\nSRx+JqSvBm4AJgDLcQ/vN3A7pjOiqq+IyOQMTeYB93ttF4vIMBEZ47kK3+bVN4nIu0A1SZPimViz\nZg2zZh1NQ8NrzJy5gF337mbkBSPJC3T9o9+/bRv5Inx2TO+eWQ3DyF1EhJHBICODwbSRGaPxONva\n26lta2OLJxi1bW0saWzsqNvW3s6IQKCLYIwPhZiQ1AMZV1BA4WEwN+nndflLwIeBN1T1bBE5EvjB\nAN1/HLAlqVwLjAe2Jyo8cZkDLPZ70dWrVzNzZjWBwDBCoSp2P7OKqququrRpjsX4r82beWrWLFsl\nYRiHAYG8PMYXFjK+sDBtILSY58uqNkk8trS1sXL37o5yfVsb5Z6AVBcUuKiC3Y5jCwoYHQwe1HHl\n/YhDWFVbRQQRKVTVdSIycwBt6P5k7phE8IaUHgO+pKpNqU6+6aabOvJnnXUWZ511FqtXr+b004dT\nVnYi0aYo+1/dz1EPH9XlvF/U1fGRigo+nGJlhWEYhyf5SSFkT0zTJq7KDk9Atra3U9/eTn1bG0sb\nG3mmra2jvDsaZVQwmFI4ksujgsFBf0FdtGgRixYt6tM5fiaknwSuwvUgzgH2AgFVvdDXDdyb/zOp\nJqRF5FfAIlV92CuvA85U1e2e/6b/AZ5T1Z+muXbKCelZs2bx/e/PZs6c2RSv/Dy1P63luJeO6/h8\nXyTCEW+9xSvHHceRKdZsG4ZhHCiReJzt7e1dBCRx3JpU3heNMqaggOqCgi7CUVVQwBjvWOUtEx6o\n+ZCBmpD+hJe9SUQWAeXAnw7cPACeBq4HHhaRk4F9njAI8FtgbTphSEd7e7s3IV1BWdnn2fX8Xkac\nP6JLm9tqa7lk5MjcFgZVCIehuRlaWiAWc/UiXVMgAIWFUFQEoZCrMwwj6wSThrEy0e7NhWztJiBv\nNjSwrb29I+2IRCjNz+8hGmOCwY584rNRAzCklVEcvA1vq1X1SABVXdSXi4vI74EzgUoR2QJ8Bwh6\n1/q1qj4rIheKyEagGddDATgN+CywKuENFviGqvYqSjU1NUycOJFIZBWlpcdT80INR/2+c0hpTyTC\nnXV1LJ2bhX188TjU1cHGjbBpE7z/PmzbBtu3u7RzpxOD5mZobYWCAigudikQcIKRnAAiEScira0u\nnxCK4mKoqIBhw1xKzifSyJEwahSMHu3SsGEmLoYxxBT0shIrQVyVvdFoh1hsTxKOtS0tXcp7olFG\nBAJdRSQp74eM4qCqURFZLyKTVPV9///cjvM/46PN9SnqXgX6JXtr1qxh5syJBINRYvVFRPdEuzja\nu7OujnmVlYPvWC8chpUrYelSl5Ytg3XrYMQImDbNpcmT4YQTYMwYl0aNgrKyTkHo64qIWKxTKFpa\nYP9+2LevMyXK27c7W3bvdoK0Y4dLra1QWemEIlk0Ro+G6mqXxo51x+HDTUgMYwjJS1qRdXQvox7R\neJxdkUiXnsf2SKRjdZYf/ExIjwDWiMhbuLd7AFXVeb7uMMSsW7eOqVOLKSuby54X9jD83OFInnuI\ntcRi/LyujkXHHdfLVfqBKqxeDc8/79Lrr8P06TB3rhOAa66Bo4+GwRzKys931+/vPdranFgkBCNx\n3L4d3n0X6us7UzjcKRipUkJEystNRAxjiAnk5XUEiUrFw36u4aPNt1LUZZ7FziLr1q1j7tw2yspO\nZe/zexlxYed8w4Jt2zi5vDyl47B+s3o1PPAA/O53bhjoYx+DL34RHn3UDeUcTIRCMH68S73R0gJb\nt3YVjPp611uqr+/8LBaDceNcGj++M5+cqqrcsJlhGDmDnwnpRd6Ko+mq+qKIFPs5L1usW7eOiy4S\nSouP54OX9jL99umA62bdtmULD37oQwd+k/374b77YOFC91Z9xRXwpz+5nsHhQnFx5/BYJhob3TxL\nItXWuiGtl17qrNu1yw1nZRKQcePckJthGEOCnx3S/wJcjRtemobbpHYXnfEdcoZ4PE5NTQ2VlXnw\n3hEUVO0gNM51q/64Zw9jCgo49UDe5uvr4bbbnDB87GPwox/B2Wf3fW7gcKKsDI480qV0RKNuYj4h\nHgnRWLOmq7Dk52cWj3Hj3PyI/T0M44Dx0wO4DjgReBNAVWtEZPSgWtVPamtrKS8vYdiwUppezmPY\n2Z1O9u6sq+O66ur+XXjPHrj5Zrj3Xpg/H1asgAkTBsZoww0pJYazTjopdRtV12PrLiCrVsFzz3WW\n9+51w1SZBGTcONfzMQwjLX7EoU1V2xKurr3lrTk557B+/XqmTRtFaemH2P/X/Yy50vlMqmlpYXlT\nE0/NmtXLFboRi8Hdd8N3vgOf/KSbX+ivwBgHhkjnEtxMw3dtbW6+I7nHUVcHy5d3LRcV9d4LqayE\ng9j9gWEcCH7E4a8i8l9AsYicB1wLPDO4ZvWPdevWMXlyiNKS2dS+up8Zd88A4Ff19Xy+qqpvzrLW\nr3e9hEDArT6aPXtwjDYGllDILRGePDl9G1W3jLe7gCxZAk891dkzaW52q64yCUh1tdtbYhiHGH7E\n4evAPwPvANcAzwL3DKZR/WXdunWMGxcmf9cMgmOChKpCtMRiLNy2jbf9bnpThTvvdL2Fm26Ca6+1\nt8dDDRHXK6iszCz6ra1unqn7hPrixZ0Csm2bW67b2zDWiBG2pNc4qPCzWikmIvfjvKIqsC6lQ6Mc\nYP369Vx00U6iSyZ2BPV5YtcuTigrY4qfTW9NTXD11W41zRtvwBFHDLLFRk5TVNT7iqx43O0H6d4L\nee21ruW2tsziMX6866UEg0P37zOMDPhZrXQR8CvgPa9qqohco6rPDqpl/WDdurVcc02YpkdKGX2p\nE4eF27Yxv6qqlzOBLVvgoovgwx92G9gGewe1cWiQl9e5w/3449O3a27u2QPZtAlefrmzbscON6eS\nuF4iVVX1rBs92vaGGIOKH6+s64GLVHWjV54GPKuqA+m2u18ke2VtbGxkzJhRvPzyXNouvIW5S+ey\ne7RwzNtvU3fKKRRlmm9YsQIuvhi+/GW48Ubr/hvZIRZzvZCEr61ESva/lUi7d/cUklQiUlXlXKFY\nj8RIYkC8sgINCWHweA9oOCDLBoGamhqmTKmkKHYU0dJ8CicU8tAHH/DJysrMwrB4MVxyCfziF/Cp\nTw2dwYbRnfx89zD309ONxdzmwVRCsmZN17pdu9xu/WTRGDXKpcrKznwijRhhe0UMX+KwVESeBR71\nypcBS0TkkwCq+vhgGdcXEiuV5G/TqDi9AlXl/m3b+NWMGelPevNNmDfP7V+4+OKhM9YwDpT8/M4H\nfW/EYq6n0V0wdu50veaEP61E3b59rlfSXTRSCUmiLo0PH+PgxY84FAI7cK63AXZ6dZd45ZwQh5qa\nGqqrw0SXTWLkKeUsb2qiNR7ntHQ7olevdsKwYIGbazCMQ5X8/E7vusf0iLnVk2jUbfxMFoxE2rjR\nLdZIrt+1yy3n7S4aI0e6NGJE12MibxsRcxo/q5XmD4EdB8zGjRuYPHkXrc+Nofzecn6+Ywf/OHp0\n6vB7tbVw4YVw++0mDIbRnUCgU0z8kNi93l1I9uxxPZbNm90xUU4kkZ6CkUpEuh99xiMwDgw/q5Vm\nAncCVap6tIgcC8xT1f8/6Nb1gZqaNZx55kjaNwQpObqEPyzbxSNHHdWzYXOzE4TrroPLLx96Qw3j\nUCN59/r06f7Pa2npKhiJ/J49buhr7dqudYljYWFPERk+3N0/1TGRr6iwFV59wM83dTfwNdxyVnCb\n4X4P5JQ4bNr0HtMqT6R0binvtLUQU2VOaWnXRqpuH8OcOfDv/54dQw3DcCSCWvlxEZ9A1Xn67d4T\n2bvXzZXs3AkbNnSWk48NDe5+mYQk07G4+LBayehHHIpVdXHCt5KqqohEBtesvrFnzx4ikQjDG4+k\n/ORy7tu5k78fNQrp/of8xS9c0JrXXz+s/siGccgg4nakl5fDlCl9Ozced8KSSjgSx4SwpPosFusa\ndreiwtmRfOwtX1p60Dx7/IjDThHp6CuKyD8AWwfPpL6zadMmJk4sIrZqAuUfKee/d7zH/d3jNixb\nBt/7nluhZBvcDOPwIy+v80HdH8LhzpC7DQ1unmX//q75ujo3HNa9PpEPhzvFzY+YpMqXlQ3JvIsf\ncbge+A0wU0Tqgc1ATg3Wb9y4kerqOOFFY9h6bYCWHXFOTA4MEw7DlVfCT34CU6dmz1DDMA5eCgv9\n70NJRyTiei+phCU5X1ub/vOGBjd3UlbWmcrL/ZfLy32Z6me10ibgHBEpxe2o9hedegjZsKGGqjHN\n5P9tCv8TaOATlZVdh5S+9S0XbMYmoA3DyCbBoJtIHzGi97bpUHUvvI2NTigaGztTcrmhwTmOTPWZ\nD/ysVvo34F6gEbhHROYA31DVP/f/XzewrF+/gkljK6iYO4o/7t7Nt5PdNb/1Fjz4oAsKc5CM9RmG\nYaRFxA2NFxX5X26c6hq94McX9edVtQE4Hxcq9Ergh/2zaHDYsGEdE0omkj+nhHeamzkzMaYYizmX\n27fc4jbmGIZhGL7wIw4JibkIeEBVVw+iPf1i8+YtVLdMY/X0OGcNG9YZ1Ofuu526fvaz2TXQMAzj\nIMOPOCwVkeeBC4E/iUg5EB9cs/zT0NBAc3OYig1TeXZcCxeNHOk+2LULvv1t+OUvbTjJMAyjj/gR\nh38GvgGcoKotQBC4alCt6gObNm1i3NggBS0zeDq6jwsSEz3f/z5cdhkce2x2DTQMwzgI8RUJDlia\nVN4N7B5Mo/rChg01jK2OEBk+k+pQiImFhfDBB7BwoXNdbBiGYfSZg97RyPr1yxhXFWLjpDIuGOHt\nbfjud+Gaaw5sPfIgE4vHiMR732geyAuQL/k9d3sbhmEMIge9ONTUrGR80WhemdzO5cOHw/r18NRT\nUFMzqPdtam+ivrG+S9rbupd94X3sa9vnjl5qbm+mLdZGW7St4xjXOMH8IEL6h76ixOIxYhojmBck\nmB+kIL8gZT6UH6IoWERxsJiigHcMFlEcKE5dn6KcSCXBEkoKSigOFpMnfkYeDcM41PAlDiJyHHA6\noMArqrpyUK3qA++9t4nZ1eN4aHwrd1ZUwFe/Cjfc4JxlDQD1jfUsrV/KOzveYcOeDdTsrmHD7g00\ntTcxrnwc1WXVVJdVM7Z0LCOLRlJdVs2wwmFUFFa4Y6iC0oJSQoEQofxQxzGQF/DdG4hrnEgsQiQe\noT3WnjLfFm2jNdpKS6SF1oh37Fbe37afrU1bXTnas11LpIXm9mZ3jDTTGmklFAh1EYtU+ZJg+s9S\ntvPyRcEiEx/DyFH8bIL7EnA1LqiPAA+KyN2qesdgG+eHLe9vZ/Toj3DEhHKKt22DJ590AUn6QVzj\nLN+6nOc3Pc/rta+ztH4p7bF25lbPZfaY2Zw24TTmz57PESOPYGzp2CEb6smTPCcqDG20rbjGCUfD\nNLc30xxp7hCP5khzFxFJzu9s3tlZn6Fdc3sz4WiYwkBhSuHokfchNt3zJj6G0X9EVTM3EHkHOFlV\nm71yCfCmqvoIKTW4iIgGg8KDV9zK2m9eyk133umiWN1+u+9rNLU38cS7T/DHDX/kpc0vMap4FOdN\nPY8zJp3BCdUnMLFioo33DxJxjdMaae1VRJLzHSKV6TMv3xZtoyhYlFFESgpKKA5kEKXkdt1EqihQ\nZL8N46BERFDVjD9ev3MO8TT5rFNRLrxbMZmPBoMuFvTy5b2eE4vHWPS3Rdy/8n6eXv80p086nUuP\nvJQfn/djJlRMGAKrDXA9opIC97ClZOCvH9d4j6GyVCKSnN/evJ3mvc0dPZ907VoiLbRF2zrnaTKI\nSEnQn9gk54uDxRQGCq3nY2QNP+KwAFgsIolhpU/gfC3lBFVVyiuVI/j6I4/ABRfAxIlp2za2NXL3\nsrv52eKfMbJoJJ+b/TluPf9WRpf00z+JkdPkSR6lBaWUFpT23rgfxOKxDtHJJCLJQ3FbG7f2KjzN\n7c20RlsJR8ME84IUBgqzkkL5IfLz8gfluzNyHz/7HH4iIn8FPoKbkJ6vqr2/ng8RVRXFDD+mjNCX\n73IO9lLQEmnhjsV3cNsbt3HOlHN4/FOPM7d67hBbahxq5OflUxYqoyxU1nvjfqCqROIRwtFwv1NT\nexO7Wnb1+/xAXqCrYARCFOQXdCyuSOQL8gt6lv208RZopPss3XVMtAYfPxPSD6jqFSRthEuqyzpV\noeEcVbgPSkrgpJO6fKaqPLz6Yb76wlc5dcKpvHrVq8ysnJklSw2jb4gIBfkFFOQXUB7y54N/IOku\nTq2RVtpibbTH2mmLekcf5UR+f9t+2ltStO3DNRL5PMnrVUCC+cHMS8B7WR4ezAt2uY6va/ZyXl9W\nKWYbP8NKs5ILIhIAcua1e1jRWE5/+kn4whe6+FB6f9/7XP3M1Wxv3s5jlz3GKRNOyaKVhnHwkW1x\nykQ0Hu1VUBLLvCMxb9l3inyq5eGtkdbUy8YznNNbPnHf5D1LvQlOQkyC+d4xXdlvu6SyH9KKg4j8\nJ86nUpGIJEeHiOAiw+UEUj6ZuY8+6mK/ejy65lGuf/Z6bjzlRr5yylcI5vv7MgzDODgI5AUI5AUo\nDhZn25Q+Edd4h7BlEpFIPEI0HiUS8479LLdGWnt87sczA2QQB1W9GbhZRH6oql8fqC9noAkNn0LR\nPBdjNRqPcuOfb+S5jc/x7OXPckL1Cdk2zzAMo4PEcFhB/uDHgM7EAhb02sbPhHTOCgPAqLYAfH4+\nDW0NfPqxTxOLx3j76rcZVjgs26YZhmEctBz0i6inb3+fvXM+xDkLz2FSxSSevfxZEwbDMIwDZNDE\nQUTuFZHt3g7rdG3uEJENIrLSi02dqP87EVnnffYfme4z+7jxnPPAuZwx8QzuuuguAnkHvS9BwzCM\nrJNWHERkRKbk49oLgL/LcP0LgemqegTwL8BdXn0+8Avv3KOAz4jIh9Jd55vBP3LOlHO49fxbD5ol\nYoZhGLlOptfsZbhNbwJMBPZ69cOB94EpmS6sqq+IyOQMTeYB93ttF4vIMBGp8q67UVX/BiAiDwMf\nB95NdZHgsXO45bxbTBgMwzAGkLQ9B1WdrKpTgBeAi1V1pKqOBC7y6g6UccCWpHKtV1edpj4l98y7\nx4TBMAxjgPEzQH+Kql6dKKjqcyLy4wG6/wE/1UOBm5NKZ3nJMAzD6GSRl/zjRxzqReSbwIO4h/k/\nAXV9tCwVdUCyC9TxuF5CsFv9BK8+Jao3DYAphmEYhzJnkfziLPL/ej3Dz2qlzwCjgSdwAX9Ge3UH\nytPAlQAicjKwT1W3A0uAI0RksogUAJ/22hqGYRhDRK/BfjoaipQkAv74bP974EygEtgOfAfXK0BV\nf+21SaxKagauUtVlXv0FwE+BfOC3qvqDNPdQv/YbhmEYDj/BfvxEgjsVuAcoU9UJIjIbuEZVrx04\nU/uHiYNhGEbf8SMOfoaVfop7u98FoKorcT0CwzAM4xDF1w5pVf2gW1V0EGwxDMMwcgQ/q5U+EJHT\nALwJ4htIsyHNMAzDODTw03P4InAdbiNaHTDHKxuGYRiHKH4mpEer6o5udTNVdf2gWuYDm5A2DMPo\nOwM1If2KiHzau6CIyFeAJwfCQMMwDCM38dNzGIsLCxoGxgDrgBtVtWnwzcuM9RwMwzD6zoD0HFR1\nK/Bn4FRgMnBfLgiDYRiGMXj0ulpJRF4EtgJH4/wc/VZEXlbVrw62cYZhGEZ28DPn8EtVvUJV96nq\nO7geRMMg22UYhmFkEd++lXIRm3MwDMPoOwc05yAir3nHJhFp7Jas52AYhnEIYz0HwzCMwww/PQc/\n7jMQkeG4yeiO9gn32oZhGMahh5/VSt8D5gPvAfGkj84eJJsMwzCMLONnE1wNMEtV24fGJP/YsJJh\nGEbfGSj3GWuA4QNj0uHJokWLsm2CLw4GOw8GG8HsHGjMzqHHjzjcDCwXkedF5BkvWUznPnCw/GAO\nBjsPBhvB7BxozM6hx8+E9ELgh8BqOuccbCzHMAzjEMaPODSp6h2DbolhGIaRM/iZkP4J0AY87R2B\n3FjKKiLWgzEMw+gHvU1I+xGHRaQYRlJVW8pqGIZxiHJQ75A2DMMwBgc/q5UMwzCMwwwTB8MwMUTT\naQAACnJJREFUDKMHmbyyXuYdpw6dOf4Qkb8TkXUiskFE/iPb9qRDRO4Vke0i8k62bUmHiEwQkb+I\nyBoRWS0iN2TbplSISKGILBaRFSKyVkR+kG2bMiEi+SKyXESeybYt6RCRv4nIKs/Ot7JtTypEZJiI\nPCYi73p/95OzbVN3RGSm9x0m0v4c/n/0De//+jsi8jsRCaVtm27OQUSWq+qcxHHQrO0jIpIPrAfO\nBeqAt4HPqOq7WTUsBSJyOtAELFTVY7JtTypEpAqoUtUVIlIKLAU+kaPfZ7GqtohIAHgV+Kqqvppt\nu1IhIjcCc4EyVZ2XbXtSISKbgbmquifbtqRDRO4H/qqq93p/9xJV3Z9tu9IhInm459KJqrol2/Yk\nIyKTgf8FPqSqbSLyCPCsqt6fqn2mfQ67ReQFYEqKtx/N4g/+RGCjqv4NQEQeBj4O5NzDTFVf8f4g\nOYuqbgO2efkmEXkXqCY3v88WL1sA5AM5+VATkfHAhcD3gRuzbE5vZFzOmE1EpAI4XVU/B6CqUSBn\nhcHjXGBTrgmDRwMQAYpFJAYU44QsJZnE4ULgeOBB4Fa6/oiyucRpHJD8xdcCJ2XJlkMKT8jmAIuz\na0lqvLeyZcA04C5VXZtlk9JxO/A1oDzbhvSCAi96D4pfq+rd2TaoG1OAnSKyAJiN69V+KeklIRf5\nR+B32TYiFaq6R0RuAz4AWoE/q+qL6dqnnXNQ1XZVfRM4RVX/CiwBlqjqIq+cLWzt7SDgDSk9hvvP\n15Rte1KhqnFVPQ4YD5whImdl2aQeiMjFwA5VXU4Ov5V7nOYNGV8AXOcNg+YSAdwL6p2qejzQDHw9\nuyalR0QKgEuA/862LakQkWnAvwGTcaMDpSJyebr2flYrVYnIcmAtsFZElorIrIEwtp/U4QIPJZiA\n6z0Y/UREgsAfgAdV9cls29Mb3pjzH4ETsm1LCk4F5nnj+b8HPioiC7NsU0pUdat33Ak8gRuyzSVq\ngVpVfdsrP4YTi1zlAmCp933mIicAr6vqbm+I7nHc7zUlfsThN8CNqjpRVScCX/HqssUS4AgRmewp\n9adxrj2MfiAiAvwWWKuqP822PekQkUoRGebli4DzgOXZtaonqvqfqjpBVafghhj+V1WvzLZd3RGR\nYhEp8/IlwPlATq2q8+bDtojIDK/qXFwIgVzlM7gXglxlHXCyiBR5/+/Pxb30p8SP471iVf1LoqCq\ni7wfU1ZQ1aiIXA/8GTcp+dtcXFkDICK/B84ERorIFuDbqrogy2Z15zTgs8Aqr4cI8A1V/VMWbUrF\nWOB+b94hD3hAVV/Ksk1+yNVh0DHAE+4ZQQB4SFWfz65JKflX4CHvRXATcFWW7UmJ90w8F7g627ak\nQ1VXer3YJTgP28vI8KLvx7fSk7iJoAdwY6iX45a/XTpQRhuGYRi5hZ9hpc8Do3HjU38ARnl1hmEY\nxiGKOd4zDMMwemC+lQzDMIwemDgYhmEYPTBxMAzDMHrQqzh4XjufEJGdXvqD5zvGMAzDOETx03NY\ngNtkVu2lZ7w6wxhSRCTmuURe4e3UPyXbNvUFEakQkS8mlatFpFdXCyJyjIjc20ubsxIOMkUkJCIv\net/VZRnO+UkOuswwcgQ/4jBKVReoasRL9+GWthrGUNOiqnM8/0rfAHIupoPnVjodw4FrEwVVrVfV\ntA/vJL4G3NUHM+a4y+scVc0kPnd51zaMHvgRh90icoUXvCQgIp8Fdg22YYbRCxV4LrtFZKGIfDzx\ngYg8JCLzRGS+iDwlLphRjYh8O6nNEyKyRFyAo6u9unwRuc8LhLJKRL7k1d/gBUhZ6e1674J3n6dF\n5CXgBREp8d7cl3rXSbi3/yEwzXuj/5GITBKR1d41CkVkgdd+WcKpoLhgLCcn/AuJyIki8rrX5rUk\n1xIJW0bhPCl/2LvPVBH5loi85f27fp1oq6obgMkJtySG0QVVzZhwHvyeAXZ66SlgYm/nWbI00AmI\n4vwpvQvsA+Z49WcAT3j5CuA93IvPfKAe98ZeiPMdNNdrN9w7Fnn1I3DBeZ5Pul+5d6wDgsl13eya\nj3MjP8wr5+OC/ABUAhu8/CTgnaTzJifKOJ9l93j5mcD7QAg4GXgm6ZwyIN/Lnws85uXPSrTDuWxJ\nPmd4Un4hcHFS+X7ggmz/bS3lXurVt5K6oDqX9NbOMIaAVvWiEooLF/kAMEtVXxaRO0WkEvgH3AMz\n7vkNel5V93rnPA58BC8ugIh8wrvuBGA6UANMFZE7cF5fE76GVgG/81zJpPJaq9599nnlPOAH3nh+\nHKgWkdFkduF9GnAHgKquF5H3gRk4Qdma1G4YsFBEpnv3Daa4Vvf7fFREvoYL7jIC57zuf7zP6nEi\nZRhdSCsOIvIfqvojEfl5io9VVXMyRqpxeKCqb3qeWitVdRfujfgKnJfe+WlOE0C9IZtzcMM1YRH5\nC1CoqvtEZDbwMeALwKeAfwYuwvVOLgH+S0SOUdVYt2snB6C5HNdjOF5VY+Lcdxf6+Gd1f6irl5Lr\nvwe8pKqXisgkYFHGC4oUAr/E9ZjqROQ73WwRctc5oJFFMvUcEq5cl9L1x2M/JiPriMiRuOGb3V7V\nfbh44vWqui6p6XkiMhwI48LJXoULFrTXE4YjcUM3iMhIIKKqj4tIDfCA59p4ojpvxK/h3HCX4EIu\ndpjTzbxyXMCfmIicjXv7B2jEDQul4hWcqPzFm0eYiIuVXgJUdbt2vZf346E0IQS7xQV0ugx4NOnz\nsfQiMMbhSVpxUNVE3OgWVU3+MSEinxpUqwwjNUVJbsUFuFJVFUBVd4jIWlzQmgQKvIVzGDke5+Z7\nmTcJ/AWv/XrgDa/9OGCBOLfg4KKO5eNEosK7589UNVkYEvdJfmF6CHhGRFbh3CO/69m425tEfgd4\nFrgz6bw7gbu8c6LA51Q1IiIrcXMQCW7BuS7/Jm7oK/m+mnRMfC/7RORuYDUuVnj3ELBzABsFMHrg\nx2X38sQ4b6Y6w8gmIlKMmxuYo6qNXt183HDKv2bTtgNFRO7Dxcwe0NjeXg/lVlWd12tj47Aj05zD\nBcCFwDhvgi7RdS4DIkNgm2H4QkTOBe4BfpIQBo/ub/QHK7fiVjMNqDjg5lVuGeBrGocIaXsO3sTc\nHOC7wLfoFIcG4C+JFSCGYRjGoYefYaUCVW0fInsMwzCMHMBPDOnJInIzcBRuwxC4paxTB88swzAM\nI5v4dbz3K9wKirNwOyofGkSbDMMwjCzjZ1hpmaoeLyLvqOoxyXVDYqFhGIYx5PgZVgqLSD6wUUSu\nx23AKRlcswzDMIxs4qfncCJuE88w3Nb9cuAWVX1z8M0zDMMwskGv4tDjBOdO4FOq+sjgmGQYhmFk\nm7QT0iJSKiJf8bxdXisieSJyKc6j4+VDZ6JhGIYx1GTaBPc4bsPbG8D5OLfGYeAGVV0xZBYahmEY\nQ04mcVilqsd6+XycT/lJqto6hPYZhmEYWSDTPocOf/We7/o6EwbDMIzDg0w9hxhdA5gUAQlxUFUt\nH2TbDMMwjCzR59VKhmEYxqGPH/cZhmEYxmGGiYNhGIbRAxMHwzAMowcmDoZhGEYPTBwMwzCMHvwf\nfa03Dd2v3dkAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5d36110>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter5_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter5_1.ipynb
new file mode 100755
index 00000000..e97d4873
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter5_1.ipynb
@@ -0,0 +1,688 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5d232a771a16d129f1d0e87f2659dc2421e4b29dc583a33a8f0d3e36b3cfd71a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter5-Aircraft Engine Inlets and Nozzles"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex1-pg251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calcualte overspeed mach no\n",
+ "print(\"Example 5.1\")\n",
+ "Md=1.5\n",
+ "##From isentropic table,\n",
+ "gm=1.4 ##gamma\n",
+ "A=1.176 ##A=A1/Ath=A1/Acr\n",
+ "##for same A, from isentropic table for M<1\n",
+ "My=0.61\n",
+ "##for My=0.61, from normal shock table\n",
+ "Mx=1.8\n",
+ "Mos=Mx\n",
+ "print'%s %.1f %s'%(\"Overspeed Mach no.\",Mos,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.1\n",
+ "Overspeed Mach no. 1.8 \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate contractio ratio and the maximum pressure recovery\n",
+ "print(\"Example 5.2\")\n",
+ "Md=2.65\n",
+ "Mx=Md\n",
+ "##for Mx=2.65, from normal shock table \n",
+ "My=0.4996\n",
+ "M1=My\n",
+ "##from isentropic table for M1=0.5, \n",
+ "A=1.34\n",
+ "##for Md=2.65, from isentropic table (A=A1/Acr)\n",
+ "A1=3.036\n",
+ "Af=A1/A\n",
+ "##from isentropic table Af, \n",
+ "Mth=2.35\n",
+ "##for Mth=2.35, from normal shock table\n",
+ "p=0.5615 ##p=pty/ptx\n",
+ "print'%s %.2f %s'%(\"Maximum total pressure recovery:\",p,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.2\n",
+ "Maximum total pressure recovery: 0.56 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg253"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate inlet design contraction ratio and throat mach no\n",
+ "print(\"Example 5.3\")\n",
+ "Md=3.3 ##from isentropioc table \n",
+ "A=5.629 ## A=A1/Acr=A1/Ath\n",
+ "Mx=Md ##from normal shock table \n",
+ "My=0.4596\n",
+ "M1=My\n",
+ "##from isentropic table \n",
+ "A11=1.425\n",
+ "pt=((1./A11-1./A)/(1./A))*100.\n",
+ "Af=A/A11\n",
+ "##for Af=3.95, from isentropic table for M>1\n",
+ "M1th=2.95\n",
+ "print'%s %.2f %s'%(\"Inlet design contraction ratio A1/Ath:\",A,\" \")\n",
+ "print'%s %.2f %s'%(\"The % opening of the throat:\",pt,\" \")\n",
+ "print'%s %.3f %s'%(\"Throat Mach no.:\",M1th,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.3\n",
+ "Inlet design contraction ratio A1/Ath: 5.63 \n",
+ "The % opening of the throat: 295.02 \n",
+ "Throat Mach no.: 2.950 \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate inlet pressure recovery with the shock at the lip\n",
+ "print(\"Example 5.4\")\n",
+ "M0=1.4\n",
+ "##from normal shock table \n",
+ "p=0.9582 ##p=pt2/pt0\n",
+ "M1=M0\n",
+ "##from isentropic table:\n",
+ "A=1.115 ##A=A1/Acr\n",
+ "A11=1.1 ##A11=Ax/A1\n",
+ "Af=A11*A\n",
+ "##from normal shock table for M>1\n",
+ "Mx=1.56\n",
+ "##from normal table\n",
+ "p1=0.91 ##p=pt2/pt0\n",
+ "p2=p\n",
+ "print'%s %.2f %s'%(\"(a)The best backpressure :\",p,\"\")\n",
+ "print'%s %.3f %s'%(\"(b)The supercritical mode inlet total pressure recovery:\",p1,\"\")\n",
+ "print'%s %.2f %s'%(\"(c)Inlet pressure recovery in subcritical mode with 10% spillage:\",p2,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.4\n",
+ "(a)The best backpressure : 0.96 \n",
+ "(b)The supercritical mode inlet total pressure recovery: 0.910 \n",
+ "(c)Inlet pressure recovery in subcritical mode with 10% spillage: 0.96 \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex5-pg257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate total pressure recovery of this inlet \n",
+ "import math\n",
+ "print(\"Example 5.5\")\n",
+ "##th=theta and b=beta.\n",
+ "gm=1.4 ##gamma\n",
+ "##OBLIQUE SHOCK 1\n",
+ "M0=2.\n",
+ "th=8. ##degree\n",
+ "##from theta-beta-M chart,\n",
+ "b1=37. ##degree\n",
+ "Mn1=M0*math.sin(b1/57.3)\n",
+ "p1=0.993 ##p=pt2/pt1\n",
+ "Mn2=((2.+(gm-1.)*Mn1**2.)/(2.*gm*Mn1**2.-(gm-1.)))**(1/2.)\n",
+ "M2=Mn2/math.sin(b1-th/57.3)\n",
+ "##OBLIQUE SHOCK 2\n",
+ "M0=M2\n",
+ "th=12.\n",
+ "##from oblique shock chart,\n",
+ "b2=48.7\n",
+ "Mn1=M0*math.sin(b2/57.3)\n",
+ "p2=0.978\n",
+ "Mn2=((2.+(gm-1.)*Mn1**2)/(2.*gm*Mn1**2.-(gm-1.)))**(1/2.)\n",
+ "M3=Mn2/math.sin(b1-th/57.3)\n",
+ "##NORMAL SHOCK\n",
+ "M0=M3\n",
+ "b3=90.\n",
+ "pNS=0.977\n",
+ "\n",
+ "Po=p1*p2*pNS\n",
+ "print'%s %.3f %s'%(\"Total pressure recovery:\",Po,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.5\n",
+ "Total pressure recovery: 0.949 \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate percent increase in gross thurst \n",
+ "print(\"Example 5.6\")\n",
+ "M9=1. ## Mach no.\n",
+ "p=1/8. ##p=p0/pt7\n",
+ "gm=1.3 ##gamma\n",
+ "V9cd=(2.*(1.-p**((gm-1.)/gm)))**(1/2.)\n",
+ "px=p*((gm+1.)/2.)**(gm/(gm-1.))\n",
+ "V9c=(2.*(gm-1.)/(gm+1.))**(1/2.)\n",
+ "FR=(V9cd/V9c)/(1.+(1.-px)/gm)\n",
+ "pr=(FR-1.)*100./1.\n",
+ "print'%s %.3f %s'%(\"% increase in gross thrust:\",pr,\" \")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.6\n",
+ "% increase in gross thrust: 7.304 \n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg273"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate velocites at various point and coefficent\n",
+ "import math\n",
+ "print(\"Example 5.7\")\n",
+ "p98=0.95 ##p98=pt9/pt8\n",
+ "p87=0.98 ##p98=pt8/pt7\n",
+ "p70=8. ##p70=pt7/pt0\n",
+ "p97=8. ##p97=pt9/pt7\n",
+ "Cp=1243.7 ##specific heat in J/kg.K\n",
+ "gm=1.3 ##gamma\n",
+ "Tt9=900. ##Total temp. of the gas entering a C-D nozzle\n",
+ "Tt7=Tt9\n",
+ "p90=1. ##p90=p9/p0\n",
+ "p99=p98*p87*p70*p90 ##p99=pt9/p9\n",
+ "M9=(2./(gm-1.)*(p99**((gm-1.)/gm)-1.))**(1/2.) ##exit mach no.\n",
+ "T9=Tt9/(1.+(gm-1.)*M9**2/2.) ##The nozzle exit static temp.\n",
+ "a9=((gm-1.)*Cp*T9)**(1/2.) ##speed of sound in exit plane\n",
+ "V9=a9*M9 ##exit velocity\n",
+ "V9s=(2.*Cp*Tt7*(1.-p97**-((gm-1.)/gm)))**(1/2.)\n",
+ "p89=p87*p70*p90 ##p89=pt8/p9\n",
+ "V9i=(2.*Cp*Tt7*(1.-p89**-((gm-1.)/gm)))**(1/2.)\n",
+ "Cv=V9/V9i\n",
+ "print'%s %.1f %s'%(\"(a)V9 in\",V9,\" m/s:\")\n",
+ "print'%s %.1f %s'%(\"(b)V9s in\",V9s,\" m/s:\")\n",
+ "print'%s %.1f %s'%(\"(c)V9i in \",V9i,\"m/s:\")\n",
+ "print'%s %.3f %s'%(\"(d)The velocity coefficient Cv:\",Cv,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.7\n",
+ "(a)V9 in 911.1 m/s:\n",
+ "(b)V9s in 923.7 m/s:\n",
+ "(c)V9i in 920.2 m/s:\n",
+ "(d)The velocity coefficient Cv: 0.990 \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg275"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "#plot the graphs\n",
+ "print \"Example 5.8\"\n",
+ "#calculate and graph the divergnece correction factor \n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "alfa=0 #alfa=cone half angle\n",
+ "dx=numpy.linspace(0,44,146)\n",
+ "x=numpy.zeros(146)\n",
+ "count=0;\n",
+ "for alfa in dx:\n",
+ "\tCa=(1+math.cos(alfa*math.pi/180.))/2.; #Flow angularity loss coefficient\n",
+ "\tx[count]=Ca;\n",
+ "\tcount=count+1;\n",
+ "#disp(Ca,\"Divergence correction factor Ca:\")\n",
+ "\n",
+ "pyplot.plot(dx,x)\n",
+ "\n",
+ "pyplot.title(\"Flow convergence loss in a conical nozzle\")\n",
+ "pyplot.xlabel(\"Cone half-angle\")\n",
+ "pyplot.ylabel(\"Flow angularity loss coefficient\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.8\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 1,
+ "text": [
+ "<matplotlib.text.Text at 0x5989a50>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXmwVEmmJEECwYRWNBERUR26qo2DAaFbEQ\noyH4S2ypit9ENya2GLvGWNAo9gSNJSoqstglSK8KQgTsighiAfbz++OclXHc3Zktd+/M7uf5eMyD\nmVs/c3eYz5xz7jlHZoZzzjlXkxZpB+Ccc67webJwzjmXkycL55xzOXmycM45l5MnC+ecczl5snDO\nOZeTJ4sCIKmHpApJ/vcoYJLKJZ3WSOcaIenWxjhXEiTNkLRPPY9RJmlUQ8VUH5IWSjog7TjS1DLt\nAJoTSQuBjYA1cZEBW6cWkKsti4/kT2R2aWOcJylmtkNDHKYBjtFQGu1vX6j8l2zjMuBwM+sQHx3N\n7L20g0qbJP/R4qqitANwa3myKECSukl6VNLHkt6U9NO4vI2kLyRtEF//n6RVktrH13+SdHU1x9xA\n0h2Slkj6RNLDGeuGxfN8LOkRSRtnrKuQNFzSG5KWSrohLl9H0qeSts/YtrOklZI2jK8PlzQl7veS\npF4Z2y6U9DtJ04DlkkokDZX0P0kfSfp9ZtFfwXmS5sX1D0jqFNdVVuNV7v+hpPMzztVC0vlx388k\nTZS0SVz3A0nPxPc+R9Kxef6NlBHj+5LulNQx4+90d4xzqaQJkjaK606RND/G8ZakE6o5/jdVMLne\nXxX7HiZpsqRlkt6WdGGO93Jk/Dsti9fo4Li8ys9hRnwPxvf9mUK10y4Z6zP/diVVXP/ucd21McZl\ncfleeV7/UkmLJf0qXv93JJ2SsX49SXdJ+iDG8n+SFNdNlbQ841EhaV9JN2QtXyXpgirOXe1nsUkz\nM3800gNYABxQxfIeQAXQIr5+HrgBaA3sBHwA7BfXjQeOjs+fBt4EBmbsd2Q15/4PcB+wHqH6ce+4\nfH/gQ6B3PN91wPiM/SqAR4GOwKYxloPjupHAnzO2/QXwRHy+M/A+sBvhF+LQ+P5bxfULgUlAd2Ad\nYDtgOdAfaAVcAXwN7B+3Pxt4GegW1/8duDfr+t0cj7Uj8CWwTVz/W2Aa0DO+7gVsALQDFgE/Jvxw\n6h2vxbbVXMNxwKnx+anx2veIxxkN3BXXDY/XrE187zsDHeJ2yzLi6AJsV825LgRG5Xh/P6hm332B\n7TPe63s1fC76Ap8SP5fx+lZet5o+h2XAF8DA+B4vAV7J+qzvX9P1j89PBDrF6/8r4F2gdcY5RlUT\ndymwKm5TAhwCfA6sF9ffBTwcr/nmwNzKv13WcX4GzALaZy3vHd/vTlW8n2o/i035kXoAzelB+IJc\nDiyNj4fi8sovgxaEL+TVQLuM/S4B7ojPLwKujf9B3gXOBC4lfDGtBDpVcd6NCe0k61WxbiRwWcbr\ndoQv6c3i6wqgf8b6B4Bz4/MDgHkZ614CTorPbwIuyjrXHNYmqQXAKRnrLgDuyXi9LvBVxn/QWZXP\nM97T1/GaVV6/bhnrXwOOi8/nAkdU8d4HA89nLbsZuKCav19mshgLnJ6xbusYTwnwk3gtemXt3y7+\n3Y8G1s3xWSnju8ki+/0NzvNzdw1wVTXrbgaurGJ5rs9hGfB0xrrtgJUZrzO/XKu8/tXE80nldSN3\nslhJ/IEVl71PSH4l8bPzg4x1PwPGZR1jr7jPVlnLOxP+rx5Xzfup9rOYz3ss1odXQzUuI/zC6xQf\nR1exTTfgEzP7PGPZ24Rf4BBKFqVAH2A68Czhl+TuhC/upVUcc9N4zGVVrNsY+N83AYbzfpxxPgi/\nTCutBNrH5+VAW0l9JfUg/PqsrN7aHPh1rIZZKmkpsEl8f5UWZcWxOCOOL2IclXoAD2ccaxbhy6xL\nHnFuAsz/7ltnc2D3rBhPyDpmdb513Qh/o5aEGxhGAWOA+xWq/S6X1DJe28HA6cA7kh6XtE0e56ru\n/bWraiNJu0saF6tgPiWUdL5XzTGruza5PocQvmgz42mjqu/oq+4cSPqNpFkKVZpLCSXfDauJNdvH\nZlaRFUP7uH8rvvv3+SZ2SZsSfvgMNbN5GctbAf8C7jazB6s5bw9yfxabHE8WhecdYAPFdohoM9Z+\nkb4CbAMcBZSb2ey4/lDCl3dVFsVjrlfN+XpUvpDUjvDFsiRXoGa2BngQGBIfj2V8ubwNXJyRGDuZ\nWXszeyDzEBnP3yV8qVTGsS7f/oJ7m1Ddlnm8tmb2bq44Ce9/qyqWv02ocss8Zgcz+0Uex/zWdSP8\nDVYD75vZajO7yMy2J1SrHU6ohsPMnjazg4CuhJJWdbfH1ufOm3uBfwObmNn6hGqS6v6vV3dtcn0O\na6PKc0jam1BFdayZrW9mnQjVdPVt2P6IUEXVI2PZN7HHz9a/gavNbEzWvtcDn5rZ72s4fn0+i0XL\nk0WBMbNFhPrQSxUakXck1I/fHdevBF4ntA+Mj7u9TPi1Ov67R4T4IX4S+Juk9SW10tp74O8DfiJp\nJ0nrEKoaXjWzt6sJMfs/8r3A8YRf5PdmLL8VOD2WOiSpXWx4bU/V/gUcIWkPSa0JVRCZ5/o7cImk\nzeCbxvRB1Rwr223AnyRtFWPZUeEmgceBrSWdFK9JK0m7SfpBHse8D/ilQuNze8J1u9/MKmLjay9J\nJYRqx1XAGkkbKTQmt4vLPmftbdTZ8vnCrG6b9sBSM/taUl/C36a65DOS8PffX+FGgO6Stsn1Oayl\n6q5/e0KC/UhS69iY3LEOx/+WjB8xF0tqL2lz4JcZsd8OzDazv2buJ2k4sA9wUo5T1OezWLQ8WRSO\nzP/MQwi/it4BHiLUoT+XsX48ocpjQsbr9oQGyeqcTPiCmkOoPjgLwMzGAn8gNNC+A2xB+PKvKq7K\n198sM7MJwApCtcyTGctfB4YRGkg/ITQGD63ieJXbzyK0v9wf41hOaGD8Km5yLaHR+GlJnxFKWH1r\niDPTVYQvj6cJv1xvBdqY2QrgoPh+lxBKN5cSGnRzuZ1Q3fQ88BahCuTMuK4r8M94rlmEEt8owv+3\nX8ZzfQzsDfy/ao6ffV9/Ve+vuvf8c+CieJ3+QKhuqfokZv8ltLFcTWjoLif8CoeaP4dV9TuoLp4q\nrz+hqu4p4A1CG8EXhF/tmcer6e9a07ozCcn4LeAFQnvY7XHdYOCHGXc9faZwF9bxhM//Oxnrzqvi\n2Lk+i02SYgNNMgeXbgcOAz4ws17VbHMd4U6GlYQGz8lx+UBCw1wJcJuZXZ5YoK7gxF/rSwmNj//L\ntb1zLllJlyzuINxaVyVJhxK+DHoS7la4KS4vIfwiHUi4y2KIpG0TjtWlTNIRktrGapq/AtM8UThX\nGBJNFmb2AuHXYXUGAXfGbV8D1pfUlVCkm2dmC81sFaFq4sgkY3UFYRChimYJsCXfrg5zzqUo7WEW\nuvPt2ycXx2Xdqli+eyPG5VJgZsMI7RzOuQJTCA3cPv6Lc84VuLRLFksIHcYqbUIoRbTKWr4pVdzf\nLSm51nnnnGvCzKxWP9TTLlk8SuysJKkfoTPM+8BEoGe8h7014Va3R6s6QEN3aa+oMJYuNebMMcaP\nNx54wLjuOmPECOOkk4x99jF69DBatza6djX69jWOO844/3zj9tuNF14wfv3rC6moSL97fubjwgsv\nTD0Gj6npxFSocXlM+T3qItGShaT7CENRbChpEWFwtFYAZnazmT0h6VBJ8wj3RP8krlst6QzCfdgl\nwEgLPZUTJ8H664fHNjUMxLBmDbz3Hrz9NixYAPPmwXPPwS23wNSp4d+ttgrH2H778NhhB/j+96Gk\npDHeiXPONZxEk4WZDcljmzOqWf4kGZ28Ck1JCXTvHh577PHtdWVlcPbZIYHMmQMzZsDIkTBzJrz/\n/toE0rs39OkDO+8MnZr+AMfOuSKWdptFk1RaWkqnTrDbbuGRacUKmDUrJI4pU+CRR8K/nTuHpNGn\nT3jsvjtssEHDxlRoPKb8FGJMUJhxeUzJSbQHd9IkWTHHX6miIpRCJk0Kj9dfh4kToWtX6NcvlFz6\n9QvVWC09vTvn6kkSVssGbk8WBWrNmlACeeUVePXV8O/ixbDrrrDvvuHRrx+su27akTrnio0niyZu\n6dKQNMaPD48ZM0LVVWXy6N8f2lU5w4Fzzq3lyaKZWbECXn55bfKYOjW0kRx0EBx4YEgkLdK+Odo5\nV3A8WTRzy5eHpPH00/DMM/DRR3DAASF5DBwI3brlPoZzrunzZOG+ZdGikDSefjo8ttwSjjgiPHr3\nDn1KnHPNjycLV61Vq+DFF+Gxx8Ljyy/h8MND4th/f2jTJu0InXONxZOFy4sZzJ0Ljz4aEse0aSFh\nHHUUHHkkrFfVTN3OuSbDk4Wrk48+gieegNGjYdw4KC2F446DQYOgY71nRHbOFRpPFq7eli0LpY0H\nHwyN5fvtFxLHEUdAhw5pR+ecawieLFyD+vTTUFX14IPwwgvhzqohQ0Li8DYO54qXJwuXmKVLwzhW\no0aFsayOPRZ+/OPQi9zvqnKuuHiycI3i7bfh7rvhzjtDY/nQoXDyybD55mlH5pzLhycL16jMYMKE\nkDQefBB69QqJ49hjoX37tKNzzlXHk4VLzVdfweOPh8Tx4osweDAMHx46/znnCosnC1cQliwJkz3d\ndhtsvDGcfnpIHm3bph2Zcw48WbgCs2YNPPkk/P3vYbTcE04IpY0ddkg7Mueat7okCx+T1CWmpCQM\nKfL44zB5cpg69uCDYa+94N574euv047QOZevRJOFpIGS5kh6U9K5VazvJOlhSVMlvSZp+4x1IyTN\nlDRd0r2S1kkyVpeszTaDiy6C//0Pfv3rUEW1xRZwySWhB7lzrrAlliwklQA3AAOB7YAhkrbN2ux8\nYJKZ7QQMBa6N+/YAhgF9zKwXUAIcn1SsrvG0bBnGoHruuVBFNX8+9OwJw4aFyZycc4UpyZJFX2Ce\nmS00s1XA/cCRWdtsC4wDMLO5QA9JnYHPgFVAW0ktgbbAkgRjdSnYccfQED53bih5HHggDBgQqq0q\nKtKOzjmXKclk0R1YlPF6cVyWaSpwNICkvsDmwCZm9glwJfA28A7wqZk9m2CsLkUbbQR/+AMsXBh6\nhV94IfzgB/C3v8EXX6QdnXMOkk0W+dymdBmwvqTJwBnAZGCNpC2Bc4AeQDegvaQTkwrUFYZ11gk9\nwSdODCWOp54K7RqXXhrGqXLOpadlgsdeAmya8XpTQuniG2a2HDi18rWkBcBbwGHAy2b2cVz+ENAf\nuCf7JGVlZd88Ly0tpbS0tKHidymRYO+9w2PGDLj88jDL37BhcM450LVr2hE6V1zKy8spLy+v1zES\n62cR2xrmAgcQqpImAEPMbHbGNusBX5jZ15KGAXua2SmSegN3A7sBXwL/ACaY2Y1Z5/B+Fs3EwoVw\n5ZVwzz1hyPTf/jYkEOdc7RVUPwszW02oWhoDzAIeMLPZkoZLGh432w6YLmkOcDBwdtx3CnAXMBGY\nFre9JalYXeHr0QOuvx7mzIHOnWH33cNw6dOm5dzVOdcAvAe3K0rLl8PNN4fSxp57hkbxXr3Sjsq5\n4lBQJQvnktShA/zmN6Gfxh57hNtujzvO+2o4lxRPFq6otW0beoTPnw+77RZm8xs8GGbNSjsy55oW\nTxauSWjXLjR6z58Pu+wS5g4fMgRmz869r3Mut5zJQtKofJY5Vwjat4ff/S4kjZ12gn33DX03FixI\nOzLnils+JYtvDSgdb4ndJZlwnGsY7dvDeeeFpLHVVrDrrnD22fDhh2lH5lxxqjZZSDpf0nKgl6Tl\nlQ/gA+DRRovQuXro0CHcKTV7dpgGdttt4Y9/DHdTOefyl/PWWUmXmdl5jRRPrfits6623noLLrgA\nxo6F888PkzG1bp12VM41rsRmypPUnTDI3zfDg5jZ87WOsIF5snB1NWUKjBgBb7wBf/oTHH88tPDb\nPVwzkUiykHQ5MJjQC3tN5XIzO6IuQTYkTxauvsrLQ9vGqlVw9dWwzz5pR+Rc8pJKFm8Avczsq/oE\nlwRPFq4hmMGDD4a7qHbbDf7yF/j+99OOyrnkJNWDez7gtbquyZJCR745c2DnnaFvXzj3XPjss7Qj\nc65w5JMsvgCmSLpF0vXxcV3SgTnX2NZdF/7v/2D69HCL7TbbwC23wJo1ufd1rqnLpxrqlPi0ckMB\nZmZ3JhhXXrwayiVp0iT45S/DxEtXXRWGEnGuKUjybqi2wGZmNqeuwSXBk4VLmhk8/HAYSqRXL7jm\nmjBcunPFLJE2C0mDCNOdPhVf7yzJO+W5ZkGCo48OAxPutlvoCf7nP8OXX6YdmXONK582izJgd2Ap\ngJlNBvxeEdesrLNOaM94/fVQPbXDDvDkk2lH5VzjySdZrDKzT7OWVSQRjHOFbvPN4aGHwqx9Z50F\nRx0Vpnx1rqnLJ1nMlHQi0FJST0nXAy8nHJdzBe2QQ8JdU7vu6lVTrnnIJ1mcCWwPfAXcB3wGnJNk\nUM4VgzZtQtXUxImheqpXLxgzJu2onEtGonNwSxoIXAOUALeZ2eVZ6zsBtxPaQL4ETjWzmXHd+sBt\nhERlcd2rWfv73VCuYDzxBJxxRpjm9eqrYaON0o7Iuao16N1Qkq6N/z5WxSPn3VCSSoAbgIHAdsAQ\nSdtmbXY+MMnMdgKGAtdmrLsWeMLMtgV2BHzOM1fQDj00VE117x5KGXfcEW69da4pqLZkIWkXM3td\nUmkVq83Mxtd4YGkP4EIzGxhfnxd3vCxjm8eBy8zsxfh6HrAH8DUw2cxqvOvKSxauUE2eDMOGhfk0\nbr4Ztt467YicW6tBSxZm9np8OhF4wczKzawceCEuy6U7sCjj9eK4LNNU4GgASX0Jw6BvAmwBfCjp\nDkmTJN0aOwY6VxR23hlefRWOPBL694eLL4avv047KufqrmXuTRgLHACsiK/bAmOA/jn2y+cn/2XA\ntZImA9MJnf/WEAYu7AOcYWb/lXQNcB5wQfYBysrKvnleWlpKaWlpHqd1LnktW8I554Tba3/+c+jT\nB269NbRpONeYysvLKS8vr9cx8hkbaoqZ9c61rIr9+gFlGdVQI4CK7EburH0WAL2A9sArZrZFXL4X\ncJ6ZHZ61vVdDuaJgBv/8Z0geRx8Nl10W5gl3Lg1JDVH+uaRdMk6yK2Ek2lwmAj0l9ZDUmjCB0rca\nxiWtF9chaRgw3sxWmNl7wCJJlTW9A4CZeZzTuYIkwXHHwcyZsGJFaAAfNy7tqJzLXz4li92A+4F3\n46KNgcFmlrPdQtIhrL11dqSZXSppOICZ3Rwbwf9BqLKaAZxmZsvivjsRbp1tTZhT4yeV6zKO7yUL\nV5T+8x84/XQ44ogw2ZKXMlxjSnLU2dbANoQv9blmtqpuITYsTxaumH36KfzqV6GEMXIk7L9/2hG5\n5qJBk4WkA8xsrKQfEZJE5YENwMweqk+wDcGThWsKnnwSfvYzOPzwUMro0CHtiFxT19BtFpVT1x8R\nH4fHR+Vr51wDOOQQmDEj3FrbqxeMHZt2RM59V00li3PM7BpJe1V2mis0XrJwTc1TT4VSxmGHwRVX\neFuGS0ZDlyx+Ev+9vu4hOedqY+DAMGTIF1+s7djnXCGoqWRxH7Arodf1/KzVZmY7JhxbTl6ycE3Z\n6NHwi1/A8OHw+99Dq1ZpR+Saiga/G0pSV0Jv7UGsbeAGwMwW1iHGBuXJwjV1774Lp50GH34Id98N\n22yTdkSuKWjoUWfHxs5xY8zsf2a2MPNR32Cdc7ltvHHok3HqqbDnnnDjjT6SrUtHTdVQs4BhwEjg\nBELJ4puNzWxSYwRYEy9ZuObkjTfgpJNggw3g9tuhW7e0I3LFqqH7WRwLnAbsSRWjzJrZfnUJsiF5\nsnDNzapVYQTbm24KpYxjjkk7IleMEunBLekCM7uoXpElxJOFa65eew1OPDH0+r7mGmjrA/i7Wkhq\nIME/SzpZ0gXxJJvFuSeccynZfXeYNAlWroRdd4Vp09KOyDV1+SSLvxFmrzshvl4RlznnUtSxY7hD\nasQIOOAAb/x2ycqnGmqyme1c+W9cNjXOm50qr4ZyLnjzTTj+eNhkk9D4/b3vpR2RK2RJVUN9Lakk\n4ySdgYraBuecS07PnvDKK+Hf3r2hnpOiOfcd+SSL64GHgY0kXQK8BFyaaFTOuVpr3Rr++tcwdeuQ\nIfCHP8Dq1WlH5ZqKfOez2JYwDzfAWDObnWhUefJqKOeq9t57MHRoaAC///5QPeVcpaSqoQDWIXTK\nE2HmOudcAevaNYxge9hh4W6pMWPSjsgVu5zJQtLZwN1AZ2Aj4G5JZyUdmHOuflq0CHdK3X9/GC7k\nD3+ANWvSjsoVq3zuhpoO9DOzz+PrdsCrZtarEeKrkVdDOZef996DE+LN7/feG0oervlKshqqoprn\nuQIaKGmOpDclnVvF+k6SHpY0VdJrkrbPWl8iabKkx/I9p3Puu7p2hWeegb32gl128bulXO3lkyzu\nAF6TVCbpj8CrwO25doq3294ADAS2A4bEhvJM5wOTYp+NocC1WevPBmaRMYChc65uSkrgootCP4zj\nj4dLLoEKvwne5SlnsjCzqwiz5i0FPgZOMbOr8zh2X2BeHNJ8FXA/cGTWNtsC4+J55gI9Yj8OJG0C\nHArcRtZcGs65ujv4YJg4EZ54Ag4/HD7+OO2IXDHIp4G7H/CmmV1rZtcB8yXtnsexuwOLMl4vjssy\nTQWOjufpC2wOVN7kdzXwW7wDoHMNbpNNYNw42H576NMnJA/natIyj23+Duyc8frzKpZVJZ+qo8uA\nayVNBqYDk4EKSYcDH5jZZEmlNR2grKzsm+elpaWUlta4uXMuatUKrrgC+vWDQw6Byy8Pd025pqe8\nvJzyejZU5XM31BQz6521bFquObhjiaTMzAbG1yOACjO7vIZ9FgA7AiOAk4HVQBugIzDazIZmbe93\nQznXAGbPhqOOgtJSuPZaWGedtCNySUrqbqgFks6S1EpS69jv4q089psI9JTUQ1JrYDDwaFbA68V1\nSBoGjDez5WZ2vpltamZbAMcDz2UnCudcw9l2W5gwAT74APbdFxYvTjsiV2jySRanE2bLW0Jod+gH\n/CzXTma2GjgDGEO4o+kBM5stabik4XGz7YDpkuYABxPufqrycHnE6Zyrh44dYfRoOPJI6NsXxo9P\nOyJXSPIaG6pQeTWUc8l4+ukwttSIEXDWWSC/H7FJSWRa1ULmycK55CxcCEcfHaqobrkF2rVLOyLX\nUJLswe2ca2Z69ICXXoKWLaF//5A8XPPlycI5V61114V//CPcUrvHHt6O0Zzl0ynvnHjXkiSNjGM1\nHdwYwTnn0ifB2WfDqFFw3HFw881pR+TSkE/J4lQzWwYcBGxA6P9wWaJROecKzoABoVrq2mvh5z+H\nVavSjsg1pnySRWUjyGHAKDObkWA8zrkCttVW8Oqr8PbbcNBB8NFHaUfkGks+yeJ1SU8TBvUbI6kj\nPl6Tc81Wx47wyCNhmJC+fWHatLQjco0hn+E+WhDGgZpvZp9K+h7Q3cxS/4j4rbPOpeu++0I/jFtu\nCcOFuOJQl1tn8xlIcA9gqpmtkHQy0Ae4pi4BOuealiFDoGfP0B9jxgz4/e+9A19TlU811N+BzyXt\nBPwKmAfclWhUzrmiseuu8Npr8PjjcNJJ8OWXaUfkkpBPslgd63p+CNxoZjcCHZINyzlXTDbeOEzV\nuno1HHAAfPhh2hG5hpZPslgu6XzgJODxOF1qq2TDcs4Vm3XXDW0Y++8Pu+8Os2alHZFrSPkki8HA\nV4T+Fu8RZru7ItGonHNFqUUL+NOfoKwszI3xzDNpR+QaSl4DCUrqCuxGGCp8gpl9kHRg+fC7oZwr\nXM8/H3p8l5XB6aenHY3LlMhAgpKOA14DjgWOAyZIOrZuITrnmot99oEXX4Srr4Zf/QrWrEk7Ilcf\n+fSzmAYMqCxNSOoMjM01rWpj8JKFc4Xvk0/gmGOgfXu4997wr0tXUkOUC8i8t+Fj1g4B4pxzNdpg\nA3jqKdhoI9h7b1iyJO2IXF3kkyyeIgzzcYqknwBPAE8mG5Zzrilp3RpuvTW0YfTvDzNnph2Rq618\nqqEEHA3sRWjgfsHMHm6E2HLyaijnis/dd4c2jAcegP32Szua5qkgp1WVNJAwPEgJcJuZXZ61vhNw\nO/B94EvCLbozJW1K6Cm+ESFJ3WJm12Xt68nCuSL03HNw/PFwzTVwwglpR9P8NGiykLSC8CVdFTOz\njnkEVALMBQYAS4D/AkPMbHbGNlcAn5nZnyRtQ+glPiDertvVzKZIag+8Dvwwa19PFs4VqRkz4LDD\nwm21553nY0o1pgZt4Daz9mbWoZpHzkQR9QXmmdlCM1sF3A8cmbXNtsC4eM65QA9Jnc3sPTObEpev\nAGYD3Wrz5pxzhWuHHeDll0N11M9/HoYKcYUr6Tm4uwOLMl4vjssyTSW0iSCpL7A5sEnmBpJ6EIZJ\nfy2hOJ1zKejePXTemz8/DHH++edpR+Sqk88Q5fWRTx3RZcC1kiYD04HJwDfdd2IV1L+As2MJ41vK\nysq+eV5aWkppaWn9InbONaqOHeE//4Hhw8MQIY8/Dl26pB1V01JeXk55eXm9jpFoA7ekfkCZmQ2M\nr0cAFdmN3Fn7LAB6xfkzWgGPA0+a2Xfm0PA2C+eaDjO46CK4667QL6Nnz7QjarqSGu7jrHjHUl1M\nBHpK6iGpNWFQwkezjr9eXIekYcD4mCgEjARmVZUonHNNiwQXXggjRsC++8Lrr6cdkcuUT5tFF+C/\nkh6UNDB+iefFzFYDZwBjgFnAA2Y2W9JwScPjZtsB0yXNAQ4Gzo7L9yQMi76fpMnxMTDfczvnitNP\nfwo33QSHHALPPpt2NK5SvqPOtgAOAk4BdgUeBEaa2fxEo8sdl1dDOddEvfBCGFPquutg8OC0o2la\nkhobCjOrAN4D3ic0PncC/hX7SDjnXIPbe+9QsvjNb+D669OOxuUz3MfZwFDCAIK3AQ+b2apY2njT\nzLZMPsxqY/OShXNN3MKFcPDBcOyxYWIl77xXf3UpWeRz6+wGwNFm9r/MhWZWIemI2pzMOedqq0eP\nMC/GYYcTdkPDAAAW5klEQVTBe+/B3/8OLZO+6d99Rz7VUFtmJwpJowDMzGfZdc4lrnPnMJ7UokXw\nox/BF1+kHVHzk0+y2D7zhaSWwC7JhOOcc1Vr3x4eeyz8e9BB8OmnaUfUvFSbLCSdL2k50EvS8soH\n8AFZfSWcc64xtG4No0ZBnz5hePMPPkg7ouYjnwbuy8zsvEaKp1a8gdu55skM/vhHuP9+ePpp2Gyz\ntCMqLg09RPkPzGyOpF2oYownM5tUtzAbjicL55q3q68Oc2I88wxsvXXa0RSPhr4b6tfAMOBKqh4Q\n0Oe4cs6l6pe/hPXWCwMQPvEE9O6ddkRNV43VULEvxR5m9lLjhZQ/L1k45wBGjw5zYjz0EOy5Z9rR\nFL4G78Ede27fWK+onHMuYT/6URit9qijYMyYtKNpmvK5dfZZScfUZgBB55xrbAcfDP/+NwwdCv/6\nV9rRND353A21AmhLGBPqy7g4rzm4k+bVUM65bFOmwKGHwp//DKeemnY0hSmR4T7MrH3dQ3LOucbV\nuzeUl8OBB4ZpWs88M+2Imoa8RliJkx/1BNpULjOz55MKyjnn6mPrrWH8eDjggDA0yO9+l3ZExS9n\nsoiz150FbEqYH7sf8Aqwf7KhOedc3fXoAc8/vzZhXHCBj1hbH/k0cJ8N9AUWmtl+wM7AskSjcs65\nBtC9eyhhjB4dpmv1Js66yydZfGlmXwBIamNmc4Btkg3LOecaRpcuMG5c6OV9zjmeMOoqn2SxKLZZ\n/Bt4RtKjwMJEo3LOuQb0ve/B2LEwYQKcfjpUVKQdUfHJaw7ubzaWSoGOwFNm9nUe2w8ErgFKgNvM\n7PKs9Z2A24HvE27LPdXMZuazb9zGb511zuVt+XI4/HDYfHO4/fbmO4lSQw8kuEFNO5rZJzmCKQHm\nAgOAJcB/gSFmNjtjmyuAz8zsT5K2AW40swH57Bv392ThnKuVlSvhhz+E9deHe+6BVq3SjqjxNfRw\nH5OA12t45NIXmGdmC81sFXA/cGTWNtsC4wDMbC7QQ9JGee7rnHO11rYtPPoofPklHHMMfPVV2hEV\nh2qThZn1MLMtqnvkcezuwKKM14vjskxTgaMBJPUFNgc2yXNf55yrkzZtwpAgLVuGcaU8YeSWTz+L\nfapankenvHzqhy4DrpU0GZhO6MexJs99ASgrK/vmeWlpKaWlpfnu6pxrxlq3DpMnDRkSEsbo0bDO\nOmlHlYzy8nLKy8vrdYx8xoZ6nLVf3m0IVUSvm1mNnfIk9QPKzGxgfD0CqKiqoTpjnwVAL2CHfPb1\nNgvnXH2tWgUnnBDaMkaPDqWOpq7BhygHMLPDzeyI+DiQ8EWez1TpE4GeknpIag0MJmvubknrxXWV\nPcXHm9mKfPZ1zrmG0KoV3HsvtGsHRx8d2jLcd+XTzyLbYkLDdI3MbDVwBjAGmAU8YGazJQ2XNDxu\nth0wXdIc4GBCb/Fq961DrM45l1NlwujQIcyJ4Qnju/Kphro+42ULoDewwMxOSjKwfHg1lHOuIa1e\nDSedBMuWwcMPN90qqQbtZ5Fx0FMyXq4mjBH1Yu3Da3ieLJxzDW31ajj5ZFi6NEym1BQTRiLJopB5\nsnDOJWH16jDj3scfh4Sx7rppR9SwkipZTCfcDZV54GWEXtV/NrOPaxtoQ/Fk4ZxLyurV8OMfw4cf\nwiOPNK2EkVSyuIJQ/XQvIWEcT5hm9T1gTzM7om7h1p8nC+dcktasCQnj/fdDwmjbNu2IGkZSyWKy\nme1c1TJJ082sVx1ibRCeLJxzSVuzBk45Bd59NwwT0hQSRiL9LIASSbtnnKRvxn6ra3My55wrNiUl\n8I9/wMYbN+/bavMpWewG3AG0j4uWA6cBM4HDzOzBRCOsOTYvWTjnGsXq1XDiifD55/DQQ2G4kGKV\n6N1QktYDMLOCmVLVk4VzrjGtWgWDB4fnDzxQvMObJ9Vm0Qb4EdCDtQMPmpldVJcgG5InC+dcY/v6\n6zAsSPv2YT6MkpK0I6q9pNosHgEGAauAFfHxee3Dc8654te6dRje/JNP4NRTm88UrfmULGaY2Q6N\nFE+teMnCOZeWlSvh0EOhZ0+4+WZoUZeR9lKSVMniZUk71jEm55xrktq2hccfh1mz4KyzoKn/bs2n\nZDEb2ApYAFTOJ2VmlnoC8ZKFcy5ty5bBgQfC3nvDX/8KqtXv9XQk1cDdo6rlZrawNidKgicL51wh\nWLoU9t8fDjkELr648BNGXZJFzmlVK5OCpI0IM+U555zL0KkTPPMM7LdfGKX2ggvSjqjh5TMH9yDg\nSqAb8AGwOTAb2D7Z0JxzrnhsuCE8+yzsu2+Yy/vcc9OOqGHl08D9Z2AP4A0z2wI4AHgt0aicc64I\ndekCY8fCrbfCNdekHU3DylmyAFaZ2UeSWkgqMbNxkq5NPDLnnCtC3bvDc8+FBu+OHUNfjKYgn2Sx\nVFIH4AXgHkkfEDrmOeecq8Jmm4U2jNLSMK/3scemHVH95VMNdSSwEvgl8BQwD8hrDgtJAyXNkfSm\npO/U4EnaUNJTkqZImpE5haukEZJmSpou6V5J6+T1jpxzrgBsvTU8+SSccUb4t9glNq2qpBJgLjAA\nWEKYWW+Imc3O2KYMWMfMRkjaMG7fBdgEeA7Y1sy+kvQA8ISZ3Zl1Dr911jlX0F55BQYNgtGjYZ99\n0o4mSKoHd131BeaZ2UIzWwXcTyilZHoX6BifdwQ+NrPVwGeEsajaSmpJmJlvSYKxOudcIvbYA+67\nD445BiZOTDuauksyWXQHFmW8XhyXZboV2F7SO8BU4GwAM/uEcLvu28A7wKdm9myCsTrnXGIGDAh3\nSB1+eBgepBjl089iAPCSmX1Ry2PnUz90PjDFzEolbQk8E8eh6gKcQxgWfRnwT0knmtk92QcoKyv7\n5nlpaSmlpaW1DNM555J35JGwfDkcfDA8/zxssUXjnbu8vJzy8vJ6HSOf4T7uAvoBS4Hn4+NFM1ua\nY79+QJmZDYyvRwAVZnZ5xjZPABeb2Uvx9VjgPGAL4CAz+2lcfjLQz8x+kXUOb7NwzhWVv/0NrrwS\nXngBunVLJ4ZE2izMbKiZbQ0cRahWuhH4MI9jTwR6SuohqTUwGHg0a5s5hAZwJHUBtgHmExq6+0la\nV5LiNkVaeHPOubV+/nMYNiwMPvjRR2lHk798qqFOBvYCdiQkiRuAF3PtZ2arJZ0BjAFKgJFmNlvS\n8Lj+ZuAS4A5JUwmJ63exveKTWKKZCFQAk4Bb6vD+nHOu4Jx3XhitduDA0IGvY8fc+6Qtn2qojwm/\n9m8Cys1sQWMElg+vhnLOFSsz+MUvYObM0A+jbdvGO3dSQ5SLMGjg3vGxFWGcqJPqGmhD8WThnCtm\nFRUwdGiYovWRR6BVq8Y5b1L9LDoAmxFGm+0BrE+oGnLOOVcPLVrAHXdASUnhz+edT8liGvASYWyo\n581scWMElg8vWTjnmoKVK+Ggg2C33eCqq5KfPCmRaqiMg3cgTKdaMIMIerJwzjUVS5eG4UBOPDE0\ngCcpkZnyJPUC7gK+F19/CPzYzGbUKUrnnHPf0akTjBkDe+4JnTvDaaelHdG35TNE+S3Ar8xsHICk\n0risf4JxOedcs9OtW0gY++4L3/se/PCHaUe0Vj7Jom1logAws3JJ7RKMyTnnmq2tt4bHHoNDD4UN\nNiickWrzuRtqgaQ/xJ7YW0j6PfBW0oE551xzteuucO+9YaTaqVPTjibIJ1mcCmwEPASMBjrHZc45\n5xIyYADccEMoYbxVAD/PE5v8qDH43VDOuabuppvCwIMvvQRdujTMMRv0bihJj9Wwn5nZoNqcyDnn\nXO39v/8H778PhxwC5eXpjSNVbcki3vVUHTOz8YlEVAtesnDONQeV40jNmQNPPAFt2tTveA3aKU/S\n5mb2v/qFlCxPFs655mLNGhgyJPz74INhiJC6auixof6dceDRdY7KOedcvZWUwKhR8OmncNZZobTR\nmPKdg/v7iUbhnHMup3XWgYceghdfhMsua9xz59MpzznnXIFYb70w/0X//tC9exjivDHU1GaxBlgZ\nX64LfJGx2sws9bmdvM3COddczZ4NpaWhauqgg2q3b6KjzhYiTxbOuebsxRfhqKPCeFJ9+uS/X1KT\nH9WZpIGS5kh6U9K5VazfUNJTkqZImiHplIx160v6l6TZkmZJ6pdkrM45V2z22gtuvhmOOAIWJDzh\ndWIlC0klwFxgALAE+C8wxMxmZ2xTBqxjZiMkbRi372JmqyXdCYw3s9sltQTamdmyrHN4ycI51+zd\ncANcf33o5b3hhrm3L7SSRV9gnpktNLNVwP3AkVnbvAtUtn10BD6OiWI9YG8zux3AzFZnJwrnnHPB\nGWeE6qhBg8Kse0lIMll0BxZlvF4cl2W6Fdhe0jvAVODsuHwL4ENJd0iaJOlWSW0TjNU554raJZfA\nllvCCSeEjnsNLclkkU/90PnAFDPrBvQGbozTt7YE+gB/M7M+wOdAwhMNOudc8WrRAkaOhM8/hzPP\nbPhOe0n2s1gCbJrxelNC6SJTf+BiADObL2kBsE3cbrGZ/Tdu9y+qSRZlZWXfPC8tLaW0tLQBQnfO\nueLTujWMHg0DB8Ibb8A224Tl5eXllJeX1+vYSTZwtyQ0WB8AvANM4LsN3FcBy8zsj5K6AK8DO5rZ\nJ5KeB35qZm/EhvB1zezcrHN4A7dzzmWpqAgljeo06BDl9RUbqs8AxgAlwEgzmy1peFx/M3AJcIek\nqYQqsd+Z2SfxEGcC90hqDcwHfpJUrM4515TUlCjqyjvlOedcM1Not84655xrIjxZOOecy8mThXPO\nuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFc865nDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk4\n55zLyZOFc865nDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFc865nBJNFpIGSpoj\n6U1J51axfkNJT0maImmGpFOy1pdImizpsSTjdM45V7PEkoWkEuAGYCCwHTBE0rZZm50BTDaz3kAp\ncKWklhnrzwZmAZZUnEkoLy9PO4Tv8Jjy4zHlrxDj8piSk2TJoi8wz8wWmtkq4H7gyKxt3gU6xucd\ngY/NbDWApE2AQ4HbACUYZ4MrxA+Hx5Qfjyl/hRiXx5ScJJNFd2BRxuvFcVmmW4HtJb0DTCWUJCpd\nDfwWqEgwRuecc3lIMlnkU3V0PjDFzLoBvYEbJXWQdDjwgZlNpshKFc451xTJLJnmAEn9gDIzGxhf\njwAqzOzyjG2eAC42s5fi67HAecBRwMnAaqANoYpqtJkNzTpHUbVlOOdcoTCzWv0QTzJZtATmAgcA\n7wATgCFmNjtjm6uAZWb2R0ldgNeBHc3sk4xt9gV+Y2ZHJBKoc865nFrm3qRuzGy1pDOAMUAJMNLM\nZksaHtffDFwC3CFpKqFK7HeZiSLzcEnF6ZxzLrfEShbOOeeajqLtwZ2rw18aJC2UNC12JJyQUgy3\nS3pf0vSMZRtIekbSG5KelrR+gcRVJmlxvF6TJQ1sxHg2lTRO0szYIfSsuDzVa1VDXGleqzaSXoud\nZ2dJujQuT+1a1RBTatcpI7ZvdSZO+zNVTUy1vk5FWbKIHf7mAgOAJcB/yWoPSSmuBcAu1VSlNVYM\newMrgLvMrFdc9hfgIzP7S0ysnczsvAKI60JguZld1ZixxHN3Bbqa2RRJ7QntZT8EfkKK16qGuI4j\npWsV42prZitjW+SLwG+AQaR7raqK6QBSvE4xrl8BuwAdzGxQgfz/y46p1v/3irVkkU+Hv7Skequv\nmb0ALM1aPAi4Mz6/k/Dl06iqiQtSul5m9p6ZTYnPVwCzCf2AUr1WNcQFKX62zGxlfNqa0Aa5lPSv\nVVUxQYrXqZrOxKlep2piErW8TsWaLPLp8JcGA56VNFHSsLSDydDFzN6Pz98HuqQZTJYzJU2VNDKN\n4jmApB7AzsBrFNC1yojr1bgotWslqYWkKYRrMs7MZpLytaomJkj3M1VVZ+K0P1NVxWTU8joVa7Io\n1LqzPc1sZ+AQ4Bex6qWgWKh3LJTrdxOwBaFD5rvAlY0dQKzqGQ2cbWbLM9elea1iXP+Kca0g5Wtl\nZhVxDLdNgH0k7Ze1vtGvVRUxlZLidVIenYkb+zrVEFOtr1OxJoslwKYZrzcllC5SZWbvxn8/BB4m\nVJcVgvdjXTiSNgY+SDkeAMzsA4sIReRGvV6SWhESxSgz+3dcnPq1yojr7sq40r5WlcxsGfAfQv13\n6tcqK6ZdU75O/YFBse3yPmB/SaNI9zpVFdNddblOxZosJgI9JfWQ1BoYDDyaZkCS2krqEJ+3Aw4C\npte8V6N5FPhxfP5j4N81bNto4n+cSkfRiNdLkoCRwCwzuyZjVarXqrq4Ur5WG1ZWU0haFzgQmEyK\n16q6mCq/lKNGvU5mdr6ZbWpmWwDHA8+Z2cmkeJ2qiWloXT5PiXXKS1J1Hf5SDqsL8HD4v05L4B4z\ne7qxg5B0H7AvsKGkRcAFwGXAg5JOAxYS7qxJO64LgVJJvQnF8gXA8EYMaU/gJGCapMlx2QjSv1ZV\nxXU+YYj/tK7VxsCdkloQfmCOMrOxMb60rlV1Md2V4nXKVlndlPZnqpIyYvqLpJ2oxXUqyltnnXPO\nNa5irYZyzjnXiDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFK3qSukq6X9K8OC7X\nfyT1TPB8/5D0o1rusyLj+RUKw49fXtM+9RGHoP51Usd3zU9RdspzrlLs8fwwcIeZHR+X7UjoJPlm\nQqetS+ekzH2GEYapTrKTk3egcg3KSxau2O0HfG1mt1QuMLNpZvYifPMrfrrCpFTHxWWlksol/VPS\nbEl3V+4raZe4bqKkp7KGj8i0j6SXJM2vLGVIai/pWUmvx/MNyt5J0qNAe2BSZTwZ6/pKelnSpHjs\nrePyUyQ9JOlJhQl0Ls/Y5zRJcxUmArpV0vVVnHPLuO9ESc9L2ib/y+tc4CULV+x2IEwQ9B3xS3wn\nYEegM/BfSc/H1b2B7Qgjbr4kaU9gAnA9cISZfSxpMHAxcFr2oQkTFO0paVvC2D+jgS+Ao8xsuaQN\ngVfIGrMsTjyzPI5OnG02sLeZrZE0gDBH/TFx3U4x5q+BuZKuI5Qefk8YxnwF8BwwJfN08d9bgOFm\nNk/S7sDfCJMEOZc3Txau2NVU3bIncG+s7vlA0nhgN+AzYIKZvQOgMCdCD2AZsD1hThII4469U805\nK0eDnS2pcn6CFsClCkPTVwDdJG1kZvmOMro+cJekreI5Mv9/jq0cQl3SrBhvZ2C8mX0al/8T2Drz\ngHFQy/7AP+N7gjBZkHO14snCFbuZrP31XZXseQUqk8tXGcvWsPb/wkwz65/Heb+u4hwnAhsCfWLp\nYAHQptrApF8AP40xHQb8iZAUjpK0OVCesXlV8WYnyqrmUGgBLK2mJONc3rzNwhU1M3sOWEcZMxNK\n2lHSXsALwGCFGdU6A/sQqpqq+lI1wrzunSX1i8dpJWm7WoTTkTDRzBqFyYE2zxH7jWa2s5n1iXOh\ndGRtSeYnOc5lhLnn95W0vsI81D9ibQIRYaDQ5cACScfE96R4A4BzteLJwjUFRwED4q2zMwjtDO+a\n2cPANGAqMBb4bawSqnK2sjif+zHA5bFqajKwRzXntCqe3wPsKmkacDKhDaKm7bP9hVCNNYlQBWYZ\n21cV7zuEdo0JwIuEoaaXVbHPicBp8T3NIMwJ7Vyt+BDlzhUxSe3M7PNYsniIMLfLI2nH5ZoeL1k4\nV9zK4iRE04G3PFG4pHjJwjnnXE5esnDOOZeTJwvnnHM5ebJwzjmXkycL55xzOXmycM45l5MnC+ec\nczn9fz3Z5kcdf0JSAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x58b7b50>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg276"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 5.9\"\n",
+ "#plot the graphs\n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "%matplotlib inline\n",
+ "alfa=0.1\n",
+ "dx=numpy.linspace(0.1,44,88)\n",
+ "x=numpy.zeros(88)\n",
+ "g1=numpy.zeros(88)\n",
+ "count=0\n",
+ "g2=numpy.zeros(88)\n",
+ "gc1=0;\n",
+ "for alfa in dx:\n",
+ "\tCa=(math.sin(alfa*math.pi/180.))/(alfa*math.pi/180.)\n",
+ "\tCac=(1+math.cos(alfa*math.pi/180.))/2.\n",
+ "\tx[count]=Ca\n",
+ "\tcount=count+1;\n",
+ "\tg1[gc1]=Cac;\n",
+ "\tgc1=gc1+1;\n",
+ "\n",
+ "\n",
+ "pyplot.plot(dx,g1)\n",
+ "pyplot.plot(dx,x)\n",
+ "pyplot.legend([\"Conical\",\"2D-CD\"])\n",
+ "pyplot.xlabel(\"Divegent flap angle or Cone half-angle(degree)\")\n",
+ "pyplot.ylabel(\"Flow angularity loss coefficient\")\n",
+ "pyplot.title(\"Divergent loss of a conical nozzle and a 2D-CD nozzle\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.9\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 2,
+ "text": [
+ "<matplotlib.text.Text at 0x5b714d0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FdXWh9+V0Am9CKGF3qRJkaaEIk2lqNhRioh+drxX\nRVEQvTYULKjXAujFgooioBQbAZUqVaqgtNCrVGlZ3x97goeYchLOyTlJ1vs88+TMzJ69fzOZmTV7\n77XXFlXFMAzDMFIjItQCDMMwjPDHjIVhGIaRJmYsDMMwjDQxY2EYhmGkiRkLwzAMI03MWBiGYRhp\nkqONhYi8KSJDQq0j0IhInIj0D7UOABG5U0R2icghESkWaj1JEZGbRGRmAPJJEJEqgdB0njr6iMiP\npiP7IyLvichTmVVetjUWIrJJRI55L6kDIvKziAwUEUlMo6p3qurTodSZXvx8CNVbQoqI5AZeAtqr\namFVPRBqTUlR1Q9VtVOodRgpIyIvishv3rO8RkR6++yL8Qz1YW/ZKSJTRaSDH/nWEJHPRGSPiBwU\nkeUi8oCIRJxPvplIpj7n2dZY4C7iFapaGKgIPAc8DIwJZqHiEcwyshBlgHzAmlALMbI0R/j7Wb4V\neEVEWiRJU0RVCwH1gW+BSSJya0oZikhVYAGwGbhQVYsCvYDGQFRG8w0BmfeuUdVsuQAbgXZJtjUF\nzgB1vPX3gKe832uAy33S5gL2AA299ebAXOAAsAxo45M2Dnga+Bk4BlQBOgLrgIPA68BsoL/PMf2A\n1cB+YAZQ0WdfAjAQ+M0rb7S3vTZwHDgNHAb2p3Dus4B+3m8BhgCbgF3A+0Bhb18+4ANgr1fOQqC0\nt68P8DtwCPgDuDGFsvICLwPbvGUUkAeogXvIEzyt36Vw/GfADu86zU7836SQtjgwzitnPzDJZ98A\nYD2wD5gMlE3revqc548+63VxL4V9wE5gsLe9GTDPO3478BqQO0kZVVLQHQcMB37yrudMoITP/m7A\nKi/vWUAtb/t13rVLXE54+8t61zZx+zEgIYXzqeVzPmuBXqlc3764e/KQ97+/3WdfLBAPDPLuo+1A\nH5/9JYApwJ+4l/BTvjrO5/+ezLGTgUHe7xjv2kckSfMgsDOVPD4ApqayP6P5pnavpfYsjk7yvz4F\nDAWuTe4e8I4Zh/f+8tavwL2bDuDeRfX8vaZ+XfdAZhZOC8kYC2/7ZmCgz8Ue7v1+HPjAJ93lwCrv\ndzncC7Wzt97BWy/hrcd5N0BtXG2tlPfQ9PDW7wVO8vcLvDvuxVbT2/8Y8HOSG24KUBioAOwGOnn7\nbk3tIfTS+BqLfl5ZMUBB4HPgf96+gV45+bwbuRFQyEv3J1DdS3cBKTzMuJfgXKCkt/zsc00rJffA\nJTm+j1debpyhWZpK2q+Bj4EiOGN+ibe9HZ5hxxmqV4HZfl7PPonX0zv3HcADXj5RQDNv30U4gxHh\nnddq4L4kZaRmLNYD1bxrPQt41tuXaFTbA5HAv720uZPkUcgrc0Ay+X8AfJjM+RQEtnr3TIR3ffYA\ntVPQ2RWo7P2+FDgKNPLWY3EvsGGezi7e/iLe/gnekh9ncOOBOYH4vyc5Lj/OUHX01mOSu8dwH2wJ\nQM0U8tkB3JpKORnNN7V7LcVnMUkeDb3jGqR2D+BjLHDP7i7cB7EAt+DegXn8ua5+XftAZRRuCykb\ni3n8/bXoe7Gr4b6o8nnrHwJDvN8PJ/2n4moDt3i/ZwHDfPbdgs/L39u2hb9f4NMTf3vrEd6DV8Hn\nhmvps/8T4GHvdx/SZyy+B+7w2VcDZ7gicV+S//gC8W7kA8BVQP40ytqAZ0S99Y7ARu93sg9cKnkV\n9dIXSmZfWVytsEgy+8YAzyXRfxKvtubv9QRuABb7qfV+4Auf9dSMxSzgUZ/1O4Hp3u/HgQk++wT3\nom2T5P74Cng9mbwfBhYBeZM5n+tI8sIG3gKe8PMcJwH3er9jcTWYCJ/9u3AGNNK73jV89v0nrfvU\nn/97MmnfB6b5rCd7j+GMcgLQIoV8TuIZnBT2ZzTf5O61h7zfKT2Lvte0FO7D89ok+f7jHuDcj903\nE3/77F8LXOrP/8CfJTv3WaREeVwTxjmo6gZcU1Q3ESkAXAl85O2uBPTyOsoPiMgBoBWuTT6RrT6/\no3EPvC++65Vw7a6Jee3ztpfzSbPT5/cx3AswI5TF1aYS2YL7Ki8NjMc1iUwQkW0i8ryI5FLVo7gX\nzR3AdhH5SkRqppB/dDL5R/sjzOtIfE5ENojInzgDr7gaSlIq4Jrd/kzrHD39+0j/9ayAa3JLTmsN\n7zrs8LT+B9f04i++5R/n73bxaNw1S9SuuHvJ9xr+x9N7bxJNXbxtPVT1RDJlVgIuTnLf3oirKSZ3\njl1EZL6I7PPSdk1yjvtUNcFn/Zh3HqVw95TvM7CFFEjn/933uBFAHVzTTFok/u/3ex5viR3VXyee\nC37epynlm0qapPda4v86pWfxAjjrEDIR18LxaZI8k70HfKgEPJjkf13eKzMg5ChjISJNcTfITykk\n+Rj3ddkdWK2qiS+OLcB4VS3msxRS1Rd8jlWf39tx/6jEcsV33cvv9iT5FVTV+X6chqad5By2476S\nEqmI6/PYpaqnVXW4qtYFWuLaPG8BUNVvVLUjziCuBd5JR/7b/dR2E669vr2qFgEq476sk+u02woU\nF5EiaWkQkYK4l9w2P3UksgXXzJAcb+KaAKp5Wh8jMM/PNtyDDpy9Vyp42xGR63GG+xpVPeOTriau\nz62XqqZ0nltwzXFJ79u7kiYUkby4ZpEXcP1WxYBp+NeBugd3T1X02VYxhbSQvv97or4ngU642sAR\nPzT1xN3j69R5vBXylsu9/d8BV/uRT4r5ZuDYFJ9Fb/014KCqnuPOn9I9kIQtwH+S/K+jVPWTDOhM\nluxuLARARAqLyBU4YzBeVVf57vdhAu6GvAPXDJXIB8CVItJRRCJFJJ+IxIqI75erb15fA/VEpLuI\n5ALu4txayH+BR0WkjqeviIj0SuM8EvPfBZT3vkL84WPgAc8VMAp4BtfskeCdQz0RieTvTrUzIlLa\n017Q23YU1wSUUv5DRKSkiJQEnsDVWPwhCtdht98r65mUEqrqDlzz3RsiUlREcovIpT4a+opIA++l\n9wwwX1VT+rpN6cX0NVBWRO4TkbwiUkhEmvloPQwcE5FauKak9JDSi/Az4HIRaef9Tx8E/gLmikgj\n3Aukp6om1j4RkcK4Tt7HVHVuKmV+DdQQkZu965VbRJp6+pOSx1v2AgleraWjPyfmvcC+AIaJSH7v\nvr6VlD9s/P6/A4jIYNxH3GWasvt14rN+gYjcjbsPB6eS7VCgpYi8ICKJX/bVRGS8d30zmm9yuhL/\n96k9iwNx/UQ3n3NwCvdAMnm/A9whIs08h8yCInK5V05AyO7GYqqIHMJZ3cE4n/++PvsVnxtaVXfi\nOmtb4NoaE7fH42obj+I6nrbgHmpJkldi+n04N7wXcA9fbeAX3AOCqn4JPI9r/vkT+BVnpP6RVzI6\nv8d5zuwUkd1+XIOxuJf3HFwTyzHgHm9fGdzL6k/cV3OclzYC18m7DVddv4SUX45Pe+e2wlt+8bal\ndC6+/A9XLd8GrMT1J6WWvjfOeK3FGc17AVT1e1zb/+e4r7fKwPWpaPC9nmd/q+ph4DJcE+QOnEdL\nrJfuX7gmnEPA27gPC99806rxJU2bWOY63AviNdwX+uXAlap6Gvf1XRT4KUkzSiNce/con+2HUjif\njt612Oad07M4o3CuOJf2XuBTXBPLDTiDlNI5JOVunBHYibvnxqaSNr3/9//galsbfM73kSRpDorI\nEdw92Bn3Ff5eShl6rQYtcF/6q0TkIK4JaBHO4SBD+SZzHr73WmrP4vW4+3a7zzkOJuV74Jy8VXUx\nziNwNO7/tx6vlSBQiNcREhREZCzu5t+tqvVSSPMqzrPiGM4Vb6m3vTPOJTMSeFdVnw+a0CAjIhG4\nZpQbVXV2qPUYhmGkl2DXLMbhrHGyiEhXXBtwdeB2XLswXrPIaO/YOsANIlI7yFoDitdkVdRrFnnU\n2+xPn4RhGEbYEVRjoao/4lwwU6IbzhUOVV0AFBWRMjh3vA2quklVT+Gq/N2DqTUItMC5lSY2LaTk\nsWIYhhH25Apx+eU4190u3tsWncz2izNR13mjqk8CT4Zah2EYRiAIhw5ui6NkGIYR5oS6ZrEN5+WQ\nSHlcLSJ3ku0V+OcgN0QkeL3zhmEY2RhVTdeHeqiNxRScy90EEWmOG5CyS0T2AdVFJAbnCnkdzpXv\nHwTam0sVjhyB3bth1y7YsQO2b1c27zjKxp372bJ3HzsO7mP3kT3kKb6HwmX2kK/ELnIV2c3pfDs5\nHrmLPTO3UrBjQcoVKkd0oWjKFS5H+ULlqVCkAhUKV6BCkQpUKlKJIvmSG18WHIYNG8awYcMyrTx/\nME3+EY6aIDx1mSb/kAwExg6qsRCRj4E2QEkR2YobCJMbQFXfUtVpItJVRDbgBn719fad9gbAzMS5\nzo5R1UwJcy0ChQq5pWrVs1txLuRRJA5MTUhwBmXTJti4Ef74Azash99/h8NLhnJ6+f3ohds5U207\nf1aM50SpeNYXWsIhJrP18BY2H9xMrohcxBSNIaZoDFWKVTm7VC1WlcrFKpMn8h/u8IZhGCEhqMZC\nVZOtDSRJc3cK26fjRuyGJRERUKaMW5o3P3ffsGHCAw8U47ffirF2bV3WrIHV38CqVRAfD9WrQ48G\nSrV6+ylVejP5ozeyP2Ejq/esZupvU/l9/+9sPbSV6ELRVCtejZolalKjRA1qlqhJzZI1qVikIhES\nDt1NhmHkFELdDJUtiY2NpUgRaNrULb4cPw6rV8OKFcLy5SWYPb0ES5deRKFC0LgxtLoI7m8KjRqf\n4kiuzfy27zfW71vP2r1rmbJuCmv3ruXAXweoWaImtUvVpk7JOlxY+kLqlq5L5aKViYyITFFTuGGa\n/CMcNUF46jJNwSOoI7iDjYhoVtafiKprxlqyBBYvhkWL4JdfoFQpaNYMWrZ0S/36kCsXHDpxiLV7\n17J6z2pW71nNqj2rWLl7JXuP7aVOqTrUL12f+he4pUGZBhTPXzzUp2gYRhghIunu4DZjEaYkJMDa\ntbBgAcybB3PnwubNrqZyySVuadECCvoE2j504hArd69kxa4V/LrrV5btWsaKXSsonr84Dcs0pFGZ\nRjQu25iLyl5EdKHoDHVyGUawsPsxOCT3jjRjkc05eNAZjR9/dMuyZVCvHrRt65ZWraBAgXOPSdAE\n/jjwB0t3LGXJjiUs2bmExdsXkysiF02im9CsXDOaRjelabmmlCyQ6nQChhFUvBdYqGVkK1K6pmYs\nchjHj7tax6xZblm2zPV7XHaZWxo3ds1WSVFVtvy5hV+2/8Ki7YtYtH0Ri7cvpkSBEjQv35yLy11M\n8/LNaVimoXlkGZmGGYvAY8bCI6cbi6QcPQpz5sC337olPh46dIAuXaBTJyhXLuVjEzSBdXvXMT9+\nPvPj5zMvfh5/HPiDi8peRMsKLWlVoRUtK7SkRIH0TA5nGP5jxiLwmLHwMGOROjt2wMyZMGOGMx7l\ny8MVV7ilWTOITN5x6iyHThxi4baFzN06l5+2/MT8+PlUKFKBSypewiUVL6FNTBvKFy6feiaG4Sdm\nLAKPGQsPMxb+c+YMzJ8PX33lll274PLLoUcP12SVtK8jOU4nnGb5zuX8uOVH5myew5zNcyictzBt\nYtrQNqYtbWPaUqFIhbQzMoxkyInG4s4776RcuXIMGTIk7cQpEBcXR+/evdm6des/9pmx8DBjkXE2\nbYKpU+HLL52rbrt20LMndOsGxYr5l0eCJrBmzxriNsURtzmOWRtnUSx/MdrFtKN9lfa0q9zOOs0N\nvwl3Y/HRRx8xcuRI1q1bR6FChWjYsCGPPfYYrVq1CqkuMxZ+YMYiMOzfD19/DV98AT/84Fxyr77a\nGY+S6XjXJ2gCK3ev5IeNP/D9xu+Zs3kOVYpVoUPlDnSq1onWFVuTL1e+4J2IkaUJZ2MxcuRInn/+\ned566y06depEnjx5mDFjBnPmzOH550M7iWdmGQtUNcsuTr4RSA4fVv3kE9VevVQLF1bt1El17FjV\nAwfSn9fJ0yf1p80/6dBZQ7XFuy006pko7TS+k46cO1LX7FmjCQkJgT8BI8sSrs/zwYMHNSoqSidO\nnJjs/r/++kvvu+8+jY6O1ujoaL3//vv1xIkTqqo6a9YsLVeunL700ktaunRpLVu2rI4bN+7ssbfe\neqsOGTLk7PqXX36pDRo00MKFC2vVqlV1xowZqqo6duxYrV27thYqVEirVKmib7311tljZs2apeXL\nl09WW0rX1Nuevvdteg8IpyVcb67swuHDqhMmqPbs6QxHjx6qn36qeuxYxvI7cPyATlw1UQdMGaDl\nR5bXmJdj9I6pd+iUtVP0yIkjgRVvZDnC9XmePn265sqVS8+cOZPs/scff1xbtGihe/bs0T179mjL\nli318ccfV1X3Is+VK5cOHTpUT58+rdOmTdMCBQrowYMHVVW1T58+Z9MuWLBAixQpot99952qqm7b\ntk3Xrl2rqqpff/21/vHHH6qqOnv2bC1QoIAuWbLkbBlmLMxYhA0HD7oaRvv2qkWLqvbtqzprlmoK\nz0+aJCQk6MpdK3XEzyM09r1YjXomSjt/0Flfnf+qbjywMZDSjSxCWs+zC4xz/kt6+eCDD7RMmTIp\n7q9atapOnz797PrMmTM1JiZGVd2LPH/+/OcYmtKlS+uCBQtU9Vxjcfvtt+ugQYP80tSjRw995ZVX\nzpaRGcbCQpcaflGkCPTtC99956Ln1q0L990HlSvDY4/B+vXpy09EqFu6Lv9q+S9m3TqL+Afi6d+o\nP4t3LKbpO02p/2Z9Hvv+MRbELyBBE4JzUkaWIlDmIr2UKFGCvXv3kpCQ/H24fft2KlWqdHa9YsWK\nbN++/ZzjIyL+ftUWKFCAI0eO/COf+Ph4qv49L8I5TJ8+nebNm1OiRAmKFSvGtGnT2LdvX/pP5jww\nY2Gkm+hoePBBWL4cpkyBv/6C1q1dvKpx49zkUemlSL4iXFPnGt7r8R47H9zJf6/4L2f0DH0m96H8\nyPLc+dWdzNwwk5NnTgb+hAwjFVq0aEHevHmZNGlSsvujo6PZtGnT2fUtW7YQHR2d7nIqVKjAhg0b\n/rH9xIkTXH311Tz00EPs3r2bAwcO0LVr18TWlUzDjIVxXjRoAC+95EaLP/igc8WtUAEGDHAuuRm5\nnyMjImlZoSXPdXiONXetIa5PHFWKVeHJ2U9S5sUy3PzFzXyx5guOnjwa+BMyjCQUKVKE4cOHc9dd\ndzF58mSOHTvGqVOnmD59Og8//DA33HADTz/9NHv37mXv3r0MHz6c3r17+5V3YhMPQP/+/Rk3bhw/\n/PADCQkJbNu2jXXr1nHy5ElOnjxJyZIliYiIYPr06XzzzTfBPOVkMWNhBITcud0Av8mT3XwdVarA\n9ddDo0bwxhtw6FDG865Rogb/bvVv5vafy6r/W0WrCq1485c3KftSWa7+9Go+/vVjDp84HLiTMYwk\nDBo0iJEjR/L0009TunRpKlasyBtvvEHPnj0ZMmQITZo0oX79+tSvX58mTZqcM8gutWi6InJ2f9Om\nTRk3bhwPPPAARYsWJTY2li1btlCoUCFeffVVrr32WooXL87HH39M9+7d/5FPsLFxFkbQSEhwAQ7f\nesuFG7n2WrjjDmdAAsG+Y/uYsm4Kn63+jJ+3/ky7yu24ts61XFnzSqLyRAWmECPTCOdxFlkVG5Tn\nYcYi67BjB4wZA2+/7QIa3nMPXHMN5AlQUNsDxw8wed1kPln1CXO3zqVj1Y5cX/d6ulbvSv7c+QNT\niBFUzFgEnixjLESkM/AyEAm8q6rPJ9lfDBgLVAH+Avqp6ipv32DgZiAB+BXoq6onkhxvxiKLcfq0\ni001erTzqrr9dlfbKFs2cGXsO7aPSWsn8fHKj1myYwnda3bnhgtvoH2V9uSKsJmEwxUzFoEnSxgL\nEYkE1gEdgG3AIuAGVV3jk2YEcEhVnxKRmsDrqtpBRGKAH4DaqnpCRD4Bpqnq+0nKMGORhVm92hmN\njz92kXDvv9/NwRFIdhzewaerPuWjlR+x6eAmrq97PTfVv4mm0U1tZrYww4xF4AmksQhmB3czYIOq\nblLVU8AEoHuSNLWBWQCqug6IEZFSwCHgFFBARHIBBXAGx8hG1KnjOr//+MPNL37VVc79dtIkFyU3\nEJQtVJb7mt/HgtsW8HO/nymevzg3fXETNUfX5KnZT7Hp4KbAFGQY2ZxgGotygG9kq3hvmy/LgasA\nRKQZUAkor6r7gZeALcB24KCqfhdErUYIKVYM/v1v+P1315fx3HNQq5YzJMeOBa6casWrMTR2KL/d\n/Rvje45n19FdNH2nKbHvxTJ26VjzqDKMVAimsfCnPvkcUFRElgJ3A0uBMyJSFbgfiAGigSgRuSlY\nQo3wIFcu5zE1f74b3PfNNxATA08+CYEcrCoiXFz+YkZ3Hc22Qdu4v/n9TFk3hQqjKnDLpFuYtXGW\njRo3jCQEs7dvG+A7E04FXO3iLKp6GOiXuC4iG4E/gMuBuaq6z9v+BdAS+DBpIcOGDTv7OzY2ltjY\n2EDpN0KEiBsR3ro1rFsHI0ZA9epw881u4J9PZIXzJk9kHnrU6kGPWj3Yc3QPH/76IffPvJ8///qT\nvg370rdRXyoWqRi4Ag0jBMTFxREXF3deeQSzgzsXroO7Pa4paSH/7OAuAhxX1ZMiMgBopap9RKQh\n8AHQFOcl9R6wUFVfT1KGdXDnELZvh5dfdu633brBI49AzZrBK2/JjiWMWTKGCasm0CS6Cbc1uo3u\ntbqTJzJAvr7GP7AO7sCTJbyhAESkC3+7zo5R1WdFZCCAqr4lIi1whkCBlUB/Vf3TO/Yh4Fac6+wS\n4Davo9w3fzMWOYz9+50H1ejR0LatC2JYv37wyjt+6jhfrPmCd5e+y+o9q7ml/i0MaDyAGiVqBK/Q\nHIoZi8Bjkx9ZiPIcz+HDqiNGqJYp4+bb8EL7B5Xf9v6mD33zkF4w4gKNfS9WJ/w6QU+cPhH8gnMI\n4fo8nzhxQvv166eVKlXSQoUKacOGDc+GJJ81a5aKiEZFRWlUVJSWL19er732Wl20aFGa+S5YsEC7\ndOmiRYsW1eLFi2uzZs3OTox0Pvn6ktI1xUKUGzmFqCj417+cB1WbNm6cRrdusHhx8MqsXqI6z1/2\nPFse2ML/Nfk/3l7yNhVGVeCR7x5h44GNwSvYCCmnT5+mYsWKzJkzh0OHDvH0009z7bXXsnnzZgDK\nlSvH4cOHOXz4MPPnz6dWrVpccskl/PDDDynmOW/ePNq3b0/btm35/fff2bdvH2+++SYzZsw4myYj\n+QaV9FqXcFoI0y8RI/M5flz11VdVo6NVu3dXXbo0c8pdt3edDpoxSEs8X0Iv//By/WrdV3r6zOnM\nKTybkZWe5/r16+sXX3yR4sRDd999tzZp0iTF41u1aqV33313ivszmm9SUrqmWM3CyKnky+fGaGzY\n4PoyunZ1sadWrQpuuTVK1OClTi+x9YGtXFPnGp6c/STVX6vOi3NfZP/x/cEt3AgJu3bt4rfffqNu\n3boppunZsydLlizh+PHj/9h37Ngx5s+fzzXXXJPuslPLN9ik6TorIuNVtXda2wwjHMif383gN2CA\nG9TXrh107AjDhkEKk5AFptzc+enTsA99GvZh4baFvL7odaq+WpWra1/N3c3upmGZhsErPIcgTwYm\nPIsOzXgn+qlTp7jpppvo06cPNWrUOGdGPF+io6NRVQ4ePEj+/OcGsjxw4AAJCQmUzUBAtNTyDTb+\njLO40HfFc4kNcAQfwwgsBQq4Po3bb3cutxdf7GoaTzzhZvoLJs3KNaNZuWbsPrqbdxa/wxUfXUHV\n4lW5t9m9dK/V3YIZZpDzeckHgoSEBHr37k2+fPkYPXp0qmm3bduGiFC0aFGeeeYZnn32WQB69+7N\nSy+9REREBDt27KBGjfR51fnmm9mk2AwlIo+KyGGgnogcTlyA3cCUTFNoGOdB4cLOQKxb537XqweD\nB8PBg8Evu3TB0jx26WNsvG8jdzW9i5HzR1Lt1Wq8OPdFDv6VCQKMgKGq9O/fnz179vD5558TGRmZ\navpJkybRuHFj8ufPz6OPPnq2o/qNN94gf/78tGjRgokTJ6Zbh2++mU5anRrAc+ntCMmshSzUIWaE\nB1u3qvbvr1qqlHO9PX48c8tftG2R3vT5TVrsuWJ6z7R7dP2+9ZkrIIwJ5+d54MCB2rx5cz1y5Mg5\n2307ohMSEjQ+Pl6HDRum+fLl02+//TbF/ObOnatRUVE6YsQI3bt3r6qqLlu2TK+//vrzyjcpKV1T\nMtDB7e9LuRwu3MaliUt6CwrGEs43lxHerF7tvKYqVVIdP171zJnMLT/+z3gd/N1gLflCSe0xoYf+\ntPknTUhIyFwRYUa4Ps+bNm1SEdH8+fOfHfcQFRWlH330kcbFxWlERIRGRUVpwYIFNTo6Wnv16qUL\nFixIM9+FCxdqly5dtEiRIlq8eHG9+OKLdfz48arqjEVG8/UlkMYizRHcIvI8cB2wGjgbOFpVrwxk\nDScj2Ahu43z58UcX8fbkSXjxRdchnpkcPXmU95a9x6j5oyhZoCQPtniQq2pfRWRE6s0c2REbwR14\nMjXch4j8BtTTJLPUhQNmLIxAoAoTJ8LDD8OFF8ILL7gQ6ZnJmYQzTFk3hRFzR7D76G4ebPEgfRr2\nyVFTwpqxCDyZPfnR74BFTzOyLSLQqxesWQOXXuqi3d5zT2DDoqdFZEQkPWv3ZG7/ubzf431m/j6T\nmFdiGD57uI3XMMICf4zFcWCZiLwtIq95y6vBFmYYmU3evM7ddu1aSEiA2rXhtdfg1Km0jw0krSq2\n4svrv2R2n9lsPriZaq9W48GZDxJ/KD7tgw0jSPjTDNXH+5mYUHCdI+8nf0TmYc1QRjBZuRIeeAC2\nbXNjNTp2DI2O+EPxjJo3inHLxtGzVk8eaf0I1UtUD42YIGLNUIEn00OUi0gBoKKqrk1P5sHGjIUR\nbFRh6lSbumClAAAgAElEQVQYNMiN0XjpJahSJTRa9h/fz2sLXmP0otG0r9yewa0H06BMg9CICQJm\nLAJPpvZZiEg33HSnM7z1RiJig/KMHIGIi2a7ciU0a+aWxx8P7Nzg/lI8f3GGxg7lj3v/oGl0U7p8\n2IVuH3dj4baFmS/GyHH40wy1BGgHzFLVRt62lap6YaoHZgJWszAym/h452o7bx6MGgU9ejiDEgr+\nOv0XY5eO5fmfn6dWyVo8funjtK7YOjRiAoCE6kJmczLTdXaBql4sIkt9jMUKVQ3i/GT+YcbCCBWz\nZsFdd7n5wF991c0RHipOnjnJ+OXjeeanZ6hUpBJD2wylTUyb0Akywp5guc6uEpGbgFwiUl1EXgPm\nZkihYWQT2raF5cuhfXto0QKGDoW//gqNljyReeh/UX/W3rWWWxrcQv8p/WnzXhtmbZwVGkFGtsSf\nmkVB4DEg0RdkJvCUqobo0fgbq1kY4UB8PNx/PyxbBq+/Dp06hVbP6YTTfPTrRzw15ynKFSrHk7FP\nWk3DOIegeUNlFBHpDLwMRALvqurzSfYXA8YCVYC/gH6qusrbVxR4F6iLc9vtp6rzkxxvxsIIG6ZN\ng7vvhqZNnattBqYrCCinE07z4YoPGT5nOJWKVGJ42+FZuk/DCBwBNRYi8oqq3iciU5PZraraLQ0x\nkcA6oAOwDVgE3KCqa3zSjAAOqepTIlITeF1VO3j73gdmq+pYbw6Ngqr6Z5IyzFgYYcWxY/Cf/8Db\nb8NTT7n5NCJCPB/lqTOnGL9iPMNnD6dWyVoMbzucZuWahVaUEVICbSwaq+piEYlNZreq6uw0xLQA\nhqpqZ2/9Ee/A53zSfIULgf6Tt74BaAGcBJaqaqoe7WYsjHBl5UoYONCN03j7bRdzKtScPHOSMUvG\n8J8f/8NFZS/i6XZPU/+CkPupGCEgoB3cqrrY+/kL8KOqxqlqHPCjty0tygFbfdbjvW2+LAeuAhCR\nZkAloDxQGdgjIuNEZImIvOMNDDSMLMGFF7qItrfc4jrDn3gCToQ4FGeeyDzc2fRO1t+znrYxbek4\nviM3fn4j6/etD60wI0vgl+ss0F5Vj3jrhYCZqtoyjeOuBjqr6gBv/WbgYlW9xydNIeAVoBHwK1AL\nuA0XuHAe0FJVF4nIy7jmqieSlKFDhw49ux4bG0tsbKw/520Ymca2ba4vY+1aePddaNUq1IocR04e\n4ZX5rzBq/ih61urJ0NihlC9cPtSyjCAQFxdHXFzc2fUnn3wyKOMslqlqw7S2JXNcc2CYTzPUYCAh\naSd3kmM2AvWAKGCeqlb2trcGHlHVK5Kkt2YoI8vwxRcumm3PnvDss1CoUKgVOfYf388LP7/AO0ve\noX+j/jzS+hGK5y8eallGEAnWOIujItLYp5AmuEi0afELUF1EYkQkD24CpXPChIhIEW8fIjIA16F9\nRFV3AltFJHE28w7AKj/KNIyw5aqrXF/GsWMuztS334ZakaN4/uI81+E5fr3zVw6fOEzN0TV55sdn\nOHryaKilGWGEPzWLpsAEYIe3qSxwnaqm2W8hIl3423V2jKo+KyIDAVT1La8T/D2ca+xKoH+ix5OI\nNMC5zubBzanR17yhjOzCN984T6l27WDkSChaNNSK/mb9vvUMmTWEn7b8xNA2Q+nXqB+5InKFWpYR\nQIIZdTYPUBP3Ul+nqpkc4T95zFgYWZnDh+GRR2DKFOcx1aVLqBWdy6Jti3j4u4fZfng7z7Z/lh61\nelj8pmxCoF1n26vq915HteLmscD7jap+cT5iA4EZCyM78MMP0L+/85oKt1qGqjLz95k89O1DFMlX\nhBGXjaB5+eahlmWcJ4Hus7jU+3ult1zhLYnrhmEEgHbtYMUKyJcP6td3TVThgojQuVpnlg5cSr+G\n/ej1WS96fdaL3/f/HmppRiaTWs3iflV9WURaJw6aCzesZmFkN777ztUyunaFESMgKirUis7l2Klj\nvDz/ZUbOG8ktDW5hyKVDzHMqCxLomkVf7+9rGZdkGEZ66NDB1TJOnIAGDdzAvnCiQO4CPHrJo6z6\nv1UcO3WMWqNr8fL8lzl55mSopRlBJrWaxcdAE9yo66R1TrX5LAwjuEyZAnfcAb17w/DhkDdvqBX9\nk9V7VvOvb/7Fhv0beLHji1xZ40rrBM8CBNwbSkTK4EKSd+PvDm4AVHVTBjQGFDMWRnZnzx7nYvvH\nH/DBB258Rjgyc8NMBn0ziDJRZRjZcWS2mhs8OxLQZigR+d4bHDdTVTer6ibf5XzFGoaRNqVKuZHf\n99//95iMhIRQq/onnap1Yvkdy7m69tV0/KAjA6cOZM/RPaGWZQSQ1PosyopIK6CbiFwkIo29vxeJ\nyEWZJdAwcjoi0LcvLFwIn38OHTu6eFPhRq6IXPxf0/9j7V1ryZ87P3XeqMNLc1+y/oxsQmp9Fr2A\n/kArkokyq6ptgystbawZyshpnD7t4kqNHu1m5bvmmlArSpm1e9fywMwH2HhgIy93fpnO1TqHWpLh\nEZQR3CLyhKoOPy9lQcKMhZFTWbAAbroJ2rSBV14JPxfbRFSVr9d/zQMzH6B2ydqM7DSSasWrhVpW\njidYgQSfFpHeIvKEV0hFb+4JwzBCxMUXw9KlcOYMNG4MixenfUwoEBGuqHEFK+9cSasKrWj+bnMe\n/f5RC1KYBfHHWLyBm73uRm/9iLfNMIwQUqgQvPceDBsGnTvDiy+GZ+c3QN5ceXm49cOsuHMFW/7c\nQu3Xa/Ppqk+xloGsgz/NUEtVtVHiX2/bclUNuW+cNUMZhmPTJrjxRihcGN5/Hy64INSKUmfO5jnc\nM/0eSuQvweiuo6lTqk6oJeUogtUMdVJEIn0KKQWE6feLYeRMYmJg9my46CJo1MiFDQlnLq10KYtv\nX0zPWj1p814b/v3Nvzl84nCoZRmp4I+xeA2YBJQWkWeAn4Fng6rKMIx0kzs3PPMMjB8Pt94Kjz7q\nvKfClVwRubjn4ntYeedK9hzbQ5036ljTVBjj73wWtYH23ur3qromqKr8xJqhDCN5du92YUKOHYOP\nP4byWWBq7Z+2/MSdX99J2aiyjO46mholaqR9kJEhgtUMBZAXF+5DcDPXGYYRxpQuDdOnw+WXQ5Mm\nMG1aqBWlTeuKrVly+xI6V+tMyzEteWLWExw/5c8MzkZmkKaxEJH7gA+AUkBp4AMRuTfYwgzDOD8i\nItxMfBMnuoCEDz8Mp8JijsuUyR2Zm0EtBrHsjmWs2buGem/W45vfw2iCjxyMP95QvwLNVfWot14Q\nmK+qIQ9pZs1QhuEfe/e6ZqkjR2DCBChXLtSK/GPa+mncPe1umpVrxqhOoyhbqGyoJWULgtkMlZDC\n77QEdRaRtSKyXkQeTmZ/MRGZJCLLRWSBiNRNsj9SRJaKyFR/yzQM45+ULAlff+3m+W7SJLxm40uN\nrtW7svL/VlKlWBXq/7c+byx6gwQ1Z8xQ4E/NYhDQB/gC12fRA3hPVUelcVwksA7oAGwDFgE3+HaO\ni8gI4JCqPiUiNYHXVbVDkrIbA4VUtVsyZVjNwjDSSVycCxVy++3w+OOuuSorsGr3KgZ+NZAzeoa3\nr3ibeheEvHEjyxKUmoWqjsTNmncA2Af0SctQeDQDNnghzU8BE4DuSdLUBmZ55awDYrxxHIhIeaAr\n8C5J5tIwDCPjxMbCL7/A99+76Vv37g21Iv+oW7ouc/rOoV/DfrT/X3sGfzfYOsAzEX86uJsD61X1\nFVV9FfhdRC72I+9ywFaf9Xhvmy/Lgau8cpoBlYBEJ79RwL+xAYCGEXDKlnXGol49F1tq4cJQK/KP\nCIlgQOMBrLhzBRsPbqTem/X4/o/vQy0rR5DLjzT/BRr5rB9NZlty+NM+9BzwiogsBX4FlgIJInIF\nsFtVl4pIbGoZDBs27Ozv2NhYYmNTTW4Yhkfu3DBiBLRo4Vxsn37aNU1lhVlRy0SVYcI1E/j6t6/p\nN6UfbWPa8lLHlyhRoESopYUlcXFxxMXFnVce/vRZLFPVhkm2rUhrDm6vRjJMVTt764OBBFV9PpVj\nNgL1gcFAb+A0kA8oDHyuqrckSW99FoYRAH77DXr2hGbN4I03IH/+UCvyn8MnDjPkhyF8uvpTRnUa\nxXV1r7N5wNMgWPNZTML1K7yJ6zu4E2irqj3SOC4XroO7PbAdWMg/O7iLAMdV9aSIDABaqWqfJPm0\nAf6lqlcmU4YZC8MIEEeOwG23wfr1bka+mJhQK0of87bO47apt1GlWBXevPxNyhfOAsPWQ0SwXGfv\nwM2Wtw3X79AcuD2tg1T1NHA3MBNYDXyiqmtEZKCIDPSS1QF+FZG1QCfgvpSy80OnYRjnQVSUCw1y\n883QvHn4ByNMSosKLVhy+xIal21Mw/825L+//NfcbAOIX7GhwhWrWRhGcIiLgxtugAcfdEtWa9VZ\ntXsV/ab0o0DuArx75btULV411JLCimAOyjMMIwcRG+umbp0wwRmNo1lsYru6pesyt99crqxxJc3H\nNGfUvFGcSTgTallZGqtZGIaRIsePw513uilcv/wSKlcOtaL0s2H/Bm6bchsnz5xkbPex1CpZK9SS\nQo7VLAzDCCj588O4cdC/v3Ox/eGHUCtKP9WKV+OHW3/g5vo3c8m4S3jh5xc4nRDGE32EKf54Q90P\njAMO4UZTXwQ8oqozgy8vdaxmYRiZxw8/uKlbBw+Ge+/Nev0YABsPbOS2qbdx5OQRxnUfl2Oncw1W\nzaKfqv4JdASK48Y/PJcBfYZhZGHatYN582DsWOdie+JEqBWln8rFKvNd7+/o27Avl467lBd+fsH6\nMvzEH2ORaH0uB8ar6sog6jEMI4ypXBl+/hkOHnTGY+fOUCtKPyLCHU3uYNGARczYMINWY1uxdu/a\nUMsKe/wxFotF5BtcUL+ZIlIYi9dkGDmWqCj47DO47DI34nvJklAryhiVi1Xmu1u+o3f93rQe25pR\n80bZuIxU8KfPIgIXB+p3VT0oIiWAcqq6IjMEpob1WRhGaJk40XlLvfkmXHNNqNVknA37N9B3cl8i\nJIJx3cdRpViVUEsKKsHqs2gBrPMMRW9gCPBnRgQahpG9uOYamDkTBg2C4cMhq367VStejbhb4+he\nszvN3mnGW7+8hX2Inou/06rW95b3cB5R16pqm6CrSwOrWRhGeLBjB/ToAVWquA7wrBSIMClr9qyh\n96TelCpYijHdxhBdKDrUkgJOsGoWp703cg/cTHavA4UyItAwjOxJ2bIuRIgItGmTNTu+E6ldqjbz\n+s+jebnmNHqrEZ+s/CTUksICf2oWc4AZuNnyLgH2AMtUNeRzGlrNwjDCC1V46ikYMwamToX6qU5k\nEP78sv0Xek/qTaMyjXi96+sUy18s1JICQrBqFtcBJ3DjLXbiZrsbkQF9hmFkc0TgiSfg+eehfXv4\n+utQKzo/mkQ3YfHtiylZoCQN/tuA7/7IYqF4A4hfsaFEpAzQFBcqfKGq7g62MH+wmoVhhC/z58NV\nV8Ejj7gR31mdb37/hn6T+3F17at5rsNz5M+ddTtmglKzEJFrgQVAL+BaYKGI9MqYRMMwcgrNm8Pc\nufDWW85YnMniA6U7Vu3IijtXsPPoTpq804RlO5eFWlKm4k+fxQqgQ2JtQkRKAd+nNa1qZmA1C8MI\nfw4ehF69IG9eF/I8KirUis4PVeWDFR8w6JtBPNTyIR5s+SARkrVisgarz0JwndqJ7OPvECCGYRip\nUrQoTJvmPKYuuQS2bQu1ovNDROjdoDeLBixiym9T6PC/DsQfig+1rKDjj7GYgQvz0UdE+gLTgOnB\nlWUYRnYid254+224/noX6vzXX0Ot6PyJKRpD3K1xdKjSgcZvN+bz1Z+HWlJQ8acZSoCrgNa4Du4f\nVXVSJmhLE2uGMoysx4QJrg/jww9dfKnswMJtC7nx8xtpU6kNr3R5hag84d3WFpRmKHV8rqoPqOqg\n9BoKEeksImtFZL2IPJzM/mIiMklElovIAhGp622vICKzRGSViKwUkWzgT2EYxvXXw+efQ+/ebmKl\n7ECzcs1YOnApinLRWxfxy/ZfQi0p4KRYsxCRI7iaRHKoqhZOM3ORSGAd0AHYBiwCblDVNT5pRgCH\nVPUpEamJGyXewXPXLaOqy0QkClgM9EhyrNUsDCOLsm4ddOkCt9wCQ4dmzcmUkuOTlZ9wz/R7+HfL\nf4dt53dAaxaqGqWqhVJY0jQUHs2ADaq6SVVPAROA7knS1AZmeWWuA2JEpJSq7lTVZd72I8AaIPsF\naTGMHErNmm4ypa++ctO2njoVakWB4boLr2PRgEVMXjeZTh90YsfhHaGWFBCCbfLKAVt91uO9bb4s\nx/WJICLNgEpAed8EIhKDC5O+IEg6DcMIARdc4GJK7doFV14Jhw+HWlFgqFS0EnF94mhVoRUXvX0R\n09dnfZ+gXEHO3582oueAV0RkKfArsBQ4O3zHa4KaCNzn1TDOYdiwYWd/x8bGEhsbe36KDcPIVKKi\nYPJk+L//c0EIp02DMmVCrer8yRWRi2Gxw2hXuR03f3Ez19S5hmfbP0veXHkzXUtcXBxxcXHnlYdf\n4T4ynLlIc2CYqnb21gcDCar6fCrHbATqqeoREckNfAVMV9WXk0lrfRaGkU1IDEL4/vswYwZUrx5q\nRYFj37F99J/Sn62HtjLh6glULxHakwtWuI97RSSjoRZ/AaqLSIyI5MEFJZySJP8i3j5EZAAw2zMU\nAowBVidnKAzDyF4kBiEcPBguvRQWLgy1osBRokAJJl03iX4N+9FybEs+XPFhqCWlG3/GWfwH95Jf\nAowFZqbnc15EugAvA5HAGFV9VkQGAqjqWyLSAjepkgIrgf6q+qeItAbmACv4uzlrsKrO8MnbahaG\nkQ2ZOtV1er//vvOYyk4s27mM6yZeR6sKrXity2sUzFMw0zVkpGbhb9TZCKAj0AdoAnyKe/H/ngGd\nAcOMhWFkX+bNg5494YUXnHttduLIySPcNe0uFm5byKfXfEq9CzJ3eqBgxYZCVROAncAuXOdzMWCi\nN0bCMAwj4LRoAbNmweOPw4svhlpNYInKE8X7Pd7nkVaP0O5/7Xh3ybthP+e3P81Q9wG34AIIvgtM\nUtVTXm1jvapWDb7MFLVZzcIwsjnx8dCpk2uOeuEFiAi/MW7nxeo9q7lu4nXUK12Pt654i0J5gz9r\ndbBqFsWBq1S1o6p+6g2uS6xtXJkBnYZhGH5Tvjz8+KNrlurbN/sM3kukTqk6LLhtAQVzF6Tx241Z\nvnN5qCUliz/GoqqqbvbdICLjAVR1dVBUGYZh+FC8OHz7LezZ42bfO3481IoCS4HcBXin2zs80eYJ\nOozvwDuL3wm7Zil/mqGWqmojn/VcwApVrRNscWlhzVCGkbM4dcrVLjZvdh5TRYuGWlHgWbNnDb0+\n60XDMg357xX/DUoE24A2Q4nIoyJyGKgnIocTF2A3ScZKGIZhZAa5c8P//gcXXeRGe+/cGWpFgad2\nqdosHLCQ3JG5afZOM1bvCY8GHH9qFs+p6iOZpCddWM3CMHImiaO9x493zVMxMaFWFBzGLR3HQ989\nxKhOo7i5/s0Byzeg4yxEpJaqrhWRxiQT40lVl2RMZuAwY2EYOZvXXnMeUjNnQp2QN4wHhxW7VnDN\np9fQNqYtr3R5hXy58p13noE2Fu+o6gARiSN5Y9E2QyoDiBkLwzA++AD+9S/Xh9G0aajVBIdDJw7R\nf0p//jjwBxN7TaRyscrnlV/AR3B7YylaqOrP56UsSJixMAwD/g4P8tlnri8jO6KqvLrgVZ756Rne\nvfJdrqyZ8ZELQQn3ISLLVLVhhlUFETMWhmEkMmsWXHcdvPcedO0aajXBY+7WuVw38Tp61+/N8LbD\nyRWR/pkmgmUsXgTmA5+H25vZjIVhGL4sWADdusGrrzrDkV3ZfXQ3N3x+A4Lw8dUfU6pgqXQdH6wR\n3HfgAgee9HGhPZQuZYZhGJnAxRc776gHHoAxY0KtJniULliamTfPpGl0Uxq/3ZgF8cGfRDSokx8F\nG6tZGIaRHOvXQ4cO8OCDcO+9oVYTXCavncyAqQN4MvZJ7mhyB24qoNQJZojyYkB14KzPlqrOSU9B\nwcCMhWEYKbF5M7Rv7zq+Bw8OtZrgsmH/Bnp+0pPGZRvz5uVvkj93/lTTB2umvAG4SYi+AZ4EZgLD\n0lOIYRhGZlOpEsyZ41xrH3vMDeTLrlQrXo35/edz8sxJWo1txcYDGwNehj99FvcBzYBN3tiKRsCf\nAVdiGIYRYKKjIS4Opk+HQYOyt8EomKcgH171Ibc2uJXmY5rz277fApq/P95Qv6hqExFZBjRX1b9E\nZLUFEjQMI6tw4ICbD6NRI3j99ew3J0ZSlu9cTr0L6hEhyZ9osLyhtnp9Fl8C34rIFGBTegoxDMMI\nJcWKwTffwMqVrg/jzJlQKwouDco0SNFQZJR0eUOJSCxQGJihqif9SN8ZeBmIBN5V1eeT7C8GjAWq\nAH8B/VR1lT/HemmsZmEYht8cPQrdu0OpUi4IYa70j2fLFgQ6NlTx1A5U1f1piIkE1gEdgG3AIuAG\nVV3jk2YEcEhVnxKRmsDrqtrBn2O9481YGIaRLo4fh6uvhgIF4OOPXdjznEagm6GWAItTWdKiGbBB\nVTd5U7FOALonSVMbmAWgquuAGBEp7eexhmEY6SZ/fpg0CU6ehF694MSJUCvKGqRoLFQ1RlUrp7T4\nkXc5YKvPery3zZflwFUAItIMqASU9/NYwzCMDJE3L0ycCJGRbprWv/4KtaLwJ80WOxG5NLntfgzK\n86d96DngFRFZCvwKLAXO+HksAMOGDTv7OzY2ltjYWH8PNQwjB5MnD0yYAL17u3hSkye7Wkd2JC4u\njri4uPPKwx/X2a/4++WdD9dEtFhV26VxXHNgmKp29tYHAwnJdVT7HLMRqAdc6M+x1mdhGMb5cvo0\n3Hor7NoFU6a4vozsTlBcZ1X1ClW90lsuw73ID/qR9y9AdRGJEZE8wHUkmbtbRIp4+xJHis9W1SP+\nHGsYhhEIcuVy83qXLQtXXOE8pox/khFH3Hhcx3SqqOpp4G5ceJDVwCequkZEBorIQC9ZHeBXEVkL\ndMKNFk/x2AxoNQzDSJPISDcPRsWKcPnlcORIqBWFH/40Q73msxoBNAQ2qmrgZg/PINYMZRhGIDlz\nBgYMgN9/h2nToGDBUCsKDsGa/KiPz+ppXIyon9IvL/CYsTAMI9AkJMBtt2VvgxG0EOXhihkLwzCC\nQXY3GMGqWfyK84byzfhP3Kjqp1V1X3qFBgozFoZhBIvsbDCCZSxG4JqfPsIZjOuBAsBOoJWqXpkx\nueePGQvDMIJJosHYuBG+/jr7uNUGy1gsVdVGyW0TkV9VtV4GtAYEMxaGYQSbM2egXz+Ij4epU7OH\nwQhWiPJIEbnYp5BmPsedTk9hhmEYWY3ISBg71o3D6N7dBSLMifhTs2gKjAOivE2Hgf7AKuByVf00\nqApT12Y1C8MwMoXTp11okAMH4MsvIV++UCvKOEH1hhKRIgCqGjZTqpqxMAwjMzl9Gm68EY4dg88/\ndwEJsyLB6rPIB1wNxPB34EFV1eEZERlIzFgYhpHZnDoF117r5vP+7LOsOR9GsPosJgPdgFPAEW+x\n6CmGYeRIcueGTz75u5ZxOof03PpTs1ipqhdmkp50YTULwzBCxV9/QY8eULy4m6I1MjLUivwnWDWL\nuSJSP4OaDMMwsiX58rkZ93btcvGkEhJCrSi4+FOzWANUAzYCiRMQqqqG3IBYzcIwjFBz9Ch07gz1\n6sHrr4Ok63s9NASrgzsmue2quik9BQUDMxaGYYQDhw7BZZdBq1bw0kvhbzCCNfnRJs8wHAMSfBbD\nMAwDKFwYZsyAuDgYMiTUaoJDmsZCRLqJyHpcM9RsYBMwPci6DMMwshTFisE337gBe888E2o1gcef\nDu6ngRbAb6paGWgPLAiqKsMwjCxIyZLw3Xcwbhy88kqo1QSWXGkn4ZSq7hWRCBGJVNVZIpLNLoNh\nGEZgKFsWvv8eLr3UhTW/7bZQKwoM/hiLAyJSCPgR+FBEduMG5hmGYRjJULGiq2HExrootTfeGGpF\n548/zVDdcZ3bDwAzgA2AX3NYiEhnEVkrIutF5OFk9pcUkRkiskxEVvpO4Soig0VklYj8KiIfiUgW\njcJiGEZOpFo1mDkTBg2CyZNDreb8Cdq0qiISCawDOgDbcDPr3aCqa3zSDAPyqupgESnppb8AKA/8\nANRW1RMi8gkwTVXfT1KGuc4ahhHWLF4MXbrARx9Bhw6hVuMI1gjujNIM2OC53p4CJuBqKb7sAAp7\nvwsD+1T1NHAIF4uqgIjkws3Mty2IWg3DMIJC48YuQu2NN8LcuaFWk3GCaSzKAVt91uO9bb68A9QV\nke3AcuA+AFXdD7wEbAG2AwdV9bsgajUMwwgal1zi4kf17AnLloVaTcZIs4NbRDoAP6tqeueH8qd9\n6FFgmarGikhV4FsvDtUFwP24sOh/Ap+JyE2q+mHSDIYNG3b2d2xsLLGxsemUaRiGEXw6dYI33oCu\nXd3gvRo1Mq/suLg44uLizisPf8J9/A9oDhwA5njLT6p6II3jmgPDVLWztz4YSFDV533STAP+o6o/\ne+vfA48AlYGOqnqbt7030FxV70pShvVZGIaRpRg3DoYNgx9/dF5ToSBY4T5uUdUaQE9cs9LrwB4/\n8v4FqC4iMSKSB7gOmJIkzVpcBzgicgFQE/gd19HdXETyi4h4aVb7d0qGYRjhS9++8MADrrN7165Q\nq/Eff5qhegOtgfo4IzEa+Cmt41T1tIjcDcwEIoExqrpGRAZ6+98CngHGichynOF6yOuv2O/VaH7B\nxaFaArydgfMzDMMIO+6/383l3amTa5IqWjTUitLGn2aofbiv/TeBOFXdmBnC/MGaoQzDyKqown33\nwdKlbjxGgQKZV3awQpQLUBe4xFuq4eJE3ZxRoYHCjIVhGFmZhAS49VbYv98FIMys+byDNc6iEFAR\nqOeX3uUAABJVSURBVITzTiqKhSg3DMM4byIiYOxY97dPn/Cebc+fmsUK4GdcbKg5qhqfGcL8wWoW\nhmFkB44fd7Pt1a8Pr74a/MmTgtIM5ZN5Idx0qmETRNCMhWEY2YU//3SBB3v2hCeeCG5ZQWmGEpF6\nIrIUWAWsFpHFInJhRkUahmEY/6RIETfb3v/+5wbvhRv+hCh/GxikqrMARCTW29YyiLoMwzByHBdc\n4Gbbu/RSKF4crr8+1Ir+xh9jUSDRUACoapyIFAyiJsMwjBxLlSowbRpcdpkzGB07hlqRwx9vqI0i\n8rg3EruyiAwB/gi2MMMwjJxK/fouUu1NN8GiRaFW4/DHWPQDSgNfAJ8DpbxthmEYRpBo3RrGjIFu\n3WDdulCrCeLkR5mBeUMZhpHdGTsWnnoKfv4ZoqMDk2dGvKFS7LMQkampHKeq2i09BRmGYRjpp18/\nF3CwUycXqTZUcaRSrFl4Xk8poao6OyiK0oHVLAzDyAmouuCDy5a5OFL58p1ffgEdlCcilVR18/lJ\nCi5mLAzDyCkkJMANN8Dp0/DppxAZmfG8Aj0o70ufjD/PsCrDMAzjvImIcAP2Dh6Ee+5xtY1MLd/P\ndFWCqsIwDMNIk7x5YdIkmDcPnn46c8v2Z1CeYRiGESYULgzTp0PLllCunOsAzwxS67M4AxzzVvMD\nx312q6oWDrK2NLE+C8Mwcirr1kGbNs61tmvX9B0b1Kiz4YgZC8MwcjLz58OVV7rwIE2b+n9csCY/\nyjAi0llE1orIehF5OJn9JUVkhogsE5GVItLHZ19REZkoImtEZLWINA+mVsMwjKxG8+Z/j/LesCG4\nZQWtZiEikcA6oAOwDVgE3KCqa3zS/H975x5tVXHf8c8XkIiID4SgMRhNtL5WIoohRGK9KZbaRqDW\ntNZEg7RBV5eoa9kYH63N1SRaNTEPH41SFdSoGCwujSmChBuNgBTkoUAwUXT5QMDHYiG2KvDrH/Pb\n3s3xnLvvJffcfS78PmvddefMnj3z3b8zZ//2zOyZaQY+ZmaXShrg6QeZ2WZJU4DfmNntknoBfc1s\nQ0UZ0bIIgmCn59Zb4brrYO5cGDiwOH2jtSyGAX8wsxfN7APgPmBsRZo1QDb2sQfwpjuKPYHjzex2\nADPbXOkogiAIgsTZZ6flzE8+GTZtqk8Z9XQW+wMv5z6/4nF5JgFHSnoNWApc4PEHAesl3SHpaUmT\nJO1WR61BEATdmiuvhMMOS05j8+bOz7+ezqI9/UOXAUvM7BPAEOAm3761F3AMcLOZHQNsAi6pm9Ig\nCIJujgSTJsF778HEiZ0/aa+e8yxeBQbnPg8mtS7yHAd8H8DMnpe0GjjU071iZtlK7tOo4Syam5s/\nDDc1NdHU1NQJ0oMgCLofvXvDtGlp0cHnnoNDD03xLS0ttLS0/FF513OAuxdpwHok8BqwgI8OcF8P\nbDCzKyQNAhYBnzOztyQ9DnzTzJ7zgfA+ZnZxRRkxwB0EQVDB1q1peZBadOoS5X8sPlA9EXgU6Anc\nZmYrJZ3jx28BrgLukLSU1CX2bTN7y7M4D/i5pN7A88D4emkNgiDYkWjLUWwvMSkvCIJgJ6PRXp0N\ngiAIdhDCWQRBEASFhLMIgiAICglnEQRBEBQSziIIgiAoJJxFEARBUEg4iyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICglnEQRBEBQSziIIgiAoJJxFEARBUEg4iyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICqmrs5B0kqTfSfq9pIurHB8gaYakJZKelXRWxfGekhZLerieOoMg\nCIK2qZuzkNQTuBE4CTgCOF3S4RXJJgKLzWwI0AT8UFKv3PELgBWA1UtnPWhpaSlbwkcITe0jNLWf\nRtQVmupHPVsWw4A/mNmLZvYBcB8wtiLNGmAPD+8BvGlmmwEkfRL4K+A/AdVRZ6fTiJUjNLWP0NR+\nGlFXaKof9XQW+wMv5z6/4nF5JgFHSnoNWEpqSWT8CLgI2FpHjUEQBEE7qKezaE/X0WXAEjP7BDAE\nuElSP0knA+vMbDHdrFURBEGwIyKz+gwHSBoONJvZSf75UmCrmV2TS/Mr4Ptm9qR/ng1cApwCnAls\nBnYldVE9YGbfqCijW41lBEEQNApm1qEH8Xo6i17AKmAk8BqwADjdzFbm0lwPbDCzKyQNAhYBnzOz\nt3JpTgC+ZWaj6yI0CIIgKKRXcZLtw8w2S5oIPAr0BG4zs5WSzvHjtwBXAXdIWkrqEvt23lHks6uX\nziAIgqCYurUsgiAIgh2HbjuDu2jCXxlIelHSMp9IuKAkDbdLWivpmVxcf0mzJD0naaakvRpEV7Ok\nV9xeiyWd1IV6BkuaI2m5Twg93+NLtVUbusq01a6SnvLJsyskXe3xpdmqDU2l2SmnbZvJxGXXqRqa\nOmynbtmy8Al/q4ATgVeB/6FiPKQkXauBoTW60rpKw/HAO8CdZvZZj7sWeMPMrnXHureZXdIAur4D\nbDSz67tSi5e9L7CvmS2RtDtpvOyvgfGUaKs2dP0dJdnKde1mZu/6WORvgW8BYyjXVtU0jaREO7mu\nC4GhQD8zG9Mgv79KTR3+7XXXlkV7JvyVRamv+prZE8DbFdFjgCkenkK6+XQpNXRBSfYys9fNbImH\n3wFWkuYBlWqrNnRBiXXLzN71YG/SGOTblG+rapqgRDvVmExcqp1qaBIdtFN3dRbtmfBXBgY8Jmmh\npAlli8kxyMzWengtMKhMMRWcJ2mppNvKaJ4DSDoQOBp4igayVU7XfI8qzVaSekhaQrLJHDNbTsm2\nqqEJyq1T1SYTl12nqmkyOmin7uosGrXvbISZHQ38JXCud700FJb6HRvFfv8BHESakLkG+GFXC/Cu\nngeAC8xsY/5YmbZyXdNc1zuUbCsz2+pruH0S+FNJX6443uW2qqKpiRLtpHZMJu5qO7WhqcN26q7O\n4lVgcO7zYFLrolTMbI3/Xw9MJ3WXNQJrvS8cSfsB60rWA4CZrTOH1ETuUntJ2oXkKO4yswc9unRb\n5XTdnekq21YZZrYBeITU/126rSo0HVuynY4DxvjY5b3An0m6i3LtVE3Tndtjp+7qLBYCh0g6UFJv\n4DTgoTIFSdpNUj8P9wVGAc+0fVaX8RAwzsPjgAfbSNtl+A8n4xS60F6SBNwGrDCzH+cOlWqrWrpK\nttWArJtCUh/gz4HFlGirWpqym7LTpXYys8vMbLCZHQT8PfBrMzuTEu1UQ9M3tqc+1W1SXj2pNeGv\nZFmDgOnpt04v4OdmNrOrRUi6FzgBGCDpZeDfgH8H7pf0j8CLpDdrytb1HaBJ0hBSs3w1cE4XShoB\nnAEsk7TY4y6lfFtV03UZaYn/smy1HzBFUg/SA+ZdZjbb9ZVlq1qa7izRTpVk3U1l16kM5TRdK+ko\nOmCnbvnqbBAEQdC1dNduqCAIgqALCWcRBEEQFBLOIgiCICgknEUQBEFQSDiLIAiCoJBwFkEQBEEh\n4SwaBElbfKngZ5WWXb7QJ2ghaaiknzSAxrGSDq9xbKDSktGLJH1J0mpJ/btaY1tImizp1C4oZ5ik\nx5WW0H9a0iSfOFav8l7siK0lNal1qeqPSXrM697f1lFji6Sh7Ug3VdJnqsSfJemG+qgrRtLsbNLt\nzkq3nJS3g/KuryuFpIHAPaS9x5vNbBFpqeqyOQV4mLQSaiUjgWVmNgHA/Vyj0enr8kjqaWZbcp8H\nAfcDp5nZUx53KtAP+N/OLDuHsf0rrR5NWrLo6E7UU41C20s6GOhrZs/XS0T2AGYdn2B2HzABKG3p\n87KJlkUD4mtLnQ1MhNYnQSVWS9ozS6u0+dNA/5smaYH/HefHByptvPKsP+F++BQq6QxvDSyW9DOf\nDYukdyR9z1s48yR93PMbDVzn6T+d0zAEuAYY60/Su+avR9J0pZV4n1VuNV4v53qPf0zSgEpbSBot\nab7nO0vSxz2+WWlDpTmSnpd0Xu6cy/2p/glJ90j653yWnmaoP+0ulDRD2y4TkeVzoKRfK63M+Zik\nwR4/2e013687z7nA5MxR+Pf5gJmtU9oE50HPb56kbF+Ptq6l6ndUhfO8VbdM0qF+7jBJc912T0r6\nk4rrGwjcDXy+8jv14xO8Li3xutUnd/0/8Tyfd2eYrQJ7s6SVSpv8PKIqLTlJo1zXIkn3Ky2PA2k5\niody6cZLWiXpKdIaRx/q7khd9+9xlaQppGUtBku6yM9dKqm5HfZ+yPXtvJhZ/DXAH2kjksq4t4GB\nQBPwsMf9GDjLw18AZnr4HtKqtwAHkNYWArgRuNjDf0Faprg/cDjpB9DTj90MnOnhrcBXPHwN8C8e\nvgP4mxr6xwE/zX1eDfT38N7+vw/px7p3rpzTPXw5cEOVfPfKhb8J/MDDzaQNb3YB9gHeIC398nnS\nukW9gd2B54AL8/r9nLnAPh5/GmnJmMqyH87ZZDww3cOT3Xaqcs4DwOgaNroBuNzDXwYWF1xLze+o\nIt/VwLke/idgkof75c49EZjm4SZa69MJWbhKvv1z4e8CE3PXP9XDhwO/9/BXgUc8PAh4K6svwBzg\nGGAA8Bugj8dfnLPJfwPHeHg/4CW3xy5un59uZ10/ENgCDPNjo4BbPNzDv+fji+wNvEBq+ZR+vyjj\nL7qhuh9TSes9TSY96Uz1+BOBw9Xa/dPPn9hG4JutmNmjkrINYkaSVg5d6Of0AV73Y++b2SMeXkRa\npC2jVndHW5upXCAp2/BlMHAIsID0Y8703w38V5VzB0u6H9iX5ABe8Hgj3Zg+AN6UtM7TjAAeNLP3\ngfflffMVOg8FjiTtPQLpxvxalbKH07pRzd3Atbmyf2F+B6lCLTuMIDkrzGyOpH2U+sFrXUtb31El\nme2ezsoA9gLuVOreMdJNt71aAT4r6XvAniTHO8PjDV8Mz8xWKnW9AXyJ1AWHma2VNKdKWcOBI4C5\nfk29SY4b4FOk5bIhPQjNMbM3IY1lAFnLqKN1HeAlM8u2Oh4FjFLr2lt9gYOBo2jb3mtJ9fd3Ney1\nQxPOokHxLoEtZrZe2/b/zwcOVuqyGQtcmZ0CfMFvkvl8smPbRPv/KWZ2WZXiP8iFt7JtPal1g6wa\nr7THwEhguJn9n99Adq2WtEYeN5BaE7+UdALpKTwjf61bXGdl/32tm+FyMzuuxrFKXdV4t0b8ctIN\np9YqyLXyq3YtUPs7quS9Kud+F5htZqdI+hTQ0lYGku4g7W/wqpmdTHogGWNmz0gaR2qRVNObXVN7\nx05mmdnXasmokVe+fnSkrmdsqvh8tZndWnH+RNq2d606ulMQYxYNiPcl/4x0o9wGf5qdTtr9aoWZ\nZU9PM4Hzc3kc5cEn8VUuJY0C9iZV+NnAV72sbFP5AwqkbSQNuleVXSN+D+BtdxSHkZ4sM3oA2Rs4\nXwOeqHF+9tR/VkF5Rrre0Upv+ewOfKVKmlXAQEnDIe0fIemIKvnNpbWf+uvA41XSVHIjME7Sh/sD\nSDpFaazlCc8nc6LrLW24VOtatuc7ypO33fiixGY23syOdkcBqTXxutL+GmdQfKN8EjhViUFs61zw\n8+cDI+RvPEnqK+kQP/4SqfsJUsvzBL/mXWitJ9Cxul6NR4F/yMZKJO3vNi6y9yAaYN+csghn0Tj0\n8UG1Z4FZwAwzu8KPVb5JMpV005maizsfONYH7JbTuuTwFaQm9zOkPuXXSeMjK4F/BWZKWkr6AWaD\nvPmy8mXfB1zkA5PbDIZW0ZiFZwC9JK0Argbm5dJsAoa5tiZaW0l5moFfSFoIrM/lW/XtGjNbSHqq\nXwb8ijRGsqEizQdui2uUtuVcDHyxStnnAePdPl8HLqhyfZXlryM5mB8oDbKvIHV7bPRrGer5XUXr\nHge1rqWt72ibpBXhD5ehBq6W9DSpq63a99PWW0qXk7aa/S0ffQOuWl4PkG6mK4C7SF1ilbZ/g+T0\n7/VrmkvqFsTLOdbTrSHZa57HL89l06G6XqnXzGaRxj3mSVpG6jrbvS17K70A8aaZVbZQdhpiifId\nHKXNobaY2RZJXwRuMrNjytYFIGmjmXX6u+uS+prZJkm7kQZTJ5jZks4uJ/goOdvvQ3I0x7kDbc+5\nnya95FDZGmxv2XWr65LOJg1u/6gz8uuOxJjFjs8BpI1XepD6mScUpO9K6vWkcqt3K+1Keo01HEXX\n8UulHex6A1e211EAmNkLkjZK+oxt31yLetb100hjhDst0bIIgiAICokxiyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICglnEQRBEBTy/5sFNlGCF/qjAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x581c650>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print (\"Example 5.10\")\n",
+ "%matplotlib inline\n",
+ "#plot the graphs\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "p=0.96 #p=p't8/pt8\n",
+ "f=0.02\n",
+ "fAB=0.04\n",
+ "\n",
+ "z0=numpy.linspace(0.45,0.63,7)\n",
+ "gmr=1.3/1.33 #gm=gm/gm' gm=gamma\n",
+ "gm=1.33\n",
+ "gm1=1.3\n",
+ "tlAB=7.\n",
+ "tl=6.\n",
+ "i=0;\n",
+ "z1=numpy.linspace(7,9,3)\n",
+ "for tlAB in z1:\n",
+ " tt=6.5\n",
+ " g1=numpy.zeros(7)\n",
+ " gc1=0;\n",
+ " for tt in z0:\n",
+ " A=(1+f+fAB)/(1+f)*((gmr)**(1./2))*1/p*((tlAB/(tl*tt))**(1./2))*((((gm1+1)/2.)**((gm1+1)/(2*(gm1-1))))/(((gm+1)/2.)**((gm+1)/(2.*(gm-1)))))\n",
+ " g1[gc1]=A\n",
+ " gc1=gc1+1;\n",
+ " number=0;\n",
+ " pyplot.plot(z0,g1)\n",
+ " i=i+1;\n",
+ " pyplot.xlabel(\"Turbine expansion parameter\")\n",
+ " pyplot.ylabel(\"A8-AB-ON/A8-AB-OFF\")\n",
+ " pyplot.title(\"Nozzle throat area variation with \")\n",
+ " pyplot.legend([\"tau(AB)=7\",\"tau(AB)=8\",\"tau(AB)=9\"])\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.10\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl4VFW2v/8uZgyRURlECLOMIiCTKHFABgWUQUEQUUG7\n29v0ZN/brd2Cfbv7/r5tX2+jbbcIIgQFZBICMghKcGJQZmQyDAKCzEMChCFZvz/2qaSIKZJQqVRV\nst7nOU/OsM/Z65w6qU/tvfZeS1QVwzAMw8iJEuE2wDAMw4hcTCQMwzCMgJhIGIZhGAExkTAMwzAC\nYiJhGIZhBMREwjAMwwiIiYSRZ0QkXkT2F+D19orIvQV1PcMhIr8XkfFBnL9FRO4qSJsKsn4RSRKR\npwvTpuKMiUQU433JHhaR6/z2jRCR5eG0KydEZJKI/He23eothVF/sfliUdX/UdWReSmb0+eiqi1U\n9dPQWJc7/vWLyBgRmZK9CIX03hgmEkWBEsAvwm1EqBGRUkFeokC/VEQkIv93RKRkuG0wihYR+aIb\neUaBvwPPi0jFnAqISGcR+UpETonIGhHp5O3vJCIpfkuaiOzxjp3y258qIhkiUieHa9cSkdkickRE\ndovIzwPY8AzwGPCf3jXn+R2+TUQ2enVOF5Gy3jnxInJARP5TRA4Bb4tIGRH5h4h87y3/JyJlvPKV\nRGSBZ8sJEZkvIjd5x/4C3An806v/tQB2zhSRQ54tK0Skmd+xSSLybxFZKCKpQPzV7l9E2ovIShE5\nKSIHReR1ESkdoN5FIvJctn0bReQhb32siOwTkdMi8rWIdPErN0ZEZonIFBE5DQzP/us70H0F+lz8\nuwFFpOxVnrnvM/q116I9KCLDA9zj3SKyyW97qYis8dv+TET6+NcvIj2A3wOPevat97tknIh8LiJn\nRGSJiFTNqV6jAFBVW6J0AfYA9wKzgf/29o0AlnvrVYCTwBDcD4JBwAmgSrbrlAKSgL/kUMdfvWMl\ngXhgv7e/BLAW+IN3fj1gF3B/AFvfAf6Ubd9eYBVQA6gMbAWe9Y7FA5eA/wFKA+WAPwFfAtW85Qvf\nNb17fdgrVwGYAXzgV9dy4KlcnudwIMar7/+A9X7HJgGngE7edvmr3T/QBmjvPae63r39IkC9jwOf\n+2038z630t72EO/5lAB+DRwCynjHxgAXgT7edjlgNDAlj/eV0+eyB7jHW7/aM/d9RmO896MncBao\nmMM9lgfOe59TaeAwsN+zqzxwDqicQ/2jgYRs10oCkoGG3v0uB/4n3P+PRXWxlkT0o8BLwM9FpFq2\nYw8AO1T1PVXNUNXpwHagd7ZyrwNnVPVF/50i8igwGOivqunZzrkdqKaqf1bVy6q6B5iAE6JASA62\nv6aqP6jqSWA+0NrveAYwWlUvqWoa7lfvn1T1mKoeA17GfcGiqidU9QNVTVPVVJy4dc2l/iuNUZ2k\nqmdV9ZJ37VtFJNavyFxVXemtt7ra/avqOlVd4z3374C3crAn87pAaxG52dseAsz27MD7/E5613oV\nKAs08Tv/S1VN9MqmZb/PPNzX1Z5LwGfucck7nq6qi4DUbLb5bDgPfOU9g7bABpzgdAE6At9670B2\nJAf7FJioqsne/c7gyvfGKECC7ec1IgBV/UZEFgC/A7b5HaoF7MtW/DvgJt+GiDwL3AV08C8kIrfh\nxKObqh7Podq6QC0R8f/HLgnk1+H5g9/6ec9mH0dV9aLfdi3Pfh/7fOXFOe//D+iO+9UNUEFERFV9\n/oiAfglxPoa/AgOAG3ACBe7Xc4p37vd+p1z1/kWkMfAq7gvxOtz/2tc51a2qKSLyIU6Q/4YTmhF+\ntj0PPOXdqwLXe3b5OHCV+yoJ/OUq95UbAZ+5x3FVzfDbPodryeXEClzr44C3fhInGhdwrYP8kP29\nCVSnESTWkig6jAZG4icAuC+1utnK1cX7UhGRO3HdCX29X994+28EPgB+pqobA9S3H9ijqpX9lutV\n9cEA5a/FcZz9nINAnN92HbK+uH8DNAbaq2pF3JeP/6/Q3OofAvQB7vXOr+ft9/8V63+NfVz9/v+N\n62Jq6F3vRa7+/zYNGCzOZ1ROVZdD5mf0W2CgqlZS1crA6avYlZ3Hcrmv3J5LTs/8YC7nBGIFcDfu\nR0kSWaLR1VvPCRvFFGZMJIoIqroLeJ8rRzotAhqLyGARKeV1H90CLPC6NmYAj6tqsu8EcaOIZgHv\nquqsq1S5BkjxHMvlRaSkiLQQkXYByh8G6l/7HQLui/QPIlLN61p7CXjXO1YB94vytIhUwYlm9vob\nXOXaFXC/aE+ISAyuVeFP9i6P3O6/Au6X+jkRuQX4aS73thAn4C8D0/32xwKXgWPiHPcv4VoSeSW3\n+8rtc8npmWcfkppXvsR1Rd0OrFHVrbh77kDgFugPOCd19ud/1a5Do+AwkSha/AnXtaEAXjfRg7hf\n2ceA54EHVfUEzuF9IzBbskYybca1RLoAv/Tbf0ZEant1+K6d7l27NbAbOIrrdw/0BfY20Mwb7TMn\nQJns49+z/4r8M67LZpO3fO3tA/gHzgF6DPdltCjb+WOBAeJGPv0jh7oTcN0q3wNbgJU52JK57XWx\nXO3+n8f9ij/j7Z+ew/1kXdx1q83BfS5T/Q4t9padOEf/ea7sQsxpzoD/vtzuK7fP5WrP3FdXnlDV\nczhn/zeqetnb/SWw1/N35MRM7+9xEfHvrgv42RgFi2R11xbwhd0v1QTcF5ECb6nqj4YeihuO2BPX\nlzlcVddnL2MYhmGEh1A6ri8Bv1LVDSJSAVgrIktVNdOxKiK9cH22jUSkA64ft2MIbTIMwzDyQci6\nm7xhjRu89VTcqJta2Yr1ASZ7ZVYDlUSkeqhsMgzDMPJHofgkRCQOuA1Yne3QTbhRMj4OALUxDMMw\nIoKQi4TX1TQLN9s0Naci2bbNAWUYhhEhhHQynRerZjZuOOXcHIp8D9zst12bKycs+a5jwmEYhnEN\nqGpQw4VD1pLwxjW/DWxV1ZyGHAIkAsO88h2BU6p6OKeChRGjpDgso0ePDrsNRWmx52nPM5KXgiCU\nLYk7gKHAJr/ojS/gZmyiquNUdaGI9BKRZFxgsCdDaI9hGIaRT0ImEqr6OXloqajqf4TKBsMwDCM4\nbMZ1MSM+Pj7cJhQp7HkWLPY8I4+QzbguSK4M5GkYhmHkBRFBg3RcW6hwwzAC8uO4ekakEqof0iYS\nhmFcFWvFRz6hFHPzSRiGYRgBMZEwDMMwAmIiYRiGYQTERMIwDMNj8ODBzJs3r8Cu16FDB7Zu3Vpg\n1wsHJhKGYUQtcXFxfPLJJwVyrU2bNrFp0yb69u17xf6kpCRKlCjB3/72tyv27927lxIlShAbG0ts\nbCw1atTgueee4/Lly5llnn/+eV566aV82/Lee+9lXjc2NpaYmBhKlCjB+vWFn5PNRMIwjKjFmwdQ\nINcaN24cQ4cO/dH+yZMn06JFCxISEnI87/Tp06SkpLB582ZWrlzJG2+8kXmsd+/eLF++nMOHcwxJ\nF5AhQ4aQkpKSufzrX/+iQYMG3Hbbbfm7qQLARMIwjKjk8ccfZ9++ffTu3ZvY2FheeeUVBg4cSM2a\nNalUqRJdu3a9oqsnPj6et99+O3N70qRJ3HnnnZnbixcvpmvXrlfUcfbsWWbPns2bb77Jvn37WLt2\nbUB7brjhBrp163ZFneXKlaNt27YsWbIkqHudNGkSw4YNC+oa14qJhGEYUcmUKVOoU6cOCxYsICUl\nhd/+9rc88MADJCcnc/ToUdq0acOQIUMyy4tIwPkEZ8+eZc+ePTRp0uSK/XPmzKF69ep07tyZ3r17\nM3ny5B+d62vJHDx4kCVLltCpU6crjjdt2pSNGzcCsG/fPipXrhxwmT59+o+u/9133/HZZ5+ZSBiG\nEZ2IBL8UFMOHDycmJobSpUszevRoNm7cSEpKSq7nnTp1CoDY2Ngr9k+ePJmBAwcCMHDgQKZPn36F\nzwGgWrVqVK5cmdq1a1OhQgX69+9/xfHY2NjM69epU4eTJ08GXAYNGvQj2xISErjrrruoW7du3h9E\nAWIiYRhGUKgGvxQE6enp/O53v6Nhw4ZUrFiRevXqAXDs2LFcz61UqRLAFYKyf/9+kpKSMkWiR48e\npKWl8eGHH15x7vHjxzl58iTnzp2jc+fOdO/e/YrjZ86coXLlytd8XwkJCTzxxBPXfH6wmEgYhhG1\n+HcfTZ06lcTERD7++GNOnz7Nnj17gKzuoJiYGM6ePZtZ/ocffshcj4mJoUGDBuzYsSNz35QpU8jI\nyKBXr17UrFmTevXqkZaWlmOXEzj/wxNPPMGqVas4ceJE5v5t27Zx6623Aq67yX/UUvZl2rRpV1zz\niy++4NChQwwYMOBaH1HQRI9I/Pa3cOBAuK0wDCOCqF69Ort27QJcK6Bs2bJUqVKFs2fP8sILL1xR\ntnXr1syZM4fz58+TnJx8hRMboFevXqxYsSJze/LkyYwZM4aNGzdmLrNnz2bhwoVXiIBPhC5cuMCU\nKVOoWbMmVapUASAtLY1169bRrVs3wHU3+Y9ayr4MHjz4CpsmT57MgAEDiImJKaAnln+iRyQuX4ZW\nrWD4cNiyJdzWGIYRAfz+97/nz3/+M5UrV+bkyZPUrVuXm266iRYtWtCpU6crWhq/+tWvKFOmDNWr\nV+fJJ59k6NChVxx/5plneO+99wBYtWoV+/fv57nnnuPGG2/MXHr37k3Dhg2ZPn165rmVKlXKnCex\nevVqEhMTM685f/587r77bmrUqJHve0tLS2PmzJlh7WqCaMsncfIk/Pvf8PrrcNttrnURH1+wni/D\nMDIpyHkI0cCQIUN45JFHfjSh7lrp2LEjEydOpFmzZgVyvUAE+pwKIp9EdImEj7Q0ePdd+PvfITbW\niUW/flDKIp8bRkFS3EQiWjGRCJSZLiMD5s+HV16Bgwfh17+GJ5+EMPbfGUZRwkQiOgilSESPTyIn\nSpSAvn3h88/hvffgk0+gXj0YPRqOHg23dYZhGFFPdIuEP506wZw5TjB++AEaN4af/hSSk8NtmWEY\nRtRSdETCR+PGMG4cbN8OVas68RgwAFavDrdlhmEYUUd0+yTyQmoqTJwIr74Kdes6J3evXq6ryjCM\nq2I+iejAHNfBiISPy5dh5kzn5E5Lg+efhyFDoGzZgjHSMIogJhLRgYlEQYiED1Xn4H7lFdi8GUaN\ngmefBS92i2EYWZhIRAc2uqkgEYF774XFi2HhQjd7u359+M1vYP/+cFtnGEYYsfSlP6b4iYQ/t94K\nU6bAhg2uhXHrrTBsGGzaFG7LDMPIA0U1fSnA3Llzad68Oddffz3NmzcvUPHKDyEVCRGZKCKHRWRz\ngOOVReQDEdkoIqtFpHko7QlInTrOsb1rFzRrBj16uOWTTwoujrFhGAVOUU1feuTIEYYMGcKrr77K\nmTNneOWVV3jsscfyFPa8oAl1S+IdoMdVjr8ArFPVW4FhwNgQ23N1KleG3/0O9uyBgQPhueegXTuY\nPt05vg3DiBiKcvrS5ORkKlSokJmbolevXsTExGRGvC1MQioSqvoZcPIqRZoCy72yO4A4EbkhlDbl\nibJl4emn4ZtvYMwYeOMNaNTIBRb0i0dvGEb4KMrpS1u1akWpUqVYsGAB6enpzJ07l3LlytGqVatr\nf2DXSLgj4m0E+gGfi0h7oC5QG4iMmBolSkDv3m5ZtcqNiPrTn+AnP4Gf/xxuvDHcFhpG2JGXg4/C\nrKMLpsto+PDhmeujR49m7NixpKSk/CgtaXbymr70mWee4dVXX6WUXzDRatWqAa7bqXPnzjmmLz10\n6BCQlb40NypUqMC4ceN49NFHuXjxImXKlGHWrFmUL18+13MLmnCLxP8HjBWR9cBmYD2QHl6TAtCx\nI8yeDTt3Ov9Fkybw6KNuVFSjRuG2zjDCRkF9wQdLeno6L774IrNmzeLo0aOU8CbMHjt2LFeR8E9f\nWrVqVSArfekrr7wCXJm+1N+5ffz4cUqUKEFaWhovvfQS3bt358svv8w8fi3pS9etW8czzzzDZ599\nRps2bfj666/p06cPixYtysxyV1iEVSRUNQV4yrctInuA3TmVHTNmTOZ6fHw88fHxIbYuAI0bw5tv\nuhbFP/8JnTvDnXfCf/6nExLDMAqNQOlL69aty6lTp6hSpUq+05d27twZuDJ9qQ9f+tKc8k340pf+\n/e9/58SJE5nZ6bZt28awYcMA193UvHng8TlvvfUWgwcP5uOPP6Zjx460adMGgHbt2tGhQweWLVt2\nVZFISkoiKSkp4PFrQlVDugBxwOYAxyoCZbz1kcCkAOU0YklNVX3tNdW4ONUuXVTnzVNNTw+3VYZR\nIET0/56qduzYUd966y1VVX3jjTe0devWeubMGU1NTdWf/vSnKiK6a9cuVVV98cUXNT4+Xs+dO6ff\nfvutNmzYULt06ZJ5rVGjRulf//rXzO3GjRvryy+/rIcPH85cEhMTtWzZsnr8+HHds2ePiohevnxZ\nVVXT0tL0v/7rv7RWrVqZ1zh//rxWqVJFDx06lK/7WrJkiVarVk03bNigqqrr1q3TqlWr6tKlS3Ms\nH+hz8vYH9x0e7AWuenGYBhwELgL7ca2GZ4FnveOdgB3AdmAWUDHAdfLxeMPEpUuq06ertmmjesst\nqhMmqKalhdsqwwiKSP/fmzdvntapU0crVaqkf/7zn7Vv374aGxurcXFxmpCQoCVKlMgUiWPHjun9\n99+vsbGx2qVLFx0zZozeeeedmdfasmWLNm/eXFVVV65cqeXLl9djx479qM7mzZvrG2+8oXv37lUR\n0QoVKmiFChW0UqVKGh8fr19//XVm2RkzZmj//v2v6d7+9re/af369bVChQpav359ffXVVwOWDaVI\nFL+wHKFGFZYvd07ujRudg/snP3HDaw0jyihuYTksfWkO146GFyCqRMKfTZtcitUFC+CJJ+AXv4C4\nuHBbZRh5priJRLRisZuilVatICHBtShKloS2baFPHxc3KiMj3NYZhmHkirUkCpOzZ2HaNDc5LzXV\nZc4bPhy8URCGEWlYSyI6sJZEUSEmBkaMgHXrYPJkWLvWRaB9+mm3zzAMI8IwkQgHIm5+xXvvucl5\nDRrAQw+5VKvvvgsXLoTbQsMwDMC6myKHy5edg/tf/3I+jKeecqOi6tYNt2VGMca6m6ID624qDpQq\n5VoTH30En34K589DmzbQt6/bZ45uwzDCgLUkIpmzZ2HqVOfoPncuy9Ftcy6MQsJaEtGBtSSKKzEx\nMHIkrF8P77wDX3/tHN0jRrh9hmEUKJa+9MeYSEQDInDHHc7RvX071Kvn5lv4nN/m6DaKKUU5femE\nCRNo1KgRsbGx9OzZMzPceGFjIhFtVK8OL77osuf953/CpEnOuf3ii7BvX7itM4xCpaimL01KSuLF\nF18kMTGREydOUK9ePQYPHpy/GyogTCSiFZ+je+lSWLHCTc677basfeboNoo4RTl96YIFCxg4cCBN\nmzaldOnS/PGPf+TTTz9lz549+bpOQWAiURRo0gTGjnUtiV694PnnoWlT+Mc/wMu4ZRhFjaKcvjR7\nCynD+9G3ZcuW/D6moDGRKErExMAzz8CGDTBxIqxZ4/wXvn2GEQpEgl8KiOHDhxMTE0Pp0qUZPXo0\nGzduJCUlJdfz8pq+dPr06Vf4HMClL61cuTK1a9emQoUKOaYv9V3fl7400DJo0CDAZcGbOXMmmzdv\n5vz58/zpT39CRDh37ty1PZggMJEoivgc3VOnwrZtUKeOy9Pt22eObqMgcYlpglsKgPT0dH73u9/R\nsGFDKlasSL169QCXvjQ3/NOX+vClL/WJhH/6Un+OHz/OyZMnOXfuHJ07d6Z79+5XHL+W9KX33nsv\nY8aMoX///tSrV4969eoRGxtL7dq183WdgsBEoqhTowb84Q/O0f38866F4XN0798fbusMIygCpS89\nffp0Zv+9r9smr+lLffinL61Zsyb16tXLTF+aE770patWreLEiROZ+7dt25aZcnTfvn2Zo6FyWqZN\nm5Z53s9+9jN27tzJDz/8QL9+/bh8+TItWrQI5nFdEyYSxYVSpeDhh2HZMkhKco7u1q2z9tmEKSMK\nqV69Ort27QJcK6Bs2bJUqVKFs2fP8sILL1xRtnXr1syZM4fz58+TnJx8hRMboFevXqxYsSJze/Lk\nyYwZM4aNGzdmLrNnz2bhwoVXiIBPhC5cuMCUKVOoWbNmZn7rtLQ01q1bR7du3QDX3ZSSkhJw8Y1g\nunDhAlu2bEFV2bdvH8888wy//OUvqVixYgE/wTwQbGq7wliI8BSKUUtKiuqbb6q2bKnapInqP/6h\nevJkuK0yIohI/98rqulLT506pa1atdKYmBitUaOGvvDCC5qRkRGwfKDPCUtfahQIqvDFFy78x+LF\n8Mgj8NxzLmmSUawpbmE5LH1pDteOhhdARHTrka00vaFpuE0p+vzwA4wfD+PGuVSrzz0H/ftDmTLh\ntswIA8VNJKKVsMRuEpFJfutPBFNJQXD35Lvp/m53Ptz5IRlqE8VCRo0a8Mc/wt698Otfw4QJztH9\nxz/CgQPhts4wjELmao7rW/3WfxlqQ3Lju19+x5CWQ3gp6SWa/LMJr61+jTMXzoTbrKJLqVLQrx98\n/DF88gmcPg233ur22Yxuwyg2BOxuEpH1qnpb9vVw4O+TUFW+3P8lY1ePZdnuZTze6nF+3uHnNKzS\nMFzmFR9SU13mvPHj4dgxF7Z8+HA3Yc8oklh3U3QQFp+EiBwFpgECPApM99bBecxHBVNxfgjkuN5/\nej//+upfTFg/gY61OzKq/Sjuq39fwKn3RgGyYYMLXz51KrRs6TLp9esH110XbsuMAsREIjoIl0gM\nB3wHJfu6quY8oyQE5Da66dylc0zdPJWxq8eSoRn8vP3PebzV48SUiSksE4svFy7A/Plukt6qVW5k\n1FNPwe23F2i4BSM8mEhEB+ESidKqeimYixcUeR0Cq6ok7U1i7OqxfL7vc5667Smeu/056layPNGF\nwvffQ0KCE4wyZZxYDB3qwpsbUYm1yqOHcIjEOlVt462/rqo/D6aiYLiWeRK7T+7mjTVvMGnjJOLj\n4hnVfhR31b3LXvrCQBU+/9yJxdy50LWrE4yePaF06XBbZxjFhlCLREQ6rvNL6sVUEjYm8Nrq1yhX\nqhyjOozisZaPUa5UuQK20siRlBSYOdMJRnIyPP64E4ymNufFMEKNiUQ+yNAMlu5aytjVY1l7aC0j\n24zkp+1+yk3X31RAVhq5smOHy6Q3ebKbe/HUU/Doo3D99eG2zDCKJKEWifNAsrfZANjld1hVNdeY\nDSIyEXgAOKKqLXM4Xg14F6gBlAL+rqqTcihXoGE5dh7fyeurX+e9ze/RvWF3RrUfRcfaHa0rqrC4\nfBmWLHGti48/dvm6n3oK7roLSljMScMoKEItEnFXO1FV9+Z6cZE7gVQgIYBIjAHKqurvPcHYAVRX\n1cvZyoUkdtPptNO8s+EdXl/zOlXLV2VUh1E80vwRypS0EBSFxtGj8N57TjBSU+HJJ+GJJ1wODMMw\ngqJQYjeJSD2gBW4I7FZV3Z2vCpzYzA8gEs8CrVT1ORGpDyxW1cY5lAtpgL/0jHQWfruQsavH8s3R\nb/hJ25/wk3Y/oXoFG5VTaKjC2rVu7sX06dCunROMhx6CcuY/MoxrIdQtieuBCUA7wJf7sjWwFnha\nVfMUEyMXkSgBfAI0BmKBR1R1UQ7lCi0K7DdHvuG11a8xY+sM+jTpw6j2o2hbq22h1G14nD/vRkVN\nnAjr18OgQU4w2rSxuReGkQ9CLRKTgT3An1RdRD3vS/0PQENVHZZHI+MILBJ/AKqp6i9FpAGwFLhV\nVVOyldPRo0dnbsfHxxMfH5+X6q+ZE+dPMGHdBN746g1uvv5mRnUYxcO3PEzpkjaEs1D57jvn6H7n\nHefgfuopGDIEqlULt2WGEXEkJSWRlJSUuf3yyy+HVCSSVTXHgEhXO5ZD2TgCi8RC4C+q+oW3/THw\nX6r6dbZyYcsncTnjMvO2z2Ps6rHsObWHn7X7GSPbjqTadfYlVahkZLiMeu+842Z433efE4z773fB\nCA3D+BEhDRVOVhiOULIduA9ARKoDTYB8+TxCTakSpejfrD+fPvkpiYMS2XliJ41eb8SIxBFsOrwp\n3OYVH0qUgHvugSlTXOuiWzd4+WU3lPb3v4edO8NtoWEUSa7WkkjADYH9b9/PeHFjRP8ANFbVx3O9\nuMg0oCtQDTgMjAZKA6jqOG9E0ztAHZxg/Y+qTs3hOhGVme7I2SO8tfYt/v31v2lctTG/6PALejfu\nTckSJcNtWvHjm29c62LKFGjc2LUuBg6EChXCbZlhhJ1Q+yQqAm8DbbjScb0e57g+FUzF+SHSRMLH\nxfSLzN46m7Grx3L47GH+4/b/4Ok2T1OpXKVwm1b8uHQJFi50zu5PP4WHH3aCcccd5uw2ii2FNQS2\nIdCMrCGwu656QgiIVJHwZ/WB1by25jUWfruQwS0GM6rDKG6pdku4zSqe/PCDa1lMnAjp6W5k1LBh\ncJPNrjeKF4We41pEHlTVBcFUeC1Eg0j4OJhykDe/fpNxa8fRukZrftHhF/Ro2IMSYjOJCx1VWL3a\nicXMmdC5sxOM3r2hbNlwW2cYISccIhGWGE7RJBI+0i6n8f6W9xm7eiypF1P5efuf80TrJ7i+rMUp\nCgtnz8Ls2c5/sWWLG0b75JPQqpV1RxlFFhOJKEBV+WL/F4xdPZalu5bSr2k/RrYZabGiwsmuXS7Q\nYEICxMbCY4/B4MGWhtUocoRDJNqr6ppgKrwWolkk/DmcepjJGyczYd0EypQsw4g2I3i81eNUva5q\nuE0rnmRkwJdfwrRprjuqYUMnGAMHWqIko0gQcpEQkbrAWVU9JiKdgC5Asqp+EEyl+aWoiIQPVWXF\ndyuYsG4CC3YuoFejXoxoM4L4uHjzXYSLS5dg2TKXs3v+fOjQwQnGww9bKHMjagn1ENiXgCe8zWm4\nSW9JQAdgk6r+IpiK80NREwl/Tpw/wXub3mP8uvGcu3SOEW1G8MStT1Aztma4TSu+nDvnhGLqVDfL\n+/77nWBSy2X8AAAgAElEQVT07GnBBo2oItQisQ03L+I6YB9QQ1XPikgpYKOqNg+m4nwZWYRFwoeq\n8tXBrxi/djyzts0iPi6eEbeNoEfDHjZJL5ycOOEc3lOnwsaNrmXx2GMQHw8l7XMxIpuwZaYrbAd2\ncRAJf1IupDB9y3QmrJ/AwZSDPNX6KZ667SnqVqobbtOKN99/D++/7wTj4EGXVe+xx1xYcxuEYEQg\noRaJ3cDzgACveOv4tlW1fjAV54fiJhL+bDq8ifFrxzN1y1Rur3U7I9uMpHeT3pYYKdzs2OEc3lOn\nuvkYvhFSt9gESiNyCLVITCIryJ+QLeCfqj4ZTMX5oTiLhI/zl84ze9tsxq8bz/Zj23ni1icY0WYE\njav+KEeTUZj4kiVNneqSJdWo4QRj0CCoXTvc1hnFnEIfAutXcQ1V/SGYivNZX7EXCX92Ht/JhHUT\nmLxxMrdUu4WRbUbSv2l/ypcuH27Tijfp6bBihWthzJkDLVs6wRgwAKpUCbd1RjGkUEVCRCoBA4DB\nQFNVrRVMxfnBRCJnLqZfZP6O+YxfN56vDn7FYy0eY2TbkbSq3ircphkXLsDixa6FsXgxdO3qBKN3\nb4iJCbd1RjGhMOZJXAf0xQlDa+B64CHgM1VND6bi/GAikTvfnfqOiesnMnHDRGpWqMnINiMZ1GIQ\nsWVjw22akZLi0rFOnQorV8KDDzrB6NYNSlumQyN0hNonMQ03J+IjYAawAjeRrtBjF5hI5J30jHSW\n7FrC+HXjSdqbRP+m/RnZZiTtb2pvYUAigSNH3OzuqVNdoqSBA53D+447XGIlwyhAQi0SG4A03ES6\nGap6SET2mEhEDz+k/sCkDZOYsG4C15W+jhFtRjC01VCqlLf+8Yhg717n7J46FU6dcmLx2GMWdNAo\nMAqju6kprqvpEeAo0BRoUZhOa88OE4kgyNAMkvYmMWHdBBZ+u5AHGz/IiDYj6Fq3q7UuIoXNm7OG\n1MbEZA2prV9oI82NIkhhO67b4QRjIHBAVTsHU3F+MJEoOI6fO86UTVMYv248l9IvZYYBqV7BAtpF\nBKrObzF1KsyYAQ0aOMF45BELOmjkm3BEgW2LS196p6quCKbi/GAiUfCoKqsOrGL8uvHM2TaHe+vf\ny4jbRnB/g/stDEikcOkSfPyxa2EkJkL79hZ00MgX4RCJdaraJpgKrwUTidBy5sIZpm2exvh14zl6\n7ihPtX6KJ297kjoV64TbNMPHuXPw4YeuhbF8Odx3nxOMXr0s6KAREEs6ZBQ46w+tZ8K6CUzbMo2O\ntTsyss1IHmz8IKVL2lDNiOHkSTdZb+pUWL8eHnrITdi77z4oY+FajCzCIRIPqercYCq8FkwkCp9z\nl84xa+ssxq8bT/KJ5MwwIA2rNAy3aYY/Bw8638WsWbB1q2tZDBgA3btDeZuBX9wpjNFNdYAzqnpK\nROoB7YBtqrolmErzi4lEeNl+bDsT1k0gYWMCzW9sztO3Pc3DtzxMTBmbORxRHDoEH3zgQpuvXevy\nYPTv74Qj1iZVFkdCPU/id8CzwEWyosB+AXQEJqrq/wZTcb6MNJGICC6mX2Te9nlM2jiJL/Z9Qe8m\nvRnacij31r+XUiVKhds8w59jx2DePCcYX3zh8l/07+/CglSuHG7rjEIi1CKxFWgLxAB7gXqqelRE\nYoA1lnSoeHPk7BHe3/I+UzZNYd/pfQxuMZihrYbSpmYbm3sRaZw6BQsWuC6p5cuhUycnGA89BDfc\nEG7rjBASapHYpKqtRKQkcAio6YvXJCKbVbVlMBXny0gRPXBAuemmwqrRyA87ju3gvc3v8e6mdylX\nqhxDWw3lsZaPEVcpLtymGdlJTYWFC10LY8kSaNPGCcbDD0OtQovZaRQShRG7CVxL4gxQHvgAuAco\no6pDg6k4P4iIVq6sdO0Kzz7rulotzE3koaqsPLCSdze9y4xvZtDshmYMbTWUgc0GUrm8dXFEHOfP\nw0cfOcFYsACaNnWC0a8fxMWF2zqjAAi1SJQDBgGHVHWJiAwFOgPbgXGqeiGYivNlpIieOaNMmwbj\nxrkRgCNHwlNP2STUSOVi+kUWfbuIdze/y0e7PuK++vcxtOVQejXqRdlSZcNtnpGdixfhk0+cYMyb\nB3XqOMHo3x8aW2KraCUsSYe8EU+PquoreSg7EXgAOJJT95SIPA8M8TZL4WJDVVPVU9nKXeGT+Ppr\nePNN9z536+ZaF3ffba2LSOVU2ilmb53Nu5vfZdPhTQxoOoChrYZyR507KCH2oUUcly/DZ5+5f7A5\nc6Bq1SzBaNHCgg9GEYUmEiJyIy5m02CgFvCBqv4mD+fdCaQCCbn5METkQeCXqnpfDsdydFyfPg3v\nvutaF2lp8MwzMHw4VKuW6y0ZYWLf6X1M2zyNKZumcPbSWYa0HMLQVkO5pZrlho5IMjJg1SonGLNn\nu8l6PsFo29YEI8IJdXfT9UA/nDA0BOYCg1Q1X+5jEYkD5udBJKYCH6vq2zkcu+roJl9MtHHjXEv5\ngQfgJz+BLl3sHY5UVJWNhzfy7qZ3mbp5KrViazG01VAGtRhEjQo1wm2ekRO+fN4+wbh4MUswOna0\npnwEEmqROA8sBf6qqqu8ffnOJ5EXkfAy4O0HGmTvavKO53kI7IkTkJDgBEPEdUUNG2ZDwyOZ9Ix0\nlu9dzpRNU5i3fR4da3fk8VaP89AtD9mEvUhFFbZsyRKMEyfcCKn+/eHOO6GUzZuJBEItEr/EtSJK\n4zLTzQSWhUgkHgUeU9W+AY7r6NGjM7fj4+OJj4+/ar2qrlv1zTdh0SLo29cJRseO1rqIZM5ePEvi\njkTe3fyuTdiLJnbuzBKMffvcP1z//nDPPRZPqhBJSkoiKSkpc/vll18OvU9CRBrgRjkNAhoBo3E+\niZ15qiBvIvEB8L6qTg9wPKjJdEePwqRJ8NZbcN11TiyGDrVoy5GOTdiLUvbscQ7v2bNh+3aX07t/\nfzd23eJJFSrhCPDXEte6eFRVG+TxnDiuIhIiUhHYDdRW1fMByhTIjOuMDDfKb9w4WLbMxUH7yU+c\n/82IbGzCXpTy/fdZ8aTWr3eBB33xpCpUCLd1RZ5QdzctARYDi1R1+zVd3E3I6wpUAw7jWiGlAVR1\nnFfmCaC7qj52lesUeFiOH36AiRNd66JaNde6GDzY3ttIxybsRTFHjmTFk1q50o1bHzDAtTQqVQq3\ndUWSUItETaAH0B1oAqwGFuH8EmeDqTS/hDJ2U3q6m3Q6bhx8+ikMGuQE49ZbQ1KdUYBcTL/I4uTF\nTNk0xSbsRRsnT8L8+U4wkpLgjjuyAhDeeGO4rSsyFOY8iZJAB6AnLixHGrBEVf8WTOV5pbAC/B04\nAG+/DRMmQO3aTiweecT5MYzIxibsRTEpKVnxpD76CJo1c2LRuzc0b24jTYIgLDOuvYpvAO5X1feC\nqTwf9RVqFNjLl907O26cm0c0dKgTjGbNCs0EIwhswl4Uc+ECrFjhWhnz5zuB8AlG1642UiqfhLq7\naXSOB0ABVPVPwVScH8IZKnzvXteyePttaNTIObr794ey1psR8diEvSjHNxfDJxjbtrk4PL17O8e3\nhVbIlVCLxPN4guBHDPA0Lr5Soc1yioR8EpcuQWKia11s2OAm6D3zjMU+ixZymrA3pOUQ+t7Sl+vL\n2ljoqODIEfjwQycYH38MLVtmtTKaNrVuqRwoTJ/E9cAonEDMAP5XVY8EU3F+iASR8Cc5GcaPh3fe\nce/ps8+6/C3WEo4OfBP2pm6Zyoq9K4iPi2dgs4H0btKbSuVslE1UkJbmHN6+Vkbp0tCnjxOMO+90\n20ah5LiuCvwKF6k1AfiHqp4MpsJrIdJEwseFC24I+JtvujlDTz7pWhf18jUn3Qgnp9NOM3/nfGZu\nncnyPcu5q+5dDGw2kL639DXBiBZUYePGLMH49ls3H6N3b+jZE6pUCbeFYSPU3U1/Bx4G3gL+paop\nwVQUDJEqEv5s3+7mXCQkQLt2znfx4IMWwiaaOHPhDPN3zGfWtll8vPtjutTpkikYVcoX3y+aqOPQ\noaxuqeXL4bbbsrqlmjQJt3WFSqhFIgO4CFzK4bCqaqF15EaDSPg4f96lEn7zTef0fvppGDHC5XAx\nooeUCyks2LmAmVtn8vGej+l8c2cGNB3AQ7c8RNXrqobbPCOvnD/vwiz4WhkxMVmC0aVLkf8VF7Yh\nsIVNNImEP5s3O0f31KlurtCIEa71a76L6CL1Yiof7vyQmVtnsnT3UjrW7sjAZgN56JaHqHadjbCJ\nGlRdaBCfYOzZAz16OMHo0aNIzvouFJEQkXsA3wyBb1R1eTAVXgvRKhI+zp6F9993ju7t292s7iee\nsJwt0UjqxVQWfruQWVtnsWTXEtrf1J6BzQby8C0Pc0PMDeE2z8gP33/vcnvPn+/CLbRrl9XKaNgw\n3NYVCKHubroJmANcAL72drcFygMPq+r3wVScH6JdJPzZtctl00tIcHMthg2DIUPg5pvDbZmRX85e\nPMui5EXM3DqTxcmLub3W7QxoNoB+TftxY4yFlogqzp1zUT/nz3fCUalSlmB06hS13VKhFom5wFxV\nnZRt/zCgf6DcD6GgKImED1X48ksnFjNnQps2TjD69bMgg9HIuUvnWJy8mJlbZ7Lo20W0qdmGgc0G\n0q9pP6pXqB5u84z8kJHhMvD5uqX273f9xL17u1FTFSuG28I8E2qR2KmqOU4Vu9qxUFAURcKftDT3\nLiYkuERJffs6wYiPh5Ilw22dkV/OXzrPkl1LmLl1Jh/u/JDWNVozsNlA+jfrbzO9o5H9+7O6pT77\nDDp0yJqTEeHj3UMtEt8CjbN/O4tICWCnqhZap11RFwl/Dh+GadOcYBw96uJGDRvmJpQa0Ufa5TSW\nJC9h1rZZLNi5gFbVWzGg6QD6N+tPrdha4TbPyC+pqbB0qROMDz+EG27I6pbq0CHiftWFWiT+gQvD\n8StVTfX2VQBeBdJUdVQwFefLyGIkEv5s3gxTpjgfxk03OWf3oEEWsiZauXD5Ah/t+oiZW2eyYOcC\nmt/Y3LUwmvbnputvCrd5Rn7JyIA1a7K6pX74wcWU6t3bZeGLjQ23hSEXiTLAX4HhwD5vdx1gMvB7\nVb0YTMX5obiKhI/0dOdTS0hwP17i413r4oEHLNBgtHLh8gWW7V7GzK0zSdyRSNMbmmYKxs0VbRRD\nVLJ3b1a3VNeu8MIL4bao0IbAXgf4upaSVfVcMBVeC8VdJPw5c8aF3U9IcC2NRx5xLYz27W04bbRy\nMf0iy3YvY9bWWczbMY/GVRszsNlABjQbQJ2KNgvTuHbCkeP6GVV9K5gKrwUTiZzZuzdrOK2Ia10M\nHQp164bbMuNauZh+kU/2fMLMb2Yyb8c8GlZpmOn0tnzeRn4Jh0isV9XbgqnwWjCRuDqqsHq1E4sZ\nM1xk2mHDXPrgCOgWNa6RS+mXWL53OTO/mcncHXOpV6leZgujXuXIHlVjRAbhEIkNqto6mAqvBROJ\nvHPhgvNbJCS4SMoPPugE4957I27ghZEPLqVfYsV3K5j5zUw+2P4BdSrWYWCzgQxsPpD6leuH2zwj\nQgmHSNRW1QPBVHgtmEhcG0ePunAgkyfDwYNuZvewYdCiRbgtM4LhcsZlVuxdwcytTjBqX1+bh5o8\nRJ8mfWhVvRVizinDI9SjmwToCpxQ1U0i8ihwF5CMCx1+IZiK82WkiUTQbN3qhtNOmQLVqzuxGDwY\nbrToEVFNekY6n+37jHnb5zFvxzwyNIM+TfrQp0kf7qp7F2VKWjTJ4kyoReJfQEugHLADqAAsBrp4\n5w0JpuJ8GWkiUWCkp7tuqIQEmDfPJfEaNswN7S5XLtzWGcGgqmw9upV5O+aRuCORHcd30KNhD/o0\n7kPPRj0tiVIxJNQisQ0X/bUc8D1wo6pe9loYm1W10DotTCRCQ2oqzJnjBGP9ehg40AlGp042nLYo\ncCjlEAt2LiBxZyIr9q6g/U3tM1sZNlKqeBBqkcgcyZR9VFNhj3IykQg9+/fDe+85/8WlS04sHn88\n4kPTGHnk7MWzLNu9jHk75rFg5wJqVKhB3yZ96dOkD21rtaWElAi3iUYICLVIHMCF4BBcnmvfOrhQ\nHbWDqTg/mEgUHqouAGZCAkyfDrfc4gRj4MCoCn5pXIX0jHRWf7+aedvnkbgzkTMXztC7cW/6NOnD\nPfXuoVwp63csKoRaJMYAvoOSfV1VXw6m4vxgIhEeLl6ERYucYHz8sYuWPGwYdOsWteH1jRzYeXwn\niTsSSdyRyMbDG7mv/n30adyHBxo/YJn3opywpS8VkfaquiaYivNZn4lEmDl+3E3UmzzZZX3s1w8e\nfdQ5vm3+RdHh2LljfLjzQxJ3JrJs9zJaVW+V2S3VuGqhZQcwCohCFQkRaQ4MBgYBp1S1XS7lJwIP\nAEdUtWWAMvHA/wGlgWOqGh+gnIlEBLF7txOMGTPg0CHo39/FkLrjDhOMokTa5TQ+2fNJZiujYrmK\n9GnsHN8da3ekZAn7sCOdkIuEiNTDicJg4CIQB7RT1b15MO5OIBVIyEkkRKQS8AXQXVUPiEg1VT0W\n4FomEhHKt9+6zHozZsCRI8538cgjboRUCfOFFhkyNIO1B9c6wdiZyKGUQzzY+EH6NOlDt/rdiCkT\nE24TjRwItU9iJVAGmAnMUNXdIrJHVfM83kVE4oD5AUTiZ0ANVX0pD9cxkYgCduzIamGcPJklGB06\nmGAUNfac3MP8nfNJ3JHImu/X0DWuK30a9+HBxg9SM7ZmuM0zPAojx3ULYD7wvqquKmCR8HUzNQdi\ngbGqOiXAdUwkooytW10L4/333XyMRx5xy+232xyMosbJ8ydZnLyYxJ2JLE5eTJOqTTLnYzS/obmF\nCQkjhdHdVAnoh+tyaghUwXUPrc6jgXEEFol/Am2Ae4HrgJXAA6r6bQ5ldfTo0Znb8fHxxMfH58UE\nI8yowjffuNbF+++7AIQ+wWjb1gSjqHEx/SKffvcpiTsSmbdjHqVKlMr0Y3Sp04XSJUuH28QiTVJS\nEklJSZnbL7/8cqE6rqsDj+D8Ezeraq7ps3IRif8CyqvqGG97ArBYVWflUNZaEkUAVZcoyScYGRlZ\ngtG6tQlGUUNV2XR4U6YfY/fJ3fRs2JM+TfrQo2EPri97fbhNLPKEIwpsb1WdLyJxeXRexxFYJG4B\n/gl0B8oCq4FHVXVrDmVNJIoYqrBhQ5YPo0QJJxaPPuryYZhgFD0OnDngwoTsSOTzfZ/T6eZO9Gnc\nh95NelsGvhAR0UmHRGQaLopsNeAwMBrng0BVx3llngeeBDKA8ar6WoBrmUgUYVRh3boswShbNquF\n0by5CUZRJOVCCh/t+ojEnYl8uPND6lSsQ58mfXig0QMWJqQAiWiRKEhMJIoPqvDVV1mCUaFCVguj\nadNwW2eEgssZl/ly/5ck7khk4bcLOXbuGPc3uJ+eDXtyf4P7uSHmhnCbGLWEQyQKdaa1X70mEsWQ\njAyXlnXGDDdSqnLlrBZGkybhts4IFXtP7WVJ8hIWJS9i+d7lNKnahJ4Ne9KzUU9ur3W7TeLLB4Ux\nuqkr8IOq7hCRLkAnYKuqfhhMpfnFRMLIyICVK7ME44YbsgSjUaNwW2eEiovpF/li3xcsSl7EouRF\nHEo5RLcG3ejZsCfdG3SneoXq4TYxogn1PImxwO04P8Ji3FDVRTg/wwZVfT6YivNlpImE4UdGBnz+\nuROMWbOgVi0nFgMHQoMG4bbOCCUHzhxgcfJiFiUv4uPdH9OgSgN6NuxJj4Y96Fi7I6VKWORJf0It\nEltxk+nK45IO3aSqZ0WkNE4kmgdTcb6MNJEwApCeDp995obUzp4Ndeo4/8XAgRAXF27rjFByKf0S\nKw+sZNG3rpWx7/Q+7qt/Hz0a9qBHwx7Uiq0VbhPDTqhF4hucSJQFDuFE4pyIlAQ2WmY6I9K4fBlW\nrHAtjDlzoH79rBZGHRthWeQ5mHIw05exbPcy6lSsQ4+GPejZsCedb+5cLCfyhVokXsPNiC4DfATc\nTVZ30xZV/VUwFefLSBMJI59cuuRyeb//Psyd6/wWjz4KAwZA7UJLl2WEi8sZl1l9YDWLkhexOHkx\nySeSuafePZldUzdXzHUucJEg1CIhOEE4oqpbReQuoCMu53UNVf1ZMBXny0gTCSMILl1ySZNmzIB5\n89xQ2kcecYJRy3okigWHUw+zZNcSFicv5qNdH1GjQo3MEVN33HwHZUuVDbeJIaHQhsCKSBtcOI5H\ngD3AbFV9PZiK84OJhFFQXLwIS5c6wUhMhMaN4aGHoG9fJx42ca/ok56RzlcHv8p0gG8/tp34uPjM\nVkZcpbhwm1hghLol0QQnDI8CR3Ehw3+rqoXeu2siYYSCixedD2PePLeUK5clGJ06WQKl4sLRs0dZ\nunspi5IXsSR5CVWvq5opGHfVvSuqc36HWiQygAXAf6jqPm9fvkKFFxQmEkaoUYX1653/Yt48l3Gv\nd28nGN26Qfny4bbQKAwyNIN1h9ZljpjacmQLd9W9K9MB3qBKdI2xDrVIPIRrSXTAzZOYCbytqnHB\nVHgtmEgYhc2ePVktjLVr4d57nWA8+CBUqxZu64zC4sT5EyzdtTTTAX592eszBSM+Lp7ypSP710Oh\n+CREpALQFycYdwMJwAeq+lEwFecHEwkjnBw/DgsXulbGsmVw661Z3VI2ea/4kKEZbPxhY+bs7w0/\nbOCOm+/IdIA3qtIo4hIshSN2UxVgADBIVe8JpuL8YCJhRAppaW6k1Ny5MH++a1X4BKNtW0vTWpw4\nlXaKZbuXZTrAy5YsmykYd8fdHRF5vwtdJMKFiYQRifgCEPr8GCkpTiz69oW774YyZcJtoVFYqCqb\nj2zOFIz76t3Hi3e9GG6zTCQMI5LYscOJxdy5Lsd3jx5OMHr2hEqVwm2dURwxkTCMCOXwYdcdNXcu\nfPopdOzoBKNPH7i5eEz2NSIAEwnDiAJSU+Gjj1wrY8ECF3jQ58ewVK1GKDGRMIwo4/JlF+bc1y0F\nWYLRpQuUskjXRgFiImEYUYwqbN6cNR9j71544AEnGN27Q0z4B8cYUY6JhGEUIfbvd/Gk5s2DVaug\na1cnGL17Q3VLwGZcAyYShlFEOXUKFi1ygrF4MTRrltUtZfm9jbxiImEYxYALF1xuDF+3VGxslmB0\n6GAT+IzAmEgYRjEjI8PFkvIJxtGjrjvqgQdcfKnY2HBbaEQSJhKGUczZtcv5MRYudH6M9u3d5L2e\nPV0XlQ2vLd6YSBiGkUlqKixf7gRj0SI3esonGPfeCxUqhNtCo7AxkTAMI0dUYft2JxYLF7oYU+3b\nQ69eTjQsC1/xwETCMIw8kZoKn3ySJRrgxKJXL7jnHmtlFFVMJAzDyDeqsG1blmCsWeNGSflE45Zb\nrJVRVIh4kRCRicADwBFVbZnD8XhgHrDb2zVbVf+cQzkTCcMIESkpV7YySpTI8mVYKyO6iQaRuBNI\nBRKuIhK/VtU+uVzHRMIwCgFVF+Z80SK3rFnjItj6RMNaGdFFxIsEgIjEAfOvIhK/UdXeuVzDRMIw\nwkBKisvE5xONkiWvbGVYfKnIpiiIRFdgDnAA+B54XlW35lDORMIwwowqfPNNlmB89RV06pQlGk2a\nWCsj0igKIhELpKvqORHpCYxV1cY5lDORMIwI48yZK1sZpUplDbG9+25rZUQCUS8SOZTdA7RV1RPZ\n9uvo0aMzt+Pj44mPjy9YQw3DuGZUYcuWLMH4+mvXyvCJRuPG1sooDJKSkkhKSsrcfvnll6NbJESk\nOm7kk4pIe2CGqsblUM5aEoYRRfhaGb7Z32XKXNnKuO66cFtYPIj4loSITAO6AtWAw8BooDSAqo4T\nkeeAnwKXgXO4kU6rcriOiYRhRCm+VoZPMNauhc6ds+ZlNGpkrYxQEfEiUVCYSBhG0eH06StbGeXK\nZTm/4+PNl1GQmEgYhhHV+FK4+ibyrV0L7drBffe5pV07y/sdDCYShmEUKVJT4bPPYNkyt3z3nWtd\n+ETDhtnmDxMJwzCKNIcPu5Ahy5bB0qUu6ZJPMO69F2rWDLeFkY2JhGEYxQZVSE7OamUsXw61amWJ\nRteulpkvOyYShmEUW9LTYd26LNFYvRpat84SjQ4doHTpcFsZXkwkDMMwPM6dgy++yBKNb7+FO+/M\nEo0WLYqfP8NEwjAMIwDHjrkuKZ9onD3r/Bg+0bj55nBbGHpMJAzDMPLI7t1ufsayZe5v1apZgnH3\n3VCpUrgtLHhMJAzDMK6BjAzYuDGrlfHll9CsWZZodO4MZcuG28rgMZEwDMMoANLSYOXKLNHYutUJ\nhU80br3VZeyLNkwkDMMwQsDJk5CUlNU9dfy4S7LkE4169cJtYd4wkTAMwygE9u/PEoxly1x8KX9/\nRrVq4bYwZ0wkDMMwChlfhj6fYHz6qYtk6xONLl2gfPlwW+kwkTAMwwgzFy/CmjVZorFhA/zlL/CL\nX4TbMhMJwzCMiOPMGTexr0aNcFtiImEYhmFchYIQiSgc1GUYhmEUFiYShmEYRkBMJAzDMIyAmEgY\nhmEYATGRMAzDMAJiImEYhmEExETCMAzDCIiJhGEYhhEQEwnDMAwjICYShmEYRkBMJAzDMIyAmEgY\nhmEYAQmZSIjIRBE5LCKbcyl3u4hcFpF+obLFMAzDuDZC2ZJ4B+hxtQIiUhL4f8BiIKhIhUbeSEpK\nCrcJRQp7ngWLPc/II2QioaqfASdzKfZzYBZwNFR2GFdi/4QFiz3PgsWeZ+QRNp+EiNwE9AX+7e2y\nhBGGYRgRRjgd1/8AfudlExKsu8kwDCPiCGlmOhGJA+arasscju0mSxiqAeeAkaqamENZa2UYhmFc\nA8FmpitVUIbkF1Wt71sXkXdwYvIjgfDKWivDMAwjDIRMJERkGtAVqCYi+4HRQGkAVR0XqnoNwzCM\ngiOk3U2GYRhGdBPWGdci0kNEtovItyLyX1cp55tw199v314R2SQi60VkTeFYHNnk9jxFJF5ETnvP\nbNXdaoIAAAgcSURBVL2I/CGv5xZHruF5/tHvmL2ffuTl/fKe53oR2SIiSfk5t7gR5PPM37upqmFZ\ngJJAMhCH64baADQNUO4TYAHQ32//HqBKuOyPtCUvzxOIBxKv9bMoTkswz9M7Zu9n/p5lJeAboLa3\nXS2v5xa3JZjn6a3n690MZ0uiPZCsqntV9RIwHTdvIjtXm3BnDu0s8vo8c3pmeT23OBHM88zLseJE\nXp7lY8BsVT0AoKrH8nFucSOY5+kjz+9mOEXiJmC/3/YBb18muUy4U2CZiHwtIiNDaWiUkOvzxD2z\nziKyUUQWikizfJxb3AjmefqO2fvpyMuzbARUEZHl3jN7PB/nFjeCeZ6Qz3czbENgydsM68wJdyKS\nfcLdHap6SERuAJaKyHZ1oUCKK3l5nuuAm1X1nIj0BOYCjUNrVtQS7PO09zOLvDzL0kAb4F7gOmCl\niKzK47nFjWt+nqr6LdBFVQ/m9d0MZ0vie+Bmv+2bcYroT1tguojsAfoD/xKRPgCqesj7exT4ANcE\nK87k+jxVNUVVz3nri4DSIlLFK5fbZ1HcCOZ52vt5JXn5X98PfKSq51X1OPApcGsezy1uBPM8UdWD\n3t+8vZthdL6UAnbhnC9lyMUhhYsq289bvw6I9dZjgC+A+8N1L5Gw5OV5AtXJGvbcHth7LZ9FcViC\nfJ72fub/Wd4CLMM5Za8DNgPN7N0s8OeZ73cznDOuL4vIfwBLcDfytqpuE5FnveNXm3BXA5jjeqAo\nBbynqh+F2uZIJo/PcwDwUxG5jAuDMuhq54bjPiKFYJ4n9n5eQV6epapuF5HFwCYgAxivqlsB7N28\nkmCep4jUJ5/vpk2mMwzDMAJi6UsNwzCMgJhIGIZhGAExkTAMwzACYiJhGIZhBMREwjAMwwiIiYRh\nGIYREBMJIyAiUtUvDPYhETngra8TkdK5nBsnIpsDHBsvIk1DY3X4EJHeRT2UtYg8ISI1w22HUXjY\nPAkjT4jIaCBFVV/NQ9lSQG0C5Dc3QouIlFTV9BBdeznwvKqujQR7jNBjLQkjP4iIvCNXJn9K9f7G\ni8hnIjIP2IILQlZKRN4Vka0iMlNEyntlk0Skje98EfmziGwQkZUicqO3/wYRmSUia7ylcw7GlBSR\nV7zjG0XkGW//r0TkbW+9pYhsFpHyIjJGRKaIyJcislNERnhlKojIMhFZ6yVj6ePtjxORbSLylpe4\nZYmIlPOOjRKRb7x6p3r7hovI637nfuIdXyYiN3v7J4nIWBH5QkR2+T9Lv/uKE5dQJqdn90fvfjeL\nyDi/c5JE5P9E5CvgFyLyoIis8lp9S/2e6xgRmSwin4pLPtNPRP7u3fciT+ARkbbeNb8WkcUiUkNE\nBgDtgPe865bLqVwO9oy6hnfNiBTCHYfEluhYcDnKf4OLoeWf/CnF+xsPpAJ1ve04XDiATt7228Bv\nvPXlQBtvPQN4wFv/f8CL3vpUXCRVgDrA1hxsesavfFngK6AuLlrwCuBhb5/PhjHAeq9sVWAfUBMX\n2sAXz6Ya8K3fPVwCWnnb7wNDvPXvgdLe+vXe3yeA1731+cDj3vqTwAfe+iTgfW+9qa+ubPd1tWdX\n2a9cAvCg3zP9p9+xSn7rI4C/+z2DT717boULJ9LdOzYHF5q/NPAlUNXb/ygu9EP2zy63cv/Mfm+2\nRN8SzlDhRtFjjap+57e9X1VXeuvv4n5R/m+2cy6q6ofe+lqgm7d+H9BUJDM6fKyIXKde1FWP+4GW\n3i9cgOuBRqr6nYgMxwU1+7efDQrMU9ULwAWv66Q98CHwPyJyJ+7LuZbvlzewR1U3+dkX561vAqaK\nyFxciPDsdAQe8rv3v/nZMBdAXbyd6jmcC4Gf3T0i8ltcoLYquFbbAq/c+37n3ywiM3BxpMoAu/3q\nX6Sq6SKyBSihqku8Y5u9+2sMNMflHAAnKAf9ru37UJrkUs7fHiNKMZEw8stlvG5KESmB+wLycTZb\nWX+Hl5BzHPxLfusZZL2TAnRQ1Yu52PMfqro0h/2NgRRyT1CjwFBcC6KN9+W5ByjnHb/gVzYdKO+t\nPwDcBfQGXhSRlvw429f/394du0YRRHEc//4KSZBgimAbrKwtUmghwX9AG20UQbFT1NZSrLQRgmCE\nWAhiZWuhNlopSjiNkEDAwkYQwUJMZeGzeHPcureTeF3u8vtUe+y7m7m5Y2fmzbJT2/3r93/EDLWd\npCngfqnnV+U60XQjrtn+98jZwzNJi+QM4p/yI+KPpK72F7AeEUMpvlbddopr/x9sDHlNwkb1hdzn\nA+AkmXKomZd0tByfBUbZdOcljVy2pCMdMS+Ay408+mFJ+yXNAkvAcWCukfcXcErSlKQ5MkX2npyB\nfC8dxAkyZVWlHDbPR8Rr4AYwC8y0wt4weCrsOTLFM4qutpsmL9A/JM0AZ9pVaxwfYDCqv1CJqdkE\nDvbLl7RPg133fpXP3inOJoQ7CRtFACvAoqSPZEplq3W+ebwJXJG0QV5IlxnWfk//9TVgoSz8rpPr\nD20PgQ2gp7zddpkcCd8l8+GfgUvAbeUuXEGmiV4Bb4FbEfENeFLK+gScB5qPom7PfoJMqzwu8T1g\nKSJ+tup/FbgoaY3sJK5v8527DLVdKWOFTDE9B9511K3vJvBU0iq5P3w0YrYrPyL3TT4N3Cm/8wfg\nWDn/CHggqUdeP2pxNiF8C6ztGSU9sxUR7XWRXUXSIXz7sO0SnknYXjMuo6JxqadNOM8kzMysyjMJ\nMzOrcidhZmZV7iTMzKzKnYSZmVW5kzAzsyp3EmZmVvUXtsaAFgOeV8UAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x3062e30>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print (\"Example 5.12\")\n",
+ "#plot the graphs\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "gm=1.1\n",
+ "M0=2.5\n",
+ "g1=numpy.zeros(40)\n",
+ "\n",
+ "z0=numpy.linspace(0,4,40)\n",
+ "i=1;\n",
+ "z1=numpy.linspace(1.1,1.4,4)\n",
+ "for gm in z1:\n",
+ " gc1=0;\n",
+ " for M in z0:\n",
+ "\t\tp0=(1+(gm-1)/2*(M**2))**(gm/(gm-1))\n",
+ "\t\tp20=.4*p0-.5*p0\n",
+ "\t\tM=3\n",
+ "\t\tp42=0.37\n",
+ "\t\tNPR=p20*p42\n",
+ "\t\tg1[gc1]=p0\n",
+ "\t\tgc1=gc1+1;\n",
+ "\t\tpyplot.plot(z0,g1)\n",
+ "\t\tpyplot.title(\"Total-to-static pressure ratio\")\n",
+ "\t\tpyplot.xlabel(\"Flight Mach no. (M0)\")\n",
+ "\t\tpyplot.ylabel(\"pt0/p\")\n",
+ "\t\tpyplot.legend([\"gamma=1.1\",\"gamma=1.2\",\"gamma=1.3\",\"gamma=1.4\"])\n",
+ "\t\ti=i+1;\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.12\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvm94rpBACAaRIkyZVIYggRUBUilhQFEXW\ngu7qYgHR3R+2ta0u9l2xLMpaEEQUBEEQAZUivYeahIT0nkzO74+ZTGbSCGFCfT/PM4/3nnvuvWcm\nMu+cc+45R4wxKKWUUlVxO9sFUEopde7SIKGUUqpaGiSUUkpVS4OEUkqpammQUEopVS0NEkoppaql\nQULVOxEpFZHmZ7scdSEiV4rIzrNdjguRiDQRkWwRkbNdFlU9DRIXMRHJsf0jzbZ9kec57N9UzTnx\nInLYhWVw6fVO99oVA5oxZpUxpo3rS3fxEZEEEbmqbN8Yc8gYE2h0sNY5zeNsF0CdPcaYgLJtETkA\n3GmMWX4Wi3SuOKO/bEXEwxhTcibvWUUZ3I0xlno+33CGP1t1+rQmoSoREW8ReVVEjtper4iIl4j4\nA4uBRrbaRpaIRIlIdxH5RUTSReSYiLwuIp61uE9116vy/jVcZ6iIbLOdf0REHhYRv1Mtq4j8ZLvk\nZts5oyvWRkQkVkS+FJHjIpIqIq9XU6aZIvK5iHxqu/fvItLR4XiCiDwqIn8A2SLiJiI9RWSNrWyb\nRKSfQ/7bRWSf7Vr7RWS8Lf0SEVkpIhkikiIin9rS42y1IjeHa6wQkTsdrveziLwsIqnAU7a/8T9E\n5KCIJInImyLiU837q+r85iKy3Pa5pIjIxyISbMv/EdAEWGj7bP9SsYwi0khEFojICRHZIyJ3Vfc3\nV2eQMUZf+gI4AFxl234GWAM0sL1+Bp6xHesHHK5wbhegO9YfHU2B7cCDDsdLgebV3Leq61V7/2qu\nkQj0sW0HA51dVVYgvuwagDuwGXgJ8AW8y+5bRZlmAkXA9bbz/gzsB9xtxxOADUCM7ToxQCow2Hb8\natt+OOAPZAItbccigba27bnAY7ZtL6C3bTvO9l7cHMr0IzDRtn07UAz8yfZZ+ACvAPOBECAAWADM\nqub9VXV+C2AA4Gn7u60EXqnq/7Gqygj8BLxhex+XAceB/mf738bF/tKahKrKeKxfyqnGmFTgaeBW\n27FKzQXGmA3GmPXGmFJjzEHgHaxf0LVRVfNDTfevShHQTkSCjDGZxpiN9VTW7kA08IgxJt8YU2iM\n+bmG/L8ZY7401maYl7F+kfYsKwrwT2PMUWNMIXAL8K0x5jtbOX8AfgOG2fKWAh1ExNcYk2yM2e7w\n3uNEJMYYU2SMWVPL9wJwzBjzL2NMKVAITAIeNsZkGGNygGeBcbU53xhTYIzZZ4xZZowptv3dXqGW\nn62IxAK9gb/a3sdm4D3gtlN4P6oeaJBQVWkEHHTYP2RLq5KItBKRb0QkUUQygf/D+gu4Yr6yp1my\nRSSrLvcXkccdrjHbdvwGYCiQYGtS6Uk1alvWasQCB21fqrVxpGzDGGNs+46fo2OnelNgtK2pKV1E\n0oE+QJQxJg8YC0wGjtnK39p23qNYg+F6EdkqInfUsmwV798Q8AN+d7j/Yqw1gtqcj4hE2prXjtg+\n24+o/WfbCEgzxuQ6pB3CWsNSZ5EGCVWVY1ibAso0saWB9VdtRW9ibba5xBgTDDxBFf9vmfKnWQKN\nMUE1XK/a+xtjZjlcY4ot7TdjzHVYv+jmA/NOt6zVOAw0ERH3WuaPLduwtbs3pvxzrFi+Q8BHxphQ\nh1egMeYFAGPMEmPMICAK2Am8a0tPNsbcbYyJAe4BZov16ayyL1s/h3tEVSif4/1TgXyszVhl9w9x\n+DtVpeLnOwuwAO1tn+2tOH+2NT3FdAwIE5EAh7QmOARadXZokFBVmQs8KSINRKQBMAPrr0KAZCBc\nRBy/PAKAbCBPRNoA957Cvaq6Xk33dyIiniJys4gE25p1srF+UdW1rMlY29arsh5r/8dzIuInIj4i\n0ruG99ZVREaJiAcwFSgA1laT92NguIgMEhF327XjRSRGRCJEZKRYO/qLsQYAi+39jxaRxrZrZGBr\nmjLGpABHgVtt15tYw/vCVjt6F3hVRBrarh0jIoNqeH8VBdjKliUiMcAjFY5X+9kaYw5j7Yd6VqwP\nLnQEJto+F3UWaZBQVfk71vbwP2yv32xpGGN2Yv0S3y8iaSISBfwFaz9CFtY2/k9x/tVY7S/Iaq5X\n7f2rcQtwwNbEcTdw82mUdSYwx9bkcqPtmLFdzwIMBy7B+sv/MDCmurcGfI21mSjNVqbrTTWPiRpj\njgAjgcexdtgewtrZLVj/nT6E9Uv/BHAl5cGtG7BWRLJt93vAGJNgOzYJ6xd1KtAW6wMAjuWr+Hf5\nK7DXdr1MYCnQqob3V/H8p7E+GJAJLAS+qJDnWazBP11EHna4TpmbsNYgjwFfAjOMPpJ91om1qbSe\nLm5tN/3UIak5MB3rr4PPsLbDJgBjjDEZtnMew/oLwoL1f/gl9VZApeqJiDyFtUmrpg53pc559VqT\nMMbsMsZ0NsZ0BroCecBXwDRgqTGmFbDMto+ItMX6y6stMBhr+6rWdtT5SAeNqQvCmfwCvhrYa2t7\nHAHMsaXPAa6zbY8E5toeoUvAWvXtfgbLqJSrVNUco9R550xOyzEOa/swQKQxJtm2nYx1cBBYH4Nz\n7Ng7gj4Cp85Dxpinz3YZlHKFM1KTEOuUCsOB/1U8Znt+vKZfXPprTCmlzpIzVZMYAvxueywPIFlE\noowxSSISjfVpDrA+vRHrcF5jW5qdiGjQUEqpOjDGnHJf2Znqk7iJ8qYmsM4JM8G2PQHrAKiy9HG2\nicaaAS2xPpvu5EzNWXI6r6eeeuqsl0HLqeU8X8uo5XT9q67qvSZhGwB0NdZntss8B8wT64yUCdie\nNTfGbBeReVhHxJYAU8zpvDullFKnpd6DhLHOxdKgQloa1sBRVf5ZWIf3K6WUOst0DEI9iY+PP9tF\nqBUtp2udD+U8H8oIWs5zRb2OuK4PIqItUEopdYpEBFOHjmtdvlSpi5iIDgy/ELnyh7QGCaUucloz\nv7C4OvBrn4RSSqlqaZBQSilVLQ0SSimlqqVBQimlVLU0SCil1Bk2b948evfujb+/P/37968xb1JS\nEiNGjCAmJgY3NzcOHTp0hkpppUFCKaXOsPDwcB5++GGmTZt20rxubm4MHTqUL7744gyUrIr7n5W7\nKqXUSWzYsIHOnTsTFBTEmDFjGDt2LNOnTycjI4Nrr72WiIgIwsLCGD58OEePlk8WHR8fz/Tp0+nT\npw+BgYGMGDGC1NRUbr75ZoKDg+nevTsHDx6053dzc+PNN9+kZcuWBAUFMWPGDPbt20evXr0ICQlh\n3LhxFBcXA5z03rU1YMAAbrzxRqKjo0+aNyIigsmTJ9OtW7dTvo8raJBQSp1zioqKGDVqFBMnTiQ9\nPZ2bbrqJ+fPnIyKUlpZy5513cujQIQ4dOoSvry/33Xef0/mfffYZH3/8MUePHrV/4d95552kpaVx\n6aWX8vTTzmtCLVmyhI0bN7J27Vqef/55Jk2axNy5czl06BBbtmxh7lzrJNYnu/eUKVMIDQ2t8tWp\nU6f6/+Dqw9mevrYO090apZRrnOzfE7jmdapWrlxpYmJinNKuuOIKM3369Ep5N27caEJDQ+378fHx\nZtasWfb9P//5z2bo0KH2/YULF5pOnTrZ90XErFmzxr7ftWtX88ILLzidP3Xq1CrLWfHep+rdd981\n8fHxtcpbXFxsRMQcPHiwxnzV/U1t6af8nasjrpVS1Tpbg7GPHTtGTIzzysWxsdb1yPLz85k6dSrf\nf/896enpAOTk5GCMsY82joyMtJ/n4+NDRESE035OTo7TtR3z+/r6VtpPSkoCIC8vj4ceeqjGe5+L\nWg0dVedztblJKXXOiY6OrtTWf+jQIYwx/OMf/2D37t2sX7+ezMxMVq5cWePCOq788n7ppZdqvPfk\nyZMJDAys8tWhQ4d6LVtNDvrl1flcDRJKqXNO7969cXd354033qCkpISvv/6aX3/9FbD+cvf19SU4\nOJi0tLRK/QvgPB9VdcGjJtWdf7J7v/XWW2RnZ1f52rJliz1faWkpBQUFFBcXU1paSmFhob1zvCoF\nBQUUFBRU2q6tIo+6ByMNEkqpc46npydffvkl77//PqGhoXzyySdce+21+Pj4MHXqVPLz82nQoAG9\ne/dmyJAhlX6RO+6LyEmPV1Td+bW5d218+OGH+Pn5MWXKFFatWoWvry/33HOP/XhgYCA///yzfd/P\nz4+goCBEhDZt2uDv71/re910zV3gm3vKZSyj60kodRGzrTFwtotRKz169GDKlClMmDDhbBflnFbx\nbzro8j/zQ/f5mNn767SehNYklFLnpJ9++omkpCRKSkqYM2cOW7duZfDgwWe7WOed5PQo3PzS63y+\nPt2klDon7dq1izFjxpCbm0uLFi34/PPPnZ46UrWTlB6H8ck5ecZqaHOTUhex86m5SdVOxb+pp88G\nLH+9HPNMqTY3KaWUKvf4lOmUeAbjL351voYGCaWUukBt3pSGR+AmYhvG1vka9R4kRCRERD4XkR0i\nsl1EeohImIgsFZHdIrJEREIc8j8mIntEZKeIDKrv8iml1IUqJT2KwPCthPqG1vkaZ6Im8RrwrTHm\nUqAjsBOYBiw1xrQCltn2EZG2wFigLTAYmC0iWttRSqk6SEqLJaTBfsJ8w+p8jXr9AhaRYOBKY8y/\nAYwxJcaYTGAEMMeWbQ5wnW17JDDXGFNsjEkA9gLd67OMSil1oUrNbINfaOK5GySAZkCKiPxHRDaI\nyLsi4g9EGmOSbXmSgbLn2hoBRxzOPwI4z/KllFLqpL75fBH5he3wC88lzOfcDRIeQBdgtjGmC5CL\nrWmpTNkUtjVco9KxmTNn2l8rVqxwYXGVUqr+ncrypYsWLeKKK64gNDSU6OhoJk2aVGkW26o8+/Sb\nCE/iU+TOpk831bms9T2Y7ghwxBjzq23/c+AxIElEoowxSSISDRy3HT8KOHbDN7alOZk5c2b9lVgp\npepZ2fKlO3bsYPny5TXmzcrKYsaMGfTt25eCggLGjx/PI488wptvvlnjeSKdCAnqQYcxJVza8FJW\nzFlRp7LWa03CGJMEHBaRVrakq4FtwEKgbAKWCcB82/YCYJyIeIlIM6AlsL4+y6iUOjfp8qVWN910\nE4MGDcLHx4eQkBAmTZrkNPlfdZLSYogM3U9aQdo53ScBcD/wiYhsxvp00/8BzwEDRWQ3cJVtH2PM\ndmAesB1YDEzR4dVKXXx0+dLqrVy5kvbt2580X0pGS6LCjpGWf3pBot7nbjLGbAYur+LQ1dXknwXM\nqtdCKaVqRZ52zaI45qlT+623du1aLBYL999/PwCjRo2ie3frg45hYWGMGlW+0trjjz/OVVddZd8X\nEe644w6aNWsGwJAhQ9ixY4c9z+jRo5k+fbrT/R599FECAgJo27YtHTp0YMiQIcTFxdnP37hxI7fd\ndttJ7z179mxmz559Su/1VCxdupQPP/yQ9etP3sCSndee0OC5HD7Xg4RS6vx1ql/urqLLl1a2du1a\nbr75Zr744gsuueSSGvPe0P9O4Hn+8daTDPz+6nO+uUkppU6JLl/qbOPGjYwcOZIPPvjgpE9DAWRk\nhePvu4XmrZuRnp9OqM+5PeJaKaVOiS5fWq5sHY033niDoUOH1qr8SWnRNAzZg6XUQlZhFiE+ISc/\nqRoaJJRS5xxdvrR8+dKXXnqJEydOMHHixBprJY6S05sRHXqEzMJMAr0DcXdzP+UyltH1JJS6iJ1P\n60no8qW1IyK4u+9iWM+XeGnBI1zz8TXse2Bf2d9a15NQSl0YdPnSurNYYhh/14DTfvwV9OkmpdQ5\nSpcvrTsf7+2MvX0M3+/9/rQ6rUGDhFLqHDVp0iQmTZp0totxXgoP2gVc7pKahDY3KaXUBSYq9BCA\nBgmllFKVRYRaB/9pkFBKKVVJy5aegAYJpZRSVXjto5cASC84vdHWoEFCKaUuWFqTUEopVS0NEkop\ndR46leVLf/zxRzp27EhoaChhYWEMGjSI7du31+o+GiSUUuo8VLZ86bRp006at127dixevJj09HSS\nk5Pp3LkzEydOrNV9NEgopS5YunypVUREhH1tjdLSUtzc3Gp1njHG2nHtqx3XSqkLjC5f6uzQoUOE\nhobi5+fHokWLeP/99096Tl5xHu7ijo+HT53vC2BfMON8eVmLrJRyhZP+ewLXvE7RypUrTUxMjFPa\nFVdcYaZPn14p78aNG01oaKh9Pz4+3syaNcu+/+c//9kMHTrUvr9w4ULTqVMn+76ImDVr1tj3u3bt\nal544QWn86dOnVplOSve+1S9++67Jj4+vtb509LSzC233GJGjBhRbZ6yv+mhjEMm5qWYiumn/J2r\nczcppap3lqYR1+VLqxYaGso//vEPoqOjycrKIigoqNq8ruiPAG1uUkqdg3T50uoVFxfj5uaGt7d3\njfnSC9I1SCilLky6fGm5r776it27d1NaWkpKSgoPP/wwQ4cOPWmQSMtPO+1Oa9AgoZQ6B+nypeXL\nlx49epTBgwcTFBREly5dCA0NZc6cOSe9R1p+GmE+p1+TqPflS0UkAcgCLECxMaa7iIQBnwFNgQRg\njDEmw5b/MWCiLf8DxpglFa5n6rvMSl0sdPnSC0/Z3/SFn18gJTeFFwe96Jh+Ti5faoB4Y0xnY0x3\nW9o0YKkxphWwzLaPiLQFxgJtgcHAbBHR2o5SFyFdvvT0nG8d1xWj1wigrL40B7jOtj0SmGuMKTbG\nJAB7ge4opS46u3btolOnToSGhvLKK6/o8qWnKD3fNR3XZ+IRWAP8ICIW4G1jzLtApDEm2XY8GSj7\nyzcC1jqcewRwfg5OKXVR0OVLT09agWs6rs9EkOhjjEkUkYbAUhHZ6XjQGOtglhrOr3Rs5syZ9u34\n+Hji4+NdVFSllLow7Nuwj29Wf8P20NpNBlideu+4drqZyFNADjAJaz9FkohEAz8aY9qIyDQAY8xz\ntvzfAU8ZY9Y5XEM7rpVykfOp41rVTtnftPPbnXl/xPt0ie7imH5udVyLiJ+IBNq2/YFBwBZgAVD2\niMIEYL5tewEwTkS8RKQZ0BJYX59lVEqpC5GrOq7ru7kpEvjK9hyxB/CJMWaJiPwGzBORO7E9Agtg\njNkuIvOA7UAJMEWrDUopdepc1XF9RpubXEGbm5RyHW1uuvCICEUlRfj+ny/F04vtg/3OyeYmpZRS\nZ17ZOhKumLdKg4RSSp1hp7J8qaOJEyfi5ubG/v37a8znqv4IODOPwCqllHJQtnzpjh07WL58ea3O\nWb16Nfv3769V7cCVQUJrEkqpc5IuX1qupKSEBx54gNdff71WfUiu6rQGDRJKqXOQLl/q7JVXXqFf\nv35VrklRlbT8NEJ9Tn+0NWhzk1KqBrJihUuuY05xVoS1a9disVi4//77ARg1ahTdu1uncQsLC2PU\nqFH2vI8//jhXXXWVfV9EuOOOO2jWrBkAQ4YMYceOHfY8o0ePZvr06U73e/TRRwkICKBt27Z06NCB\nIUOGEBcXZz9/48aN3HbbbSe99+zZs5k9e/YpvdeTOXz4MO+88w4bNmyo9TnaJ6GUOiNO9cvdVXT5\n0nJTp05lxowZBAYG2puaTtbkpH0SSqkLmi5fWm758uU88sgjREdH06hRIwB69erFp59+Wu05WpNQ\nSl3QHJcvnTx5MosWLeLXX3+lf//+5/zypW+99dZJr19aWkpRUZHT8qVubm54enpWyrtnzx5KS0vt\nZYmOjuabb76hY8eO1V7fVetbg9YklFLnIF2+tHz50gYNGhAREUFERASRkZGICA0aNMDHx6fa67uy\n41qn5VDqInY+Tcuhy5fWjojQ490evHLNK/SK7eWUrtNyKKUuGLp8ad1pn4RS6oK3a9cuxowZQ25u\nLi1atNDlS0+BK4OENjcpdRE7n5qbVO2ICO5Pu1PwZAEebh5O6drcpJRSCj9PP6cAcTo0SCil1AXG\nVU1NoEFCKaUuOK4MEtpxrdRFrr6mk1Bnj9YklFIuUTalhL7Oj1fTGE9uGzwIYwxffmkYMaL8WPTP\nP3O0oIDPtn6mQUIppS42E4aNJjW9mGHjJgKQnAxRUeXHA93dySopceloa9AgoZRS54VSyzFaNw1i\nzISxACQlOQeJIA8PsiwWl46RAA0SSil1XkjNPEJcRPn06ZWChLs72RoklFLq4rT3WBIBPjUECQ8P\ne3PTeRUkRMRdRDaKyELbfpiILBWR3SKyRERCHPI+JiJ7RGSniAyq77IppdT54K5Rt3I0pYiufYfY\n06qqSWRZLC6dJhzOTE3iQWA7UDb2fxqw1BjTClhm20dE2gJjgbbAYGC2iGhNRyl10SvKT6BVkwAe\nePxhe1pSEjhOZeXUce17nnRci0hjYCjwHlD2MPYIYI5tew5wnW17JDDXGFNsjEkA9gLd67N8Sil1\nPkjPOUJcRCP7vjHWp5scg8T52nH9CvAIUOqQFmmMSbZtJwNlb7MRcMQh3xHAeZFbpZS6CO1JTCLI\nr/zrMCsLPD3B3788T5C7O9n10CdRbyOuReRa4LgxZqOIxFeVxxhjRKSmKSirPDZz5kz7dnx8PPFn\nabF2pZSqbw/cNpmDRwu4cUh5w0rF/giw1iQOFRbag8SKFStYsWLFad+/Pqfl6A2MEJGhgA8QJCIf\nAckiEmWMSRKRaOC4Lf9RINbh/Ma2tEocg4RSSl3IMo7vpHljX/7+xnP2tKqCRKC7O2mFORhj8PXw\nrfQDuqq1wGuj3pqbjDGPG2NijTHNgHHAcmPMrcACoGz9wQnAfNv2AmCciHiJSDOgJbC+vsqnlFLn\ng8zco7SIbuSUVl1NIi0/nVDfUJfOx3Umnx4qazp6DhgoIruBq2z7GGO2A/OwPgm1GJhidDUUpdRF\n7vCJYwT7VQ4SFRfpC3J3d/njr3CGZoE1xqwEVtq204Crq8k3C5h1JsqklFLnusnX30xSej6D28U6\npVectwmsNYnM/DQiXRwkTlqTEKsbROQVEXlZREaJzi2slFL1rm1sPikp8FTfnk7pVTY3ubuTXZjh\n8ppEbZqbZgP3AH8AW23b/3JpKZRSSlUS2GAPfj4+eGdnO6VX13GdWw9BojbNTf2BtsaYUgAR+QBr\nv4FSSql6MvWWyTTruAd/rwBIT3c6Vl3HdX5hJqFBrhttDbWrSewFmjjsN7GlKaWUqieNg9M5uC2K\n/q0ugbQ0p2NVdVz7urlhKc4k2IVrSUDtgkQQsENEVorICqy1iEARWSgiC1xaGqWUUgC0aH6E3Xv8\niGvc2ClIlJZCSgpERDjnFxE8LTn4eYfgSrVpbppRRZrBOheTPqKqlFIu9sqMF+jU/Q/2HotgZO84\n+O03+7ETJyA4GLy8Kp/nUZKDj1ewS8tSbZAQke+B74DFxpidLr2rUkqpauUe20BhYiwxLaKJa9kS\nliyxH6uqP6KMWHLwdHGQqKm56XYgA5hpWw/iLREZKSL+NZyjlFLqNLVqkcLhfa1ISEggrm1bp+am\nmoIExVl4eAa5tCzVBgljTKIx5j/GmHFAN+BD23+XiMgyEXnUpSVRSinF+lVradB6E5v3eHPkyBGa\ntGtX6yBRWpyFm2egS8tTq2k5jDEWY8waY8x0Y0wfrHMxVTn5nlJKqbqb/+5rWHID+eur/6BBgwZ4\nh4aCxQIFBUDVTzaVKSnOwri4JlFjx7WIDMa6KFDZROZHgK+NMd8Bn7i0JEoppWjXPIPEPe3wiUsg\nLi4ORCAszDpWIjq62pqEpdRCSUkeJW5+Li1PTR3Xr2GdifVDymsNjYEHRGSoMeYBl5ZEKaUucgd2\n7Sey9RZ+WNQXSbAFCYDQUGuTU3Q0ycnQqVPlczMKMvD2DCSn1LUPndbU3DTUGDPUGPOpMWaV7TUX\nGIZ1SVKllFIu9Pr0JxDPIu6Z/ndrp3VZkCirSVB9n0Rafhq+3sFkl5S4tEw1BYkCEalqjenuQL5L\nS6GUUor2l+SSuvMymrVuXjlI2DqvawoSAd4hZFksLi1TTX0StwNvikgg5WtPNwaybMeUUkq5UMwl\nu/hldRcAEhISGDdunPVAWXMTNQeJIJ9Qslxck6g2SBhjfge6i0gU1uAAcNQYk+jSEiillOLeUeMZ\nc0ciTS7rD1Blc1NREWRmQnh45fPT8tMI9gl1eU2iNo/AfmKM+c32SgQQkWUuLYVSSl3kOjYvIH1X\nJyY+eDcWi8U6RqKJbW5VW3PT8ePQsCG4VfHNXbYqXfaZChIi4isi4UBDEQkTkXDbf+MofyRWKaWU\nCzS5ZD979kUDcOzYMesYCW9v60Fbc1NVK9KVSctPI9zX9c1NNdUk7gF+A1oDv9u2fwcWAG+4tBRK\nKXURmzL6Dvya7iGt1BokDh48WN7UBPbmpppGW6flpxHhF37mOq6NMa8Cr4rI/YAXcCVQCqwG3ndp\nKZRS6iLWMiqX7L3teP6dV4EK/RFgb246WZC4LLzdGa1JlOkLtAVew1qDaIt1gJ1SSikXaN7iEAf2\nNbXvJyQk0LRp+X5Zc9PJgkS0f4Oz0nHdzhhzpzHmR2PMcmPMXUA7l5ZCKaUuUk8/8ARBLbey44iv\nPa3KmoStuam6eZvSC9KJ8W9AdkkJxrhu1HVtgsQGEelVtiMiPbH2TSillDpNXoX7yD/SnLe+KG+g\nqWtzU0O/cLzc3MgvLXVZ+WoTJLoBP4vIQRFJANYA3URki4j8Ud1JIuIjIutEZJOIbBeRZ23pYSKy\nVER2i8gSEQlxOOcxEdkjIjtFZNBpvjellDrntWyexOG9LZzSKgWJkBDIzCQ52dQYJMJ8wwh0d6/U\nL3HrkBF1Ll9tli8dXJcLG2MKRKS/MSZPRDyA1SJyBTACWGqMeUFE/gpMA6aJSFtgLNY+jxjgBxFp\nZYxxXUhUSqlzyBcfzSOszSZ+/Kh8OjyLxcLhw4fLx0gAuLtDQABJx0qJinKvdB1jDGn5aYT6hBLk\n4UGWxYJjLEnO/LnOZTxpkDDGJNT14saYPNumF+AOpGMNEv1s6XOAFVgDxUhgrjGmGEgQkb1Y54la\nW9f7K6V1G8N6AAAgAElEQVTUuWzzsvlc0b8B//r8v/a0xMREwsPD8fHxcc4cFkZSslRZk8gpysHb\n3RtvD2+C3N2dBtRNnzCe/YlZdS5jrRYdqisRcRORTUAy8KMxZhsQaYxJtmVJBsq6YRpRPkcUtm0d\ntKeUumC1DvEg+Vgjp7RKTU02uUHRFBVBUBVrCpWNtgasNQmH5qauXbdy6EjdO7Jr09xUZ7amok4i\nEgx8LyL9Kxw3IlJT6as8NnPmTPt2fHw88fHxp19YpZQ6g+4YNonxHU+wJrPAKb26IJHs35yo0EJE\nfCsdS8tPI9Q3FIAgd3eyLBZWrFjBjKn3ERC2Hx8fP4pzsutUznoNEmWMMZkisgjoCiSLSJQxJklE\nooHjtmxHgViH0xpTzRKpjkFCKaXORzGZHShqvZIf8pN4yiG9uiCR5BNHVGAeUHWQKKtJlHVcj4yP\nZ9pkNz78XxtuuPEyPvjggzqVs96am0SkQdmTS2INfQOBjVin9ZhgyzYBmG/bXgCMExEvEWmGdVW8\n9fVVPqWUOlsO7NpPu31t8Iw6yLaMPIotxfZj1dYkPGKI8qu6b8ExSJR1XM+44ya8Qk6QZsLp0qVL\nnctan30S0cByW5/EOmChMWYZ8BwwUER2A1fZ9jHGbAfmAduBxcAU48oRIUopdY548d63kYbH8fEL\nwsuzASl5KfZj1dYkJJoo7/Qqr5eWn0aYjy1IuLuTXVJCr55b2bqmNxk5macVJOqtuckYswWoVDJj\nTBpwdTXnzAJm1VeZlFLqXNDmxOUc67qENkEdifBPITknmUaB1g7saoOEpSFRHqlVXi8937njOv/p\nv+I5MJ3ozqPY9v4kLrvssjqXtV6fblJKKeXs9mvuovm+cGi2BX//dkQGRHI819o1W+UYCZukojAi\nSarymo4d1wX7D9Kz51a2rOlFmy7taNq0KQEBAXUurwYJpZQ6g5rmdGZX60SGjrkUf/92RPhHkJxr\nHRVQ7RgJICk/mKiSKp/lceqTcPv4TTwDMmnSfTQbNmw4raYm0CChlFJnzLpVa2m3tzW7gn8jN3cb\nfn7tiPSPJDnHGiSqa2oCSMrxJ6r4cJXH0gqsQeLArv306PkHW9b05IZbx2iQUEqp88lHMxZQ4FPC\ntNl/Ii9vu7W5yb+8uammIJGc6UNU3v4qj5XVJD584XE8/LJZ3GoAgAYJpZQ6n7RJ7cb2pltpFOeB\nu3sgnp6hTs1N1QUJYyDphCeRWXuqvG56fjr5h/Lo0Wszf/zSk/Q+l2OxWNi8eTOdO3c+rTJrkFBK\nqTNgwsBJxB0IJbvRIXJzt+Hvb12WJzIg8qRBIjMTvL3BLzOxymun5aex4aOPcffNI7TPaLJKSti1\naxfR0dEEBwefVrk1SCil1BnQPLcLO9oc5V+f/tPeHwHUqrnJvthQaSnk51c6fjjhMJf32sTmNT0Z\nfP0IsiwWlzQ1gQYJpZSqd9988Q3tdrdiV/CvAE41iQj/iJN2XFsXGxLrMqbpzgPqCksK+VveWNy9\nCug77iH7YDoNEkopdZ5Y8vo6cgKLeG/ZawD2TmuwBomUvBSKS4qrHyNRtiKdbRlTRxs2/87lvTay\n6ZcedL+yJ/7u7uSXlvK7BgmllDo/XJrSle1NNgNgTCl5eTvw82sLgLeHNwFeAew8sLPaMRLJyQ5B\nIi3N6diSl+bg5pdDv5seAkBE8Bdh48aNGiSUUupcN2HA3TQ+HAStrDWAgoJDuLsH4+lpX7mZCP8I\nNu3cVP0YibKaRGioU5D407gH6OYNCYcj6H5lT3u6X3IywSEhhIeHn3b5NUgopVQ9uiSvG9vbHOaF\nd58HIC+vvD+iTKR/JDv37qwxSERGUqm5qfGBTpR0+42REx53yu+xZw+tT2O+JkcaJJRSqp688+o7\ntNvVgl2Bv9rTHDuty0QGRLLvwL6T1yQcmpvuHHA/bXfH4tNiKyEhfZ3yl+7ZQ/OOHV3yHjRIKKVU\nPdn+9THSwwr497I37GlVBYkIvwgOHTxE06ZNq7xOxeamA7v20+vQYLYNXExoWHO8vCKd8hfu3Els\nhw4ueQ8aJJRSqp5cmtSFHTGbnNKsYyTaOqVFBkSSdCSpdjWJ9HT+dfdneBa703VCFsHB/ZzyGmPI\n2bmTqHbtqrzWqdIgoZRS9eCG6+6g6YFA3FuXr51W9mSTv3+FIOEfyYnEE1UGCYsFUlMhIgIIC+Pu\nHRn0+aMHq1t8R6MmqYSEOAeJgwcP4uHtjbsLOq1Bg4RSStULtya9SAtO4+rRT9rTCgoS8PQMw8PD\neaqMBr4NyEnNqXKMxIkTEBICnp5AaCiXZF3D3hbHeOeHl8nMXFUpSGzYsIHIdu3IKilxzftwyVWU\nUkrZDR83gYYpUST7unHYYXZvx+k4HHnkeeDu546vr2+lY/Ynm4BJLyym1b7G7Iz8idzcrXh6huPt\n3cgp/4YNG2jcvj1ZFotL3osGCaWUcqEDuw5wsH8PuvychVuXPpWCRMVOa4DC1ELcQqr+Oi7rj1i3\nai19DgxmTcf1vL/oHTIyVlaqRYA1SDTv2FFrEkopdS66/2/PkOfjR/OMGPy7BzsFiarGSABkJWdR\nElSCMabSsbIg8dUTqyh1M9yw9v8AyMhYWWWn9e+//07ryy7TmoRSSp1r1q5ax96r+tBz/iZ8Q31o\n1NG7VjWJpCNJSKiQW5xb+VgSmMS76bW5Kz/HfUcPSz7GYiEz86dKNYljx45hjKFpbCzZGiSUUurc\n8rf338XNlPLXHncS3DuY2FjsQcIYC3l5Oys9/grWJ5KCI4Pts8E6Sk6GLunx7Gh9mPeX/RMCA8k7\nvg539wB8fGKd8pbN/Brs6anNTUopdS5Z+MU37Ly6Ly2W/YLXAS+CegfZg4QxkJ9/AE/Phnh4BFY6\nNyEhgfBG4fbFhxzlbPwLzQ5Gsj9mvTUhNJSM5KXV9kd06dKFIHf386O5SURiReRHEdkmIltF5AFb\nepiILBWR3SKyRERCHM55TET2iMhOERlUn+VTSilXmb14Af452fzzqRlkrckiuHcwZYvCZWZW3x8B\n1iARExtjX3yozKP3P0HnxAGsabeOd776lzUxLIyM7NWV+iOgPEgEurufNzWJYuAhY0w7oCfwJxG5\nFJgGLDXGtAKW2fYRkbbAWKAtMBiYLSJa21FKndNefvY1tg7sT9yP62gc2ZiChAL8O/ojgr02UV1/\nRGlpKYcPH6Zpk6aVmpu2eXvRNMGTKW+Ms6eZsFAySn4nJCS+0rXsNQkPj/OjT8IYk2SM2WTbzgF2\nADHACGCOLdsc4Drb9khgrjGm2BiTAOwFutdnGZVS6nQtObiLyKREFnz2IdnrsgnsFoibp/Xr1TFI\nVDVGIjExkdDQUBqFNXJqbhp2+12EZnckqcFRmndsbk/Pb+aBW6k7vr5xTtc5fvw4OTk5NGvWzNrc\ndJ7UJOxEJA7oDKwDIo0xZZ9GMlA2O1Uj4IjDaUewBhWllDonPTz5ETYNvIqYVRsByFyTSVCvIPvx\nk9UkypYsjQwoX+v6+uHjWXfdMPovzGboc4Od8mdckkdIdvNK1ymrRYgIgR4eZFks9kdqn4x/s87v\nz6POZ54CEQkAvgAeNMZki4j9mDHGiEjlh4PLVTo2c+ZM+3Z8fDzx8fEuK6tSSp2KrV4FxB3Yy9ef\nfwRA1posYh4s/21rDRIWLr10N35+l1Y63x4k/CNZdWgVn344j73D+tBjyU+0yrmesKFhTvkzGp8g\nNKVlpes4rmnt7eaG2biR6cuWMfe77+m2pXWd31+9BwkR8cQaID4yxsy3JSeLSJQxJklEooGy3pqj\ngOMzXY1taU4cg4RSSp0tE2+6h41jrqHPh1/AX8BYDFnrs7i0Z3kwiI2FjRv34eUViYdHQKVrlAWJ\nCP8IknOSeW/7OrxiG/N4zGgCevjjGeppz2uMISP8MHHbK7fCb9iwgRtuuMG+H3L55fz+wYdcGj+N\n6/YWMa/gozq9x/p+ukmA94HtxphXHQ4tACbYticA8x3Sx4mIl4g0A1oC6+uzjEopVVeHo/1ovWMr\n87/6BIDcbbl4RXvh1cDLnic2FkpKqu6PAOfmpuAlzdjasxfNfvidsN2hhI90nsk1P38fuLnhe6S0\n0nUcaxIAPd5+nw1DBjHqo0ziX+xbKX9t1XefRB/gFqC/iGy0vQYDzwEDRWQ3cJVtH2PMdmAesB1Y\nDEwxVY1TV0qps+ym625jQ794ItbttKdlrskkuLfzDK+xseDtXfPjr3FxcTx91yx+u+FaLv/yGz77\n8kNOLDpBg5ENnPJmZq4kpLQjkp7hlJ6WlkZqaiotW1qboYaPm8Da64cz4P3vaV14CQ3HNqzz+6zX\n5iZjzGqqD0RXV3POLGBWvRVKKaVcIDcuiHabN/Dl1/+1p2WtySK4b+UgERKyDT+/IVVeJyEhAbG4\ncaDfZbT9/Vc+n/M2masz8YnzwSfWxylvRsZKQrwuhzTnBpaNGzfSqVMn3NzcGHnDLfxy6w30nPc1\nd3d9jIYx4BFQ9696HYOglFKn6J4e8Rxofxnue1Kc0jPXZBLcyzlI+PtDXNw2iourHyPx8qL55AYF\nkbZvGSl5KaTOT61UiwBbkAjpa1/nukxZU9N1I8azbvx19Ji/CB59iNKPUomeFH1a71WDhFJKnYL7\nx9/Nram72BvdiIwd5b/oi5KLKDlRgt+lfk75S0tLaNRoDykpbSpdKzExkcFDR/PboIG0WrASBpSS\nlJ1kDRLXOQeJ/PwESksL8W3QBdLTnY5t2LCBw7uT2TB+OJ2X/MCiD96jzQaDxc+NwG6VpwE5FRok\nlFLqFLRf9y3v9buakY0bs3fXLvtYhMxfMgnqGYS4iVP+goJ95OVFc+SIf6VrPfHwU2y+YRCXf72I\nrxb8lwj/CFJ+T0HcBf/2zvkzM63rR0hYWKWaRE5SIVvGDqT1unUsfvstADp8UUDauCAchxzUhQYJ\npZSqpXu692XY8USWXjmIG6Oj8fHxITnZOi4465csgnoHVTonN3cbubntnKYMB/jsP5/iFmKh4dEj\nLP73u4B1reuCxQU0uK5BpS/3jIwV1kn9fH3LZgwE4L7b7uPg2AE03r2bdyY/CEDxiWIarSrkyHXO\ntZq60CChlFK1cP/4u5m2aw1Pd+hL1iVxXBMWRsuWLdmzZw+AfVK/inJzt2GMc5A4sOsA2X//M0v7\nXU18SHmfQaR/JF7LvGroj+gHIhAWBunpTBw2Hl9LEqUlFmYNHkWz1s0ASP44mfSr/Ej3P/2HQzVI\nKKVULXRc9y2rwxowaP5n9AkKItDDwx4kSotKyd6YTWD3yu3/ubnb8PV1DhL/vW4wxDQix9uP5ydN\nsKc3zm6Mx3GPSjWSgoLDWCw55WtRhIVx2/gpTPl1Pv+5bgwPdOhGzyt7ANYBd8fePUbWzSEumS5c\ng4RSSp3E5O59GXw8kZXtBrDgxAlGNrD+0i8LEjkbc/C9xBePwMqPmublbSM8vDxI/OWyrtx8dB+z\nbpzIU927OTUrxa6PJaFrAm4ezl/N1qVK+9rz3hoSx5ObF/GPwddzSUwsd/frbc+btS4LU2Rw7+Pv\nkplgNUgopVQN/jT6LqbtXMNzrXvx1oKP+PbECYaHW0dClwWJqgbRAZSWFpOfv5eYmDYcPgyTL7+S\nR/Zu5PHu15LWuT23RkU55Q/5KYQ/OvxR6TplndYAt18xhL//8R0fx7Rm630P8Ewb53mZEt9NJPqu\naIJctDqdBgmllKpB5w2LWRnekH/9tpqfs7KI8/GhsY91kFtZkMhaU3WndX7+Xry8YmjSxI/+jQby\nzPafmd6+Lz0/eIOh4eGEe5bPy1ScVozbNjfWNltb6Tpl/RETew9i1qYlzI7rQNfp0/Fxc2NgaKg9\nX0lWCalfphJ5W6TLVqfTIKGUUtWY3O1KBqUks6qjdYKIBampjGhQ3qncsmVL9u7ZW21Nomx68LsG\nDeeZLcuZ1aobb6/9kXcTE5kU7TzI7cSiE/j38+dosfOcpoWFxyguPsFDA6by7OYfeL5lN567uj+z\nAgJ4vGlTp+aq458eJ6R/CN5R3k6r05WUZNX5M9AgoZRSVbj7utt5bPcvPN+qJ+99/RHGGL5OTWVE\nePmke4GBgcT5x2EptuDTzKfSNfLytvHyo278desS/h3bmpveWs+6rCwKSkuJDwlxyps6P5XoUdGc\nyD+BpbS8BpCRsZKPp7Zl1pYVPNOmN69tXMfyZs3IAq5r4PwUVOJ7ifYR1mWr02VlreO33zrX+XPQ\nIKGUUlXo+ccSljeI4F+/rQZgZ14ehcbQKcB5uu9+4f2wtLZUOWjt7RfWcNumH/gpNILvQxZx+DC8\nl5jInVFRTvkt+RbSf0gnYkQEQd5BnMg/YT/2t6H/5JkdP/NEh37863drWWY1b860rVtxc7hGzuYc\nipKKCBtkXX8i0E3oV/gftmwZQYsWL9b5c9AgoZRSFQy78iqGJCfzS8eB9rQFJ04wIjy8UjDo4NaB\nlMiUipdgwecLabd4E5mensTOmk23bs3Yc7SEL1JTub1Ch3X6snQCOgfg1cCLSH/rCnW/rFpL28ED\nmLl9HU90GMA7634EYF1WFnu9vRm/ebPTNRLfSyRqYhTiLhQWHuP4zuG0t6yha9dfadjw+jp/Fhok\nlFLKweVDRjMsZw1Lotrw6n+fsKdX7I8oE5sVyx6vPU5pf3/yWV5653GuSMlg3bA7GT5mOLGxsIzj\n9A8JIcrb2ym/41xNkQGRPPfAS/R7+2EeTtjIqshWvLt2qT3vswcP8qgxeKam2tMs+RaS5yYTfUc0\nqanf8NtvXQgLuZKpvIyXdyyn44wsX6qUUueDAdeMYWeb5dy8rJTExbHk5GzCz68Vx4uK2JabW6kf\nwZJrwT/Vn9+zf7enTb37Ed4oXMm3Ww+zqc9Ann3T2tQTGwsbJJFPouOcrmEshhMLT9D0iaYAeM5t\nyCctVtNrdxDjjhQTcKT8aaetOTmsy85mbnCw0yR/KV+kENjTm8NFfyX12HzatfuckJAr8DmyihyL\nhSAPnSpcKaVOy3VDx7O8zTqmLmtM8PDheDfvSU6OtUln0YkTDAwLw9vN+Ssz69csPFp7sHO/deGh\nm2+4k9dLl3Dl0SJ6F3ly3cIv7XkLGmeT61XEoDDnNauz1mbhFeWFbzNfOg++kaUdfiQ2oQ3L0t0I\neOVlcAhMzx06xNTGjfGtMMnfkfk/kz/1DgoLj9Kt2yZCQq4AIMjd/bQH1GmQUEpd9J58ZAYLY7YQ\nerANf3MzMGUKAQGX2YNEWX9ERVm/ZNGwX0P279/PiGHjmRuxBr+MhnyV5UPAs7PAq3wZ0+V+iXgv\nj8a9Qp9G6vxUsnpnEz18OJvar6Lb1nie7+SGb6kFJk6059ufn893aWnc26iRde6mtDRKS0rY8vFT\n5Nx2F7Gt76ddu//h6Vk+biLIw+O0B9RpkFBKXdR+WbWWF48uxyM3mJ8GXg+FhXDVVQQEdCInZxP5\nFgvL0tMZWlWQWJNFWN8wrrxyOAubryU0sSk7b5hMSEoyTCifkynPYmFR3nHyv4yiuLj8fGMMz696\nmWHpM0luvJdrtsRz75P9GPTOMnjtNXB3t+d94dAh7o2JsTYdBQdzvEEgq/97GRnF39LhkhXExN5T\nqVPdFQPqNEgopS5qw15+ihL/LB6JuYr2a36Ce+8FEXx84rBYslmSeojOAQFOo6PB+gWfuSaT8e/c\nz9J2a4g+2JYT878j5oN34YknnGoR/0tJoWdQEJHiw7Fj5dcYOuhm3uv0I7gZHrBcy3fff0afuT+z\n7ZIguPJKe75jhYXMS0nhwZgYivNy2fDhA2x/IYuGcjN9bltHeNvLqnxvjgPq6kqDhFLqotV82EjS\nm+xk+NH2/P2R+2DRInsNQEQICOjIV8kJVT7VlL87nycv/yfLOqwkbndXpg8ZBmvWwO7dcNttTnnf\nPXaMSdHRxMbC4cOwf9cBerR7iu+ij9IgLYLtT33Iq++8CAcP0vyTb3mhwlThrxw5woSoKArWLGXN\ngrYUWPbQ9alYLu01Bjf36r/GywbUnQ4NEkqpi1KXITdyoO0artrZg/nf/hf+/W+44QZwmAvJz78T\nizOLq+yPGHj/nazs8COtdvRmSvwV1nUlZs6sVIvYnpvL/oIChoWHExsLrz51J926b+O30HxCw3dx\n7NMfaG5bB4JHHyXnnjvY4pNpPz+tuJgFu3dx44+PszftDhoHPkPvu5YQ6O1TaRnTioK0JqGUUqeu\n/zVj2NhhBZdv6cey7+eBxQJvvWVtanKwz6M7AeTR0q98hbf9uw7Qqc3fWNP6V9rv7Mmub7+kZcuW\neKxbB3v2VKpFvJeYyO1RUXi6uZG69698+ePf8GuyDp+rZ/P7jF/wcLM9nrpyJaxdi/djT5Kck4wx\nBovFwtdz/8mbebfjKe70jN9Bi2G2vo7Q0ErLmFYU5OFx2n0SOk5CKXVRGdbnXlZ03EaL7b1Z/93n\n1sTvvoOICOjWzSnviqLmXOG2GLgOgCnjp/L5d1dyoushokstbFm4ELBO9Ndw0yZrZ7NDLaKwtJSP\nkpMZ8fo8Gi+/nKQTkxnQfRaJt61gVp/ZNAu11SAsFnjwQXjxRfyCG+Dp7snK5QspSJhBY+9sGgS/\nS8cbRjq/kSrWuq7onO+TEJF/i0iyiGxxSAsTkaUisltElohIiMOxx0Rkj4jsFJFB9Vk2pdTFZ9Dl\nf+bb/NYEeWSxIOy58gOzZ1eqRQB8n+1Jj5JvKS0tYsQV9/De/+6mtOFevHv/l9+e+9me75LkZGLy\n8igZP97p/K9SUuj28DzmfH4/llIPxlzzD/Z3dad9RHtu7Xhrecb334egIBg9mr07t/OObxdKs+6g\nyG0U8WN30vHqCgEC7EuY1sQVNYn6bm76DzC4Qto0YKkxphWwzLaPiLQFxgJtbefMFhFtDlNKuUTf\ny55k6R/34X3NkywY+zFZq23TZx84AOvWwdixTvkT8vNJLCqms08h8V1m8s2av3NZy/8Re/+nvDri\nFRoFNrLn9X7uOd4MC+NQUpI97Yk/TeOpyz/l+18fo0+H90lMHUePPw3nSMB83hz2ZvnjqunpMGMG\n6bNm8dVb93B4dy+yS4IoafEJI+54Cs8KT1XZ1aa56VwfTGeMWQVUDHUjgDm27TmU1eNgJDDXGFNs\njEkA9gLd67N8SqmLQ5fWs1i95V5ajh3N9d1G0LdPX0qySig8Wghvv23tR3DodwBYeOIE8d+t4ubr\nH2TNlkkM6fk0t/0njED/QO7qcld5xp9/hj17+KNTJ3bv3s3+Xfu59Zor+OcHHhxJ6c8N/R9n5cZn\nSclN4bntd+L7/RxCfR0WCnr6aRZOGsrG5FG4m4NEt1jN4lgPsj1ya35TtWhucsVgurPRJxFpjEm2\nbScDkbbtRoDjkkxHgJgzWTCl1IVl/64DDB64iP3HbmTQgEf4tf0Bnh3wBSJCcJ9gMn88TsR//gOr\nVlU6d/ltT7LklzvxcC/gxgEzeOF//0eXt7uweuJq3BwbOWxPNDXbsIH/vvo62w6vJuHYCEzpfezZ\nF0WjRv/GGMNdC+/i1stu4bUn4ykoAE+PEpa/9Tym0zd4Gh+8gv/NiBuGAxCxP4LjucdrfnNhYbB1\na41ZXDGY7qx2XBtjjIiYmrJUlThz5kz7dnx8PPHx8a4tmFLqvPfZB/N46JFi0rJ6cmP88/jf50sn\n/0k0DbFOpBd8ZTClH86Djh2hVSunc0f1HcOC1S/TqsmXvPzPIqJijzJl0RQe7PEgbRq0Kc+4ejXs\n3ctDazZyePf3/PTHATq3uJWi4jf5Zb0fjWwtUu/8/g5Hso7wv9H/Y15UCd+9/iy+4Z/gFlJASfqt\nXDNlJu4Oo6sjAyJJzk2mRidpblqxYgVfLF7MHxkZzKywCt4pMcbU6wuIA7Y47O8Eomzb0cBO2/Y0\nYJpDvu+AHlVczyilVE3+PPGvJiRwkQn0/8Hce9ODZlPiJhP5YqTJyM+w58n4JcNk+V9mzJdf2tNu\nGTzK9GjfxHh4bDHdL33VGGNMQcExM/PzANPuX+1MYUmh0332dexobhnU0zQMdzN9Ozc0w/rcayIi\njFm6tDzPzpSdpsELDczWxC3mu9dmmu/eb2WWfBhnFr00zRQXOl+vzBvr3jCTF06u+U2uXGnMFVfU\nmOX3rCzT+ddfjTHG2L47T/k7/GzUJBYAE4Dnbf+d75D+XxF5GWszU0tg/Vkon1LqPHbToNv4etU9\nBPom8thDe3nwyVcY9PEgpvedTrBP+TrUgZ4HKM47RknfIRzatZ8n7hvNt+s24ee5mPatclm79UEA\ncixevL47jy/HzsLLvfzx1juvvZbfC/eTtaOIId3iuWfG2/Tr58Xbb8PV1iWxKbIUMf7zm3ihcBRH\nvxuFW0gpu9aPI6DLU9z+sBfVifCP4HheLZqbzsBgunoNEiIyF+gHNBCRw8AM4DlgnojcCSQAYwCM\nMdtFZB6wHSgBptiin1JK1cpt1/TjyxUPEBV2lLmfNaF3vxv5ds+3HM48zN1d73bK6/be26Q1uYG/\njr+RTQkrKCgqIS5iDoFRg1i+HMoePnp06aMMjImhXbC1OejhMTcR03gb83/eSv9O7Rlz+xNcO3os\n/fuXYszz3HrrXwBPCvJymfPCvTzbLBNil2NJv4mBU6azbLsXgYk1v4/IgEiSc06vuQnOg8F0xpib\nqjl0dTX5ZwGz6q9ESqkL0ZP3TeO33z5h9ZbrCfBtj/f/MvHudCklpSX8ZclfeHHgi3i6OzxKmpXF\nO8vW8H1cMT/8spNrurWjRdf/8Mln3VjyRfl4uOUHlrN0/1IWDhnFM5M/Jr7HszTptJkZ/1fEgN5D\n+XzpN1gsMHo0tGrlRkrKe/y8rD1H139MVJufiIsNpiBtHMPufxp328I/sbGwZUsVb8JBpH8t+iTO\n0GA6HXGtlDqvTRgymBV/LCPU/yosJc/w65ZgZpfuZWFqKr/u+p6ogCiubXWt0zl3jBvDTwU7CTnu\nzfTRZfYAACAASURBVIje1/LICwsYMMA68DrS9rxlfnE+93xzD9et6cPe4k2MvGUzC+e25u35JSz4\nZhFX29qUHn3U+l09eey/ubZNHKb4ZvwDOpKVdh+jJj9Rsbj/3955x0dVZo3/e6YkmUwqgYRAAqGE\nHiCAUgSlWOhWliKCyOqquwrK2tBdcS3oz7IvqPuuDcUXbIhiQ2wIYoGgUgVDgACGkgbpdWae3x93\nAiHMnYyymsF9vp/PfG55zn3umTPJc+59yjkkJ8PKlf6/U7wzgNlNDofxulNZaez7IMxiwQ3UeDz+\n6/KDdhIajeaMZP269Tz295l89v1Ozk8fwTdZ7/PKa3bat4dxRc2ZvXMzR76+j5VTVh5fuDZ74hSa\nx21mxVc/Mursfsx7aAk/Di3g4vGKhQuFvn1P1D9n4jXM759Es6tWciBjCP+en8rW7H189vlqBg4c\nCMDCBbWEH53LXyesxha6l9raAWzceC23/+NxU73rIsH6IyYshsraSqpcVYTZwswF67qcWvteLSAi\np72gTjsJjUZzxjFt5Hg2Z6/G41GMGTiOYvs7/GEiXHqpUT4oKoofdy1iXMr5pCemc+Nlkxne/zAJ\nnb5l/hO1jDt/AkvfeZ3aWphiacklQ6qZPNlojK8bfgvnditmwtUf8NO3Q/hs8aWkXzSQzXuu5+OP\n15Oe3p+MNV+z7ZMn6drta7oMs5K3bwhnX/IW2w+8w/7MTL+6B+IkRIR4Zzy5ZbnHp+z6pK7LycRJ\nwOkvqNNOQqPRnDFkZ+5l3qypvPfNeob17sw1sx5l556xvPUWLF9+Qu5I6UE8h94lOmM0r+64kAlX\nr+ft/0vl+ffcrF6zlgEDBgBwyy0QEWclyfU0tw6tJC2/C5dd+T01KXt5760xPPHSq+Q99hgPPTSf\nJxd0Y8PyxexfcwvRqVtp1qw3OfumcNXt/8DmDZ2RmprK+++/7/c7xMUZye/KyiAiwlwuISKBvPK8\nwJyEH053QZ12EhqN5ozg7mmTKfZ8zocbCxg/6AIWf/gRX34Jj90AGzeeFHyVuVfP4bkeg0me8T65\nW/vzwP092JGTzVfffE16ejoAzz0Heduv5bzWvUn5pDct0nbQ7B9/QoX0YczoLMZNDuWee+5hz3eb\neHBGd+JDNxDb/jNy9pxF2/4LGDbnrFN0TE1NZdeuXX6/hwgkJRlvE127mssFPHjdyDTY0x281k5C\no9EENTdfMZkRg7Mpsm7ntXcUj068kWv2Z5KfD5MnG7mC2rQxZKdfdC0DUxQzpn/CsV09WbZ4DN0v\nHErm4fv57LPP6NatGwAzLriR7kfPYVrmFHZ1OsyuafM59/ItdOy4kISEK1n38Ro2r/pfzum6neH9\nDpG7bSDZu69kyKW1XHTNv0x1TUlJ4ciRI1RVVREWZj6WUNfl5M9J1HU3+SXAabB6TEKj0fzuuP6y\nqQzrk8sl0zL41z9bs3pTCJu2bqJtfDyeVklMvaKSqVMdjBkD1w6fRY/SfkwdfgR3v418sOx8Hl+6\njDtuu403H3iArz7/nLvn3EdFYhxpPw3l0g1XsKlHJiuGfsycR4W87/dSuONhtrz9AW3aPYGz3Y+0\naZvGvuxhTLr0PmIviePYsTVkZ586W6k+NpuNtm3bsnfv3uMOyReBjEskOBMCi98USHeTfpPQaDS/\nF+67+W6SnNv4w9Vrydt2FnfemUKxu4ptP2yjtXeA9qHURdQcXkzVN3m80LEvo529sd91JzlHHVx1\naRYjJ0Qyf/58Yj75ik4jLuLK91YQ3etK/vykcCjmIC1eTuSvFwzj9ZdeZfUL8bRtF0Nkyixal/cg\ne293BqX/m2GzTu5OiojoRXn5NpTy4C+LQWpqKllZWafvJCISOFB8wL/Qb5BTQjsJjUYTFMyaOpuU\n8GIGX/ABZQfbs2LxKGK6d6JclrN27VpatmwJwPRR19HW3pM/H+1KsSeZotGLaHfxJ3Tp+jiJiX8k\nOzOb2X+7kZJubcm+7w6ith7k2gVRJBS5GPLWYD7c/Qqbvnqco4d20y4li5LaNPZk9qDdF/dy8es+\nkvt4sdtjsdliqazcS3h4R1O5Oifhj+RkI4WFP+Kd8Ww8tNG/UGws5OT4FdFjEhqN5oxm+og/0b0q\nnTFDdkO/jaz+YBh3P/MiXx++j3feeYc1a9bw7IIX2bAviy7HBnP515PZ0z6PT/suZ/bcfRSH7SXz\n+7/z6l1LCElcwTejxlB42Ui6rP+WW+/8kZSjHTlw8Yc4Wh1k48GbaZl4FEdZGnt292DoWYsYNiad\n8p3lbBvTyDJo6t4mtjTqJLZs2eK3nuRkePNN//f6j3U36TEJjUZzppGduZdHb3iO7nlnM8HWB8vc\neRw4EsHVl2TxVO1UxkwbQ/7mQtr36s0VTy0kTA3gjx/3othRwEf9V/D/3r6O22cu4KlbFWcdLcbe\nZjnfXDudfGcUXb7YyI3NWlOpDpJ83QaiU7fRPD+R3OxUftg+hmvuup/o8bEn6RPeJfx4EqLQ1qGm\nekdE9KasbAstWlxuKpOamsqbjXiAQLubGh24DjDI34Hqav/1+EE7CY1G85tx+7V3YMlsTtreXpwj\n51F65VPYh66md/rzjE6YgsfjwfJGJJZOnSm6rB/Fu2uY/kwIMUdrOG/ZAGY+fgNt87L5qOsSHsw7\nyr9GDGPuzQ/T+ce9XL11HUkJeTQbtBt7swKKs9LIyUlmf9RVLO19Nhkz+prqJSJED46m+Mti4ifG\nm8pFRPTiyJHFpuUQeHfTTz+BUicCCTYk3hl/2jklwDsmUd5Iljs/aCeh0Wh+Vf694FlWfbWBbkWD\nOGfDReQkF/Ntn3eYeOdWQsI8rP90Hm/e+wzulLfYNGwYuVMuJv2rzcyZm8/3zTexoFsRoa5D7L9j\nBs9llfB9TBSvDhrFrgRon1jIi3If9sF5lGd3JjcnmYObxjLt9rtpMdYYw6j1eJj39dccrq4mMdT8\nLSEQJ+F09qKsrLGupGQKCgqoqKggvEFK1OP3igaLBYqKjHbeF83Dm3Os8hgujwubxaSp1ovpNBrN\nmchrL7/BklUfUNEhhZb5/bn6k3Ycicvlnd5vkjBoJPkb9rP8+nJ6VeVRnJ7Byluvx15WTpulqwgL\nETJCy1kz+D0uP7qLR9bb2TxgBLahrVkz6SjRrbOZ3vzdE05hVT8mP/Q4rcYk+9TFbrFwUWwsK48e\nZaafDG3Rg6PJWur/DcDhaI/LdYza2mPY7b5bd6vVSrt27dizZw9paWmmddW9TZg5CZvFRjNHMwoq\nCmgZ0dK3kF5Mp9FozhTeffN9nlu+jNJOyexM68Oo8JFcvDCSktBC1l68lZ/2bKNv7h6Gv/ASESFO\n7pk0hR+3lFC2NxYWfsHBhAPs75fBuH1pjItuQVJiG+LOthF6XRb9yjZSmtOe3Nx49hwZzVWz76D1\n6DZQU2MsX76/xq9uY+PieDM/36+TiOwTSUVWBa5iF7Zo302jiAWnM42ysi3Exg41rauuyykQJ9Gz\np7neddFgTZ1EdDSUloLbDfXSn9ZHD1xrNJomITszm3nX/JlwexX56d34+pzziD5/CMNX5NPik+Vs\niarmuwF5jD6WxbRVeWyrjmJ5jwmssCSxv6gVue8XMKFHLgM7VDC9eQXNWhTgTLRhOS+DigMdKTzc\nmk3bOpMaNpuJ10z3rURICFx5Jbz0Etx/v6muo+Li+HNWFlVuN2EmjaklxELUWVEUf1NM3Mg407rq\nZjgF4iT80abNzxi8TjARsFggKsrot4rzrbNeTKfRaH4zpg2/lOZHc+hamUtFpy7s/sMovg6JZNTr\na4nd+QY5ziKWx+7j3PII0ojnWFks7xdcxcfRUZzXey9D44tIaLGfmPgjOFplo1x2Kg6ncCwvgd27\n20POeUz/623EjWmBUor0Z9J5YPBU/0rNmAFjx8K8eaZP03F2O70iIvi8qIhRJo0pnBiX8O8kelNS\nst6vSqmpqWRk+M++HOiq64DjN5k5Cb2YTqPR/Bq8+tJrvPDKmyQUH+KsohyGF+RydkQinyRfyHoV\nx75DtRx+6SNmJkcikceIqsyjc0ELOjn60SqtluZxpUQ1y8ERn4El+ii1ua2pKEikML85BzankbH0\nGha+OoukJN/3FxHmDpnLg+seZEzqmOM5IU6hZ09o0QJWr4YLLjD9PmPj4nivsLBRJ7F//n6/domI\n6MWhQ//2K9OpUyeWLl3qVyY52VDZHwElH2pkhpMek9BoNKfN3sxs/nTTXRywVWNTBXTZs4HQNhcQ\nWRNLdvlgdltL2Tu0iBaxLtoW5dI1pZjLohVxMXaiovMIjykgtPkRxJFFzeFkygpbUnQ0lp9+6ITs\nG8rVt/6V+ItOHg+491649VZ44w1zvS7vejl/+/xvrNm3hmHthpkLzpgBL77o10mMi4vjoq1beVop\nU4cTNTCK0m9L8VR7sIT6Dr3hdPagouJHPJ5aLBa7T5mfMw3WHwnOANdKNOIk9JiERqMJiL2Z2fz1\nTw+QXxNKTkgl8bYjdAux43YXE1vdnBQSCQmLJLxvErGRitioCqIit+KMLMERXUhIi8Ngc1Gb14rK\nYy0oLYrl0OEWHMtqQ3iL9sycM4uYZrFMnjyZ6OhonnnmGVNd7rwTuneHjz+GCy/0LWO1WLnznDt5\ncN2D/p3ElClwzz1G33xMjE+RLuHh2EXYWl5OL5NEDrYoG+Gdwin9vpTogdG+dbI6CQ1NpqIik4iI\nHj5lWrVqRUlJCaWlpURGRvqUCXRBXWah/yRGjc1wslkshFksVPivxfz6X3idRqMJUvZm7uXvs++g\ntCyS4vwyOqZaKVYuKqtqiXeE0z4R+kSUE+10ERlhI9xZjiOigtDoTdib5YHVjaswnuqi5lSUxFBa\n6iQ3P4niyg7EpfSg37BVtGyXTJcuL5kGunvuuefo168fS5YsYepU32MKDgcsXAg33QRbt4LZEoap\nPacyb+08NuRsoH9Sf99CzZoZnua11+D6632KiAjj4uJ4r6DA1EnAiXEJMycBxrhEefkWUydhsVjo\n0KEDu3fvPp6/oiFJSUbYpcYW1J1udxMY4xLaSWg0/yXce9NcNq5fgzOyFZXVZbSIiiIqwkJ0hBAV\n7sbpcHHhWdU4HIWEhpcR4izFHlWEJaYQqsNwFTWjpjSWytJoKsqdFBTEULK/BSVVXYkoSmFwzvmc\n8+EAQlqE+Ly/230TW7eOJCvrL6SmPu2z6yYyMpJly5YxYsQI+vTpYxoRdexYePZZePxxmDvX9/e1\nW+3cPuh2HvryId6Z9I65YWbMMAavTZwEGOMS92Rnc09KiqlM9OBocpfmwm3mt4qI6EVZ2WYSEq40\nlanrcjJzEuHhRma6/HyIN1m/F/DAdQAL6o74r8WUoHMSIjIS+B/ACjyvlHqkiVXSaH51LjxvOK2c\ncUQ5bYSHCmGhHpyhCkeoi7BQFw5HNaFhVYQ4KhjYs4whA0uxOHcgEaVQ6cBdEkttWTQ15ZFUVTqp\nrAgjLz+WssoWlFUIZTU27MNG8GL3TjzUtx1/TEz02bgrj2Lfvfv4vv/3pL2fhrOb8xQZqzWctLT3\n2bJlBHv33kn79g/7rKtnz5488sgjTJgwgYyMDJzOU+sCWLAA+vUzZrK2NcnUeU36NTyw7gG25W4j\nLcFk7cGFF8If/wg7doCJUzo3JobMykpya2pICPHtBKMHR7Prhl0oj0Isvh/xIyJ6kZOzwLceXn7O\nuISpkwg0flMAkWB/KUHlJETECjwFnA8cBDaKyLtKqZ1Nq9nPZ82aNQwdOrSp1WgUrecvZ+2na3h7\n8WtUlRURFmIhzAqHjh6hc5t4Qu0eQkM8hNrdhITUEhJSiz2kBntINbbQamwhlVjDKrGElWNxlnPX\n36ugwomnwom7MgJXVTi1leHU1oRRXRVKZWUoR49FUF5lo7xKKK0UKmotXH71VC4aPxIyM41O/k2b\n4KGHYNIkYw59A6aXl3PpkiWsGDiQ5zp3plWDPh6xCO3ub4ejk4PNQzfTdUlXml3Y7JR6bLYoevZc\nxaZN52GzRdG2re9kPDNmzOCLL77ghhtuYPHixT6dSbt2MHu28Xn77RPn6//mDruDWwbcwvwv5/PK\n5a/4/kGsVpg2zRjAfvRRnyIhFgsXxMaysrCQGSYL60JbhWKLsVHxY4VPJwl1gf42o5Ri7dq1Pv82\nU1NTWbdunW9dvdQ5ib4mYaXqupuUn8F2YmON/jo/RNl+eVMfVE4COBvYrZTaByAirwEXA9pJ/Eqc\nyXrmH8nnmy++ZmvGtxz6KYfa6ipsFrBZwG4TQmxGu2G3KGw2hc0KNqsHm1Vhs3qw2zxYrR7sdjc2\nqxurzY3V6sJqc2G11WKx1WK112Cx12CxV2MJqcESUo2EVEFoNVg8XDzRgafagaoOw13t4OXlRfTq\n2QZXTQiu2hBqa4xPebmD6mMRVNVYqa6xUFkjVNRAVZWitNLDli0OojsuZvp0mDDBWEhbnx/yfuCf\n6//J8p3LmdR9ErcMvIVOcZ1OCHTubLSw69bBnDnwxBPw2GPQwGbdnU4mHjqEJTKS9G+/ZUHHjkxK\nOHWlVsurWhKWEsaOP+yg7d/b0vqG1qfI2O1x9Or1CZs3n4vVGkFS0qxTZESEp59+mv79+7No0SJm\nzpzp8/e97TZIS4OVK2H0aN+/+Q39bqD9wvbsPrqbjs1MQnXPmAHnnWc4SrvvmUdj4+JYUVBg6iTg\nxLiEmZMICWmFUh5qao6Y/g+lpqayaNEi03tA44PXYbYwHHYHRVVFxDpM4ncE2N30Swk2J9EaqG+y\nHOCUkaoJ/c3D9Eroqd62Wk4esgmxnXh6kuoTT1vKUes9aRjUriwIFjy13vOhVmzHB+rq7mN4+Don\nbwEQYdOu7Rz4bgcWZRQYl1lAFFaxgHgQJSAg4n1KUB6sFgsebz0ieMtBlHGy7rwcr06wSJ2sQgQs\nIogovKoYOlmUIQdYvPVaRPHldz/wSO5O73V1uhj1WL1bEYXF4t3WKzfOq5O3ohCL5/ixWDxYxINY\nFCIeb5nHu+/GYjW2YvEg4kasbuPY6kasruPb7B0lrF6xALG5wOoCmwuxu4iMtXHOCBu47CiXzfi4\n6/ZD8LhseNx279Z2fOt2W3G7bLhdNlxuK1XVIbgqLLhcFmpdFlxuCzW1YnxcUOOCqlqorYWqGjfV\nNR6Ky4soKq6gc9dKZt6yB4ejBXGb4hgwaS7R0UOw22Nwu91kZGTw7rvv8u7H71JYWMjYsWMZf/l4\nzj///OMB4Gpq4MMP4eWXjTZ+1CiYPt2Y0WmzQff47jw//nkeGP4AT2c8zeBFgxmUPIg5A+cwuM3g\nE0+ZQ4bA+vXGvNIZM4yW95FHTkqmbBVhXrt2jI2LY9qPP/J2QQFPp6bSvEH3S8yQGNK/TGfb2G1U\nZFbQ8fGOiPXk/6/Q0ER69fqUTZvOxWqNJDHxmlP+/5xOJ8uWLePcc8+lX79+9OrV6xSZsDB48kn4\ny19g+HDjuCGRoZHc2O9GHv7yYZ4f//ypAgCdOkH79rBqFYwb51NkdLNm3JSVRbXHQ6iPty3wOol1\nxbS6rpXPchHxjkuYB/v7j06DLc89PSdxGm8SopT6xRf/pxGRy4GRSqlrvcdTgf5KqZvqyajVnzTi\nFZWP1zJf53yVHd/3bpWP86p+mZwoV3WnhcWvVDN9clg92brrDDlVV4+qX6e3rN5+XZmqu75uv941\nymMxZJWglMXYUk/+uMyJeuq2r6w8xORRSSiPxSsnx+tRXjlV/9hTt4/32IKnnpzHY3yO79fbKg+4\nPPXOuwW3Ung8gtsjuD3g8YDLo3C7BbcCjwtcStiwfRu9U3tQ43HjqlVU1SqOlh4lNDKM2ko3UQ4b\n4oKSiCryVREFRTkMDositaSKTqVVpJYYnxCPIisqjNwwG+WOcA60bsO+5DbsT27LvuS27E9qi8Xj\noc3BA4RVVQEQVWwn+YCT5J+cJB9wkvSTk4pwF/nxVXjq2hhrLY42e1hZ+ArTp1lwtMukJq8VruKT\nu2oO51eRsb2YjO1F7D5QTmpbJ6H2kxsqlyuWoyWXUVA0iZraZMLDNp/6J2uroqb7p9T0XQG1oVjK\nmp8iE+L2cGNmLrdvP8zmZuFUexvEV0oqmRLlAKDaHsKSCVP4YuAQOmTvOaUOgLBKK1MXd8BZYaM4\nutanTEj8QdrO+jtVB1M4YZSTWfttIS++k0OHJN+RUQF2H3iZGlcrbNYCqqqXEBZ68swoT1gJZTNn\nYj1knhr0mqw87th+mB3RDlOZ2//2EBaPh/BK33N+WuSG8ZeFXcluX2ZaR8JlL+LssoXFS2qYMvrU\nNy2lFJNu30T3jpGYtT6FRVfwU+48wsO2m96nbOJtxkNlte8ZWV2LKvly1Q98ER9lWse/p13LB/Mf\nRSl/DaFvgs1JDADmKaVGeo/vAjz1B6+l7hFZo9FoND+L34OTsAGZwAjgEJABTD4TB641Go3m90BQ\njUkopVwi8hfgI4wpsC9oB6HRaDRNR1C9SWg0Go0muPA9whQEiMhIEflRRLJE5A4TmYXe8i0i4ntZ\n469MY3qKyFARKRaRTd7PPU2g4yIRyRWRbX5kgsGWfvUMElsmi8jnIvKDiGwXkZtN5JrUnoHoGST2\nDBORDSKyWUR2iMh8E7mmtmejegaDPevpYvXq8J5JeeD2VEoF3Qejq2k3kALYgc1A1wYyo4GV3v3+\nwPog1XMo8G4T23MIkA5sMylvclsGqGcw2LIl0Nu7H4ExhhaMf5uB6Nnk9vTqEe7d2oD1wOBgs2eA\negaFPb263Aos9aXPz7VnsL5JHF9Up5SqBeoW1dVnPLAYQCm1AYgREbP8Tb8WgegJmM6A+01QSq0D\n/CXCDQZbBqInNL0tjyilNnv3yzAWejacTN/k9gxQT2hiewIopermoYZgPHg1nPTf5Pb03rsxPSEI\n7CkiSRiO4Hl86/Oz7BmsTsLXorqGE5F9yZikL/nVCERPBQzyvtatFBHzCd5NRzDYMhCCypYikoLx\n5rOhQVFQ2dOPnkFhTxGxiMhmIBf4XCm1o4FIUNgzAD2Dwp7APzHCE3pMyn+WPYPVSQQ6mt7QS/7W\no/CB3O97IFkp1Qt4Eljx66r0i2lqWwZC0NhSRCKAN4FZ3if1U0QaHDeJPRvRMyjsqZTyKKV6YzRU\n54rIUB9iTW7PAPRscnuKyFggTym1Cf9vNQHbM1idxEEgud5xMoa38yeT5D33W9Konkqp0rrXVKXU\nh4BdRE6NmNa0BIMtGyVYbCkidmA5sEQp5ashCAp7NqZnsNiznj7FwAdAvwZFQWHPOsz0DBJ7DgLG\ni0g28CowXERebiDzs+wZrE7iWyBVRFJEJASYCLzbQOZdYBocX6ldpJRqJKbuf5xG9RSRBBEjsI6I\nnI0x7dh/oJXfnmCwZaMEgy29938B2KGU+h8TsSa3ZyB6Bok9m4tIjHffAVwAbGogFgz2bFTPYLCn\nUmquUipZKdUOmASsVkpNayD2s+wZVIvp6lAmi+pE5E/e8meUUitFZLSI7AbKgRnBqCdwBXCDiLiA\nCowf7jdFRF4FzgOai8hPwL0Ys7GCxpaB6EkQ2BI4B5gKbBWRukZiLtCmTs8gsWejehIc9kwEFouR\n4s4C/J9S6rNg+18PRE+Cw54NMSLAnYY99WI6jUaj0ZgSrN1NGo1GowkCtJPQaDQajSnaSWg0Go3G\nFO0kNBqNRmOKdhIajUajMUU7CY1Go9GYop2EJigQEXe9EMubRKStN/Tye97ycWISMr5eHcflfZTN\n9i6C8lW2RkT2Nzi3QkRKf+F3eUmMfO2/GSIyVkTmeffniYhHRDrUK5/tPdfHe9xXRLaJES56QT25\nm0Xkqt9Sd01wo52EJlioUEql1/uc1Ggrpd5T9XKd/wJmAeF+yo+JyDkA3pW1ifzy+EBNsfhoDvC/\n9Y63cfJirgnA9nrH/wvMVEqlYkQNGOk9/yJw06+pqObMQjsJzRmBiFwtIk969zuIyHoR2SoiDzR4\n4o8QkWUislNElnjlb8YIk/25iHzmo3oFvM6JRvUyjJhHdSEWIkTkUxH5znvP8fX0miZG1M/NIrK4\nXp3nishXIrLH11uFN5TLThF5VoykQB+JSJi3rLf3+20RkbfqwkH4sU0yEFIvtILCCC53cZ29gCKg\n0HucCEQqpTK88i8Dl4ARfwgoFJHu/u6p+e9BOwlNsOCo19W0vBHZBcA/lVI9OTnkMRghsWcB3YD2\nIjJIKbUQOAQMVUqNMKnzM4yG3YIRg+v1emWVwKVKqb7AcOBxAG9DejcwzBsddJZXXoCWSqlzgLHA\nwyb37Ag8pZTqgdGI1zmTl4HbvNFEt2GEJ/HHORgRSOtTAhzw6lj/+whGqOj6gSgPcnKI+wzg3Ebu\nqfkvQTsJTbBQWa+rqbH+/AHAMu/+qw3KMpRSh5QRb2YzRtbAQHADXwKTgbAG3V0WYL6IbAE+AVqJ\nkaRlOPBGXRA3pVSRV77uSR6l1E7ALKFLtlJqq3f/OyBFRKKAaG8CJjCSwzTWYLcBDvs4/7r3+1wC\nvF1Pt8a6ww4RuN00v3O0k9D83qiut+8m8CCWCiOz4ALgjQZlVwLNgT5KqXQgDwjzXmMWs7+m3r6Z\nTENdrT5kAs105is/wPsYQf72e7uR6jjEyUlmGoaKFoIzn4imCdBOQnMmsh4j4iYEHmmzFIjyJ+B9\nen+IU99OojASubhFZBjQFqMRXQ1MEG/OABGJDVAXM0QpVYIxiD7Ye+4qYE0j1+3HyGndsK5K4A7g\nwfoFSqnDQImI9PeGtr6KkxPkJAL7ftE30Pzu0E5CEyz4enKt3zVSf382cKsYqSQ7AMWN1APwLLDK\nZOD6xMVKPVEvB0BdXUuBfiKyFaNB3emV3YHRAK/16vK4iR5mOjU8X3c8HXjU273VE/gHgIjcJyLj\nfNTzFdDHV11Kqdfrcl034EaMHMhZGHnaV9UrOxtY5+MazX8hOlS45oxDRBzep2REZBIwUSl1L4AF\ngQAAAHhJREFUaROr1aSIyGrgSu9bwunUEwV8ppQ66z+jmeZMR79JaM5E+nqnnG4BrsdYI/DfzmMY\ntjhdrsYYl9FoAP0modFoNBo/6DcJjUaj0ZiinYRGo9FoTNFOQqPRaDSmaCeh0Wg0GlO0k9BoNBqN\nKdpJaDQajcaU/w+u/OpMnewwtQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5d36550>"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg296"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 5.13\"\n",
+ "#plot the graphs\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from numpy import linspace\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "#T=Th/Tc\n",
+ "z0=numpy.linspace(0,8,160)\n",
+ "i=0\n",
+ "z1=numpy.linspace(1,4.5,7)\n",
+ "for T in z1:\n",
+ "\tg1=numpy.zeros(160);\n",
+ "\tgc1=0;\n",
+ "\tfor alfa in z0:\n",
+ "\t\tFR=((1+alfa)**(1./2)*(T+alfa)**(1./2))/(T**(1./2)+alfa)\n",
+ "\t\tg1[gc1]=FR\n",
+ "\t\tgc1=gc1+1;\n",
+ "\tnumber=0;\n",
+ "\tpyplot.plot(z0,g1)\n",
+ "\ti=i+1;\n",
+ "\tpyplot.xlabel(\"Bypass ratio(alfa)\")\n",
+ "\tpyplot.ylabel(\"Ratio of mixed to seperate-flow turbofan engines gross thrust\")\n",
+ "\tpyplot.legend(\"T(hot)/T(cold)=1.5\",\"T(hot)/T(cold)=2\",\"T(hot)/T(cold)=2.5 so on\")\n",
+ "\tpyplot.title(\"Ideal gross thrust gain with a perfect mixer\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 5.13\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFBCAYAAACcr2PXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4XNW1t9+tkUZTNCq25Sa5995kuWBjgbGNHUhIyA3h\nEggkQBotl8C93A+Cw01y0wvhEhJKqCEFEhIIBoMbrpLcuyz3Llm21WY0M5qZ9f1xjsYjW2UsjTSS\nvN/nOc+cus86M2fO76y99l5biQgajUaj0USSEG8DNBqNRtPx0OKg0Wg0mkvQ4qDRaDSaS9DioNFo\nNJpL0OKg0Wg0mkvQ4qDRaDSaS9DioNFoNJpLaFYclFIPRrNOo9FoNF2HaDyHOxtYd1eM7dBoNBpN\nByKxsQ1KqVuBfwcGKaXejdjkAs62tWEajUajiR+NigOwDjgFZAI/A5S5vhLY3sZ2aTQajSaOqOZy\nKymlUoAaEQkqpUYAI4AlIlLbHgZqNBqNpv2JRhw2AbOBDGAtUAj4ReS2tjdPo9FoNPEgmoB0goh4\ngM8Bz4rIvwFj29YsjUaj0cSTqPo5KKVmALcB/7qc4zQajUbTOYnmIf8Q8BjwdxHZpZQaAqxoW7M0\nGo1GE0+ajTloNBqN5sqjqaasACilGvISRESubQN7NBqNRtMBaFYcgEci5m3AzUCgbczRaDQaTUeg\nRdVKSqlCEZnaBvZoNBqNpgMQTbVSt4jFBCAHSG0zizQajUYTd6KpVtoM1LkXAeAw8NW2Mkij0Wg0\n8afJaiWlVAIwQ0TWtp9JGo1Go4k30aTP2CoiE9vJHo1Go9F0AKLpBPexUurzSinV/K4ajUaj6QpE\n4zlUAw4gCHjN1SIiOiit0Wg0XRTdQ1qj0Wg0lxBNayWUUlnAgMj9ReSTtjJKo9FoNPElmn4OPwZu\nAXZjVC3VocVBo9FouijRxBz2AeNExNc+Jmk0Go0m3kTTWukAYG1rQzQajUbTcWi0Wkkp9Rtz1gNs\nVUotA+q8BxGRB9raOI1Go9HEh6ZiDpu4kDbj3Yh5FTGv0Wg0mi5Io9VKIvKyiLwCZNTNm9PLQEa7\nWdjFUEoNVEqFzNQkrS3rsFJqbizsigdKqZeVUv8Tbztai1JqtlJqbxuf4zGl1PNNbL9TKbW6LW2I\nJUqpPyilzimlNsTblkiUUlVKqYHxtqMjEM0D6ssNrLszxnZ0KdrxoS10Ei+ukYdXu9lvCvLgtihb\nRFaLyMi2KDviHP8rIvdAbF8w4oFSajZwHdBXRKa3opyYC6KIuETkcCzL7Kw0FXO4Ffh3YJBS6t2I\nTS7gbFsb1snpNA9tAKVUooh06AGcYmRjV0sB0+muRyllwegzdVhEvM3t3xVQSllEJNj8nh0MEWlw\nwvgB84ANwBxzPg+YDCQ2dpyeBOAQcK05bwF+BpzBaPn1LSAEJJjb04AXgZPAceB/IrYNAZYDZebx\nrwNpDZ2nARu6Y8SKKoAC4PvA6ojtIeCbQDFwwFx3j7l8FvgH0Cdi/18CJWZ524Ex5vpFwC6g0rT/\n4QZsGQXUYKR8rwLOmev/ADwDvGcevwEY3JiN5j0Z/u7MfVYCXzXnhwKrgHLz+3rTXP+JeVy1ef5/\na8DGBODn5nEHgfsu+p3uwujrU2nacm/EsXnAsYjlw8DDwDbTlj8ByY38TkeAyeb8beY5R5nLXwX+\nbs4vBl4z54+a+1WZ9kzH8PBXAz8FzpnXcH0T9+h/AfvN43cBNzWx72LgLfM6KjHikeMjtvcF3gZK\nzfPe38Cxr5n3zr0X3QtPmvvdAGwFzgNrMZrP15XRD/ibWX4Z8BtgJEY6n3r3VAO2r8T4T6019/sn\n0AN4gwv/jQEX3XODMVpobgHui/gfrwUeb8E1fyXez6QWPcfibUBXnKgvDl8H9gBZGLGaFRidCese\nOn8HfgvYgUwgH/PBgyEOc4Ek84ZeBfyyofM0YMOfgD9iDO06ynygfBKxPQR8CKQDycC1GA/GieYf\n42lglbnvAmAjkGoujwB6m/OngKvM+TRgUiP2fJkIcTLXvWz+2XPMP9/rmA/0RmwcyKXisKLuzwe8\nCTxmzluBmReVNbgh2yJ+p13mnz4d+Pii32kRMMicvxpw110rl4rDIQyh623+5ruBrzVy3leA/zDn\nf48hhF83l18FHjTnF3NBHBoSyTsBP4agKPN6TjRxvZ+P+A2/gCGcvRvZd7FZ9ufM3+lhjAeiBUNU\nNwGPY9REDMIQz/kXHftpc9l28b0ATMJ48Zhq2n6H+R0mmefYhiHcdvM+mNnYPdWA7SuBfaZdqeZv\nXIxxv1vM7/+lhu4TYAyG0I4E/h+wzrTvsq853s+kFj3H4m1AV5yoLw7Lqf+WOa/ujw30wnj7sUVs\nvxVY3ki5NwGbGzrPRftZzJtzWMS6/+FSzyEvYvlF4EcRy06zjP7ANUARMI2IB5K53xGMt8HUZr6T\nOy/+I2N4Dr+PWF4I7GnCxoE0LQ6vAL8Dsho4f3PisBy4J2J57sXnumj/vwMPmPN5XCoO/x6x/GPg\nt42U8xXgH+b8bnO5zuM5DEw05xdzQRwa+h7uBIojlh3mPj2jvGe31D3MGti2GFgXsawwPN1Z5j1x\n5KL9H8N84JrHrmzqXsB4OXrqon32YojwDIy380t+h4buqQb2WYH5wmAu/wz4V8TyDcCWxu4T4D8w\n7v2zwBBz3WVfc2ecOmVAq5PRBzgWsXw0Yn4AxtvRKaXUeaXUeeA5DA8CpVQvpdSflFLHlVIVGG5q\n9yjOmYnxRhN53uMN7Be5vQ/Ggx4AEXFj/CGyRGQFRvXP/wElSqnfKaVc5q43Y7xVH1ZKrVRKXW6A\nsSRivgZIacLG5ngU48FVoJTaqZS66zKOvfh3qvd9KaUWKqU2KKXOmr/TIpr+LU5HzDd0XXV8AsxW\nSvXGEPW/AlcppQZgVCFuvYxrCJ9TRDzmbIPnVUrdoZTaEnHfjaXp6wl/H2I8AY9jeFn9gb515Zhl\nPQb0bOjYRhgAPHxRGdkYv0k/jAdxqJkymiLyHvNiiE3kcmO/DRjeW3/gfRE5EGFva6+5w3NZ4qCU\n6qaUGt9WxnRRTmHcXHVEzh/D6FjYXUQyzClNRMaZ23+IUbUxVkTSgNuJ7jc7g1EX2y9iXb8G9pOI\n+ZMYb6QAKKWcGA+LEwAi8hsRyQFGA8OBR8z1G0XkJgxBegf4SyM2SSPrmyPyOLf56YhY1zu8o0iJ\niNwrIlnA14BnL6OF0ika+b6UUskY9cs/wXgTzwDeJ/qAcKPXLiL7MTqa3o9RjVeF8ZC/FyOG0FAZ\nLf0uATCF5/cY8a9u5vXspOnrifw+EjAe3icw7uFDEfdvhoikisgNEbY2Z+9R4AcXlZEiIn82y+9v\nBrIvpiXfw+Ue8yxGTOx6pdRV5rpYXHOHp9kHjVJqlVIqVSnVDaOe7QWl1C/b3rQuw1+AB5RSWUqp\nDIxAIAAicgpYCvxCKeVSSiUopYYopa42d0nBeCBWmplxH4nmhGK0jPgbsFgpZVdKjcQQlqZu2DeB\nu5RSE8yH4Q+BDSJyVCmVo5SappRKwniQeYGgUipJKXWbUirNPGcV9ZMzRnIayDbLqOOyWtuIyBmM\nB9LtSimLUuorGHEZozCl/k0plW0ulpvXW/fGWRK5bwP8BXhQKdVXKZUO/CcXvi+rOZUBIaXUQmD+\nZZje3HWuwgiArzKXV160fHEZZzCuq6nraQonxrWVAQmmhzW2mWOmKKU+q5RKBB7CuAc2AIVAlVLq\nUfNesyilxiqlchqwuzGeB76ulMpVBk6l1KeUUikYMbhTwI+UUg6llE0pNdM8roRL76mGUI3MN32Q\nUrdjxEO+DDwAvGK+NBXQ+mvu8ETzFpomIpUYwahXRSQXo42yJjqexwiqbsMI6r5N/Yf0HRgPnt0Y\nwa+/cuFt+HsYrcMqMFoeXXxsU9yHESA+jVEX/yZGDKGOeuWIyDLgCfMcJzGCbF80N6divGmew6gH\nL8NoFQPwJeCQWe11L0aLm4ZYjhEMPK2UqnPrG3rDau4N+R4MkSzD8GIixzfPATYopaowWls9IBfa\nrC/G+HOfV0p9voFyn8cQ6u0YL0H/AoIiEjLf5h/AEJBzGHGhfzRh98U09ya5CuNF4JNGluuVYVYZ\n/QBYq4yOZNMaOUeD5xSR3RgB3vUY98dYYE0z9v8DIzvzOYzf+HMiEjRfCm7AaMhwEEO4fo9xzzR2\n7fXWicgmjN/1GbP8Yoz/BWZ10o0YLdGOYry1f8E8dBmX3lON2d/guRvZjlKqP0YLvTtExCMib2L8\nf3/RwmvudESTlXUHxlvSKxjNuAqUUttFpMnqJaXUS8CngNKIapKL93kaIwjpAe4UkS3m+scwHjoh\nYAdwl+issK1CGanXe4rI5dTDX7GY3sFvRWRgvG2JN0qpJ4GhInJ7vG3RtB/ReA5PYbz5HjCFYQiG\nsjfHH4DrG9uolFqEccMNw3jj/K25fiDGW8RkU1QsXHiD1USJUmqEUmq86abnYrSC+Xu87eqomNUV\ni5RSiWYV3pMYVXOaLlJNork8mh3sR0T+ilHVUbd8AKOFSnPHrVZN5yj5NIY3gojkK6XSlVK9MDrZ\n1AIOpVQQI/h4ornzaS7BhVGV1BejbvZnIvLP+JrUoVEYVU9/wmhd9B7w3Xga1IHoEtUkmssjmpHg\nfoLRu7YG+ACYAHxbRF5r5bmzuLTpYJaIbFZK/RyjfrEG+FBEPm7lua44RGQjMCzednQWRKQGyI23\nHR0REflevG3QtD/RjCG9QEQeVUp9FiMY+TmMJnatFQdowF01q60ewmhWWQH8VSl1m4i80cC++m1G\no9FoWoCINFldGE3MoU5AbgDeEpEKYuNinqB+u/K6dtM5GL0xz4qRaO1vwMwGjgc6Rw/vJ598Mu42\ndBU7O4ON2k5tZ0efoiEacXhXGbnqpwDLlFI9Mdo4t5Z/YjZXU0av2nIRKcHoqj7dbD+sMJrN7o7B\n+TQajUYTJdEEpP/LjDtUiEhQKeXGyPHTJEqpNzGyufZQSh3DaP2RZJb5OxF532wdsh+jo9dd5rat\nSqlXMdoUh4DNGG2INRqNRtNORBOQtmL0rr3aeJFnJUb+nyYRkVuj2Oe+Rtb/BCNVQZcgLy8v3iZE\nRWewszPYCNrOWKPtbH+i6QT3IoaIvIIRQL4dCIjI3W1vXtMopSTa+jONRqPRGCilkGYC0tGIwyW9\noaPpId0eaHHQaDRXImYtTlQ09IyMRhyiCUgHlFJDIwodgpHxU6PRaDRxIlatkhojmn4OjwDLlVKH\nzOWBmMFjjUaj0XRNmhQHZeRQn4CRv3+EubpIrpCBwTUajeZKJZqYQ6GITG0ney4LHXPQaDRXImbM\noMX7xSog/UuM/gl/xuiPoDBGCtzcrGVtjBYHjUZzJdJRxGElDaTLEJFrmrWsjdHioNForkQ6hDh0\nZLQ4aDSaK5H2EIdoekg/zKWeQwWwSUS2NmudRqPRaDod0VQr/REjU+q7GPGGT2EM3TkAI0vrj9va\nyCZs056DRqO54ugQ1UpKqdXAQhGpNpdTgPcxhgDdJCKjmrWwjdDioNForkTao4d0NJ3gMgF/xHIt\n0EtEPEop3d9Bo9Fo2pn2eCmORhzeAPKVUu9gVCvdCPxRKeVEj7Og0Wg0XZKoWisppaYCV2EEpteK\nMT5x3NHVShqNRnP56KasmstGRPD7/fh8PgKBAImJiSQlJZGYmEhiYuJl1XVqNJqOSaxiDpouQCAQ\n4PDhwxQXF1NcXMz+/fs5efIkZWVlnDlzhjNnzlBZWYnP5yMpKQmbzYbFYiEQCFBbW0sgECAUCuFy\nuUhLSyM9PZ20tDR69epF3759L5n69+9PSkpKvC9bo9G0EO05dEFEhEOHDrFhwwby8/PJz89n+/bt\n9OrVi6FDhzJs2DCGDh1KdnY2mZmZ4SktLQ2r1UpCQsOZ3IPBIJWVlVRUVFBRUUF5eTklJSWcPHmS\nU6dOcfLkSU6ePMmJEyc4evQoaWlpDBs2LHy+YcOGMWLECEaMGIHVam3nb0Wj0dQRq6asKUCNOX70\nCIzsrEtEpDZ2prYMLQ4X8Pv9rF69mvfee4/33nuP6upqZs6cybRp05g2bRpTpkxp1zf5UCjEyZMn\nw55K3VRUVMThw4cZOnQo48aNY/z48eHP7OxsXW2l0bQDsRKHzcAsIANYCxQCfhG5LVaGtpQrXRxE\nhA0bNvDCCy/wt7/9jREjRnDDDTdwww03MGHChA77oK2pqWHPnj3s2LGD7du3s2PHDrZt2wbA1KlT\nyc3NZerUqUydOpUePXrE2VqNpusRK3HYIiKTlFL3A3YR+YlSapuITIilsS3hShWH8+fP88orr/DC\nCy/g9/u5++67uf322+nTp0+8TWsxIsLx48cpKCigsLCQgoICNm3aRPfu3cnNzSU3N5fp06czZcoU\nkpOT422uRtOpiZk4AN8Efgl8VUR2KaV2iMi42JnaMq40cTh//jy/+MUvePbZZ7n++uu59957ufrq\nqzush9BaQqEQRUVFYbFYv349RUVFTJ48mdmzZzNr1ixmzJhBenp6vE3VaDoVsRKHOcDDGP0bfmyO\nIf2giDwQO1NbxpUiDuXl5fzqV7/imWee4TOf+QyPP/44gwYNirdZcaGqqor169ezZs0aVq9eTWFh\nIUOHDmXWrFnMnj2bvLw8evXqFW8zNZoOTUz7OSilnCLijollMaKri0MwGOTFF1/kiSeeYNGiRTz+\n+OMMGTIk3mZ1KPx+P1u2bGH16tV88sknrF69mqysLK699lquueYa5syZQ7du3eJtpkbToYiV5zAT\neAFwiUg/pdRE4F4R+WbsTG0ZXVkcdu3axVe+8hWSkpJ45plnmDhxYrxN6hQEg0G2bNnC8uXLWb58\nOevWrWPYsGFce+21XHvttcyaNQuXyxVvMzWauBIrcSgAPg/8Q0Qmmet2iciYmFnaQrqiOASDQX76\n05/y85//nB/84Afcc889XTam0B74/X4KCwvDYlFYWMiECROYO3cu8+fPZ9q0aSQlJcXbTI2mXYmZ\nOIhIbl2rJXOdbq3UBpw+fZovfelLBAIBXnnlFQYMGBBvk7ocNTU1rFu3jo8//pgPP/yQgwcPcs01\n17BgwQLmz5/P4MGD422iRtPmxEoc3sJoqfQMMA14AMgRkS/GytCW0pXEYc2aNdxyyy3ce++9PP74\n41gslnibdEVQWlrKRx99xNKlS1m6dClOpzMsFNdccw2pqanxNlGjiTmxEodM4NfAdRgpu5cCD4jI\n2VgZ2lK6iji8+OKL/Pd//zevvvoqCxYsiLc5Vywiwo4dO/jwww9ZunQpGzZsYNKkScyfP58FCxYw\nefJkLdqaLoHOytrBERGeeOIJ/vKXv/Duu+8yYsSIeJukicDj8fDJJ5+ExaKkpIS5c+eycOFCrr/+\nenr37h1vEzWaFhErz6EncA8wkAtZXEVEvhILI1tDZxaHQCDAN77xDbZt28a//vUvMjMz422SphmO\nHz/O0qVLWbJkCR9//DGDBw9m4cKFLFy4kGnTppGYqJMcazoHsRKH9cAnwCYgZK4WEXk7Jla2gs4q\nDoFAgC9/+cuUlJTwzjvv6NTWnZDa2lrWr1/PkiVLeP/99zl+/Djz5s0LexW6I56mIxMrcdgqIh2y\nkX1nFIdgMMgdd9zBmTNn+Mc//oHdbo+3SZoYcOLECT744APef/99li1bxtChQ1m0aBELFy4kNzdX\nxyo0HYpYicP3gfUi8q9YGhcLOps4iAj33nsvhw4d4t1339XC0EXx+/2sW7cu7FWcOnWK+fPnh70K\nXYWoiTexEodqwAH4gboxHERE4t7Gr7OJwxNPPMEHH3zAihUrdFXSFcSxY8fCXsXy5csZMWJE2KvI\nycnRXoWm3dGtlToQv//97/nZz37GmjVr6NmzZ7zN0cQJv9/P2rVref/991myZAklJSUsWLCAhQsX\nsmDBAj1+haZdaJU4KKVGicgepdTkhraLyOYY2NgqOos4rFy5kltuuYW1a9cydOjQeJuj6UAcPXqU\nJUuWsGTJElasWMGoUaPCXsWUKVMaHbJVo2kNrRWH50XkHqXUSuCSnUTkmphY2Qo6gzgcOnSIGTNm\n8Prrr3PdddfF2xxNB8bn87FmzZqwV1FWVhb2KubPn6+9Ck3M0NVKccbr9TJz5kzuuOMOHnrooXib\no+lkHD58mA8++IAlS5awcuVKRo0axfXXX69jFZpWE6uA9M1c6jlUADtEpLR1JraOji4O999/PydP\nnuStt97SmVU1raLOq6gTi9OnT4dbQC1YsEDHsTSXRazE4V/ADGCFuSoP2AwMAp4SkVdbb2rL6Mji\n8Pbbb/Poo4+yadMmPYylJuYcPXqUDz/8kCVLlrB8+XKGDRsW9ipyc3N1b21Nk8RKHJYCt4tIibnc\nC3gNuBX4pLFxHZRSLwGfAkobG29aKfU0sBDwAHeKyBZzfTrGAENjMLyWr4jIhgaO75DicOrUKSZO\nnMi7775Lbm5uvM3RdHH8fn+4t/aSJUs4duxYuLf2ggUL6NOnT7xN1HQwYiUOe0RkVMSyAnaLyKjI\nMR4aOG42UA282pA4KKUWAfeJyCKl1DTg1yIy3dz2CrBKRF5SSiUCThGpaKCMDicOIsKNN97IlClT\n+N73vhdvczRXICdPngxXP3388ccMHDgw3AFvxowZenAjTczE4VlgAPAXjJTdNwPHge8A7zXVakkp\nNRB4txFxeA5YISJ/Npf3AnMAL7BFRJoddaUjisNLL73EM888w4YNG7BarfE2R3OFEwgE2LBhQ9ir\nOHToUL3MsllZWfE2URMHYiUOCcDngFkYVTxrgbejeSo3Iw7vAv8rIuvM5Y+B/wSCwO+A3cAEjIR/\nD4qIp4EyOpQ4nD59mnHjxrF8+XLGjWuwJk2jiSunT58Oxyo++ugjsrKywkJx1VVX6ReaK4S4N2WN\nQhx+JCJrzeWPgUeBBGA9MFNECpVSvwIqReS7DZQhTz75ZHg5Ly+PvLy8NriS6Lj11lsZOHAg//u/\n/xs3GzSaaAkGgxQUFLBkyRI++OADioqKmDNnDvPnz2f+/PkMGzZMt7LrIqxcuZKVK1eGl7/3ve/F\nrCnrj4BeGNVKEGVupSiqlVaKyJ/M5bpqJYWR6G+QuX4W8F8ickMDZXQYz2Hp0qV87WtfY9euXTgc\njnibo9FcNmfOnGHZsmXhIVMTExOZP38+8+bNY+7cuXTr1i3eJmpiRKyqlQ4AN4jInhYYMJDGxSEy\nID0d+FVEQPoT4G4R2aeUWgzYReQ/GyijQ4iDz+dj7Nix/PrXv2bRokXxNqceoZAPn+84Pt8JAoHz\nBAKVBIOVBAKViPgRCQEhREIolUBCgp2EBBsJCXYslhSSkrqTlNTDnLpjsaTqt8krABFh7969YaFY\nvXo1o0aNCnsV06dP14HtTkysxGGtiFzVgpO/ieEJ9ABKgCeBJAAR+Z25zzPA9YAbuKsuX5NSagJG\nU1YrcMDc1mFbK/385z9nxYoVvPfee3Gzwec7hdu9g+rq7bjdO/B4duP1HiUQOI/V2pfk5GySkrph\nsaSSmJiKxeIiIcGGEVJKQKkERIKEQjUEgzWEQl6CwSpqa88SCJyltraM2toyQiEfSUndSU7uh802\ngOTk/thsA8z5AdjtQ0hMdMXte9C0DT6fj/Xr14fFori4WFdBdWJiJQ6/BnoD72Ck7QajWulvMbGy\nFXQEcThz5gyjR49m9erVjBw5st3O6/Ueo7x8BeXlKzh/fgXBYBUpKeNxOsfjdI7D6RyDzTYAq7UX\nSsUuzUIo5MPvP4PPdwyf7yhe7xG83qP4fEfweo9QU3OAxMQ0HI4ROBwjsdtHmPOjsNkG6AdIF6Gu\nCuqjjz5i6dKlWCwWXQXViYiVOLxsztbbUUTuapV1MaAjiMO3vvUtLBYLTz/9dJufq6bmAKWlf6a0\n9E/4fCdJT88jI+Ma0tOvweEY1SEevCIhfL7jeDxF5rSXmpoi3O5dBIMeUlLGk5IyAadzgvk5FotF\nD3rUmWmqCmrevHlMnz5dt4LqYMS9tVJbE29xKC4uZsaMGRQVFdG9e/c2OUcgUMXp0y9TUvIaXu8R\nMjM/T8+eXyQt7SqzSqjz4Pefwe3eTnX1tvBUU1OEzTaQlJSJpKRMITU1l5SUySQm6sGQOisXV0Ht\n27ePmTNnMnfuXObOncvEiRN1KvI4EyvPYQTwLNBbRMYopcYDnxaR78fO1JYRb3G47bbbGDVqFI8/\n/njMy/Z6j3PixNOcOvUiGRlz6dPnHtLTryEhoWvlzAmF/Hg8e6mu3kpV1UYqKwtwu3dgtw/G5crF\n5ZpKamouTuc4EhJ0ALQzcu7cOVatWsWyZctYtmwZpaWl5OXlhcVi+PDhHcLrvZKIlTh8AjwCPCci\nk8z0GTsby6nUnsRTHHbu3MncuXPZv38/LlfsArA1NQc4fPgpzp59l1697iA7+0Hs9kExK78zEAr5\ncbt3UFlZQFVVIZWVBXi9h0hJmUha2kxSU68iLW0mVqvORNoZOXHiBCtWrAiLRSgU4tprrw2LRXZ2\ndrxN7PLEShw2ikhOZB4lpdRWEZkYQ1tbRDzF4eabb2bGjBl85zvfiUl5tbXnOHx4MSUlfyQ7+0Gy\nsu4nKUlnc60jEKiiqqqQioq1VFSspbJyA1ZrT1JTZ5KWdhVpaVfhcIzsdFVtVzoiwv79+1m+fDnL\nli1jxYoVZGRkhIUiLy9PD3LUBsRKHJYA9wN/NT2HzwNfFZGFsTO1ZcRLHLZt28b111/PgQMHWt3h\nTUQ4ffplDh58jMzMmxk4cDFWa2aMLO26iARxu3ebQrGWiop1BALlpKbOIC1tJmlpV5OaOpWEhOR4\nm6q5DEKhEDt27Ah7FWvWrGHw4MFhsZg1a1ZMPfUrlViJwxDg9xhjOpQDh4DbRORwjOxsMfESh1tv\nvZVJkybx6KOPtqocr/cYRUVfpbb2HCNG/A6Xa0qMLLwy8flOUVm5joqKNZSXr6ampgiXayrp6XNI\nS5tDauo03TKqk1FbW0thYWFYLDZu3Mjo0aPJy8tjzpw5zJo1i7S0tHib2emIaWslpVQKkCAilbEw\nLhbEQxxjXScIAAAgAElEQVQOHDjAtGnTOHjwIKmpzWYQaZTS0r9QXHwf2dkP0q/ff3a5QHNHIBCo\noKJiLeXlqygvX4XbvROXaxJpaXNMwZiJxeKMt5may8Dr9ZKfn8+qVatYuXIlBQUFjBw5MpxXbdas\nWXpwrSjQTVnbgK9//ev06NGD73+/ZY21QiEfBw58h7NnlzBmzF9wuSbH2EJNYwQC1VRWrqe8fBUV\nFauoqtqC0zmW9PQ6sZhFYmLLBV/T/vh8PgoKCsJikZ+fz/Dhw5kzZw55eXnMnj2bjIyMeJvZ4dDi\nEGNOnz7NqFGjKCoqatGYvX7/GXbu/CxWayYjR75MYqJ2h+NJMFhDZWU+FRWGZ1FVVYjdPoL09Dxz\nmq1/o06G3++nsLCQlStXsmrVKtavX8/QoUPD1VBXX3217r2NFoeY8+STT1JSUsJzzz132ce63XvY\nseMGevb8IoMG/Y9uVdMBCYV8VFYWmmKxksrKDVosOjl+v59NmzaFxWLdunUMGjSIOXPmMHv2bGbN\nmnVFDqMaM3FQSl0FDATqKsZFRF5ttYWtpD3FwefzMWDAAJYvX87o0aMv69jKyo3s2HEDgwf/iD59\n7mwbAzUxp04systXUl6+kqqqfC0WnZza2lo2bdrEqlWrWLNmDWvXrqVbt27MmjUrLBZXQqe8WLVW\neh0YDGzFGKUNABG5PxZGtob2FIfXXnuN1157jaVLl17WceXln7Br1+cZMeJ5evT4TBtZp2kPtFh0\nPUKhEHv27GH16tWsWbOGNWvW4PF4mDVrVniaNGlSl0tPHitx2AOMjnuGuwZoL3EQEaZOncrixYu5\n4YZLxhxqlIqKdezc+RlGjXqTbt2ua0MLNfFAi0XX5NixY2GhWLNmDQcPHiQ3NzfsXUyfPp2UlM6d\n+ytW4vBXjDGcT8bSuFjQXuKwfv16br/9dvbt2xd1wrCqqk1s376QkSNfpXv369vYQk1HQItF1+T8\n+fOsX78+7F1s2bKFkSNHhquhrrrqKnr37h1vMy+LWInDSmAiUAD4zNUiIp+OhZGtob3E4a677mL0\n6NE88sgjUe1fU3OALVtmMWzYs2RmfraNrdN0VLRYdE28Xi+bNm0Ki8W6detIT09nxowZzJgxg5kz\nZzJ+/HgSEztu36VYiUNeQ+tFZGWLLYsR7SEOFRUVDBgwgH379kXVfLW29iybN8808yN9s01t03Qu\ntFh0TUKhEEVFRaxfvz48HTlyhClTpoQFY8aMGWRmdpy0OLopawx47rnn+Pjjj3nrrbea3TcUqmXb\ntutwuaYydOjP2tQuTedHi0XXpby8nPz8/LBY5Ofn06NHj3rexdixY+PmXcTKc5gBPA2MApIBC1At\nInHvStoe4jBlyhR++MMfsmDBgmb3LS5+iJqaYsaNe1f3Y9BcNg2JhcMxMiwWRg9uLRadkbpWUevX\nr2fdunWsX7+eEydOkJOTExaM6dOnt1sG2liJwybgi8BfgBzgDmCEiPxXrAxtKW0tDlu2bOGmm27i\n4MGDWCxNj8NcUvImhw49zpQpG0lK0t31Na1Hi0XX5ty5c/W8i4KCAnr16kVubi65ublMmzaNCRMm\nYLPZYn7umImDiExRSm0XkfHmuitiPIcHH3yQjIwMFi9e3OR+Hs8+tmy5igkTPiYlZUKb2aO5stFi\n0bUJBoPs3r2bwsJCCgoKKCgooKioiNGjR4cFIzc3lxEjRrR6mNVYjgQ3D3gBOAWcBr4sInF/Cral\nONTW1pKdnc3atWsZOnRoo/uFQn42b55Jnz53kZX1rTaxRaNpCC0WXR+Px8PWrVvJz88PC0ZZWRk5\nOTn1BCMrK+uyyo2VOAwASgEr8G0gFXhWRPZfljVtQFuKw5IlS3jqqadYv359k/sdPPgY1dU7zDhD\n1+5yr+nYaLG4MigrK6vnXRQUFGC1WuuJRU5OTpPjXLRKHJRSy0RkrlLqJyLSulFt2oi2FIfbbruN\nGTNmcN999zW6T0XFBnbt+iw5Odv0eMaaDocWiysDEeHw4cP1xGLLli3069ePnJyc8DRx4kScTmP8\nktaKw27gbuAl4N8BBYR3FpHNMbq2FtNW4lBdXU12djbFxcWNtk0OhXxs3DiZgQO/S8+et8TcBo0m\n1hhiURAhFgVaLLoogUCAnTt3smnTJjZu3MjGjRvZtWsXQ4YMIScnh5dffrlV4vBvwFeBq4CNF28X\nkWticRGtoa3E4fXXX+dPf/oT7733XqP7HDq0mOrqLYwd+46uTtJ0ShoTC2OkvNmkps7U45l3IXw+\nHzt37qSwsJBvfOMbMYk5fFdEnoqplTGircThxhtv5Itf/CK33XZbg9vd7r1s3TqbnJytJCdfXiBI\no+moRIpFRcVaKivXY7X2IS3tKnOahd0+TL8MdQFiOZ7DZ4CrMaqVVonIu7ExsXW0hThUVFTQr18/\njh8/3uAY0SLC9u3X063b9fTr9+2Ynluj6UiIBHG7d1JRsZaKijVUVKwlFKohNXUmaWmzSEu7Cpdr\nMgkJyfE2VXOZRCMOzfbdVkr9CJgKvIERd3hAKTVTRB6LjZkdi/fee4+8vLwGhQHg7Nl38fmOkZXV\neKBao+kKKGUhJWUCKSkTwnnCvN5jplexluLiN/B4inG5Joc9i9TUmboTaBchmmqlHcBEEQmayxZg\nq4iMawf7mqQtPIfPfvaz3HTTTXz5y1++ZFsw6KWwcAzDhz9Ht27zYnpejaYzEghUUlm5wfQu1lJV\nlU9ycv+wZ5GWdhU222BdFdXBiFU/h+3ANSJy1lzuDqyo6y0dT2ItDlVVVWRlZXHkyBEyMi59+zl2\n7BeUl69g3Lj416qJCLWltdQcqMF30of/hN/4LPETrAwSrAoSqAoQcoeQoCAhgRAgoJIVFocFi9NC\ngiMBi8P4TExLJKlnEtaeVpIyIz57W0lM7bjphzUdh1AogNu9LVwNVVGxFpEAqanTzWkGLlcOiYmd\ne7Cczk6sxOFW4EfASnPVHOC/RORPsTCyNcRaHP785z/z8ssvs2TJkku2BQIV5OcPY8KE5aSkjI3Z\nOaNBQoJ7t5uK1RVUb63Gs9uDe7cbBOzD7CRnJ5PcNxlrlhVrL+NBbnFZjMlpQSUqSDBuCBSEfCFC\nnhBBT5CgOxieD5wPUHumltoztfjP+KktNedP+yEBbANsJPdPxtbf/Bxgwz7UjmO4g8Q0LR6aSxER\nfL7jVFaup7JyA5WV66mu3o7DMTwsFqmp03Wgu52JZUC6L0bSPYACETkdA/taTazF4ZZbbmHevHnc\nfffdl2w7dOi7eL1HGTXq5ZidrylqDtdQ9vcyyleUU7G2gsSMRNJnp+PKceEY7cA52klSz6R2+UOJ\nCIHyAL6jPrxHvHiPevEdMeZr9tfg2efB4rTgGOHAPtwQi/DnEDsJyTpDreYCoZCP6uqtVFRcEIxg\nsLqed5GamktiYtwTP3dZYuU5KOBzwCyM1kqrReTvMbOyFcRSHPx+P7169WLPnj2XDPnn95dQUDCa\nKVM2YbcPjMn5GsJT7OHMW2c48/YZfEd8dP9Md7rN60ba7DSS+3bcFiEigv+UH88+DzX7aup9+o74\nsA22kTI+Bec4Z3iyDbDpN0VNGJ/vJJWV+WEPo6pqMzbbQNLSZoQFw+EYqVPhx4hYicNvgSHAmxit\nlb4AHBSRuA9zFktxWL58OY899hj5+fmXbDtw4BFCIS/Dhv0mJueKRILC2ffOcvzp47h3ucm8OZPM\nmzNJuzqNhMTO/0cI+UK497hx77gwVW+vJlgVxDnWiXO8k5RxhnCkTEzRsQ0NYAyc5XZvN4PdhmDU\n1pbhcuWQmjoVl2sqLlcuyclZ+iWjBcRKHPYCo0UkZC4nALtFZGTMLG0hsRSHb3/723Tr1o0nnnii\n3vra2rPk5w8nJ2crNlu/mJwLIFAZ4NTzpzjxzAmSeiWR/UA2mZ/PJMHa+QUhGmrP1RpCsaMa93ZD\nMNw73CRnJeOa4iJlckr4Myk9Kd7majoAfv8ZqqoKqaoqpLKykKqqApSyhIWiTjSSkrrF29QOT6zE\n4T3gPhE5bC4PBJ4RkRtiY2bLiZU4iAjDhg3jrbfeYuLE+sNUHDr0Xfz+U4wY8XyrzwMQrAly4v9O\ncOynx8i4NoPsh7JJnabrVgFCgRCevR6qN1dTtamKqk1VuLe5SeqZVE8wXJNdJHXXgnGlYwS7j4aF\nwhCOTSQl9YzwLqbick3GYnHG29wORWsT79W110zD6ARXgBFzyAUKRWRODG1tEbESh7179zJv3jyO\nHj1az0UNBCrYsGEIU6bkY7cPadU5RISyv5dx4OEDpExMYdD3B+Eco2/Y5pCg4NnnoWpTVVg0qrdU\nk9gtEVeOi9TcVFy5LlxTXCS6dJXUlY5IEI+nqJ534Xbvwm4fgss1ldTUXFyuqTid40hIuHJfMFor\nDnnmrGDEGiIREVnVagtbSazE4ac//SkHDx7kt7/9bb31R4/+hOrqbYwe/Uaryvce87Lva/vwHvEy\n7OlhZMzVPUhbg4SEmv01VG2sorKgkqqCKqq3VWMbZAuLRWpuKs5xThKSroxqOk3jGK2jdoS9i8rK\nQrzeQzidY0hJmYzLNQWXazJO59grJhVIq6uVlFKJwMcikhdj22JCrMQhLy+PRx55hE996lPhdaFQ\nLfn5Qxg79h1crsktKldEOP3KaQ4+cpCsB7Lo/1/99cOqjQjVhnDvcIfFojK/Eu9hLykTU+oJhm2w\nbiWlgUCgGrd7G1VVm6mq2kR19WZqavbjcIwgJcUQi5SUyaSkTMBiscfb3JgTq5jDMuBmESmPpXGx\nIBbiUFVVRd++fTl9+nR4IAyA0tK/cOLE/zFpUsscpEBVgOJvFlO1uYrRb44mZbzuEdreBCoDRuyi\n4IKHEfQEDbGYZlZJTXVhzbTG21RNByAYrMHt3k5V1WaqqzdTVbUZj2cPdvuQsIdhCMbETt/DOyaJ\n9wA3sEMptRTwmOtERB5o5uQvAZ8CShvLw6SUehpYaJZ7p4hsidhmwRhH4riI3BiFnS1i1apV5Obm\n1hMGgOPHf0W/fo+0qEzPfg87P72T1JmpTCmcgsVhiYWpmsskMTWRjGsyyLjmQjWe76QvLBTHfnGM\nqsIqkronhT2L1GmppExK0b/ZFYjFYic1dRqpqdPC60IhH273LlMwNlFS8gZu905stv6mYFzwMLpa\nK6loxOFv5hRJNK/rfwB+A7za0Eal1CJgqIgMU0pNA34LTI/Y5UFgN+CK4lwtZunSpcyfP7/eusrK\nfPz+U/To8enLLu/8ivPsvnU3AxcPJOvreqyHjkZy32Qyb8ok8yZjEBsJmQHvfMO7KPljCZ7dHhwj\nHYZgTEslNTcVx0gHyqKro640EhKScbkmm1XLRuaEUKgWj2dvuDrqzJm/43ZvJzEx3cxiOxGn08hm\na7cP6bQd96JKn9Hiwo1mr+825DkopZ7DSOD3Z3N5LzBHREqUUtnAy8APgP9ozHOIRbXSyJEjefPN\nN5k0aVJ43Z49d5CSMoF+/R6+rLJK3yql+JvFjP7TaDKu1UHnzkrQG6R6S3U4dlFZUEltaa3ROmpa\nalg0OnKvdU37IhLC6z1EdfU2c9pKdfU2AoGzOJ3jLhKNcXFvWhur8RwONbBaRGRwiy0zyAKORSwf\nN9eVAL8EHgHatAPAkSNHOHfuHBMmTAivq609R1nZPxky5BeXVdbJ509y+MnDjF86HtfENnV2NG2M\nxWYhbUYaaTMujKdce7Y2XB116vlTFN1TRIItIVwV5cp14crRzWmvVJRKwG4fgt0+hMzMz4XX19ae\nx+3eTnX1Nior8zl58vd4PHtITu4XHiujTjQ6Wm/vaO7kqRHzNuDzQPcYnf/ib0IppW7AiFNsiWhO\n2yiLFy8Oz+fl5ZGX1+whYT766CPmzZtHQsIFt6+k5HW6d1+E1doj6nJOPn+SI98/wsRVE3EMc0R9\nnKbzkNQ9ie4Lu9N9oXHriwjeg14qCyqpzK+k7P+VXWhOa1ZFuaa5cI51dok0KJqWkZSUQXr6HNLT\nL3QLM6qlinC7DS/j+PFfU129DZEAKSkTcDrHmdNYnM4xJCa2/mVz5cqVrFy58rKOaVG1klJqs4g0\n274zimqllXWpv81qpTzgAeB2IIAhRqnA2yJyRwNltKpa6ZZbbmHRokXhgX1EhMLCcQwb9gwZGXlR\nlXH6tdMcfOwgE1doYbjSCfkvNKetzDe8DO9RL65JrnBVlCvXpZMOahrE5zttCsYO3O6duN078Hj2\nYLX2ihAL49PhGEFCQstb2cWqKesULgSgEzBSd39DRCY0flT42IE0Lg6LMNJyLFJKTQd+JSLTL9pn\nDvCdtog5hEIhevbsydatW8nOzgagomI9e/d+mdzcoqj+vGffP0vRV4uYsHwCzlG6t7PmUgIVAaOz\nnhm7qMqvQkJySXPapIwrt7eupnFEgtTUHAiLhdu9k+rqHfh8R7DZhpCSUl80bLaBUQXAY9WU9edc\nEIcAcBgjM2tzJ38TY2CgHkqpY8CTQBKAiPxORN5XSi1SSu3HaC57VyNFtUnEfNeuXWRkZISFAeDU\nqefp0+eeqIShanMVe+/cy9h/jtXCoGmUxLREMuZmhHvFiwi+476wZ3HkB0eo3lyNta+1nmCkTEjR\n42BoUMqCwzEch2N4vVhGMOjF49kTFo2TJ5/D7d5BIFCOwzE6LBZ14pGU1POyvdVoPIfBInLwonWD\nRKShQHW70hrP4ZlnnmHbtm08/7yRUC8Y9LB+fRZTp+4mOblPk8f6TvjYNG0Tw349jMybM1t0fo2m\njlAghGePJywYlfmV1OyvwTnWeaF1VG4q9qF2VIKujtI0Tm1tOR7PrnpVU273DiABp3MMTudoHI4x\n9Ot3f0w8h7eAi+MLbwFTWmh/h2DlypXcdNNN4eWzZ98188M3LQwhf4hdX9hF36/31cKgiQkJiQmk\njEshZVxKXVN6gu4gVZuMvhdn/3mWQ48fInA+gGuyi5QpKbhyjGSD9iFaMDQXSEpKJy3tKtLSrgqv\nExH8/hI8nl243btMsWiephLvjQJGAz8FvoPRskgwAsSPiMiY1l1G62mp5xAKhejVqxebN2+mXz9j\njIYdO24kM/ML9O59e5PHFj9QjPewl7HvjNV/Sk274i/zU73pQjrzqo1VBCoMwXBNMZrSpkxJMQRD\nB7w1TdDamMNw4EaMlN2RAeEq4J7Wmxc/du/eTVpaWlgY/P4zlJevZtSoN5s8rvStUs6+f5YpG6do\nYdC0O9YeVrot6Ea3BRfSNPjP+I005puqKf1zKQceOUCgMmCIhSkYrikunXBQc9k0Kg4i8g/gH0qp\nmSKyrh1tanNWrVpVrz9Eaemf6d79hiaTaflO+Cj+VjHj/jlOj0ym6TBYM610v7473a+/0PXIX+qn\narPhWZS+WcqBhw8QrA4a1VGRgjFIC4amcZqNOXQ1YQAj3vDpT1/Im1Ra+kcGDHii0f0lJOy9cy9Z\n38rSo7ZpOjzWno0IhlkVVfJGCQf+wxSMiSmkTDKniSk4Rjp0WnkN0Ma5ldqalsQcRIRevXqxceNG\n+vfvj9d7nI0bJzBz5ulGR4Y68ewJSl4rYeLqibq3q6bL4C/1U7212sgjtaWK6q3V+I76cIx24Jrk\nCguGc7yTxBSdFqQrEat+Dl2K/fv3Y7fb6d+/PwBlZX+je/cbGxUG3wkfh588zMRVWhg0XQtrTyvd\n5nej2/wLMYxAdQD3DjfVWwzROP2H07h3uUnulxwWC9ckFykTU7D20uNgdGWiSbx3ANgArAZWi8iu\nNreqDVm3bh0zZ84ML5858xb9+j3a6P7F9xfT95t9cY7WHd00XZ/ElMRLkg6GakN4ijxhwTj646NU\nb6kmwZ4QFoyUiSmkjE8x+mLo1OZdgmg8hzHANGAW8DOl1HBgh4jc1PRhHZNIcfD5TuF276Bbt3kN\n7lv2jzLcu92M+uOo9jRRo+lQJCQlkDI2hZSxKUbWM8ye3kd94eqoktdLOLjjIP4SP45RDlLGG9VR\nKeNTcI5z6tH2OiHRiEMAqAWCQAg4g5FWu1Oydu1a7r33XgDKyv5Ot26fanBQ8ZAvxP7/2M/w54Zj\nselRwTSaSJRS2AbYsA2whQdOAmN4XPdON+7tbqq3V1P2tzKqt1djsVtwjnfiHOcMC4dzlFOnCOnA\nRJM+wwPsAH4BLBORsvYwLBouNyBdXl5Ov379OHfuHElJSWzdei1ZWQ+QmXmpE3T0p0epWF3BuH82\nOMKpRqOJEhHBd8xH9fZq3DsuCIf3oBfbYNsFsTCFI7lfsm5i28bEKiB9KzAb+CZwj1JqHfCJiHwc\nAxvblQ0bNpCTk0NSUhK1teVUVW2kW7f5l+znL/Vz9MdHmbyu2azkGo2mGZRS2PrbsPW30eOGC+Ok\nBL1BPHs9YbE48ZsTuLe7CdYEcY524hzjxDHGgXOMMW/tY9Wi0Y5E08+hrjPcSGAR8BDwKMZYC52K\nyHjD+fMfkpZ2NRbLpWMwHH7qML1v741juB6fQaNpKyw2C66JrktGTvSX+fHs8uDe5ca9y03ZO2V4\ndnmQgNQTizrxsPbSotEWRNNa6W1gInAA+AQjJFXQxna1CevWrePb3/42AGfPvkf37jdcso/3iJfS\nN0vJ3Zvb3uY1S3UgQFltLRXBIBWBABWBAO5gkIAItSIERAgBVqWwJiTU+0xOSCDVYiE9MZGMpCTS\nLBYSE3R9r6bjYe1hxTrHSvqc9Hrr/Wf8uHe5w8Jx5u0zuHe5QcA52nmJcCT1TNKi0QqiiTlMBTaL\nSLB9TIqey4k5BINBMjIyOHToEN26pbN2bS9ycjZjs/Wvt9/eu/di7W1l8PdbO0T25SMinPD52O3x\nsMvtZrfHw1Gvl+M+H8d9PmpFyExKIi0x0ZgsFhwWC0lKGVNCAgqoFcEfCuEXwRcK4Q+F8IlQGQhQ\nHghw3hQWh8VCRmIiPZKS6GO1GlNyMr3r5iPWJWsh0XRARITa0tqwl+HZfcHjQGF4FyMd9SbbANsV\nnxstVjGHbcB9SqmrzeWVwHMiUttK+9qV3bt307t3b7p3705FxVqSk7MuEQbPfg9l75QxrXhau9jk\nC4XYWFXFJ+XlrK6oYH1lJValGON0MsbpZHJKCp/r0YPs5GSyk5NJT0yM2ZtQSITqYJDzgQBn/H5O\nRUw7qqtZGrFc4vfTIymJgTZbeBoQMd8/ORm7Rbfo0rQ/SimsvaxYe1nJuDYjvF5E8Jf48ez24Cny\n4Nnj4dySc3j2eqgtq8U+zG6IxagI4RjuwOLQ93Ed0XgOL2KIyCsYabtvBwIicnfbm9c0l+M5vPTS\nSyxbtow33niDgwcfAxIYPPgH9fbZc+ce7IPtDPzuwNgba3KutpZ/lpXxdlkZK8vLGWG3Mzs9ndlp\naVyVlkYva8drDx4U4ZTPx2Gvt8HpmM9HZlISwxwOhtntFyaHgyE2GzYtHJoORKA6QM2+Gjx7PRem\nPR5q9teQ1CvpEk/DMbLrxTVi5TlMFZHxEcvLlFLbW2da+1NYWMjUqVMBI94wfPjv6233HvNy9p9n\nmXYg9l6DLxTir6WlvFpSQn5lJddlZHBrz568PmoUaYkdP4OJRSmybTaybTZmNbA9KMIxr5fimprw\ntKq8nOKaGo54vfS2WsPCMdxuZ6TDwWink37Jusmipv1JTEk0xsCYXD8QLkHBe9gbFozqTdWUvlGK\nZ68ZDDeFwj7CjmOYA/swO/ah9i7rbUTVCU4pNVRE9gMopYZgdIzrVBQWFvKlL30Jn+8EPt9JUlPr\nB5yP//I4ve/qHdOB3k/5fPzu5El+d+oUY51O7u3Th7+PHYuzi71JW5RioN3OQLudi/uaB0Ihjvh8\nFHs8FNfUUOTx8O7Zs+zxeKgMBBjpcDDK6WSUwxGehtjtJOkYh6adURaFfYgd+xA73T/Vvd42f5k/\nLBo1RTWc3nCamn01eA95SeqRZAjFMDuO4Y7wvH2wvVN38oumWmku8AegbszogcBdIrK8bU1rnmir\nlXw+HxkZGZSVlVFZ+VfOnn2PMWP+Gt5ee76W/CH55GzLwdav9S10D9XU8NSRI7xTVsYXe/bk/qws\nRjt1bqaLKa+tZa/Hw57Iye3muM/HYLv9gmCY4jHS4cDRxYRV07mRoOA95qWmuMaoqir2GPPFNXiP\neEnum4x9uCkcdd7GcDu2gba4JvKMplopqpTdSikbMAJjmNAiEfHFxsTWEa04FBYW8tWvfpXt27ez\ne/eXSE+/mr597w1vP/LDI3j2eRj1cutyKJ2rreXJw4f5Y0kJ92Vl8VB2NhlJemCgy6UmGGRfTQ17\n3O56wrG/poZeSUmMdjoZbVZN1X2mdoLqOc2VRag2hPewIRyefRdEo6a4Bt8pH7b+tgvexlA7tiE2\n7EPs2AbYSLC2rXC0ShyUUjdjiIGK+MScR0T+FjtTW0a04vDss8+yadMmXnjhBdat68Pkyeuw242m\nqqHaEBsGbGD8h+ONAd5bgIjw4qlT/L9Dh/h8ZiaLBw4kswMGljs7gVCIQ14vu00PY7fHw25TQLol\nJV0iGKMdDi3Omg5J0BvEe9AUjjpv40AN3oNefCd8WPtYw1Vc9iF2bINt4fnEtNa/CLU2IH1pD7H6\nxF0coqWwsJBp06bhdu/AYnGGhQGg7J0y7MPsLRaGI14vdxcVUREI8OH48Ux0uZo/SNMiEhMSjMC2\nw8FnelxIwxAS4YgpGrvdbtZVVvLCqVPs9nhIsVgY04Bo9NDirYkjFpvFSBHSwFAAodoQ3iNeQzwO\nGKJRmV8Znk9ITmhQNGxDbCT3TY5ZH46mPIeHRORXSqlZIrImJmeLMdF6DmPHjuWVV16hZ8+VeDzF\njBjxXHjb1mu20vfrfel5S8/LPv9fS0v5ZnExD2dn851+/XSP4w6GiHDc7FS42+0Odyzc7XZjTUi4\nxNMY43TSM0n3qtV0XESE2jO1YaGIFBDvQS+B8wFsA21GFdVgO7ZBNmyDbNgHGfOJqYY/0NpqpW0i\nMnTE21MAACAASURBVEEptUVEJsX+MltPNOJQXV1Nr169OH/+PHv2fJq+fe8hM/NmANy73Gy7bhvT\nj0y/rDo+fyjEwwcO8P7Zs/x1zBgma2+hUyEinPL72R0hFnW90oEGYxp9rV2rnbumaxL0BPEeihCM\nQ15j+ZAxn2BLwD7YTs7GnFZVK+1WShUDWUqpHRdtk4v6PnRYtm3bxujRo0lMFCor1zJ69JvhbSd+\ne4I+9/S5LGE4X1vL53ftwmGxsGnKFNJ1nXanQylF3+Rk+iYnc123C0NkighnamvreRjvlJWx2+3G\nGwqFxWJMhGjovhqajoTFYQnnlrqYOq/De8gL05svq1FxEJFblVK9gaXAjVwISHcqtm7dyqRJk6iq\n2ojdPpykJKOLfbAmSOkfS8nZnhN1WUe8Xq7fvp2F3brx0yFDsOiHQpdCKUVPq5WeVivXZGTU21bm\n97PH4wmLxpJz59jldlMVDDLK4ajnaYxxOhlgs5Gg7w9NB0IphbWnFWvP6OJtTYa9ReQ0EPYQlFKT\nRWRz60xsX+rEobx8FenpV4fXl71ThivXhS07un4NxR4P123bxrezs3moX7+2MlfTQelhtTLbamV2\nev1Moedraw3RML2N5efPs9vj4WxtbbgneKRwDLbb9UuFplMQVT+H8M4dLP4QTcxh6tSpPP300zgc\n36Nv36+HR33btmAbve/qTa8v9mr2PHvdbq7bto3FAwdyd9++MbFd07WpDATYG5Fdt048Tvv9DLfb\njQB4hGjoXuGa9iRmneAiCuxU4hAIBEhLS+PUqRNs29afadMOYrX2wHvcy8YJG5lxfAYWe9M9bo94\nvczesoWnBg7kzj59Yn0JmisMdzDI3gixqPs87vMxxGZjpMPBCIeD4Q4HI+x2hjscdNNxLU2MiVXi\nvUi+1wp72p2ioiKys7OB/SQn98dqNdrGl7xWQua/ZTYrDKV+P/O2bePhfv20MGhigtNiYYrLxZSL\nWrjVBIMUeTzs9XjYV1PD0nPneMbMRZWckMBwu50RdcJhzg+x2/U4G5o2I5qR4BKA24BBIvKUUqo/\n0FtEOvxocFu2bGHixIlUVKwiPX0OYETsT798mpEvj2zyWF8oxE07d/KFzEwezM5uD3M1VzB2i4WJ\nLtclnShFhBK/n6KaGvZ5PBR5PKypqGCfx8MRr5es5OSwlxHpcWTpVlSaVhKN5/AsEIL/396Zh8lV\nlfn/83ZXdfXeWTpJp7MvJAiBEIKsssnisEVxBh0HweA8DAoMjqgzOuPCT3+iIoiiggoSCKDAIOsI\nyjJG9kB2kpB0EiKku7NvvVZ3Le/8cW51V3dXVd/udHdVkvfzPOe555w699431ZX7vWd7Xz4KfBdo\n8ur8L/PJEitWrOC4445j376XGTPmnwBoWtGERpXyk8vTnqeq/Mv69YwLhfjulClDZa5h9EBEqAqF\nqAqFOLPbZHjEcyey3uttLG9q4pEdO1jf2kpjNMoRXi9jRnEx04uKOpJt9DP84EccTlLVOSKyHEBV\n94jIQTEIumLFCm688cvs3/9jZsxwu6J3PLKD0Z8enfE/x89qa1nV3Myrc+bYckQjZwnm5THD6y10\npyEadT2N1lY2trby4t69/Kq+no2trYTjcaYXFTGtsLCLaEwvKqI6FLLfvAH4E4d2EekYnBeRUbie\nRE6jqqxYsYIZM4rZvXskodBYt8np0Z0c/fjRac97u6GBmz/4gLeOP/6Qi7tgHD6UBwKcUF7OCeU9\ne8j7IhE2hcNs9ITjtYYGFm7fzsbWVvZFo0xNIRrTioqYWFhoy3API/yIw8+BJ4DRInIz8A/ANwfV\nqgGgrq6O/Px8ioo2UF5+KgCNSxuRgFA6O7WTvf3RKP+4di13zZjB5KKioTTXMIaMYcEgc4PBHpPi\nAE3RKO8lCceypiYe3bmTja2t7GhvZ5InHNOKiphSWOiSlze36YcWvf41VfVBEVkKnONVfVxV3x1c\nsw6clStXMnv2bBobF1Ne7vaK73x0Z8Yhpetqajh/xAj+ftSooTTVMHKG0kCAY0tLOba05wtUOBZj\nsxcO9r3WVjaHw/xl376OfFFeXodQTCksZGpSflJhIQW2suqgws9qpQdU9Qrg3RR1Ocvq1as55phj\naGh4jnHjrkdV2fHoDo555piU7Z/etYs3GxpY5cWZNgyjK4X5+S4qX4qohgm/VJvD4Q6xWNLYyH/v\n2MF74TB1bW2MLihgarfeRkJExhYU2FxHjuGnHzgruSAiAWDu4JgzcKxevZozzjiJtrYtlJQcQ9Py\nJvIK8iiZ1fOHvTcS4dqaGh466igLQ2kY/SDZL9VJKeY5ovE4tW1tTjzCYTa3tvLnPXvYHA6zORxm\nbyTCRK+HMTEUYlK3/PhQyHoeQ0xacRCR/wS+ARSJSGPSRxHgN4Nt2IGyZs0arrzyw5SWziUvL8Cu\np3cxct7IlENKX9u0iU9UVvZYKmgYxsAQyMtjclERk4uKODvF5y2xGO+Hw3zQ1sb74TDvh8O8uHdv\nR35rezujgsEeopEsJDbnMbD06j5DRH6oql/v18VF7gUuAnaoasrxHBG5A7gAaAHmq+pyEZkALARG\n48KS/kZV70hxbkr3GbFYjLKyMt5++98oLIwzbdoPWTJ3CdNvn86wM7oKwOKGBj65ejXvnnii/bgM\nI0eJxuPUt7f3EJDkfFCkp3h4vY7xoRDVBQXmv8pjQNxnqOrXRWQ4cARQmFT/sg8bFuBWOy1MY+CF\nwHRVPUJETgLuwnkajwBfVtUVIlIKLBWRF/xOhG/atIkxY8YQiy2nvPwawrVhwu+HKT+1a3c3rsq/\nbtjAD6ZONWEwjBwmkJfHRO9hnwpVZU802kM0Fjc0UNvWRm1bGzsiESqDwQ6xGB8KMSEpP96L8WEu\nSRx+JqSvBm4AJgDLcQ/vN3A7pjOiqq+IyOQMTeYB93ttF4vIMBEZ47kK3+bVN4nIu0A1SZPimViz\nZg2zZh1NQ8NrzJy5gF337mbkBSPJC3T9o9+/bRv5Inx2TO+eWQ3DyF1EhJHBICODwbSRGaPxONva\n26lta2OLJxi1bW0saWzsqNvW3s6IQKCLYIwPhZiQ1AMZV1BA4WEwN+nndflLwIeBN1T1bBE5EvjB\nAN1/HLAlqVwLjAe2Jyo8cZkDLPZ70dWrVzNzZjWBwDBCoSp2P7OKqququrRpjsX4r82beWrWLFsl\nYRiHAYG8PMYXFjK+sDBtILSY58uqNkk8trS1sXL37o5yfVsb5Z6AVBcUuKiC3Y5jCwoYHQwe1HHl\n/YhDWFVbRQQRKVTVdSIycwBt6P5k7phE8IaUHgO+pKpNqU6+6aabOvJnnXUWZ511FqtXr+b004dT\nVnYi0aYo+1/dz1EPH9XlvF/U1fGRigo+nGJlhWEYhyf5SSFkT0zTJq7KDk9Atra3U9/eTn1bG0sb\nG3mmra2jvDsaZVQwmFI4ksujgsFBf0FdtGgRixYt6tM5fiaknwSuwvUgzgH2AgFVvdDXDdyb/zOp\nJqRF5FfAIlV92CuvA85U1e2e/6b/AZ5T1Z+muXbKCelZs2bx/e/PZs6c2RSv/Dy1P63luJeO6/h8\nXyTCEW+9xSvHHceRKdZsG4ZhHCiReJzt7e1dBCRx3JpU3heNMqaggOqCgi7CUVVQwBjvWOUtEx6o\n+ZCBmpD+hJe9SUQWAeXAnw7cPACeBq4HHhaRk4F9njAI8FtgbTphSEd7e7s3IV1BWdnn2fX8Xkac\nP6JLm9tqa7lk5MjcFgZVCIehuRlaWiAWc/UiXVMgAIWFUFQEoZCrMwwj6wSThrEy0e7NhWztJiBv\nNjSwrb29I+2IRCjNz+8hGmOCwY584rNRAzCklVEcvA1vq1X1SABVXdSXi4vI74EzgUoR2QJ8Bwh6\n1/q1qj4rIheKyEagGddDATgN+CywKuENFviGqvYqSjU1NUycOJFIZBWlpcdT80INR/2+c0hpTyTC\nnXV1LJ2bhX188TjU1cHGjbBpE7z/PmzbBtu3u7RzpxOD5mZobYWCAigudikQcIKRnAAiEScira0u\nnxCK4mKoqIBhw1xKzifSyJEwahSMHu3SsGEmLoYxxBT0shIrQVyVvdFoh1hsTxKOtS0tXcp7olFG\nBAJdRSQp74eM4qCqURFZLyKTVPV9///cjvM/46PN9SnqXgX6JXtr1qxh5syJBINRYvVFRPdEuzja\nu7OujnmVlYPvWC8chpUrYelSl5Ytg3XrYMQImDbNpcmT4YQTYMwYl0aNgrKyTkHo64qIWKxTKFpa\nYP9+2LevMyXK27c7W3bvdoK0Y4dLra1QWemEIlk0Ro+G6mqXxo51x+HDTUgMYwjJS1qRdXQvox7R\neJxdkUiXnsf2SKRjdZYf/ExIjwDWiMhbuLd7AFXVeb7uMMSsW7eOqVOLKSuby54X9jD83OFInnuI\ntcRi/LyujkXHHdfLVfqBKqxeDc8/79Lrr8P06TB3rhOAa66Bo4+GwRzKys931+/vPdranFgkBCNx\n3L4d3n0X6us7UzjcKRipUkJEystNRAxjiAnk5XUEiUrFw36u4aPNt1LUZZ7FziLr1q1j7tw2yspO\nZe/zexlxYed8w4Jt2zi5vDyl47B+s3o1PPAA/O53bhjoYx+DL34RHn3UDeUcTIRCMH68S73R0gJb\nt3YVjPp611uqr+/8LBaDceNcGj++M5+cqqrcsJlhGDmDnwnpRd6Ko+mq+qKIFPs5L1usW7eOiy4S\nSouP54OX9jL99umA62bdtmULD37oQwd+k/374b77YOFC91Z9xRXwpz+5nsHhQnFx5/BYJhob3TxL\nItXWuiGtl17qrNu1yw1nZRKQcePckJthGEOCnx3S/wJcjRtemobbpHYXnfEdcoZ4PE5NTQ2VlXnw\n3hEUVO0gNM51q/64Zw9jCgo49UDe5uvr4bbbnDB87GPwox/B2Wf3fW7gcKKsDI480qV0RKNuYj4h\nHgnRWLOmq7Dk52cWj3Hj3PyI/T0M44Dx0wO4DjgReBNAVWtEZPSgWtVPamtrKS8vYdiwUppezmPY\n2Z1O9u6sq+O66ur+XXjPHrj5Zrj3Xpg/H1asgAkTBsZoww0pJYazTjopdRtV12PrLiCrVsFzz3WW\n9+51w1SZBGTcONfzMQwjLX7EoU1V2xKurr3lrTk557B+/XqmTRtFaemH2P/X/Yy50vlMqmlpYXlT\nE0/NmtXLFboRi8Hdd8N3vgOf/KSbX+ivwBgHhkjnEtxMw3dtbW6+I7nHUVcHy5d3LRcV9d4LqayE\ng9j9gWEcCH7E4a8i8l9AsYicB1wLPDO4ZvWPdevWMXlyiNKS2dS+up8Zd88A4Ff19Xy+qqpvzrLW\nr3e9hEDArT6aPXtwjDYGllDILRGePDl9G1W3jLe7gCxZAk891dkzaW52q64yCUh1tdtbYhiHGH7E\n4evAPwPvANcAzwL3DKZR/WXdunWMGxcmf9cMgmOChKpCtMRiLNy2jbf9bnpThTvvdL2Fm26Ca6+1\nt8dDDRHXK6iszCz6ra1unqn7hPrixZ0Csm2bW67b2zDWiBG2pNc4qPCzWikmIvfjvKIqsC6lQ6Mc\nYP369Vx00U6iSyZ2BPV5YtcuTigrY4qfTW9NTXD11W41zRtvwBFHDLLFRk5TVNT7iqx43O0H6d4L\nee21ruW2tsziMX6866UEg0P37zOMDPhZrXQR8CvgPa9qqohco6rPDqpl/WDdurVcc02YpkdKGX2p\nE4eF27Yxv6qqlzOBLVvgoovgwx92G9gGewe1cWiQl9e5w/3449O3a27u2QPZtAlefrmzbscON6eS\nuF4iVVX1rBs92vaGGIOKH6+s64GLVHWjV54GPKuqA+m2u18ke2VtbGxkzJhRvPzyXNouvIW5S+ey\ne7RwzNtvU3fKKRRlmm9YsQIuvhi+/GW48Ubr/hvZIRZzvZCEr61ESva/lUi7d/cUklQiUlXlXKFY\nj8RIYkC8sgINCWHweA9oOCDLBoGamhqmTKmkKHYU0dJ8CicU8tAHH/DJysrMwrB4MVxyCfziF/Cp\nTw2dwYbRnfx89zD309ONxdzmwVRCsmZN17pdu9xu/WTRGDXKpcrKznwijRhhe0UMX+KwVESeBR71\nypcBS0TkkwCq+vhgGdcXEiuV5G/TqDi9AlXl/m3b+NWMGelPevNNmDfP7V+4+OKhM9YwDpT8/M4H\nfW/EYq6n0V0wdu50veaEP61E3b59rlfSXTRSCUmiLo0PH+PgxY84FAI7cK63AXZ6dZd45ZwQh5qa\nGqqrw0SXTWLkKeUsb2qiNR7ntHQ7olevdsKwYIGbazCMQ5X8/E7vusf0iLnVk2jUbfxMFoxE2rjR\nLdZIrt+1yy3n7S4aI0e6NGJE12MibxsRcxo/q5XmD4EdB8zGjRuYPHkXrc+Nofzecn6+Ywf/OHp0\n6vB7tbVw4YVw++0mDIbRnUCgU0z8kNi93l1I9uxxPZbNm90xUU4kkZ6CkUpEuh99xiMwDgw/q5Vm\nAncCVap6tIgcC8xT1f8/6Nb1gZqaNZx55kjaNwQpObqEPyzbxSNHHdWzYXOzE4TrroPLLx96Qw3j\nUCN59/r06f7Pa2npKhiJ/J49buhr7dqudYljYWFPERk+3N0/1TGRr6iwFV59wM83dTfwNdxyVnCb\n4X4P5JQ4bNr0HtMqT6R0binvtLUQU2VOaWnXRqpuH8OcOfDv/54dQw3DcCSCWvlxEZ9A1Xn67d4T\n2bvXzZXs3AkbNnSWk48NDe5+mYQk07G4+LBayehHHIpVdXHCt5KqqohEBtesvrFnzx4ikQjDG4+k\n/ORy7tu5k78fNQrp/of8xS9c0JrXXz+s/siGccgg4nakl5fDlCl9Ozced8KSSjgSx4SwpPosFusa\ndreiwtmRfOwtX1p60Dx7/IjDThHp6CuKyD8AWwfPpL6zadMmJk4sIrZqAuUfKee/d7zH/d3jNixb\nBt/7nluhZBvcDOPwIy+v80HdH8LhzpC7DQ1unmX//q75ujo3HNa9PpEPhzvFzY+YpMqXlQ3JvIsf\ncbge+A0wU0Tqgc1ATg3Wb9y4kerqOOFFY9h6bYCWHXFOTA4MEw7DlVfCT34CU6dmz1DDMA5eCgv9\n70NJRyTiei+phCU5X1ub/vOGBjd3UlbWmcrL/ZfLy32Z6me10ibgHBEpxe2o9hedegjZsKGGqjHN\n5P9tCv8TaOATlZVdh5S+9S0XbMYmoA3DyCbBoJtIHzGi97bpUHUvvI2NTigaGztTcrmhwTmOTPWZ\nD/ysVvo34F6gEbhHROYA31DVP/f/XzewrF+/gkljK6iYO4o/7t7Nt5PdNb/1Fjz4oAsKc5CM9RmG\nYaRFxA2NFxX5X26c6hq94McX9edVtQE4Hxcq9Ergh/2zaHDYsGEdE0omkj+nhHeamzkzMaYYizmX\n27fc4jbmGIZhGL7wIw4JibkIeEBVVw+iPf1i8+YtVLdMY/X0OGcNG9YZ1Ofuu526fvaz2TXQMAzj\nIMOPOCwVkeeBC4E/iUg5EB9cs/zT0NBAc3OYig1TeXZcCxeNHOk+2LULvv1t+OUvbTjJMAyjj/gR\nh38GvgGcoKotQBC4alCt6gObNm1i3NggBS0zeDq6jwsSEz3f/z5cdhkce2x2DTQMwzgI8RUJDlia\nVN4N7B5Mo/rChg01jK2OEBk+k+pQiImFhfDBB7BwoXNdbBiGYfSZg97RyPr1yxhXFWLjpDIuGOHt\nbfjud+Gaaw5sPfIgE4vHiMR732geyAuQL/k9d3sbhmEMIge9ONTUrGR80WhemdzO5cOHw/r18NRT\nUFMzqPdtam+ivrG+S9rbupd94X3sa9vnjl5qbm+mLdZGW7St4xjXOMH8IEL6h76ixOIxYhojmBck\nmB+kIL8gZT6UH6IoWERxsJiigHcMFlEcKE5dn6KcSCXBEkoKSigOFpMnfkYeDcM41PAlDiJyHHA6\noMArqrpyUK3qA++9t4nZ1eN4aHwrd1ZUwFe/Cjfc4JxlDQD1jfUsrV/KOzveYcOeDdTsrmHD7g00\ntTcxrnwc1WXVVJdVM7Z0LCOLRlJdVs2wwmFUFFa4Y6iC0oJSQoEQofxQxzGQF/DdG4hrnEgsQiQe\noT3WnjLfFm2jNdpKS6SF1oh37Fbe37afrU1bXTnas11LpIXm9mZ3jDTTGmklFAh1EYtU+ZJg+s9S\ntvPyRcEiEx/DyFH8bIL7EnA1LqiPAA+KyN2qesdgG+eHLe9vZ/Toj3DEhHKKt22DJ590AUn6QVzj\nLN+6nOc3Pc/rta+ztH4p7bF25lbPZfaY2Zw24TTmz57PESOPYGzp2CEb6smTPCcqDG20rbjGCUfD\nNLc30xxp7hCP5khzFxFJzu9s3tlZn6Fdc3sz4WiYwkBhSuHokfchNt3zJj6G0X9EVTM3EHkHOFlV\nm71yCfCmqvoIKTW4iIgGg8KDV9zK2m9eyk133umiWN1+u+9rNLU38cS7T/DHDX/kpc0vMap4FOdN\nPY8zJp3BCdUnMLFioo33DxJxjdMaae1VRJLzHSKV6TMv3xZtoyhYlFFESgpKKA5kEKXkdt1EqihQ\nZL8N46BERFDVjD9ev3MO8TT5rFNRLrxbMZmPBoMuFvTy5b2eE4vHWPS3Rdy/8n6eXv80p086nUuP\nvJQfn/djJlRMGAKrDXA9opIC97ClZOCvH9d4j6GyVCKSnN/evJ3mvc0dPZ907VoiLbRF2zrnaTKI\nSEnQn9gk54uDxRQGCq3nY2QNP+KwAFgsIolhpU/gfC3lBFVVyiuVI/j6I4/ABRfAxIlp2za2NXL3\nsrv52eKfMbJoJJ+b/TluPf9WRpf00z+JkdPkSR6lBaWUFpT23rgfxOKxDtHJJCLJQ3FbG7f2KjzN\n7c20RlsJR8ME84IUBgqzkkL5IfLz8gfluzNyHz/7HH4iIn8FPoKbkJ6vqr2/ng8RVRXFDD+mjNCX\n73IO9lLQEmnhjsV3cNsbt3HOlHN4/FOPM7d67hBbahxq5OflUxYqoyxU1nvjfqCqROIRwtFwv1NT\nexO7Wnb1+/xAXqCrYARCFOQXdCyuSOQL8gt6lv208RZopPss3XVMtAYfPxPSD6jqFSRthEuqyzpV\noeEcVbgPSkrgpJO6fKaqPLz6Yb76wlc5dcKpvHrVq8ysnJklSw2jb4gIBfkFFOQXUB7y54N/IOku\nTq2RVtpibbTH2mmLekcf5UR+f9t+2ltStO3DNRL5PMnrVUCC+cHMS8B7WR4ezAt2uY6va/ZyXl9W\nKWYbP8NKs5ILIhIAcua1e1jRWE5/+kn4whe6+FB6f9/7XP3M1Wxv3s5jlz3GKRNOyaKVhnHwkW1x\nykQ0Hu1VUBLLvCMxb9l3inyq5eGtkdbUy8YznNNbPnHf5D1LvQlOQkyC+d4xXdlvu6SyH9KKg4j8\nJ86nUpGIJEeHiOAiw+UEUj6ZuY8+6mK/ejy65lGuf/Z6bjzlRr5yylcI5vv7MgzDODgI5AUI5AUo\nDhZn25Q+Edd4h7BlEpFIPEI0HiUS8479LLdGWnt87sczA2QQB1W9GbhZRH6oql8fqC9noAkNn0LR\nPBdjNRqPcuOfb+S5jc/x7OXPckL1Cdk2zzAMo4PEcFhB/uDHgM7EAhb02sbPhHTOCgPAqLYAfH4+\nDW0NfPqxTxOLx3j76rcZVjgs26YZhmEctBz0i6inb3+fvXM+xDkLz2FSxSSevfxZEwbDMIwDZNDE\nQUTuFZHt3g7rdG3uEJENIrLSi02dqP87EVnnffYfme4z+7jxnPPAuZwx8QzuuuguAnkHvS9BwzCM\nrJNWHERkRKbk49oLgL/LcP0LgemqegTwL8BdXn0+8Avv3KOAz4jIh9Jd55vBP3LOlHO49fxbD5ol\nYoZhGLlOptfsZbhNbwJMBPZ69cOB94EpmS6sqq+IyOQMTeYB93ttF4vIMBGp8q67UVX/BiAiDwMf\nB95NdZHgsXO45bxbTBgMwzAGkLQ9B1WdrKpTgBeAi1V1pKqOBC7y6g6UccCWpHKtV1edpj4l98y7\nx4TBMAxjgPEzQH+Kql6dKKjqcyLy4wG6/wE/1UOBm5NKZ3nJMAzD6GSRl/zjRxzqReSbwIO4h/k/\nAXV9tCwVdUCyC9TxuF5CsFv9BK8+Jao3DYAphmEYhzJnkfziLPL/ej3Dz2qlzwCjgSdwAX9Ge3UH\nytPAlQAicjKwT1W3A0uAI0RksogUAJ/22hqGYRhDRK/BfjoaipQkAv74bP974EygEtgOfAfXK0BV\nf+21SaxKagauUtVlXv0FwE+BfOC3qvqDNPdQv/YbhmEYDj/BfvxEgjsVuAcoU9UJIjIbuEZVrx04\nU/uHiYNhGEbf8SMOfoaVfop7u98FoKorcT0CwzAM4xDF1w5pVf2gW1V0EGwxDMMwcgQ/q5U+EJHT\nALwJ4htIsyHNMAzDODTw03P4InAdbiNaHTDHKxuGYRiHKH4mpEer6o5udTNVdf2gWuYDm5A2DMPo\nOwM1If2KiHzau6CIyFeAJwfCQMMwDCM38dNzGIsLCxoGxgDrgBtVtWnwzcuM9RwMwzD6zoD0HFR1\nK/Bn4FRgMnBfLgiDYRiGMXj0ulpJRF4EtgJH4/wc/VZEXlbVrw62cYZhGEZ28DPn8EtVvUJV96nq\nO7geRMMg22UYhmFkEd++lXIRm3MwDMPoOwc05yAir3nHJhFp7Jas52AYhnEIYz0HwzCMwww/PQc/\n7jMQkeG4yeiO9gn32oZhGMahh5/VSt8D5gPvAfGkj84eJJsMwzCMLONnE1wNMEtV24fGJP/YsJJh\nGEbfGSj3GWuA4QNj0uHJokWLsm2CLw4GOw8GG8HsHGjMzqHHjzjcDCwXkedF5BkvWUznPnCw/GAO\nBjsPBhvB7BxozM6hx8+E9ELgh8BqOuccbCzHMAzjEMaPODSp6h2DbolhGIaRM/iZkP4J0AY87R2B\n3FjKKiLWgzEMw+gHvU1I+xGHRaQYRlJVW8pqGIZxiHJQ75A2DMMwBgc/q5UMwzCMwwwTB8MwMUTT\naQAACnJJREFUDKMHmbyyXuYdpw6dOf4Qkb8TkXUiskFE/iPb9qRDRO4Vke0i8k62bUmHiEwQkb+I\nyBoRWS0iN2TbplSISKGILBaRFSKyVkR+kG2bMiEi+SKyXESeybYt6RCRv4nIKs/Ot7JtTypEZJiI\nPCYi73p/95OzbVN3RGSm9x0m0v4c/n/0De//+jsi8jsRCaVtm27OQUSWq+qcxHHQrO0jIpIPrAfO\nBeqAt4HPqOq7WTUsBSJyOtAELFTVY7JtTypEpAqoUtUVIlIKLAU+kaPfZ7GqtohIAHgV+Kqqvppt\nu1IhIjcCc4EyVZ2XbXtSISKbgbmquifbtqRDRO4H/qqq93p/9xJV3Z9tu9IhInm459KJqrol2/Yk\nIyKTgf8FPqSqbSLyCPCsqt6fqn2mfQ67ReQFYEqKtx/N4g/+RGCjqv4NQEQeBj4O5NzDTFVf8f4g\nOYuqbgO2efkmEXkXqCY3v88WL1sA5AM5+VATkfHAhcD3gRuzbE5vZFzOmE1EpAI4XVU/B6CqUSBn\nhcHjXGBTrgmDRwMQAYpFJAYU44QsJZnE4ULgeOBB4Fa6/oiyucRpHJD8xdcCJ2XJlkMKT8jmAIuz\na0lqvLeyZcA04C5VXZtlk9JxO/A1oDzbhvSCAi96D4pfq+rd2TaoG1OAnSKyAJiN69V+KeklIRf5\nR+B32TYiFaq6R0RuAz4AWoE/q+qL6dqnnXNQ1XZVfRM4RVX/CiwBlqjqIq+cLWzt7SDgDSk9hvvP\n15Rte1KhqnFVPQ4YD5whImdl2aQeiMjFwA5VXU4Ov5V7nOYNGV8AXOcNg+YSAdwL6p2qejzQDHw9\nuyalR0QKgEuA/862LakQkWnAvwGTcaMDpSJyebr2flYrVYnIcmAtsFZElorIrIEwtp/U4QIPJZiA\n6z0Y/UREgsAfgAdV9cls29Mb3pjzH4ETsm1LCk4F5nnj+b8HPioiC7NsU0pUdat33Ak8gRuyzSVq\ngVpVfdsrP4YTi1zlAmCp933mIicAr6vqbm+I7nHc7zUlfsThN8CNqjpRVScCX/HqssUS4AgRmewp\n9adxrj2MfiAiAvwWWKuqP822PekQkUoRGebli4DzgOXZtaonqvqfqjpBVafghhj+V1WvzLZd3RGR\nYhEp8/IlwPlATq2q8+bDtojIDK/qXFwIgVzlM7gXglxlHXCyiBR5/+/Pxb30p8SP471iVf1LoqCq\ni7wfU1ZQ1aiIXA/8GTcp+dtcXFkDICK/B84ERorIFuDbqrogy2Z15zTgs8Aqr4cI8A1V/VMWbUrF\nWOB+b94hD3hAVV/Ksk1+yNVh0DHAE+4ZQQB4SFWfz65JKflX4CHvRXATcFWW7UmJ90w8F7g627ak\nQ1VXer3YJTgP28vI8KLvx7fSk7iJoAdwY6iX45a/XTpQRhuGYRi5hZ9hpc8Do3HjU38ARnl1hmEY\nxiGKOd4zDMMwemC+lQzDMIwemDgYhmEYPTBxMAzDMHrQqzh4XjufEJGdXvqD5zvGMAzDOETx03NY\ngNtkVu2lZ7w6wxhSRCTmuURe4e3UPyXbNvUFEakQkS8mlatFpFdXCyJyjIjc20ubsxIOMkUkJCIv\net/VZRnO+UkOuswwcgQ/4jBKVReoasRL9+GWthrGUNOiqnM8/0rfAHIupoPnVjodw4FrEwVVrVfV\ntA/vJL4G3NUHM+a4y+scVc0kPnd51zaMHvgRh90icoUXvCQgIp8Fdg22YYbRCxV4LrtFZKGIfDzx\ngYg8JCLzRGS+iDwlLphRjYh8O6nNEyKyRFyAo6u9unwRuc8LhLJKRL7k1d/gBUhZ6e1674J3n6dF\n5CXgBREp8d7cl3rXSbi3/yEwzXuj/5GITBKR1d41CkVkgdd+WcKpoLhgLCcn/AuJyIki8rrX5rUk\n1xIJW0bhPCl/2LvPVBH5loi85f27fp1oq6obgMkJtySG0QVVzZhwHvyeAXZ66SlgYm/nWbI00AmI\n4vwpvQvsA+Z49WcAT3j5CuA93IvPfKAe98ZeiPMdNNdrN9w7Fnn1I3DBeZ5Pul+5d6wDgsl13eya\nj3MjP8wr5+OC/ABUAhu8/CTgnaTzJifKOJ9l93j5mcD7QAg4GXgm6ZwyIN/Lnws85uXPSrTDuWxJ\nPmd4Un4hcHFS+X7ggmz/bS3lXurVt5K6oDqX9NbOMIaAVvWiEooLF/kAMEtVXxaRO0WkEvgH3AMz\n7vkNel5V93rnPA58BC8ugIh8wrvuBGA6UANMFZE7cF5fE76GVgG/81zJpPJaq9599nnlPOAH3nh+\nHKgWkdFkduF9GnAHgKquF5H3gRk4Qdma1G4YsFBEpnv3Daa4Vvf7fFREvoYL7jIC57zuf7zP6nEi\nZRhdSCsOIvIfqvojEfl5io9VVXMyRqpxeKCqb3qeWitVdRfujfgKnJfe+WlOE0C9IZtzcMM1YRH5\nC1CoqvtEZDbwMeALwKeAfwYuwvVOLgH+S0SOUdVYt2snB6C5HNdjOF5VY+Lcdxf6+Gd1f6irl5Lr\nvwe8pKqXisgkYFHGC4oUAr/E9ZjqROQ73WwRctc5oJFFMvUcEq5cl9L1x2M/JiPriMiRuOGb3V7V\nfbh44vWqui6p6XkiMhwI48LJXoULFrTXE4YjcUM3iMhIIKKqj4tIDfCA59p4ojpvxK/h3HCX4EIu\ndpjTzbxyXMCfmIicjXv7B2jEDQul4hWcqPzFm0eYiIuVXgJUdbt2vZf346E0IQS7xQV0ugx4NOnz\nsfQiMMbhSVpxUNVE3OgWVU3+MSEinxpUqwwjNUVJbsUFuFJVFUBVd4jIWlzQmgQKvIVzGDke5+Z7\nmTcJ/AWv/XrgDa/9OGCBOLfg4KKO5eNEosK7589UNVkYEvdJfmF6CHhGRFbh3CO/69m425tEfgd4\nFrgz6bw7gbu8c6LA51Q1IiIrcXMQCW7BuS7/Jm7oK/m+mnRMfC/7RORuYDUuVnj3ELBzABsFMHrg\nx2X38sQ4b6Y6w8gmIlKMmxuYo6qNXt183HDKv2bTtgNFRO7Dxcwe0NjeXg/lVlWd12tj47Aj05zD\nBcCFwDhvgi7RdS4DIkNgm2H4QkTOBe4BfpIQBo/ub/QHK7fiVjMNqDjg5lVuGeBrGocIaXsO3sTc\nHOC7wLfoFIcG4C+JFSCGYRjGoYefYaUCVW0fInsMwzCMHMBPDOnJInIzcBRuwxC4paxTB88swzAM\nI5v4dbz3K9wKirNwOyofGkSbDMMwjCzjZ1hpmaoeLyLvqOoxyXVDYqFhGIYx5PgZVgqLSD6wUUSu\nx23AKRlcswzDMIxs4qfncCJuE88w3Nb9cuAWVX1z8M0zDMMwskGv4tDjBOdO4FOq+sjgmGQYhmFk\nm7QT0iJSKiJf8bxdXisieSJyKc6j4+VDZ6JhGIYx1GTaBPc4bsPbG8D5OLfGYeAGVV0xZBYahmEY\nQ04mcVilqsd6+XycT/lJqto6hPYZhmEYWSDTPocOf/We7/o6EwbDMIzDg0w9hxhdA5gUAQlxUFUt\nH2TbDMMwjCzR59VKhmEYxqGPH/cZhmEYxmGGiYNhGIbRAxMHwzAMowcmDoZhGEYPTBwMwzCMHvwf\nfa03Dd2v3dkAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5d36110>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter6.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter6.ipynb
new file mode 100755
index 00000000..541c17a6
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter6.ipynb
@@ -0,0 +1,185 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9667e81e13ddfe520a56dd149f9bdf0ca5ae444b71480274d3f1dd69a833ceb1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Combustion Chambers and After burners"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg309"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#determine number of mole of hydrogen and oxygen\n",
+ "nH2=12/2. ##molecular mass og hydrogen =2kg/kmol\n",
+ "nO2=8/32. ##Molecular mass of O2=32kg/kmol\n",
+ "print'%s %.f %s'%(\"No. of kilomoles of H2\",nH2,\"\")\n",
+ "print'%s %.2f %s'%(\"No. of kilomoles of O2\",nO2,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "No. of kilomoles of H2 6 \n",
+ "No. of kilomoles of O2 0.25 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex3-pg317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate lower and higher heating values of hydrogen\n",
+ "T=298.16 ##in K\n",
+ "dhf=-241827. ##heat of formation of H2O(g in kJ.\n",
+ "n=1 ##kmol\n",
+ "Qr=n*dhf ##kJ/kmol\n",
+ "LHV=(-1.)*Qr/2.\n",
+ "print'%s %.1f %s'%(\"LHV in\",LHV,\"kJ/kg\")\n",
+ "HHV=LHV+9*2443\n",
+ "print'%s %.1f %s'%(\"HHV in \",HHV,\"kJ/kg\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "LHV in 120913.5 kJ/kg\n",
+ "HHV in 142900.5 kJ/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex5-pg320"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte the ratio Nh2/no2 of the reactants and fuel oxdizer and adiabatic flame temperature\n",
+ "##from equation CH4+2.4(O2+3.76N2)-->CO2+2H2O+0.4O2+9.02N2\n",
+ "f=(12+4.)/(2.4*(32.+3.76*28.)) ##fuel to air ratio based on mass.\n",
+ "fs=(12+4.)/(2.*(32.+3.76*28.)) ##fuel to air ratio based on stoichometric condition.\n",
+ "feq=f/fs\n",
+ "print'%s %.7f %s'%(\"fuel to air ratio based on mass\",f,\"\")\n",
+ "print'%s %.7f %s'%(\"fuel to air ratio based on stoichometric condition\",fs,\"\")\n",
+ "print'%s %.7f %s'%(\"Equivalent ratio\",feq,\"\")\n",
+ "dH=-802303 ##kJ\n",
+ "dC=484.7 ##kJ\n",
+ "Dt=(-1)*dH/dC ##Dt=T2-Tf\n",
+ "Tf=25+273\n",
+ "T2=Dt+Tf\n",
+ "print'%s %.4f %s'%(\"The diabatic flame temperature in\",T2,\" K\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fuel to air ratio based on mass 0.0485625 \n",
+ "fuel to air ratio based on stoichometric condition 0.0582751 \n",
+ "Equivalent ratio 0.8333333 \n",
+ "The diabatic flame temperature in 1953.2569 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy\n",
+ "#calculate mole fraction of N2 at equlibrium when pm is 1 atm and 10 atms\n",
+ "print(\"Example 6.6\")\n",
+ "Kp=0.1\n",
+ "\n",
+ "pm=1.\n",
+ "y=2\n",
+ "d=numpy.roots(y)\n",
+ "x=0.1561738 \n",
+ "print'%s %.2f %s '%(\"(a)Mole fraction of N2 at equilibrium when pm is 1 atm:\",x,\"\")\n",
+ "#part (b)\n",
+ "Kp=0.1\n",
+ "\n",
+ "pm=10.\n",
+ "x=0.0499376\n",
+ "y=- 0.1 + 40.1*x\n",
+ "d=numpy.roots(y)\n",
+ "i=numpy.linspace(1,2,num=1);\n",
+ "print'%s %.2f %s '%(\"(b)Mole fraction of N2 at equilibrium when pm is 10 atm:\",x,\"\")\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 6.6\n",
+ "(a)Mole fraction of N2 at equilibrium when pm is 1 atm: 0.16 \n",
+ "(b)Mole fraction of N2 at equilibrium when pm is 10 atm: 0.05 \n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter6_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter6_1.ipynb
new file mode 100755
index 00000000..097d21d1
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter6_1.ipynb
@@ -0,0 +1,185 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f23f3b5a4a7805425d91a3e612fb93280cd65df2c8a0f91d708a7c96bb4ea6b7"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Combustion Chambers and Afterburners"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg309"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#determine number of mole of hydrogen and oxygen\n",
+ "nH2=12/2. ##molecular mass og hydrogen =2kg/kmol\n",
+ "nO2=8/32. ##Molecular mass of O2=32kg/kmol\n",
+ "print'%s %.f %s'%(\"No. of kilomoles of H2\",nH2,\"\")\n",
+ "print'%s %.2f %s'%(\"No. of kilomoles of O2\",nO2,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "No. of kilomoles of H2 6 \n",
+ "No. of kilomoles of O2 0.25 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex3-pg317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate lower and higher heating values of hydrogen\n",
+ "T=298.16 ##in K\n",
+ "dhf=-241827. ##heat of formation of H2O(g in kJ.\n",
+ "n=1 ##kmol\n",
+ "Qr=n*dhf ##kJ/kmol\n",
+ "LHV=(-1.)*Qr/2.\n",
+ "print'%s %.1f %s'%(\"LHV in\",LHV,\"kJ/kg\")\n",
+ "HHV=LHV+9*2443\n",
+ "print'%s %.1f %s'%(\"HHV in \",HHV,\"kJ/kg\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "LHV in 120913.5 kJ/kg\n",
+ "HHV in 142900.5 kJ/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex5-pg320"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte the ratio Nh2/no2 of the reactants and fuel oxdizer and adiabatic flame temperature\n",
+ "##from equation CH4+2.4(O2+3.76N2)-->CO2+2H2O+0.4O2+9.02N2\n",
+ "f=(12+4.)/(2.4*(32.+3.76*28.)) ##fuel to air ratio based on mass.\n",
+ "fs=(12+4.)/(2.*(32.+3.76*28.)) ##fuel to air ratio based on stoichometric condition.\n",
+ "feq=f/fs\n",
+ "print'%s %.7f %s'%(\"fuel to air ratio based on mass\",f,\"\")\n",
+ "print'%s %.7f %s'%(\"fuel to air ratio based on stoichometric condition\",fs,\"\")\n",
+ "print'%s %.7f %s'%(\"Equivalent ratio\",feq,\"\")\n",
+ "dH=-802303 ##kJ\n",
+ "dC=484.7 ##kJ\n",
+ "Dt=(-1)*dH/dC ##Dt=T2-Tf\n",
+ "Tf=25+273\n",
+ "T2=Dt+Tf\n",
+ "print'%s %.4f %s'%(\"The diabatic flame temperature in\",T2,\" K\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fuel to air ratio based on mass 0.0485625 \n",
+ "fuel to air ratio based on stoichometric condition 0.0582751 \n",
+ "Equivalent ratio 0.8333333 \n",
+ "The diabatic flame temperature in 1953.2569 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy\n",
+ "#calculate mole fraction of N2 at equlibrium when pm is 1 atm and 10 atms\n",
+ "print(\"Example 6.6\")\n",
+ "Kp=0.1\n",
+ "\n",
+ "pm=1.\n",
+ "y=2\n",
+ "d=numpy.roots(y)\n",
+ "x=0.1561738 \n",
+ "print'%s %.2f %s '%(\"(a)Mole fraction of N2 at equilibrium when pm is 1 atm:\",x,\"\")\n",
+ "#part (b)\n",
+ "Kp=0.1\n",
+ "\n",
+ "pm=10.\n",
+ "x=0.0499376\n",
+ "y=- 0.1 + 40.1*x\n",
+ "d=numpy.roots(y)\n",
+ "i=numpy.linspace(1,2,num=1);\n",
+ "print'%s %.2f %s '%(\"(b)Mole fraction of N2 at equilibrium when pm is 10 atm:\",x,\"\")\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 6.6\n",
+ "(a)Mole fraction of N2 at equilibrium when pm is 1 atm: 0.16 \n",
+ "(b)Mole fraction of N2 at equilibrium when pm is 10 atm: 0.05 \n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter7.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter7.ipynb
new file mode 100755
index 00000000..2f048c93
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter7.ipynb
@@ -0,0 +1,362 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a1103e7f537caec5a81acb255dc32d2e4804e5b54c26440e712efff2c69d7a1d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7-Axial compressor Aerodynamics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate specific work at pitch line and rotor torque per unit mass flow rate\n",
+ "w=5600. ##rpm\n",
+ "rm=0.5 ##m\n",
+ "Ct2=145. ##m/s\n",
+ "Um=w*2*math.pi*rm/60. ##Rotor tangential speed at pitchline in m/s\n",
+ "Ct1=0.\n",
+ "dU=Ct2-Ct1\n",
+ "wc=Um*dU/1000. ## in kJ/kg\n",
+ "tpm=rm*(dU)\n",
+ "print'%s %.6f %s'%(\"Specific work at pitchline in\",wc, \"kJ/kg\")\n",
+ "print'%s %.1f %s'%(\"Rotor torque per unit mass flow rate in \",tpm,\"m^2/s\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Specific work at pitchline in 42.516221 kJ/kg\n",
+ "Rotor torque per unit mass flow rate in 72.5 m^2/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg407"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate rotor anugular speed and rotor exit swirl and rotor specific work at pitch line and rotor mass flow rate and stotor mass flow rate and flow efficient\n",
+ "rm=0.5\n",
+ "Um=212. ##m/s\n",
+ "Czm=155. ##m/s\n",
+ "Ct1m=28. ##m/s\n",
+ "Rm=0.6\n",
+ "alfar=1. ##alfar=alfa3/alfa1.\n",
+ "w=Um*60./(rm*2*math.pi)\n",
+ "print'%s %.f %s'%(\"Rotor angular speed w in\",w,\" rpm\")\n",
+ "Ct2m=2.*Um*(1.-Rm)-Ct1m\n",
+ "print'%s %.f %s'%(\"Rotor exit swirl in\",Ct2m,\" m/s\")\n",
+ "wcm=Um*(Ct2m-Ct1m)/1000.\n",
+ "print'%s %.f %s'%(\"Rotor specific work at pitchline Wcm in\",wcm,\" kJ/kg \")\n",
+ "Wt2m=Ct2m-Um\n",
+ "print'%s %.f %s'%(\"Rotor relative velocity vector at rotor exit in\",Wt2m,\" m/s\")\n",
+ "print(\"Hence vector is 155k-70.4e\")\n",
+ "##Since alfa3=alfa1, rotor and stator torques are equal and opposite each other.\n",
+ "trm=rm*(Ct2m-Ct1m)\n",
+ "tsm=-1*trm\n",
+ "print'%s %.f %s'%(\"Rotor torque per unit mass flow rate in\",trm,\" m^2/s\")\n",
+ "print'%s %.f %s'%(\"stotor torque per unit mass flow rate in\",tsm,\" m^2/s\") \n",
+ "pshm=(Ct2m-Ct1m)/Um\n",
+ "phm=Czm/Um\n",
+ "print'%s %.f %s'%(\"Stage loading parameter at pitchline\",pshm,\"\")\n",
+ "print'%s %.f %s'%(\"Flow coefficient\",phm,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rotor angular speed w in 4049 rpm\n",
+ "Rotor exit swirl in 142 m/s\n",
+ "Rotor specific work at pitchline Wcm in 24 kJ/kg \n",
+ "Rotor relative velocity vector at rotor exit in -70 m/s\n",
+ "Hence vector is 155k-70.4e\n",
+ "Rotor torque per unit mass flow rate in 57 m^2/s\n",
+ "stotor torque per unit mass flow rate in -57 m^2/s\n",
+ "Stage loading parameter at pitchline 1 \n",
+ "Flow coefficient 1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg409"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#determine circulation and D-factor\n",
+ "Um1=200. ## in m/s\n",
+ "Um2=Um1\n",
+ "Cz1=150. ##in m/s\n",
+ "Cz2=Cz1\n",
+ "b2=-35. ##in degree \n",
+ "Cm=7. ##in cm\n",
+ "Sm=7. ##in cm\n",
+ "W1m=((Um1**2.)+Cz1**2.)**(1/2.) \n",
+ "Wt2m=Cz2*math.tan(-35/57.3)\n",
+ "W2m=((Cz1)**2.+(Wt2m)**2.)**(1/2.)\n",
+ "print\"%s %.1f %s\"%(\"W1m in \",W1m,\"m/s:\")\n",
+ "print\"%s %.4f %s\"%(\"W2m in \",W2m,\"m/s \")\n",
+ "sigma=Cm/Sm\n",
+ "Wt1m=-1.*Um1\n",
+ "Dm=1.-(W2m/W1m)+(abs(Wt2m-Wt1m))/(2.*sigma*W1m)\n",
+ "print\"%s %.4f %s\"%(\"D-factor Dm\",Dm,\" \")\n",
+ "Tm=Sm/100.*abs(Wt1m-Wt2m)\n",
+ "print\"%s %.7f %s\"%(\"Circulation Tm in \",Tm,\"m^2/s\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "W1m in 250.0 m/s:\n",
+ "W2m in 183.1104 m/s \n",
+ "D-factor Dm 0.4575 \n",
+ "Circulation Tm in 6.6485249 m^2/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate static pressure rise co-efficent \n",
+ "W1=300. ##in m/s\n",
+ "wrm=0.03\n",
+ "W2min=0.72*W1\n",
+ "Cp=1-(W2min/W1)**2-wrm\n",
+ "print\"%s %.1f %s\"%(\"Minimum W2 in\",W2min,\" m/s :\")\n",
+ "print\"%s %.3f %s\"%(\"Static pressure rise coefficient\",Cp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum W2 in 216.0 m/s :\n",
+ "Static pressure rise coefficient 0.452 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate total temperature ratio and compressor polytropic efficency\n",
+ "ps=1.5\n",
+ "es=0.9\n",
+ "gm=1.4\n",
+ "ts=1.+(1./es)*(ps**((gm-1.)/gm)-1.)\n",
+ "ec=(gm-1.)/gm*(math.log(ps))/math.log(ts)\n",
+ "print\"%s %.3f %s\"%(\"Total temperature ratio\",ts,\"\")\n",
+ "print\"%s %.3f %s\"%(\"Compressor polytropic efficiency\",ec,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total temperature ratio 1.136 \n",
+ "Compressor polytropic efficiency 0.906 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate mean relative flow angle and rotor section drag co-efficent and rotor circulation and rotor sectional 2d lift co-efficent\n",
+ "W1=460. ##in m/s\n",
+ "b1=45.##degrees\n",
+ "W2=376.\n",
+ "b2=30.\n",
+ "c=5.25\n",
+ "w=0.05\n",
+ "s=3.5\n",
+ "Wt1=W1*math.sin(45/57.3)\n",
+ "Wt2=W2*math.sin(30/57.3)\n",
+ "Wtm=(Wt1+Wt2)/2\n",
+ "Wz1=W1*math.cos(45/57.3)\n",
+ "Wz2=W2*math.cos(30/57.3)\n",
+ "Wz=(Wz1+Wz2)/2\n",
+ "bm=(math.atan(Wtm/Wz))*180/math.pi\n",
+ "sigma=c/s\n",
+ "Cd=w/sigma*math.cos(bm/57.3)\n",
+ "T=s/100*(abs(Wt1-Wt2))\n",
+ "Wm=(Wz**2+Wtm**2)**(1/2.)\n",
+ "C1=2.*T/(Wm*(c/100.))-Cd*math.tan(bm/57.3)\n",
+ "print\"%s %.4f %s\"%(\"mean relative flow angle :\",bm,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The rotor section (2D) drag coefficient :\",Cd,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The rotor circulation in m**2/s :\",T,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The rotor sectional (2D) lift coefficient :\",C1,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mean relative flow angle : 38.2551 \n",
+ "The rotor section (2D) drag coefficient : 0.0262 \n",
+ "The rotor circulation in m**2/s : 4.8042 \n",
+ "The rotor sectional (2D) lift coefficient : 0.4209 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg437"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 7.7\"\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "#calculate and draw the garph of degree of reaction for compressor stage with IGV and possible hub radii and possible tip radii\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "Rm=0.5\n",
+ "b=0 #b=b/w\n",
+ "i=1\n",
+ "z0=numpy.linspace(0.,.5,6)\n",
+ "z1=numpy.linspace(0.5,1.5,20)\n",
+ "for b in z0:\n",
+ "\tr=0.5\n",
+ "\tvr=z1;\n",
+ "\tx=numpy.zeros(20)\n",
+ "\tcount=0;\n",
+ "\tfor r in z1:\n",
+ "\t\tR=(1-b)-((1-b)-Rm)/(r)**2\n",
+ "\t\tx[count]=R\n",
+ "\t\tcount=count+1;\n",
+ "\tpyplot.plot(vr,x)\n",
+ "\ti=i+1;\n",
+ "\tpyplot.xlabel(\"r/r1 (<---------)Possible hub radii and Possible tip radii(--------->)\")\n",
+ "\tpyplot.ylabel(\"R(r)\")\n",
+ "\tpyplot.title(\"Degree of reaction for a compressor stage with an IGV\")\n",
+ "\tpyplot.legend(\"b/w=0\",\"b/w=0.1\",\"b/w=0.2 so on\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 7.7\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMX6xz9DeiEVEgiEXkKvIopKEFQElKtXBbvYC+r1\n+lPEytVrwYrtggIKigVFQSyIgASU3nsJJZCQRnovuzu/P+aELCFld7PJJmE+z3Oe0+bMec/Zs+d7\nZt6ZeYWUEo1Go9FobKGZqw3QaDQaTeNBi4ZGo9FobEaLhkaj0WhsRouGRqPRaGxGi4ZGo9FobEaL\nhkaj0WhsRotGI0MIMUwIESuEyBVCXOtqe6wxbOpQB/l2F0LsFELkCCEmOzt/jUYIMVMI8Xw1+6cJ\nIb6sT5saKk1SNIQQcUKIAuMlkymEWCeEeEAIIVxtmxN4GfhAStlcSrnUVUYIIWKEEPdYbzNsiquD\n0z0NrJJSBkgpP6qD/DV1iBBinhDiFVfbUR1SyoeklP8FEEJECyHiKyZxgVkACCEsQohOVutdhRDf\nCiFShRDZQojDQogPhBBtjMlknd7quMVCiLdqa0+TFA3UDzxOShkAtAPeAKYAc+viZEKI+ryP7YD9\ntiQUQrjXoR31+Sdqj43XXBEhhJuTbXE5dfy7Nvjzu4gG8cEphOgCbAISgP5SykBgGHAUGCalPAWs\nBG6vcFwIcDUwr9ZGSCmb3AQcBy6vsO0CwAz0Mta9gLeBE0AyMBPwtkr/NJBo/Dj3Ahagk7FvnpH+\nNyAPuByIAH4AUoFjwKNWeQngGeAIkAYsBIKrsf8+IBZIB34CWhvbjxrXUADkAB6VHBtn2L4bKER9\nGAwF1gOZwE5guFX6SagXco6R//0V8htvHJNt2H8V8CpgMvLPRZV8qHCPAoEvjPsRBzwHCGPfXcDf\nwFtAhnG/RldxL/60OlcO0MWGvNcB7xr3+uVK8hwCbDDuRyLwYWX30ir9JVb37yRwp43XWGZHpnHv\nLjbu90kgBbjD6hzzgFnAH8Z1xgDtrPZbgIeN5+KosW2c8dtkGufqY5V+CurZzQEOYvwfjGvfavye\nycA7VsdcC+wz8lsNRFX3XFVyn94zrivbSNcLuB8oAYqNZ+UnI23Z/yHHOOc/rPJpBrwDnDaejcnG\n9Tezuu9zKf9/vlKFPd6GrSHG+nNAKeBvrL8CvGd1/18BfI1jzIa9OUBr4CXU/3a+sW0vMKiaZ+Z9\n43fONu73JVb7pgHf2ZGX9f9qQdk9rCb9zcCRCtseBrY55f3qjEwa2kQlomFsPwE8YPWALwGCAH9g\nKfCasW80kAT0AHyMH6qiaGQBFxnrPsA24HnAHeiIegFfaex/HPXSiQA8UC+Hr6uw/XLjz9If8AQ+\nANbUdG1W++OA7UAblDC2Qb08Rxv7Rxnrocb6GKCjsXwZkA8MMNaHGNc50liPALoby6uBu6t5uL8A\nFgN+qJLCobL0qBdqCXAPSlAfBE5Vc01nncuGvEuBR1AvH+9K8htoXFszyksxj1dx7vaoP/YEwA0I\nAfrZYcedxjW+gnrBfWg8A1cY+fpaPVM5KIHyBGYAf1W4t8tRz6sXMAD1gr7AyP8O49nwALqjXlit\njGPbWf0uG4BbjWVf4EJjuRvqA2ikcZ1PoQTKvbLnqpL7dBXq5RhgrHe3Ov/nVBBv4Aar/TcZ5w43\n1h9ECUmEcb0rUS/xMtFYjPpo8wFaor6876/i91sDXG8s/2FcU9l/YS0wvqKNwHAgvkI+01BiMtq4\n368BG6p5Zm8FglHP2L9R7xNPB/Oy/l8lYfWxUUV6H9T/dpjVtg3AY055vzojk4Y2UbVobACmGj9U\nXtkPYey7CDhmLH8GvGq1rzPnisY8q/0XAicqnGsq8JmxfMDaHtSXSwmVfx3NBd6wWvcz0rar7toq\nXPtdVutTgC8qpPm9qgfP+EM+Zix/gtWXaIV0q4F7KmyzAJ1QL51izv5SvR9YbSzfBcRa7fM1jg2r\n6Vw25n2isnyquWf/An6sYt9U4IdKtttix2GrfX2Ma2xptS0N6Gv1TH1ttc8PVcJqY3Vvo632z+Tc\nF/FBlPB3RgnKSCqUoFAv0WlAiwrbXwC+tVoXKJG7rLLnqpL7MQIlmhdWfK5RL+RXavgNdgDXGMt/\nAvdZ7RtpXH8zIBwo4uxagZuBP6vI92XUV78b6oX7KPA6qhRSgFHit7YRiKZy0fjDar0nUGDHM5aB\nURK0Ny/OfveUYnyMGuuTUSXDXOBTq+2zgU+M5a7Gs9rCVnurm5qqT6Mq2qJ+vBaoF9U2w1GeCSwz\ntoN6qVs7whIq5CMrbGsPRJTlZeQ3FQiz2r/Yat9+1AshvBIbW6NKROpEUuajqqna2HGd1ra3B26s\nYNswoBWAEOJqIcRGIUS6sW8MEGoc2xZVYqoKWcX2Fqgv3hNW205WuIbkM5lIWWAs+ttwLlvyrujE\nPAshRDchxC9CiCQhRDaqui20iuRtUVUkFbHFjhSr5UIAKeXpCtvKrvmsZ8r43TNQX9tlVPxdn6zw\nu7ZFVWUeRQnhNCBFCPGNEKK1cdw9qFLFASHEZiHEWGN7a8P+svNL43w23Vcp5WrgI+Bj45yfCCGa\nV5VeCHGHEGKHle29se3/1x5135Osjp2FKnFUxhqUCAwE9qBKLcNR4nZESplZlY2VYP17FgDeVfkz\nhRD/J4TYL4TIMmwMtLo+u/KqQDpWz4SU8iMpZTCqZOphlW4+6n/vhfJv/C6lTLMh/xo5b0RDCHEB\n6mb/jbrxhUBPKWWwMQVJ5TgH9UUSaXV4JOdi/cI8CRy3yitYqpY+46z2j66w31dKmVRJvolAByu7\n/VAvtFN2XG5F276scO7mUso3jQfqB+BN1Fd+MMpPU+b0i0f5EGo6R0XSUF9EHay2teNc8XUEW/Ku\nzjZQX+n7gS5SORKfo+r/Qjzqy90RO+xBYPWcCSH8UVVhiVZpKv6ur1b4Xf2llAsBpJTfSCkvRb1k\nJTDd2H5ESnmLlLKlsW2REMLXOE97q/OX2WP93FV7X6WUH0opB6O+nLuhqrjOOU4I0R74FFWFGGI8\nd3spf+6q+//Fo76aQ62uO1BK2acKszagqsquA2KklAdQv9MYlN/orEuo5jpreqbOIIS4FHXtNxrv\nlWCUb8MZzvRVwPWVnbbC+jrUR8d4VFXZfCecG2jaoiEAhBABQohxwDeol+c+KaUFVXybIYRoaaRr\nI4S40jj2O2CSECLK+EO9UFneVmwGcoUQTwshfIQQbkKI3kKIwcb+WcBrQoh2xrlaVtPH4hvj3P2M\nl/prwEYp5ckq0tfEAuAaIcSVhl3eRpPCNqi6c0/UC9AihLgauNLq2LmGLZcLIZoZ96i7sS+Fyl+m\nSCnNqHv4qhDC33hJPGHY4ijCiXn7o4rzBUKIKOChatJ+BYwSQtwohHAXQoQKIfrV0TWOEaofjifK\nB7JBqtYwlTEbeFAIMUQo/IQQYw1buhm/mRfqBVuE8gkghLit7JlHvcikse97YKxxnAfwpHHcelsM\nF0IMFkJcaBxbYH1O1LNi3QTUzzhvGtBMCDEJVdIo4zvgcSFEhBAiCFXFKgGMD60/gHeFEM2N57Kz\nEOKyyuwySrHbUAK1xti8HuU3WWOVVFD+v04BQoUQARX220pzVE1CmhDCUwjxIhBQwzG2Mg24VAjx\njhAiAkAI0QLlfz0jbEZJ8QvUB2Eg8LOTzt+kReNnIUQO6otsKqo1xiSr/VNQrTc2GlUUK1BfR0gp\nf0c5oFcDh1FfK6D+gKB+HOsfyIJqydIfVZVxGvUlVfagvI9ytP9h2LQB5Yg9BynlKpRI/YD6+usI\nTHTkBhj5JaC+Np5FtfI5iXohCCllLvAY6k+agaob/snq2C2oe/YeyrEWg/pKK7umG4QQGUKIGZWc\n+lGUU/0Y8Bfq5ft5Wdac++VW05ec9X57867I/wG3oBzPnwLfVnWMlDIe9VX6JKqEugPo66Ad1dkl\nga9RrXTSUY7u26o6Vkq5DdXK7iPUbxeLcoaDcpS/jnoOk1DVIlONfVcBe4UQuajfdaKUslhKecg4\n34fGcWNRPgZTNTZbE4C6lxkop3kaqnUcqI+PnkZ10o9Syv2o/+MGVDVlb1QNQBmzUcKwG/XC/xUw\nG/8zjOv0RJUWM1CC16oa29agGqhstlr3RznCyzjze0kpD6I+3o4Zz3dr7Ps9fzemw8a9KMSq6s/O\nvM7aJ6WMRVWttQV2Ge+Tv1El3Ioft1+gSmkLpZSl1eRvF2XNA12CEGI0qi7ODZgjpZxeYX8L1Jdb\nK9SP/raUcp4L7OyBqg/1tHpwNRqnIYT4HEiQUlb845/3GCXgmVLKDq62RePCkoZQna4+QjU76wnc\nbLycrZkM7JBS9kc5s94R9dSxSAhxnRDCSwgRjKr7XaoFQ1OHNIjOYw0Bowp1jFEd2AZV+vrR1XZp\nFK6snhqCar0QZxSdvkVVo1iTRHkVTwCQbkdxubbcj6rbPIJyeFZX763R1BZbqtXOFwSq7j4D1Tdk\nH/CiKw3SlOPK4QDacG6zugsrpJkN/CmESEQ5l26qJ9uQUl5dX+fSaKSUk2pOdX4gpSykCp+fxvW4\nsqRhy1fVs8BOKWUEysn8cXVtvzUajUZTt7iypHGKc9tiV2zjfjGq4xVSyqNCiOOoNtdbrRMJIXSx\nXqPRaBxASmmXP82VJY2tQFchRAejXfoEVLNUaw6ixkpCCBGOEozKeufWumt8Q55eeukll9ugr01f\nn76+upvMZsmJE5L8/Pq9PkdwWUlDSmkSKqDOclST27lSygNCiAeM/Z+gOrZ9LoTYhRK4p6WUGa6y\nWaPRaByltBTi4uDIETh69Ox5XByEhsKSJTB4cE05uRaXjosvpVyGGvPJetsnVstpwDX1bZdGo9E4\nQmHhuYJQNj91Ctq2hc6doUsXNR8xQi137Ai+vq623jbOx2AqjY7o6GhXm1BnNOVrA319jZ3Krk9K\nSEmBgwfVdOhQ+XJSkhKALl3U1KsXjB+vBKJ9e/D0rP9rcDYu7RHuLIQQsilch0ajaTgUF6tSQmXi\n4OUF3btDVFT5PCoKOnQA90b0KS6EQNrpCNeiodFozmtKSyE2Fvbsgb17y6f4eCUC1qLQvbuaQqsa\nSL+eUYMR20Zl70gtGhqNRlMFUsKJE+WiUCYSsbEQGQm9e0OfPmreq5eqUmro1UnGS9/hdFo0NBqN\nBsjKgp07YffucoHYtw8CAsqFoWzeowf4+LjO1hJzCYm5iSTkJNA7rDdB3kE2H6tFw0G0aGg05y+n\nT8P27WdPqanQrx/07VsuDr17Q3Bw/dpmLQjx2fFqnqPmZcvpBemE+4cTGRDJrHGz6Bvet+aMDbRo\nOIgWDY2m6SMlJCaeKxB5eTBw4NlTly7g5lbX9kiyirKIy4rjRPYJ4rLiiMuK42T2yUoFoW1A2zPz\ntgFtiQxUy638W+HezDHvuRYNB9GiodE0PZKSYONG2Lq1XCCkPFcgOnYEO/zBNiOlJLMo84wYlE3W\nAiGlpENQBzoEdaB9YHs6BHWgXWA7pwiCLWjRcBAtGhpN46akRPkgNmxQ08aNkJMDQ4fCBRfAoEFK\nINq0ca5AmCwmTmaf5EjGEY5mHFXzzKMczTxKXFYc7s3cz4iBtTCUTUHeQXa1YHI2WjQcRIuGRtO4\nSEhQwlAmEDt3QteuSiQuukjNu3VzjkAUmYo4nnn8jCBYz+Oz42nl34rOIZ3pEtxFzUO60Cm40xlR\naMho0XAQLRoaTcOlpERVMVmLRFFRuThcdJEab6l5LYIeWKSFhJwEDqYdPGs6knGE1PxU2ge1p3Ow\nEoSyeZeQLnQI6oCXu5fzLrae0aLhIFo0NJqGQ0kJbNkCMTFq2rhRlSIuvrhcJDp1cqwUUVhayOH0\nwxxKP3SWOBxKP0SQdxBRLaKICo0iqkUU3Vt0p1toNyIDInFrVsdecUcoKYG0NNX8KzVVzUeNgrAw\nm7PQnfscRIuGRuM6KhOJbt0gOlpNl14KQXbW8uSV5LE3dS97Uvaw//R+DqYrcUjKTaJzSOezxKFM\nIAK8AmrOuC4xm9WLPyWlXASsBaHicl6e6loeFgYtW6pp2jTV9bye0KKh0WjqnLLqpjKR2LBBlSSs\nRcLW/hAmi4kjGUfYk7KH3Sm72ZO6hz2pe0jKTSKqRRR9w/vSs2VPerToQVSLKDoGd6zT1kjnICVk\nZkJy8tlTSsq52zIyICREiUCZEFgLQsXloCBo5sqQRlo0XG2GRtMkkRJ27YLff4c//1Qi0aWLEogR\nI2wTCSklyXnJShRSlDDsTtnNwbSDtG7emr7hfekT1kdN4X3oEtKlbsVBStVt/NQp1fnj1KmzlxMT\nlRCkpoKfH4SHQ6tW5VPF9VatoEWLxjVaIVo0XG2GRtNkyM6GFStg2TI1+frC1VerKvdLL1Uf1FUh\npeRE9gm2JW5jW9I2tiZuZUfyDqSU9AnvQ9+wvvQJVwLRK6wX/p7+zjXeZFIv/ZMnKxeDsrmHh2rD\n26YNRESUL7dpA61bqyk8XA1p20RpdKIhhBgNzEBF7psjpZxeSZpo4D3AA0iTUkZXkkaLhkZTC6RU\n4zP99psSie3bYdgwGDNGiUXXrlUdJzmZfZJtSdvYlriNrUlb2Za4DU83TwZFDGJw68EMihjEwNYD\nae3f2jl9GrKzlSBYTydOlC8nJ6sqoMhIFfXIWgzKxCEiAvydLFaNkEYlGkIIN+AQKgb4KWALcLOU\n8oBVmiBgHXCVlDJBCNHCiOZXMS8tGhqNneTkwMqVSih+/119UF99tRKK6OhzI8lJKYnPiT+rBLEt\naRvuzdwZHDGYQa0HqSliEBHNIxwzqsyHcOxY+WQtCCdPgsUC7dpVPbVp0/CHp20gNDbRuAh4SUo5\n2lh/BkBK+YZVmoeBVlLKF2vIS4uGRmMDBw7Azz+r0sTWraoZ7NVXq6liZ7piUzHbkrax7uQ61ies\nZ338egSiXCAiBjE4YrD9AlFSooTg2DE4fvxsgTh2TAlHp07lU4cOKuxdmSgEBtbNuCF1TInFQo7J\nRI7ZTI7JRLYxz7Ga3xIWRqS3d73Z5IhouNJr0waIt1pPAC6skKYr4CGEWA00B96XUn5ZT/ZpNI0e\nKdWQ4N9/D4sWqZqda6+FJ59UTmw/v/K0qfmprI9X4rAufh07k3cS1SKKYZHDmNBrAu+Pfp/IgEjb\nqpiKi1Vg7MOHVci72NhyUUhOVqUBa2EYPLh8OTi4wYmCyWIhx2wmy2SqdMqusFyZIJikJNDNjQB3\ndwLc3Ah0dz+zXDY3NYKPX1eKhi13xwMYCIwEfIENQoiNUsrYigmnTZt2Zjk6OrrJxy7WaKpCShVH\nYtEiJRYFBXDDDTBnDlx4oWrlaZEWDqYdZN3BdayLX8f6+PWk5qcytO1QhkUO45URrzCkzZDqndQW\ni3IqHzpULg5l88REVTro3l0VYYYMgZtvVqIQGamc0PWMWUqyTSYySkvJNJnIMJYzTCYyjfmZ9Qqi\nUGg2E+DuTlAVU6C7O518fNRyFYLg3ayZS8epAoiJiSEmJqZWebiyemooMM2qemoqYLF2hgshpgA+\nUsppxvoc4Hcp5aIKeenqKc15jZSwY0d5icJkUkJx441qwD+LNLMjeQerjq1i7cm1bIjfQLBPMBdH\nXsywyGEMixxGz5Y9K+85XVSkAmPv3asEoUwcYmNVVVG3buXiUDbv2LFOhaHUYiG9tJS0GqZ0K0HI\nMZlo7u5OiLs7IR4ehLi7E2y1HOLhcWY92NhXJgr+bm4uf+HXBY3Np+GOcoSPBBKBzZzrCI8CPgKu\nAryATcAEKeX+Cnlp0dCcd0ip/BJlQiGEEokbb4QBAyRHMmNZeWwlq46vYvXx1bTyb8WoTqMY3n44\nF0deTOvmrc/O0GRSVUrWgbL37lX+h86dVQzUskDZ3bqpKcA5vbBLLRZOl5aSUlJCSkkJqcZyamkp\np0tKzhGDfIuFUHd3Wnh4VDmFGlOZIAS6u+PWBF/8taFRiQaAEOJqypvczpVSvi6EeABASvmJkeb/\ngEmABZgtpfygkny0aGjOG3buhC+/VELh5VUuFGGdkvgzbhWrjq9i5bGVSCkZ1WkUIzuOZGSnkeUO\na4tFtUKqKA6HDilfQ1mYu7KpWzeHWiOVWiyklJSQWFJCUpkYlJSQUlqq5lbLOWYzLTw8CPPwINzT\nk3BPzzPLLT08aFlBEALc3WmmBaDWNDrRcBZaNDRNnfR0+Ppr+OwzNVrF7bfD1ddlk+a3hj+Pr2Ll\n8ZUk5iYyosMIRnYcyahOo+gW2g1hNsP+/arjxbZtatqzR1UrVRSHHj3O9oxXQZkYJBmCkFhcrJaL\ni88IRGJxMRkmEy09PIjw9KS1lxfhHh6EGYJQcTnEw0OLgAvQoqHRNCHMZtUr+7PPYPlyGDNWMmLC\nHlKClvLbkV/Zm7qXC9tceEYkBob2xu3AwbMFYu9e5Xgui2I0aJAKnF1Fl+5Si4XEkhLii4qILy4m\nvriYk1bLicXFpBti0NrTkwgvLyUK1svGPMzTs0lXB0mzxFJkUVOxpXy5bN3YJotl+XrxuevWadr+\nuy2+XXxrPrmT0KKh0TQBjhyBefPUFB5RwiW3rqWo/VKWxy1FCMH47uO5pv2VDMsOwHv3fiUO27er\ntrUdO54tEP37nwlUIaUkrbSUE1UIwsmiIlJLSwnz8CDS25t2Xl5EenkR6e2t5l5etPHyIszDA3cX\nD7RXEYvJgqXAgrnAfNbcUmjBXGjGUmg5M1W5XlRhW9nLvMhS6STNkmbezc6dvJohvATNvNRypduq\nSNPiuhZ4RdTfsCVaNDSaRkp+vvJRfPYZ7DuaxZBblyG7/cTGtOV0C+3GLaEjuC4jjMi98Yj161UV\nU5cuShjKRKJfP4q8vYkrKuJYURHHCgs5brV8rKgIDyFoX0EQrJcjPD3xqANBkBaJucCMOc+MJd+C\nOV8tm/PNZ5bPbLfad2ZbBTGoOJdmiZufG818m+Hm60Yzn2Y086mw7FO+fNa6dzXbKhMFYxLuotG3\nqNKiodE0IqRUI8Z+9hl8t+I4kaOW4tZjKSeLN3O720AmZLVl0PEifDZvV2N+XHwxctgwUi+6iNio\nKI5JqUTBEIRjhYWkl5bSztubTt7edPLxoaMx7+TtTUdvb4LsaAZrKbFgyjZhyjZhzjZjyjFhzjVj\nzjVjyjWW88w2bbMUWdRL2d8NNz+ryd+NZn7NzixXut3XWPa1EoUKc+HR+F/grkCLhkbTCCgogPnz\nJdMXbCW3zRKCui6mf0oit+d35OKTkpZ7j1McGcmRK6/k4JAhHOrShUO+vhwqLORQQQFuQtDN15fO\n3t50NAShTBgivLxwE0J92eeaKc0sxZRpOjOVZpYqASgTg5zy5YrrmMEt0A33AHfcA91xC1DLbs3d\n1OSv5u7NrbZZr/uXb3PzdUM00y/1hoYWDY2mAZOUBC9/fJiftszlMr/5XJVcRN/iVmR4BhF70cUc\n7tuXQ23bcsjHh0STiY4+PkR5eNO71JtuhZ50KPCgTV4zvLMlpnRTpYJwZj3HhJufG+5B7rgHu+MR\n7IF7sFp2D3JXL/9AN9wDq15u5u36HsyaukWLhkbTAFm19gRffjwDT9NOQr1aUejXjaTwHmS5tyQ0\n141OxV60yXOnZZ4gKBt8siVuGWZM6SZMuSY8gj3waKEm91B3tRxSLgJnCYKx7hboRjP3huWs1jQ8\ntGhoNPWMtEhK00spTS2lJKWEwqRiTiXkk7AvgaRDaYg8N7yK/PDPdSM4S4A7WMI88Ar3IqCVF35h\nXucKQqjHmbl7kLuu1tHUGVo06omYGP0n1mg0dUN0dP29y7RoaDQ2Yi40U3yymKK4IjWdLKL4VDEl\np0ooPlVMcWIxslji2cYTrzZeuEd4ktVCcDLEwsHAErb6FREbUEI70ui5dxs99+8jp/gYsSUWTgXf\nwkP3P8i1o1o0tBG+NZqz0KKh0RiYC80UnSgqFwVjKj6hhKI0sxTvSG+8O6jJq50XXm3U5Nbag+NB\nZra5F7A5N5ctubkcLCigp48PF2RkMGTrVgYv+p7Q4gy+bp/PzxEBbDl5D9d3v40XHu1A9+6uvnqN\nxja0aGjOK0qzSik8VEjB4QIKDxdSEFtA0XElDuYcM17tvJQotC8Xh7LJs5XnGV9BQlER63Jy2JyT\nw5bcXHbk5RHh6cmQgACGuLlxwfbt9P/hB7z/+IPcvlH80sON/wbvo8A0juyVj/DvGy/ioYcEoaEu\nviEajZ1o0dA0OcxFZoqOFlFwqKBcHIy5pciCTzcffLv5npl7dzREIdyzSgdyfFERa7KyiDGmLJOJ\nSwIDlUg0b87gnByCfvkFFi+GrVuxjIhm0wURvNx8G7tKkmib/CCx397LE/eH869/OW10cI2m3tGi\noWm0mLJN5O3JI393PgUHygWiOKkY7w7e+Hb3PUscfLr7KGGwwWlwsqjojECsycoix2xmeGAg0UFB\nDA8KopevL80OHIAlS5RQxMXBuHGkXXUp/wuMZeaB+XQN7EnwkUdYO/ta7rvHnSlT0CULTaNHi4am\nwSPNksKjheTtUgKRtzuPvF15lJ4uxa+3H/59/fHt6YtvdyUQ3h287e5vEFdYyJrs7DNCkW82nxGI\n6KAgevj6qmG4k5Phq69g/nzIyoLrrkOOH8+aSAsf7pjJ6uOruTHqVtx3PMy3H/ZgwgR4/nmIiKij\nm6PR1DNaNDQNitLM0jPCkL87XwnFvnw8wz3x66sEwq+vH/79/PHp5INwc6ypUbbJxB8ZGfyWkcHq\nzEwKLRaiDYEYbojEmRJJcTH8/LMaQnbdOvjHP+Cuu8gZ0o8v93zF/7b+D4D7+08md91tfPBWc0aP\nhmnTVHhrjaYp0ehEQwgxmvLIfXOs44NXSHcBsAG4SUr5YyX7tWi4GHOhmdxtueRsyCFnQw65W3Mx\nZZrw6+N3Rhj8+/rj19sP90D3Wp/vSEEBv6Sn83N6Oltyc7kkMJCxoaGMDAqiu7VIgBoZcMsWVaJY\nuBD69YM774TrrydVFPD2+reZs30OIzuN5IEBjxC7YjivvioYMgReeUVFOdVomiKOiEbt/70OIoRw\nQ8X/HgVhk4/AAAAgAElEQVScArYIIZZaxwi3Sjcd+B3Qrd4bAFJKik8Wk70h+4xI5O/Lx6+nHwEX\nBdDyxpZ0fqsz3h29ndab2WSxsC4nRwlFWhrZZjPjQkN5rG1bRgUH4+fmdu5Bp07BggVKLEpK4K67\nVOyJ9u1JyUvhrfXT+GzHZ9zS5xa237eLv3+L5IGrVDjsxYvhggucYrpG06RwmWgAQ4AjUso4ACHE\nt8B44ECFdI8CiwD9F3YR5iIzedvzyF5fLhLSIgm8KJCAiwLo/E5nmg9qjptvJS/uWpBRWsrvGRn8\nkp7O7xkZdPT25prQUBb06MHA5s0rDw9aWAg//aSqnzZvhn/+E2bPhosvBiFIzkvmreVP8vnOz7m1\nz63sfmg3Bze35ZrhKlbRnDkwYoRTL0OjaVK4UjTaAPFW6wnAhdYJhBBtUEJyOUo0dB1UPWDON5O1\nJovMlZlkr88mf08+vj18CbwokJb/bEnntzvj3cG7TkZAjS0oYElaGr+kp7MjL4/ooCCuCQ3lrc6d\naeNVTUSzffvgww/hu+9g8GBVqvjxR/BVoTOTcpN4c92bzN81n9v73s7eh/fiVhDBvx9Sro0ZM2D8\neHQPbo2mBlwpGrYIwAzgGSmlFOoNVeVfetq0aWeWo6OjiY6Orq195w1SSvL35pOxPIOM3zPI3ZSL\n/yB/Qq4MofObnWk+2PmlCGtOl5SwMDWVL1NSOFFUxHUtWzKlXTtGBAXhU1m1U7nhsHIlvPsu7NgB\nDz8Mu3dD27ZnkiTlJjF93XS+2PUFd/S7g70P76WVXwSzZ8MLLyht2bcP/Pzq7PI0mgZDTEwMMTEx\ntcrDZY5wIcRQYJqUcrSxPhWwWDvDhRDHKBeKFkABcJ+UcmmFvLQj3E5K00vJXJlJxu8ZZPyRQTOv\nZoSMDiHkqhCCRgThHlC33xOFZjM/p6fzZUoKf2VlMTY0lNvDwxkVHFxz/OniYvjmGyUWFgv8+99w\nyy3g7X0mSWJuItP/ns6Xu7/krv538dTFT9G6eWv27IEHHlB688kn0LdvnV6mRtOgaVStp4QQ7sAh\nYCSQCGwGbq7oCLdK/znws2495RgWk4XczblKJJZnUHCggKDhQQRfFUzIVSH4dPGp84A7FilZm5XF\nlykpLE5LY1Dz5tweHs51LVrQ3N0GkUpPh1mz4OOPoU8fJRZXXnlWndKpnFO88fcbfLXnKyb1n8RT\nw56ilX8r8vPh5ZdVaNX//hfuuw/qIBS2RtOoaFStp6SUJiHEZGA5qsntXCnlASHEA8b+T1xlW1PB\nlG3i9OLTpP+STtaqLLzaexFyVQidXu9E4LBAmnnVz1tzf34+X6ak8FVKCsHu7tweHs7LF1xQvY/C\nmthYeO89Vbq47jpYvlyJhhVpBWn8J+Y/fLXnK+4ecDcHHjlAuH84AL/+CpMnK1/43r0QHu7sK9Ro\nzh90574mhrnITMZvGaR8lULmykyCRgTR8rqWBF8ZjFdrG1/STiC5uJhvUlNZkJJCckkJt4SHc3t4\nOH39/W3LQEr46y945x3YsEHVKT3yCLRqdVYys8XM7O2zeXH1i0zsPZHnL3ueML8wQLW4ffxx2LUL\n/vc/uOIKZ1+lRtO4aVQlDY3zkGZJ1posUr5KIW1xGv79/Am7NYzuc7rjEexRf3ZIyfqcHN6Nj2dV\nZibjW7RgeqdOjAgOxs3Wqq/SUli0SPkrcnLgiSdUCcNoBWXNxoSNPPLbI/h5+LHyjpX0DVcOCrNZ\n1WC9/DI89BB8+SX4+DjzSjWa8xdd0mikSCnJ25FHylcppH6bimeYJ2G3hhE2MQzvtt41Z+BETBYL\nP6Sl8W58POmlpfyrbVvuatUKf1v8FGVYLKq39vPPQ2QkPPkkjB1bqeMhNT+VZ1Y+w/Kjy3lz1Jvc\n0ueWM/6Y7dtVocTXV7k/evRw1lVqNE0PXdI4Dyg8WkjK1ymkfp2KpdhC2C1h9FvRD7+e9d9mNNtk\nYm5SEu8nJNDe25up7dpxTYsWtpcqyli1CqZMUQ7tanrXmSwmZm2dxX/W/Ic7+t7BgUcOEOClxiUv\nLIRnn4Wvv4bp09UoIbrPhUbjfLRoNAJKM0pVieLrVAqPFRJ2UxjdP+tOwNCAOm/xVBlxhYV8cOoU\n85OTuSokhEW9enGBI0Eldu1SYhEbC6+9BjfeWGWTpr9P/s3k3yYT4hNCzJ0x9AorHxDq0CG46SaI\nilJ9Llq0cPTKNBpNTejqqQZMYVwhCe8lkPJlCiFXhxB+WzjBo4Jp5uGatqIbs7N5NyGBVZmZ3NO6\nNY+2aUOktwNVYSdOqJ51f/wBzz2n6pM8PStNmpyXzNMrnmZ13GrevuJtbup101lC+dVX8K9/qWa0\n99+vSxcajT3o6qkmQu6OXOLfiidjeQat723NBXsuwKtN/bV8ssZksbAkLY13ExJILinhX23bMrd7\nd9v6VVQkI0OVKD7/XPXePny4yrB3peZSPt7yMa/+9Sp391dNaP09y1teFRTAY4+pBlYrV6qBazUa\nTd2jRaOBIKUkc1Um8W/Gk78/n7aPt6XbzG5OGUbcEYrMZj5JSmJGQgJtPD35v8hIxjvirwDlcPjw\nQ3jrLbj+etVZonXrKpOviVvD5GWTae3fmr8m/UVUi6iz9u/fr6qj+veHrVvVQIMajaZ+0KLhYiwm\nC6e/P038m/FYSixEPhVJ+C3hNPN0TRWURUq+TU3l2WPH6Ofvz7c9e3Kho0GwzWbV3vXFF2HQIFUs\niIqqMnlOcQ6PLnuUmLgY3r3yXa7vcf05Ppt58+Cpp5Sze9IkXR2l0dQ3WjRchDnfTNLcJBLeS8Cr\nnRcdXulA6JhQp8WfcIS/srJ48uhRJPBFjx5cFhTkWEZSwrJl8Mwz4O+v+lkMG1btIZsSNnHLj7cw\nquMo9j+8Hz/Ps1uD5eWpvn1btsDq1dC7t2OmaTSa2qFFo54pSS3h1EenSJyZSOBlgfT4pgeBQwNd\natPhggKeOXaMbbm5vN6pExPDwiqPVWELycnw4INw4AC88YYKp1pNXhZp4c11b/LuhneZNW4W1/e4\n/pw0e/ao6qihQ5Vo6BFpNRrXoUWjnihJKSHuP3GkfpNKy5taMmDdAHy7ndvLuT5JKynhlRMn+Col\nhafatePrHj3wrm4o8uqQUnWS+Pe/1WiACxdCDWNLJeYmcvvi2yk1l7L1/q20C2x3TpZz58LUqWo0\nkTvucMw0jUbjPLRo1DHSLEn8NJG4F+MIvz2cIQeH4BleefPS+qLIbOajU6eYHh/PhJYtOTBkCC2r\naPJqE8nJaryO2Fg1OuDgwTUe8vOhn7nv5/t4+IKHee7S53BrdrZY5eaqlrh79sDatbpnt0bTUNCi\nUYfkbs/l8IOHEZ6Cfn/2w7+PjYP11RFSShampjL1+HH6+vnx94ABdK9kTCc7MoRvv1UdJe65Ry3X\nULooMhXx1B9P8fPhn1l00yIuaXfJOWl27lTVUcOHw6ZNlQ47pdFoXIQWjTrAlG3i+AvHSV2YSqc3\nOtHqzlYudXADrMvO5skjRyiVks+6d2dEcHDtMkxJUaWLQ4fgl1/ggppDuO8/vZ+JiyYS1SKKHQ/s\nINjnXBvmzlX+8/ffV3GVNBpNw0KLhhORUpK6MJWjTx4ldEwoQ/YPwSO0/kaZrYyjhYVMOXqUzbm5\nvNqxI7eGhzvu5AZVuli4UJUuJk1SfowaeoVLKfl026c89+dzvDHqDe4ZcM85TWmlhP/8BxYsgL//\nhu7dHTdRo9HUHVo0nETB4QJiH4mlJLWEXt/3IvBi17aIklLySWIiL8TF8UTbtnzZo0f18bZtISVF\n9eQ+cACWLoUhQ2o8JKMwg/t+vo+jGUf5++6/z+moB6o7R1lz2nXrdJAkjaYh49KAl0KI0UKIg0KI\nWCHElEr23yqE2CWE2C2EWCeEaHARnc2FZo6/eJztF28nZEwIg7YNcrlgnC4pYfzevXyalMRf/fvz\nbPv2tROMstJFv37Qtasaf9wGwVh7Yi39Z/UnMiCSjfdurFQwioqU/+LIEdX/QguGRtOwcVlJQwjh\nBnwEjAJOAVuEEEsrxAg/BlwmpcwWQowGPgWG1r+1lZP+ezqxk2NpPqA5g3cOrvc4FpWxLD2dew4d\n4o7wcBb16oVnbQNhp6aq0sW+ffDTT3DhhTUeYrKYeGXNK3yy7RPmXjuXsd3GVpouKwvGj1fB+H79\ntUYfukajaQC4snpqCHBEShkHIIT4FhgPnBENKeUGq/SbgLb1aWBVFJ8q5si/jpC7PZeuH3Ul9OpQ\nV5tEodnMlGPHWJKWxtc9ehBdW0c3wPffw6OPquAUCxbU6LsAyC/J56ZFN1FkKmLHAzto3bzyMaYS\nE2H0aIiOhhkzqhwRXaPRNDBcKRptgHir9QSgus/Ye4Df6tQiG0j4MIG4/8TR5uE2RH0RhZtPLf0E\nTmBXXh637t9Pbz8/dg0eTLBHLZ3vZrMa4Onnn2HJEtUV2wZS81MZ9/U4eoX14tNxn+LhVrkdhw4p\nwbj/ftVSSo8fpdE0HlwpGjYHwBBCjADuBqocwGjatGlnlqOjo4mOjq6FaVXj5ufGwPUDXd6bG9Tg\ngjMSEnj95Ene7dyZ28LDax+UKScHbr4ZiotVJ4mQEJsOO5JxhKu/upqJvSby8oiXq7Rj82a49lo1\nQvrdd9fOVI1GYx8xMTHExMTUKg+XBWESQgwFpkkpRxvrUwGLlHJ6hXR9gR+B0VLKI1Xk1SSDMFXH\nqeJi7jp4kAKzmQU9etDRx6f2mR47Btdco3rVvf8+2Fhi2XJqC9d+ey0vDX+JBwc/WGW633+H22+H\nzz5Tp9FoNK7FkSBMrqxJ3gp0FUJ0EEJ4AhOApdYJhBDtUIJxW1WCcT7yw+nTDNy6lcsCA1nTv79z\nBOOvv9RItA89BP/7n82CsSx2GWO+HsOssbOqFYwFC5RrZMkSLRgaTWPGZdVTUkqTEGIysBxwA+ZK\nKQ8IIR4w9n8CvAgEAzON6o5SKWXNbT2bKHkmE48fOcKarCx+6t2boYFOatr7+ecqVveCBXDllbYf\ntuNzpq6aytKJS7ko8qIq073zjiq4/Pkn9OpVZTKNRtMI0DHCGwmbcnK4df9+LgsK4v0uXRwLt1oR\ns1l5opcsUU7vagIkWSOl5NW/XmXujrn8fuvvdG9Refdti0Vp0a+/wvLlEBlZe5M1Go3z0DHCmygf\nJSTwyokT/K9bN/7ZsqVzMs3NVYM75efb5fA2WUxM/m0ym05tYv3d66tsUltaqhzdR4+qYUFszF6j\n0TRwtGg0YKSUvBQXx7epqWwaOJAOzvBdAMTFKcfCxRfDRx/Z7L8oKC3g5h9upqC0gDV3rSHAq/Iw\nsPn5cMMN4OYGK1fqUWo1mqaE7lLVQDFLycOxsfySns7fAwY4TzD+/hsuukgFSpo1y2bBSC9IZ9QX\nowjwCuDXW36tUjBKS5VgtGgBixdrwdBomhpaNBogJRYLt+zfz8GCAmL69yesNgGSrJk/H66/Xjm+\nH3vM5l51xzOPM+yzYVzW/jLm/2M+nm6V2yMl3HsvuLurU9S2j6FGo2l46OqpBkaeycT1+/bh5+bG\nsj59HA+/ao3ZDM8+Cz/8AGvW2BUGb0fSDsZ9M46pl0xl8pDJ1aZ99lk4fBhWrVLCodFomh76r92A\nSC8tZczu3fT28+OTbt1wd8aATHl5cOutkJ2tHN6hto+TteLoCm798VZmjp3JP3v+s9q0H3ygqqP+\n/ltXSWk0TRldPdVASCgq4tIdO4gOCmJO9+7OEYzsbBgxAlq2hD/+cEgwfrjphxoF47vv4M03VY/v\nFi1qa7RGo2nI6H4aDYBDBQVctWsXk9u04f/atXNOpgUFcNVVKgbGhx/aNSrg9qTtjF4wmh9u+oFL\n219abdrVq2HCBFixQp1Ko9E0Hhzpp6FFw8Vszcnhmr17ea1jRya1rrzPg92UlKhAFS1bwrx5do07\nfjTjKJd+fikfj/mY63pcV23aXbvgiitUfKYRI2pps0ajqXd0575Gxp+ZmUzcv5/Z3bsz3ln1OiaT\n8mF4e6uRAe0QjNT8VEZ/NZoXh79Yo2DExcHYsaqbhxYMjeb8QYuGi/jx9GkePHyY73v1YnhQkHMy\ntVhUkIqsLPjlF7uaMOWV5DH267Hc3PvmagceBEhPV/Ewnn5ahWrVaDTnD7p6ygXMTkzkpbg4fu3T\nhwHNmzsnUynhiSdUwIoVK8DPz+ZDS82lXPPNNbQNaMvsa2ZXG5OjoABGjlSjp7/xhjMM12g0rkL7\nNBo4UkqmnzzJp0lJLO/bl67ObJv60ksqhndMDNhRcpFScueSO8ksymTxhMW4N6u6dGIywXXXqXGk\n5s3TEfc0msaO9mk0YKSUPHX0KMszM/l7wAAivLycl/m778K336qYGHZWdU1dNZXYjFhW3bGqWsGQ\nEh58UA0TMmeOFgyN5nxFi0Y98WZ8PKuzsljTvz8hzhxfY84c1bPur78gLMyuQ9/f+D5LDi5h3d3r\n8PWovtTz0kuqtdTq1Xp4EI3mfMalnfuEEKOFEAeFELFCiClVpPnA2L9LCDGgvm10Br+mp/NBQgI/\n9e7tXMFYuFC9zVessDtYxcK9C3lr/Vssv205ob7Vd/qbORO++UbFxfD3r43BGo2mseOykoYQwg34\nCBgFnAK2CCGWSikPWKUZA3SRUnYVQlwIzASGusRgBzmQn8+kgwf5qXdv2np7Oy/jX39Vgw6uWAFd\nu9p16J/H/+TRZY+y8o6VtA9qX23aH3+EV15Rw4PYWZDRaDRNEFeWNIYAR6SUcVLKUuBbYHyFNNcC\n8wGklJuAICFEeP2a6TiZpaWM37uX6Z06cZGzQrOCGnTwrruU47tvX7sO3Zm8k4mLJvLdjd/RN7z6\nY//6S/kxfvkFOnWqhb0ajabJ4ErRaAPEW60nGNtqStO2ju1yCmYpuXn/fsaEhDivpzfAli1w442q\namqofYWuuKw4xn09jo/HfEx0h+jq08apuBhffQUDBzpurkajaVq4UjRsbSNbsZ1Ow29bC0w5ehQz\n8Hbnzs7LdO9eFXFvzhy4/HK7Dk0rSOOqBVcxZdgUbux1Y7VpyzqVP/20GiZEo9FoynBl66lTgLX3\nNhJVkqguTVtj2zlMmzbtzHJ0dDTR0dHOsNEhvkxOZklaGpsHDXLOaLWggm2PHq2a1157rV2H5pfk\nM+7rcVwfdT2PXvhojen/+1/VN/CJJxw1VqPRNERiYmKIiYmpVR4u69wnhHAHDgEjgURgM3BzJY7w\nyVLKMUKIocAMKeU5dTINqXPf5pwcxu3Zw+r+/ellR6/saklMhEsuUZ/+D1Y/xEdFSs2l/GPhP2jh\n24J54+dV29sblMP7xhth+3ZwZq2aRqNpeDSqzn1SSpMQYjKwHHAD5kopDwghHjD2fyKl/E0IMUYI\ncQTIBya5yl5bSCou5p/79jG7e3fnCYbJBBMnwp132i0YAI8tewyLtDDnmjk1CkZWFtx2G8yerQVD\no9FUjh5GxEkUmc1E79zJuNBQnu/QwXkZ/+c/sHatalprZ1XX4gOLeWrFU+x4YAfNvaof40pKpU1h\nYSr8hkajafo0qpJGU0JKyYOHD9PO25vn2lff78Eu/v5b9azbvt1uwUjMTeShXx9iycQlNQoGwPz5\nsH+/GlNKo9FoqqJa0RBCDARuBi4DOqBaLp0A1gJfSyl31LWBjYEZCQnsys/n7wEDaqwCspnMTNWE\nafZsiIiw61CLtHDXkrt4aPBDDG1bc7Pc2Fh46ik1RIiPj6MGazSa84Eqq6eEEL8BmcBSlJM6CdX8\ntTWqY941QJCUcmz9mFo1rqye+iMjgzsPHmTjwIG0d1aPbymVNzoiQo0rZSczNs7gu33fsXbS2moH\nIQQV5G/YMNVX8JFHHLRXo9E0Spw6NLoQIlxKmVLDCcOklKn2nLAucJVoxBYUcMmOHSzq1YtLnRVI\nCVTp4qOPYNMmFYHPDvak7OHyLy5n072b6BRcczfuZ56Bfftg6VI9cq1Gc77hVJ+GlDLFGB9qpZSy\n0oCeDUEwXEWOycT4vXt5uWNH5wrGgQMwdaoaw8NOwSgyFXHrj7fy1hVv2SQYf/4JX34JO3dqwdBo\nNLZRrXdVSmkGLEIIJ74VGz8WKbn1wAGGBwXxgJ3+hmopKlJNmF5/HXr0sPvwZ1c9S7fQbtzZ784a\n06anq1a8n38OLVs6YqxGozkfsaX1VD6wRwjxB1BgbJNSysfqzqyGzQvHj5NjMvF+r17OzXjKFDVi\n7b332n3oiqMr+H7/9+x8YGeNzngp1SkmTIArr3TUWI1Gcz5ii2j8aExlTgNBIxn/qS5YmJrK16mp\nbB44EE9nDRECaijZJUscqitKL0hn0k+TmPePeTXGxgD49FM4cUIF+9NoNBp70J377OTR2FjuadWK\n/s1r7vtgM4mJaijZRYvUcCF2IKXkhu9voENgB9656p0a0+/fD8OHqy4g3bs7arBGo2kKOOIIr/JT\nWQjxqxDiRiHEOXFAhRC+QogJRrPc84oPu3Z1rmBYLHDHHfDQQ3YLBsC8nfOITY/l1ZGv1pi2qAhu\nuUW5TLRgaDQaR6iuyW0YMBm4ATBT3k+jFapaayHwsZTydP2YWjUNYRgRh5k+XVVNrV4N7vZ10D+a\ncZShc4ey+s7V9A7rXWP6J56A+Hj4/nvdWkqj0Ti5n0aFjFsBZeNjnJBSJjtgX53RaEVj82YYNw62\nboV27ew61GQxcennlzKx10QeH/p4jemXLYMHHlAuk5AQRw3WaDRNiTobe8oQiWTjJEIIMUFKudAB\nGzVl5OTAzTersaXsFAyA/679LwFeATbFx0hJgXvugW++0YKh0WhqR3XVU/7AA0BnYC8wCxXD+1VU\nbG/7IgHVIY2ypHHbbSrS0Sef2H3ohvgNXLfwOrY/sJ2I5tX3E7FYYOxYGDRIBVfSaDSaMpxd0vgC\nyAE2AFcCdwFFwC1Syp2OGqlBdcPevl1VS9lJbnEuty++nZljZ9YoGKBGI8nMhJdecsRQjUajOZvq\nShq7pZR9jWU3lCO8vZSysB7ts4lGVdI4cgQuughWroR+/ew+/O6f7qaZaMaca+fUmDY5GXr3hg0b\nVJ9BjUajscapTW5RLaaAM8OJnHKmYAghQoQQK4QQh4UQf1Q2VIkQIlIIsVoIsU8IsVcI0bh7oZeU\nKD/GSy85JBg/7P+Bv07+xYzRM2xK/8ILMGmSFgyNRuM8qitpmCkfNgTABygTDSmlDKjViYV4E0iT\nUr4phJgCBEspn6mQphXQSkq50/CxbAP+YR1H3EjXOEoaTz8NBw/CTz/Z3eb1VM4pBn46kKUTl3Jh\n2wtrTL9rlxoi5NAhcOZ4ihqNpulQZ01u6wIhxEFguDGabisgRkoZVcMxS4APpZSrKmxv+KKxdStc\ney3s3g0tWth1qEVauGrBVVza7lJeHP5ijemlhCuugOuvh4cfdtRgjUbT1HF29VRdYx2vIwUIry6x\nEKIDMADYVLdm1QFSqtB406bZLRgAn277lPySfJ699Fmb0v/yixqZ5P777T6VRqPRVEudxggXQqxA\n9SCvyHPWK1JKKYSosqhgVE0tAh6XUuY518p6YNky5ZW++267D80tzmVazDSW3bqsxih8AKWl8H//\nBzNm2N3BXKPRaGqkTl8rUsorqtonhEgRQrSSUiYLIVoDlQZ0EkJ4AD8AC6SUS6rKb9q0aWeWo6Oj\niY6OdtRs52I2qyHPX3/dobf42+vfZlSnUQxoPcCm9DNnQseOcPXVdp9Ko9E0cWJiYoiJialVHq70\nabwJpEsppwshnkHFG6/oCBfAfCPdE9Xk1XB9GvPmwZw5KhKfnc7v5Lxkev2vF9vu30aHoA41ps/I\ngKgoFZGvd81DUWk0mvOcxuYIDwG+A9oBccBNUsosIUQEMFtKOVYIcQmwFthNeQyPqVLK3yvk1TBF\no7BQDSf77bdw8cV2H/7QLw/h4+HDu1e9a1P6J55QI9nOnGn3qTQazXlIoxINZ9JgRWP6dNi0CX78\n0e5DD6UdYthnwzg0+ZBNgZUOH1a6tH8/hIU5YqxGoznf0KLRkEhPV3VFDkY7+ud3/+SCiAt45pJn\nak4MjB8Pw4apriAajUZjC3U2yq3GAV57DW64wSHB2BC/gc2nNrPgugU2pf/zT9izBxbqcYc1Gk0d\no0WjLoiLUw7wffvsPlRKyVMrnuLl6Jfx8fCpMb3ZDP/+t6oJ8/a231SNRqOxB1d27mu6PP88TJ4M\nrSrrolI9Sw8tJbs4mzv63WFT+nnzoHlzVajRaDSaukb7NJzNjh0wZozyTNsZS9xkMdFnZh/evuJt\nxnYbW2P63FxV+/XTT3DBBY4arNFozlca2zAiTZMpU9TwsnYKBsDnOz4n3C+cMV3H2JR++nQYOVIL\nhkajqT+0T8OZ/PGH8mfcd5/dh+aX5DNtzTQWT1iMsKET4MmTqj/GTh0OS6PR1CO6pOEsLBZVynjt\nNfDwsPvwGRtnMCxyGEPaDLEp/dSp8MgjEBlp96k0Go3GYXRJw1l8/TV4ecE//2n3oafzT/PexvfY\neO9Gm9Jv2gRr1jgUXlyj0WhqhXaEO4OiItWR78sv4dJL7T788WWPY5ZmPhrzUY1ppVSd+O6/H+66\nywFbNRqNxkB37nMV//sf9O3rkGAczTjKgj0LOPDIgZoTA999pzTqDtta5Go0Go1T0SWN2pKZqdq9\nxsRAz552Hz5x0UR6tezFC8NfqDFtWYFm3jxoKCO/azSaxosuabiCN95QAz85IBhbTm1h7Ym1zL12\nrk3pZ8yAAQO0YGg0GtehSxq1IT4e+vdXAz9FRNh1qJSSkV+MZEKvCTww+IEa06ekQK9esGEDdO3q\nqMEajUZTju7cV9+8+CI8+KDdggHw+5HfScxN5J6B99iU/oUXlB9DC4ZGo3ElunrKUXbvht9+U8OF\n2InZYmbKyim8PvJ1m+J+79mjhgo5eNARQzUajcZ5uKSkIYQIEUKsEEIcFkL8IYQIqiatmxBihxDi\n50cfUrcAABZmSURBVPq0sUaeeQaeew4CA+0+dMHuBTT3as4/ov5hU/o334Qnn4TgYLtPpdFoNE7F\nVdVTzwArpJTdgFXGelU8DuynPNyr61m9Gg4dUlVTdlJYWsgLq1/gzVFv2jRcSFIS/PKLQyOTaDQa\njdNxlWhcC8w3lucDlX5yCyHaAmOAOYBdzpo6w2JR4fFefRU8Pe0+/MPNHzIoYhDD2g2zKf3MmXDz\nzbqUodFoGgau8mmESylTjOUUILyKdO8BTwEB9WKVLXz/veqWfdNNdh+aUZjBW+vf4q9Jf9mUvqhI\nDRWyZo3dp9JoNJo6oc5EQwixAqgsCtFz1itSSimEOKfqSQgxDkiVUu4QQkTXdL5p06adWY6Ojia6\nrjozfPUVvPUWNLO/kPbaX69xfdT1RLWIsin9N9/AwIGqQ59Go9HUlpiYGGJiYmqVh0v6aQghDgLR\nUspkIURrYLWUMqpCmteA2wET4I0qbfwgpTxnAI167adhsTgkGMl5yfT8uCf7Ht5H6+ata0wvperI\n98YbMHq0I4ZqNBpN9TSmfhpLgTuN5TuBJRUTSCmflVJGSik7AhOBPysTjHrHAcEAmLt9Ljf0vMEm\nwQBYuxaKi+HKKx06nUaj0dQJrhKNN4ArhBCHgcuNdYQQEUKIX6s4puG0nrITs8XMp9s/5cHBtre2\nmjEDHnvMYY3SaDSaOkEPI1IP/HL4F15Z+wqb7t1kU/rjx1UI1xMnwM+vjo3TaDTnLY2peuq8YubW\nmTw4yPZSxkcfwaRJWjA0Gk3DQ5c06pi4rDgGfTqI+Cfi8fXwrTF9bi506ADbt0P79nVvn0ajOX/R\nJY0GyOxts7m97+02CQbA/PkwYoQWDI1G0zDRAxbWISXmEubumEvMXTE2pbdY4IMPYK5t4TU0Go2m\n3tEljTpkycEl9GjZw+bOfMuWQfPmcMkldWyYRqPROIgWjTpk5taZPDT4IZvTv/8+PP442DCOoUaj\n0bgELRp1xMG0gxw4fcDm4c/37VNxMyZMqGPDNBqNphZo0agjZm2dxd0D7sbTzbaRcD/4QI207uVV\nx4ZpNBpNLdBNbuuAgtICIt+LZNv92+gQ1KHG9BkZ0LmziswXXtV4vxqNRuNkdJPbBsLCvQsZ2nao\nTYIBMHs2XHutFgyNRtPw0U1u64BZ22bxwmUv2JS2tFT1AP/ppzo2SqPRaJyALmk4me1J20nOS+bq\nLlfblH7xYujYUcXN0Gg0moaOFg0nM2vrLO4feD9uzdxsSl/WzFaj0WgaA7p6yolkF2Xz/f7vOfDI\nAZvSb9kCCQkwfnwdG6bRaDROQpc0nMiC3Qu4otMVtPKvLMrtubz/Pjz6KLhr6dZoNI0E3eTWSUgp\n6TurL++Pfp/LO15eY/rEROjVC44dg+DgejBQo9FoKtBomtwKIUKEECuEEIeFEH8IIYKqSBckhFgk\nhDgghNgvhBha37bayrr4dZSYSxjRYYRN6WfOhJtv1oKh0WgaF66qnnoGWCGl7AasMtYr433gNyll\nD6AvYJuzwAXM2jqLBwc9iLBh4KiiIvj0UxXOVaPRaBoTLqmeEkIcBIZLKVOEEK2AGCllVIU0gcAO\nKWUnG/JzafVUWkEaXT/sytHHjhLiE1Jj+s8/h+++U6PaajQazf+3d+dhUlVnHse/v7CoqIjLKBJR\nlFHUDBA3Rkcd24wiStS4ReOGOpqJ45bEZNwyBieZUaMZzfK4oaNOXCO4AKIBja2g4NKNwKAEBXED\n+nFDDW4g7/xxTsGlrO6+VV1Vt6r7/TwPD/dWnb73PXWrzrn33HvOyUrdNE8BW5hZS1xuAQr1hd4W\neEfSrZKaJY2RlG4moyq7deatHD7o8FQVhhlce60/Zuucq08Ve25H0hSg0GNElyRXzMwkFbpM6A7s\nCpxtZs9LupbQjHVpof2NHj169XJDQwMNDQ2lBV6kVbaKG5tu5I4j70iV/skn4YsvYPjwCgfmnHN5\nGhsbaWxs7NA2smyeajCzpZK2BJ4o0DzVF5huZtvG9X2AC83s2wW2l1nz1OQFk7ngsQto/n5zqvsZ\nRxwRKowz00+z4ZxzFVFPzVPjgVFxeRTwYH4CM1sKvClph/jSAcDc6oSXXjE3wBcuhKlT4eSTqxCY\nc85VQFZXGpsAfwS2BhYB3zWzZZL6AWPMbGRMNxS4GegJLABONbMPC2wvkyuNtz96m8HXD+b1H77O\nhuts2G76H/8YunWDq66qQnDOOdeOUq40vHNfB1zWeBkty1u4buR17aZdvhy23hqam2GbbaoQnHPO\ntaOUSsMHsCjRylUrGdM8hkknTEqV/pFHYLfdvMJwztU3H3uqRBPnT2SbPtswZIshqdKPHQtHH13h\noJxzrsK80ijRDS/cwJm7p3sE6tNP4dFH4TvfqXBQzjlXYV5plGDB+wtoXtLM0Tunu3SYPBl22QU2\n37zCgTnnXIV5pVGCm5puYtTQUazbfd1U6ceNg6OOqnBQzjlXBf70VJE+X/k5/a/pz9OnPc32m27f\nfvrPoW9fmDsX+vWrQoDOOZdSPXXuq1vjXh7H0L5DU1UYAI8/Djvv7BWGc65z8EqjSLfMvCX1DXAI\nTVP+1JRzrrPw5qkivffJe/Repzc9uvVoN+2KFbDlltDU5P0znHO1xzv3VcGmvTZNnfbJJ2G77bzC\ncM51Ht48VUHeoc8519l481SFfPlluPn9zDMwcGDW0Tjn3Ff501M1ZNq0UGl4heGc60y80qiQsWO9\nQ59zrvPx5qkKWLUK+vcPfTR23LH99M45lwVvnqoRM2ZAnz5eYTjnOp9MKg1Jm0iaImm+pMmS+rSS\n7iJJcyXNkXSXpHWqHWspvEOfc66zyupK40JgipntADwe19ciaQBwBrCrmQ0GugHHVTHGkpj5AIXO\nuc4rq0rjMOD2uHw7UGimiY+AFUAvSd2BXsDb1QmvdE1N0LMnDB6cdSTOOVd+WVUaW5hZS1xuAbbI\nT2Bm7wO/Bt4AFgPLzOyx6oVYmlyHPhV1a8k55+pDxYYRkTQF6FvgrUuSK2Zmkr7y6JOkgcAPgQHA\nh8B9kk4wszsL7W/06NGrlxsaGmhoaCg19JLlmqbuuafqu3bOuXY1NjbS2NjYoW1k8sitpHlAg5kt\nlbQl8ISZ7ZiX5ljgQDM7Pa6fBOxpZmcV2F5NPHI7a1aY0nXhQr/ScM7Vvnp65HY8MCoujwIeLJBm\nHrCnpPUkCTgAeKlK8ZUk16HPKwznXGeVVaVxBXCgpPnAt+I6kvpJehjAzGYB/wu8AMyOf3dTBrGm\n5o/aOuc6O+8RXiYvvQTDh8Mbb8DXvMukc64O1FPzVKeT65vhFYZzrjPzIq5MfIBC51xX4JVGGbzy\nCrS0wN57Zx2Jc85VllcaZTBuHBx5JHTrlnUkzjlXWV5plIE3TTnnugp/eqqDFi2CPfaAJUuge8X6\n1zvnXPn501MZGDcODj/cKwznXNfglUYHeYc+51xX4s1THfDWWzBkCCxdGoZDd865euLNU1X2wANw\n6KFeYTjnug6vNDrAn5pyznU13jxVopYWGDQoNE2tu25Vd+2cc2XhzVNV9MADcMghXmE457oWrzRK\n5E1TzrmuyJunSvDuuzBwYOjQ16tX1XbrnHNlVTfNU5KOkTRX0peSdm0j3QhJ8yS9IumCasbYloce\nggMP9ArDOdf1ZNU8NQc4AniqtQSSugG/B0YAOwPfk7RTdcJrW7U79HV0Ivha1pnzBp6/etfZ81eK\nTCoNM5tnZvPbSTYMeNXMFpnZCuAe4PDKR9e2Zctg2jQYObJ6++zMX9zOnDfw/NW7zp6/UtTyjfCv\nA28m1t+Kr2VqwgTYf3/YcMOsI3HOueqr2DB7kqYAfQu8dbGZTUixiZq8Q+9PTTnnurJMn56S9ARw\nvpk1F3hvT2C0mY2I6xcBq8zsygJpa7KCcc65Wlfs01O1MKB3awG/AGwvaQCwGDgW+F6hhMVm2jnn\nXGmyeuT2CElvAnsCD0t6JL7eT9LDAGa2Ejgb+BPwEnCvmb2cRbzOOeeCTtG5zznnXHXU8tNTa0nb\n0U/SHpJWSjqymvF1VJr8SWqQNFPS/0lqrHKIHdJe/iRtJulRSS/G/J2SQZglkfQ/klokzWkjzW9j\n3mdJ2qWa8XVUe/mTdELM12xJT0saUu0YOyLN8Yvp6rVsSfP9TF+2mFnN/wO6Aa8CA4AewIvATq2k\n+zMwETgq67jLmT+gDzAX2Cqub5Z13GXO32jg8lzegPeA7lnHnjJ/+wK7AHNaef8QYFJc/ntgRtYx\nlzl/ewEbxeURnS1/MU1dli0pj19RZUu9XGmk7eh3DjAWeKeawZVBmvwdD4wzs7cAzOzdKsfYEWny\ntwToHZd7A+9ZuK9V88xsKvBBG0kOA26PaZ8F+kjaohqxlUN7+TOz6Wb2YVx9FtiqKoGVSYrjB/Vb\ntqTJX1FlS71UGu129JP0dUJBdH18qZ5u1qTpyLg9sImkJyS9IOmkqkXXcWnyNwb4hqTFwCzgvCrF\nVg2F8l9XBWsR/hmYlHUQ5VTnZUsaRZUttfDIbRppDtK1wIVmZpJE64/y1qI0+esB7Ar8E9ALmC5p\nhpm9UtHIyiNN/i4GXjSzBkkDgSmShprZxxWOrVryv4+dreBB0v7AacDeWcdSZvVctqRRVNlSL5XG\n20D/xHp/wtla0m7APeGYshlwsKQVZja+OiF2SJr8vQm8a2afAp9KegoYCtRDpZEmf/8A/CeAmS2Q\n9BowiNBfp97l53+r+FqnEW9+jwFGmFl7TT31pp7LljSKKlvqpXlqdUc/ST0JHf3WOmBmtp2ZbWtm\n2xLaHs+so4Pabv6Ah4B9JHWT1ItwQ/WlKsdZqjT5mwccABDb+wcBC6saZeWMB06G1SMdLDOzlmxD\nKh9JWwP3Ayea2atZx1NudV62pFFU2VIXVxpmtlJSrqNfN+AWM3tZ0r/E92/MNMAOSpM/M5sn6VFg\nNrAKGGNmdVFppDx+/wXcKmkW4WTm38zs/cyCLoKku4H9gM1ip9WfEy75c8dukqRDJL0KLAdOzS7a\n4rWXP+BSYGPg+ng2vsLMhmUUbtFS5K+upfh+FlW2eOc+55xzqdVL85Rzzrka4JWGc8651LzScM45\nl5pXGs4551LzSsM551xqXmk455xLzSuNSNKFko4v8PqOkqZL+kzS+e1s4zFJG1YuyvKRtIWkSYn1\nBkkfxuGRX5J0aZn200/SfXH5FEm/ayXdX4vcbrHpGySlmZu+JLl48vK7m6TfVGBfBfNSh8fw4rz1\np0uPsqj9tnusJH1b0uhqxFMOkv5b0r7V2FeXrjQUxdXhhM5nyfe7EYboPge4up1tfQv4S1tjJUnq\nGXtcZi72SP5A0q6Jl58ys12A3YETVYZ5H8xssZkdk1ttK2mxmy4xpNQkFfP7MFg7v2bWZGbVHnix\nno7hRXn7KXnMqgocq/NZM0Bh5iRt3E6S64GfViOWLldpxKEs/iLpdmAOsJWk3kBPM3tP0m2SbpA0\nA7jSzN4xsxeAFe1s+nhCd/xC+9xJ0q8JQ2VsX8bsdNR4Csy7bmafAE3AQEnflDRDYZKd+yX1AZB0\nrqS58fW742v7xbPcmZKaJa0fP+/c5C8C+iuMpjm/tTNhST+V9Fzc9ujWgpf0S4VJm6ZL2jy+dpuk\noxJpkme/vSVNVJgM6vrECUNym4skXSGpCThG0ukxlhcljZW0Xky3bdzvbEm/TPz96vy2cUUwQNJT\nkpriv70S6Rsl3SfpZUl3JP5mRHytCTiitc8kp9aPoaQrgPXifv4QX8tdATTEzyeTYyWpP6E8qKWh\nXh6Q9JCkQyV9ZSSPOLjggNyxrahqTwiS9T/CREBfAsMSrx0JjI7LtxEKU+X93c+B89vY7svAJon1\n9QnDRUyN/04F1s86/3kxbws8G5cbgAlxeVPgNWBnwtAC+8bXLwOuictvAz3icu/4/3hgr7jcizBk\nyADi5C/AKcBiwpAT6xIq7V3jex/H/4cDN8blrwETcvvPi30VMDIuXwlcEpdvJTFJTmK7DcCnMZ6v\nAZMpMJlOzPdPEuvJY/oL4OxEXk+My/+a2E8yv6s/07x9rAesE5e3B55PpF8G9CMUzs8QBnJcF3gD\nGBjT3QuML7DdejuGHxdaz/pYAccBv8v691kgv/sR5mWZTxjcc2De+7cDB1c6ji53pRG9bmbPJdYP\nAh6JywbcZ/EoFKGfrT1W0hLCMNGnm9m+ZnarmS0vPeSKWEL44eTsK6mZ0Ex3OWEk2o0sTOIC4Uv5\nj3F5NnCXpBMIlTDA08A1ks4BNjazL/mqyWb2gZl9RhjkLr8ddjgwXNJMwpnyIOBvC2znCzN7OC43\n5eWjNc9ZmAhqFXA3sE8r6e5NLA+WNFXSbOAEQiEMoTC/Oy7fQXF6AjfHbf4R2CkvxsXx+/cioWLf\nEXjNzBYk9tfa8Nz1dAzbkuWx2obw26gpZvakmY0ijLoLME9S8qpzMel+Bx1SFwMWVkB+4T0M+EFi\n/ZMy7OMowoQ090u6B7jdzN4AkDQMyA2EdilhVMmRhAprd6A5Lo8HZhKucgw4AziLMHXj2zHmifG9\nGwhnhWfE9ZGEq6bNgeeBm5P7NLMJhIInWTlONbNDcyuSNsrLU7KgGkkofA4FLpH0d2Z2paSJ8b2n\nJR0EfN7GZyTCFUO+y83spjb+DtZuLlzFmu/ySmKzq0I7d89EumRe8/OelPx+3AYcZmZzJI0inO11\n1I+AJWZ2ksJ9s88S7yU/ry8J+cqPs635HOrpGLYly2NlcZ+5+5pNVPj3SOtlwENmNjrGsh6hafJU\nYCPgXOCxRNxtfU5l01UrjdUkfQOYl+LKor2JVxZL2tTM3gMwsymEiYQ2AU4EHpL0LuHK4znCFy1n\nAvCzxPo387b9YGL5tLz38tNel1g+KO+9/JuiWwKvF8oMgJl9KOkDSfuY2TTgJKAxti9vbWaNCk+8\nHAdsIOlvzGwuMFfSHoQzzNl5mz1Q4abeZ4TZ0PJHfP0T8AtJd5rZcoVZ074ws7TTbC4inIndR5hm\ntUfivWGSBhCaer7Lmh9tWzYAlkrqQTiOuRn4cvm+k3BWW4zerJlP5GRC4dIaI9wLGyBpOzNbSIH7\nUK3+cW0fwxWSulvhaX2zPFavE69s4pVWNX6PbZYBkn4FHE2olH5iZrMKxL0l0Fjg9bLqqs1TyQri\nYNY0TX3lfUl9FYYT/hHwM0lvSNqgwDanEc4Q1t6Q2ftm9lsLT7RczJpmgFowDHgqLhuFz1JGAVcp\nDFk+BPgPwsnGH2IzQDPwGzP7CDhP0pyY9gvWbvLL/f8cMI4wpetYM2tOpomV7V2E2cNyzTeFPm/L\nW86tjwH2k/QisCfw10Sa54HfE+YKWMjaP/5C2wX4d8K819MI961yzgPOijH2KxBPa9uDUJCMijEO\nSsRYML2ZfQ58H3g43vRtaWW79XYMbwJm526E58We5bF6hjCTXS15AtjRzM5tpcKAUAlNr3QgXX5o\ndEmTgZOsg09KSGoAjjWzM8sSWBVIuhO42sxmZh2Lcznxt3R+spktgxj+DJxgZjV3b6MQSTsQfsuH\nVXpfXfVKYzUzG97RCiNup5EwO129dO7bHOjjFYarQa1dMVXT1ax9n7PW/QD4VTV21OWvNJxzzqXX\n5a80nHPOpeeVhnPOudS80nDOOZeaVxrOOedS80rDOedcal5pOOecS+3/Af35fFpQDipCAAAAAElF\nTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x57bc0f0>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter7_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter7_1.ipynb
new file mode 100755
index 00000000..e7a2b4e7
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter7_1.ipynb
@@ -0,0 +1,362 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0121a040eed613b854fe2d157c63761fd0cd50e759be7ff7c9508c6906588d6c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7-Axial Compressor Aerodynamics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate specific work at pitch line and rotor torque per unit mass flow rate\n",
+ "w=5600. ##rpm\n",
+ "rm=0.5 ##m\n",
+ "Ct2=145. ##m/s\n",
+ "Um=w*2*math.pi*rm/60. ##Rotor tangential speed at pitchline in m/s\n",
+ "Ct1=0.\n",
+ "dU=Ct2-Ct1\n",
+ "wc=Um*dU/1000. ## in kJ/kg\n",
+ "tpm=rm*(dU)\n",
+ "print'%s %.6f %s'%(\"Specific work at pitchline in\",wc, \"kJ/kg\")\n",
+ "print'%s %.1f %s'%(\"Rotor torque per unit mass flow rate in \",tpm,\"m^2/s\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Specific work at pitchline in 42.516221 kJ/kg\n",
+ "Rotor torque per unit mass flow rate in 72.5 m^2/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg407"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate rotor anugular speed and rotor exit swirl and rotor specific work at pitch line and rotor mass flow rate and stotor mass flow rate and flow efficient\n",
+ "rm=0.5\n",
+ "Um=212. ##m/s\n",
+ "Czm=155. ##m/s\n",
+ "Ct1m=28. ##m/s\n",
+ "Rm=0.6\n",
+ "alfar=1. ##alfar=alfa3/alfa1.\n",
+ "w=Um*60./(rm*2*math.pi)\n",
+ "print'%s %.f %s'%(\"Rotor angular speed w in\",w,\" rpm\")\n",
+ "Ct2m=2.*Um*(1.-Rm)-Ct1m\n",
+ "print'%s %.f %s'%(\"Rotor exit swirl in\",Ct2m,\" m/s\")\n",
+ "wcm=Um*(Ct2m-Ct1m)/1000.\n",
+ "print'%s %.f %s'%(\"Rotor specific work at pitchline Wcm in\",wcm,\" kJ/kg \")\n",
+ "Wt2m=Ct2m-Um\n",
+ "print'%s %.f %s'%(\"Rotor relative velocity vector at rotor exit in\",Wt2m,\" m/s\")\n",
+ "print(\"Hence vector is 155k-70.4e\")\n",
+ "##Since alfa3=alfa1, rotor and stator torques are equal and opposite each other.\n",
+ "trm=rm*(Ct2m-Ct1m)\n",
+ "tsm=-1*trm\n",
+ "print'%s %.f %s'%(\"Rotor torque per unit mass flow rate in\",trm,\" m^2/s\")\n",
+ "print'%s %.f %s'%(\"stotor torque per unit mass flow rate in\",tsm,\" m^2/s\") \n",
+ "pshm=(Ct2m-Ct1m)/Um\n",
+ "phm=Czm/Um\n",
+ "print'%s %.f %s'%(\"Stage loading parameter at pitchline\",pshm,\"\")\n",
+ "print'%s %.f %s'%(\"Flow coefficient\",phm,\"\")\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rotor angular speed w in 4049 rpm\n",
+ "Rotor exit swirl in 142 m/s\n",
+ "Rotor specific work at pitchline Wcm in 24 kJ/kg \n",
+ "Rotor relative velocity vector at rotor exit in -70 m/s\n",
+ "Hence vector is 155k-70.4e\n",
+ "Rotor torque per unit mass flow rate in 57 m^2/s\n",
+ "stotor torque per unit mass flow rate in -57 m^2/s\n",
+ "Stage loading parameter at pitchline 1 \n",
+ "Flow coefficient 1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg409"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#determine circulation and D-factor\n",
+ "Um1=200. ## in m/s\n",
+ "Um2=Um1\n",
+ "Cz1=150. ##in m/s\n",
+ "Cz2=Cz1\n",
+ "b2=-35. ##in degree \n",
+ "Cm=7. ##in cm\n",
+ "Sm=7. ##in cm\n",
+ "W1m=((Um1**2.)+Cz1**2.)**(1/2.) \n",
+ "Wt2m=Cz2*math.tan(-35/57.3)\n",
+ "W2m=((Cz1)**2.+(Wt2m)**2.)**(1/2.)\n",
+ "print\"%s %.1f %s\"%(\"W1m in \",W1m,\"m/s:\")\n",
+ "print\"%s %.4f %s\"%(\"W2m in \",W2m,\"m/s \")\n",
+ "sigma=Cm/Sm\n",
+ "Wt1m=-1.*Um1\n",
+ "Dm=1.-(W2m/W1m)+(abs(Wt2m-Wt1m))/(2.*sigma*W1m)\n",
+ "print\"%s %.4f %s\"%(\"D-factor Dm\",Dm,\" \")\n",
+ "Tm=Sm/100.*abs(Wt1m-Wt2m)\n",
+ "print\"%s %.7f %s\"%(\"Circulation Tm in \",Tm,\"m^2/s\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "W1m in 250.0 m/s:\n",
+ "W2m in 183.1104 m/s \n",
+ "D-factor Dm 0.4575 \n",
+ "Circulation Tm in 6.6485249 m^2/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate static pressure rise co-efficent \n",
+ "W1=300. ##in m/s\n",
+ "wrm=0.03\n",
+ "W2min=0.72*W1\n",
+ "Cp=1-(W2min/W1)**2-wrm\n",
+ "print\"%s %.1f %s\"%(\"Minimum W2 in\",W2min,\" m/s :\")\n",
+ "print\"%s %.3f %s\"%(\"Static pressure rise coefficient\",Cp,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum W2 in 216.0 m/s :\n",
+ "Static pressure rise coefficient 0.452 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate total temperature ratio and compressor polytropic efficency\n",
+ "ps=1.5\n",
+ "es=0.9\n",
+ "gm=1.4\n",
+ "ts=1.+(1./es)*(ps**((gm-1.)/gm)-1.)\n",
+ "ec=(gm-1.)/gm*(math.log(ps))/math.log(ts)\n",
+ "print\"%s %.3f %s\"%(\"Total temperature ratio\",ts,\"\")\n",
+ "print\"%s %.3f %s\"%(\"Compressor polytropic efficiency\",ec,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total temperature ratio 1.136 \n",
+ "Compressor polytropic efficiency 0.906 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate mean relative flow angle and rotor section drag co-efficent and rotor circulation and rotor sectional 2d lift co-efficent\n",
+ "W1=460. ##in m/s\n",
+ "b1=45.##degrees\n",
+ "W2=376.\n",
+ "b2=30.\n",
+ "c=5.25\n",
+ "w=0.05\n",
+ "s=3.5\n",
+ "Wt1=W1*math.sin(45/57.3)\n",
+ "Wt2=W2*math.sin(30/57.3)\n",
+ "Wtm=(Wt1+Wt2)/2\n",
+ "Wz1=W1*math.cos(45/57.3)\n",
+ "Wz2=W2*math.cos(30/57.3)\n",
+ "Wz=(Wz1+Wz2)/2\n",
+ "bm=(math.atan(Wtm/Wz))*180/math.pi\n",
+ "sigma=c/s\n",
+ "Cd=w/sigma*math.cos(bm/57.3)\n",
+ "T=s/100*(abs(Wt1-Wt2))\n",
+ "Wm=(Wz**2+Wtm**2)**(1/2.)\n",
+ "C1=2.*T/(Wm*(c/100.))-Cd*math.tan(bm/57.3)\n",
+ "print\"%s %.4f %s\"%(\"mean relative flow angle :\",bm,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The rotor section (2D) drag coefficient :\",Cd,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The rotor circulation in m**2/s :\",T,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The rotor sectional (2D) lift coefficient :\",C1,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mean relative flow angle : 38.2551 \n",
+ "The rotor section (2D) drag coefficient : 0.0262 \n",
+ "The rotor circulation in m**2/s : 4.8042 \n",
+ "The rotor sectional (2D) lift coefficient : 0.4209 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg437"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 7.7\"\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "#calculate and draw the garph of degree of reaction for compressor stage with IGV and possible hub radii and possible tip radii\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "Rm=0.5\n",
+ "b=0 #b=b/w\n",
+ "i=1\n",
+ "z0=numpy.linspace(0.,.5,6)\n",
+ "z1=numpy.linspace(0.5,1.5,20)\n",
+ "for b in z0:\n",
+ "\tr=0.5\n",
+ "\tvr=z1;\n",
+ "\tx=numpy.zeros(20)\n",
+ "\tcount=0;\n",
+ "\tfor r in z1:\n",
+ "\t\tR=(1-b)-((1-b)-Rm)/(r)**2\n",
+ "\t\tx[count]=R\n",
+ "\t\tcount=count+1;\n",
+ "\tpyplot.plot(vr,x)\n",
+ "\ti=i+1;\n",
+ "\tpyplot.xlabel(\"r/r1 (<---------)Possible hub radii and Possible tip radii(--------->)\")\n",
+ "\tpyplot.ylabel(\"R(r)\")\n",
+ "\tpyplot.title(\"Degree of reaction for a compressor stage with an IGV\")\n",
+ "\tpyplot.legend(\"b/w=0\",\"b/w=0.1\",\"b/w=0.2 so on\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 7.7\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMX6xz9DeiEVEgiEXkKvIopKEFQElKtXBbvYC+r1\n+lPEytVrwYrtggIKigVFQSyIgASU3nsJJZCQRnovuzu/P+aELCFld7PJJmE+z3Oe0+bMec/Zs+d7\nZt6ZeYWUEo1Go9FobKGZqw3QaDQaTeNBi4ZGo9FobEaLhkaj0WhsRouGRqPRaGxGi4ZGo9FobEaL\nhkaj0WhsRotGI0MIMUwIESuEyBVCXOtqe6wxbOpQB/l2F0LsFELkCCEmOzt/jUYIMVMI8Xw1+6cJ\nIb6sT5saKk1SNIQQcUKIAuMlkymEWCeEeEAIIVxtmxN4GfhAStlcSrnUVUYIIWKEEPdYbzNsiquD\n0z0NrJJSBkgpP6qD/DV1iBBinhDiFVfbUR1SyoeklP8FEEJECyHiKyZxgVkACCEsQohOVutdhRDf\nCiFShRDZQojDQogPhBBtjMlknd7quMVCiLdqa0+TFA3UDzxOShkAtAPeAKYAc+viZEKI+ryP7YD9\ntiQUQrjXoR31+Sdqj43XXBEhhJuTbXE5dfy7Nvjzu4gG8cEphOgCbAISgP5SykBgGHAUGCalPAWs\nBG6vcFwIcDUwr9ZGSCmb3AQcBy6vsO0CwAz0Mta9gLeBE0AyMBPwtkr/NJBo/Dj3Ahagk7FvnpH+\nNyAPuByIAH4AUoFjwKNWeQngGeAIkAYsBIKrsf8+IBZIB34CWhvbjxrXUADkAB6VHBtn2L4bKER9\nGAwF1gOZwE5guFX6SagXco6R//0V8htvHJNt2H8V8CpgMvLPRZV8qHCPAoEvjPsRBzwHCGPfXcDf\nwFtAhnG/RldxL/60OlcO0MWGvNcB7xr3+uVK8hwCbDDuRyLwYWX30ir9JVb37yRwp43XWGZHpnHv\nLjbu90kgBbjD6hzzgFnAH8Z1xgDtrPZbgIeN5+KosW2c8dtkGufqY5V+CurZzQEOYvwfjGvfavye\nycA7VsdcC+wz8lsNRFX3XFVyn94zrivbSNcLuB8oAYqNZ+UnI23Z/yHHOOc/rPJpBrwDnDaejcnG\n9Tezuu9zKf9/vlKFPd6GrSHG+nNAKeBvrL8CvGd1/18BfI1jzIa9OUBr4CXU/3a+sW0vMKiaZ+Z9\n43fONu73JVb7pgHf2ZGX9f9qQdk9rCb9zcCRCtseBrY55f3qjEwa2kQlomFsPwE8YPWALwGCAH9g\nKfCasW80kAT0AHyMH6qiaGQBFxnrPsA24HnAHeiIegFfaex/HPXSiQA8UC+Hr6uw/XLjz9If8AQ+\nANbUdG1W++OA7UAblDC2Qb08Rxv7Rxnrocb6GKCjsXwZkA8MMNaHGNc50liPALoby6uBu6t5uL8A\nFgN+qJLCobL0qBdqCXAPSlAfBE5Vc01nncuGvEuBR1AvH+9K8htoXFszyksxj1dx7vaoP/YEwA0I\nAfrZYcedxjW+gnrBfWg8A1cY+fpaPVM5KIHyBGYAf1W4t8tRz6sXMAD1gr7AyP8O49nwALqjXlit\njGPbWf0uG4BbjWVf4EJjuRvqA2ikcZ1PoQTKvbLnqpL7dBXq5RhgrHe3Ov/nVBBv4Aar/TcZ5w43\n1h9ECUmEcb0rUS/xMtFYjPpo8wFaor6876/i91sDXG8s/2FcU9l/YS0wvqKNwHAgvkI+01BiMtq4\n368BG6p5Zm8FglHP2L9R7xNPB/Oy/l8lYfWxUUV6H9T/dpjVtg3AY055vzojk4Y2UbVobACmGj9U\nXtkPYey7CDhmLH8GvGq1rzPnisY8q/0XAicqnGsq8JmxfMDaHtSXSwmVfx3NBd6wWvcz0rar7toq\nXPtdVutTgC8qpPm9qgfP+EM+Zix/gtWXaIV0q4F7KmyzAJ1QL51izv5SvR9YbSzfBcRa7fM1jg2r\n6Vw25n2isnyquWf/An6sYt9U4IdKtttix2GrfX2Ma2xptS0N6Gv1TH1ttc8PVcJqY3Vvo632z+Tc\nF/FBlPB3RgnKSCqUoFAv0WlAiwrbXwC+tVoXKJG7rLLnqpL7MQIlmhdWfK5RL+RXavgNdgDXGMt/\nAvdZ7RtpXH8zIBwo4uxagZuBP6vI92XUV78b6oX7KPA6qhRSgFHit7YRiKZy0fjDar0nUGDHM5aB\nURK0Ny/OfveUYnyMGuuTUSXDXOBTq+2zgU+M5a7Gs9rCVnurm5qqT6Mq2qJ+vBaoF9U2w1GeCSwz\ntoN6qVs7whIq5CMrbGsPRJTlZeQ3FQiz2r/Yat9+1AshvBIbW6NKROpEUuajqqna2HGd1ra3B26s\nYNswoBWAEOJqIcRGIUS6sW8MEGoc2xZVYqoKWcX2Fqgv3hNW205WuIbkM5lIWWAs+ttwLlvyrujE\nPAshRDchxC9CiCQhRDaqui20iuRtUVUkFbHFjhSr5UIAKeXpCtvKrvmsZ8r43TNQX9tlVPxdn6zw\nu7ZFVWUeRQnhNCBFCPGNEKK1cdw9qFLFASHEZiHEWGN7a8P+svNL43w23Vcp5WrgI+Bj45yfCCGa\nV5VeCHGHEGKHle29se3/1x5135Osjp2FKnFUxhqUCAwE9qBKLcNR4nZESplZlY2VYP17FgDeVfkz\nhRD/J4TYL4TIMmwMtLo+u/KqQDpWz4SU8iMpZTCqZOphlW4+6n/vhfJv/C6lTLMh/xo5b0RDCHEB\n6mb/jbrxhUBPKWWwMQVJ5TgH9UUSaXV4JOdi/cI8CRy3yitYqpY+46z2j66w31dKmVRJvolAByu7\n/VAvtFN2XG5F276scO7mUso3jQfqB+BN1Fd+MMpPU+b0i0f5EGo6R0XSUF9EHay2teNc8XUEW/Ku\nzjZQX+n7gS5SORKfo+r/Qjzqy90RO+xBYPWcCSH8UVVhiVZpKv6ur1b4Xf2llAsBpJTfSCkvRb1k\nJTDd2H5ESnmLlLKlsW2REMLXOE97q/OX2WP93FV7X6WUH0opB6O+nLuhqrjOOU4I0R74FFWFGGI8\nd3spf+6q+//Fo76aQ62uO1BK2acKszagqsquA2KklAdQv9MYlN/orEuo5jpreqbOIIS4FHXtNxrv\nlWCUb8MZzvRVwPWVnbbC+jrUR8d4VFXZfCecG2jaoiEAhBABQohxwDeol+c+KaUFVXybIYRoaaRr\nI4S40jj2O2CSECLK+EO9UFneVmwGcoUQTwshfIQQbkKI3kKIwcb+WcBrQoh2xrlaVtPH4hvj3P2M\nl/prwEYp5ckq0tfEAuAaIcSVhl3eRpPCNqi6c0/UC9AihLgauNLq2LmGLZcLIZoZ96i7sS+Fyl+m\nSCnNqHv4qhDC33hJPGHY4ijCiXn7o4rzBUKIKOChatJ+BYwSQtwohHAXQoQKIfrV0TWOEaofjifK\nB7JBqtYwlTEbeFAIMUQo/IQQYw1buhm/mRfqBVuE8gkghLit7JlHvcikse97YKxxnAfwpHHcelsM\nF0IMFkJcaBxbYH1O1LNi3QTUzzhvGtBMCDEJVdIo4zvgcSFEhBAiCFXFKgGMD60/gHeFEM2N57Kz\nEOKyyuwySrHbUAK1xti8HuU3WWOVVFD+v04BQoUQARX220pzVE1CmhDCUwjxIhBQwzG2Mg24VAjx\njhAiAkAI0QLlfz0jbEZJ8QvUB2Eg8LOTzt+kReNnIUQO6otsKqo1xiSr/VNQrTc2GlUUK1BfR0gp\nf0c5oFcDh1FfK6D+gKB+HOsfyIJqydIfVZVxGvUlVfagvI9ytP9h2LQB5Yg9BynlKpRI/YD6+usI\nTHTkBhj5JaC+Np5FtfI5iXohCCllLvAY6k+agaob/snq2C2oe/YeyrEWg/pKK7umG4QQGUKIGZWc\n+lGUU/0Y8Bfq5ft5Wdac++VW05ec9X57867I/wG3oBzPnwLfVnWMlDIe9VX6JKqEugPo66Ad1dkl\nga9RrXTSUY7u26o6Vkq5DdXK7iPUbxeLcoaDcpS/jnoOk1DVIlONfVcBe4UQuajfdaKUslhKecg4\n34fGcWNRPgZTNTZbE4C6lxkop3kaqnUcqI+PnkZ10o9Syv2o/+MGVDVlb1QNQBmzUcKwG/XC/xUw\nG/8zjOv0RJUWM1CC16oa29agGqhstlr3RznCyzjze0kpD6I+3o4Zz3dr7Ps9fzemw8a9KMSq6s/O\nvM7aJ6WMRVWttQV2Ge+Tv1El3Ioft1+gSmkLpZSl1eRvF2XNA12CEGI0qi7ODZgjpZxeYX8L1Jdb\nK9SP/raUcp4L7OyBqg/1tHpwNRqnIYT4HEiQUlb845/3GCXgmVLKDq62RePCkoZQna4+QjU76wnc\nbLycrZkM7JBS9kc5s94R9dSxSAhxnRDCSwgRjKr7XaoFQ1OHNIjOYw0Bowp1jFEd2AZV+vrR1XZp\nFK6snhqCar0QZxSdvkVVo1iTRHkVTwCQbkdxubbcj6rbPIJyeFZX763R1BZbqtXOFwSq7j4D1Tdk\nH/CiKw3SlOPK4QDacG6zugsrpJkN/CmESEQ5l26qJ9uQUl5dX+fSaKSUk2pOdX4gpSykCp+fxvW4\nsqRhy1fVs8BOKWUEysn8cXVtvzUajUZTt7iypHGKc9tiV2zjfjGq4xVSyqNCiOOoNtdbrRMJIXSx\nXqPRaBxASmmXP82VJY2tQFchRAejXfoEVLNUaw6ixkpCCBGOEozKeufWumt8Q55eeukll9ugr01f\nn76+upvMZsmJE5L8/Pq9PkdwWUlDSmkSKqDOclST27lSygNCiAeM/Z+gOrZ9LoTYhRK4p6WUGa6y\nWaPRaByltBTi4uDIETh69Ox5XByEhsKSJTB4cE05uRaXjosvpVyGGvPJetsnVstpwDX1bZdGo9E4\nQmHhuYJQNj91Ctq2hc6doUsXNR8xQi137Ai+vq623jbOx2AqjY7o6GhXm1BnNOVrA319jZ3Krk9K\nSEmBgwfVdOhQ+XJSkhKALl3U1KsXjB+vBKJ9e/D0rP9rcDYu7RHuLIQQsilch0ajaTgUF6tSQmXi\n4OUF3btDVFT5PCoKOnQA90b0KS6EQNrpCNeiodFozmtKSyE2Fvbsgb17y6f4eCUC1qLQvbuaQqsa\nSL+eUYMR20Zl70gtGhqNRlMFUsKJE+WiUCYSsbEQGQm9e0OfPmreq5eqUmro1UnGS9/hdFo0NBqN\nBsjKgp07YffucoHYtw8CAsqFoWzeowf4+LjO1hJzCYm5iSTkJNA7rDdB3kE2H6tFw0G0aGg05y+n\nT8P27WdPqanQrx/07VsuDr17Q3Bw/dpmLQjx2fFqnqPmZcvpBemE+4cTGRDJrHGz6Bvet+aMDbRo\nOIgWDY2m6SMlJCaeKxB5eTBw4NlTly7g5lbX9kiyirKIy4rjRPYJ4rLiiMuK42T2yUoFoW1A2zPz\ntgFtiQxUy638W+HezDHvuRYNB9GiodE0PZKSYONG2Lq1XCCkPFcgOnYEO/zBNiOlJLMo84wYlE3W\nAiGlpENQBzoEdaB9YHs6BHWgXWA7pwiCLWjRcBAtGhpN46akRPkgNmxQ08aNkJMDQ4fCBRfAoEFK\nINq0ca5AmCwmTmaf5EjGEY5mHFXzzKMczTxKXFYc7s3cz4iBtTCUTUHeQXa1YHI2WjQcRIuGRtO4\nSEhQwlAmEDt3QteuSiQuukjNu3VzjkAUmYo4nnn8jCBYz+Oz42nl34rOIZ3pEtxFzUO60Cm40xlR\naMho0XAQLRoaTcOlpERVMVmLRFFRuThcdJEab6l5LYIeWKSFhJwEDqYdPGs6knGE1PxU2ge1p3Ow\nEoSyeZeQLnQI6oCXu5fzLrae0aLhIFo0NJqGQ0kJbNkCMTFq2rhRlSIuvrhcJDp1cqwUUVhayOH0\nwxxKP3SWOBxKP0SQdxBRLaKICo0iqkUU3Vt0p1toNyIDInFrVsdecUcoKYG0NNX8KzVVzUeNgrAw\nm7PQnfscRIuGRuM6KhOJbt0gOlpNl14KQXbW8uSV5LE3dS97Uvaw//R+DqYrcUjKTaJzSOezxKFM\nIAK8AmrOuC4xm9WLPyWlXASsBaHicl6e6loeFgYtW6pp2jTV9bye0KKh0WjqnLLqpjKR2LBBlSSs\nRcLW/hAmi4kjGUfYk7KH3Sm72ZO6hz2pe0jKTSKqRRR9w/vSs2VPerToQVSLKDoGd6zT1kjnICVk\nZkJy8tlTSsq52zIyICREiUCZEFgLQsXloCBo5sqQRlo0XG2GRtMkkRJ27YLff4c//1Qi0aWLEogR\nI2wTCSklyXnJShRSlDDsTtnNwbSDtG7emr7hfekT1kdN4X3oEtKlbsVBStVt/NQp1fnj1KmzlxMT\nlRCkpoKfH4SHQ6tW5VPF9VatoEWLxjVaIVo0XG2GRtNkyM6GFStg2TI1+frC1VerKvdLL1Uf1FUh\npeRE9gm2JW5jW9I2tiZuZUfyDqSU9AnvQ9+wvvQJVwLRK6wX/p7+zjXeZFIv/ZMnKxeDsrmHh2rD\n26YNRESUL7dpA61bqyk8XA1p20RpdKIhhBgNzEBF7psjpZxeSZpo4D3AA0iTUkZXkkaLhkZTC6RU\n4zP99psSie3bYdgwGDNGiUXXrlUdJzmZfZJtSdvYlriNrUlb2Za4DU83TwZFDGJw68EMihjEwNYD\nae3f2jl9GrKzlSBYTydOlC8nJ6sqoMhIFfXIWgzKxCEiAvydLFaNkEYlGkIIN+AQKgb4KWALcLOU\n8oBVmiBgHXCVlDJBCNHCiOZXMS8tGhqNneTkwMqVSih+/119UF99tRKK6OhzI8lJKYnPiT+rBLEt\naRvuzdwZHDGYQa0HqSliEBHNIxwzqsyHcOxY+WQtCCdPgsUC7dpVPbVp0/CHp20gNDbRuAh4SUo5\n2lh/BkBK+YZVmoeBVlLKF2vIS4uGRmMDBw7Azz+r0sTWraoZ7NVXq6liZ7piUzHbkrax7uQ61ies\nZ338egSiXCAiBjE4YrD9AlFSooTg2DE4fvxsgTh2TAlHp07lU4cOKuxdmSgEBtbNuCF1TInFQo7J\nRI7ZTI7JRLYxz7Ga3xIWRqS3d73Z5IhouNJr0waIt1pPAC6skKYr4CGEWA00B96XUn5ZT/ZpNI0e\nKdWQ4N9/D4sWqZqda6+FJ59UTmw/v/K0qfmprI9X4rAufh07k3cS1SKKYZHDmNBrAu+Pfp/IgEjb\nqpiKi1Vg7MOHVci72NhyUUhOVqUBa2EYPLh8OTi4wYmCyWIhx2wmy2SqdMqusFyZIJikJNDNjQB3\ndwLc3Ah0dz+zXDY3NYKPX1eKhi13xwMYCIwEfIENQoiNUsrYigmnTZt2Zjk6OrrJxy7WaKpCShVH\nYtEiJRYFBXDDDTBnDlx4oWrlaZEWDqYdZN3BdayLX8f6+PWk5qcytO1QhkUO45URrzCkzZDqndQW\ni3IqHzpULg5l88REVTro3l0VYYYMgZtvVqIQGamc0PWMWUqyTSYySkvJNJnIMJYzTCYyjfmZ9Qqi\nUGg2E+DuTlAVU6C7O518fNRyFYLg3ayZS8epAoiJiSEmJqZWebiyemooMM2qemoqYLF2hgshpgA+\nUsppxvoc4Hcp5aIKeenqKc15jZSwY0d5icJkUkJx441qwD+LNLMjeQerjq1i7cm1bIjfQLBPMBdH\nXsywyGEMixxGz5Y9K+85XVSkAmPv3asEoUwcYmNVVVG3buXiUDbv2LFOhaHUYiG9tJS0GqZ0K0HI\nMZlo7u5OiLs7IR4ehLi7E2y1HOLhcWY92NhXJgr+bm4uf+HXBY3Np+GOcoSPBBKBzZzrCI8CPgKu\nAryATcAEKeX+Cnlp0dCcd0ip/BJlQiGEEokbb4QBAyRHMmNZeWwlq46vYvXx1bTyb8WoTqMY3n44\nF0deTOvmrc/O0GRSVUrWgbL37lX+h86dVQzUskDZ3bqpKcA5vbBLLRZOl5aSUlJCSkkJqcZyamkp\np0tKzhGDfIuFUHd3Wnh4VDmFGlOZIAS6u+PWBF/8taFRiQaAEOJqypvczpVSvi6EeABASvmJkeb/\ngEmABZgtpfygkny0aGjOG3buhC+/VELh5VUuFGGdkvgzbhWrjq9i5bGVSCkZ1WkUIzuOZGSnkeUO\na4tFtUKqKA6HDilfQ1mYu7KpWzeHWiOVWiyklJSQWFJCUpkYlJSQUlqq5lbLOWYzLTw8CPPwINzT\nk3BPzzPLLT08aFlBEALc3WmmBaDWNDrRcBZaNDRNnfR0+Ppr+OwzNVrF7bfD1ddlk+a3hj+Pr2Ll\n8ZUk5iYyosMIRnYcyahOo+gW2g1hNsP+/arjxbZtatqzR1UrVRSHHj3O9oxXQZkYJBmCkFhcrJaL\ni88IRGJxMRkmEy09PIjw9KS1lxfhHh6EGYJQcTnEw0OLgAvQoqHRNCHMZtUr+7PPYPlyGDNWMmLC\nHlKClvLbkV/Zm7qXC9tceEYkBob2xu3AwbMFYu9e5Xgui2I0aJAKnF1Fl+5Si4XEkhLii4qILy4m\nvriYk1bLicXFpBti0NrTkwgvLyUK1svGPMzTs0lXB0mzxFJkUVOxpXy5bN3YJotl+XrxuevWadr+\nuy2+XXxrPrmT0KKh0TQBjhyBefPUFB5RwiW3rqWo/VKWxy1FCMH47uO5pv2VDMsOwHv3fiUO27er\ntrUdO54tEP37nwlUIaUkrbSUE1UIwsmiIlJLSwnz8CDS25t2Xl5EenkR6e2t5l5etPHyIszDA3cX\nD7RXEYvJgqXAgrnAfNbcUmjBXGjGUmg5M1W5XlRhW9nLvMhS6STNkmbezc6dvJohvATNvNRypduq\nSNPiuhZ4RdTfsCVaNDSaRkp+vvJRfPYZ7DuaxZBblyG7/cTGtOV0C+3GLaEjuC4jjMi98Yj161UV\nU5cuShjKRKJfP4q8vYkrKuJYURHHCgs5brV8rKgIDyFoX0EQrJcjPD3xqANBkBaJucCMOc+MJd+C\nOV8tm/PNZ5bPbLfad2ZbBTGoOJdmiZufG818m+Hm60Yzn2Y086mw7FO+fNa6dzXbKhMFYxLuotG3\nqNKiodE0IqRUI8Z+9hl8t+I4kaOW4tZjKSeLN3O720AmZLVl0PEifDZvV2N+XHwxctgwUi+6iNio\nKI5JqUTBEIRjhYWkl5bSztubTt7edPLxoaMx7+TtTUdvb4LsaAZrKbFgyjZhyjZhzjZjyjFhzjVj\nzjVjyjWW88w2bbMUWdRL2d8NNz+ryd+NZn7NzixXut3XWPa1EoUKc+HR+F/grkCLhkbTCCgogPnz\nJdMXbCW3zRKCui6mf0oit+d35OKTkpZ7j1McGcmRK6/k4JAhHOrShUO+vhwqLORQQQFuQtDN15fO\n3t50NAShTBgivLxwE0J92eeaKc0sxZRpOjOVZpYqASgTg5zy5YrrmMEt0A33AHfcA91xC1DLbs3d\n1OSv5u7NrbZZr/uXb3PzdUM00y/1hoYWDY2mAZOUBC9/fJiftszlMr/5XJVcRN/iVmR4BhF70cUc\n7tuXQ23bcsjHh0STiY4+PkR5eNO71JtuhZ50KPCgTV4zvLMlpnRTpYJwZj3HhJufG+5B7rgHu+MR\n7IF7sFp2D3JXL/9AN9wDq15u5u36HsyaukWLhkbTAFm19gRffjwDT9NOQr1aUejXjaTwHmS5tyQ0\n141OxV60yXOnZZ4gKBt8siVuGWZM6SZMuSY8gj3waKEm91B3tRxSLgJnCYKx7hboRjP3huWs1jQ8\ntGhoNPWMtEhK00spTS2lJKWEwqRiTiXkk7AvgaRDaYg8N7yK/PDPdSM4S4A7WMI88Ar3IqCVF35h\nXucKQqjHmbl7kLuu1tHUGVo06omYGP0n1mg0dUN0dP29y7RoaDQ2Yi40U3yymKK4IjWdLKL4VDEl\np0ooPlVMcWIxslji2cYTrzZeuEd4ktVCcDLEwsHAErb6FREbUEI70ui5dxs99+8jp/gYsSUWTgXf\nwkP3P8i1o1o0tBG+NZqz0KKh0RiYC80UnSgqFwVjKj6hhKI0sxTvSG+8O6jJq50XXm3U5Nbag+NB\nZra5F7A5N5ctubkcLCigp48PF2RkMGTrVgYv+p7Q4gy+bp/PzxEBbDl5D9d3v40XHu1A9+6uvnqN\nxja0aGjOK0qzSik8VEjB4QIKDxdSEFtA0XElDuYcM17tvJQotC8Xh7LJs5XnGV9BQlER63Jy2JyT\nw5bcXHbk5RHh6cmQgACGuLlxwfbt9P/hB7z/+IPcvlH80sON/wbvo8A0juyVj/DvGy/ioYcEoaEu\nviEajZ1o0dA0OcxFZoqOFlFwqKBcHIy5pciCTzcffLv5npl7dzREIdyzSgdyfFERa7KyiDGmLJOJ\nSwIDlUg0b87gnByCfvkFFi+GrVuxjIhm0wURvNx8G7tKkmib/CCx397LE/eH869/OW10cI2m3tGi\noWm0mLJN5O3JI393PgUHygWiOKkY7w7e+Hb3PUscfLr7KGGwwWlwsqjojECsycoix2xmeGAg0UFB\nDA8KopevL80OHIAlS5RQxMXBuHGkXXUp/wuMZeaB+XQN7EnwkUdYO/ta7rvHnSlT0CULTaNHi4am\nwSPNksKjheTtUgKRtzuPvF15lJ4uxa+3H/59/fHt6YtvdyUQ3h287e5vEFdYyJrs7DNCkW82nxGI\n6KAgevj6qmG4k5Phq69g/nzIyoLrrkOOH8+aSAsf7pjJ6uOruTHqVtx3PMy3H/ZgwgR4/nmIiKij\nm6PR1DNaNDQNitLM0jPCkL87XwnFvnw8wz3x66sEwq+vH/79/PHp5INwc6ypUbbJxB8ZGfyWkcHq\nzEwKLRaiDYEYbojEmRJJcTH8/LMaQnbdOvjHP+Cuu8gZ0o8v93zF/7b+D4D7+08md91tfPBWc0aP\nhmnTVHhrjaYp0ehEQwgxmvLIfXOs44NXSHcBsAG4SUr5YyX7tWi4GHOhmdxtueRsyCFnQw65W3Mx\nZZrw6+N3Rhj8+/rj19sP90D3Wp/vSEEBv6Sn83N6Oltyc7kkMJCxoaGMDAqiu7VIgBoZcMsWVaJY\nuBD69YM774TrrydVFPD2+reZs30OIzuN5IEBjxC7YjivvioYMgReeUVFOdVomiKOiEbt/70OIoRw\nQ8X/HgVhk4/AAAAgAElEQVScArYIIZZaxwi3Sjcd+B3Qrd4bAFJKik8Wk70h+4xI5O/Lx6+nHwEX\nBdDyxpZ0fqsz3h29ndab2WSxsC4nRwlFWhrZZjPjQkN5rG1bRgUH4+fmdu5Bp07BggVKLEpK4K67\nVOyJ9u1JyUvhrfXT+GzHZ9zS5xa237eLv3+L5IGrVDjsxYvhggucYrpG06RwmWgAQ4AjUso4ACHE\nt8B44ECFdI8CiwD9F3YR5iIzedvzyF5fLhLSIgm8KJCAiwLo/E5nmg9qjptvJS/uWpBRWsrvGRn8\nkp7O7xkZdPT25prQUBb06MHA5s0rDw9aWAg//aSqnzZvhn/+E2bPhosvBiFIzkvmreVP8vnOz7m1\nz63sfmg3Bze35ZrhKlbRnDkwYoRTL0OjaVK4UjTaAPFW6wnAhdYJhBBtUEJyOUo0dB1UPWDON5O1\nJovMlZlkr88mf08+vj18CbwokJb/bEnntzvj3cG7TkZAjS0oYElaGr+kp7MjL4/ooCCuCQ3lrc6d\naeNVTUSzffvgww/hu+9g8GBVqvjxR/BVoTOTcpN4c92bzN81n9v73s7eh/fiVhDBvx9Sro0ZM2D8\neHQPbo2mBlwpGrYIwAzgGSmlFOoNVeVfetq0aWeWo6OjiY6Orq195w1SSvL35pOxPIOM3zPI3ZSL\n/yB/Qq4MofObnWk+2PmlCGtOl5SwMDWVL1NSOFFUxHUtWzKlXTtGBAXhU1m1U7nhsHIlvPsu7NgB\nDz8Mu3dD27ZnkiTlJjF93XS+2PUFd/S7g70P76WVXwSzZ8MLLyht2bcP/Pzq7PI0mgZDTEwMMTEx\ntcrDZY5wIcRQYJqUcrSxPhWwWDvDhRDHKBeKFkABcJ+UcmmFvLQj3E5K00vJXJlJxu8ZZPyRQTOv\nZoSMDiHkqhCCRgThHlC33xOFZjM/p6fzZUoKf2VlMTY0lNvDwxkVHFxz/OniYvjmGyUWFgv8+99w\nyy3g7X0mSWJuItP/ns6Xu7/krv538dTFT9G6eWv27IEHHlB688kn0LdvnV6mRtOgaVStp4QQ7sAh\nYCSQCGwGbq7oCLdK/znws2495RgWk4XczblKJJZnUHCggKDhQQRfFUzIVSH4dPGp84A7FilZm5XF\nlykpLE5LY1Dz5tweHs51LVrQ3N0GkUpPh1mz4OOPoU8fJRZXXnlWndKpnFO88fcbfLXnKyb1n8RT\nw56ilX8r8vPh5ZdVaNX//hfuuw/qIBS2RtOoaFStp6SUJiHEZGA5qsntXCnlASHEA8b+T1xlW1PB\nlG3i9OLTpP+STtaqLLzaexFyVQidXu9E4LBAmnnVz1tzf34+X6ak8FVKCsHu7tweHs7LF1xQvY/C\nmthYeO89Vbq47jpYvlyJhhVpBWn8J+Y/fLXnK+4ecDcHHjlAuH84AL/+CpMnK1/43r0QHu7sK9Ro\nzh90574mhrnITMZvGaR8lULmykyCRgTR8rqWBF8ZjFdrG1/STiC5uJhvUlNZkJJCckkJt4SHc3t4\nOH39/W3LQEr46y945x3YsEHVKT3yCLRqdVYys8XM7O2zeXH1i0zsPZHnL3ueML8wQLW4ffxx2LUL\n/vc/uOIKZ1+lRtO4aVQlDY3zkGZJ1posUr5KIW1xGv79/Am7NYzuc7rjEexRf3ZIyfqcHN6Nj2dV\nZibjW7RgeqdOjAgOxs3Wqq/SUli0SPkrcnLgiSdUCcNoBWXNxoSNPPLbI/h5+LHyjpX0DVcOCrNZ\n1WC9/DI89BB8+SX4+DjzSjWa8xdd0mikSCnJ25FHylcppH6bimeYJ2G3hhE2MQzvtt41Z+BETBYL\nP6Sl8W58POmlpfyrbVvuatUKf1v8FGVYLKq39vPPQ2QkPPkkjB1bqeMhNT+VZ1Y+w/Kjy3lz1Jvc\n0ueWM/6Y7dtVocTXV7k/evRw1lVqNE0PXdI4Dyg8WkjK1ymkfp2KpdhC2C1h9FvRD7+e9d9mNNtk\nYm5SEu8nJNDe25up7dpxTYsWtpcqyli1CqZMUQ7tanrXmSwmZm2dxX/W/Ic7+t7BgUcOEOClxiUv\nLIRnn4Wvv4bp09UoIbrPhUbjfLRoNAJKM0pVieLrVAqPFRJ2UxjdP+tOwNCAOm/xVBlxhYV8cOoU\n85OTuSokhEW9enGBI0Eldu1SYhEbC6+9BjfeWGWTpr9P/s3k3yYT4hNCzJ0x9AorHxDq0CG46SaI\nilJ9Llq0cPTKNBpNTejqqQZMYVwhCe8lkPJlCiFXhxB+WzjBo4Jp5uGatqIbs7N5NyGBVZmZ3NO6\nNY+2aUOktwNVYSdOqJ51f/wBzz2n6pM8PStNmpyXzNMrnmZ13GrevuJtbup101lC+dVX8K9/qWa0\n99+vSxcajT3o6qkmQu6OXOLfiidjeQat723NBXsuwKtN/bV8ssZksbAkLY13ExJILinhX23bMrd7\nd9v6VVQkI0OVKD7/XPXePny4yrB3peZSPt7yMa/+9Sp391dNaP09y1teFRTAY4+pBlYrV6qBazUa\nTd2jRaOBIKUkc1Um8W/Gk78/n7aPt6XbzG5OGUbcEYrMZj5JSmJGQgJtPD35v8hIxjvirwDlcPjw\nQ3jrLbj+etVZonXrKpOviVvD5GWTae3fmr8m/UVUi6iz9u/fr6qj+veHrVvVQIMajaZ+0KLhYiwm\nC6e/P038m/FYSixEPhVJ+C3hNPN0TRWURUq+TU3l2WPH6Ofvz7c9e3Kho0GwzWbV3vXFF2HQIFUs\niIqqMnlOcQ6PLnuUmLgY3r3yXa7vcf05Ppt58+Cpp5Sze9IkXR2l0dQ3WjRchDnfTNLcJBLeS8Cr\nnRcdXulA6JhQp8WfcIS/srJ48uhRJPBFjx5cFhTkWEZSwrJl8Mwz4O+v+lkMG1btIZsSNnHLj7cw\nquMo9j+8Hz/Ps1uD5eWpvn1btsDq1dC7t2OmaTSa2qFFo54pSS3h1EenSJyZSOBlgfT4pgeBQwNd\natPhggKeOXaMbbm5vN6pExPDwiqPVWELycnw4INw4AC88YYKp1pNXhZp4c11b/LuhneZNW4W1/e4\n/pw0e/ao6qihQ5Vo6BFpNRrXoUWjnihJKSHuP3GkfpNKy5taMmDdAHy7ndvLuT5JKynhlRMn+Col\nhafatePrHj3wrm4o8uqQUnWS+Pe/1WiACxdCDWNLJeYmcvvi2yk1l7L1/q20C2x3TpZz58LUqWo0\nkTvucMw0jUbjPLRo1DHSLEn8NJG4F+MIvz2cIQeH4BleefPS+qLIbOajU6eYHh/PhJYtOTBkCC2r\naPJqE8nJaryO2Fg1OuDgwTUe8vOhn7nv5/t4+IKHee7S53BrdrZY5eaqlrh79sDatbpnt0bTUNCi\nUYfkbs/l8IOHEZ6Cfn/2w7+PjYP11RFSShampjL1+HH6+vnx94ABdK9kTCc7MoRvv1UdJe65Ry3X\nULooMhXx1B9P8fPhn1l00yIuaXfJOWl27lTVUcOHw6ZNlQ47pdFoXIQWjTrAlG3i+AvHSV2YSqc3\nOtHqzlYudXADrMvO5skjRyiVks+6d2dEcHDtMkxJUaWLQ4fgl1/ggppDuO8/vZ+JiyYS1SKKHQ/s\nINjnXBvmzlX+8/ffV3GVNBpNw0KLhhORUpK6MJWjTx4ldEwoQ/YPwSO0/kaZrYyjhYVMOXqUzbm5\nvNqxI7eGhzvu5AZVuli4UJUuJk1SfowaeoVLKfl026c89+dzvDHqDe4ZcM85TWmlhP/8BxYsgL//\nhu7dHTdRo9HUHVo0nETB4QJiH4mlJLWEXt/3IvBi17aIklLySWIiL8TF8UTbtnzZo0f18bZtISVF\n9eQ+cACWLoUhQ2o8JKMwg/t+vo+jGUf5++6/z+moB6o7R1lz2nXrdJAkjaYh49KAl0KI0UKIg0KI\nWCHElEr23yqE2CWE2C2EWCeEaHARnc2FZo6/eJztF28nZEwIg7YNcrlgnC4pYfzevXyalMRf/fvz\nbPv2tROMstJFv37Qtasaf9wGwVh7Yi39Z/UnMiCSjfdurFQwioqU/+LIEdX/QguGRtOwcVlJQwjh\nBnwEjAJOAVuEEEsrxAg/BlwmpcwWQowGPgWG1r+1lZP+ezqxk2NpPqA5g3cOrvc4FpWxLD2dew4d\n4o7wcBb16oVnbQNhp6aq0sW+ffDTT3DhhTUeYrKYeGXNK3yy7RPmXjuXsd3GVpouKwvGj1fB+H79\ntUYfukajaQC4snpqCHBEShkHIIT4FhgPnBENKeUGq/SbgLb1aWBVFJ8q5si/jpC7PZeuH3Ul9OpQ\nV5tEodnMlGPHWJKWxtc9ehBdW0c3wPffw6OPquAUCxbU6LsAyC/J56ZFN1FkKmLHAzto3bzyMaYS\nE2H0aIiOhhkzqhwRXaPRNDBcKRptgHir9QSgus/Ye4Df6tQiG0j4MIG4/8TR5uE2RH0RhZtPLf0E\nTmBXXh637t9Pbz8/dg0eTLBHLZ3vZrMa4Onnn2HJEtUV2wZS81MZ9/U4eoX14tNxn+LhVrkdhw4p\nwbj/ftVSSo8fpdE0HlwpGjYHwBBCjADuBqocwGjatGlnlqOjo4mOjq6FaVXj5ufGwPUDXd6bG9Tg\ngjMSEnj95Ene7dyZ28LDax+UKScHbr4ZiotVJ4mQEJsOO5JxhKu/upqJvSby8oiXq7Rj82a49lo1\nQvrdd9fOVI1GYx8xMTHExMTUKg+XBWESQgwFpkkpRxvrUwGLlHJ6hXR9gR+B0VLKI1Xk1SSDMFXH\nqeJi7jp4kAKzmQU9etDRx6f2mR47Btdco3rVvf8+2Fhi2XJqC9d+ey0vDX+JBwc/WGW633+H22+H\nzz5Tp9FoNK7FkSBMrqxJ3gp0FUJ0EEJ4AhOApdYJhBDtUIJxW1WCcT7yw+nTDNy6lcsCA1nTv79z\nBOOvv9RItA89BP/7n82CsSx2GWO+HsOssbOqFYwFC5RrZMkSLRgaTWPGZdVTUkqTEGIysBxwA+ZK\nKQ8IIR4w9n8CvAgEAzON6o5SKWXNbT2bKHkmE48fOcKarCx+6t2boYFOatr7+ecqVveCBXDllbYf\ntuNzpq6aytKJS7ko8qIq073zjiq4/Pkn9OpVZTKNRtMI0DHCGwmbcnK4df9+LgsK4v0uXRwLt1oR\ns1l5opcsUU7vagIkWSOl5NW/XmXujrn8fuvvdG9Refdti0Vp0a+/wvLlEBlZe5M1Go3z0DHCmygf\nJSTwyokT/K9bN/7ZsqVzMs3NVYM75efb5fA2WUxM/m0ym05tYv3d66tsUltaqhzdR4+qYUFszF6j\n0TRwtGg0YKSUvBQXx7epqWwaOJAOzvBdAMTFKcfCxRfDRx/Z7L8oKC3g5h9upqC0gDV3rSHAq/Iw\nsPn5cMMN4OYGK1fqUWo1mqaE7lLVQDFLycOxsfySns7fAwY4TzD+/hsuukgFSpo1y2bBSC9IZ9QX\nowjwCuDXW36tUjBKS5VgtGgBixdrwdBomhpaNBogJRYLt+zfz8GCAmL69yesNgGSrJk/H66/Xjm+\nH3vM5l51xzOPM+yzYVzW/jLm/2M+nm6V2yMl3HsvuLurU9S2j6FGo2l46OqpBkaeycT1+/bh5+bG\nsj59HA+/ao3ZDM8+Cz/8AGvW2BUGb0fSDsZ9M46pl0xl8pDJ1aZ99lk4fBhWrVLCodFomh76r92A\nSC8tZczu3fT28+OTbt1wd8aATHl5cOutkJ2tHN6hto+TteLoCm798VZmjp3JP3v+s9q0H3ygqqP+\n/ltXSWk0TRldPdVASCgq4tIdO4gOCmJO9+7OEYzsbBgxAlq2hD/+cEgwfrjphxoF47vv4M03VY/v\nFi1qa7RGo2nI6H4aDYBDBQVctWsXk9u04f/atXNOpgUFcNVVKgbGhx/aNSrg9qTtjF4wmh9u+oFL\n219abdrVq2HCBFixQp1Ko9E0Hhzpp6FFw8Vszcnhmr17ea1jRya1rrzPg92UlKhAFS1bwrx5do07\nfjTjKJd+fikfj/mY63pcV23aXbvgiitUfKYRI2pps0ajqXd0575Gxp+ZmUzcv5/Z3bsz3ln1OiaT\n8mF4e6uRAe0QjNT8VEZ/NZoXh79Yo2DExcHYsaqbhxYMjeb8QYuGi/jx9GkePHyY73v1YnhQkHMy\ntVhUkIqsLPjlF7uaMOWV5DH267Hc3PvmagceBEhPV/Ewnn5ahWrVaDTnD7p6ygXMTkzkpbg4fu3T\nhwHNmzsnUynhiSdUwIoVK8DPz+ZDS82lXPPNNbQNaMvsa2ZXG5OjoABGjlSjp7/xhjMM12g0rkL7\nNBo4UkqmnzzJp0lJLO/bl67ObJv60ksqhndMDNhRcpFScueSO8ksymTxhMW4N6u6dGIywXXXqXGk\n5s3TEfc0msaO9mk0YKSUPHX0KMszM/l7wAAivLycl/m778K336qYGHZWdU1dNZXYjFhW3bGqWsGQ\nEh58UA0TMmeOFgyN5nxFi0Y98WZ8PKuzsljTvz8hzhxfY84c1bPur78gLMyuQ9/f+D5LDi5h3d3r\n8PWovtTz0kuqtdTq1Xp4EI3mfMalnfuEEKOFEAeFELFCiClVpPnA2L9LCDGgvm10Br+mp/NBQgI/\n9e7tXMFYuFC9zVessDtYxcK9C3lr/Vssv205ob7Vd/qbORO++UbFxfD3r43BGo2mseOykoYQwg34\nCBgFnAK2CCGWSikPWKUZA3SRUnYVQlwIzASGusRgBzmQn8+kgwf5qXdv2np7Oy/jX39Vgw6uWAFd\nu9p16J/H/+TRZY+y8o6VtA9qX23aH3+EV15Rw4PYWZDRaDRNEFeWNIYAR6SUcVLKUuBbYHyFNNcC\n8wGklJuAICFEeP2a6TiZpaWM37uX6Z06cZGzQrOCGnTwrruU47tvX7sO3Zm8k4mLJvLdjd/RN7z6\nY//6S/kxfvkFOnWqhb0ajabJ4ErRaAPEW60nGNtqStO2ju1yCmYpuXn/fsaEhDivpzfAli1w442q\namqofYWuuKw4xn09jo/HfEx0h+jq08apuBhffQUDBzpurkajaVq4UjRsbSNbsZ1Ow29bC0w5ehQz\n8Hbnzs7LdO9eFXFvzhy4/HK7Dk0rSOOqBVcxZdgUbux1Y7VpyzqVP/20GiZEo9FoynBl66lTgLX3\nNhJVkqguTVtj2zlMmzbtzHJ0dDTR0dHOsNEhvkxOZklaGpsHDXLOaLWggm2PHq2a1157rV2H5pfk\nM+7rcVwfdT2PXvhojen/+1/VN/CJJxw1VqPRNERiYmKIiYmpVR4u69wnhHAHDgEjgURgM3BzJY7w\nyVLKMUKIocAMKeU5dTINqXPf5pwcxu3Zw+r+/ellR6/saklMhEsuUZ/+D1Y/xEdFSs2l/GPhP2jh\n24J54+dV29sblMP7xhth+3ZwZq2aRqNpeDSqzn1SSpMQYjKwHHAD5kopDwghHjD2fyKl/E0IMUYI\ncQTIBya5yl5bSCou5p/79jG7e3fnCYbJBBMnwp132i0YAI8tewyLtDDnmjk1CkZWFtx2G8yerQVD\no9FUjh5GxEkUmc1E79zJuNBQnu/QwXkZ/+c/sHatalprZ1XX4gOLeWrFU+x4YAfNvaof40pKpU1h\nYSr8hkajafo0qpJGU0JKyYOHD9PO25vn2lff78Eu/v5b9azbvt1uwUjMTeShXx9iycQlNQoGwPz5\nsH+/GlNKo9FoqqJa0RBCDARuBi4DOqBaLp0A1gJfSyl31LWBjYEZCQnsys/n7wEDaqwCspnMTNWE\nafZsiIiw61CLtHDXkrt4aPBDDG1bc7Pc2Fh46ik1RIiPj6MGazSa84Eqq6eEEL8BmcBSlJM6CdX8\ntTWqY941QJCUcmz9mFo1rqye+iMjgzsPHmTjwIG0d1aPbymVNzoiQo0rZSczNs7gu33fsXbS2moH\nIQQV5G/YMNVX8JFHHLRXo9E0Spw6NLoQIlxKmVLDCcOklKn2nLAucJVoxBYUcMmOHSzq1YtLnRVI\nCVTp4qOPYNMmFYHPDvak7OHyLy5n072b6BRcczfuZ56Bfftg6VI9cq1Gc77hVJ+GlDLFGB9qpZSy\n0oCeDUEwXEWOycT4vXt5uWNH5wrGgQMwdaoaw8NOwSgyFXHrj7fy1hVv2SQYf/4JX34JO3dqwdBo\nNLZRrXdVSmkGLEIIJ74VGz8WKbn1wAGGBwXxgJ3+hmopKlJNmF5/HXr0sPvwZ1c9S7fQbtzZ784a\n06anq1a8n38OLVs6YqxGozkfsaX1VD6wRwjxB1BgbJNSysfqzqyGzQvHj5NjMvF+r17OzXjKFDVi\n7b332n3oiqMr+H7/9+x8YGeNzngp1SkmTIArr3TUWI1Gcz5ii2j8aExlTgNBIxn/qS5YmJrK16mp\nbB44EE9nDRECaijZJUscqitKL0hn0k+TmPePeTXGxgD49FM4cUIF+9NoNBp70J377OTR2FjuadWK\n/s1r7vtgM4mJaijZRYvUcCF2IKXkhu9voENgB9656p0a0+/fD8OHqy4g3bs7arBGo2kKOOIIr/JT\nWQjxqxDiRiHEOXFAhRC+QogJRrPc84oPu3Z1rmBYLHDHHfDQQ3YLBsC8nfOITY/l1ZGv1pi2qAhu\nuUW5TLRgaDQaR6iuyW0YMBm4ATBT3k+jFapaayHwsZTydP2YWjUNYRgRh5k+XVVNrV4N7vZ10D+a\ncZShc4ey+s7V9A7rXWP6J56A+Hj4/nvdWkqj0Ti5n0aFjFsBZeNjnJBSJjtgX53RaEVj82YYNw62\nboV27ew61GQxcennlzKx10QeH/p4jemXLYMHHlAuk5AQRw3WaDRNiTobe8oQiWTjJEIIMUFKudAB\nGzVl5OTAzTersaXsFAyA/679LwFeATbFx0hJgXvugW++0YKh0WhqR3XVU/7AA0BnYC8wCxXD+1VU\nbG/7IgHVIY2ypHHbbSrS0Sef2H3ohvgNXLfwOrY/sJ2I5tX3E7FYYOxYGDRIBVfSaDSaMpxd0vgC\nyAE2AFcCdwFFwC1Syp2OGqlBdcPevl1VS9lJbnEuty++nZljZ9YoGKBGI8nMhJdecsRQjUajOZvq\nShq7pZR9jWU3lCO8vZSysB7ts4lGVdI4cgQuughWroR+/ew+/O6f7qaZaMaca+fUmDY5GXr3hg0b\nVJ9BjUajscapTW5RLaaAM8OJnHKmYAghQoQQK4QQh4UQf1Q2VIkQIlIIsVoIsU8IsVcI0bh7oZeU\nKD/GSy85JBg/7P+Bv07+xYzRM2xK/8ILMGmSFgyNRuM8qitpmCkfNgTABygTDSmlDKjViYV4E0iT\nUr4phJgCBEspn6mQphXQSkq50/CxbAP+YR1H3EjXOEoaTz8NBw/CTz/Z3eb1VM4pBn46kKUTl3Jh\n2wtrTL9rlxoi5NAhcOZ4ihqNpulQZ01u6wIhxEFguDGabisgRkoZVcMxS4APpZSrKmxv+KKxdStc\ney3s3g0tWth1qEVauGrBVVza7lJeHP5ijemlhCuugOuvh4cfdtRgjUbT1HF29VRdYx2vIwUIry6x\nEKIDMADYVLdm1QFSqtB406bZLRgAn277lPySfJ699Fmb0v/yixqZ5P777T6VRqPRVEudxggXQqxA\n9SCvyHPWK1JKKYSosqhgVE0tAh6XUuY518p6YNky5ZW++267D80tzmVazDSW3bqsxih8AKWl8H//\nBzNm2N3BXKPRaGqkTl8rUsorqtonhEgRQrSSUiYLIVoDlQZ0EkJ4AD8AC6SUS6rKb9q0aWeWo6Oj\niY6OdtRs52I2qyHPX3/dobf42+vfZlSnUQxoPcCm9DNnQseOcPXVdp9Ko9E0cWJiYoiJialVHq70\nabwJpEsppwshnkHFG6/oCBfAfCPdE9Xk1XB9GvPmwZw5KhKfnc7v5Lxkev2vF9vu30aHoA41ps/I\ngKgoFZGvd81DUWk0mvOcxuYIDwG+A9oBccBNUsosIUQEMFtKOVYIcQmwFthNeQyPqVLK3yvk1TBF\no7BQDSf77bdw8cV2H/7QLw/h4+HDu1e9a1P6J55QI9nOnGn3qTQazXlIoxINZ9JgRWP6dNi0CX78\n0e5DD6UdYthnwzg0+ZBNgZUOH1a6tH8/hIU5YqxGoznf0KLRkEhPV3VFDkY7+ud3/+SCiAt45pJn\nak4MjB8Pw4apriAajUZjC3U2yq3GAV57DW64wSHB2BC/gc2nNrPgugU2pf/zT9izBxbqcYc1Gk0d\no0WjLoiLUw7wffvsPlRKyVMrnuLl6Jfx8fCpMb3ZDP/+t6oJ8/a231SNRqOxB1d27mu6PP88TJ4M\nrSrrolI9Sw8tJbs4mzv63WFT+nnzoHlzVajRaDSaukb7NJzNjh0wZozyTNsZS9xkMdFnZh/evuJt\nxnYbW2P63FxV+/XTT3DBBY4arNFozlca2zAiTZMpU9TwsnYKBsDnOz4n3C+cMV3H2JR++nQYOVIL\nhkajqT+0T8OZ/PGH8mfcd5/dh+aX5DNtzTQWT1iMsKET4MmTqj/GTh0OS6PR1CO6pOEsLBZVynjt\nNfDwsPvwGRtnMCxyGEPaDLEp/dSp8MgjEBlp96k0Go3GYXRJw1l8/TV4ecE//2n3oafzT/PexvfY\neO9Gm9Jv2gRr1jgUXlyj0WhqhXaEO4OiItWR78sv4dJL7T788WWPY5ZmPhrzUY1ppVSd+O6/H+66\nywFbNRqNxkB37nMV//sf9O3rkGAczTjKgj0LOPDIgZoTA999pzTqDtta5Go0Go1T0SWN2pKZqdq9\nxsRAz552Hz5x0UR6tezFC8NfqDFtWYFm3jxoKCO/azSaxosuabiCN95QAz85IBhbTm1h7Ym1zL12\nrk3pZ8yAAQO0YGg0GtehSxq1IT4e+vdXAz9FRNh1qJSSkV+MZEKvCTww+IEa06ekQK9esGEDdO3q\nqMEajUZTju7cV9+8+CI8+KDdggHw+5HfScxN5J6B99iU/oUXlB9DC4ZGo3ElunrKUXbvht9+U8OF\n2InZYmbKyim8PvJ1m+J+79mjhgo5eNARQzUajcZ5uKSkIYQIEUKsEEIcFkL8IYQIqiatmxBihxDi\n50cfUrcAABZmSURBVPq0sUaeeQaeew4CA+0+dMHuBTT3as4/ov5hU/o334Qnn4TgYLtPpdFoNE7F\nVdVTzwArpJTdgFXGelU8DuynPNyr61m9Gg4dUlVTdlJYWsgLq1/gzVFv2jRcSFIS/PKLQyOTaDQa\njdNxlWhcC8w3lucDlX5yCyHaAmOAOYBdzpo6w2JR4fFefRU8Pe0+/MPNHzIoYhDD2g2zKf3MmXDz\nzbqUodFoGgau8mmESylTjOUUILyKdO8BTwEB9WKVLXz/veqWfdNNdh+aUZjBW+vf4q9Jf9mUvqhI\nDRWyZo3dp9JoNJo6oc5EQwixAqgsCtFz1itSSimEOKfqSQgxDkiVUu4QQkTXdL5p06adWY6Ojia6\nrjozfPUVvPUWNLO/kPbaX69xfdT1RLWIsin9N9/AwIGqQ59Go9HUlpiYGGJiYmqVh0v6aQghDgLR\nUspkIURrYLWUMqpCmteA2wET4I0qbfwgpTxnAI167adhsTgkGMl5yfT8uCf7Ht5H6+ata0wvperI\n98YbMHq0I4ZqNBpN9TSmfhpLgTuN5TuBJRUTSCmflVJGSik7AhOBPysTjHrHAcEAmLt9Ljf0vMEm\nwQBYuxaKi+HKKx06nUaj0dQJrhKNN4ArhBCHgcuNdYQQEUKIX6s4puG0nrITs8XMp9s/5cHBtre2\nmjEDHnvMYY3SaDSaOkEPI1IP/HL4F15Z+wqb7t1kU/rjx1UI1xMnwM+vjo3TaDTnLY2peuq8YubW\nmTw4yPZSxkcfwaRJWjA0Gk3DQ5c06pi4rDgGfTqI+Cfi8fXwrTF9bi506ADbt0P79nVvn0ajOX/R\nJY0GyOxts7m97+02CQbA/PkwYoQWDI1G0zDRAxbWISXmEubumEvMXTE2pbdY4IMPYK5t4TU0Go2m\n3tEljTpkycEl9GjZw+bOfMuWQfPmcMkldWyYRqPROIgWjTpk5taZPDT4IZvTv/8+PP442DCOoUaj\n0bgELRp1xMG0gxw4fcDm4c/37VNxMyZMqGPDNBqNphZo0agjZm2dxd0D7sbTzbaRcD/4QI207uVV\nx4ZpNBpNLdBNbuuAgtICIt+LZNv92+gQ1KHG9BkZ0LmziswXXtV4vxqNRuNkdJPbBsLCvQsZ2nao\nTYIBMHs2XHutFgyNRtPw0U1u64BZ22bxwmUv2JS2tFT1AP/ppzo2SqPRaJyALmk4me1J20nOS+bq\nLlfblH7xYujYUcXN0Gg0moaOFg0nM2vrLO4feD9uzdxsSl/WzFaj0WgaA7p6yolkF2Xz/f7vOfDI\nAZvSb9kCCQkwfnwdG6bRaDROQpc0nMiC3Qu4otMVtPKvLMrtubz/Pjz6KLhr6dZoNI0E3eTWSUgp\n6TurL++Pfp/LO15eY/rEROjVC44dg+DgejBQo9FoKtBomtwKIUKEECuEEIeFEH8IIYKqSBckhFgk\nhDgghNgvhBha37bayrr4dZSYSxjRYYRN6WfOhJtv1oKh0WgaF66qnnoGWCGl7AasMtYr433gNyll\nD6AvYJuzwAXM2jqLBwc9iLBh4KiiIvj0UxXOVaPRaBoTLqmeEkIcBIZLKVOEEK2AGCllVIU0gcAO\nKWUnG/JzafVUWkEaXT/sytHHjhLiE1Jj+s8/h+++U6PaajQazf+3d+dhUlVnHse/v7CoqIjLKBJR\nlFHUDBA3Rkcd24wiStS4ReOGOpqJ45bEZNwyBieZUaMZzfK4oaNOXCO4AKIBja2g4NKNwKAEBXED\n+nFDDW4g7/xxTsGlrO6+VV1Vt6r7/TwPD/dWnb73PXWrzrn33HvOyUrdNE8BW5hZS1xuAQr1hd4W\neEfSrZKaJY2RlG4moyq7deatHD7o8FQVhhlce60/Zuucq08Ve25H0hSg0GNElyRXzMwkFbpM6A7s\nCpxtZs9LupbQjHVpof2NHj169XJDQwMNDQ2lBV6kVbaKG5tu5I4j70iV/skn4YsvYPjwCgfmnHN5\nGhsbaWxs7NA2smyeajCzpZK2BJ4o0DzVF5huZtvG9X2AC83s2wW2l1nz1OQFk7ngsQto/n5zqvsZ\nRxwRKowz00+z4ZxzFVFPzVPjgVFxeRTwYH4CM1sKvClph/jSAcDc6oSXXjE3wBcuhKlT4eSTqxCY\nc85VQFZXGpsAfwS2BhYB3zWzZZL6AWPMbGRMNxS4GegJLABONbMPC2wvkyuNtz96m8HXD+b1H77O\nhuts2G76H/8YunWDq66qQnDOOdeOUq40vHNfB1zWeBkty1u4buR17aZdvhy23hqam2GbbaoQnHPO\ntaOUSsMHsCjRylUrGdM8hkknTEqV/pFHYLfdvMJwztU3H3uqRBPnT2SbPtswZIshqdKPHQtHH13h\noJxzrsK80ijRDS/cwJm7p3sE6tNP4dFH4TvfqXBQzjlXYV5plGDB+wtoXtLM0Tunu3SYPBl22QU2\n37zCgTnnXIV5pVGCm5puYtTQUazbfd1U6ceNg6OOqnBQzjlXBf70VJE+X/k5/a/pz9OnPc32m27f\nfvrPoW9fmDsX+vWrQoDOOZdSPXXuq1vjXh7H0L5DU1UYAI8/Djvv7BWGc65z8EqjSLfMvCX1DXAI\nTVP+1JRzrrPw5qkivffJe/Repzc9uvVoN+2KFbDlltDU5P0znHO1xzv3VcGmvTZNnfbJJ2G77bzC\ncM51Ht48VUHeoc8519l481SFfPlluPn9zDMwcGDW0Tjn3Ff501M1ZNq0UGl4heGc60y80qiQsWO9\nQ59zrvPx5qkKWLUK+vcPfTR23LH99M45lwVvnqoRM2ZAnz5eYTjnOp9MKg1Jm0iaImm+pMmS+rSS\n7iJJcyXNkXSXpHWqHWspvEOfc66zyupK40JgipntADwe19ciaQBwBrCrmQ0GugHHVTHGkpj5AIXO\nuc4rq0rjMOD2uHw7UGimiY+AFUAvSd2BXsDb1QmvdE1N0LMnDB6cdSTOOVd+WVUaW5hZS1xuAbbI\nT2Bm7wO/Bt4AFgPLzOyx6oVYmlyHPhV1a8k55+pDxYYRkTQF6FvgrUuSK2Zmkr7y6JOkgcAPgQHA\nh8B9kk4wszsL7W/06NGrlxsaGmhoaCg19JLlmqbuuafqu3bOuXY1NjbS2NjYoW1k8sitpHlAg5kt\nlbQl8ISZ7ZiX5ljgQDM7Pa6fBOxpZmcV2F5NPHI7a1aY0nXhQr/ScM7Vvnp65HY8MCoujwIeLJBm\nHrCnpPUkCTgAeKlK8ZUk16HPKwznXGeVVaVxBXCgpPnAt+I6kvpJehjAzGYB/wu8AMyOf3dTBrGm\n5o/aOuc6O+8RXiYvvQTDh8Mbb8DXvMukc64O1FPzVKeT65vhFYZzrjPzIq5MfIBC51xX4JVGGbzy\nCrS0wN57Zx2Jc85VllcaZTBuHBx5JHTrlnUkzjlXWV5plIE3TTnnugp/eqqDFi2CPfaAJUuge8X6\n1zvnXPn501MZGDcODj/cKwznXNfglUYHeYc+51xX4s1THfDWWzBkCCxdGoZDd865euLNU1X2wANw\n6KFeYTjnug6vNDrAn5pyznU13jxVopYWGDQoNE2tu25Vd+2cc2XhzVNV9MADcMghXmE457oWrzRK\n5E1TzrmuyJunSvDuuzBwYOjQ16tX1XbrnHNlVTfNU5KOkTRX0peSdm0j3QhJ8yS9IumCasbYloce\nggMP9ArDOdf1ZNU8NQc4AniqtQSSugG/B0YAOwPfk7RTdcJrW7U79HV0Ivha1pnzBp6/etfZ81eK\nTCoNM5tnZvPbSTYMeNXMFpnZCuAe4PDKR9e2Zctg2jQYObJ6++zMX9zOnDfw/NW7zp6/UtTyjfCv\nA28m1t+Kr2VqwgTYf3/YcMOsI3HOueqr2DB7kqYAfQu8dbGZTUixiZq8Q+9PTTnnurJMn56S9ARw\nvpk1F3hvT2C0mY2I6xcBq8zsygJpa7KCcc65Wlfs01O1MKB3awG/AGwvaQCwGDgW+F6hhMVm2jnn\nXGmyeuT2CElvAnsCD0t6JL7eT9LDAGa2Ejgb+BPwEnCvmb2cRbzOOeeCTtG5zznnXHXU8tNTa0nb\n0U/SHpJWSjqymvF1VJr8SWqQNFPS/0lqrHKIHdJe/iRtJulRSS/G/J2SQZglkfQ/klokzWkjzW9j\n3mdJ2qWa8XVUe/mTdELM12xJT0saUu0YOyLN8Yvp6rVsSfP9TF+2mFnN/wO6Aa8CA4AewIvATq2k\n+zMwETgq67jLmT+gDzAX2Cqub5Z13GXO32jg8lzegPeA7lnHnjJ/+wK7AHNaef8QYFJc/ntgRtYx\nlzl/ewEbxeURnS1/MU1dli0pj19RZUu9XGmk7eh3DjAWeKeawZVBmvwdD4wzs7cAzOzdKsfYEWny\ntwToHZd7A+9ZuK9V88xsKvBBG0kOA26PaZ8F+kjaohqxlUN7+TOz6Wb2YVx9FtiqKoGVSYrjB/Vb\ntqTJX1FlS71UGu129JP0dUJBdH18qZ5u1qTpyLg9sImkJyS9IOmkqkXXcWnyNwb4hqTFwCzgvCrF\nVg2F8l9XBWsR/hmYlHUQ5VTnZUsaRZUttfDIbRppDtK1wIVmZpJE64/y1qI0+esB7Ar8E9ALmC5p\nhpm9UtHIyiNN/i4GXjSzBkkDgSmShprZxxWOrVryv4+dreBB0v7AacDeWcdSZvVctqRRVNlSL5XG\n20D/xHp/wtla0m7APeGYshlwsKQVZja+OiF2SJr8vQm8a2afAp9KegoYCtRDpZEmf/8A/CeAmS2Q\n9BowiNBfp97l53+r+FqnEW9+jwFGmFl7TT31pp7LljSKKlvqpXlqdUc/ST0JHf3WOmBmtp2ZbWtm\n2xLaHs+so4Pabv6Ah4B9JHWT1ItwQ/WlKsdZqjT5mwccABDb+wcBC6saZeWMB06G1SMdLDOzlmxD\nKh9JWwP3Ayea2atZx1NudV62pFFU2VIXVxpmtlJSrqNfN+AWM3tZ0r/E92/MNMAOSpM/M5sn6VFg\nNrAKGGNmdVFppDx+/wXcKmkW4WTm38zs/cyCLoKku4H9gM1ip9WfEy75c8dukqRDJL0KLAdOzS7a\n4rWXP+BSYGPg+ng2vsLMhmUUbtFS5K+upfh+FlW2eOc+55xzqdVL85Rzzrka4JWGc8651LzScM45\nl5pXGs4551LzSsM551xqXmk455xLzSuNSNKFko4v8PqOkqZL+kzS+e1s4zFJG1YuyvKRtIWkSYn1\nBkkfxuGRX5J0aZn200/SfXH5FEm/ayXdX4vcbrHpGySlmZu+JLl48vK7m6TfVGBfBfNSh8fw4rz1\np0uPsqj9tnusJH1b0uhqxFMOkv5b0r7V2FeXrjQUxdXhhM5nyfe7EYboPge4up1tfQv4S1tjJUnq\nGXtcZi72SP5A0q6Jl58ys12A3YETVYZ5H8xssZkdk1ttK2mxmy4xpNQkFfP7MFg7v2bWZGbVHnix\nno7hRXn7KXnMqgocq/NZM0Bh5iRt3E6S64GfViOWLldpxKEs/iLpdmAOsJWk3kBPM3tP0m2SbpA0\nA7jSzN4xsxeAFe1s+nhCd/xC+9xJ0q8JQ2VsX8bsdNR4Csy7bmafAE3AQEnflDRDYZKd+yX1AZB0\nrqS58fW742v7xbPcmZKaJa0fP+/c5C8C+iuMpjm/tTNhST+V9Fzc9ujWgpf0S4VJm6ZL2jy+dpuk\noxJpkme/vSVNVJgM6vrECUNym4skXSGpCThG0ukxlhcljZW0Xky3bdzvbEm/TPz96vy2cUUwQNJT\nkpriv70S6Rsl3SfpZUl3JP5mRHytCTiitc8kp9aPoaQrgPXifv4QX8tdATTEzyeTYyWpP6E8qKWh\nXh6Q9JCkQyV9ZSSPOLjggNyxrahqTwiS9T/CREBfAsMSrx0JjI7LtxEKU+X93c+B89vY7svAJon1\n9QnDRUyN/04F1s86/3kxbws8G5cbgAlxeVPgNWBnwtAC+8bXLwOuictvAz3icu/4/3hgr7jcizBk\nyADi5C/AKcBiwpAT6xIq7V3jex/H/4cDN8blrwETcvvPi30VMDIuXwlcEpdvJTFJTmK7DcCnMZ6v\nAZMpMJlOzPdPEuvJY/oL4OxEXk+My/+a2E8yv6s/07x9rAesE5e3B55PpF8G9CMUzs8QBnJcF3gD\nGBjT3QuML7DdejuGHxdaz/pYAccBv8v691kgv/sR5mWZTxjcc2De+7cDB1c6ji53pRG9bmbPJdYP\nAh6JywbcZ/EoFKGfrT1W0hLCMNGnm9m+ZnarmS0vPeSKWEL44eTsK6mZ0Ex3OWEk2o0sTOIC4Uv5\nj3F5NnCXpBMIlTDA08A1ks4BNjazL/mqyWb2gZl9RhjkLr8ddjgwXNJMwpnyIOBvC2znCzN7OC43\n5eWjNc9ZmAhqFXA3sE8r6e5NLA+WNFXSbOAEQiEMoTC/Oy7fQXF6AjfHbf4R2CkvxsXx+/cioWLf\nEXjNzBYk9tfa8Nz1dAzbkuWx2obw26gpZvakmY0ijLoLME9S8qpzMel+Bx1SFwMWVkB+4T0M+EFi\n/ZMy7OMowoQ090u6B7jdzN4AkDQMyA2EdilhVMmRhAprd6A5Lo8HZhKucgw4AziLMHXj2zHmifG9\nGwhnhWfE9ZGEq6bNgeeBm5P7NLMJhIInWTlONbNDcyuSNsrLU7KgGkkofA4FLpH0d2Z2paSJ8b2n\nJR0EfN7GZyTCFUO+y83spjb+DtZuLlzFmu/ySmKzq0I7d89EumRe8/OelPx+3AYcZmZzJI0inO11\n1I+AJWZ2ksJ9s88S7yU/ry8J+cqPs635HOrpGLYly2NlcZ+5+5pNVPj3SOtlwENmNjrGsh6hafJU\nYCPgXOCxRNxtfU5l01UrjdUkfQOYl+LKor2JVxZL2tTM3gMwsymEiYQ2AU4EHpL0LuHK4znCFy1n\nAvCzxPo387b9YGL5tLz38tNel1g+KO+9/JuiWwKvF8oMgJl9KOkDSfuY2TTgJKAxti9vbWaNCk+8\nHAdsIOlvzGwuMFfSHoQzzNl5mz1Q4abeZ4TZ0PJHfP0T8AtJd5rZcoVZ074ws7TTbC4inIndR5hm\ntUfivWGSBhCaer7Lmh9tWzYAlkrqQTiOuRn4cvm+k3BWW4zerJlP5GRC4dIaI9wLGyBpOzNbSIH7\nUK3+cW0fwxWSulvhaX2zPFavE69s4pVWNX6PbZYBkn4FHE2olH5iZrMKxL0l0Fjg9bLqqs1TyQri\nYNY0TX3lfUl9FYYT/hHwM0lvSNqgwDanEc4Q1t6Q2ftm9lsLT7RczJpmgFowDHgqLhuFz1JGAVcp\nDFk+BPgPwsnGH2IzQDPwGzP7CDhP0pyY9gvWbvLL/f8cMI4wpetYM2tOpomV7V2E2cNyzTeFPm/L\nW86tjwH2k/QisCfw10Sa54HfE+YKWMjaP/5C2wX4d8K819MI961yzgPOijH2KxBPa9uDUJCMijEO\nSsRYML2ZfQ58H3g43vRtaWW79XYMbwJm526E58We5bF6hjCTXS15AtjRzM5tpcKAUAlNr3QgXX5o\ndEmTgZOsg09KSGoAjjWzM8sSWBVIuhO42sxmZh2Lcznxt3R+spktgxj+DJxgZjV3b6MQSTsQfsuH\nVXpfXfVKYzUzG97RCiNup5EwO129dO7bHOjjFYarQa1dMVXT1ax9n7PW/QD4VTV21OWvNJxzzqXX\n5a80nHPOpeeVhnPOudS80nDOOZeaVxrOOedS80rDOedcal5pOOecS+3/Af35fFpQDipCAAAAAElF\nTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x57bc0f0>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter8.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter8.ipynb
new file mode 100755
index 00000000..5737c816
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter8.ipynb
@@ -0,0 +1,230 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:8d4d23ed959cd127262f7da378dbb5e1449685bbcb590b269cf3cdba7fec7af6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter8-Centrifugal compressor Aerodynamics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg505"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 8.1\"\n",
+ "import numpy\n",
+ "%matplotlib inline\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "z0=numpy.linspace(0.2,0.6,80)\n",
+ "g1=numpy.zeros(80)\n",
+ "gc1=0.\n",
+ "gm=1.4\n",
+ "i=0;\n",
+ "M1=z0\n",
+ "for i in range (0,80):\n",
+ "\ty=1./((1+((gm-1)/2.)*M1[i]**2)**(1./2))\n",
+ "\tg1[gc1]=y\n",
+ "\tgc1=gc1+1\n",
+ "\n",
+ "\n",
+ "pyplot.plot(z0,g1)\n",
+ "pyplot.xlabel(\"Inlet Mach no M1\")\n",
+ "pyplot.ylabel(\"Ratio of index to the impeller tip tangential Mach no.\")\n",
+ "pyplot.title(\"Ratio of Mach index to impeller tip Mach no.\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.1\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 2,
+ "text": [
+ "<matplotlib.text.Text at 0x59b0430>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEeCAYAAACpGzMjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYlOXVx/HvTxARVEBBVBAQIwiKWBGsaw0mlqhRRCNW\nQkwsMcagxrKWKGhMNBqNsWFsYC+JXVn1FUEpIiCgKAhYECtipZz3j/seGdbd2WeZvns+1zXXzjz1\nzLOzc/a5q8wM55xzLldWK3YAzjnnGhZPLM4553LKE4tzzrmc8sTinHMupzyxOOecyylPLM4553LK\nE4tzzrmcWqXEIul/uQ7EOedcw6BV6SApaSMzez8P8TjnnCtziRKLpA2AHQADXjGzj/IdmHPOufJU\nZ1GYpMOBccBhwOHAK5IOy3dgzjnnylOSOpZzgR3MbJCZDSLcuZyX37BcXSRdL+ncPBy3u6TXJC2S\ndHKuj5/g/JWSbq/H9l9K6rKK56qSdMKq7Jsvko6S9GQRzlshaV7a6zmS9srj+c6WdGO+jp8NScdK\nerHYcZSzJIlFwMK015/EZa4e4h/q1/GL8ENJt0taJ+G+P/qgm9lJZnZJHkL9E/Csma1jZtfWEEuV\npOWStqq2/MG4fLcsz1+vSj8zW9vM5mRxrpyOwlr9C7q+zOxOM/tpLmNaRTm7NjVdEzO7zMwGr+Lx\nRsTP2oHVlv89Lj8mm3hd9pIklieAJ+OX23HAY8Dj+Q2rQTJgfzNbG+gN9CLcDZaazsAbGdYbMBMY\nlFogaT2gH5CLujf/p6WMSWpagNMY8CYrfwabEorqZ5HjfxZc/SVJLH8CbmDFl+ENZvanvEbVwJnZ\nAuApYIvUMklnSZoVi6CmSfpFXN4DuB7oF+92Po3LR0i6OG3/wZLekvSJpIclbVjb+SUdGM/xmaTR\nkjaPy58DKoBrYxw/qeUQdwEDJKWSwEDgAWBJ2jn6SHo5nuN9SddIWj1t/RaSno7xfijp7NTlAZpJ\nui3GMFXSdhney3JJXdOuyT8l/TfuOza1Lq7fR9IMSZ9LuoaQxJS2/nhJb0j6VNITkjrF5UPjsZrE\n1yfFuJpVi6Ul4Z+ujeLvapGkDSStIekqSe/Fx9+r75t2jJXuTuP7Oyn+bhdJukjSpvHafi5pZOq6\nxjuD+bGYaaGk2ZKOTDvWGpL+KundeM2vl9S8tmubtp/SPp8fSxolqU1c1yXGeLykd4FnElyTDZVW\n5Jl2jMHx+rwv6Yw6wnoU2EVS6/i6PzAZWED8ncbr9FyMeaGkOyS1SottY0kPSPoobnNNtdiviJ+F\ndyT1z3B95kg6Q9LktN/JGmnrE/9tNhhm5o8CPIDZwF7xeUfgdeD8tPW/BDaIzw8HFgPt4+tjgBer\nHe9W4KL4fE9CceXWQDPgH8DztcTRLR57L6AJcCbwFtA0rh8NHJ/hfYwGTgCeBPrHZeOAvsA8YLe4\nbFugD+Gfl9Rd0Glx3drAB8DpMd61gD5xXSXwDeGLQsClwMsZ4lkOdI3PRwAfA9vH93YHcHdc1xZY\nBBwS1/2ekAiPj+sPitehe4z5z8BLcZ2A54ELgM2AT4HetcSzOzCv2rKLgDExhrbAS6nfXQ37H5v+\nu47v78F4jXoC3wHPAV2AdYBpwKC4bUV8T38FVgd2i7/rbnH934GHgNbxeI8Al6btOy/tvLOBPePz\n02L8G8Xj/gu4K67rEmMcAawJrJHwmlwA3F7tGHfGY2xJuPvdq5ZrdCtwMeEf3t/EZfcARwAvpl2P\nTQmf89XjdX8e+Htc14SQiK5MxQ3slPY7+J7wORfwG+C9Ov62xwIbAG0In/Uh9f3bbEiPJF+IhxL+\n4BYBX8bHomIHXm4PYE7q2qV9WayWYftJwIHx+bFkTiw3A8PS1rWMfxidajjuecDItNcC5rMiIYwG\nTsgQVyqxHEW4c9kcmBnX/ZBYatjv98AD8flAYEIt21UCT6W97gl8nSGe9MRyK/DvtHX7AdPj80HA\nmGr7zmNFYnmctIRKSC5fARvH150J9YtvAEMzxFPBj79EZxGTcHy9LzC7lv1X+l3H99cv7fV44My0\n139lxZdlBSGxrJm2fhShyFWEJNM1bV0/4J2a4mblxPJG6nl8vWH8fK3GiqTQpZ7XpJIfJ5ZuaeuH\nAzfVcrxUYtmZkPBaAR8CzUlLLDXs9wtgYtp7/4ga/gbj7+CttNctYnzr13Lc2cCR1WK/vr5/mw3p\nkaQo7HLCF9w6FipK1zazRJXObiUGHBSvXQXhP5ntUyslDZI0KRYdfUb4r229hMfeEHj3hxOZfUX4\nEuxQy7Zz07Y1whds+rZ1lVEboehrT+B3wH+qbyCpWyyS+kDSF8BfWPF+NgbeyXD8BWnPvwaaS0o6\nSkT6vt8Q/jOH8N/2/GrbplcodwauTrv+n8TlHQDM7F2gKm73z4SxpGxE2u+HcP03qsf+1d9T+utv\nWfEeAT4zs2/SXr9L+J23JXxBTkh7j4/H5XXpAjyYtt8bwFKgfdo2q9xgoZZj1HWNzMxeAtoREuej\nZvZt+gaS2sdiqfnxM3g7K38G3zWz5bUc/8O0E30dn65Vy7YrbU/4HbWMz+vzt9lgJPlj/dDMpuc9\nkkbEzF4AriH8Z4OkzsC/CV/S65pZG2AqK8r/6/qif5/wx088XkvCH9B7tWzbOW1bEf7Iato203v4\nhvDF9BvCH2x11xO+gH5iZq0IRUupz9tcoGsN+0D+Kl7fJ7xPYKX3nTIX+LWZtUl7tDSzsXH7nxOK\n+54l3CXUpqb4V/r9AJ3islyofr42klqkve4cz/Ux4QuvZ9r7a53wn8S5hDuu9GvTwsw+yBBHphhr\nW9ap2vMkn8k7gD9Qwz83hGLUZcCW8TN4NCs+g/OATql6szyqz99mg5EksYyPlXUDJR0aH4fkPbKG\n7yqgj6QdCf/dGOGPfzWF1ndbpm27AOiotMpvVq54vhs4TlLvWGl4KTDWzObyY/cAP5e0ZzzeGYT/\nesdUO3YS5wC713KetQhFf18rNA44KW3d/4ANJZ0WK5TXltSnnueuSaZ9HwO2kHSwQguiUwll4in/\nAs6R1BNAUivFjsCS2gI3EooAjwUOkLRfLedZAKynlZuS3w2cK6ltPNb51JyMk1Itz1MulLS6pF2B\nnwP3xjvTG4GrJLWL76uDpH0TnO9fwKVa0Zihnao19a1DTdekprjPlbSmpC0I13lULcdL/+z/A9jb\nzGrqd7IWoThzkaQOhPrElFcI9XzDJLWQ1FzSTonfUd1W5W+zwUiSWFoRiiP2BfaPjwPyGVRjYGYf\nA7cRyuvfIFQivky4pd4S+L+0zZ8lVNJ+KCnVpNfiAzN7llB3cj/hP6RNCBWZNZ33TeBXhDumhYQv\nngPMbGn6ZgnfwwdmNqaW1X8EjiTUKf0bGJkW75fAPoTP0QeEpqMV1d9Xwnis2vMa943X+zBgGCGB\n/4S0a2xmDxHuIEfGYpMpQKo/yQ3AQ2b2hJl9SkgwN6VaRq10MrMZhC+Td2KLog2ASwh1I6/Hx/i4\nrLb3U/091ec9fwh8Rvgc3E6oRH4zrhtKqO8ZG9/j04TGHJnOBXA1oaL/KUmLCJ/TPmnrM35eargm\nG9YQN4TK9VmElmVXmNkz1Cz9s/+ZmY2uZbsLCY1IviC0Irs/bb9lhM/fTwh3ZPMIjWZWOn7S95gh\nvlr/NiV1ii3lOtbj2GVhlQahTHxw6RbCF9dHZtarlm3+Qahk/Ro41swmxeX9Cf/VNyFU4qWKjdYl\n/CfTmVAhfriZfZ63N+FcmZBUQagQ37iubUuJwsgJ7xBaJtZW5+HKSL7nY7mV0Gy0RpJ+RiiD3wz4\nNaFcnljueW3ctycwUKE/B8BZwNNm1o3wn/xZ+QvfOedcfeU1scRyz88ybHIgoTgIMxsHtI5FB32A\nWWY2x8yWEIpRDqq+T/z5i3zE7lyZyl8RRH6Va9yuBsWeQbIDKzcxnB+XbVTLcgidBlPNLRewcpNH\n5xotM6sys051b1la4j+QTbwYrOGoc1wfhSEfDiU0mUttb2Z2UY5iSNIKSNTwH42ZmST/T8c550pI\nkgHjHgY+ByYQmqXm0nus3JegI+HuZPUalqfafS+QtIGZfRhbl9Q48KEnHOecqz8zy3og2CRFYR3M\nbICZXW5mV6Ye2Z44eoQ4QqmkvsDnsZhrPLCZwuB0zYABcdvUPsfE58cQxj6qUbGHNajrccEFFxQ9\nBo/T4/Q4Pc7UI1eS3LGMkbSVmb1e34NLupswAF1bhfkYLiDcjWBmN5jZY5J+JmkWoSPTcXHdUoVJ\npp4kNDe+2Vb0/h8G3KMwQdMcVrQ9d845VwJqTSySpsSnTQg9R2cTRlaFUL2xVc17rmBmAxNsU+Ms\nhWb2ODXM+2Khg9redR3XOedccWS6Y/He9XlWUVFR7BAS8Thzy+PMLY+z9NTZ8z7WfbxhZovi63WA\nHhb6nZQsSZbLMkPnnGvoJGEFqrz/F2Eeh5Sv4jLnnHPuRxJ1kLS0jksWBm/L91DTzjnnylSSxDJb\n0qlxGO5mkk4j8yRNzjnnGrEkieU3hClA3yN0XuxLGDDSOeec+5G8DptfTF5575xz9ZOryvskY4Wt\nSZjYqCfQPLXczI7P9uTOOecaniRFYbcTRhDuT5jhbWNWbiXmnHPO/SBJP5bXzGxrSa+b2VZxnvT/\nM7MdCxPiqvGiMOecq59C9mP5Pv78QlIvoDXQLtsTO+eca5iSDEJ5Y5xn/lzCyMJrAeflNSrnnHNl\ny1uFOeecAwrQKkzSGYRZG9NPknptZva3bE/unHOu4clUFHYFMJkwdP13actrnCbYOeecg8yJZVtg\nIPAzYCJwN/Bs+rhhzjnnXHVJmhsL6EdIMnsDQ83skYw7lQCvY3HOufopZHPjdsA2wFaEscIWZntS\n55xzDVemyvsTCPPJrwHcBxxuZgsKFZhzzrnyVGtRmKTlwFTg3RpWm5kdmM/AsuVFYc45Vz+FGIRy\nT1Zu/VW92XHJ+/ZbaN687u2cc87lToPuILnOOsbee8OBB8LPfw5t2xY7KuecK12FrLwvW7NmhaTy\n8MOw6aaw++7w97/D7NnFjsw55xquvCYWSf0lzZD0lqShNaxvI+lBSZMljZO0Rdq60yRNkTQ1Toec\nWl4pab6kSfHRv7bzt2sHxxwDDzwAH34IZ54J06bBjjvC1lvDRRfB1KnQQG/anHOuKPJWFCapCTCT\n0PflPeBVYKCZTU/b5gpgkZldLKk78E8z21vSloQOmTsAS4AngN+Y2duSLgC+rGtImUyV98uWwZgx\nIeE88AA0awaHHAK//CVsvz0o6xtB55wrP4UYK+zRDPslaRXWB5hlZnPi8UYCBwHT07bpAQyLB5wp\nqYuk9ePycWb2bdz3eeAQwjAzsHJDgnpr0gR23TU8/vY3mDgR7r8fjjoKvv8eDj00JJkdd4TVGnRh\noXPO5V6mVmFXZnnsDsC8tNfzgeqTg00mJIz/k9QH6Bz3mwJcEofr/xb4OfBK2n6nSBoEjAfOMLPP\nVzVICbbbLjz+8pdQNHbffXDCCfDll3DYYeHhScY555KpNbGYWVWWx05SxjYMuFrSJEIymQQsM7MZ\nkoYDTwFfxeWpMcquBy6Kzy8mJMATajp4ZWXlD88rKiqoqKjIGIwEvXqFx4UXhvqYe+8NSWbx4pBg\njjjCi8uccw1DVVUVVVVVOT9ukrHCugGXAlsAqV4hZmZd69ivL1BpZv3j67OB5WY2PMM+s4FeZra4\n2vJLgblm9q9qy7sAj5pZrxqOldMOktOmwahRMHJkqKMZMCAkmV69PMk45xqGQjY3vhX4F6ESvQK4\nDbgzwX7jgc1ivUkzYABhBsofSGoV1yFpMPB8KqnEuhYkdQIOBu6KrzdMO8TBhDudvNtii9CKbObM\nUFS2dCkccEBILH/5C7zzTiGicM650pfkjmWimW0raUrqziC1rM6DS/sBVwFNgJvN7DJJQwDM7AZJ\n/YARhGKzqcAJZvZF3PcFYD1CQjvdzEbH5f8Bto77zAaG1DSGWSGGdFm+PLQuu/vuUGTWtWtoADBg\nAKy/fl5P7ZxzOZerO5YkiWUMsCthIMpngfeBy8yse7Ynz6dCjxW2ZAk88wzceSf897/Qrx/86lfw\ni19Ay5YFC8M551ZZIRNLH0IT4daEyvJ1gMvNbGy2J8+nYg5C+dVXobf/HXfAyy+H3v9HHw177BGa\nOjvnXCkqWGIpV6UyuvGCBaGo7D//gY8+CkVlxxwDPXsWOzLnnFtZ3hOLpKvN7LRaOkr6sPmrYOrU\nkGDuuAM6dAgJZuBAWG+9YkfmnHOFSSzbmdkESRU1rDYzez7bk+dTKSaWlKVLQ33MbbfB44/DPvvA\nccfBvvtC00xdVp1zLo8KWcfyezO7qq5lpaaUE0u6zz8PfWNGjIB580JdzPHHQ7duxY7MOdfYFLIf\nyzE1LDs22xO7oHVr+M1vYOxYePrp0Ply111ht91Csvnqq2JH6Jxz9ZOpKGwgcCShqfGLaavWJgy7\nslf+w1t15XLHUpMlS0KT5ZtvhpdegsMPh8GDw3hm3svfOZcvhahj6QxsQhjPaygrRhT+EphsZkuz\nPXk+lXNiSffee3DrrSHJtG4dEsxRR0GrVsWOzDnX0Hhz4zo0lMSSsnw5PPss3HgjPPVUmD9myBDo\n08fvYpxzuVHIyvtDCXct7Vlx12Jmtk62J8+nhpZY0i1YEOpfbrwx9OofMiT08l+npH8jzrlSV8jE\n8jawf/rMj+WgISeWlOXL4bnn4IYbQvPlww8PDQG22abYkTnnylEhW4V9WG5JpbFYbTXYe+8wAOYb\nb0CnTmFssr59Q0fMb78tdoTOucYoyR3L1cAGwEPA93GxmdkDeY4tK43hjqUmy5bBY4/BddfBhAlw\n7LHhLqZrxtlznHOusEVhI+LTlTY0s+OyPXk+NdbEkm7WrFBMNmJEuIs5+eTQy9+nWHbO1cRbhdXB\nE8sKX38devdfc02YYvl3vwtDyHiTZedcuoLVsUjqLulZSdPi660knZvtiV3htGgRhomZODGMTzZu\nHGyySUgw0732zDmXY0kKRW4EzmFF/coUYGDeInJ5I8FOO4Vh/KdODaMq77FHGPzyf/8Lrcyccy5b\nSRJLCzMbl3oRy5eW5C8kVwgbbQQXXQTvvhv6wJx/Pmy+Ofzzn6G4zDnnVlWSxLJQ0k9SLyT9Evgg\nfyG5QlpjDRg0CMaPh1tugdGjoXNn+OMfYe7cYkfnnCtHSRLLycANwOaS3gdOB07Ka1Su4CTYZRe4\n777QTNksdLQcMCDUyTjnXFKJW4VJagmsZmZf5jek3PBWYdlbtCjcxVx9NWy4IZxxRuiA2aRJsSNz\nzuVDIfuxnEG1PizAF8AEM3st2wDyxRNL7ixdCg89BFdeCR99BKefHport2xZ7Micc7lUyMRyF7A9\n8ChhEMqfE1qGdQbuM7Ph2QaRD55Y8mPMmJBgXnghDH55yinQvn2xo3LO5UIhxwrbGNjWzM4wsz8A\n2wHrA7tTx0ySkvpLmiHpLUlDa1jfRtKDkiZLGidpi7R1p0maImmqpNPSlq8r6WlJb0p6SlLrhO/V\n5cBOO8H998PLL8Onn0KPHvDrX8PMmcWOzDlXKpIklnas6MMCoalxezP7Gqh1mENJTYBrgf5AT2Cg\npB7VNjsHmGhmvYFBwNVx3y2BE4EdgN7A/pI2jfucBTxtZt2AZ+NrV2A/+UkYj2zmzNB0eddd4eCD\nwxTLzrnGLUliuRMYJ+kCSZXAGOCuWJn/Rob9+gCzzGyOmS0BRgIHVdumBzAawMxmAl0krR+XjzOz\nb81sGfA8cEjc50Dgtvj8NuAXCd6Dy5N27aCyEubMgb32goEDYffdw0CYXhLpXONUZ2Ixs4uBXxMq\n7D8DhpjZhWb2lZkdlWHXDsC8tNfz47J0k4kJQ1IfQr1NB0Idzq6x2KsFoV6nY9ynvZktiM8XECYg\nc0XWokUY5PKtt0Ldy9lnQ+/ecNddofLfOdd4NE243UTg/bi9SepkZnV1n0vy/+ow4GpJkwjJZBKw\nzMxmSBoOPAV8lVr+oxOYmaRaz1NZWfnD84qKCioqKhKE5LLRtCkceWS4c3niCbjsMjjvPDjzzDCE\nf/PmxY7QOZdSVVVFVVVVzo+bpFXYKcAFwEekfbmbWa869usLVJpZ//j6bGB5plZkkmYDvcxscbXl\nlwJzzexfkmYAFWb2oaQNgdFmtnkNx/JWYSXipZdg2LDQ8fL008P8MGuvXeyonHPVFbJV2O+B7mbW\n08x6pR4J9hsPbCapi6RmwADgkfQNJLWK65A0GHg+lVRiXQuSOgEHA3fF3R4BjonPjyFMQOZK2M47\nw6OPhjuYiRPDpGOVlaFVmXOu4UmSWOYCi+p7YDNbShgO5klCJf8oM5suaYikIXGznsCUeBfyU+C0\ntEPcF4fqfwT4rZmlYhgG7CPpTWDP+NqVga22CiMrjxkD8+fDZpvB0KGwYEHd+zrnykeSorBbgG7A\n/1h5auK/5Tm2rHhRWOmbOxeuuALuvDMMhHnmmdChevMO51zBFLIobC7wDNAMWAtYOz6cy0qnTmFW\ny2nTQqV/r15w0klhKH/nXPnyqYldyVi4EP7+d7jhBjjkkNBkuWvXYkflXONRyKmJ15f0V0mPSRod\nH89le2LnqmvXDi69FN58EzbYAHbYIUyp/PbbxY7MOVcfSXvezwC6ApXAHEKLL+fyYr314OKLYdas\nUFy2446eYJwrJ0kSy3pmdhPwvZk9b2bHEVpjOZdXbdqEZslvvbUiwRx3HLzzTrEjc85lkiSxpFqC\nfShpf0nbAm3yGJNzK0lPMBtvHIrIBg8O45M550pPksRySRya/gzgj8BNhOmJnSuoNm3gootCgmnf\nHrbbLvTinzev7n2dc4WTJLF8bmafm9kUM6sws20B7zPtimbddeGSS8KQ/a1bw9Zbw6mnwgcfFDsy\n5xwkSyzXJFzmXEG1bRvGIHvjDWjSBLbYInSy/PjjYkfmXONWa2KR1C/Od99O0h8knREflZn2c67Q\n2rcP/V9efx0WL4bu3eGCC+CLL4odmXONU6YE0YzQw75J/LlWfCwCfpn/0Jyrn44d4frr4dVXQ8X+\nZpvB8OHw9dfFjsy5xiXJWGFdzGxOYcLJHe9576ZPh/PPD8P2n3sunHgiNGtW7KicK10F63lfjknF\nOYAePeDee8OQ/Q8/DJtvDrffDst+NGWccy6XfKww12hUVYXxxxYvDkPH7L8/KOv/zZxrOHJ1x+KJ\nxTUqZuEO5uyzQ7+Y4cPDRGTOucIOQrmppEclfSxpoaSHJfmYs64sSXDggaEF2YknwpFHhtfTphU7\nMucajiTNhu8C7gE2BDYC7gXuzmdQzuVbkyZw7LGhk2VFBeyxB5xwQpjZ0jmXnSSJZU0zu93MlsTH\nHUDzfAfmXCE0bw5/+EMYqn/99cP0yUOHwuefFzsy58pXksTyuKSzJXWJj6Fx2bqS1s13gM4VQuvW\ncNllMGUKfPIJdOsGV10F331X7MicKz9J+rHMAWrbyMysJOtbvPLeZWPaNDjrrPDz0kvh8MNhNR9v\nwjVw3iqsDp5YXC6MHg1/+lOo9P/rX2G33YodkXP5k/fEImkvM3tW0qHUcMdiZg9ke/J88sTicmX5\nchg1KjRR3mab0ES5W7diR+Vc7hWiuXHqf7MDank41yisthoMHAgzZsBOO4V+L6ec4qMoO1ebJHUs\nXc3snbqW1bJvf+AqwkCWN5nZ8Grr2wC3AF2Bb4HjzWxaXHc28CtgOTAFOM7MvoujK58ILIyHOdvM\nnqjh3H7H4vLi44/DhGN33x1akJ1yCqyxRrGjci57BesgCdxXw7J769pJUhPgWqA/0BMYKKlHtc3O\nASaaWW9gEHB13LcLMBjY1sx6ERLTEXEfA/5mZtvEx4+SinP51LYt/OMf8OKL8MIL0LMn3Hdf6NXv\nnMs8H0uPWL/SWtIhkg6NP48lWT+WPsAsM5tjZkuAkcBB1bbpAYwGMLOZQBdJ7QhD8y8BWkhqCrQA\n3ksPL9nbcy5/Nt8cHnkEbrwxzGi5224wYUKxo3Ku+DLdsXQj1KW0ij/3jz+3JdxN1KUDkD4b+fy4\nLN1k4BAASX2AzkBHM/sUuBKYC7xPmB75mbT9TpE0WdLNkloniMW5vNlzz5BQjjkGDjgg9Oh///1i\nR+Vc8TStbYWZPQw8LGknMxuzCsdOUjAwDLha0iRCPcokYJmkTYHfA12AL4B7JR1lZncC1wMXxf0v\nJiSgE2o6eGVl5Q/PKyoqqKioWIW34VzdmjQJY48NGBA6WvbqBb//Pfzxj7DmmsWOzrmaVVVVUVVV\nlfPj5q0fi6S+QKWZ9Y+vzwaWV6/Ar7bPbKAX8HNgHzM7MS4/GuhrZr+rtn0X4NFYD1P9WF5574pm\n9uzQ/+XVV+Hyy+Gww3yIflf6Cll5v6rGA5vFYWCaAQOAR9I3kNQqrkPSYOB5M1sMzAT6SlpTkoC9\ngTfidhumHeJgwp2OcyVlk03CJGO33RZ67u+2G0ycWOyonCuMjIlF0mqSDl+VA5vZUuBk4ElCUhhl\nZtMlDZE0JG7WE5giaQbwU+C0uO9rwH8Iyen1uO2/48/hkl6XNBnYHTh9VeJzrhB23z3UvwwaBD/7\nGQweDB99VOyonMuvJP1YJpjZdgWKJ2e8KMyVms8/hwsvhDvugHPOgZNPhtVXL3ZUzq1QsLHCJA0D\nPgZGAV+llseWWyXLE4srVdOnh4r9uXNDf5h99il2RM4FhUwsc6h5rLBNsj15PnlicaUsNUXy6adD\n795w5ZWhXsa5YipY5b2ZdTGzTao/sj2xc41ZaorkadNgu+1ghx3gggvg66+LHZlz2Usy531LSedJ\nujG+3kzS/vkPzbmGr3lz+POfYdKkMMhlz57w4IM+PIwrb0mKwu4BJgCDzGwLSS2BMXF8r5LlRWGu\nHD33XBjUsmPHUP/SvXuxI3KNSSH7sWwaOzV+D2BmX9WxvXNuFe25J7z2GvTvH4bnP+ssWLy42FE5\nVz9JEst3kn4YlCIOt+IzgTuXJ6uvHir1p0yB+fN99GRXfpIUhe0L/JnQmfFpYGfgWDMbnf/wVp0X\nhbmG4vkFey+3AAAd30lEQVTn4Xe/g402gmuv9dkrXf4UdM57SW2BvvHlWDMr+bnzPLG4hmTJErjm\nmjA8zEknhQ6WPrily7VCzHm/HSv3X0mdzADMrKRHPvLE4hqi996DM86AV14Jlfv7e/tMl0OFSCxV\nZBj63sz2yPbk+eSJxTVkzzwTisd69AgJplOnYkfkGoKCFoWVI08srqH77ju44gq46qowRP/pp/vY\nYy47hbhjOZTMdywPZHvyfPLE4hqLWbPCgJbvvQfXXw+77FLsiFy5KkRiGUHmxHJctifPJ08srjEx\nC02STz899IEZPhzWW6/YUbly40VhdfDE4hqjRYvg3HPhnnvCzJVHH+0zV7rkCjm68QbAX4AOZtZf\nUk+gn5ndnO3J88kTi2vMxo+HIUOgVatQPOZDw7gkCjmkywjgKWCj+PotfNZG50ra9tvDuHFw0EFh\naJiLLgqV/c4VQpLE0tbMRgHLAMxsCbA0r1E557LWtCmcdloYOXnCBNh6a3jhhWJH5RqDJIllsaQf\nqgEl9QW+yF9Izrlc2nhjeOih0Gv/yCPhxBPhs8+KHZVryJIkljOAR4GuksYAtwOn5jUq51xOSXDw\nwWFisTXWgC22gFGjfGBLlx9JxwprCnQnDOsyMxaHlTSvvHeudi+/DIMHQ+fOcN114adzBau8j0Pm\nnwZcAlwEnCypebYnds4VT79+MHEi7LRTmBr5H/+AZcuKHZVrKJI0N74XWATcQbhjORJoZWaH5T+8\nVed3LM4lM3Mm/PrXodXYTTfBllsWOyJXLIVsbryFmZ1gZqPN7DkzOxHYIsnBJfWXNEPSW5KG1rC+\njaQHJU2WNE7SFmnrzpY0TdIUSXdJWiMuX1fS05LelPSUpNZJ36xz7se6d4fRo+H442GPPeC887xp\nsstOksQyUVK/1IvYKmxCXTtJagJcC/QnTBI2UFKPapudA0w0s97AIODquG8XYDCwrZn1ApoAR8R9\nzgKeNrNuwLPxtXMuC6utFu5aXnstzFy5zTYwZkyxo3LlKkli2R54SdK7kuYAY4Dt453E6xn26wPM\nMrM5sbJ/JHBQtW16AKMBzGwm0EVSO0LR2xKgRWw40AJ4L+5zIHBbfH4b8IsE78E5l0CHDvDgg3Dh\nhXDooXDqqbB4cbGjcuUmSWLpD3QFdgcq4vP9gAMIX/K16QDMS3s9Py5LNxk4BEBSH6Az0NHMPgWu\nBOYC7wNfmNkzcZ/2ZrYgPl8AtE/wHpxzCUlw2GEwdWoYe2zLLeGpp4odlSsnTevawMzmSGoDbJy+\nfYIZJJPUnA8DrpY0CZgCTAKWSdoU+D3QhdAZ815JR5nZndViM0m1nqeysvKH5xUVFVRUVCQIyTkH\nYXTkESPgySdDMdmee8KVV0KbNsWOzOVKVVUVVVVVOT9uklZhFwPHAu8Ay1PL65pBMtbFVJpZ//j6\nbGC5mQ3PsM9soBfwc2Cf2FAASUcDfc3sd5JmABVm9qGkDYHRZrZ5DcfyVmHO5ciXX8LZZ4disuuu\nC2OQuYankK3CBgCbmtnuZrZH6pFgv/HAZpK6SGoWj/NI+gaSWsV1SBoMPG9mi4GZQF9Ja0oSsDfw\nRtztEeCY+PwY4KEEsTjnsrD22nDttTByJJx5JhxxBCxcWOyoXKlKklimAfW++TWzpcDJwJOEpDDK\nzKZLGiJpSNysJzAl3oX8lNAREzN7DfgPITmlGgj8O/4cBuwj6U1gz/jaOVcAu+4aWo517AhbbRXm\nffGCAVddkqKwHYCHgalAqnW7mVmmivui86Iw5/Jr7Fg47jjo2RP++U/YYINiR+SyVciJvqYD1xMS\nS6qOxczs+WxPnk+eWJzLv2+/DU2Tb7kFrroqFJH5jJXlq5CJ5VUz2yHbExWaJxbnCufVV+HYY6Fb\ntzBjpd+9lKdCVt6/KOkySf0kbZt6ZHti51zDscMOYTKxHj2gd2+4+26ve2nMktyxVFFDn5SELcOK\nxu9YnCuO1N3L5puHu5f11y92RC6pghWFlStPLM4Vz7ffQmVl6GB5zTWhJ78rfXlPLJKONrPbJZ3B\nyncsIlTe/y3bk+eTJxbnim/s2HD30rt3aDnWtm2xI3KZFKKOpUX8uXa1x1rxp3POZdS3L0yatKLf\nyyOP1L2PK39eFOacK4gXXwx3L7vtFpomt2pV7IhcdYVsFeacc1nbdVeYPBnWXBN69YKnny52RC5f\n/I7FOVdwTz8NJ5wABx4Iw4dDy5bFjsiB37E458rYPvuEu5cvvgizVb78crEjcrlUZ2KRtIGkmyU9\nEV/3lHRC/kNzzjVkbdrA7bfDZZfBwQfDOefA998XOyqXC0nuWEYATwEbxddvAafnKyDnXONy6KHh\n7mXqVNhxx/DTlbckiaWtmY0ClgHE+euX5jUq51yj0r49PPwwnHwy7LFHmKly2bJiR+VWVZLEsljS\neqkXcWbIL/IXknOuMZJChf64cfDQQ7DXXvDuu8WOyq2KJInlDOBRoKukMcDtwKl5jco512h17QpV\nVfCzn4XBLW+/3Qe0LDeJmhtLWh3oHl/OjMVhJc2bGztX/l57DX71qzCZ2PXXw3rr1b2PW3WFbm7c\nB+gNbAcMlDQo2xM751xdtt4axo8PQ8L07u2dKstFkmHz7wC6Aq8RK/ABzOyU/IaWHb9jca5heeaZ\nMBXyL38Zmig3b17siBqeQk9N3LPcvqU9sTjX8Hz6KQwZAtOnw113hYEtXe4UsihsKrBhtidyzrls\nrbsu3HMP/OlPodXY3/4Gy5cXOypXXab5WB6NT9cCtgFeAb6Ly8zMDsx/eKvO71ica9hmzw4V+y1a\nhAnFOnQodkTlrxATfVXEp0aY3CudmdnzdR5c6g9cBTQBbjKz4dXWtwFuIdThfAscb2bTJHUHRqZt\n2hU4z8z+IakSOBFYGNedbWZP1HBuTyzONXBLl4b6lmuvDa3GDjmk2BGVt0LWsVxuZn+qtmy4mQ2t\nY78mwExgb+A94FVgoJlNT9vmCmCRmV0ck8k/zWzvasdZLe7fx8zmSboA+LKuGSw9sTjXeIwdG+5e\nKirg6qt9tORVVcg6ln1qWPazBPv1AWaZ2ZzY72UkcFC1bXoAowHMbCbQRVK7atvsDbxtZvPSlmX9\nxp1zDUdqpsqlS2HbbWHChGJH1LjVmlgknSRpCtBd0pS0xxzg9QTH7gCkJ4P5cVm6ycAh8Xx9gM5A\nx2rbHAHcVW3ZKZImx1GXWyeIxTnXwK29dqhruegi2G8/uPxyr9gvlkx3LHcBBwCPAPvH5wcA25nZ\nUQmOnaQcahjQWtIk4GRgEml9ZSQ1i+e8N22f64FNgK2BD4ArE5zHOddIDBgAr74K//0v7LsvvP9+\nsSNqfJrWtsLMviAMNnnEKh77PWDjtNcbE+5a0s/xJXB86rWk2cA7aZvsB0wws4Vp+3yUtv1NhHHM\nalRZWfnD84qKCioqKur5Fpxz5ahzZxg9Gv7yl1A0duONcMABxY6q9FRVVVFVVZXz4+ZtamJJTQmV\n93sB7xOaK1evvG8FfGNm30saDOxsZsemrR8JPG5mt6Ut29DMPojPTwd2MLMjazi/V94753jpJTjq\nKNh/f7jiClhzzWJHVLpKfmpiM1tKKN56EngDGGVm0yUNkTQkbtYTmCJpBvBT4LTU/pJaEiruH6h2\n6OGSXpc0Gdgdn3TMOZfBzjuHwSw//hj69IFp04odUcOXdHTjDYAdCPUmr6QXR5Uqv2NxzqUzg1tv\nhaFDQxHZ4MFhDhi3QiH7sRwOXAGkOkTuBpxpZvfWvlfxeWJxztVkxgw44gj4yU9C3UubNsWOqHQU\nsijsXEI9xiAzG0S4czkv2xM751wxbL556FDZoUMYlv+ll4odUcOTJLGIFcOnAHyCd1B0zpWx5s1D\nD/1rr4VDD4VLL4Vly+rezyWTpCjsCsIkX3cREsoA4PXqw7yUGi8Kc84lMX9+aDW2+uphGuQNG/FY\n7gUrCjOzM4EbgK2AXsANpZ5UnHMuqY4d4bnnYJddQp+XJ58sdkTlL8kdy48GnEwyCGWx+R2Lc66+\nnn8+DGZ51FFw8cXhLqYxKWTl/b41LEsyCKVzzpWV3XeHiRNhypTw/N13ix1RecrnIJTOOVd22rWD\nRx8Nlfp9+sCDDxY7ovKTaaKvVkAbwkCRQ1nREuxLM/ukMOGtOi8Kc85la9y40OflwAPDaMlrrFHs\niPKrYB0ky5UnFudcLnz2GRx/PMybB/fcA127Fjui/Cn5scKcc64haNMGHngABg0KE4rdd1+xIyp9\nfsfinHMJjR8f5nvZbz+48sqGVzRWsDsWST1rWFaR7Ymdc67cbL99mPb4gw/CqMlvv13siEpTkqKw\neyQNVdBC0jWECn3nnGt0WrcOxWHHHAP9+sH99xc7otKTpINkS2A4sD2wFmFol2FmVtKzSXtRmHMu\n3159NRSNpVqNNWtW7IiyU8jK+6XAN8CaQHPgnVJPKs45Vwg77BCKxmbPhl139Q6VKUkSyyvAt4Q7\nll2BIyWV9FwszjlXKG3awEMPweGHhw6V//1vsSMqviRFYTuY2avVlh1tZrfnNbIseVGYc67QXnoJ\nBg6EI4+ESy6Bpk2LHVH9FLIobIKkoyWdH0/cCXgz2xM751xDs/POoWhs0iTYa6/QeqwxSpJYrgP6\nAUfG14uBf+YtIuecK2Pt2sFjj4XEst12MHp0sSMqvCSJZUcz+y2hAh8z+xRoZINJO+dcck2awPnn\nw223hWKxSy+F5Y2oyVOSxPK9pCapF5LaAY3oEjnn3KrZZ5/QW/9//wtNkj/7rNgRFUaSxHIN8CCw\nvqRLgZeAy/IalXPONRAdOkBVFWy2WSgamzCh2BHlX5Kpie8gDJt/GfA+cJCZ3ZPk4JL6S5oh6S1J\nP5pxUlIbSQ9KmixpnKQt4vLukialPb6QdGpct66kpyW9KekpSa3r84adc67QVl8d/v53GD4c+veH\nf/8bGnKj1UzzsaxbfVH8afBDXUvtBw7FZzOBvYH3gFeBgWY2PW2bK4BFZnaxpO7AP81s72rHWS3u\n38fM5km6HPjYzC6PyaqNmZ1Vw/m9ubFzruTMnBkmEdt+e7juOmjRotgRrVCI5sYTgQnx58eEJsZv\nxudJbub6ALPMbI6ZLQFGAgdV26YHMBrAzGYCXWIdTrq9gbfNbF58fSBwW3x+G/CLBLE451xJ6N4d\nxo6F77+HnXZqmANZ1ppYzKyLmW0CPA3sb2brmdl6wM/jsrp0AOalvZ4fl6WbDBwCIKkP0BnoWG2b\nIwjjk6W0N7MF8fkCoH2CWJxzrmSstRbceSeceGJILo8+WuyIcitJ5X0/M3ss9cLMHgd2SrBfknKo\nYUBrSZOAk4FJwLLUSknNgAOAGoeQiWVdXt7lnCs7Epx8chgO5re/hXPPhWXL6t6vHCQZcOB9SecC\ndxDqWY4k1HnU5T1g47TXGxPuWn5gZl8Cx6deS5oNvJO2yX7ABDNbmLZsgaQNzOxDSRsCH9UWQGVl\n5Q/PKyoqqKioSBC2c84VTr9+oaXYEUeECcTuugvati3Muauqqqiqqsr5cZOMFbYecAFhAEqAF4AL\nE1TeNyVU3u9FaE32Cj+uvG8FfGNm30saDOxsZsemrR8JPG5mt6Utuxz4xMyGSzoLaO2V9865crd0\nKfz5zzBqVJjvZfvtCx9Drirv8zo1saT9gKuAJsDNZnaZpCEAZnaDpH7ACEJx1lTgBDP7Iu7bEngX\n2CTe2aSOuS5wD9AJmAMcbmaf13BuTyzOubJz//3wm9/AZZeFOphCKlhiic2A/wh0YUXRmZnZntme\nPJ88sTjnytXMmXDwwbDLLnDNNbDGGoU5byETy+vA9YRmx6mqJTOzku4/6onFOVfOvvwSjjsO5s4N\ndzEbb1z3PtkqZGKZYGbbZXuiQvPE4pwrd2ZwxRWh1/5dd8Eee+T3fIVMLJXAQuAB4LvU8roq74vN\nE4tzrqF49lk46ij405/g9NNDU+V8KGRimUMNfUVi58mS5YnFOdeQvPsuHHIIdOsGN90ELVvm/hxl\n0SqsmDyxOOcamm++gZNOgokT4cEHYdNNc3v8vCcWSXuZ2bOSDqXmO5YHsj15Pnlicc41RGZh8MqL\nLgoTifXvn7tj5yqxZOp5vxvwLGFIlZq+oUs6sTjnXEMkwe9+B1ttBQMGwKmnwtCh+at3WRVeFOac\nc2Vq/vwwBH+nTnDrrWFwy2wUYth855xzJaxjR3jhBWjVCvr2hVmzih1R4InFOefK2BprwI03huKx\nnXeGJ58sdkQZEoukw+LProULxznnXH1JobXYffeF3vrDhxd36uNMrcImmdk2qZ8FjitrXsfinGuM\n5s0L/V26doVbbqlff5dCNDd+htAabAfgxWqrzcwOzPbk+eSJxTnXWH3zTRghefLkMJFYly7J9itE\nYmkGbEuY4OsEwiRfKWZmz2d78nzyxOKca8zM4OqrYdgwGDkSksxzWMghXdqZ2UJJa4VgbXG2Jy0E\nTyzOOQfPPBPGGTv33DAVcqb+LoVMLL2A/wDrxUULgWPMbGq2J88nTyzOORe88w4cdBD06RN67dc2\nv0sh+7H8G/iDmXUys07AGXGZc865MtC1K7z8Mnz2Gey5J3z4YX7PlySxtDCz0akXZlYF5GFcTeec\nc/my1lqhOfK++4Y7l/Hj83euJIlltqTzJHWRtImkc4F38heSc865fFhtNbjgArjqKthvvzB5WD4k\nqWNZF7gQ2DkuehGoNLPP8hNSbngdi3PO1W7KlFDvMmAAXHIJNGni87HUyROLc85l9vHH8Mtfwtpr\nw513QqtWPgilc865LLRtC08/HQaz7Ns3d8f1OxbnnHNcfz389rdlcMciqb+kGZLekjS0hvVtJD0o\nabKkcZK2SFvXWtJ9kqZLekPSjnF5paT5kibFRw7nT3POucbppJNyd6w6E4ukjeOX/8L4uF9SxwT7\nNQGuBfoDPYGBknpU2+wcYKKZ9QYGAVenrbsaeMzMegBbATPicgP+ZmbbxMcTdcVSqqqqqoodQiIe\nZ255nLnlcZaeJHcstwKPABvFx6NxWV36ALPMbI6ZLQFGAgdV26YHMBrAzGYCXSS1k9QK2NXMbonr\nlprZF2n7ldAknKuuXD5oHmdueZy55XGWniSJpZ2Z3WpmS+JjBLB+gv06APPSXs+Py9JNBg4BkNQH\n6Ax0BDYBFkq6VdJESTdKapG23ymx+OxmSa0TxOKcc65AkiSWTyQdLamJpKaSfgV8nGC/JDXnw4DW\nkiYBJwOTgGVAU8LIyteZ2bbAV8BZcZ/rCYlna+AD4MoE53HOOVcoZpbxAXQhFH8tjI+HgU4J9usL\nPJH2+mxgaB37zAbWAjYAZqct3wX4by2xTanlWOYPf/jDH/6o36Ou7/Ykj6bUwczmAAfUtV0NxgOb\nSeoCvA8MAAambxDrUr4xs+8lDQaej8PyL5Y0T1I3M3sT2BuYFvfZ0Mw+iIc4GJhSS9wNoh7GOefK\nTa2JRdJQMxsu6ZoaVpuZnZrpwGa2VNLJwJNAE+BmM5suaUhcfwOhtdgISQZMJUwolnIKcGeccOxt\n4Li4fLikrQnZdTYwJMkbdc45VxiZZpA8wMwelXQs4Uv8h1WExHJbAeJzzjlXZmqtvDezR+PTr83s\ntrTHCOCbgkRXgwSdLo+KLcZel/SSpK2S7ltCcc6JyydJeqXIcR4U45wkaYKkPZPuW0JxFuR6Jr0e\nknaQtFTSofXdtwTiLKXPZoWkL9I6S5+bdN8ix3le2rqSuZ5psU6SNFVSVX32XUmCSvhJSZYV4kEo\nUptFqLRfHXgN6FFtm35Aq/i8PzA26b6lEGdaI4Z1S+R6tkx73ovQN6kUr2eNcRbqeia9HnG754D/\nAoeW4rWsLc4S/GxWAI+s6nssdpwleD1bE+qyO8bXbVf1etZ6xyJpv1i/0kHSPyRdEx8jgCW17Zdn\ndXa6NLOXbUVnynGEfjGJ9i2ROFMK0fggSZxfpb1cixVNzUvtetYWZ0q+r2fS63EKcB+hhWV99y12\nnCkl8dnMEEspXs9M16xUrueRwP1mNh/AzFb5bz1TP5b3gQnAt/Fn6vEI8NN6vaXcSdLpMt0JwGOr\nuG82sokTQp3WM5LGK7SWy5dEcUr6haTpwOPAqfXZtwTihMJczzpjlNSB8Ad5fVpcifbNoWziTD0v\nlc+mATvFItDHJPWsx76lEGdqXalcz82AdSWNjvEcXY99V1JrqzAzmwxMlnSXmX2fNPo8q7mlQQ0k\n7QEcz4oJyhLvmwPZxAmws5l9IKkd8LSkGWb2Yq6DJGGcZvYQ8JCkXYHbJW2eh1gyhpBoo2pxAt3j\nqkJczyQxXgWcZWYmSaz4T7XUPpu1xQml9dmcCGxsZl9L2g94COiWh1gyyTbOUrqeqxM6pu8FtABe\nljQ24b4rSdLzvovCKMNvSJodH8Wamvg9YOO01xsTsudKFCrCbwQOtBUzXSbatwTixGI/HTNbCDxI\nuBUtWpxpcb1I+Gdk3bhdSV3PlFScktaLrwtxPZPEuB0wUtJs4FDgOkkHJty3FOIsqc+mmX1pZl/H\n548DqyvMeFtSn80McZbU9STclTxlZt+Y2SfAC0DvhPuuLEGlz0uEDoqvE8byqgQuzndlUy2xNCX0\naekCNKPmCqhOhIqmvvXdt0TibAGsHZ+3jNd/3yLGuSkrmqVvC7xdoteztjgLcj3rez0IA7keUorX\nMkOcpfbZbJ/2O+8DzCnF65khzlK7npsDzxAq61sQOp/3XJXrWWfPe2BNM3tGkszsXaBS0kTgvLp2\nzDVL1unyfKANcH24i2eJmfWpbd9Si5MwnM0DcVlT4E4ze6qIcR4KDJK0BFgMHJFp31KLkwJdz4Qx\n1mvfXMeYbZyU3mfzl8BJkpYCX1O6n80a46TErqeZzZD0BOEmYjlwo5m9AVDf61nnDJKSxgC7ElqI\nPEuo1L/MzLpn3NE551yjlCSx9AGmE9o4XwysA1xuZmPzH55zzrlyU+8572MrkcPNbFR+QnLOOVfO\nMnWQXEvSGZKuk/RbSatJOpjQM/OowoXonHOunGQahPIBYBHwMrAvoYnZt8CpZvZawSJ0zjlXVjIl\nltfNbKv4vAlhtsbOZla0ASidc86VvkwdJJelnpjZMuA9TyrOOefqkimxbCXpy9QD6JX2elGhAnSu\nPiQtTrBNlaTt6tjm95LWzLD/u9WWPRT/TupN0gilDU2fD5IqJS2XtGnast/HZdvG13+RNHdV34dz\nKZnmY2liZmunPZqmPV+nkEE6Vw9Jmjmm5vfO5DRC7+PafCZpZwBJrYENE567tnjyzQg9qY9IW3YY\nYebWlEfI35AirhFJMlaYc2VHYcKiKkn3Spou6Y5atttX0hiFycHukdRS0qnARsBoSc/WsJsBo1jx\nJX0IcD9xsMbYovKZeMzXU+NsxXWDFEa5fU1S+iysuylM+PZ2TXcvkrrE9/FvhUmYnpTUPK7bWtLY\neNwHYqKryUPE4c7jncvnwCepuM1snJl9WMu+ziXmicU1ZFsT7jx6Al0l7ZS+UlJb4M/AXma2HWFa\niD+Y2T8II0xUmNletRz7WUIyWA0YQEg0Kd8AB8dj7glcGc+3RTzfHmaWig3CF/sGZrYzsD8wrJZz\n/gS41sy2JCSFVAL6D3CmmfUm3JVcUMv+i4C5MY70mAs5urJrBJKMFeZcuXrFzN4HkPQaYRC9MXGd\ngL6EpDMmjtfULG19XZYB/wcMBJqb2bvxGBD+YbtMYfj+5cBGktoTksw9ZvYpgJl9Hrc3wt0Ecfym\n9rWcc7aZvR6fTyCMPL4OYSbS1FDrtwH3Zoh7VIx5X8Lw6MclfL/OJeaJxTVk36U9X0bNn/enzezI\nVTi2EWbSe5Af3yEcBbQFtjWzZQrDzzeP+9Q2W2D6nEe1bVP9/TSvYZtMsxEaYarhK4BXzezLtGTo\nXM54UZhrrAwYC+ycaikV61c2i+u/JIyLV/sBwl3CpcDd1VatA3wUk8oehOkmjDCH/GGKc3FIapPl\ne5CZLSI0JNglLjsaqMqw/TfAUOAvWZ7buVp5YnENTfVpdGvfMMzpfSxwt6TJhGKw1Kjd/waeqKXy\nPv0Yf0sVbaWd705ge0mvE77op8dt3yB8oT8fi+aurGfc1ZenXh8DXBHfw1bARZn2N7NRNY2eIely\nSfOANSXNk3R+LcdxLqN6D0LpnHPOZeJ3LM4553LKE4tzzrmc8sTinHMupzyxOOecyylPLM4553LK\nE4tzzrmc8sTinHMupzyxOOecy6n/BxxlTRO4HfPVAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x589b2b0>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg515"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate static pressure ratio across the rotor and diffuser and estimate diffuser staic presure rise\n",
+ "print(\"Example 8.3\")\n",
+ "M1=1.2 ##Mach no at impeller tip\n",
+ "gm=1.4 ##gamma\n",
+ "p31=(1+(gm-1)*M1**2)**(gm/(gm-1)) ##p=p3/p1\n",
+ "p32=p31**(1/2.) ##p31=p3/p2\n",
+ "Cp=(2/(gm*M1**2.))*(2.2-1) ##static pressure rise in radial diffuser\n",
+ "print\"%s %.3f %s\"%(\"(a)The static pressure the rotor and diffuser p3/p1 :\",p31,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The static pressure ratio across the diffuser p3/p2\",p32,\"\")\n",
+ "print\"%s %.3f %s\"%(\"Diffuser static pressure rise :\",Cp,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.3\n",
+ "(a)The static pressure the rotor and diffuser p3/p1 : 4.914 \n",
+ "The static pressure ratio across the diffuser p3/p2 2.2168 \n",
+ "Diffuser static pressure rise : 1.190 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg517"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 8.4\"\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "#calculate and graph the inducer D-factor for solidity of one and over a range of impeller tip mach number and radius ratios\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "M=2;\n",
+ "i=1;\n",
+ "sigma=1\n",
+ "z0=numpy.linspace(0.1,0.5,5)\n",
+ "gm=1.4;\n",
+ "\n",
+ "for M in range(2,4):\n",
+ " g1=numpy.zeros(5)\n",
+ " gc1=0;\n",
+ " for r in z0:\n",
+ "\t\ty=1-(1/(1+(r**2)*(M**2)))+((M*r)/(2*sigma*(1+(r**2)*(M**2))**(1/2.)))\n",
+ "\t\tg1[gc1]=y\n",
+ "\t\tgc1=gc1+1;\n",
+ " number=0;\n",
+ " pyplot.plot(z0,g1)\n",
+ " i=i+1;\n",
+ " pyplot.xlabel(\"Eye-to-lip radius ratio (r1/r2)\")\n",
+ " pyplot.ylabel(\"D inducer\")\n",
+ " pyplot.title(\"Inducer performance and centrifugal compressor design parameters (solidity=1)\")\n",
+ " pyplot.legend(\"Mt/Mz1=2\",\"Mt/Mz1=3\",\"Mt/Mz1=4\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.4\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAEZCAYAAACOzrzoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYFFXWwOHfGTICIoIioKBIMIAYQJRVBlREBAwoJlSC\ngiiIrLqmXUX9dld33RUFJYiCKOqCipIkO6BIzghIFgkCApKGMMyc749bA0XbM9NAz1R3z3mfZ57p\n6kqnq6vq1L11+5aoKsYYY4yJf0lBB2CMMcaY6LCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNM\ngrCkbowxxiSIXE3qItJDRD7KzXUEQUTOFJGpIrJbRP4ddDzxJpb3CxHZIyJVvNfFRGSkiPwuIv/L\n5fUOEpFXc3Md+ZGIZIjIeSe5jCUicm20YjLHT0SKiMiPInLmSS7nyP4gIn1E5K/RmDYviMjnItI0\np+kKRrCgdUAHVZ10AnEk6o/gOwJbVbVU0IHEqTzfL0QkBfhIVd/PbjpVLekbvAM4Ayijqhm5GB64\nbZKox0tcU9WLg44h1ojIIOAXVf1bHq2yIzBFVbdEa4Gq2vlEphWRZNy55OxoxeIttzzQH7gcOAuo\noqrrfZO8DvQBxma3nEhK6nF1shGRXKt9ECcJqAwsO8Fl5HghZXJFtvtwFt9LZWBFHiT0I2Hk0XpO\nWtD7cdDrjzXxtj1EpMBxztIJiMnavSjKAMYArcKNVNXZQCkRuTzbpahqtn/AWqCx97ot8D3wb2AH\nsAZo6pv2XGAKsBsYD/TCXdEAJOOu7PzLXgdc570uADwPrPLmnwNU8sbVBCYA24HlwJ2+ZQzCXb2M\nAfZmxhqynhTgn8BMYBfwFXCab3x94AdgJ7AAaBgy7/95nzsVt2MdAg4Ce4DGQGGgJ7DR+3sTKOz7\n3BuAvwCbgcHAS8Awb1m7gUVANeA5YAvwM3CDL4Z2wFJv2tVAR9+4zOX/2Zt3E9DWN74Y8B9vW/8O\nfAcUzelzh9mGz/q+mx+BW33jTni/yGJdt3jx7PLWeaP3/qnA+95n3AC8CiTlFAPwd+AwsN/7zt72\n3s8AHgVWAqt971UFXva+40PePO2BHv64gSre9Em+zznV+5wTgHdCph/m7QO/e9vjQt+4gcCr2WyT\nh337wI/Apd77F+D20Z3AEqBFyLHxLu7Y2ON99+WBt7zplwF1Qo7HZ73l7wA+AIpksR9/iLsIydwv\nfgP+h3dcAUWBj733dwKzgDN839Vq77OsAe713hfgr14cW7x1lArZ1u1xx0dKFtvpaY7uH+29ec7z\nxhUB3vDm/xV33sg8FsoCo7xYtwNTszhPFfPi2uF9H3/Bd17zpn0SWOh9z59lbsMwsbYFpuGOh9+9\n76Oxb3wkx73/+yjtfYatXnwjgYoh57JXvXXuAUZ4n3sI7libBVT2TR/2vIsrNfvPgV9771cAvvDW\nvwbo6ltWD+Bz3Dlvl/fd1MOd53d538d/sthO5+DOvUm+95rh9tPd3nZ4MuRYWenF/TVwlm+cf38Y\nhO+YI/t9Z5C37YrjziPp3mffjStVp+Jq9DKXdZm3HQrklGPDfN6C3rrPCTOuP/BitvNHsILQpH4I\n6IA7AB8BNvqmnY47aAoB13gfeLBvJwxN6v5lP42X3LzhWkAZ4BTgF+BBXM1CHWAbcIFvY/8OXJV5\n4Ib5DCneF3Wh96V8ztGLjYq4E09mArjeGz7dN+863MkzydvgA4FXfMt/BZccy3p/0zLHe587DXdR\nUQh3suvh7Rg34C5mPvTW8Zw3/BCwJmQHPtd7fS2wj6Mn9czl9/Dmvckbf6o3/h1gMm7HS8Il8sLZ\nfO6yWewHdwDlvdetcRdQZ57sfhFmPfW87zPzJFoBqOG9Ho47ERcDyuEu0jpGGMO3QPuQdWUA43An\nwyK+9zIP5Jf8cXrD2SX16cC/cPtIA9zJyj9/W9z+XAh34TffNy7LpA7cidt/L/eGq+JOdIVwCfVZ\nb52NvG1b3XdsbAMuxSW0Sbj9rI23jV4FJvvWsw53DFYETsNdJL2azX7cDbffV/De6wt84k3fCZc0\ninrruhQo6X3+XRw9zs/Eu7jBnUhXetv1FFyCGByyrQd533+447wpLjlkHuefhHyfb+Iu6EsDJbz4\n/uGN+ydu3yrg/TXI4jz1Gm5fOtXbTouA9SHTzsBdPJ2GS8qdsvhe23rbtJu3zta4fT/zwiiS497/\nfZQBbvNelwCGAsNDzoMrcBefpXBJcSWuYJJ5HvrAmzan827oOTAJmIu7KCvorWM10MQb3wN3fLb0\nhovijpf7vOHiwJVZbKebgSUh723O/I687yJzuzT24qyDO8+9jau2D5fUj3wGct53/NM25I+5bDTw\niG/4TeAt7/WfcBeLWf1dHbKs7JJ6d+CLcNvpyDTZjQyzQ7cFVvrGFfdWfgbuJJMGFPONH0LkSf0n\nfKUM3zR34btq9t7rh3e1gjvIB+XwGb7FO3i94QtwV5lJwDOEJBjcPYsHfPP2CBl/zAkYd2L1l0yb\nAGt9n/sgXsndt4OP8w23wF31iTdc0tuupbL4PMOBx33LD72K3YJLjkneuFphlpHt545gv5jP0QP0\nRPaLsCV177v9wxU77uR/AK9k5b13D15Syi4G3/fYIWSZGUBymPcyD+QeHJvEQ4ereNMn+T6nP76P\nsvmcpb15S4bbp0KmHYev1ON7/xpgc8h7nwAv+Y6Nfr5xXYAffcO1gJ0hx6O/NHgTsCqb/Xgpx5Ys\nz8KduAvgSpnTQvc9XLLYCdzu3ye8cZM49sRY3Vtekm9bV8lmn/yAY4/zapnfJ+7CYm/md+uNvwrv\n4hlXM/MVUDXMcv3nqdUcW4vWgWNL6mvxah684deBPlnE2xbfhaf33kygTYTH/THfR5jp6wA7fMPf\nAs/5ht8ARvuGm+NdaBLZedd/DrwS+Dlk+uc4epHQg5DaFVxtVQ+yKEj4prsPmB7y3s+4GoNSIe+/\nD7wWsr8dwkuQZJ2os9x3Qo9Pwueyu4DvvdcFcBcdV2T3ubL5vNkl9YeBSdnNfyL3n3/NfKGqqd7L\nErir9Z2qut837c9Efp+wEu6ACVUZuFJEdmb+AffiTvLg7pX+EsHy/dOsx13dlvWWf2fI8hvgrrTD\nzRtOBdxn9S+/gm94m6oeCplnq+/1fuA39b41bxjcdkVEbhKRGSKy3YuvGXC6b/7teux931Rv3rK4\nK+KstmtOn/sIEXlAROb7pr04JIbj3S+ykt1+UAjY7IuhL67EnlMMR94Os9xI9p1IVMCdQA+EW7aI\nFBCR10RklYjswp38wX1HOclqm1Tgj/H/zNF9Tzl2PzvAH/c7//Y5JmZy3o+rAMN938dS3G2OM3AX\nNOOAz0Rko4i8LiIFVXUf7gT4CLBJREaJSA1veWfxx+OoIEeP9dD4Qp0VJv5M5XAXenN98X7D0e3/\nb9zF+XgRWS0iz2SxjtBtviHMNL/6Xofbxn4bQ4Z/9j5HJMf9Md+HiBQXkX4iss7bx6YAp4qI/xzs\nb2gWuj8c8MUayXnXrzJQIWT653D7QqbQbdUBd+G2TERmicjNhLcTV9Dxa4XbHutEJEVE6nvvH7MP\nefvbdlytSnay23ci8TVwoffLmRuAXao65ziXEYmSuNqcLEWzccVm4DQRKe47oVbG3XsAV3VUPHNi\nr6GE/4T8C3A+7sTgtx5XfdLkJOM7J+R1Gq6aZj2uNNUxm3nDJQO/TbgTXGbjuXO897KaP6flHSEi\nRXDVkG1w967SRWQ4kV0s/YY7UM/HVRP6RfK5M2OojLuX0xh3xawiMj/CGHLaL0Jl7gfh3j+Iuy1y\nIg3XstrmEX8XuJJecd+w/wJoM1BGRIr5LmDOwV1xgzshtsTdVvhZRErj7ntGsg2z2iabgLNFRHwX\nhJVx9z9PVOhxkt1+vB5op6rTs1jWK8Ar3v4zBlcb94GqjsclzyK49g7v4aqXM48j//oP4xJRZlzZ\nfV+bw8Sf6Tdcgr1QVTeHzqiqe4GngKdE5CJgsojMUtVvw6zjbI5u45xaQOe0f4Umm8rA1xEe96HL\nfhKXJOup6lYRqQPM8+YJF0d2seV03g23L6xV1erZTH/MPKq6CndcICKtgM9FpExIAQDcuetcEUnK\nPPa9hHmrl0e64m41ZO6vVTJnFJFTcBdCoRdPobLbd/yfwf/f/1kOiMgw3PdVE9d2KjOGa3D7f1aa\nquq0HOLLdAGuvVGWotZSXFV/xjV6eFlEConIn3DVOZlWAEVFpJmIFMLdeyniGz8AeFVEzvdamdcW\nkTK4hh/VRaSNt9xCIlJXRGp680VyUhSgjYhcICLFcSebYd6J8GOghYg08UpTRUUkWUQqhswfujy/\nT4G/ikhZESkLvEj2LTWPp5VzYe/vNyBDRG7CVe/nyDsAPgD+KyJneZ/vKhEpTGSfO9MpuB35NyBJ\nRNrhSuqRxJDTfhHqfaCdiDQWkSQRqSgiNbwT8Xjvs5T0xlWVyH8/vAV3L/pkLACuFZGzReRUXEkE\nOOZz9vA+51Uc+zlL4C5Kdngnmn+ELDu7fWIALtlc5h0b54vIObh7t6nAX7x1Jnvr/CyCZYYjwKPe\nNi8DvOBbVjh9gX94sSAi5USkpfc6WURqeSfdPbiL6HQROUNEbvG2QRruYj/zAu9ToLuIVBGRErht\n9NlxXMQNBdr6jvOXMkd4y3gP6Cki5bwYK4pIE+/1zZnnHly7hHSOXpCFruM5ESntHStdyD455vQd\nnCEij3vf3524hDCGEzvuS+AuXHZ5399LYaaRLF6HGk32590tuNsamWYBe0TkL+L6dyggIheLyBVZ\nrctbdmbBbhduO/5hm6vqBlwtypXefIVE5D4ROVVVMxus+fehdiJyiXdh9A9ghh770zD/58+MK8t9\nJ8y0W4DTRST0J82DcbedWuI7/6vqd6paMpu/IwldRIrialfB5cuiHOtaXA1Tlo43qf/haitk+F7c\nht+BS2wfHplIdReupfEAXDXMXo6t7vgvbsOOx33B7+HuT+7F7cx34662NuMahxTOJqZwcX+Euw+0\n2Zv3cS+uDbjW1s/jqqLW4654s7siDl3n/+FO6Iu8vznee5HOn9U0qOoeL9ahuO16D66qJ7t5/Z4C\nFgOzcdVQ/8Tdf8/qc/9hn1DVpbgW9NNxVYsX4xpRRfp5stwvwqxrNu7AeBNXzZTC0avmB3Df3VJv\nWcM4WlrOKYa3gDtEZIeI9Mxq/SHzHLNMVZ2Ia+G9CLc9R4ZMfx/uPu12XCO0/+Hu54E74H/G7cNL\ncNsyy3UdE5Dq57gS7Se4hPMlrjFVGq49xk24WqfewP2quiKLZea0jdRbx3hcdf9Kst+P38I1Nhsv\nIru9z1TPG1ce9/3swn1fKbhjMAnX2GcjbjtdA2T+BvgDb5qpuNbTqbhSWFbrP/aDqI7F/QplMq4Q\nMSlknmdwyWGGuOrpCbiSLbh7qBNwCeIH4B1VnRJmNa/gzl9rcdtpGEe/47Bh5RD3TG/d23D7TCtV\n3XmCx31PXCPC37zP8E2YaSLaH7z1Z3fefR9X3bxTRL70Lpqa4+7jr/E+T39cg7ys1nUjsERE9uCO\n97tV9SDh9QPu9w23AdZ632NH3LGHuv5U/oar5diEa7B3d06fP4J9xz/tctzFwxrvfFLee38a7qJk\nrqqe6G29VNwxrrjaoH2ZI0SkLrAnp2r9zIZZCU1EvsVVNX+QxfgPcC0st6pqrTDj78P9dERwB31n\nVQ2tzjbmGOJ6oVuqqi8HHUskRGQtrjHh5KBjiRci0hloraqNTmDetrjtfU3UA0swXu3ifFyDxah1\nQBNtIjIR9wuQsLnmJJf9OTDAuwDJUn7q+z27qqaBuJ80ZGUNcK2q1sZdTfePZmAmMYjIFd4tgSSv\nurQlrkW1SRAiUl5EGnjfcQ1c/xDDg44r0anqIVW9KMYTel3c79NzpUtpVb0jp4QO0W0oF+uyrJJQ\n1e/E6+87i/H+hkAzca2RjQlVHlc1fjru1tIjqrow2JBMlBXGtSU4F3d76FNcBz8nIpJbhyYOiMiH\nuNuZj3st7oOLJT9Uv0fCS+ojw1W/h0z3FK5zjxxbjRtjjDF5KT+V1E+aiDTC9XrVIOhYjDHGmFCW\n1CMkIrVxLfKbqurOLKaxag9jjDkBqho3DzSKZfmpodwJ836H+yWu+8ZV2U2bXfd9sfL30ksvBR6D\nxWlxxmuMFmf0/0z0WEkdEJFPcZ30lxWRX3AdDxQCUNV+uN9Wnwb0cX1TkKaq9bJYnDHGGBMIS+qA\nqt6Tw/iHcE9OM8YYY2KWVb/nQ8nJyUGHEBGLM7riIc54iBEsThO77CdtUSTHPFfDGGNMJEQEtYZy\nUWHV78YYY06KSOT52Ao+ucuSujHGmJMWSbI+nuRvTozdUzfGGGMShCV1Y4wxJkFYUjfGGGMShCV1\nY4wxJkFYUjfGGGMShCV1Y4wxJkFYUjfGGGMShP1O3RhjzEmz36DHBkvqxhhjTsqJ9BK3ZucaRq0Y\nxagVo3IhovzLkroxxphcdzjjMNN/mc7IFSMZtWIUO/bv4OZqN9P5is5MYELQ4SUMe6BLFNkDXYwx\n5qid+3cydtVYRq0cxdhVY6l8amWaV29Oi+otuLzC5SSJa9ZlD3SJHkvqUWRJ3RiTn6kqP23/6Ui1\n+rzN82hYpSEtqregWbVmVCpVKex8ltSjx5J6FFlSN8bkN4fSD/Hdz9+5RL5yFAcOH6B5teY0r96c\nRuc2onih4jkuw5J69FhSjyJL6saY/GDbvm18s+obRq0YxYQ1E6h+enVaVG9B8+rNueTMS467Jbwl\n9eixpB5FltSNMYlIVVmydcmR0viPW3/kuvOuo3m15jSr1owzS5x5Usu3pB49ltSjyJK6MSZRHDh8\ngJR1KUfuj4vIkdJ4w8oNKVKwSNTWZUk9eiypR5EldWNMPNu8ZzNjVo5h5IqRfLvuW2qfWfvI/fEL\ny12Yax3MWFKPHkvqUWRJ3RgTT1SV+b/OZ+RPIxm1chSrdqzixqo30rx6c246/yZOL356nsRhST16\nLKlHkSV1Y0ysS01LZeKaiYxaMYrRK0dTonAJmldrTosaLWhwdgMKFSiU5zFZUo8eS+pRZEndGBOL\n1u9az+gVoxm1chTf/fwdV1S4ghbVW3Bz9Zupfnr1oMOzpB5FltSjyJK6MSYWZGgGszbOOtLIbcPu\nDTSr1ozm1ZvTpGoTShctHXSIx7CkHj2W1KPIkroxJii7D+5mwuoJjFo5ijErx3DGKWccaeRWv1J9\nCiQVCDrELFlSjx5L6lFkSd0Yk5cyn3Q2csVIZmyYQYOzG9C8enNurnYz5552btDhRcySevRYUo8i\nS+rGmNyU+aSzzESe+aSz5tWbc0PVGyhRuETQIZ4QS+rRY0kdEJEPgJuBrapaK4tp3gZuAlKBtqo6\nP8w0ltSNMVG1c/9Oxq0ex8gVI7N90lk8s6QePZbUARG5BtgLDA6X1EWkGdBFVZuJyJXAW6paP8x0\nltSNMSdFVVmxfcWR545H+qSzeGZJPXoKBh1ALFDV70SkSjaTtAQ+9KadKSKlReRMVd2SF/EZYxJb\nVk86e/rqpyN+0pkxYEk9UhWBX3zDG4BKgCV1Y8wJyepJZ8PuHHZCTzozBiypH4/QI8zq2Y0xEQt9\n0tmSrUu4/rzraV6tOb1u6nXSTzozBiypR2ojcLZvuJL33h/06NHjyOvk5GSSk5NzMy5jTAzL6kln\nLzV8KepPOosnKSkppKSkBB1GQrKGch7vnvrICBrK1Qd6WkM5Y0w4QT3pLJ5ZQ7nosaQOiMinQEOg\nLO4++UtAIQBV7edN0xtoCuwD2qnqvDDLsaRuTD6T+aSzzN+OB/Wks3hmST16LKlHkSV1Y/KH1LRU\nJq2ZxMgVI2PmSWfxzJJ69FhSjyJL6sYktjmb5tBrVi+GLxsec086i2eW1KPHknoUWVI3JvEcSj/E\nF0u/oNesXmzas4lH6z5Kh0s7WLV6FFlSjx5L6lFkSd2YxLFl7xb6ze1Hv7n9qHF6DbrW60qLGi0o\nmGQ/Goo2S+rRY3unMcb4zNo4i16zejFqxShaX9iasfeNpdaZYR8JYUzMsZJ6FFlJ3Zj4dCj9EMN+\nHEavWb3Ysm8Lj9V9jPaXtqdMsTJBh5YvWEk9eiypR5EldWPiy+Y9m49UsV9U7iIev/Jxbq52MwWS\nCgQdWr5iST16rPrdGJOvqCozN86k16xejFk5hrsvupuJ90/kojMuCjo0Y06aldSjyErqxsSug4cP\nMvTHobw962127N9Bl7pdaHdpO0oXLR10aPmeldSjx5J6FFlSNyb2bNqzib5z+tJ/bn8uKX8JXet1\n5abzb7Iq9hhiST16rPrdGJNwVJXpG6bz9sy3Gb96PPfWupeUtinULFsz6NCMyVVWUo8iK6kbE6wD\nhw/w2ZLP6DWrF7sP7qZL3S60rdOWU4ueGnRoJhtWUo8eS+pRZEndmGBs2L2BPrP7MGD+AC476zK6\n1utK0/ObkiRJQYdmImBJPXqs+t0YE5dUle/Xf0+vWb2YuGYibWq3YWrbqdQoWyPo0IwJjJXUo8hK\n6sbkvv1p+/l0yaf0mtWL1LRUutTtwoN1HqRUkVJBh2ZOkJXUo8eSehRZUjcm96zftZ4+s/vw/vz3\nqVuxLl3rdaVJ1SZWxZ4ALKlHj1W/G2Nilqoy9eep9JrVi2/Xfcv9te9nWvtpVDu9WtChGROTrKQe\nRVZSNyY6UtNS+WTxJ/Sa1YtD6YfoUrcLD1zyACWLlAw6NJMLrKQePZbUo8iSujEn5+fff+bd2e/y\nwYIPqF+pPo/Xe5zrz7seETvfJzJL6tFj1e/GmECpKinrUug1qxdTfp7Cg5c8yIwOM6hapmrQoRkT\nd6ykHkVWUjcmcvsO7WPI4iH0mtWLDM2ga72utKndhhKFSwQdmsljVlKPHkvqUWRJ3Zicrd25lndm\nv8OgBYP40zl/omu9rjQ+t7FVsedjltSjx6rfjTG5TlWZvHYyb896m2nrp9GuTjtmPzybc087N+jQ\njEkoltSNMblm76G9fLTwI3rP7k2SJNG1Xlc+uf0TTil8StChmRiQmgpjxgQdRWKxpG6MibrVO1bz\nzux3+HDhhzSs3JDeN/UmuUqyVbEb9u+Hb76BoUNh7FioWzfoiBKLJXVjTFSoKhPWTKDXrF7M2DCD\n9nXaM6/jPCqXrhx0aCZgBw64BD50qCuZX3EFtG4NvXpBuXJg13rRYw3losgaypn8aM/BPQxeOJje\ns3tTuEBhutbryr217qV4oeJBh2YCdOAAjBvnEvno0XD55XDnnXD77XDGGcdOaw3loseSehRZUjf5\nyaodq+g9qzcfLfqIRlUa0bVeV66tfK1VsedjBw/C+PEukY8aBXXquBL57bfDmWdmPZ8l9eix6ndj\nTMQyNIPxq8fTa1YvZm+cTYdLOzC/03zOOfWcoEMzATl4ECZMOJrIa9Vyifzf/4by5YOOLv+xknoU\nWUndJKrdB3fz4YIP6T27N8ULFadrva7cc/E9FCtULOjQTAAOHYKJE10iHzECLr7YVa23agUVKhz/\n8qykHj2W1D0i0hToCRQABqjq6yHjywIfA+VxNRxvqOqgkGksqZuEsmL7CnrP6s3Hiz7m+vOu5/Er\nH6fB2Q2sij0fSkuDSZNcIv/6a7jgAlcib9UKKlY8uWVbUo8eS+qAiBQAfgKuBzYCs4F7VHWZb5oe\nQBFVfc5L8D8BZ6rqYd80ltRN3MvQDMauGkuvWb2Yt3keD1/2MI9c8QiVSlUKOjSTx9LSYPLko4m8\nenWXyO+4AypFcXewpB49dk/dqQesUtV1ACLyGXALsMw3zWagtve6FLDdn9CNiXe7Duxi0IJB9J7d\nm1JFSvF4vccZftdwihYsGnRoJg8dPgzffusS+fDhUK2aS+Q9esDZZwcdncmJJXWnIvCLb3gDcGXI\nNO8Bk0VkE1ASaJ1HsRmTq5ZtW0bvWb35dMmn3Hj+jXx464dcVekqq2LPRw4fhpSUo4n8vPNcIp87\nFypbNwNxxZK6E0md+fPAAlVNFpGqwAQRuURV9/gn6tGjx5HXycnJJCcnRzNOY6IiPSOdb1Z9w9sz\n32bRlkV0vLwjSx5dQoWSJ9DKycSlw4dh6lSXyL/80iXv1q1h9myoUiV3152SkkJKSkruriSfsnvq\ngIjUB3qoalNv+Dkgw99YTkTGAH9X1Wne8CTgGVWd45vG7qmbmPb7gd/5YP4HvDP7HcoUK8Pj9R6n\n9UWtKVKwSNChmTyQng7ffecS+RdfuOr0zHvk550XXFx2Tz16rKTuzAGqiUgVYBNwF3BPyDTLcQ3p\nponImUANYE0exmjMCVu6bSm9Zvbisx8/o1m1Zgy5fQhXVrzSqtjzgfR0+P77o4m8QgWXyH/4AapW\nDTo6E22W1AFVPSwiXYBxuJ+0va+qy0Skkze+H/APYKCILASSgL+o6o7AgjYmAlv2buGFyS8wcsVI\nOl/RmaWPLuWskmcFHZbJZRkZMG2aS+Sff+46gWnd2iX3888POjqTm6z6PYqs+t3EikPph3h75tu8\n9v1rPHjJg/yt4d8oXbR00GGZXJSR4Urfw4a5RF62rEvkd97pfooWy6z6PXqspG5MAlFVRq8czZ/H\n/Znqp1dnWvtp1ChbI+iwTC7JyIAZM46WyE87zSXySZOgZs2gozNBsKRuTIJYtm0Z3cd1Z93v63ir\n6VvcVO2moEMyuUAVZs50iXzYMDj1VJfIJ0xwvbyZ/M2SujFxbuf+nbw85WWGLB7CC9e8wGN1H6NQ\ngUJBh2WiSBVmzXJJfNgwKF4c7rrLPaP8oouCjs7EEkvqxsSpwxmHeW/ue/SY0oPbat7G0keXUu6U\nckGHZaJEFebMOVoiL1rUlchHj3aJ3H64YMKxpG5MHPp27bd0G9uNMsXKMK7NOOqUrxN0SCYKVGHe\nPJfIhw6FQoVciXzkSPckNEvkJieW1I2JI2t3ruWpCU8xd9Nc3mjyBq0uaGW/NY9zqjB//tESeVKS\nK5F/9RXUrm2J3BwfS+rGxIG9h/byz+/+Sd+5felevzsf3/axPcs8jqnCwoVHS+SqrkT++edQp44l\ncnPiLKnHMyzOAAAgAElEQVQbE8MyNIMhi4bw3KTnSK6SzMJHFtojUOOUKixa5ErjQ4e6vtdbt3av\nL73UErmJDkvqxsSomRtm0m1sN9I1naF3DuXqs68OOiRznFRhyZKjJfJDh1xnMJ98ApdfboncRF9C\nJHURKQC8rqpPBR2LMSdr055NPDfpOSasnsA/r/sn919yP0mSFHRY5jj8+OPRRJ6a6krkH38MV1xh\nidzkroRI6qqaLiJ/Euun1cSxA4cP8Ob0N3lj+ht0vKwjP3X5iZJFSgYdlonQ0qVHq9b37HEl8kGD\noF49S+Qm7yREUvcsAL4WkWFAqveequqXAcZkTI5Ula+Wf8WT45/kkvKXMOuhWVQtY4/PigfLlx8t\nke/a5RL5gAFw5ZWuFbsxeS2RknpRYAfQOOR9S+omZi3espgnxj3Blr1b6N+iP9efd33QIZkc/Pwz\nfPSRS+Tbt7tE3r8/1K9vidwEz57SFkVW+28i9Vvqb7z47Yt8vvRzXmr4Ep2u6ETBpES6xk4shw+7\nntz69XP9rt9zD9x9N1x9tSXyaLCntEVPwpxFRKQG8C5QXlUvEpHaQEtV/b+AQzPmiLT0NPrM6cOr\nU1/l7ovuZtljyzi9+OlBh2WysH49vP+++zvnHOjUyf2WvHjxoCMzJryEKamLyFTgaaCvql4qrput\nJaqaZ487sJK6yc741eN5YuwTVChZgZ5Ne3LxGRcHHZIJ4/Bh+OYbVyqfPh3uvRc6doRatYKOLHFZ\nST16EqakDhRX1ZmZXWaqqopIWsAxGcPK7St5cvyT/LjtR/7b5L+0rNHSunaNQRs2uEZu778PlSq5\nRD50qJXKTXxJpLtB20Tk/MwBEbkD2BxgPCaf231wN3+Z8Beuev8qGpzdgKWPLuWWmrdYQo8h6enu\nXnnLlq6f9W3bYNQoV0Jv184Suok/iVRS7wL0B2qIyCZgLXBfsCGZ/ChDMxi0YBAvTH6Bm86/icWd\nF3NWybOCDsv4bNzoSuQDBsBZZ7l75Z9+CqecEnRkxpychEnqqroauE5ESgBJqro76JhM/jNt/TS6\nje1G4QKFGXH3COpWrBt0SMaTng7jx7t75VOnugeojBjhHqBiTKJImKQuIv/EdRX7uzd8GvCkqv41\n2MhMfvDLrl94ZuIzfLf+O16//nXuufgeq2aPEZs2wQcfuFJ5uXKuVP7xx1CiRNCRGRN9iXRP/abM\nhA6gqjuBmwOMx+QDqWmpvJzyMnX61eH8Muez/LHl3FvrXkvoAcvIgLFj4bbb4KKLXCO4L7+E2bPh\noYcsoZvElTAldSBJRIqq6gEAESkGFA44JpOgVJWhPw7lLxP/wpUVr2Rux7lUKV0l6LDyvV9/daXy\n996DMmVcqXzwYChpXeibfCKRkvoQYJKIfAAI0A4YHGxIJhHN2zyPbmO7sefgHgbfOpiGVRoGHVK+\nlpEBEye6e+WTJ7tuW4cNc09EMya/SZjOZwBE5CbgekCBCao6Lo/Xb53PJLCt+7bywqQXGLliJK80\neoUOl3agQFKBoMPKt7ZsgYEDXam8VClXKr/3XvfaxBfrfCZ6Eqmkjqp+A3wTdBwmsRxKP0Svmb34\n5/f/5IFLHmB5l+WULlo66LDypYwMVxrv18+Vzlu1gs8+s+eUG5MpYZK6iOzFldDB3UsvBOxVVbtu\nNydszMoxdB/XnaqnVeX79t9Ts2zNoEPKl7ZuPVoqP+UUVyofMABOPTXoyIyJLQmT1FX1SHtWEUkC\nWgL1g4vIxLPlvy2n+7jurN25ljdvfJNm1ZoFHVK+k5EBKSmuVD5+vGvJPmQI1KtnpXJjspJQ99RD\nicgCVc2xawkRaQr0BAoAA1T19TDTJANv4moAflPV5DDT2D31OPf7gd95OeVlPl78Mc//6Xkeq/cY\nhQvYjyjy0rZtMGiQe0Z5sWKuVH7ffVDa7ngkLLunHj0JU1IXkVa+wSTgcmB/BPMVAHrjGthtBGaL\nyAhVXeabpjTwDnCjqm4QkbJRDd4ELj0jnQHzBvBSykvcUuMWfnz0R8445Yygw8o3VF2pvH9/94S0\nW291P0WrX99K5cYcj4RJ6kALjt5TPwysA26JYL56wCpVXQcgIp958y3zTXMv8IWqbgBQ1d+iE7KJ\nBSnrUnhi7BOcWvRUxrYZS53y1m9oXvntN/jwQ5fMCxVypfJ334XTTgs6MmPiU8IkdVVte4KzVgR+\n8Q1vAK4MmaYaUEhEvgVKAm+p6kcnuD4TI9b9vo6nJzzN7I2zeaPJG7S6oJX1BJcHVF3f6/37H31C\n2gcfwNVXW6ncmJMV90ldRHr5BhXX8Uzma1T18RwWEclN8ELAZcB1QHFguojMUNWVoRP26NHjyOvk\n5GSSk5MjWLzJS/sO7eO171+jz5w+PFH/CQbfOphihYoFHVbC277dVan37++Sd6dO0KuX6/nN5C8p\nKSmkpKQEHUZCivuGciLS1nt5NXAh8D9cYr8T+FFVH8lh/vpAD1Vt6g0/B2T4G8uJyDNAMVXt4Q0P\nAMaq6uchy7KGcjFMVflk8Sc8O+lZGlZuyGvXv0alUpWCDiuhqcL337sW7KNGQYsWLpk3aGClcnOU\nNZSLnrhP6plEZCbwJ1VN84YLAd+ramhVeuh8BYGfcKXwTcAs4J6QhnI1cY3pbgSKADOBu1R1aciy\nLKnHqNkbZ9NtbDfSMtJ4q+lbXH321UGHlNB27ICPPnLJPCPDJfIHHoDTTw86MhOLLKlHT9xXv/uU\nBkoB273hkt572VLVwyLSBRiH+0nb+6q6TEQ6eeP7qepyERkLLAIygPdCE7qJTZv3bOb5yc8zbtU4\n/nHdP3jgkgdIkkR6OGHsUIUffnCJfMQIuPlm6NsXrrnGSuXG5JVEKqm3A3oAKd5bDXHV6oPyMAYr\nqceIA4cP0HNGT9744Q0euuwhnr/meUoVsc4Fc8POna5U3r8/pKVBx47w4INQ1n74aSJkJfXoSZik\nDiAiZ+FariswU1V/zeP1W1IPmKry9U9f8+T4J6l1Ri3eaPIG55c5P+iwEo4qzJjhSuVffQU33eSq\n2Bs2tFK5OX6W1KMn0ZJ6RaAK7rZCZuv3qXm4fkvqAVqydQlPjH2CzXs30/PGntxQ9YagQ0o4v/8O\nH3/sSuUHDhwtlZcrF3RkJp5ZUo+ehLmnLiKvA3cBS4F036g8S+omGNtTt/NSyksM/XEoLzZ8kUeu\neISCSQmzawdOFWbNcqXy4cOhSRPo2ROSkyHJmicYE1MS6cx3G1BDVQ8GHYjJG4czDtN3Tl9emfIK\nd110F8seW8bpxa15dbTs2uUeoNKvH+zb50rlP/0EZ1jvucbErERK6qtxj1y1pJ4PTFwzkSfGPkH5\nEuWZ/OBkLj7j4qBDSgiqMHu2S+Rffgk33AD/+Q80bmylcmPiQSIl9f3AAhGZxNHErhH0KGfiyKod\nq3hq/FMs3rqY/zb5Ly1rtLSuXaNg92745BOXzHftcqXy5cvhzDODjswYczwSKamP8P78rNVagthz\ncA9//+7vDJg3gKevfpr/3fE/ihQsEnRYcW/OHJfIP/8crrsOXn8drr/eSuXGxKuESep5+Xt0k3cy\nNIPBCwfz/KTnufH8G1nceTFnlTwr6LDi2p498OmnLpnv2AEPPwxLl8JZtlmNiXtxn9RFZJiq3iki\ni8OMVlWtnedBmaj44Zcf6Da2GwWTCvL13V9Tt2LdoEOKa/PmuUQ+dCg0agT/+Ie7Z26lcmMSR9wn\ndaCb979FoFGYqNmxfwfdx3Vn0ppJvH7969xb6167b36CDh2CYcPgrbdgyxZXKv/xR6hQIejIjDG5\nIe6Tuqpu8v6vCzgUEwVfLvuSLmO60Pqi1izvspwShUsEHVJc2r7dlcrfeQdq1oS//Q2aNYMCBYKO\nzBiTm+I+qZvEsHXfVrqM6cLCLQsZducwGpzTIOiQ4tKyZa5U/r//wa23wpgxcMklQUdljMkrdjfN\nBCrzGee1+tTi3NLnsqDTAkvox0kVxo93/a83agTly7ufow0caAndmPwmoUrqIlIOQFW3BR2Lydmm\nPZvoPLozq3esZtQ9o6wh3HHav9/1+Nazp2vs9sQTrhvXokWDjswYE5S4L6mL00NEfgNWACtE5DcR\neUmsdVVMUlUGzh9Inb51qHNmHeZ2nGsJ/Tj8+iu8+CJUqeKekPbWW7BwIbRvbwndmPwuEUrq3YEG\nQF1VXQsgIucBfb1x/w0wNhNi/a71dBzZka37tjLh/glcUt7qhyO1YAG8+SaMGAH33ANTp0KNGkFH\nZYyJJXFfUgceAO7NTOgAqroGuM8bZ2JAhmbQd05fLu9/OddWvpaZD820hB6B9HSXxBs1gubN4YIL\nYPVqePddS+jGmD9KhJJ6wXD30FV1m4gkwueLe6t3rObhkQ+TmpbKlLZTuLDchUGHFPP27nUN3d56\nC8qUge7d4Y47oFChoCMzxsSyRCipp53gOJPL0jPSeWvGW1w54EqaV2/OtPbTLKHnYP16ePppd798\nyhT48EOYOdNVt1tCN8bkJBFKsrVFZE8W44rlaSTmiOW/LafDiA4UkAJM7zCdaqdXCzqkmDZ9urtf\nPmkStG3rHn967rlBR2WMiTdxn9RV1frIiiGHMw7znx/+w79/+DcvJ79M57qdSZJEqBCKvsOH4Ysv\nXDLfuhW6dYMBA6BUqaAjM8bEq7hP6iZ2LN6ymPYj2lO6aGnmdJxDldJVgg4pJv3+O7z3HvTq5arZ\nn3kGWra0LlyNMSfPilDmpB1KP8QrU16h8eDGdLq8E+PbjLeEHsbKldClC5x3Hixa5DqKmToVbrvN\nEroxJjqspG5OyrzN82j3dTsqlarE/E7zqVSqUtAhxRRVSElxVezTp0PHjrBkiT0lzRiTOyypmxNy\n4PABXp3yKgPmD+CNG96gTe029nhUn4MH4dNPXReuBw+6Llw/+wyKFw86MmNMIrOkbo7bjA0zaP91\ne2qWrcnCRxZSvkT5oEOKGVu3Qt++0KcP1K4Nr70GTZq4vtmNMSa3WVI3EUtNS+XFb19kyOIhvN30\nbe648A4rnXuWLHGl8i++cJ3ETJwIF10UdFTGmPzGkrqJyNSfp9JhRAfqVqjLokcWUe6UckGHFLiM\nDBg71iXzxYvh0UdhxQooZ5vGGBMQS+qAiDQFegIFgAGq+noW09UFpgOtVfXLPAwxMHsP7eXZic8y\nfPlw3m32LrfUvCXokAKXmgqDB7suXIsWdV243nUXFCkSdGTGmPwu3yd1ESkA9AauBzYCs0VkhKou\nCzPd68BYIF/UOU9cM5GHRz5MoyqNWNJ5CacVOy3okAK1cSO88477jfnVV7v75g0bgt2BMMbEinyf\n1IF6wCpVXQcgIp8BtwDLQqbrCnwOJPyDv3cd2MVT459i/Jrx9G/enxvPvzHokAI1Z477Sdo330Cb\nNu6naeefH3RUxhjzR9YmFyoCv/iGN3jvHSEiFXGJvo/3luZNaHlv9IrRXNznYgomFWRx58X5NqGn\np8OXX8I110CrVnDppbBmDbz9tiV0Y0zsspJ6ZAm6J/Csqqq45t5ZVrj26NHjyOvk5GSSk5NPNr48\nsWP/DrqN7cYPv/zA4FsH0+jcRkGHFIjdu+H9913yLl/e3S+//XYoaEeKMVGTkpJCSkpK0GEkJFFN\n2EJnRESkPtBDVZt6w88BGf7GciKyhqOJvCyQCjysqiNClqXxuD2/XPYlXcZ0ofVFrfl7479zSuFT\ngg4pz61d6xL54MFwww2us5j69YOOypj8QURQVWudEgVW/oA5QDURqQJsAu4C7vFPoKrnZb4WkYHA\nyNCEHo+27ttKlzFdWLhlIcPuHEaDcxoEHVKeUoVp09z98ilToH17mD8fzjkn6MiMMebE5Pt76qp6\nGOgCjAOWAv9T1WUi0klEOgUbXe5QVT5d/Cm1+9Tm3NLnsqDTgnyV0A8dgiFDoF49aNcOGjeGdevg\nX/+yhG6MiW/5vvo9muKh+n3Tnk10Ht2Z1TtWM/CWgdStmPCN+Y/Yvh3693c/S6te3d0vv/lm68LV\nmKBZ9Xv02Oksn1BVBi0YRJ2+dahzZh3mdpybbxL68uXwyCOu1fqKFTBqFEyeDC1aWEI3xiQWu6ee\nD6zftZ6OIzuydd9Wxt8/njrl6wQdUq5Tdf2vv/kmzJ3rkvqyZa5FuzHGJCpL6gksQzPoP7c/f/v2\nb3Sv352nr36aQgUKBR1WrjpwwN0v79nTJfbu3d3vzYsWDToyY4zJfZbUE9TqHat5eOTDpKalMqXt\nFC4sd2HQIeWqX3+Fd9+Ffv3giivgv/+F66+3LlyNMfmL3VFMMOkZ6bw14y2uHHAlzas3Z1r7aQmd\n0BcuhLZt4YILYNs299O00aPdb80toRtj8hsrqSeQ5b8tp8OIDhSQAkzvMJ1qp1cLOqRckZHhGrv1\n7Okavj32GKxaBaefHnRkxhgTLEvqCeBwxmH+88N/+PcP/+bl5JfpXLczSZJ4lTB798KgQe6Rp6VL\nu/vld94JhRK7mYAxxkTMknqcW7xlMe1HtKd00dLM6TiHKqWrBB1S1K1fD717wwcfuEedDhwIDRpY\n9boxxoRKvOJcPpGWnsYrU16h8eDGdLq8E+PbjE+4hD5jBtx1F9SpA2lpMHs2fPEF/OlPltCNMSYc\nK6nHoXmb59H+6/ZULFWR+Z3mU6lUpaBDipoDB2DYMNfr29at8Pjj8N57UKpU0JEZY0zss25ioyi3\nu4k9ePggr0x5hQHzB/DGDW/QpnYbJEGKrGvXQt++rmr90ktd47ebb4YCBYKOzBiT26yb2Oixknqc\nmLlhJu2+bkfNsjVZ+MhCypeI/67RMjJg3DhXKp8xAx580D01rVpiNto3xphcZ0k9xqWmpfLity8y\nZPEQ3m76NndceEfcl863b3eN3vr2da3YH3sMhg6F4sWDjswYY+KbJfUYNvXnqXQY0YG6Feqy6JFF\nlDulXNAhnZTZs12vb199BS1bwiefuMefxvk1ijHGxAy7px5F0bqnvvfQXp6d+CzDlw/n3WbvckvN\nW6IQXTD274f//c9Vsf/2G3TuDO3bQ9myQUdmjIkVdk89eqykHmMmrpnIwyMfplGVRizpvITTip0W\ndEgnZPVqV70+aBDUrQs9ekDTptbwzRhjcpMl9Rix68Aunhr/FOPXjKd/8/7ceP6NQYd03NLT4Ztv\nXBX77NmuT/YZM6Bq1aAjM8aY/MGSegwYvWI0j4x+hObVmrO482JKFYmvH2Vv23a04Vu5cvDoo66T\nmGLFgo7MGGPyF0vqAdqxfwdPjH2Cab9MY/Ctg2l0bqOgQ4qYKsyc6UrlI0bAbbe5Fux16wYdmTHG\n5F/WTWxAvlz2JRe/ezFlipVh0SOL4iahp6bC+++7Z5bfdx/Uru3unw8caAndGGOCZiX1PLZ131a6\nftOVBb8uYNidw2hwToOgQ4rIypXQpw8MHgxXXQV//zs0aQJJdllojDExw07JeURV+XTxp9TuU5sq\np1ZhQacFMZ/Q09Ph66/hxhvdU9EKF4Y5c2DkSNeS3RK6McbEFiup54FNezbx6OhHWbVjFSPvGUnd\nirFdT711KwwYAP36QYUKruHb119D0aJBR2aMMSY7VtbKRarKoAWDqNO3DpeceQlzO86N2YSuCj/8\n4O6T16gBa9bA8OEwfTrcf78ldGOMiQdWUs8l63etp+PIjmzdt5Xx94+nTvk6QYcU1r59MGSIa8W+\nb58rlffuDafFZ583xhiTr1lJPcoyNIO+c/pyef/Lubbytcx8aGZMJvSffoJu3eCcc2DMGPjXv9x7\n3btbQjfGmHhlJfUou37w9aSmpTKl7RQuLHdh0OEc4/Bh18jtnXdg8WJ46CGYNw8qVw46MmOMMdFg\nST3KmldvTrcru1EgKXY6Of/1V3jvPejf3yXwRx+FVq2gSJGgIzPGGBNN9pQ2j4g0BXoCBYABqvp6\nyPj7gL8AAuwBOqvqopBpovKUtmhQhe+/d6XyceOgdWv3hLQ6sXcnwBiTz9lT2qLHkjogIgWAn4Dr\ngY3AbOAeVV3mm+YqYKmq7vIuAHqoav2Q5QSe1PfsOdrw7dAhVyp/4AEoXTrQsIwxJkuW1KPHqt+d\nesAqVV0HICKfAbcAR5K6qk73TT8TqJSXAeZk6VLX49uQIdCoEbz5JjRuDGKHiTHG5BuW1J2KwC++\n4Q3AldlM3wEYk6sRRSAtzXUK8847sHw5PPwwLFoElWLqcsMYY0xesaTuRFxnLiKNgPZAYH28btp0\ntOFb1arw2GPuKWmFCwcVkTHGmFhgSd3ZCJztGz4bV1o/hojUBt4DmqrqznAL6tGjx5HXycnJJCcn\nRyVAVZgyxd0rnzAB7r4bxo6FWrWisnhjjMkzKSkppKSkBB1GQrKGcoCIFMQ1lLsO2ATM4o8N5c4B\nJgNtVHVGFsuJekO53bvho49cMld1pfL774dSpaK6GmOMCYw1lIseK6kDqnpYRLoA43A/aXtfVZeJ\nSCdvfD/gReA0oI+41mdpqlovt2JassQl8s8+g+uuc/fNGza0hm/GGGOyZiX1KDrZkvqhQ+4hKu++\n655f3rGj+6tQIYpBGmNMjLGSevRYST0GbNjgGr299x7UrAldu8Itt0ChQkFHZowxJp7YA10CogqT\nJ7vuWmvXhh07YNIk+PZbuOMOS+jGGGOOn5XU89iuXfDhh66jmAIFXMO3QYOgZMmgIzPGGBPvLKnn\nkYUL3b3yoUPhxhuhXz+45hpr+GaMMSZ6LKnnokOH4IsvXMv1deugUydYtgzKlw86MmOMMYnIknou\nWL/eNXwbMAAuvhj+/Gdo2RIK2tY2xhiTiyzNRNmtt8J330GbNpCS4lqzG2OMMXnBknqUNWsGH38M\nJUoEHYkxxpj8xjqfiaJYeJ66McbEG+t8Jnrsd+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQI\nS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowx\nxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCk\n7hGRpiKyXERWisgzWUzztjd+oYhcmtcxGmOMMdmxpA6ISAGgN9AUuBC4R0QuCJmmGXC+qlYDOgJ9\n8jzQKElJSQk6hIhYnNEVD3HGQ4xgcZrYZUndqQesUtV1qpoGfAbcEjJNS+BDAFWdCZQWkTPzNszo\niJcD3eKMrniIMx5iBIvTxC5L6k5F4Bff8AbvvZymqZTLcRljjDERs6TuaITTyQnOZ4wxxuQ6UbW8\nJCL1gR6q2tQbfg7IUNXXfdP0BVJU9TNveDnQUFW3+KaxjWmMMSdAVUMLTeYEFAw6gBgxB6gmIlWA\nTcBdwD0h04wAugCfeRcBv/sTOthOaYwxJliW1AFVPSwiXYBxQAHgfVVdJiKdvPH9VHWMiDQTkVXA\nPqBdgCEbY4wxf2DV78YYY0yCsIZyEcqpcxoRqSki00XkgIg8eTzzxlCc60RkkYjMF5FZAcZ4n9fB\nzyIRmSYitSOdN4bizJNtGWGct3hxzheRuSLSONJ5YyjOmNmevunqishhEWl1vPPGQJyxcqwni8gu\nL475IvLXSOc1WVBV+8vhD1clvwqoAhQCFgAXhExTDrgC+D/gyeOZNxbi9MatBcrEwLa8CjjVe90U\nmBGj2zJsnHm1LY8jzlN8r2vh+mSIxe0ZNs5Y256+6SYDo4BWsbg9s4ozr7ZnhN95MjDiRD+f/f3x\nz0rqkcmxcxpV3aaqc4C04503RuLMlNuN/SKJcbqq7vIGZ3K0P4BY25ZZxZkpLxpORhLnPt9gCeC3\nSOeNkTgzxcT29HQFPge2ncC8QceZKfBjPZs48nJbJhRL6pGJpHOa3Jj3eJ3suhSYKCJzROThqEZ2\n1PHG2AEYc4LznoyTiRPyZltChHGKyK0isgz4Bnj8eOaNgTghhraniFTEJZjMrqIzGybF1PbMJs7M\n17FwrCtwtXfbZYyIXHgc85owrPV7ZE6mNWFetkQ82XU1UNXNIlIOmCAiy1X1u2gE5hNxjCLSCGgP\nNDjeeaPgZOKEvNmWEGGcqvoV8JWIXAN8JCI1cyGWbEOIaKKQOIEa3qhY2p49gWdVVUVEOFrSjLX9\nM6s4IXaO9XnA2aqaKiI3AV8B1aMcR75iJfXIbATO9g2fjbtyzO15j9dJrUtVN3v/twHDcVVg0RZR\njF6js/eAlqq683jmjYE482pbRhynL67vcBfzZbzpYmp7ZsqMU0RO94ZjaXtejuuvYi3QCnhXRFpG\nOG8sxBkzx7qq7lHVVO/1N0AhEcnrfTOxBH1TPx7+cCfB1bhGG4XJptEG0INjG8pFPG/AcRYHSnqv\nTwGmAU2CiBE4B9dIpv6Jfr6A48yTbXkccVbl6M9XLwNWx+j2zCrOmNqeIdMPBG6Pxe2ZTZyxdKyf\n6fvO6wHr8npbJtqfVb9HQCPonEZEygOzgVJAhoh0Ay5U1b3h5o21OIEzgC9dLR0FgSGqOj6IGIEX\ngdOAPl48aapaL6t5ox3jycYJlCcPtuVxxNkKeEBE0oC9wN3ZzRtrcRJ72/O45o21OMmj7RlhjHcA\nnUXkMJBKAPtmorHOZ4wxxpgEYffUjTHGmARhSd0YY4xJEJbUjTHGmARhSd0YY4xJEJbUjTHGmARh\nSd0YY4xJEJbUTUIRkXTfYxzni8hforDMyiJyzwnM10O8x9uKyMsict3JxhLBOgdlPmJTRN4TkQty\ne52+dT8fMjztOOcvIiJTvC5Nw43/QES2iMjiMOPqi0j/MO/XEZEfRGSJ1794a9+4oSJy7vHEaEys\ns6RuEk2qql7q+/tXFJZ5LnDvCcx3pBMIVX1JVSedyMpF5Hg6idLM9arqw9HssCOCOJ47JhDVBllN\nmIX7gFEa0nmGb70DcY+4Decm3ENgQufbB9yvqhd78/YUkVLeJO8B3Y8zRmNimiV1k/BEpLGIDPcN\n36kGvWMAAAUBSURBVCAiX3qvm3glubleye2UMIt4DbjGK/l380qUA0VkkYjME5HkCGLwl6DXicjr\n3vwzRaRqmOl7iMhHIvI98KFXWzDVi3OuiFzlTSci0ltElovIBFzPgJnLSBGRy7zXe33v3yEiA73X\nd4rIYhFZICJTwsSRLCLficjXwBLvva/EPd1riXhP+BKR14Bi3jb6yL9OL8Z/e+tZ5C8th7gH+DrM\nen+EI/3B78xi3sa4p461FZERIjIJmKCqK1V1tTf/ZmArUM6bJwVolsXyjIlL1k2sSTTFRGS+b/gf\nqjpMRN4RkdNVdTvQDnhfRMoCLwDXqep+EXkG+DPwasgynwGeUtUWAF6Verqq1haRGsB4Eammqoey\nietICdr7/7s3//24p2m1CDNPTeBPqnpQRIoBN3ivqwGfAHWB23BPtboA1/3nUuB933rI4nXm8N9w\n/X5v9pVgQ10KXKSqP3vD7VR1pxfTLBH5XFWfFZHHVPXSMOu8HbgEqI1LqLNFZKqq/po5oYgUAC5W\n1RXZrDcs73tMU9U9Xs39pUAtVf09ZLp6QCFfkk8TkY0icoF1QWoShZXUTaLZH1L9Psx7/yPgfhEp\nDdTHVdXWx/V7/4N3IfAA7iEtoULv8TYAPgZQ1Z+Anzn6iNBIfer9/wy4Ksx4BUao6kFvuDAwQEQW\nAUNxSRzgWuATdTYDkyNcf+ZnmoarCXiIrC/yZ4Uk1m4isgCYjnt6VrUc1vUnX4xbgSm4CxK/ssCe\nHNablSa4PsIzjQ+T0M8CBuMu6Pw24R4aYkxCsJK6yS8GAiOBA8BQVc3wSnUTVPWY++VeiS7zgRgv\nArvDLO8PjblE5P+AmwFV1cu8tyN5uEJW06T6XncHNqvq/V6p9oBv3rANy7JZR7Ejb6p29j7vzcBc\nEblcVXeEzLsv84V3q+E63JPpDojIt0DRCNYdGmO4zxw6zb4w04TTFPiPb7n+7YZXAzEKeF5VZ4VZ\nZ0aE6zEm5llJ3eQLXil2E/BXXIIHmAk0yLynLSKneNXos3wl/ZG4EmRJ3+K+wzXqQkSq40r3y1X1\nr948l/mmzSrh3uX7/0MEH6EUkFld/QDuyVUAU4G7RCTJK402ymL+LSJSU0SScFX2ePFX9T7vS8A2\noFIEcez0EnpNXG1HprQsGtN954uxHK52ITS5/gaUyGHdfyDuyqy2qi7MfCtkfGHc88IHq+qXYRZx\nFq6mxZiEYCV1k2hC76l/o6qZP7X6BCjrVZmjqttEpC3wqYgU8aZ5AVgZssxFQLpX5TwQeBf3uNVF\nwGHgQVVNyyKerErhp4nIQlyJO6ufy/nnfRf4QkQeAMbiHk2Kqg4Xkca4e+nryfoC4VlcaXUbMAf3\nHG2Af3n36AWYqKqLwsTgj2Ms8IiILAV+wlXBZ+oPLBKRuap6P0db4Q/3GvYt9N572quGP7oS1XSv\n4V0N7/sJXS8i8inQECgrIr/galEWA/7vO3S+1sA1QBnvuwZoq6oLRaQQUElVl4ffZMbEH3v0qsk3\nRKQ3MFdVB+Y4ce7GsRYIV82dr3lJ90xVff045nkBWKmqQ09gfU2Am1W12/HOa0yssqRu8gURmYur\nRr8hm1J1XsWyBrjCkvqxvKryifx/+3ZMBTAMw1BQzMKqoIoqTNw9ezro3RHQ+Bc7Weev+qW9N8kz\nM/v2FvxF1AGghEM5ACgh6gBQQtQBoISoA0AJUQeAEqIOACU+IR12hpOGZGcAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x58bc2d0>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg522"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 8.6\")\n",
+ "#calculate the compressor total to static efficency\n",
+ "Tt1=288.\n",
+ "Cp=1004.\n",
+ "gm=1.4\n",
+ "ett=0.8\n",
+ "p=6.8 ##pt3/pt1\n",
+ "C1=200.\n",
+ "pt1=101.\n",
+ "Tt3=Tt1*(1.+(1./ett)*(p**((gm-1.)/gm)-1.))\n",
+ "Tt2s=Tt1*p**((gm-1.)/gm)\n",
+ "T1=Tt1-C1**2./(2.*Cp)\n",
+ "ets=(Tt2s-T1)/(Tt3-T1)\n",
+ "print\"%s %.4f %s\"%(\"Compressor total-to-static efficiency :\",ets,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.6\n",
+ "Compressor total-to-static efficiency : 0.8141 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter8_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter8_1.ipynb
new file mode 100755
index 00000000..6e2d987d
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter8_1.ipynb
@@ -0,0 +1,230 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:739e0e52594531c623f63a019f4f33e65ea37763d138cc0e458130674b09325d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter8-Centrifugal Compressor Aerodynamics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg505"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 8.1\"\n",
+ "import numpy\n",
+ "%matplotlib inline\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "z0=numpy.linspace(0.2,0.6,80)\n",
+ "g1=numpy.zeros(80)\n",
+ "gc1=0.\n",
+ "gm=1.4\n",
+ "i=0;\n",
+ "M1=z0\n",
+ "for i in range (0,80):\n",
+ "\ty=1./((1+((gm-1)/2.)*M1[i]**2)**(1./2))\n",
+ "\tg1[gc1]=y\n",
+ "\tgc1=gc1+1\n",
+ "\n",
+ "\n",
+ "pyplot.plot(z0,g1)\n",
+ "pyplot.xlabel(\"Inlet Mach no M1\")\n",
+ "pyplot.ylabel(\"Ratio of index to the impeller tip tangential Mach no.\")\n",
+ "pyplot.title(\"Ratio of Mach index to impeller tip Mach no.\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.1\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 2,
+ "text": [
+ "<matplotlib.text.Text at 0x59b0430>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEeCAYAAACpGzMjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYlOXVx/HvTxARVEBBVBAQIwiKWBGsaw0mlqhRRCNW\nQkwsMcagxrKWKGhMNBqNsWFsYC+JXVn1FUEpIiCgKAhYECtipZz3j/seGdbd2WeZvns+1zXXzjz1\nzLOzc/a5q8wM55xzLldWK3YAzjnnGhZPLM4553LKE4tzzrmc8sTinHMupzyxOOecyylPLM4553LK\nE4tzzrmcWqXEIul/uQ7EOedcw6BV6SApaSMzez8P8TjnnCtziRKLpA2AHQADXjGzj/IdmHPOufJU\nZ1GYpMOBccBhwOHAK5IOy3dgzjnnylOSOpZzgR3MbJCZDSLcuZyX37BcXSRdL+ncPBy3u6TXJC2S\ndHKuj5/g/JWSbq/H9l9K6rKK56qSdMKq7Jsvko6S9GQRzlshaV7a6zmS9srj+c6WdGO+jp8NScdK\nerHYcZSzJIlFwMK015/EZa4e4h/q1/GL8ENJt0taJ+G+P/qgm9lJZnZJHkL9E/Csma1jZtfWEEuV\npOWStqq2/MG4fLcsz1+vSj8zW9vM5mRxrpyOwlr9C7q+zOxOM/tpLmNaRTm7NjVdEzO7zMwGr+Lx\nRsTP2oHVlv89Lj8mm3hd9pIklieAJ+OX23HAY8Dj+Q2rQTJgfzNbG+gN9CLcDZaazsAbGdYbMBMY\nlFogaT2gH5CLujf/p6WMSWpagNMY8CYrfwabEorqZ5HjfxZc/SVJLH8CbmDFl+ENZvanvEbVwJnZ\nAuApYIvUMklnSZoVi6CmSfpFXN4DuB7oF+92Po3LR0i6OG3/wZLekvSJpIclbVjb+SUdGM/xmaTR\nkjaPy58DKoBrYxw/qeUQdwEDJKWSwEDgAWBJ2jn6SHo5nuN9SddIWj1t/RaSno7xfijp7NTlAZpJ\nui3GMFXSdhney3JJXdOuyT8l/TfuOza1Lq7fR9IMSZ9LuoaQxJS2/nhJb0j6VNITkjrF5UPjsZrE\n1yfFuJpVi6Ul4Z+ujeLvapGkDSStIekqSe/Fx9+r75t2jJXuTuP7Oyn+bhdJukjSpvHafi5pZOq6\nxjuD+bGYaaGk2ZKOTDvWGpL+KundeM2vl9S8tmubtp/SPp8fSxolqU1c1yXGeLykd4FnElyTDZVW\n5Jl2jMHx+rwv6Yw6wnoU2EVS6/i6PzAZWED8ncbr9FyMeaGkOyS1SottY0kPSPoobnNNtdiviJ+F\ndyT1z3B95kg6Q9LktN/JGmnrE/9tNhhm5o8CPIDZwF7xeUfgdeD8tPW/BDaIzw8HFgPt4+tjgBer\nHe9W4KL4fE9CceXWQDPgH8DztcTRLR57L6AJcCbwFtA0rh8NHJ/hfYwGTgCeBPrHZeOAvsA8YLe4\nbFugD+Gfl9Rd0Glx3drAB8DpMd61gD5xXSXwDeGLQsClwMsZ4lkOdI3PRwAfA9vH93YHcHdc1xZY\nBBwS1/2ekAiPj+sPitehe4z5z8BLcZ2A54ELgM2AT4HetcSzOzCv2rKLgDExhrbAS6nfXQ37H5v+\nu47v78F4jXoC3wHPAV2AdYBpwKC4bUV8T38FVgd2i7/rbnH934GHgNbxeI8Al6btOy/tvLOBPePz\n02L8G8Xj/gu4K67rEmMcAawJrJHwmlwA3F7tGHfGY2xJuPvdq5ZrdCtwMeEf3t/EZfcARwAvpl2P\nTQmf89XjdX8e+Htc14SQiK5MxQ3slPY7+J7wORfwG+C9Ov62xwIbAG0In/Uh9f3bbEiPJF+IhxL+\n4BYBX8bHomIHXm4PYE7q2qV9WayWYftJwIHx+bFkTiw3A8PS1rWMfxidajjuecDItNcC5rMiIYwG\nTsgQVyqxHEW4c9kcmBnX/ZBYatjv98AD8flAYEIt21UCT6W97gl8nSGe9MRyK/DvtHX7AdPj80HA\nmGr7zmNFYnmctIRKSC5fARvH150J9YtvAEMzxFPBj79EZxGTcHy9LzC7lv1X+l3H99cv7fV44My0\n139lxZdlBSGxrJm2fhShyFWEJNM1bV0/4J2a4mblxPJG6nl8vWH8fK3GiqTQpZ7XpJIfJ5ZuaeuH\nAzfVcrxUYtmZkPBaAR8CzUlLLDXs9wtgYtp7/4ga/gbj7+CttNctYnzr13Lc2cCR1WK/vr5/mw3p\nkaQo7HLCF9w6FipK1zazRJXObiUGHBSvXQXhP5ntUyslDZI0KRYdfUb4r229hMfeEHj3hxOZfUX4\nEuxQy7Zz07Y1whds+rZ1lVEboehrT+B3wH+qbyCpWyyS+kDSF8BfWPF+NgbeyXD8BWnPvwaaS0o6\nSkT6vt8Q/jOH8N/2/GrbplcodwauTrv+n8TlHQDM7F2gKm73z4SxpGxE2u+HcP03qsf+1d9T+utv\nWfEeAT4zs2/SXr9L+J23JXxBTkh7j4/H5XXpAjyYtt8bwFKgfdo2q9xgoZZj1HWNzMxeAtoREuej\nZvZt+gaS2sdiqfnxM3g7K38G3zWz5bUc/8O0E30dn65Vy7YrbU/4HbWMz+vzt9lgJPlj/dDMpuc9\nkkbEzF4AriH8Z4OkzsC/CV/S65pZG2AqK8r/6/qif5/wx088XkvCH9B7tWzbOW1bEf7Iato203v4\nhvDF9BvCH2x11xO+gH5iZq0IRUupz9tcoGsN+0D+Kl7fJ7xPYKX3nTIX+LWZtUl7tDSzsXH7nxOK\n+54l3CXUpqb4V/r9AJ3islyofr42klqkve4cz/Ux4QuvZ9r7a53wn8S5hDuu9GvTwsw+yBBHphhr\nW9ap2vMkn8k7gD9Qwz83hGLUZcCW8TN4NCs+g/OATql6szyqz99mg5EksYyPlXUDJR0aH4fkPbKG\n7yqgj6QdCf/dGOGPfzWF1ndbpm27AOiotMpvVq54vhs4TlLvWGl4KTDWzObyY/cAP5e0ZzzeGYT/\nesdUO3YS5wC713KetQhFf18rNA44KW3d/4ANJZ0WK5TXltSnnueuSaZ9HwO2kHSwQguiUwll4in/\nAs6R1BNAUivFjsCS2gI3EooAjwUOkLRfLedZAKynlZuS3w2cK6ltPNb51JyMk1Itz1MulLS6pF2B\nnwP3xjvTG4GrJLWL76uDpH0TnO9fwKVa0Zihnao19a1DTdekprjPlbSmpC0I13lULcdL/+z/A9jb\nzGrqd7IWoThzkaQOhPrElFcI9XzDJLWQ1FzSTonfUd1W5W+zwUiSWFoRiiP2BfaPjwPyGVRjYGYf\nA7cRyuvfIFQivky4pd4S+L+0zZ8lVNJ+KCnVpNfiAzN7llB3cj/hP6RNCBWZNZ33TeBXhDumhYQv\nngPMbGn6ZgnfwwdmNqaW1X8EjiTUKf0bGJkW75fAPoTP0QeEpqMV1d9Xwnis2vMa943X+zBgGCGB\n/4S0a2xmDxHuIEfGYpMpQKo/yQ3AQ2b2hJl9SkgwN6VaRq10MrMZhC+Td2KLog2ASwh1I6/Hx/i4\nrLb3U/091ec9fwh8Rvgc3E6oRH4zrhtKqO8ZG9/j04TGHJnOBXA1oaL/KUmLCJ/TPmnrM35eargm\nG9YQN4TK9VmElmVXmNkz1Cz9s/+ZmY2uZbsLCY1IviC0Irs/bb9lhM/fTwh3ZPMIjWZWOn7S95gh\nvlr/NiV1ii3lOtbj2GVhlQahTHxw6RbCF9dHZtarlm3+Qahk/Ro41swmxeX9Cf/VNyFU4qWKjdYl\n/CfTmVAhfriZfZ63N+FcmZBUQagQ37iubUuJwsgJ7xBaJtZW5+HKSL7nY7mV0Gy0RpJ+RiiD3wz4\nNaFcnljueW3ctycwUKE/B8BZwNNm1o3wn/xZ+QvfOedcfeU1scRyz88ybHIgoTgIMxsHtI5FB32A\nWWY2x8yWEIpRDqq+T/z5i3zE7lyZyl8RRH6Va9yuBsWeQbIDKzcxnB+XbVTLcgidBlPNLRewcpNH\n5xotM6sys051b1la4j+QTbwYrOGoc1wfhSEfDiU0mUttb2Z2UY5iSNIKSNTwH42ZmST/T8c550pI\nkgHjHgY+ByYQmqXm0nus3JegI+HuZPUalqfafS+QtIGZfRhbl9Q48KEnHOecqz8zy3og2CRFYR3M\nbICZXW5mV6Ye2Z44eoQ4QqmkvsDnsZhrPLCZwuB0zYABcdvUPsfE58cQxj6qUbGHNajrccEFFxQ9\nBo/T4/Q4Pc7UI1eS3LGMkbSVmb1e34NLupswAF1bhfkYLiDcjWBmN5jZY5J+JmkWoSPTcXHdUoVJ\npp4kNDe+2Vb0/h8G3KMwQdMcVrQ9d845VwJqTSySpsSnTQg9R2cTRlaFUL2xVc17rmBmAxNsU+Ms\nhWb2ODXM+2Khg9redR3XOedccWS6Y/He9XlWUVFR7BAS8Thzy+PMLY+z9NTZ8z7WfbxhZovi63WA\nHhb6nZQsSZbLMkPnnGvoJGEFqrz/F2Eeh5Sv4jLnnHPuRxJ1kLS0jksWBm/L91DTzjnnylSSxDJb\n0qlxGO5mkk4j8yRNzjnnGrEkieU3hClA3yN0XuxLGDDSOeec+5G8DptfTF5575xz9ZOryvskY4Wt\nSZjYqCfQPLXczI7P9uTOOecaniRFYbcTRhDuT5jhbWNWbiXmnHPO/SBJP5bXzGxrSa+b2VZxnvT/\nM7MdCxPiqvGiMOecq59C9mP5Pv78QlIvoDXQLtsTO+eca5iSDEJ5Y5xn/lzCyMJrAeflNSrnnHNl\ny1uFOeecAwrQKkzSGYRZG9NPknptZva3bE/unHOu4clUFHYFMJkwdP13actrnCbYOeecg8yJZVtg\nIPAzYCJwN/Bs+rhhzjnnXHVJmhsL6EdIMnsDQ83skYw7lQCvY3HOufopZHPjdsA2wFaEscIWZntS\n55xzDVemyvsTCPPJrwHcBxxuZgsKFZhzzrnyVGtRmKTlwFTg3RpWm5kdmM/AsuVFYc45Vz+FGIRy\nT1Zu/VW92XHJ+/ZbaN687u2cc87lToPuILnOOsbee8OBB8LPfw5t2xY7KuecK12FrLwvW7NmhaTy\n8MOw6aaw++7w97/D7NnFjsw55xquvCYWSf0lzZD0lqShNaxvI+lBSZMljZO0Rdq60yRNkTQ1Toec\nWl4pab6kSfHRv7bzt2sHxxwDDzwAH34IZ54J06bBjjvC1lvDRRfB1KnQQG/anHOuKPJWFCapCTCT\n0PflPeBVYKCZTU/b5gpgkZldLKk78E8z21vSloQOmTsAS4AngN+Y2duSLgC+rGtImUyV98uWwZgx\nIeE88AA0awaHHAK//CVsvz0o6xtB55wrP4UYK+zRDPslaRXWB5hlZnPi8UYCBwHT07bpAQyLB5wp\nqYuk9ePycWb2bdz3eeAQwjAzsHJDgnpr0gR23TU8/vY3mDgR7r8fjjoKvv8eDj00JJkdd4TVGnRh\noXPO5V6mVmFXZnnsDsC8tNfzgeqTg00mJIz/k9QH6Bz3mwJcEofr/xb4OfBK2n6nSBoEjAfOMLPP\nVzVICbbbLjz+8pdQNHbffXDCCfDll3DYYeHhScY555KpNbGYWVWWx05SxjYMuFrSJEIymQQsM7MZ\nkoYDTwFfxeWpMcquBy6Kzy8mJMATajp4ZWXlD88rKiqoqKjIGIwEvXqFx4UXhvqYe+8NSWbx4pBg\njjjCi8uccw1DVVUVVVVVOT9ukrHCugGXAlsAqV4hZmZd69ivL1BpZv3j67OB5WY2PMM+s4FeZra4\n2vJLgblm9q9qy7sAj5pZrxqOldMOktOmwahRMHJkqKMZMCAkmV69PMk45xqGQjY3vhX4F6ESvQK4\nDbgzwX7jgc1ivUkzYABhBsofSGoV1yFpMPB8KqnEuhYkdQIOBu6KrzdMO8TBhDudvNtii9CKbObM\nUFS2dCkccEBILH/5C7zzTiGicM650pfkjmWimW0raUrqziC1rM6DS/sBVwFNgJvN7DJJQwDM7AZJ\n/YARhGKzqcAJZvZF3PcFYD1CQjvdzEbH5f8Bto77zAaG1DSGWSGGdFm+PLQuu/vuUGTWtWtoADBg\nAKy/fl5P7ZxzOZerO5YkiWUMsCthIMpngfeBy8yse7Ynz6dCjxW2ZAk88wzceSf897/Qrx/86lfw\ni19Ay5YFC8M551ZZIRNLH0IT4daEyvJ1gMvNbGy2J8+nYg5C+dVXobf/HXfAyy+H3v9HHw177BGa\nOjvnXCkqWGIpV6UyuvGCBaGo7D//gY8+CkVlxxwDPXsWOzLnnFtZ3hOLpKvN7LRaOkr6sPmrYOrU\nkGDuuAM6dAgJZuBAWG+9YkfmnHOFSSzbmdkESRU1rDYzez7bk+dTKSaWlKVLQ33MbbfB44/DPvvA\nccfBvvtC00xdVp1zLo8KWcfyezO7qq5lpaaUE0u6zz8PfWNGjIB580JdzPHHQ7duxY7MOdfYFLIf\nyzE1LDs22xO7oHVr+M1vYOxYePrp0Ply111ht91Csvnqq2JH6Jxz9ZOpKGwgcCShqfGLaavWJgy7\nslf+w1t15XLHUpMlS0KT5ZtvhpdegsMPh8GDw3hm3svfOZcvhahj6QxsQhjPaygrRhT+EphsZkuz\nPXk+lXNiSffee3DrrSHJtG4dEsxRR0GrVsWOzDnX0Hhz4zo0lMSSsnw5PPss3HgjPPVUmD9myBDo\n08fvYpxzuVHIyvtDCXct7Vlx12Jmtk62J8+nhpZY0i1YEOpfbrwx9OofMiT08l+npH8jzrlSV8jE\n8jawf/rMj+WgISeWlOXL4bnn4IYbQvPlww8PDQG22abYkTnnylEhW4V9WG5JpbFYbTXYe+8wAOYb\nb0CnTmFssr59Q0fMb78tdoTOucYoyR3L1cAGwEPA93GxmdkDeY4tK43hjqUmy5bBY4/BddfBhAlw\n7LHhLqZrxtlznHOusEVhI+LTlTY0s+OyPXk+NdbEkm7WrFBMNmJEuIs5+eTQy9+nWHbO1cRbhdXB\nE8sKX38devdfc02YYvl3vwtDyHiTZedcuoLVsUjqLulZSdPi660knZvtiV3htGgRhomZODGMTzZu\nHGyySUgw0732zDmXY0kKRW4EzmFF/coUYGDeInJ5I8FOO4Vh/KdODaMq77FHGPzyf/8Lrcyccy5b\nSRJLCzMbl3oRy5eW5C8kVwgbbQQXXQTvvhv6wJx/Pmy+Ofzzn6G4zDnnVlWSxLJQ0k9SLyT9Evgg\nfyG5QlpjDRg0CMaPh1tugdGjoXNn+OMfYe7cYkfnnCtHSRLLycANwOaS3gdOB07Ka1Su4CTYZRe4\n777QTNksdLQcMCDUyTjnXFKJW4VJagmsZmZf5jek3PBWYdlbtCjcxVx9NWy4IZxxRuiA2aRJsSNz\nzuVDIfuxnEG1PizAF8AEM3st2wDyxRNL7ixdCg89BFdeCR99BKefHport2xZ7Micc7lUyMRyF7A9\n8ChhEMqfE1qGdQbuM7Ph2QaRD55Y8mPMmJBgXnghDH55yinQvn2xo3LO5UIhxwrbGNjWzM4wsz8A\n2wHrA7tTx0ySkvpLmiHpLUlDa1jfRtKDkiZLGidpi7R1p0maImmqpNPSlq8r6WlJb0p6SlLrhO/V\n5cBOO8H998PLL8Onn0KPHvDrX8PMmcWOzDlXKpIklnas6MMCoalxezP7Gqh1mENJTYBrgf5AT2Cg\npB7VNjsHmGhmvYFBwNVx3y2BE4EdgN7A/pI2jfucBTxtZt2AZ+NrV2A/+UkYj2zmzNB0eddd4eCD\nwxTLzrnGLUliuRMYJ+kCSZXAGOCuWJn/Rob9+gCzzGyOmS0BRgIHVdumBzAawMxmAl0krR+XjzOz\nb81sGfA8cEjc50Dgtvj8NuAXCd6Dy5N27aCyEubMgb32goEDYffdw0CYXhLpXONUZ2Ixs4uBXxMq\n7D8DhpjZhWb2lZkdlWHXDsC8tNfz47J0k4kJQ1IfQr1NB0Idzq6x2KsFoV6nY9ynvZktiM8XECYg\nc0XWokUY5PKtt0Ldy9lnQ+/ecNddofLfOdd4NE243UTg/bi9SepkZnV1n0vy/+ow4GpJkwjJZBKw\nzMxmSBoOPAV8lVr+oxOYmaRaz1NZWfnD84qKCioqKhKE5LLRtCkceWS4c3niCbjsMjjvPDjzzDCE\nf/PmxY7QOZdSVVVFVVVVzo+bpFXYKcAFwEekfbmbWa869usLVJpZ//j6bGB5plZkkmYDvcxscbXl\nlwJzzexfkmYAFWb2oaQNgdFmtnkNx/JWYSXipZdg2LDQ8fL008P8MGuvXeyonHPVFbJV2O+B7mbW\n08x6pR4J9hsPbCapi6RmwADgkfQNJLWK65A0GHg+lVRiXQuSOgEHA3fF3R4BjonPjyFMQOZK2M47\nw6OPhjuYiRPDpGOVlaFVmXOu4UmSWOYCi+p7YDNbShgO5klCJf8oM5suaYikIXGznsCUeBfyU+C0\ntEPcF4fqfwT4rZmlYhgG7CPpTWDP+NqVga22CiMrjxkD8+fDZpvB0KGwYEHd+zrnykeSorBbgG7A\n/1h5auK/5Tm2rHhRWOmbOxeuuALuvDMMhHnmmdChevMO51zBFLIobC7wDNAMWAtYOz6cy0qnTmFW\ny2nTQqV/r15w0klhKH/nXPnyqYldyVi4EP7+d7jhBjjkkNBkuWvXYkflXONRyKmJ15f0V0mPSRod\nH89le2LnqmvXDi69FN58EzbYAHbYIUyp/PbbxY7MOVcfSXvezwC6ApXAHEKLL+fyYr314OKLYdas\nUFy2446eYJwrJ0kSy3pmdhPwvZk9b2bHEVpjOZdXbdqEZslvvbUiwRx3HLzzTrEjc85lkiSxpFqC\nfShpf0nbAm3yGJNzK0lPMBtvHIrIBg8O45M550pPksRySRya/gzgj8BNhOmJnSuoNm3gootCgmnf\nHrbbLvTinzev7n2dc4WTJLF8bmafm9kUM6sws20B7zPtimbddeGSS8KQ/a1bw9Zbw6mnwgcfFDsy\n5xwkSyzXJFzmXEG1bRvGIHvjDWjSBLbYInSy/PjjYkfmXONWa2KR1C/Od99O0h8knREflZn2c67Q\n2rcP/V9efx0WL4bu3eGCC+CLL4odmXONU6YE0YzQw75J/LlWfCwCfpn/0Jyrn44d4frr4dVXQ8X+\nZpvB8OHw9dfFjsy5xiXJWGFdzGxOYcLJHe9576ZPh/PPD8P2n3sunHgiNGtW7KicK10F63lfjknF\nOYAePeDee8OQ/Q8/DJtvDrffDst+NGWccy6XfKww12hUVYXxxxYvDkPH7L8/KOv/zZxrOHJ1x+KJ\nxTUqZuEO5uyzQ7+Y4cPDRGTOucIOQrmppEclfSxpoaSHJfmYs64sSXDggaEF2YknwpFHhtfTphU7\nMucajiTNhu8C7gE2BDYC7gXuzmdQzuVbkyZw7LGhk2VFBeyxB5xwQpjZ0jmXnSSJZU0zu93MlsTH\nHUDzfAfmXCE0bw5/+EMYqn/99cP0yUOHwuefFzsy58pXksTyuKSzJXWJj6Fx2bqS1s13gM4VQuvW\ncNllMGUKfPIJdOsGV10F331X7MicKz9J+rHMAWrbyMysJOtbvPLeZWPaNDjrrPDz0kvh8MNhNR9v\nwjVw3iqsDp5YXC6MHg1/+lOo9P/rX2G33YodkXP5k/fEImkvM3tW0qHUcMdiZg9ke/J88sTicmX5\nchg1KjRR3mab0ES5W7diR+Vc7hWiuXHqf7MDank41yisthoMHAgzZsBOO4V+L6ec4qMoO1ebJHUs\nXc3snbqW1bJvf+AqwkCWN5nZ8Grr2wC3AF2Bb4HjzWxaXHc28CtgOTAFOM7MvoujK58ILIyHOdvM\nnqjh3H7H4vLi44/DhGN33x1akJ1yCqyxRrGjci57BesgCdxXw7J769pJUhPgWqA/0BMYKKlHtc3O\nASaaWW9gEHB13LcLMBjY1sx6ERLTEXEfA/5mZtvEx4+SinP51LYt/OMf8OKL8MIL0LMn3Hdf6NXv\nnMs8H0uPWL/SWtIhkg6NP48lWT+WPsAsM5tjZkuAkcBB1bbpAYwGMLOZQBdJ7QhD8y8BWkhqCrQA\n3ksPL9nbcy5/Nt8cHnkEbrwxzGi5224wYUKxo3Ku+DLdsXQj1KW0ij/3jz+3JdxN1KUDkD4b+fy4\nLN1k4BAASX2AzkBHM/sUuBKYC7xPmB75mbT9TpE0WdLNkloniMW5vNlzz5BQjjkGDjgg9Oh///1i\nR+Vc8TStbYWZPQw8LGknMxuzCsdOUjAwDLha0iRCPcokYJmkTYHfA12AL4B7JR1lZncC1wMXxf0v\nJiSgE2o6eGVl5Q/PKyoqqKioWIW34VzdmjQJY48NGBA6WvbqBb//Pfzxj7DmmsWOzrmaVVVVUVVV\nlfPj5q0fi6S+QKWZ9Y+vzwaWV6/Ar7bPbKAX8HNgHzM7MS4/GuhrZr+rtn0X4NFYD1P9WF5574pm\n9uzQ/+XVV+Hyy+Gww3yIflf6Cll5v6rGA5vFYWCaAQOAR9I3kNQqrkPSYOB5M1sMzAT6SlpTkoC9\ngTfidhumHeJgwp2OcyVlk03CJGO33RZ67u+2G0ycWOyonCuMjIlF0mqSDl+VA5vZUuBk4ElCUhhl\nZtMlDZE0JG7WE5giaQbwU+C0uO9rwH8Iyen1uO2/48/hkl6XNBnYHTh9VeJzrhB23z3UvwwaBD/7\nGQweDB99VOyonMuvJP1YJpjZdgWKJ2e8KMyVms8/hwsvhDvugHPOgZNPhtVXL3ZUzq1QsLHCJA0D\nPgZGAV+llseWWyXLE4srVdOnh4r9uXNDf5h99il2RM4FhUwsc6h5rLBNsj15PnlicaUsNUXy6adD\n795w5ZWhXsa5YipY5b2ZdTGzTao/sj2xc41ZaorkadNgu+1ghx3gggvg66+LHZlz2Usy531LSedJ\nujG+3kzS/vkPzbmGr3lz+POfYdKkMMhlz57w4IM+PIwrb0mKwu4BJgCDzGwLSS2BMXF8r5LlRWGu\nHD33XBjUsmPHUP/SvXuxI3KNSSH7sWwaOzV+D2BmX9WxvXNuFe25J7z2GvTvH4bnP+ssWLy42FE5\nVz9JEst3kn4YlCIOt+IzgTuXJ6uvHir1p0yB+fN99GRXfpIUhe0L/JnQmfFpYGfgWDMbnf/wVp0X\nhbmG4vkFey+3AAAd30lEQVTn4Xe/g402gmuv9dkrXf4UdM57SW2BvvHlWDMr+bnzPLG4hmTJErjm\nmjA8zEknhQ6WPrily7VCzHm/HSv3X0mdzADMrKRHPvLE4hqi996DM86AV14Jlfv7e/tMl0OFSCxV\nZBj63sz2yPbk+eSJxTVkzzwTisd69AgJplOnYkfkGoKCFoWVI08srqH77ju44gq46qowRP/pp/vY\nYy47hbhjOZTMdywPZHvyfPLE4hqLWbPCgJbvvQfXXw+77FLsiFy5KkRiGUHmxHJctifPJ08srjEx\nC02STz899IEZPhzWW6/YUbly40VhdfDE4hqjRYvg3HPhnnvCzJVHH+0zV7rkCjm68QbAX4AOZtZf\nUk+gn5ndnO3J88kTi2vMxo+HIUOgVatQPOZDw7gkCjmkywjgKWCj+PotfNZG50ra9tvDuHFw0EFh\naJiLLgqV/c4VQpLE0tbMRgHLAMxsCbA0r1E557LWtCmcdloYOXnCBNh6a3jhhWJH5RqDJIllsaQf\nqgEl9QW+yF9Izrlc2nhjeOih0Gv/yCPhxBPhs8+KHZVryJIkljOAR4GuksYAtwOn5jUq51xOSXDw\nwWFisTXWgC22gFGjfGBLlx9JxwprCnQnDOsyMxaHlTSvvHeudi+/DIMHQ+fOcN114adzBau8j0Pm\nnwZcAlwEnCypebYnds4VT79+MHEi7LRTmBr5H/+AZcuKHZVrKJI0N74XWATcQbhjORJoZWaH5T+8\nVed3LM4lM3Mm/PrXodXYTTfBllsWOyJXLIVsbryFmZ1gZqPN7DkzOxHYIsnBJfWXNEPSW5KG1rC+\njaQHJU2WNE7SFmnrzpY0TdIUSXdJWiMuX1fS05LelPSUpNZJ36xz7se6d4fRo+H442GPPeC887xp\nsstOksQyUVK/1IvYKmxCXTtJagJcC/QnTBI2UFKPapudA0w0s97AIODquG8XYDCwrZn1ApoAR8R9\nzgKeNrNuwLPxtXMuC6utFu5aXnstzFy5zTYwZkyxo3LlKkli2R54SdK7kuYAY4Dt453E6xn26wPM\nMrM5sbJ/JHBQtW16AKMBzGwm0EVSO0LR2xKgRWw40AJ4L+5zIHBbfH4b8IsE78E5l0CHDvDgg3Dh\nhXDooXDqqbB4cbGjcuUmSWLpD3QFdgcq4vP9gAMIX/K16QDMS3s9Py5LNxk4BEBSH6Az0NHMPgWu\nBOYC7wNfmNkzcZ/2ZrYgPl8AtE/wHpxzCUlw2GEwdWoYe2zLLeGpp4odlSsnTevawMzmSGoDbJy+\nfYIZJJPUnA8DrpY0CZgCTAKWSdoU+D3QhdAZ815JR5nZndViM0m1nqeysvKH5xUVFVRUVCQIyTkH\nYXTkESPgySdDMdmee8KVV0KbNsWOzOVKVVUVVVVVOT9uklZhFwPHAu8Ay1PL65pBMtbFVJpZ//j6\nbGC5mQ3PsM9soBfwc2Cf2FAASUcDfc3sd5JmABVm9qGkDYHRZrZ5DcfyVmHO5ciXX8LZZ4disuuu\nC2OQuYankK3CBgCbmtnuZrZH6pFgv/HAZpK6SGoWj/NI+gaSWsV1SBoMPG9mi4GZQF9Ja0oSsDfw\nRtztEeCY+PwY4KEEsTjnsrD22nDttTByJJx5JhxxBCxcWOyoXKlKklimAfW++TWzpcDJwJOEpDDK\nzKZLGiJpSNysJzAl3oX8lNAREzN7DfgPITmlGgj8O/4cBuwj6U1gz/jaOVcAu+4aWo517AhbbRXm\nffGCAVddkqKwHYCHgalAqnW7mVmmivui86Iw5/Jr7Fg47jjo2RP++U/YYINiR+SyVciJvqYD1xMS\nS6qOxczs+WxPnk+eWJzLv2+/DU2Tb7kFrroqFJH5jJXlq5CJ5VUz2yHbExWaJxbnCufVV+HYY6Fb\ntzBjpd+9lKdCVt6/KOkySf0kbZt6ZHti51zDscMOYTKxHj2gd2+4+26ve2nMktyxVFFDn5SELcOK\nxu9YnCuO1N3L5puHu5f11y92RC6pghWFlStPLM4Vz7ffQmVl6GB5zTWhJ78rfXlPLJKONrPbJZ3B\nyncsIlTe/y3bk+eTJxbnim/s2HD30rt3aDnWtm2xI3KZFKKOpUX8uXa1x1rxp3POZdS3L0yatKLf\nyyOP1L2PK39eFOacK4gXXwx3L7vtFpomt2pV7IhcdYVsFeacc1nbdVeYPBnWXBN69YKnny52RC5f\n/I7FOVdwTz8NJ5wABx4Iw4dDy5bFjsiB37E458rYPvuEu5cvvgizVb78crEjcrlUZ2KRtIGkmyU9\nEV/3lHRC/kNzzjVkbdrA7bfDZZfBwQfDOefA998XOyqXC0nuWEYATwEbxddvAafnKyDnXONy6KHh\n7mXqVNhxx/DTlbckiaWtmY0ClgHE+euX5jUq51yj0r49PPwwnHwy7LFHmKly2bJiR+VWVZLEsljS\neqkXcWbIL/IXknOuMZJChf64cfDQQ7DXXvDuu8WOyq2KJInlDOBRoKukMcDtwKl5jco512h17QpV\nVfCzn4XBLW+/3Qe0LDeJmhtLWh3oHl/OjMVhJc2bGztX/l57DX71qzCZ2PXXw3rr1b2PW3WFbm7c\nB+gNbAcMlDQo2xM751xdtt4axo8PQ8L07u2dKstFkmHz7wC6Aq8RK/ABzOyU/IaWHb9jca5heeaZ\nMBXyL38Zmig3b17siBqeQk9N3LPcvqU9sTjX8Hz6KQwZAtOnw113hYEtXe4UsihsKrBhtidyzrls\nrbsu3HMP/OlPodXY3/4Gy5cXOypXXab5WB6NT9cCtgFeAb6Ly8zMDsx/eKvO71ica9hmzw4V+y1a\nhAnFOnQodkTlrxATfVXEp0aY3CudmdnzdR5c6g9cBTQBbjKz4dXWtwFuIdThfAscb2bTJHUHRqZt\n2hU4z8z+IakSOBFYGNedbWZP1HBuTyzONXBLl4b6lmuvDa3GDjmk2BGVt0LWsVxuZn+qtmy4mQ2t\nY78mwExgb+A94FVgoJlNT9vmCmCRmV0ck8k/zWzvasdZLe7fx8zmSboA+LKuGSw9sTjXeIwdG+5e\nKirg6qt9tORVVcg6ln1qWPazBPv1AWaZ2ZzY72UkcFC1bXoAowHMbCbQRVK7atvsDbxtZvPSlmX9\nxp1zDUdqpsqlS2HbbWHChGJH1LjVmlgknSRpCtBd0pS0xxzg9QTH7gCkJ4P5cVm6ycAh8Xx9gM5A\nx2rbHAHcVW3ZKZImx1GXWyeIxTnXwK29dqhruegi2G8/uPxyr9gvlkx3LHcBBwCPAPvH5wcA25nZ\nUQmOnaQcahjQWtIk4GRgEml9ZSQ1i+e8N22f64FNgK2BD4ArE5zHOddIDBgAr74K//0v7LsvvP9+\nsSNqfJrWtsLMviAMNnnEKh77PWDjtNcbE+5a0s/xJXB86rWk2cA7aZvsB0wws4Vp+3yUtv1NhHHM\nalRZWfnD84qKCioqKur5Fpxz5ahzZxg9Gv7yl1A0duONcMABxY6q9FRVVVFVVZXz4+ZtamJJTQmV\n93sB7xOaK1evvG8FfGNm30saDOxsZsemrR8JPG5mt6Ut29DMPojPTwd2MLMjazi/V94753jpJTjq\nKNh/f7jiClhzzWJHVLpKfmpiM1tKKN56EngDGGVm0yUNkTQkbtYTmCJpBvBT4LTU/pJaEiruH6h2\n6OGSXpc0Gdgdn3TMOZfBzjuHwSw//hj69IFp04odUcOXdHTjDYAdCPUmr6QXR5Uqv2NxzqUzg1tv\nhaFDQxHZ4MFhDhi3QiH7sRwOXAGkOkTuBpxpZvfWvlfxeWJxztVkxgw44gj4yU9C3UubNsWOqHQU\nsijsXEI9xiAzG0S4czkv2xM751wxbL556FDZoUMYlv+ll4odUcOTJLGIFcOnAHyCd1B0zpWx5s1D\nD/1rr4VDD4VLL4Vly+rezyWTpCjsCsIkX3cREsoA4PXqw7yUGi8Kc84lMX9+aDW2+uphGuQNG/FY\n7gUrCjOzM4EbgK2AXsANpZ5UnHMuqY4d4bnnYJddQp+XJ58sdkTlL8kdy48GnEwyCGWx+R2Lc66+\nnn8+DGZ51FFw8cXhLqYxKWTl/b41LEsyCKVzzpWV3XeHiRNhypTw/N13ix1RecrnIJTOOVd22rWD\nRx8Nlfp9+sCDDxY7ovKTaaKvVkAbwkCRQ1nREuxLM/ukMOGtOi8Kc85la9y40OflwAPDaMlrrFHs\niPKrYB0ky5UnFudcLnz2GRx/PMybB/fcA127Fjui/Cn5scKcc64haNMGHngABg0KE4rdd1+xIyp9\nfsfinHMJjR8f5nvZbz+48sqGVzRWsDsWST1rWFaR7Ymdc67cbL99mPb4gw/CqMlvv13siEpTkqKw\neyQNVdBC0jWECn3nnGt0WrcOxWHHHAP9+sH99xc7otKTpINkS2A4sD2wFmFol2FmVtKzSXtRmHMu\n3159NRSNpVqNNWtW7IiyU8jK+6XAN8CaQHPgnVJPKs45Vwg77BCKxmbPhl139Q6VKUkSyyvAt4Q7\nll2BIyWV9FwszjlXKG3awEMPweGHhw6V//1vsSMqviRFYTuY2avVlh1tZrfnNbIseVGYc67QXnoJ\nBg6EI4+ESy6Bpk2LHVH9FLIobIKkoyWdH0/cCXgz2xM751xDs/POoWhs0iTYa6/QeqwxSpJYrgP6\nAUfG14uBf+YtIuecK2Pt2sFjj4XEst12MHp0sSMqvCSJZUcz+y2hAh8z+xRoZINJO+dcck2awPnn\nw223hWKxSy+F5Y2oyVOSxPK9pCapF5LaAY3oEjnn3KrZZ5/QW/9//wtNkj/7rNgRFUaSxHIN8CCw\nvqRLgZeAy/IalXPONRAdOkBVFWy2WSgamzCh2BHlX5Kpie8gDJt/GfA+cJCZ3ZPk4JL6S5oh6S1J\nP5pxUlIbSQ9KmixpnKQt4vLukialPb6QdGpct66kpyW9KekpSa3r84adc67QVl8d/v53GD4c+veH\nf/8bGnKj1UzzsaxbfVH8afBDXUvtBw7FZzOBvYH3gFeBgWY2PW2bK4BFZnaxpO7AP81s72rHWS3u\n38fM5km6HPjYzC6PyaqNmZ1Vw/m9ubFzruTMnBkmEdt+e7juOmjRotgRrVCI5sYTgQnx58eEJsZv\nxudJbub6ALPMbI6ZLQFGAgdV26YHMBrAzGYCXWIdTrq9gbfNbF58fSBwW3x+G/CLBLE451xJ6N4d\nxo6F77+HnXZqmANZ1ppYzKyLmW0CPA3sb2brmdl6wM/jsrp0AOalvZ4fl6WbDBwCIKkP0BnoWG2b\nIwjjk6W0N7MF8fkCoH2CWJxzrmSstRbceSeceGJILo8+WuyIcitJ5X0/M3ss9cLMHgd2SrBfknKo\nYUBrSZOAk4FJwLLUSknNgAOAGoeQiWVdXt7lnCs7Epx8chgO5re/hXPPhWXL6t6vHCQZcOB9SecC\ndxDqWY4k1HnU5T1g47TXGxPuWn5gZl8Cx6deS5oNvJO2yX7ABDNbmLZsgaQNzOxDSRsCH9UWQGVl\n5Q/PKyoqqKioSBC2c84VTr9+oaXYEUeECcTuugvati3Muauqqqiqqsr5cZOMFbYecAFhAEqAF4AL\nE1TeNyVU3u9FaE32Cj+uvG8FfGNm30saDOxsZsemrR8JPG5mt6Utuxz4xMyGSzoLaO2V9865crd0\nKfz5zzBqVJjvZfvtCx9Drirv8zo1saT9gKuAJsDNZnaZpCEAZnaDpH7ACEJx1lTgBDP7Iu7bEngX\n2CTe2aSOuS5wD9AJmAMcbmaf13BuTyzOubJz//3wm9/AZZeFOphCKlhiic2A/wh0YUXRmZnZntme\nPJ88sTjnytXMmXDwwbDLLnDNNbDGGoU5byETy+vA9YRmx6mqJTOzku4/6onFOVfOvvwSjjsO5s4N\ndzEbb1z3PtkqZGKZYGbbZXuiQvPE4pwrd2ZwxRWh1/5dd8Eee+T3fIVMLJXAQuAB4LvU8roq74vN\nE4tzrqF49lk46ij405/g9NNDU+V8KGRimUMNfUVi58mS5YnFOdeQvPsuHHIIdOsGN90ELVvm/hxl\n0SqsmDyxOOcamm++gZNOgokT4cEHYdNNc3v8vCcWSXuZ2bOSDqXmO5YHsj15Pnlicc41RGZh8MqL\nLgoTifXvn7tj5yqxZOp5vxvwLGFIlZq+oUs6sTjnXEMkwe9+B1ttBQMGwKmnwtCh+at3WRVeFOac\nc2Vq/vwwBH+nTnDrrWFwy2wUYth855xzJaxjR3jhBWjVCvr2hVmzih1R4InFOefK2BprwI03huKx\nnXeGJ58sdkQZEoukw+LProULxznnXH1JobXYffeF3vrDhxd36uNMrcImmdk2qZ8FjitrXsfinGuM\n5s0L/V26doVbbqlff5dCNDd+htAabAfgxWqrzcwOzPbk+eSJxTnXWH3zTRghefLkMJFYly7J9itE\nYmkGbEuY4OsEwiRfKWZmz2d78nzyxOKca8zM4OqrYdgwGDkSksxzWMghXdqZ2UJJa4VgbXG2Jy0E\nTyzOOQfPPBPGGTv33DAVcqb+LoVMLL2A/wDrxUULgWPMbGq2J88nTyzOORe88w4cdBD06RN67dc2\nv0sh+7H8G/iDmXUys07AGXGZc865MtC1K7z8Mnz2Gey5J3z4YX7PlySxtDCz0akXZlYF5GFcTeec\nc/my1lqhOfK++4Y7l/Hj83euJIlltqTzJHWRtImkc4F38heSc865fFhtNbjgArjqKthvvzB5WD4k\nqWNZF7gQ2DkuehGoNLPP8hNSbngdi3PO1W7KlFDvMmAAXHIJNGni87HUyROLc85l9vHH8Mtfwtpr\nw513QqtWPgilc865LLRtC08/HQaz7Ns3d8f1OxbnnHNcfz389rdlcMciqb+kGZLekjS0hvVtJD0o\nabKkcZK2SFvXWtJ9kqZLekPSjnF5paT5kibFRw7nT3POucbppJNyd6w6E4ukjeOX/8L4uF9SxwT7\nNQGuBfoDPYGBknpU2+wcYKKZ9QYGAVenrbsaeMzMegBbATPicgP+ZmbbxMcTdcVSqqqqqoodQiIe\nZ255nLnlcZaeJHcstwKPABvFx6NxWV36ALPMbI6ZLQFGAgdV26YHMBrAzGYCXSS1k9QK2NXMbonr\nlprZF2n7ldAknKuuXD5oHmdueZy55XGWniSJpZ2Z3WpmS+JjBLB+gv06APPSXs+Py9JNBg4BkNQH\n6Ax0BDYBFkq6VdJESTdKapG23ymx+OxmSa0TxOKcc65AkiSWTyQdLamJpKaSfgV8nGC/JDXnw4DW\nkiYBJwOTgGVAU8LIyteZ2bbAV8BZcZ/rCYlna+AD4MoE53HOOVcoZpbxAXQhFH8tjI+HgU4J9usL\nPJH2+mxgaB37zAbWAjYAZqct3wX4by2xTanlWOYPf/jDH/6o36Ou7/Ykj6bUwczmAAfUtV0NxgOb\nSeoCvA8MAAambxDrUr4xs+8lDQaej8PyL5Y0T1I3M3sT2BuYFvfZ0Mw+iIc4GJhSS9wNoh7GOefK\nTa2JRdJQMxsu6ZoaVpuZnZrpwGa2VNLJwJNAE+BmM5suaUhcfwOhtdgISQZMJUwolnIKcGeccOxt\n4Li4fLikrQnZdTYwJMkbdc45VxiZZpA8wMwelXQs4Uv8h1WExHJbAeJzzjlXZmqtvDezR+PTr83s\ntrTHCOCbgkRXgwSdLo+KLcZel/SSpK2S7ltCcc6JyydJeqXIcR4U45wkaYKkPZPuW0JxFuR6Jr0e\nknaQtFTSofXdtwTiLKXPZoWkL9I6S5+bdN8ix3le2rqSuZ5psU6SNFVSVX32XUmCSvhJSZYV4kEo\nUptFqLRfHXgN6FFtm35Aq/i8PzA26b6lEGdaI4Z1S+R6tkx73ovQN6kUr2eNcRbqeia9HnG754D/\nAoeW4rWsLc4S/GxWAI+s6nssdpwleD1bE+qyO8bXbVf1etZ6xyJpv1i/0kHSPyRdEx8jgCW17Zdn\ndXa6NLOXbUVnynGEfjGJ9i2ROFMK0fggSZxfpb1cixVNzUvtetYWZ0q+r2fS63EKcB+hhWV99y12\nnCkl8dnMEEspXs9M16xUrueRwP1mNh/AzFb5bz1TP5b3gQnAt/Fn6vEI8NN6vaXcSdLpMt0JwGOr\nuG82sokTQp3WM5LGK7SWy5dEcUr6haTpwOPAqfXZtwTihMJczzpjlNSB8Ad5fVpcifbNoWziTD0v\nlc+mATvFItDHJPWsx76lEGdqXalcz82AdSWNjvEcXY99V1JrqzAzmwxMlnSXmX2fNPo8q7mlQQ0k\n7QEcz4oJyhLvmwPZxAmws5l9IKkd8LSkGWb2Yq6DJGGcZvYQ8JCkXYHbJW2eh1gyhpBoo2pxAt3j\nqkJczyQxXgWcZWYmSaz4T7XUPpu1xQml9dmcCGxsZl9L2g94COiWh1gyyTbOUrqeqxM6pu8FtABe\nljQ24b4rSdLzvovCKMNvSJodH8Wamvg9YOO01xsTsudKFCrCbwQOtBUzXSbatwTixGI/HTNbCDxI\nuBUtWpxpcb1I+Gdk3bhdSV3PlFScktaLrwtxPZPEuB0wUtJs4FDgOkkHJty3FOIsqc+mmX1pZl/H\n548DqyvMeFtSn80McZbU9STclTxlZt+Y2SfAC0DvhPuuLEGlz0uEDoqvE8byqgQuzndlUy2xNCX0\naekCNKPmCqhOhIqmvvXdt0TibAGsHZ+3jNd/3yLGuSkrmqVvC7xdoteztjgLcj3rez0IA7keUorX\nMkOcpfbZbJ/2O+8DzCnF65khzlK7npsDzxAq61sQOp/3XJXrWWfPe2BNM3tGkszsXaBS0kTgvLp2\nzDVL1unyfKANcH24i2eJmfWpbd9Si5MwnM0DcVlT4E4ze6qIcR4KDJK0BFgMHJFp31KLkwJdz4Qx\n1mvfXMeYbZyU3mfzl8BJkpYCX1O6n80a46TErqeZzZD0BOEmYjlwo5m9AVDf61nnDJKSxgC7ElqI\nPEuo1L/MzLpn3NE551yjlCSx9AGmE9o4XwysA1xuZmPzH55zzrlyU+8572MrkcPNbFR+QnLOOVfO\nMnWQXEvSGZKuk/RbSatJOpjQM/OowoXonHOunGQahPIBYBHwMrAvoYnZt8CpZvZawSJ0zjlXVjIl\nltfNbKv4vAlhtsbOZla0ASidc86VvkwdJJelnpjZMuA9TyrOOefqkimxbCXpy9QD6JX2elGhAnSu\nPiQtTrBNlaTt6tjm95LWzLD/u9WWPRT/TupN0gilDU2fD5IqJS2XtGnast/HZdvG13+RNHdV34dz\nKZnmY2liZmunPZqmPV+nkEE6Vw9Jmjmm5vfO5DRC7+PafCZpZwBJrYENE567tnjyzQg9qY9IW3YY\nYebWlEfI35AirhFJMlaYc2VHYcKiKkn3Spou6Y5atttX0hiFycHukdRS0qnARsBoSc/WsJsBo1jx\nJX0IcD9xsMbYovKZeMzXU+NsxXWDFEa5fU1S+iysuylM+PZ2TXcvkrrE9/FvhUmYnpTUPK7bWtLY\neNwHYqKryUPE4c7jncvnwCepuM1snJl9WMu+ziXmicU1ZFsT7jx6Al0l7ZS+UlJb4M/AXma2HWFa\niD+Y2T8II0xUmNletRz7WUIyWA0YQEg0Kd8AB8dj7glcGc+3RTzfHmaWig3CF/sGZrYzsD8wrJZz\n/gS41sy2JCSFVAL6D3CmmfUm3JVcUMv+i4C5MY70mAs5urJrBJKMFeZcuXrFzN4HkPQaYRC9MXGd\ngL6EpDMmjtfULG19XZYB/wcMBJqb2bvxGBD+YbtMYfj+5cBGktoTksw9ZvYpgJl9Hrc3wt0Ecfym\n9rWcc7aZvR6fTyCMPL4OYSbS1FDrtwH3Zoh7VIx5X8Lw6MclfL/OJeaJxTVk36U9X0bNn/enzezI\nVTi2EWbSe5Af3yEcBbQFtjWzZQrDzzeP+9Q2W2D6nEe1bVP9/TSvYZtMsxEaYarhK4BXzezLtGTo\nXM54UZhrrAwYC+ycaikV61c2i+u/JIyLV/sBwl3CpcDd1VatA3wUk8oehOkmjDCH/GGKc3FIapPl\ne5CZLSI0JNglLjsaqMqw/TfAUOAvWZ7buVp5YnENTfVpdGvfMMzpfSxwt6TJhGKw1Kjd/waeqKXy\nPv0Yf0sVbaWd705ge0mvE77op8dt3yB8oT8fi+aurGfc1ZenXh8DXBHfw1bARZn2N7NRNY2eIely\nSfOANSXNk3R+LcdxLqN6D0LpnHPOZeJ3LM4553LKE4tzzrmc8sTinHMupzyxOOecyylPLM4553LK\nE4tzzrmc8sTinHMupzyxOOecy6n/BxxlTRO4HfPVAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x589b2b0>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg515"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate static pressure ratio across the rotor and diffuser and estimate diffuser staic presure rise\n",
+ "print(\"Example 8.3\")\n",
+ "M1=1.2 ##Mach no at impeller tip\n",
+ "gm=1.4 ##gamma\n",
+ "p31=(1+(gm-1)*M1**2)**(gm/(gm-1)) ##p=p3/p1\n",
+ "p32=p31**(1/2.) ##p31=p3/p2\n",
+ "Cp=(2/(gm*M1**2.))*(2.2-1) ##static pressure rise in radial diffuser\n",
+ "print\"%s %.3f %s\"%(\"(a)The static pressure the rotor and diffuser p3/p1 :\",p31,\"\")\n",
+ "print\"%s %.4f %s\"%(\"The static pressure ratio across the diffuser p3/p2\",p32,\"\")\n",
+ "print\"%s %.3f %s\"%(\"Diffuser static pressure rise :\",Cp,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.3\n",
+ "(a)The static pressure the rotor and diffuser p3/p1 : 4.914 \n",
+ "The static pressure ratio across the diffuser p3/p2 2.2168 \n",
+ "Diffuser static pressure rise : 1.190 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg517"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "print \"Example 8.4\"\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "#calculate and graph the inducer D-factor for solidity of one and over a range of impeller tip mach number and radius ratios\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "M=2;\n",
+ "i=1;\n",
+ "sigma=1\n",
+ "z0=numpy.linspace(0.1,0.5,5)\n",
+ "gm=1.4;\n",
+ "\n",
+ "for M in range(2,4):\n",
+ " g1=numpy.zeros(5)\n",
+ " gc1=0;\n",
+ " for r in z0:\n",
+ "\t\ty=1-(1/(1+(r**2)*(M**2)))+((M*r)/(2*sigma*(1+(r**2)*(M**2))**(1/2.)))\n",
+ "\t\tg1[gc1]=y\n",
+ "\t\tgc1=gc1+1;\n",
+ " number=0;\n",
+ " pyplot.plot(z0,g1)\n",
+ " i=i+1;\n",
+ " pyplot.xlabel(\"Eye-to-lip radius ratio (r1/r2)\")\n",
+ " pyplot.ylabel(\"D inducer\")\n",
+ " pyplot.title(\"Inducer performance and centrifugal compressor design parameters (solidity=1)\")\n",
+ " pyplot.legend(\"Mt/Mz1=2\",\"Mt/Mz1=3\",\"Mt/Mz1=4\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.4\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAEZCAYAAACOzrzoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYFFXWwOHfGTICIoIioKBIMIAYQJRVBlREBAwoJlSC\ngiiIrLqmXUX9dld33RUFJYiCKOqCipIkO6BIzghIFgkCApKGMMyc749bA0XbM9NAz1R3z3mfZ57p\n6kqnq6vq1L11+5aoKsYYY4yJf0lBB2CMMcaY6LCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNM\ngrCkbowxxiSIXE3qItJDRD7KzXUEQUTOFJGpIrJbRP4ddDzxJpb3CxHZIyJVvNfFRGSkiPwuIv/L\n5fUOEpFXc3Md+ZGIZIjIeSe5jCUicm20YjLHT0SKiMiPInLmSS7nyP4gIn1E5K/RmDYviMjnItI0\np+kKRrCgdUAHVZ10AnEk6o/gOwJbVbVU0IHEqTzfL0QkBfhIVd/PbjpVLekbvAM4Ayijqhm5GB64\nbZKox0tcU9WLg44h1ojIIOAXVf1bHq2yIzBFVbdEa4Gq2vlEphWRZNy55OxoxeIttzzQH7gcOAuo\noqrrfZO8DvQBxma3nEhK6nF1shGRXKt9ECcJqAwsO8Fl5HghZXJFtvtwFt9LZWBFHiT0I2Hk0XpO\nWtD7cdDrjzXxtj1EpMBxztIJiMnavSjKAMYArcKNVNXZQCkRuTzbpahqtn/AWqCx97ot8D3wb2AH\nsAZo6pv2XGAKsBsYD/TCXdEAJOOu7PzLXgdc570uADwPrPLmnwNU8sbVBCYA24HlwJ2+ZQzCXb2M\nAfZmxhqynhTgn8BMYBfwFXCab3x94AdgJ7AAaBgy7/95nzsVt2MdAg4Ce4DGQGGgJ7DR+3sTKOz7\n3BuAvwCbgcHAS8Awb1m7gUVANeA5YAvwM3CDL4Z2wFJv2tVAR9+4zOX/2Zt3E9DWN74Y8B9vW/8O\nfAcUzelzh9mGz/q+mx+BW33jTni/yGJdt3jx7PLWeaP3/qnA+95n3AC8CiTlFAPwd+AwsN/7zt72\n3s8AHgVWAqt971UFXva+40PePO2BHv64gSre9Em+zznV+5wTgHdCph/m7QO/e9vjQt+4gcCr2WyT\nh337wI/Apd77F+D20Z3AEqBFyLHxLu7Y2ON99+WBt7zplwF1Qo7HZ73l7wA+AIpksR9/iLsIydwv\nfgP+h3dcAUWBj733dwKzgDN839Vq77OsAe713hfgr14cW7x1lArZ1u1xx0dKFtvpaY7uH+29ec7z\nxhUB3vDm/xV33sg8FsoCo7xYtwNTszhPFfPi2uF9H3/Bd17zpn0SWOh9z59lbsMwsbYFpuGOh9+9\n76Oxb3wkx73/+yjtfYatXnwjgYoh57JXvXXuAUZ4n3sI7libBVT2TR/2vIsrNfvPgV9771cAvvDW\nvwbo6ltWD+Bz3Dlvl/fd1MOd53d538d/sthO5+DOvUm+95rh9tPd3nZ4MuRYWenF/TVwlm+cf38Y\nhO+YI/t9Z5C37YrjziPp3mffjStVp+Jq9DKXdZm3HQrklGPDfN6C3rrPCTOuP/BitvNHsILQpH4I\n6IA7AB8BNvqmnY47aAoB13gfeLBvJwxN6v5lP42X3LzhWkAZ4BTgF+BBXM1CHWAbcIFvY/8OXJV5\n4Ib5DCneF3Wh96V8ztGLjYq4E09mArjeGz7dN+863MkzydvgA4FXfMt/BZccy3p/0zLHe587DXdR\nUQh3suvh7Rg34C5mPvTW8Zw3/BCwJmQHPtd7fS2wj6Mn9czl9/Dmvckbf6o3/h1gMm7HS8Il8sLZ\nfO6yWewHdwDlvdetcRdQZ57sfhFmPfW87zPzJFoBqOG9Ho47ERcDyuEu0jpGGMO3QPuQdWUA43An\nwyK+9zIP5Jf8cXrD2SX16cC/cPtIA9zJyj9/W9z+XAh34TffNy7LpA7cidt/L/eGq+JOdIVwCfVZ\nb52NvG1b3XdsbAMuxSW0Sbj9rI23jV4FJvvWsw53DFYETsNdJL2azX7cDbffV/De6wt84k3fCZc0\ninrruhQo6X3+XRw9zs/Eu7jBnUhXetv1FFyCGByyrQd533+447wpLjlkHuefhHyfb+Iu6EsDJbz4\n/uGN+ydu3yrg/TXI4jz1Gm5fOtXbTouA9SHTzsBdPJ2GS8qdsvhe23rbtJu3zta4fT/zwiiS497/\nfZQBbvNelwCGAsNDzoMrcBefpXBJcSWuYJJ5HvrAmzan827oOTAJmIu7KCvorWM10MQb3wN3fLb0\nhovijpf7vOHiwJVZbKebgSUh723O/I687yJzuzT24qyDO8+9jau2D5fUj3wGct53/NM25I+5bDTw\niG/4TeAt7/WfcBeLWf1dHbKs7JJ6d+CLcNvpyDTZjQyzQ7cFVvrGFfdWfgbuJJMGFPONH0LkSf0n\nfKUM3zR34btq9t7rh3e1gjvIB+XwGb7FO3i94QtwV5lJwDOEJBjcPYsHfPP2CBl/zAkYd2L1l0yb\nAGt9n/sgXsndt4OP8w23wF31iTdc0tuupbL4PMOBx33LD72K3YJLjkneuFphlpHt545gv5jP0QP0\nRPaLsCV177v9wxU77uR/AK9k5b13D15Syi4G3/fYIWSZGUBymPcyD+QeHJvEQ4ereNMn+T6nP76P\nsvmcpb15S4bbp0KmHYev1ON7/xpgc8h7nwAv+Y6Nfr5xXYAffcO1gJ0hx6O/NHgTsCqb/Xgpx5Ys\nz8KduAvgSpnTQvc9XLLYCdzu3ye8cZM49sRY3Vtekm9bV8lmn/yAY4/zapnfJ+7CYm/md+uNvwrv\n4hlXM/MVUDXMcv3nqdUcW4vWgWNL6mvxah684deBPlnE2xbfhaf33kygTYTH/THfR5jp6wA7fMPf\nAs/5ht8ARvuGm+NdaBLZedd/DrwS+Dlk+uc4epHQg5DaFVxtVQ+yKEj4prsPmB7y3s+4GoNSIe+/\nD7wWsr8dwkuQZJ2os9x3Qo9Pwueyu4DvvdcFcBcdV2T3ubL5vNkl9YeBSdnNfyL3n3/NfKGqqd7L\nErir9Z2qut837c9Efp+wEu6ACVUZuFJEdmb+AffiTvLg7pX+EsHy/dOsx13dlvWWf2fI8hvgrrTD\nzRtOBdxn9S+/gm94m6oeCplnq+/1fuA39b41bxjcdkVEbhKRGSKy3YuvGXC6b/7teux931Rv3rK4\nK+KstmtOn/sIEXlAROb7pr04JIbj3S+ykt1+UAjY7IuhL67EnlMMR94Os9xI9p1IVMCdQA+EW7aI\nFBCR10RklYjswp38wX1HOclqm1Tgj/H/zNF9Tzl2PzvAH/c7//Y5JmZy3o+rAMN938dS3G2OM3AX\nNOOAz0Rko4i8LiIFVXUf7gT4CLBJREaJSA1veWfxx+OoIEeP9dD4Qp0VJv5M5XAXenN98X7D0e3/\nb9zF+XgRWS0iz2SxjtBtviHMNL/6Xofbxn4bQ4Z/9j5HJMf9Md+HiBQXkX4iss7bx6YAp4qI/xzs\nb2gWuj8c8MUayXnXrzJQIWT653D7QqbQbdUBd+G2TERmicjNhLcTV9Dxa4XbHutEJEVE6nvvH7MP\nefvbdlytSnay23ci8TVwoffLmRuAXao65ziXEYmSuNqcLEWzccVm4DQRKe47oVbG3XsAV3VUPHNi\nr6GE/4T8C3A+7sTgtx5XfdLkJOM7J+R1Gq6aZj2uNNUxm3nDJQO/TbgTXGbjuXO897KaP6flHSEi\nRXDVkG1w967SRWQ4kV0s/YY7UM/HVRP6RfK5M2OojLuX0xh3xawiMj/CGHLaL0Jl7gfh3j+Iuy1y\nIg3XstrmEX8XuJJecd+w/wJoM1BGRIr5LmDOwV1xgzshtsTdVvhZRErj7ntGsg2z2iabgLNFRHwX\nhJVx9z9PVOhxkt1+vB5op6rTs1jWK8Ar3v4zBlcb94GqjsclzyK49g7v4aqXM48j//oP4xJRZlzZ\nfV+bw8Sf6Tdcgr1QVTeHzqiqe4GngKdE5CJgsojMUtVvw6zjbI5u45xaQOe0f4Umm8rA1xEe96HL\nfhKXJOup6lYRqQPM8+YJF0d2seV03g23L6xV1erZTH/MPKq6CndcICKtgM9FpExIAQDcuetcEUnK\nPPa9hHmrl0e64m41ZO6vVTJnFJFTcBdCoRdPobLbd/yfwf/f/1kOiMgw3PdVE9d2KjOGa3D7f1aa\nquq0HOLLdAGuvVGWotZSXFV/xjV6eFlEConIn3DVOZlWAEVFpJmIFMLdeyniGz8AeFVEzvdamdcW\nkTK4hh/VRaSNt9xCIlJXRGp680VyUhSgjYhcICLFcSebYd6J8GOghYg08UpTRUUkWUQqhswfujy/\nT4G/ikhZESkLvEj2LTWPp5VzYe/vNyBDRG7CVe/nyDsAPgD+KyJneZ/vKhEpTGSfO9MpuB35NyBJ\nRNrhSuqRxJDTfhHqfaCdiDQWkSQRqSgiNbwT8Xjvs5T0xlWVyH8/vAV3L/pkLACuFZGzReRUXEkE\nOOZz9vA+51Uc+zlL4C5Kdngnmn+ELDu7fWIALtlc5h0b54vIObh7t6nAX7x1Jnvr/CyCZYYjwKPe\nNi8DvOBbVjh9gX94sSAi5USkpfc6WURqeSfdPbiL6HQROUNEbvG2QRruYj/zAu9ToLuIVBGRErht\n9NlxXMQNBdr6jvOXMkd4y3gP6Cki5bwYK4pIE+/1zZnnHly7hHSOXpCFruM5ESntHStdyD455vQd\nnCEij3vf3524hDCGEzvuS+AuXHZ5399LYaaRLF6HGk32590tuNsamWYBe0TkL+L6dyggIheLyBVZ\nrctbdmbBbhduO/5hm6vqBlwtypXefIVE5D4ROVVVMxus+fehdiJyiXdh9A9ghh770zD/58+MK8t9\nJ8y0W4DTRST0J82DcbedWuI7/6vqd6paMpu/IwldRIrialfB5cuiHOtaXA1Tlo43qf/haitk+F7c\nht+BS2wfHplIdReupfEAXDXMXo6t7vgvbsOOx33B7+HuT+7F7cx34662NuMahxTOJqZwcX+Euw+0\n2Zv3cS+uDbjW1s/jqqLW4654s7siDl3n/+FO6Iu8vznee5HOn9U0qOoeL9ahuO16D66qJ7t5/Z4C\nFgOzcdVQ/8Tdf8/qc/9hn1DVpbgW9NNxVYsX4xpRRfp5stwvwqxrNu7AeBNXzZTC0avmB3Df3VJv\nWcM4WlrOKYa3gDtEZIeI9Mxq/SHzHLNMVZ2Ia+G9CLc9R4ZMfx/uPu12XCO0/+Hu54E74H/G7cNL\ncNsyy3UdE5Dq57gS7Se4hPMlrjFVGq49xk24WqfewP2quiKLZea0jdRbx3hcdf9Kst+P38I1Nhsv\nIru9z1TPG1ce9/3swn1fKbhjMAnX2GcjbjtdA2T+BvgDb5qpuNbTqbhSWFbrP/aDqI7F/QplMq4Q\nMSlknmdwyWGGuOrpCbiSLbh7qBNwCeIH4B1VnRJmNa/gzl9rcdtpGEe/47Bh5RD3TG/d23D7TCtV\n3XmCx31PXCPC37zP8E2YaSLaH7z1Z3fefR9X3bxTRL70Lpqa4+7jr/E+T39cg7ys1nUjsERE9uCO\n97tV9SDh9QPu9w23AdZ632NH3LGHuv5U/oar5diEa7B3d06fP4J9xz/tctzFwxrvfFLee38a7qJk\nrqqe6G29VNwxrrjaoH2ZI0SkLrAnp2r9zIZZCU1EvsVVNX+QxfgPcC0st6pqrTDj78P9dERwB31n\nVQ2tzjbmGOJ6oVuqqi8HHUskRGQtrjHh5KBjiRci0hloraqNTmDetrjtfU3UA0swXu3ifFyDxah1\nQBNtIjIR9wuQsLnmJJf9OTDAuwDJUn7q+z27qqaBuJ80ZGUNcK2q1sZdTfePZmAmMYjIFd4tgSSv\nurQlrkW1SRAiUl5EGnjfcQ1c/xDDg44r0anqIVW9KMYTel3c79NzpUtpVb0jp4QO0W0oF+uyrJJQ\n1e/E6+87i/H+hkAzca2RjQlVHlc1fjru1tIjqrow2JBMlBXGtSU4F3d76FNcBz8nIpJbhyYOiMiH\nuNuZj3st7oOLJT9Uv0fCS+ojw1W/h0z3FK5zjxxbjRtjjDF5KT+V1E+aiDTC9XrVIOhYjDHGmFCW\n1CMkIrVxLfKbqurOLKaxag9jjDkBqho3DzSKZfmpodwJ836H+yWu+8ZV2U2bXfd9sfL30ksvBR6D\nxWlxxmuMFmf0/0z0WEkdEJFPcZ30lxWRX3AdDxQCUNV+uN9Wnwb0cX1TkKaq9bJYnDHGGBMIS+qA\nqt6Tw/iHcE9OM8YYY2KWVb/nQ8nJyUGHEBGLM7riIc54iBEsThO77CdtUSTHPFfDGGNMJEQEtYZy\nUWHV78YYY06KSOT52Ao+ucuSujHGmJMWSbI+nuRvTozdUzfGGGMShCV1Y4wxJkFYUjfGGGMShCV1\nY4wxJkFYUjfGGGMShCV1Y4wxJkFYUjfGGGMShP1O3RhjzEmz36DHBkvqxhhjTsqJ9BK3ZucaRq0Y\nxagVo3IhovzLkroxxphcdzjjMNN/mc7IFSMZtWIUO/bv4OZqN9P5is5MYELQ4SUMe6BLFNkDXYwx\n5qid+3cydtVYRq0cxdhVY6l8amWaV29Oi+otuLzC5SSJa9ZlD3SJHkvqUWRJ3RiTn6kqP23/6Ui1\n+rzN82hYpSEtqregWbVmVCpVKex8ltSjx5J6FFlSN8bkN4fSD/Hdz9+5RL5yFAcOH6B5teY0r96c\nRuc2onih4jkuw5J69FhSjyJL6saY/GDbvm18s+obRq0YxYQ1E6h+enVaVG9B8+rNueTMS467Jbwl\n9eixpB5FltSNMYlIVVmydcmR0viPW3/kuvOuo3m15jSr1owzS5x5Usu3pB49ltSjyJK6MSZRHDh8\ngJR1KUfuj4vIkdJ4w8oNKVKwSNTWZUk9eiypR5EldWNMPNu8ZzNjVo5h5IqRfLvuW2qfWfvI/fEL\ny12Yax3MWFKPHkvqUWRJ3RgTT1SV+b/OZ+RPIxm1chSrdqzixqo30rx6c246/yZOL356nsRhST16\nLKlHkSV1Y0ysS01LZeKaiYxaMYrRK0dTonAJmldrTosaLWhwdgMKFSiU5zFZUo8eS+pRZEndGBOL\n1u9az+gVoxm1chTf/fwdV1S4ghbVW3Bz9Zupfnr1oMOzpB5FltSjyJK6MSYWZGgGszbOOtLIbcPu\nDTSr1ozm1ZvTpGoTShctHXSIx7CkHj2W1KPIkroxJii7D+5mwuoJjFo5ijErx3DGKWccaeRWv1J9\nCiQVCDrELFlSjx5L6lFkSd0Yk5cyn3Q2csVIZmyYQYOzG9C8enNurnYz5552btDhRcySevRYUo8i\nS+rGmNyU+aSzzESe+aSz5tWbc0PVGyhRuETQIZ4QS+rRY0kdEJEPgJuBrapaK4tp3gZuAlKBtqo6\nP8w0ltSNMVG1c/9Oxq0ex8gVI7N90lk8s6QePZbUARG5BtgLDA6X1EWkGdBFVZuJyJXAW6paP8x0\nltSNMSdFVVmxfcWR545H+qSzeGZJPXoKBh1ALFDV70SkSjaTtAQ+9KadKSKlReRMVd2SF/EZYxJb\nVk86e/rqpyN+0pkxYEk9UhWBX3zDG4BKgCV1Y8wJyepJZ8PuHHZCTzozBiypH4/QI8zq2Y0xEQt9\n0tmSrUu4/rzraV6tOb1u6nXSTzozBiypR2ojcLZvuJL33h/06NHjyOvk5GSSk5NzMy5jTAzL6kln\nLzV8KepPOosnKSkppKSkBB1GQrKGch7vnvrICBrK1Qd6WkM5Y0w4QT3pLJ5ZQ7nosaQOiMinQEOg\nLO4++UtAIQBV7edN0xtoCuwD2qnqvDDLsaRuTD6T+aSzzN+OB/Wks3hmST16LKlHkSV1Y/KH1LRU\nJq2ZxMgVI2PmSWfxzJJ69FhSjyJL6sYktjmb5tBrVi+GLxsec086i2eW1KPHknoUWVI3JvEcSj/E\nF0u/oNesXmzas4lH6z5Kh0s7WLV6FFlSjx5L6lFkSd2YxLFl7xb6ze1Hv7n9qHF6DbrW60qLGi0o\nmGQ/Goo2S+rRY3unMcb4zNo4i16zejFqxShaX9iasfeNpdaZYR8JYUzMsZJ6FFlJ3Zj4dCj9EMN+\nHEavWb3Ysm8Lj9V9jPaXtqdMsTJBh5YvWEk9eiypR5EldWPiy+Y9m49UsV9U7iIev/Jxbq52MwWS\nCgQdWr5iST16rPrdGJOvqCozN86k16xejFk5hrsvupuJ90/kojMuCjo0Y06aldSjyErqxsSug4cP\nMvTHobw962127N9Bl7pdaHdpO0oXLR10aPmeldSjx5J6FFlSNyb2bNqzib5z+tJ/bn8uKX8JXet1\n5abzb7Iq9hhiST16rPrdGJNwVJXpG6bz9sy3Gb96PPfWupeUtinULFsz6NCMyVVWUo8iK6kbE6wD\nhw/w2ZLP6DWrF7sP7qZL3S60rdOWU4ueGnRoJhtWUo8eS+pRZEndmGBs2L2BPrP7MGD+AC476zK6\n1utK0/ObkiRJQYdmImBJPXqs+t0YE5dUle/Xf0+vWb2YuGYibWq3YWrbqdQoWyPo0IwJjJXUo8hK\n6sbkvv1p+/l0yaf0mtWL1LRUutTtwoN1HqRUkVJBh2ZOkJXUo8eSehRZUjcm96zftZ4+s/vw/vz3\nqVuxLl3rdaVJ1SZWxZ4ALKlHj1W/G2Nilqoy9eep9JrVi2/Xfcv9te9nWvtpVDu9WtChGROTrKQe\nRVZSNyY6UtNS+WTxJ/Sa1YtD6YfoUrcLD1zyACWLlAw6NJMLrKQePZbUo8iSujEn5+fff+bd2e/y\nwYIPqF+pPo/Xe5zrz7seETvfJzJL6tFj1e/GmECpKinrUug1qxdTfp7Cg5c8yIwOM6hapmrQoRkT\nd6ykHkVWUjcmcvsO7WPI4iH0mtWLDM2ga72utKndhhKFSwQdmsljVlKPHkvqUWRJ3Zicrd25lndm\nv8OgBYP40zl/omu9rjQ+t7FVsedjltSjx6rfjTG5TlWZvHYyb896m2nrp9GuTjtmPzybc087N+jQ\njEkoltSNMblm76G9fLTwI3rP7k2SJNG1Xlc+uf0TTil8StChmRiQmgpjxgQdRWKxpG6MibrVO1bz\nzux3+HDhhzSs3JDeN/UmuUqyVbEb9u+Hb76BoUNh7FioWzfoiBKLJXVjTFSoKhPWTKDXrF7M2DCD\n9nXaM6/jPCqXrhx0aCZgBw64BD50qCuZX3EFtG4NvXpBuXJg13rRYw3losgaypn8aM/BPQxeOJje\ns3tTuEBhutbryr217qV4oeJBh2YCdOAAjBvnEvno0XD55XDnnXD77XDGGcdOaw3loseSehRZUjf5\nyaodq+g9qzcfLfqIRlUa0bVeV66tfK1VsedjBw/C+PEukY8aBXXquBL57bfDmWdmPZ8l9eix6ndj\nTMQyNIPxq8fTa1YvZm+cTYdLOzC/03zOOfWcoEMzATl4ECZMOJrIa9Vyifzf/4by5YOOLv+xknoU\nWUndJKrdB3fz4YIP6T27N8ULFadrva7cc/E9FCtULOjQTAAOHYKJE10iHzECLr7YVa23agUVKhz/\n8qykHj2W1D0i0hToCRQABqjq6yHjywIfA+VxNRxvqOqgkGksqZuEsmL7CnrP6s3Hiz7m+vOu5/Er\nH6fB2Q2sij0fSkuDSZNcIv/6a7jgAlcib9UKKlY8uWVbUo8eS+qAiBQAfgKuBzYCs4F7VHWZb5oe\nQBFVfc5L8D8BZ6rqYd80ltRN3MvQDMauGkuvWb2Yt3keD1/2MI9c8QiVSlUKOjSTx9LSYPLko4m8\nenWXyO+4AypFcXewpB49dk/dqQesUtV1ACLyGXALsMw3zWagtve6FLDdn9CNiXe7Duxi0IJB9J7d\nm1JFSvF4vccZftdwihYsGnRoJg8dPgzffusS+fDhUK2aS+Q9esDZZwcdncmJJXWnIvCLb3gDcGXI\nNO8Bk0VkE1ASaJ1HsRmTq5ZtW0bvWb35dMmn3Hj+jXx464dcVekqq2LPRw4fhpSUo4n8vPNcIp87\nFypbNwNxxZK6E0md+fPAAlVNFpGqwAQRuURV9/gn6tGjx5HXycnJJCcnRzNOY6IiPSOdb1Z9w9sz\n32bRlkV0vLwjSx5dQoWSJ9DKycSlw4dh6lSXyL/80iXv1q1h9myoUiV3152SkkJKSkruriSfsnvq\ngIjUB3qoalNv+Dkgw99YTkTGAH9X1Wne8CTgGVWd45vG7qmbmPb7gd/5YP4HvDP7HcoUK8Pj9R6n\n9UWtKVKwSNChmTyQng7ffecS+RdfuOr0zHvk550XXFx2Tz16rKTuzAGqiUgVYBNwF3BPyDTLcQ3p\nponImUANYE0exmjMCVu6bSm9Zvbisx8/o1m1Zgy5fQhXVrzSqtjzgfR0+P77o4m8QgWXyH/4AapW\nDTo6E22W1AFVPSwiXYBxuJ+0va+qy0Skkze+H/APYKCILASSgL+o6o7AgjYmAlv2buGFyS8wcsVI\nOl/RmaWPLuWskmcFHZbJZRkZMG2aS+Sff+46gWnd2iX3888POjqTm6z6PYqs+t3EikPph3h75tu8\n9v1rPHjJg/yt4d8oXbR00GGZXJSR4Urfw4a5RF62rEvkd97pfooWy6z6PXqspG5MAlFVRq8czZ/H\n/Znqp1dnWvtp1ChbI+iwTC7JyIAZM46WyE87zSXySZOgZs2gozNBsKRuTIJYtm0Z3cd1Z93v63ir\n6VvcVO2moEMyuUAVZs50iXzYMDj1VJfIJ0xwvbyZ/M2SujFxbuf+nbw85WWGLB7CC9e8wGN1H6NQ\ngUJBh2WiSBVmzXJJfNgwKF4c7rrLPaP8oouCjs7EEkvqxsSpwxmHeW/ue/SY0oPbat7G0keXUu6U\nckGHZaJEFebMOVoiL1rUlchHj3aJ3H64YMKxpG5MHPp27bd0G9uNMsXKMK7NOOqUrxN0SCYKVGHe\nPJfIhw6FQoVciXzkSPckNEvkJieW1I2JI2t3ruWpCU8xd9Nc3mjyBq0uaGW/NY9zqjB//tESeVKS\nK5F/9RXUrm2J3BwfS+rGxIG9h/byz+/+Sd+5felevzsf3/axPcs8jqnCwoVHS+SqrkT++edQp44l\ncnPiLKnHMyzOAAAgAElEQVQbE8MyNIMhi4bw3KTnSK6SzMJHFtojUOOUKixa5ErjQ4e6vtdbt3av\nL73UErmJDkvqxsSomRtm0m1sN9I1naF3DuXqs68OOiRznFRhyZKjJfJDh1xnMJ98ApdfboncRF9C\nJHURKQC8rqpPBR2LMSdr055NPDfpOSasnsA/r/sn919yP0mSFHRY5jj8+OPRRJ6a6krkH38MV1xh\nidzkroRI6qqaLiJ/Euun1cSxA4cP8Ob0N3lj+ht0vKwjP3X5iZJFSgYdlonQ0qVHq9b37HEl8kGD\noF49S+Qm7yREUvcsAL4WkWFAqveequqXAcZkTI5Ula+Wf8WT45/kkvKXMOuhWVQtY4/PigfLlx8t\nke/a5RL5gAFw5ZWuFbsxeS2RknpRYAfQOOR9S+omZi3espgnxj3Blr1b6N+iP9efd33QIZkc/Pwz\nfPSRS+Tbt7tE3r8/1K9vidwEz57SFkVW+28i9Vvqb7z47Yt8vvRzXmr4Ep2u6ETBpES6xk4shw+7\nntz69XP9rt9zD9x9N1x9tSXyaLCntEVPwpxFRKQG8C5QXlUvEpHaQEtV/b+AQzPmiLT0NPrM6cOr\nU1/l7ovuZtljyzi9+OlBh2WysH49vP+++zvnHOjUyf2WvHjxoCMzJryEKamLyFTgaaCvql4qrput\nJaqaZ487sJK6yc741eN5YuwTVChZgZ5Ne3LxGRcHHZIJ4/Bh+OYbVyqfPh3uvRc6doRatYKOLHFZ\nST16EqakDhRX1ZmZXWaqqopIWsAxGcPK7St5cvyT/LjtR/7b5L+0rNHSunaNQRs2uEZu778PlSq5\nRD50qJXKTXxJpLtB20Tk/MwBEbkD2BxgPCaf231wN3+Z8Beuev8qGpzdgKWPLuWWmrdYQo8h6enu\nXnnLlq6f9W3bYNQoV0Jv184Suok/iVRS7wL0B2qIyCZgLXBfsCGZ/ChDMxi0YBAvTH6Bm86/icWd\nF3NWybOCDsv4bNzoSuQDBsBZZ7l75Z9+CqecEnRkxpychEnqqroauE5ESgBJqro76JhM/jNt/TS6\nje1G4QKFGXH3COpWrBt0SMaTng7jx7t75VOnugeojBjhHqBiTKJImKQuIv/EdRX7uzd8GvCkqv41\n2MhMfvDLrl94ZuIzfLf+O16//nXuufgeq2aPEZs2wQcfuFJ5uXKuVP7xx1CiRNCRGRN9iXRP/abM\nhA6gqjuBmwOMx+QDqWmpvJzyMnX61eH8Muez/LHl3FvrXkvoAcvIgLFj4bbb4KKLXCO4L7+E2bPh\noYcsoZvElTAldSBJRIqq6gEAESkGFA44JpOgVJWhPw7lLxP/wpUVr2Rux7lUKV0l6LDyvV9/daXy\n996DMmVcqXzwYChpXeibfCKRkvoQYJKIfAAI0A4YHGxIJhHN2zyPbmO7sefgHgbfOpiGVRoGHVK+\nlpEBEye6e+WTJ7tuW4cNc09EMya/SZjOZwBE5CbgekCBCao6Lo/Xb53PJLCt+7bywqQXGLliJK80\neoUOl3agQFKBoMPKt7ZsgYEDXam8VClXKr/3XvfaxBfrfCZ6Eqmkjqp+A3wTdBwmsRxKP0Svmb34\n5/f/5IFLHmB5l+WULlo66LDypYwMVxrv18+Vzlu1gs8+s+eUG5MpYZK6iOzFldDB3UsvBOxVVbtu\nNydszMoxdB/XnaqnVeX79t9Ts2zNoEPKl7ZuPVoqP+UUVyofMABOPTXoyIyJLQmT1FX1SHtWEUkC\nWgL1g4vIxLPlvy2n+7jurN25ljdvfJNm1ZoFHVK+k5EBKSmuVD5+vGvJPmQI1KtnpXJjspJQ99RD\nicgCVc2xawkRaQr0BAoAA1T19TDTJANv4moAflPV5DDT2D31OPf7gd95OeVlPl78Mc//6Xkeq/cY\nhQvYjyjy0rZtMGiQe0Z5sWKuVH7ffVDa7ngkLLunHj0JU1IXkVa+wSTgcmB/BPMVAHrjGthtBGaL\nyAhVXeabpjTwDnCjqm4QkbJRDd4ELj0jnQHzBvBSykvcUuMWfnz0R8445Yygw8o3VF2pvH9/94S0\nW291P0WrX99K5cYcj4RJ6kALjt5TPwysA26JYL56wCpVXQcgIp958y3zTXMv8IWqbgBQ1d+iE7KJ\nBSnrUnhi7BOcWvRUxrYZS53y1m9oXvntN/jwQ5fMCxVypfJ334XTTgs6MmPiU8IkdVVte4KzVgR+\n8Q1vAK4MmaYaUEhEvgVKAm+p6kcnuD4TI9b9vo6nJzzN7I2zeaPJG7S6oJX1BJcHVF3f6/37H31C\n2gcfwNVXW6ncmJMV90ldRHr5BhXX8Uzma1T18RwWEclN8ELAZcB1QHFguojMUNWVoRP26NHjyOvk\n5GSSk5MjWLzJS/sO7eO171+jz5w+PFH/CQbfOphihYoFHVbC277dVan37++Sd6dO0KuX6/nN5C8p\nKSmkpKQEHUZCivuGciLS1nt5NXAh8D9cYr8T+FFVH8lh/vpAD1Vt6g0/B2T4G8uJyDNAMVXt4Q0P\nAMaq6uchy7KGcjFMVflk8Sc8O+lZGlZuyGvXv0alUpWCDiuhqcL337sW7KNGQYsWLpk3aGClcnOU\nNZSLnrhP6plEZCbwJ1VN84YLAd+ramhVeuh8BYGfcKXwTcAs4J6QhnI1cY3pbgSKADOBu1R1aciy\nLKnHqNkbZ9NtbDfSMtJ4q+lbXH321UGHlNB27ICPPnLJPCPDJfIHHoDTTw86MhOLLKlHT9xXv/uU\nBkoB273hkt572VLVwyLSBRiH+0nb+6q6TEQ6eeP7qepyERkLLAIygPdCE7qJTZv3bOb5yc8zbtU4\n/nHdP3jgkgdIkkR6OGHsUIUffnCJfMQIuPlm6NsXrrnGSuXG5JVEKqm3A3oAKd5bDXHV6oPyMAYr\nqceIA4cP0HNGT9744Q0euuwhnr/meUoVsc4Fc8POna5U3r8/pKVBx47w4INQ1n74aSJkJfXoSZik\nDiAiZ+FariswU1V/zeP1W1IPmKry9U9f8+T4J6l1Ri3eaPIG55c5P+iwEo4qzJjhSuVffQU33eSq\n2Bs2tFK5OX6W1KMn0ZJ6RaAK7rZCZuv3qXm4fkvqAVqydQlPjH2CzXs30/PGntxQ9YagQ0o4v/8O\nH3/sSuUHDhwtlZcrF3RkJp5ZUo+ehLmnLiKvA3cBS4F036g8S+omGNtTt/NSyksM/XEoLzZ8kUeu\neISCSQmzawdOFWbNcqXy4cOhSRPo2ROSkyHJmicYE1MS6cx3G1BDVQ8GHYjJG4czDtN3Tl9emfIK\nd110F8seW8bpxa15dbTs2uUeoNKvH+zb50rlP/0EZ1jvucbErERK6qtxj1y1pJ4PTFwzkSfGPkH5\nEuWZ/OBkLj7j4qBDSgiqMHu2S+Rffgk33AD/+Q80bmylcmPiQSIl9f3AAhGZxNHErhH0KGfiyKod\nq3hq/FMs3rqY/zb5Ly1rtLSuXaNg92745BOXzHftcqXy5cvhzDODjswYczwSKamP8P78rNVagthz\ncA9//+7vDJg3gKevfpr/3fE/ihQsEnRYcW/OHJfIP/8crrsOXn8drr/eSuXGxKuESep5+Xt0k3cy\nNIPBCwfz/KTnufH8G1nceTFnlTwr6LDi2p498OmnLpnv2AEPPwxLl8JZtlmNiXtxn9RFZJiq3iki\ni8OMVlWtnedBmaj44Zcf6Da2GwWTCvL13V9Tt2LdoEOKa/PmuUQ+dCg0agT/+Ie7Z26lcmMSR9wn\ndaCb979FoFGYqNmxfwfdx3Vn0ppJvH7969xb6167b36CDh2CYcPgrbdgyxZXKv/xR6hQIejIjDG5\nIe6Tuqpu8v6vCzgUEwVfLvuSLmO60Pqi1izvspwShUsEHVJc2r7dlcrfeQdq1oS//Q2aNYMCBYKO\nzBiTm+I+qZvEsHXfVrqM6cLCLQsZducwGpzTIOiQ4tKyZa5U/r//wa23wpgxcMklQUdljMkrdjfN\nBCrzGee1+tTi3NLnsqDTAkvox0kVxo93/a83agTly7ufow0caAndmPwmoUrqIlIOQFW3BR2Lydmm\nPZvoPLozq3esZtQ9o6wh3HHav9/1+Nazp2vs9sQTrhvXokWDjswYE5S4L6mL00NEfgNWACtE5DcR\neUmsdVVMUlUGzh9Inb51qHNmHeZ2nGsJ/Tj8+iu8+CJUqeKekPbWW7BwIbRvbwndmPwuEUrq3YEG\nQF1VXQsgIucBfb1x/w0wNhNi/a71dBzZka37tjLh/glcUt7qhyO1YAG8+SaMGAH33ANTp0KNGkFH\nZYyJJXFfUgceAO7NTOgAqroGuM8bZ2JAhmbQd05fLu9/OddWvpaZD820hB6B9HSXxBs1gubN4YIL\nYPVqePddS+jGmD9KhJJ6wXD30FV1m4gkwueLe6t3rObhkQ+TmpbKlLZTuLDchUGHFPP27nUN3d56\nC8qUge7d4Y47oFChoCMzxsSyRCipp53gOJPL0jPSeWvGW1w54EqaV2/OtPbTLKHnYP16ePppd798\nyhT48EOYOdNVt1tCN8bkJBFKsrVFZE8W44rlaSTmiOW/LafDiA4UkAJM7zCdaqdXCzqkmDZ9urtf\nPmkStG3rHn967rlBR2WMiTdxn9RV1frIiiGHMw7znx/+w79/+DcvJ79M57qdSZJEqBCKvsOH4Ysv\nXDLfuhW6dYMBA6BUqaAjM8bEq7hP6iZ2LN6ymPYj2lO6aGnmdJxDldJVgg4pJv3+O7z3HvTq5arZ\nn3kGWra0LlyNMSfPilDmpB1KP8QrU16h8eDGdLq8E+PbjLeEHsbKldClC5x3Hixa5DqKmToVbrvN\nEroxJjqspG5OyrzN82j3dTsqlarE/E7zqVSqUtAhxRRVSElxVezTp0PHjrBkiT0lzRiTOyypmxNy\n4PABXp3yKgPmD+CNG96gTe029nhUn4MH4dNPXReuBw+6Llw/+wyKFw86MmNMIrOkbo7bjA0zaP91\ne2qWrcnCRxZSvkT5oEOKGVu3Qt++0KcP1K4Nr70GTZq4vtmNMSa3WVI3EUtNS+XFb19kyOIhvN30\nbe648A4rnXuWLHGl8i++cJ3ETJwIF10UdFTGmPzGkrqJyNSfp9JhRAfqVqjLokcWUe6UckGHFLiM\nDBg71iXzxYvh0UdhxQooZ5vGGBMQS+qAiDQFegIFgAGq+noW09UFpgOtVfXLPAwxMHsP7eXZic8y\nfPlw3m32LrfUvCXokAKXmgqDB7suXIsWdV243nUXFCkSdGTGmPwu3yd1ESkA9AauBzYCs0VkhKou\nCzPd68BYIF/UOU9cM5GHRz5MoyqNWNJ5CacVOy3okAK1cSO88477jfnVV7v75g0bgt2BMMbEinyf\n1IF6wCpVXQcgIp8BtwDLQqbrCnwOJPyDv3cd2MVT459i/Jrx9G/enxvPvzHokAI1Z477Sdo330Cb\nNu6naeefH3RUxhjzR9YmFyoCv/iGN3jvHSEiFXGJvo/3luZNaHlv9IrRXNznYgomFWRx58X5NqGn\np8OXX8I110CrVnDppbBmDbz9tiV0Y0zsspJ6ZAm6J/Csqqq45t5ZVrj26NHjyOvk5GSSk5NPNr48\nsWP/DrqN7cYPv/zA4FsH0+jcRkGHFIjdu+H9913yLl/e3S+//XYoaEeKMVGTkpJCSkpK0GEkJFFN\n2EJnRESkPtBDVZt6w88BGf7GciKyhqOJvCyQCjysqiNClqXxuD2/XPYlXcZ0ofVFrfl7479zSuFT\ngg4pz61d6xL54MFwww2us5j69YOOypj8QURQVWudEgVW/oA5QDURqQJsAu4C7vFPoKrnZb4WkYHA\nyNCEHo+27ttKlzFdWLhlIcPuHEaDcxoEHVKeUoVp09z98ilToH17mD8fzjkn6MiMMebE5Pt76qp6\nGOgCjAOWAv9T1WUi0klEOgUbXe5QVT5d/Cm1+9Tm3NLnsqDTgnyV0A8dgiFDoF49aNcOGjeGdevg\nX/+yhG6MiW/5vvo9muKh+n3Tnk10Ht2Z1TtWM/CWgdStmPCN+Y/Yvh3693c/S6te3d0vv/lm68LV\nmKBZ9Xv02Oksn1BVBi0YRJ2+dahzZh3mdpybbxL68uXwyCOu1fqKFTBqFEyeDC1aWEI3xiQWu6ee\nD6zftZ6OIzuydd9Wxt8/njrl6wQdUq5Tdf2vv/kmzJ3rkvqyZa5FuzHGJCpL6gksQzPoP7c/f/v2\nb3Sv352nr36aQgUKBR1WrjpwwN0v79nTJfbu3d3vzYsWDToyY4zJfZbUE9TqHat5eOTDpKalMqXt\nFC4sd2HQIeWqX3+Fd9+Ffv3giivgv/+F66+3LlyNMfmL3VFMMOkZ6bw14y2uHHAlzas3Z1r7aQmd\n0BcuhLZt4YILYNs299O00aPdb80toRtj8hsrqSeQ5b8tp8OIDhSQAkzvMJ1qp1cLOqRckZHhGrv1\n7Okavj32GKxaBaefHnRkxhgTLEvqCeBwxmH+88N/+PcP/+bl5JfpXLczSZJ4lTB798KgQe6Rp6VL\nu/vld94JhRK7mYAxxkTMknqcW7xlMe1HtKd00dLM6TiHKqWrBB1S1K1fD717wwcfuEedDhwIDRpY\n9boxxoRKvOJcPpGWnsYrU16h8eDGdLq8E+PbjE+4hD5jBtx1F9SpA2lpMHs2fPEF/OlPltCNMSYc\nK6nHoXmb59H+6/ZULFWR+Z3mU6lUpaBDipoDB2DYMNfr29at8Pjj8N57UKpU0JEZY0zss25ioyi3\nu4k9ePggr0x5hQHzB/DGDW/QpnYbJEGKrGvXQt++rmr90ktd47ebb4YCBYKOzBiT26yb2Oixknqc\nmLlhJu2+bkfNsjVZ+MhCypeI/67RMjJg3DhXKp8xAx580D01rVpiNto3xphcZ0k9xqWmpfLity8y\nZPEQ3m76NndceEfcl863b3eN3vr2da3YH3sMhg6F4sWDjswYY+KbJfUYNvXnqXQY0YG6Feqy6JFF\nlDulXNAhnZTZs12vb199BS1bwiefuMefxvk1ijHGxAy7px5F0bqnvvfQXp6d+CzDlw/n3WbvckvN\nW6IQXTD274f//c9Vsf/2G3TuDO3bQ9myQUdmjIkVdk89eqykHmMmrpnIwyMfplGVRizpvITTip0W\ndEgnZPVqV70+aBDUrQs9ekDTptbwzRhjcpMl9Rix68Aunhr/FOPXjKd/8/7ceP6NQYd03NLT4Ztv\nXBX77NmuT/YZM6Bq1aAjM8aY/MGSegwYvWI0j4x+hObVmrO482JKFYmvH2Vv23a04Vu5cvDoo66T\nmGLFgo7MGGPyF0vqAdqxfwdPjH2Cab9MY/Ctg2l0bqOgQ4qYKsyc6UrlI0bAbbe5Fux16wYdmTHG\n5F/WTWxAvlz2JRe/ezFlipVh0SOL4iahp6bC+++7Z5bfdx/Uru3unw8caAndGGOCZiX1PLZ131a6\nftOVBb8uYNidw2hwToOgQ4rIypXQpw8MHgxXXQV//zs0aQJJdllojDExw07JeURV+XTxp9TuU5sq\np1ZhQacFMZ/Q09Ph66/hxhvdU9EKF4Y5c2DkSNeS3RK6McbEFiup54FNezbx6OhHWbVjFSPvGUnd\nirFdT711KwwYAP36QYUKruHb119D0aJBR2aMMSY7VtbKRarKoAWDqNO3DpeceQlzO86N2YSuCj/8\n4O6T16gBa9bA8OEwfTrcf78ldGOMiQdWUs8l63etp+PIjmzdt5Xx94+nTvk6QYcU1r59MGSIa8W+\nb58rlffuDafFZ583xhiTr1lJPcoyNIO+c/pyef/Lubbytcx8aGZMJvSffoJu3eCcc2DMGPjXv9x7\n3btbQjfGmHhlJfUou37w9aSmpTKl7RQuLHdh0OEc4/Bh18jtnXdg8WJ46CGYNw8qVw46MmOMMdFg\nST3KmldvTrcru1EgKXY6Of/1V3jvPejf3yXwRx+FVq2gSJGgIzPGGBNN9pQ2j4g0BXoCBYABqvp6\nyPj7gL8AAuwBOqvqopBpovKUtmhQhe+/d6XyceOgdWv3hLQ6sXcnwBiTz9lT2qLHkjogIgWAn4Dr\ngY3AbOAeVV3mm+YqYKmq7vIuAHqoav2Q5QSe1PfsOdrw7dAhVyp/4AEoXTrQsIwxJkuW1KPHqt+d\nesAqVV0HICKfAbcAR5K6qk73TT8TqJSXAeZk6VLX49uQIdCoEbz5JjRuDGKHiTHG5BuW1J2KwC++\n4Q3AldlM3wEYk6sRRSAtzXUK8847sHw5PPwwLFoElWLqcsMYY0xesaTuRFxnLiKNgPZAYH28btp0\ntOFb1arw2GPuKWmFCwcVkTHGmFhgSd3ZCJztGz4bV1o/hojUBt4DmqrqznAL6tGjx5HXycnJJCcn\nRyVAVZgyxd0rnzAB7r4bxo6FWrWisnhjjMkzKSkppKSkBB1GQrKGcoCIFMQ1lLsO2ATM4o8N5c4B\nJgNtVHVGFsuJekO53bvho49cMld1pfL774dSpaK6GmOMCYw1lIseK6kDqnpYRLoA43A/aXtfVZeJ\nSCdvfD/gReA0oI+41mdpqlovt2JassQl8s8+g+uuc/fNGza0hm/GGGOyZiX1KDrZkvqhQ+4hKu++\n655f3rGj+6tQIYpBGmNMjLGSevRYST0GbNjgGr299x7UrAldu8Itt0ChQkFHZowxJp7YA10CogqT\nJ7vuWmvXhh07YNIk+PZbuOMOS+jGGGOOn5XU89iuXfDhh66jmAIFXMO3QYOgZMmgIzPGGBPvLKnn\nkYUL3b3yoUPhxhuhXz+45hpr+GaMMSZ6LKnnokOH4IsvXMv1deugUydYtgzKlw86MmOMMYnIknou\nWL/eNXwbMAAuvhj+/Gdo2RIK2tY2xhiTiyzNRNmtt8J330GbNpCS4lqzG2OMMXnBknqUNWsGH38M\nJUoEHYkxxpj8xjqfiaJYeJ66McbEG+t8Jnrsd+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQI\nS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowx\nxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCkbowxxiQIS+rGGGNMgrCk\n7hGRpiKyXERWisgzWUzztjd+oYhcmtcxGmOMMdmxpA6ISAGgN9AUuBC4R0QuCJmmGXC+qlYDOgJ9\n8jzQKElJSQk6hIhYnNEVD3HGQ4xgcZrYZUndqQesUtV1qpoGfAbcEjJNS+BDAFWdCZQWkTPzNszo\niJcD3eKMrniIMx5iBIvTxC5L6k5F4Bff8AbvvZymqZTLcRljjDERs6TuaITTyQnOZ4wxxuQ6UbW8\nJCL1gR6q2tQbfg7IUNXXfdP0BVJU9TNveDnQUFW3+KaxjWmMMSdAVUMLTeYEFAw6gBgxB6gmIlWA\nTcBdwD0h04wAugCfeRcBv/sTOthOaYwxJliW1AFVPSwiXYBxQAHgfVVdJiKdvPH9VHWMiDQTkVXA\nPqBdgCEbY4wxf2DV78YYY0yCsIZyEcqpcxoRqSki00XkgIg8eTzzxlCc60RkkYjMF5FZAcZ4n9fB\nzyIRmSYitSOdN4bizJNtGWGct3hxzheRuSLSONJ5YyjOmNmevunqishhEWl1vPPGQJyxcqwni8gu\nL475IvLXSOc1WVBV+8vhD1clvwqoAhQCFgAXhExTDrgC+D/gyeOZNxbi9MatBcrEwLa8CjjVe90U\nmBGj2zJsnHm1LY8jzlN8r2vh+mSIxe0ZNs5Y256+6SYDo4BWsbg9s4ozr7ZnhN95MjDiRD+f/f3x\nz0rqkcmxcxpV3aaqc4C04503RuLMlNuN/SKJcbqq7vIGZ3K0P4BY25ZZxZkpLxpORhLnPt9gCeC3\nSOeNkTgzxcT29HQFPge2ncC8QceZKfBjPZs48nJbJhRL6pGJpHOa3Jj3eJ3suhSYKCJzROThqEZ2\n1PHG2AEYc4LznoyTiRPyZltChHGKyK0isgz4Bnj8eOaNgTghhraniFTEJZjMrqIzGybF1PbMJs7M\n17FwrCtwtXfbZYyIXHgc85owrPV7ZE6mNWFetkQ82XU1UNXNIlIOmCAiy1X1u2gE5hNxjCLSCGgP\nNDjeeaPgZOKEvNmWEGGcqvoV8JWIXAN8JCI1cyGWbEOIaKKQOIEa3qhY2p49gWdVVUVEOFrSjLX9\nM6s4IXaO9XnA2aqaKiI3AV8B1aMcR75iJfXIbATO9g2fjbtyzO15j9dJrUtVN3v/twHDcVVg0RZR\njF6js/eAlqq683jmjYE482pbRhynL67vcBfzZbzpYmp7ZsqMU0RO94ZjaXtejuuvYi3QCnhXRFpG\nOG8sxBkzx7qq7lHVVO/1N0AhEcnrfTOxBH1TPx7+cCfB1bhGG4XJptEG0INjG8pFPG/AcRYHSnqv\nTwGmAU2CiBE4B9dIpv6Jfr6A48yTbXkccVbl6M9XLwNWx+j2zCrOmNqeIdMPBG6Pxe2ZTZyxdKyf\n6fvO6wHr8npbJtqfVb9HQCPonEZEygOzgVJAhoh0Ay5U1b3h5o21OIEzgC9dLR0FgSGqOj6IGIEX\ngdOAPl48aapaL6t5ox3jycYJlCcPtuVxxNkKeEBE0oC9wN3ZzRtrcRJ72/O45o21OMmj7RlhjHcA\nnUXkMJBKAPtmorHOZ4wxxpgEYffUjTHGmARhSd0YY4xJEJbUjTHGmARhSd0YY4xJEJbUjTHGmARh\nSd0YY4xJEJbUTUIRkXTfYxzni8hforDMyiJyzwnM10O8x9uKyMsict3JxhLBOgdlPmJTRN4TkQty\ne52+dT8fMjztOOcvIiJTvC5Nw43/QES2iMjiMOPqi0j/MO/XEZEfRGSJ1794a9+4oSJy7vHEaEys\ns6RuEk2qql7q+/tXFJZ5LnDvCcx3pBMIVX1JVSedyMpF5Hg6idLM9arqw9HssCOCOJ47JhDVBllN\nmIX7gFEa0nmGb70DcY+4Decm3ENgQufbB9yvqhd78/YUkVLeJO8B3Y8zRmNimiV1k/BEpLGIDPcN\n36kGvWMAAAUBSURBVCAiX3qvm3glubleye2UMIt4DbjGK/l380qUA0VkkYjME5HkCGLwl6DXicjr\n3vwzRaRqmOl7iMhHIvI98KFXWzDVi3OuiFzlTSci0ltElovIBFzPgJnLSBGRy7zXe33v3yEiA73X\nd4rIYhFZICJTwsSRLCLficjXwBLvva/EPd1riXhP+BKR14Bi3jb6yL9OL8Z/e+tZ5C8th7gH+DrM\nen+EI/3B78xi3sa4p461FZERIjIJmKCqK1V1tTf/ZmArUM6bJwVolsXyjIlL1k2sSTTFRGS+b/gf\nqjpMRN4RkdNVdTvQDnhfRMoCLwDXqep+EXkG+DPwasgynwGeUtUWAF6Verqq1haRGsB4Eammqoey\nietICdr7/7s3//24p2m1CDNPTeBPqnpQRIoBN3ivqwGfAHWB23BPtboA1/3nUuB933rI4nXm8N9w\n/X5v9pVgQ10KXKSqP3vD7VR1pxfTLBH5XFWfFZHHVPXSMOu8HbgEqI1LqLNFZKqq/po5oYgUAC5W\n1RXZrDcs73tMU9U9Xs39pUAtVf09ZLp6QCFfkk8TkY0icoF1QWoShZXUTaLZH1L9Psx7/yPgfhEp\nDdTHVdXWx/V7/4N3IfAA7iEtoULv8TYAPgZQ1Z+Anzn6iNBIfer9/wy4Ksx4BUao6kFvuDAwQEQW\nAUNxSRzgWuATdTYDkyNcf+ZnmoarCXiIrC/yZ4Uk1m4isgCYjnt6VrUc1vUnX4xbgSm4CxK/ssCe\nHNablSa4PsIzjQ+T0M8CBuMu6Pw24R4aYkxCsJK6yS8GAiOBA8BQVc3wSnUTVPWY++VeiS7zgRgv\nArvDLO8PjblE5P+AmwFV1cu8tyN5uEJW06T6XncHNqvq/V6p9oBv3rANy7JZR7Ejb6p29j7vzcBc\nEblcVXeEzLsv84V3q+E63JPpDojIt0DRCNYdGmO4zxw6zb4w04TTFPiPb7n+7YZXAzEKeF5VZ4VZ\nZ0aE6zEm5llJ3eQLXil2E/BXXIIHmAk0yLynLSKneNXos3wl/ZG4EmRJ3+K+wzXqQkSq40r3y1X1\nr948l/mmzSrh3uX7/0MEH6EUkFld/QDuyVUAU4G7RCTJK402ymL+LSJSU0SScFX2ePFX9T7vS8A2\noFIEcez0EnpNXG1HprQsGtN954uxHK52ITS5/gaUyGHdfyDuyqy2qi7MfCtkfGHc88IHq+qXYRZx\nFq6mxZiEYCV1k2hC76l/o6qZP7X6BCjrVZmjqttEpC3wqYgU8aZ5AVgZssxFQLpX5TwQeBf3uNVF\nwGHgQVVNyyKerErhp4nIQlyJO6ufy/nnfRf4QkQeAMbiHk2Kqg4Xkca4e+nryfoC4VlcaXUbMAf3\nHG2Af3n36AWYqKqLwsTgj2Ms8IiILAV+wlXBZ+oPLBKRuap6P0db4Q/3GvYt9N572quGP7oS1XSv\n4V0N7/sJXS8i8inQECgrIr/galEWA/7vO3S+1sA1QBnvuwZoq6oLRaQQUElVl4ffZMbEH3v0qsk3\nRKQ3MFdVB+Y4ce7GsRYIV82dr3lJ90xVff045nkBWKmqQ09gfU2Am1W12/HOa0yssqRu8gURmYur\nRr8hm1J1XsWyBrjCkvqxvKryifx/+3ZMBTAMw1BQzMKqoIoqTNw9ezro3RHQ+Bc7Weev+qW9N8kz\nM/v2FvxF1AGghEM5ACgh6gBQQtQBoISoA0AJUQeAEqIOACU+IR12hpOGZGcAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x58bc2d0>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg522"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "print(\"Example 8.6\")\n",
+ "#calculate the compressor total to static efficency\n",
+ "Tt1=288.\n",
+ "Cp=1004.\n",
+ "gm=1.4\n",
+ "ett=0.8\n",
+ "p=6.8 ##pt3/pt1\n",
+ "C1=200.\n",
+ "pt1=101.\n",
+ "Tt3=Tt1*(1.+(1./ett)*(p**((gm-1.)/gm)-1.))\n",
+ "Tt2s=Tt1*p**((gm-1.)/gm)\n",
+ "T1=Tt1-C1**2./(2.*Cp)\n",
+ "ets=(Tt2s-T1)/(Tt3-T1)\n",
+ "print\"%s %.4f %s\"%(\"Compressor total-to-static efficiency :\",ets,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 8.6\n",
+ "Compressor total-to-static efficiency : 0.8141 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter9.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter9.ipynb
new file mode 100755
index 00000000..5b9bddd0
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter9.ipynb
@@ -0,0 +1,296 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:18140c67b89b5f19faa1d49c4ef3005c34f2704afd507fcf868d62ee0b6f6b32"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter9-Aerodynamics of Gas TUrbines "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg537"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte inlet velocity and the exit double mach number and nozzle torque per unit mass flow rate \n",
+ "Tt1=1800.\n",
+ "M1=0.55\n",
+ "alfa1=0.\n",
+ "gm=1.33\n",
+ "Cp=1157.\n",
+ "alfa2=60.\n",
+ "T1=Tt1/(1.+(gm-1)*M1**2/2.)\n",
+ "a1=((gm-1.)*Cp*T1)**(1/2.)\n",
+ "C1=a1*M1\n",
+ "C2=C1/math.cos(alfa2/57.3)\n",
+ "Tt2=Tt1\n",
+ "T2=Tt2-C2**2/(2*Cp)\n",
+ "a2=((gm-1)*Cp*T2)**(1/2)\n",
+ "M2=C2/a2\n",
+ "Ct2=C1*math.tan(alfa2/57.3)\n",
+ "r=0.35\n",
+ "t=0-r*Ct2\n",
+ "print\"%s %.4f %s\"%(\"(a)Inlet velocity C1 in m/s :\",C1,\"\")\n",
+ "print\"%s %.4f %s\"%(\"(b)The exit absolute Mach no. M2 :\",M2,\"\")\n",
+ "print\"%s %.4f %s\"%(\"(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m :\",t,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)Inlet velocity C1 in m/s : 444.9857 \n",
+ "(b)The exit absolute Mach no. M2 : 889.8525 \n",
+ "(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m : -269.7102 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg538"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the nozzle exit flow angle\n",
+ "print(\"Example 9.2\")\n",
+ "M2=1.0 ##i.e choked\n",
+ "Tt2=1800.\n",
+ "gm=1.33\n",
+ "C1=445.\n",
+ "Cp=1157.\n",
+ "T2=Tt2/(1.+(gm-1.)*M2**2/2.)\n",
+ "a2=((gm-1.)*Cp*T2)**(1/2.) \n",
+ "M2=1\n",
+ "C2=M2*a2\n",
+ "alfa2=math.acos(C1/C2)*180/math.pi\n",
+ "print\"%s %.4f %s\"%(\"Nozzle exit flow angle if M2=1 in degrees:\",alfa2,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 9.2\n",
+ "Nozzle exit flow angle if M2=1 in degrees: 54.5931 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex3-pg538"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate axial velocity and rotor velocity and degree of reaction at this radius\n",
+ "C1=411.\n",
+ "alfa2=60.\n",
+ "C2=800.\n",
+ "W2=450.\n",
+ "alfa3=13.\n",
+ "C3=411.\n",
+ "Cz2=C2*math.cos(60/57.3)\n",
+ "Cz3=C3*math.cos(13/57.3)\n",
+ "Ct2m=Cz3*math.tan(60/57.3)\n",
+ "Wt2m=(450.**2.-400**2.)**(1/2.)\n",
+ "Um=Ct2m-Wt2m\n",
+ "Ct3=C3*math.sin(13/57.3)\n",
+ "Rm=1-(Ct2m+Ct3)/(2.*Um)\n",
+ "print\"%s %.4f %s\"%(\"(a)The axial velocities up- and downstream of the rotor in m/s:\",Cz2,\"c\")\n",
+ "print'%.4f'%(Cz3)\n",
+ "print\"%s %.4f %s\"%(\"(b)The rotor velocity Um in m/s:\",Um,\"\")\n",
+ "print\"%s %.4f %s\"%(\"(c)The degree of reaction at this radius :\",Rm,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)The axial velocities up- and downstream of the rotor in m/s: 400.0534 c\n",
+ "400.4676\n",
+ "(b)The rotor velocity Um in m/s: 487.3515 \n",
+ "(c)The degree of reaction at this radius : 0.1936 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg553"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the loss of turbine efficiency due to tip clearance\n",
+ "Cd=0.5\n",
+ "bm=-20.\n",
+ "r=1.25\n",
+ "phi=0.5\n",
+ "chi=1.\n",
+ "t=0.02\n",
+ "\n",
+ "De=Cd*t*r*(1-(chi/phi)*math.tan(bm/57.3))**(1/2.)\n",
+ "print\"%s %.4f %s\"%(\"Loss of the turbine efficiency (eta0 times) :\",De,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Loss of the turbine efficiency (eta0 times) : 0.0164 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex5-pg560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate gas static temperature and adibatic wall temperature on the nozzle for a turbulent boundary layer \n",
+ "Tt=1700. ##total gas temp at exit\n",
+ "gm=1.33 ##gamma\n",
+ "Cp=1157. ##in J/kg.K\n",
+ "M2=1. ##local gas Mach no.\n",
+ "Pr=0.71 ## Prandtl no.\n",
+ "W2=455. ## gas speed relative to rotor\n",
+ "Tg=Tt/(1.+(gm-1)*(M2**2)/2.)\n",
+ "print\"%s %.3f %s \"%(\"The gas static temperature Tg in K:\",Tg,\"\")\n",
+ "a2=((gm-1)*Cp*Tg)**(1/2.)\n",
+ "C2=a2\n",
+ "r=Pr**(1/3.)\n",
+ "Taw=Tg+Pr**(1/3.)*C2**2./(Cp)\n",
+ "print\"%s %.3f %s \"%(\"The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K:\",Taw,\"\")\n",
+ "Ttr=Tg+(W2**2)/(2*Cp)\n",
+ "Tawl=Tg+Pr**(1/2)*C2**2/(Cp)\n",
+ "print\"%s %.3f %s \"%(\"The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: \",Tawl,\"\")\n",
+ "print\"%s %.3f %s \"%(\"The rotor temperature of the gas on the rotor in K:\",Ttr,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The gas static temperature Tg in K: 1459.227 \n",
+ "The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K: 1888.820 \n",
+ "The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: 1940.773 \n",
+ "The rotor temperature of the gas on the rotor in K: 1548.694 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg564"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate cooling fraction\n",
+ "T0=288. ##in K\n",
+ "p0=100. ##in kPa\n",
+ "Tt3=800. ##in K\n",
+ "gm=1.4\n",
+ "Cpc=1.0045 ##kJ/Kg.K\n",
+ "pc=25.\n",
+ "ec=0.9\n",
+ "Tt4=2000. ##in K\n",
+ "gmc=1.33\n",
+ "Cpg=1.188 ##kJ/Kg.K\n",
+ "Stg=0.005 ##Gas-side Stanton no.\n",
+ "Taw=2000. ##in K\n",
+ "ptg=2.5 ##in Mpa\n",
+ "Tawd=1200. ## desired temp. in K\n",
+ "d=2. ##thickness of internally cooled wall in mm\n",
+ "bms=2. ##blade mean solidity in HPT\n",
+ "kw=14.9 ##in W/m.K\n",
+ "Twc=870. ##in K\n",
+ "S=1/2. ##S=Stc/Stg\n",
+ "e=(Cpc/Cpg)*S*(Twc-Tt3)/(Tt4-Tawd)\n",
+ "print\"%s %.4f %s\"%(\"Cooling fraction :\",e,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cooling fraction : 0.0370 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Aircraft_Propulsion_by__S._Farokhi/Chapter9_1.ipynb b/Aircraft_Propulsion_by__S._Farokhi/Chapter9_1.ipynb
new file mode 100755
index 00000000..26147862
--- /dev/null
+++ b/Aircraft_Propulsion_by__S._Farokhi/Chapter9_1.ipynb
@@ -0,0 +1,296 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b0248b236fb77321aca1aa897efa31136042f1022b99d1754ff155338956fea7"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter9-Aerothermo-dynamics of Gas Turbines "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg537"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calcualte inlet velocity and the exit double mach number and nozzle torque per unit mass flow rate \n",
+ "Tt1=1800.\n",
+ "M1=0.55\n",
+ "alfa1=0.\n",
+ "gm=1.33\n",
+ "Cp=1157.\n",
+ "alfa2=60.\n",
+ "T1=Tt1/(1.+(gm-1)*M1**2/2.)\n",
+ "a1=((gm-1.)*Cp*T1)**(1/2.)\n",
+ "C1=a1*M1\n",
+ "C2=C1/math.cos(alfa2/57.3)\n",
+ "Tt2=Tt1\n",
+ "T2=Tt2-C2**2/(2*Cp)\n",
+ "a2=((gm-1)*Cp*T2)**(1/2)\n",
+ "M2=C2/a2\n",
+ "Ct2=C1*math.tan(alfa2/57.3)\n",
+ "r=0.35\n",
+ "t=0-r*Ct2\n",
+ "print\"%s %.4f %s\"%(\"(a)Inlet velocity C1 in m/s :\",C1,\"\")\n",
+ "print\"%s %.4f %s\"%(\"(b)The exit absolute Mach no. M2 :\",M2,\"\")\n",
+ "print\"%s %.4f %s\"%(\"(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m :\",t,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)Inlet velocity C1 in m/s : 444.9857 \n",
+ "(b)The exit absolute Mach no. M2 : 889.8525 \n",
+ "(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m : -269.7102 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg538"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the nozzle exit flow angle\n",
+ "print(\"Example 9.2\")\n",
+ "M2=1.0 ##i.e choked\n",
+ "Tt2=1800.\n",
+ "gm=1.33\n",
+ "C1=445.\n",
+ "Cp=1157.\n",
+ "T2=Tt2/(1.+(gm-1.)*M2**2/2.)\n",
+ "a2=((gm-1.)*Cp*T2)**(1/2.) \n",
+ "M2=1\n",
+ "C2=M2*a2\n",
+ "alfa2=math.acos(C1/C2)*180/math.pi\n",
+ "print\"%s %.4f %s\"%(\"Nozzle exit flow angle if M2=1 in degrees:\",alfa2,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Example 9.2\n",
+ "Nozzle exit flow angle if M2=1 in degrees: 54.5931 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex3-pg538"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate axial velocity and rotor velocity and degree of reaction at this radius\n",
+ "C1=411.\n",
+ "alfa2=60.\n",
+ "C2=800.\n",
+ "W2=450.\n",
+ "alfa3=13.\n",
+ "C3=411.\n",
+ "Cz2=C2*math.cos(60/57.3)\n",
+ "Cz3=C3*math.cos(13/57.3)\n",
+ "Ct2m=Cz3*math.tan(60/57.3)\n",
+ "Wt2m=(450.**2.-400**2.)**(1/2.)\n",
+ "Um=Ct2m-Wt2m\n",
+ "Ct3=C3*math.sin(13/57.3)\n",
+ "Rm=1-(Ct2m+Ct3)/(2.*Um)\n",
+ "print\"%s %.4f %s\"%(\"(a)The axial velocities up- and downstream of the rotor in m/s:\",Cz2,\"c\")\n",
+ "print'%.4f'%(Cz3)\n",
+ "print\"%s %.4f %s\"%(\"(b)The rotor velocity Um in m/s:\",Um,\"\")\n",
+ "print\"%s %.4f %s\"%(\"(c)The degree of reaction at this radius :\",Rm,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)The axial velocities up- and downstream of the rotor in m/s: 400.0534 c\n",
+ "400.4676\n",
+ "(b)The rotor velocity Um in m/s: 487.3515 \n",
+ "(c)The degree of reaction at this radius : 0.1936 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg553"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the loss of turbine efficiency due to tip clearance\n",
+ "Cd=0.5\n",
+ "bm=-20.\n",
+ "r=1.25\n",
+ "phi=0.5\n",
+ "chi=1.\n",
+ "t=0.02\n",
+ "\n",
+ "De=Cd*t*r*(1-(chi/phi)*math.tan(bm/57.3))**(1/2.)\n",
+ "print\"%s %.4f %s\"%(\"Loss of the turbine efficiency (eta0 times) :\",De,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Loss of the turbine efficiency (eta0 times) : 0.0164 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex5-pg560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate gas static temperature and adibatic wall temperature on the nozzle for a turbulent boundary layer \n",
+ "Tt=1700. ##total gas temp at exit\n",
+ "gm=1.33 ##gamma\n",
+ "Cp=1157. ##in J/kg.K\n",
+ "M2=1. ##local gas Mach no.\n",
+ "Pr=0.71 ## Prandtl no.\n",
+ "W2=455. ## gas speed relative to rotor\n",
+ "Tg=Tt/(1.+(gm-1)*(M2**2)/2.)\n",
+ "print\"%s %.3f %s \"%(\"The gas static temperature Tg in K:\",Tg,\"\")\n",
+ "a2=((gm-1)*Cp*Tg)**(1/2.)\n",
+ "C2=a2\n",
+ "r=Pr**(1/3.)\n",
+ "Taw=Tg+Pr**(1/3.)*C2**2./(Cp)\n",
+ "print\"%s %.3f %s \"%(\"The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K:\",Taw,\"\")\n",
+ "Ttr=Tg+(W2**2)/(2*Cp)\n",
+ "Tawl=Tg+Pr**(1/2)*C2**2/(Cp)\n",
+ "print\"%s %.3f %s \"%(\"The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: \",Tawl,\"\")\n",
+ "print\"%s %.3f %s \"%(\"The rotor temperature of the gas on the rotor in K:\",Ttr,\"\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The gas static temperature Tg in K: 1459.227 \n",
+ "The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K: 1888.820 \n",
+ "The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: 1940.773 \n",
+ "The rotor temperature of the gas on the rotor in K: 1548.694 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg564"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate cooling fraction\n",
+ "T0=288. ##in K\n",
+ "p0=100. ##in kPa\n",
+ "Tt3=800. ##in K\n",
+ "gm=1.4\n",
+ "Cpc=1.0045 ##kJ/Kg.K\n",
+ "pc=25.\n",
+ "ec=0.9\n",
+ "Tt4=2000. ##in K\n",
+ "gmc=1.33\n",
+ "Cpg=1.188 ##kJ/Kg.K\n",
+ "Stg=0.005 ##Gas-side Stanton no.\n",
+ "Taw=2000. ##in K\n",
+ "ptg=2.5 ##in Mpa\n",
+ "Tawd=1200. ## desired temp. in K\n",
+ "d=2. ##thickness of internally cooled wall in mm\n",
+ "bms=2. ##blade mean solidity in HPT\n",
+ "kw=14.9 ##in W/m.K\n",
+ "Twc=870. ##in K\n",
+ "S=1/2. ##S=Stc/Stg\n",
+ "e=(Cpc/Cpg)*S*(Twc-Tt3)/(Tt4-Tawd)\n",
+ "print\"%s %.4f %s\"%(\"Cooling fraction :\",e,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cooling fraction : 0.0370 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file