summaryrefslogtreecommitdiff
path: root/A_Textbook_Of_Chemical_Engineering_Thermodynamics/ch6.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'A_Textbook_Of_Chemical_Engineering_Thermodynamics/ch6.ipynb')
-rw-r--r--A_Textbook_Of_Chemical_Engineering_Thermodynamics/ch6.ipynb787
1 files changed, 787 insertions, 0 deletions
diff --git a/A_Textbook_Of_Chemical_Engineering_Thermodynamics/ch6.ipynb b/A_Textbook_Of_Chemical_Engineering_Thermodynamics/ch6.ipynb
new file mode 100644
index 00000000..056e7127
--- /dev/null
+++ b/A_Textbook_Of_Chemical_Engineering_Thermodynamics/ch6.ipynb
@@ -0,0 +1,787 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6 : Thermodynamic Properties of Pure Fluids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.1 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine change in entropy of system\n",
+ "\n",
+ "#Given:\n",
+ "betta = 1.25*10**-3; \t\t\t#coeffecient of math.expansion (K**-1)\n",
+ "V = 0.1; \t\t\t#molar volume of organic liquid (m**3/kmol)\n",
+ "P2 = 20.; \t\t\t#final pressure (bar)\n",
+ "P1 = 1.; \t\t\t#initial pressure (bar)\n",
+ "\n",
+ "# Calculations\n",
+ "#To determine the change in entropy of system\n",
+ "#betta = (1/V)*(del V/del T)p\n",
+ "#Let k = (del V/del T)p\n",
+ "k = betta*V;\n",
+ "\n",
+ "#Considering Maxwell's relation Eq. 6.24 (Page no. 193)\n",
+ "#dS = -k*(dP)\n",
+ "S = -k*(P2-P1)*10**5; \t\t\t#entropy change (J/kmol K)\n",
+ "\n",
+ "# Results\n",
+ "print 'Change in entropy is %f J/kmol K'%S\n",
+ "print ' It is assumed that (del V/del T)p is constant in the pressure range 1 to 20 bar'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Change in entropy is -237.500000 J/kmol K\n",
+ " It is assumed that (del V/del T)p is constant in the pressure range 1 to 20 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To calculate vapour pressure of water at 363 K\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "# Variables\n",
+ "T1 = 363.; \t\t\t#temperature (K)\n",
+ "T2 = 373.; \t\t\t#temperature (K)\n",
+ "P2 = 101.3; \t\t\t#vapour pressure at 373 K (kPa)\n",
+ "H = 2275.*18; \t\t\t#mean heat of vaporisation (kJ/kmol)\n",
+ "R =8.314; \t\t\t#ideal gas constant (kJ/kmol K)\n",
+ "\n",
+ "# Calculations\n",
+ "#To calculate vapour pressure of water at 363 K\n",
+ "#Using eq. 6.28 (Page no. 196)\n",
+ "P1 = P2/(math.e**((H/R)*((1./T1)-(1./T2))))\n",
+ "\n",
+ "# Results\n",
+ "print ' Vapour pressure of water at 363 K is %f kPa'%P1\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Vapour pressure of water at 363 K is 70.408579 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine the melting point of mercury at 10 bar\n",
+ "\n",
+ "# Variables\n",
+ "d_l = 13.69*10**3; \t\t\t#density of mercury in liquid state (kg/m**3)\n",
+ "d_s = 14.193*10**3; \t\t\t#density of mercury in solid state (kg/m**3)\n",
+ "T1 = 234.33; \t\t\t#temperature in K\n",
+ "P1 = 1.; \t\t\t#initial pressure in bar\n",
+ "P2 = 10.; \t\t\t#final pressure in bar\n",
+ "Hf = 9.7876; \t\t\t#heat of fusion of mercury (kJ/kg)\n",
+ "\n",
+ "# Calculations\n",
+ "#Assuming del_V/del_H remains constant% math.log(T2/T1) = (del_V/del_H)*(P2-P1)\n",
+ "del_V = (1./d_l)-(1./d_s)\n",
+ "T2 = T1*(math.e**((del_V/Hf)*(P2-P1)))\n",
+ "\n",
+ "# Results\n",
+ "print 'The melting point of mercury at 10 bar is %f K'%T2\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The melting point of mercury at 10 bar is 234.330558 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.4, page no:198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To calculate increase in entropy of solid magnesium\n",
+ "\n",
+ "# Variables\n",
+ "T1 = 300.; \t\t\t#initial temperature (K)\n",
+ "T2 = 800.; \t\t\t#final temperature (K)\n",
+ "\n",
+ "# Calculations\n",
+ "#Heat capacity (J/mol K)\n",
+ "#Cp = 26.04+(5.586*10**-3*T)+(28.476*10**4*T**-2)\n",
+ "import math\n",
+ "S = 26.04*math.log(T2/T1)+5.586*10**-3*(T2-T1)+28.476*10**4/(-2)*(T2**-2-T1**-2)\n",
+ "\n",
+ "# Results\n",
+ "print 'The increase in entropy of solid magnesium is %f J/mol K'%S\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The increase in entropy of solid magnesium is 29.693325 J/mol K\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To calculate internal energy enthalpy entropy and freenergy for 1 mole of nitrogen\n",
+ "\n",
+ "# Variables\n",
+ "T = 773.; \t\t\t#temperature (K)\n",
+ "P = 100.; \t\t\t#pressure (bar)\n",
+ "Ho = 0; \t\t\t#enthalpy of nitrogen at 273 K and 1 bar\n",
+ "So = 192.4; \t\t\t#entropy of nitrogen at 298 K and 1 bar\n",
+ "To = 273.; \t\t\t#(K)\n",
+ "Po = 1.; \t\t\t#(bar)\n",
+ "R = 8.314; \t\t\t#ideal gas constant (kJ/kmol K)\n",
+ "\n",
+ "# Calculations\n",
+ "#Cp = 27.3+(4.2*10**-3*T) molal heat capacity at 1 bar\n",
+ "#To calculate internal energy enthalpy entropy and free energyfor one mole of nitrogen\n",
+ "#Step 1:\n",
+ "#Assuming that nitrogen is initially at 273 K and 1 bar\n",
+ "#del_H1 = intg(CpdT)\n",
+ "del_H1 = 27.3*(T-To)+4.2*10**-3*(T**2-To**2)/2;\n",
+ "#Assuming that nitrogen is initially at 298 K and 1 bar\n",
+ "#del_S1 = intg(Cp*(dT/T))\n",
+ "del_S1 = 27.3*math.log(T/To)+4.2*10**-3*(T-To)\n",
+ "H1 = Ho + del_H1;\n",
+ "S1 = So + del_S1;\n",
+ "\n",
+ "#Step 2:\n",
+ "#del_H2 = [V - T*(del_V/del_T)p]dP\n",
+ "#Since nitrogen behaves as ideal gas\n",
+ "#(del_V/del_T)p = R/P% V-(R*T)/P = 0\n",
+ "del_H2 = 0.;\n",
+ "del_S2 = -R*math.log(P/Po)\n",
+ "H = H1 + del_H2;\n",
+ "S = S1 + del_S2;\n",
+ "\n",
+ "#Internal energy: U = H-PV = H-RT (J/mol)\n",
+ "U = H - (R*T)\n",
+ "\n",
+ "#Gibbs free energy (J/mol)\n",
+ "G = H-(T*S)\n",
+ "\n",
+ "# Results\n",
+ "print 'Enthalpy is %5.3e J/mol'%H\n",
+ "print ' Entropy is %f J/mol K'%S\n",
+ "print ' Internal energy is %4.3e J/mol'%U\n",
+ "print ' Gibbs free energy is %4.3e J/mol'%G\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Enthalpy is 1.475e+04 J/mol\n",
+ " Entropy is 184.626653 J/mol K\n",
+ " Internal energy is 8.322e+03 J/mol\n",
+ " Gibbs free energy is -1.280e+05 J/mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To calculate entropy change and mean heat capacity\n",
+ "\n",
+ "# Variables\n",
+ "#Equation of state: P(V-B) = RT + (A*P**2)/T\n",
+ "Cp = 33.6; \t\t\t#mean specific heat at atmosheric pressure (J/mol K)\n",
+ "A = 1*10**-3; \t\t\t#m**3 K/(bar)mol\n",
+ "B = 8.0*10**-5; \t\t\t#m**3/mol\n",
+ "R = 8.314*10**-5; \t\t\t#ideal gas constant (m**3 (bar)/mol K)\n",
+ "\n",
+ "import math\n",
+ "#For step 1:\n",
+ "Po = 4.; \t\t\t#pressure at A (bar)\n",
+ "P1 = 1.; \t\t\t#pressure at C (bar)\n",
+ "T = 300.; \t\t\t#temperature (K)\n",
+ "\n",
+ "# Calculations and Results\n",
+ "#del_S1 = intg[(del_V/del_T)pdP]\n",
+ "del_S1 = (R*math.log(Po/P1) - (A/T**2)*(Po**2-P1**2)/2)*10**5; \t\t\t#(J/mol K)\n",
+ "\n",
+ "#For step 2:\n",
+ "T1 = 300.; \t\t\t#temperature at C (K)\n",
+ "T2 = 400.; \t\t\t#temperature at D (K)\n",
+ "del_S2 = Cp*math.log(T2/T1) \t\t\t#(J/mol K)\n",
+ "\n",
+ "#For step 3:\n",
+ "P2 = 1.; \t\t\t#pressure at D (bar)\n",
+ "P3 = 12.; \t\t\t#pressure at B (bar)\n",
+ "T = 400.; \t\t\t#temperature (K)\n",
+ "del_S3 = (R*math.log(P2/P3) - (A/T**2)*(P2**2-P3**2)/2)*10**5; \t\t\t#(J/mol K)\n",
+ "S = del_S1+del_S2+del_S3; \t\t\t#total entropy change\n",
+ "print '(a). Total entropy change is %f J/mol K'%S\n",
+ "\n",
+ "#(b). The mean heat capacity at 12 bar\n",
+ "P1 = 4.; \t\t\t#pressure at A (bar)\n",
+ "P2 = 12.; \t\t\t#pressure at Co (bar)\n",
+ "T = 300.; \t\t\t#temperature (K)\n",
+ "del_S1 = R*math.log(P1/P2) - (A/T**2)*(P1**2-P2**2)/2;\n",
+ "\n",
+ "#For CoB\n",
+ "T2 = 400.; \t\t\t#temperature at B (K)\n",
+ "T1 = 300.; \t\t\t#temperature at Co (K)\n",
+ "del_S2 = S-del_S1;\n",
+ "Cpm = del_S2/(math.log(T2/T1))\n",
+ "print ' (b). The mean heat capacity at 12 bar is %f J/mol K'%Cpm\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a). Total entropy change is 0.568609 J/mol K\n",
+ " (b). The mean heat capacity at 12 bar is 1.976835 J/mol K\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To calculate Cv for mercury\n",
+ "\n",
+ "# Variables\n",
+ "betta = 1.8*10**-4; \t\t\t#coeffecient of volume math.expansion (K**-1)\n",
+ "k = 3.9*10**-6; \t\t\t#coeffecient of compressibility (bar**-1)\n",
+ "T = 273.; \t\t\t#temperature in K\n",
+ "d = 13.596*10**3; \t\t\t#density (kg/m**3)\n",
+ "Cp = 0.14*10**3; \t\t\t#(J/kg K)\n",
+ "\n",
+ "# Calculations\n",
+ "#To calculate Cv for mercury\n",
+ "#Using equation 6.55 (Page no. 208)\n",
+ "Cv = Cp - (betta**2*T*10**5)/(k*d)\n",
+ "\n",
+ "# Results\n",
+ "print 'Cv for mercury is %f J/kg K'%Cv\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cv for mercury is 123.318623 J/kg K\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To estimate the fugacity of ammonia\n",
+ "\n",
+ "# Variables\n",
+ "#Eqution of state: P(V-b) = RT\n",
+ "P = 10.; \t\t\t#pressure (bar)\n",
+ "T = 298.; \t\t\t#temperature (K)\n",
+ "b = 3.707*10**-5; \t\t\t#Vander Waal's constant (m**3/mol)\n",
+ "R = 8.314; \t\t\t#ideal gas constant\n",
+ "\n",
+ "# Calculations\n",
+ "#To estimate the fugacity of ammonia\n",
+ "#Since PV = RT + Pb% Z = 1 + (Pb/RT)\n",
+ "#Using equation 6.127 (Page no. 228)\n",
+ "f = P*(math.e**((b*P*10**5)/(R*T)))\n",
+ "\n",
+ "# Results\n",
+ "print 'Fugacity f = %f bar'%f\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fugacity f = 10.150747 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine the fugacity of gas\n",
+ "\n",
+ "# Variables\n",
+ "#intg(alphadP) = -556.61 J/mol\n",
+ "P = 50.; \t\t\t#pressure in bar\n",
+ "T = 300.; \t\t\t#temperature in K\n",
+ "R = 8.314; \t\t\t#ideal gas constant\n",
+ "\n",
+ "# Calculations\n",
+ "#To determine the fugacity of gas\n",
+ "#Using equation 6.130 (Page no. 230)\n",
+ "f = P*math.e**(-556.61/(R*T))\n",
+ "\n",
+ "# Results\n",
+ "print 'Fugacity of gas at 50 bar and 300 K is %i bar'%f\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fugacity of gas at 50 bar and 300 K is 39 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine the fugacity coeffeceint at given pressure\n",
+ "\n",
+ "# Variables\n",
+ "#Equation of state: PV = RT(1-0.00513P)\n",
+ "P = [1, 5, 10]; \t\t\t#pressures in bar\n",
+ "phi = [0,0,0]\n",
+ "\n",
+ "# Calculations and Results\n",
+ "for i in range(3):\n",
+ " phi[i] = math.e**(-0.00513*P[i])\n",
+ " print ' Fugacity coeffecient at %i bar is %f'%(P[i],phi[i])\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Fugacity coeffecient at 1 bar is 0.994883\n",
+ " Fugacity coeffecient at 5 bar is 0.974676\n",
+ " Fugacity coeffecient at 10 bar is 0.949994\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine the fugacity of pure ethylene\n",
+ "\n",
+ "# Variables\n",
+ "P = 100.; \t\t\t#pressure in bar\n",
+ "T = 373.; \t\t\t#temperature in K\n",
+ "a = 0.453; \t\t\t#Vander Waal's constant (J m**3/mol**2)\n",
+ "b = 0.571*10**-4; \t\t\t#Vander Waal's constant (m**3/mol)\n",
+ "V = 2.072*10**-4; \t\t\t#molar volume (m**3/mol)\n",
+ "R = 8.314; \t\t\t#ideal gas constant\n",
+ "\n",
+ "# Calculations\n",
+ "#To determine the fugacity of pure ethylene\n",
+ "#Using eq. 6.139 (Page no. 233)\n",
+ "ln_f = (b/(V-b)) - ((2*a)/(R*T*V)) + math.log((R*T*10**-5)/(V-b) )\n",
+ "f = math.e**ln_f;\n",
+ "\n",
+ "# Results\n",
+ "print 'Fugacity is %f bar'%f\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fugacity is 73.789328 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine fugacity and fugacity coeffecient of steam\n",
+ "\n",
+ "# Variables\n",
+ "T = 623.; \t\t\t#temperature in K\n",
+ "\n",
+ "#Data from steam tables:\n",
+ "H = 3159.; \t\t\t#enthalpy at 1000 kPa and 623 K (kJ/kg)\n",
+ "S = 7.3; \t\t\t#entropy at 1000 kPa and 623 K (kJ/kg K)\n",
+ "Ho = 3176.; \t\t\t#enthalpy at 101.3 kPa and 623 K (kJ/kg)\n",
+ "So = 8.38; \t\t\t#entropy at 101.3 kPa and 623 K (kJ/kg K)\n",
+ "fo = 101.3; \t\t\t#fugacity at 101.3 kPa (kPa)\n",
+ "R = 8.314/18; \t\t\t#ideal gas consatnt (kJ/kg K)\n",
+ "\n",
+ "# Calculations\n",
+ "#To determine fugacity and fugacity coeffecient of steam\n",
+ "ln_phi = (1/(R*T))*((H-Ho)-T*(S-So))\n",
+ "f = fo*math.e**ln_phi;\n",
+ "phi = f/fo;\n",
+ "\n",
+ "# Results\n",
+ "print 'Fugacity of steam is %f bar'%(f/100)\n",
+ "print ' Fugacity coeffecient is %f'%phi\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fugacity of steam is 9.895333 bar\n",
+ " Fugacity coeffecient is 9.768345\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To estimate fugacity of ammonia\n",
+ "\n",
+ "# Variables\n",
+ "T = 473.; \t\t\t#temperature in K\n",
+ "P = 50.*10**5; \t\t\t#pressure in Pa\n",
+ "d = 24.3; \t\t\t#density of ammonia (kg/m**3)\n",
+ "m = 17.; \t\t\t#molecular wt of ammonia\n",
+ "R = 8.314; \t\t\t#ideal gas constant\n",
+ "\n",
+ "# Calculations\n",
+ "#To estimate the fugacity of ammonia\n",
+ "V = m/(d*1000) \t\t\t#molar volume of ammonia (m**3/kmol)\n",
+ "#Using eq. 6.142 (Page no. 234)\n",
+ "f = (V*(P**2))/(R*T)\n",
+ "\n",
+ "# Results\n",
+ "print 'The fugacity of ammonia is %f bar'%(f/10**5)\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fugacity of ammonia is 44.474543 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To calculate the fugacity of liquid water\n",
+ "\n",
+ "# Variables\n",
+ "T = 303.; \t\t\t#temperature in K\n",
+ "P = 10.; \t\t\t#pressure in bar\n",
+ "Ps = 4.241/100; \t\t\t#saturation pressure (bar)\n",
+ "sp_vol = 1.004 *10**-3; \t\t\t#specific volume at 303 K (m**3/kg)\n",
+ "R = 8.314; \t\t\t#ideal gas constant\n",
+ "\n",
+ "# Calculations\n",
+ "#To calculate the fugacity of liquid water\n",
+ "V = sp_vol*10**-3*18; \t\t\t#molar volume (m**3/mol)\n",
+ "#Assuming vapour behaves as an ideal gas\n",
+ "f_sat = Ps;\n",
+ "#Using Eq. 6.144 (Page no. 235)\n",
+ "ln_phi = (V/(R*T))*(P-Ps)*10**5;\n",
+ "f = f_sat*math.e**ln_phi;\n",
+ "\n",
+ "# Results\n",
+ "print 'Fugacity of liquid water at given conditions is %f bar'%f\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fugacity of liquid water at given conditions is 0.042714 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine the fugacity of n butane in liquid state at given conditions\n",
+ "\n",
+ "# Variables\n",
+ "T = 350.; \t\t\t#temperature in K\n",
+ "P = 60.; \t\t\t#pressure in bar\n",
+ "Ps = 9.35; \t\t\t#vapour pressure at 350 K (bar)\n",
+ "V = 0.1072*10**-3; \t\t\t#molar volume (m**3/mol\n",
+ "phi = 0.834; \t\t\t#fugacity coeffecient\n",
+ "R = 8.314; \t\t\t#ideal gas constant\n",
+ "import math\n",
+ "\n",
+ "# Calculations\n",
+ "#To determine fugaity of n butane in liquid state at given conditions\n",
+ "f_sat = phi*Ps;\n",
+ "#Using eq. 6.144 (Page no. 235)\n",
+ "ln_phi = (V/(R*T))*(P-Ps)*10**5;\n",
+ "f = f_sat*math.e**ln_phi;\n",
+ "\n",
+ "# Results\n",
+ "print 'Fugacity of n-butane in liquid state at given conditions is %f bar'%f\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fugacity of n-butane in liquid state at given conditions is 9.397539 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 6.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# To determine the activity of solid magnesium\n",
+ "\n",
+ "# Variables\n",
+ "M = 24.32; \t\t\t#molecular wt of solid magnesium\n",
+ "T = 300.; \t\t\t#temperature in K\n",
+ "P = 10.; \t\t\t#pressure in bar\n",
+ "Po = 1.; \t\t\t#reference state pressure (bar)\n",
+ "R = 8.314\n",
+ "d = 1.745*10**3; \t\t\t#density of Mg at 300 K in kg/m**3\n",
+ "\n",
+ "# Calculations\n",
+ "#To determine the ativity of solid magnesiun\n",
+ "#Using eq. 6.149 (Page no. 237)\n",
+ "ln_a = (M/(d*10**3*R*T))*(P-Po)*10**5;\n",
+ "a = (math.e)**ln_a;\n",
+ "\n",
+ "# Results\n",
+ "print 'Acivity of solid magnesium at 300 K and 10 bar is %f'%a\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Acivity of solid magnesium at 300 K and 10 bar is 1.005042\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file