summaryrefslogtreecommitdiff
path: root/A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb')
-rwxr-xr-xA_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb314
1 files changed, 314 insertions, 0 deletions
diff --git a/A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb b/A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb
new file mode 100755
index 00000000..024db2ff
--- /dev/null
+++ b/A_Textbook_Of_Engineering_Physics/Chapter4_1.ipynb
@@ -0,0 +1,314 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5cdc0313c39e461d83bef4f404708f38e979d4c9312a95284be2bd9b855678fb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter4-Electron Ballistics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##Example 4.1\n",
+ "##Calculation of acceleration,time taken,distance covered and kinetic energy of an accelerating proton\n",
+ "\n",
+ "##given values\n",
+ "m=1.67 *10**-27;##mass of proton in kg\n",
+ "q=1.602 *10**-19;##charge of proton in Coulomb\n",
+ "v1=0;##initial velocity in m/s\n",
+ "v2=2.5*10**6;##final velocity in m/s\n",
+ "E=500.;##electric field strength in V/m\n",
+ "##calculation\n",
+ "a=E*q/m;##acceleration\n",
+ "print'%s %.1f %s'%('acceleration of proton in (m/s^2) is:',a,'');\n",
+ "t=v2/a;##time\n",
+ "print'%s %.5f %s'%('time(in s) taken by proton to reach the final velocity is:',t,'');\n",
+ "x=a*t**2./2.;##distance\n",
+ "print'%s %.1f %s'%('distance (in m)covered by proton in this time is:',x,'');\n",
+ "KE=E*q*x;##kinetic energy\n",
+ "print'%s %.3e %s'%('kinetic energy(in J) at the time is:',KE,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "acceleration of proton in (m/s^2) is: 47964071856.3 \n",
+ "time(in s) taken by proton to reach the final velocity is: 0.00005 \n",
+ "distance (in m)covered by proton in this time is: 65.2 \n",
+ "kinetic energy(in J) at the time is: 5.219e-15 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.2\n",
+ "##electrostatic deflection\n",
+ "##given values\n",
+ "pi=3.141\n",
+ "V1=2000.;##in volts,potential difference through which electron beam is accelerated\n",
+ "l=.04;##length of rectangular plates\n",
+ "d=.015;##distance between plates\n",
+ "V=50.;##potential difference between plates\n",
+ "##calculations\n",
+ "alpha=math.atan(l*V/(2.*d*V1))*(180./pi);##in degrees\n",
+ "print'%s %.1f %s'%('angle of deflection of electron beam is:',alpha,'')\n",
+ "v=5.93*(10**5)*math.sqrt(V1);##horizontal velocity in m/s\n",
+ "t=l/v;##in s\n",
+ "print'%s %.3e %s'%('transit time through electric field is:',t,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle of deflection of electron beam is: 1.9 \n",
+ "transit time through electric field is: 1.508e-09 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.3\n",
+ "##electron projected at an angle into a uniform electric field\n",
+ "##given values\n",
+ "v1=4.5*10**5;##initial speed in m/s\n",
+ "alpha=37*math.pi/180.;##angle of projection in degrees\n",
+ "E=200.;##electric field intensity in N/C\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "a=e*E/m;##acceleration in m/s**2\n",
+ "t=2*v1*math.sin(alpha)/a;##time in s\n",
+ "print'%s %.2e %s'%('time taken by electron to return to its initial level is:',t,'')\n",
+ "H=(v1**2.*math.sin(alpha)*math.sin(alpha))/(2.*a);##height in m\n",
+ "print'%s %.4f %s'%('maximum height reached by electron is:',H,'')\n",
+ "s=(v1**2.)*(2.*math.sin(alpha)*math.cos(alpha))/(2.*a);##print'%s %.1f %s'%lacement in m\n",
+ "print'%s %.4f %s'%('horizontal displacement(in m)when it reaches maximum height is:',s,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "time taken by electron to return to its initial level is: 1.54e-08 \n",
+ "maximum height reached by electron is: 0.0010 \n",
+ "horizontal displacement(in m)when it reaches maximum height is: 0.0028 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.4\n",
+ "##motion of an electron in a uniform magnetic field\n",
+ "##given values\n",
+ "V=200.;##potential difference through which electron is accelerated in volts\n",
+ "B=0.01;##magnetic field in wb/m**2\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "v=math.sqrt(2.*e*V/m);##electron velocity in m/s\n",
+ "print'%s %.1f %s'%('electron velocity is:',v,'')\n",
+ "r=m*v/(e*B);##in m\n",
+ "print'%s %.4f %s'%('radius of path (in m)is:',r,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electron velocity is: 8386278.7 \n",
+ "radius of path (in m)is: 0.0048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.5\n",
+ "##motion of an electron in a uniform magnetic field acting at an angle\n",
+ "##given values\n",
+ "v=3*10**7;##electron speed\n",
+ "B=.23;##magnetic field in wb/m**2\n",
+ "q=45*math.pi/180;##in degrees,angle in which electron enter field\n",
+ "e=1.6*10**-19;##in C\n",
+ "m=9.1*10**-31;##in kg\n",
+ "R=m*v*math.sin(q)/(e*B);##in m\n",
+ "print'%s %.5f %s'%('radius of helical path is:',R,'')\n",
+ "p=2*math.pi*m*v*math.cos(q)/(e*B);##in m\n",
+ "print'%s %.4f %s'%('pitch of helical path(in m) is:',p,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of helical path is: 0.00052 \n",
+ "pitch of helical path(in m) is: 0.0033 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.6\n",
+ "##Magnetostatic deflection\n",
+ "##given values\n",
+ "D=.03;##deflection in m\n",
+ "m=9.1*10**-31;##in kg\n",
+ "e=1.6*10**-19;##in C\n",
+ "L=.15;##distance between CRT and anode in m\n",
+ "l=L/2.;\n",
+ "V=2000.;##in voltsin wb/\n",
+ "B=D*math.sqrt(2.*m*V)/(L*l*math.sqrt(e));##in wb/m**2\n",
+ "print'%s %.4f %s'%('transverse magnetic field acting (in wb/m^2)is:',B,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "transverse magnetic field acting (in wb/m^2)is: 0.0004 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "##Example 4.7\n",
+ "##electric and magnetic fields in crossed configuration\n",
+ "##given values\n",
+ "B=2*10**-3;##magnetic field in wb/m**2\n",
+ "E=3.4*10**4;##electric field in V/m\n",
+ "m=9.1*10**-31;##in kg\n",
+ "e=1.6*10**-19;##in C\n",
+ "v=E/B;##in m/s\n",
+ "print'%s %.1f %s'%('electron speed is:',v,'')\n",
+ "R=m*v/(e*B);##in m\n",
+ "print'%s %.3f %s'%('radius of circular path (in m) when electric field is switched off',R,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electron speed is: 17000000.0 \n",
+ "radius of circular path (in m) when electric field is switched off 0.048 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file