diff options
Diffstat (limited to 'A_Comprehensive_Textbook_Of_Applied_Physics')
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/Chapter1.ipynb | 504 | ||||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/Chapter2.ipynb | 339 | ||||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/Chapter3.ipynb | 605 | ||||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/Chapter4.ipynb | 1106 | ||||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/Chapter5.ipynb | 1035 | ||||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/README.txt | 10 | ||||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k1.png | bin | 0 -> 16503 bytes | |||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k2.png | bin | 0 -> 18858 bytes | |||
-rwxr-xr-x | A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k3.png | bin | 0 -> 14827 bytes |
9 files changed, 3599 insertions, 0 deletions
diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter1.ipynb b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter1.ipynb new file mode 100755 index 00000000..1cb4536f --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter1.ipynb @@ -0,0 +1,504 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:b9d3600de62f2e313ebd68d87880d0cad19ed95bdfc9a86e635db985c6359259" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "UNIT-1:Waves & Vibrations" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.1,Page no:11" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "n=512 #frequency in Hz\n", + "l=67 #wavelength in cm\n", + "\n", + "#Calculation\n", + "v=n*l #calculating velocity\n", + "\n", + "#Result\n", + "print\"Velocity = \",v,\" cm/sec\" \n", + "print\"NOTE:Calculation mistake in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Velocity = 34304 cm/sec\n", + "NOTE:Calculation mistake in book\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.2,Page no:11" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "v=340 #velocity in m/sec\n", + "l=0.68 #wavelength in m\n", + "\n", + "#Calculation\n", + "n=v/l #calculating frequency\n", + "\n", + "#Result\n", + "print\"Frequency\",n,\"Hz\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency 500.0 Hz\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.3,Page no:12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "v=3*10**8 #velocity in m/sec\n", + "n=500*10**3 #frequency in Hz\n", + "\n", + "#Calculation\n", + "l=v/n #calculating wavelength\n", + "\n", + "#Result\n", + "print\"Wavelength=\",l,\"m\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength= 600 m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.4,Page no:12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "v=330 #velocity in m/sec\n", + "n=560.0 #frequency in Hz\n", + "\n", + "#Calculation\n", + "lamda=v/n #calculating wavelength\n", + "\n", + "#Result\n", + "print\"lambda=\",round(lamda,3),\"m\"\n", + "print\"Distance travelled in 30 vibrations in m = \",round(lamda*30,2),\"m\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "lambda= 0.589 m\n", + "Distance travelled in 30 vibrations in m = 17.68 m\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.5,Page no:12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "s=90.0 #distance in m\n", + "u=0 #initial velocity in m/sec\n", + "\n", + "#Calculation\n", + "t=math.sqrt(90/4.9) #calculating time using kinematical equation\n", + "later=4.56 #Time after which sound is heard\n", + "t1=later-t #calculating time taken by sound to travel\n", + "t1=round(t1,2)\n", + "v=s/t1 #calculating velocity\n", + "\n", + "#Result\n", + "print\"Velocity in m/sec = \",round(v,2),\"m/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Velocity in m/sec = 333.33 m/s\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.6,Page no:13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "l1=1.5 #wavelength in m\n", + "l2=2 #wavelength in m\n", + "v1=120 #velocity in m/sec\n", + "\n", + "#Calculation\n", + "n=v1/l1 #calculating frequency\n", + "v2=n*l2 #calculating velocity\n", + "\n", + "#Result\n", + "print\"Velocity in m/sec = \",v2,\"m/sec\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Velocity in m/sec = 160.0 m/sec\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.7,Page no:14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "l=5641*10**-10 #wavelength in m\n", + "c=3*10**8 #velocity in m/sec\n", + "u=1.58 #refractive index of glass\n", + "\n", + "#Calculation\n", + "n=c/l #calculating frequency\n", + "cg=c/u #calculating velocity of light in glass\n", + "l1=cg/n #calculating wavelegth in glass\n", + "\n", + "#Result\n", + "print\"Wavelength in glass in Angstrom =\",l1*10**10,\"Angstrom\" \n", + "print\"\\n\\nNOTE:Calculation ambiguity in book,value of cg is taken as 1.9*10**8 ,Therefore final answer is changed\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength in glass in Angstrom = 3570.25316456 Angstrom\n", + "\n", + "\n", + "NOTE:Calculation ambiguity in book,value of cg is taken as 1.9*10**8 ,Therefore final answer is changed\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.8,Page no:15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "n=12*10**6 #frequency in Hz\n", + "v=3*10**8 #velocity in m/sec\n", + "\n", + "#Calculation\n", + "l=v/n #calculating wavelength\n", + "\n", + "#Result\n", + "print\"Wavelength in m = \",l,\"m\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength in m = 25 m\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.9,Page no:15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "n=400 #frequency in Hz\n", + "v=300.0 #velocity in m/sec\n", + "\n", + "#Calculation\n", + "l=v/n #calculating wavelength\n", + "\n", + "#Result\n", + "print\"Wavelength=\",l,\"m\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength= 0.75 m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.10,Page no:22" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "a=20 #amplitude in cm\n", + "n=6 #frequency per second\n", + "\n", + "#Calculation\n", + "w=2*(math.pi)*n #omega in radians/sec\n", + "\n", + "#Result\n", + "print\"Omega in radians/sec = \",round(w,1),\"rad/sec\" \n", + "print\"y=\",a,\"sin\",round(w,1),\"t\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Omega in radians/sec = 37.7 rad/sec\n", + "y= 20 sin 37.7 t\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.11,Page no:23" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "#Variable declaration\n", + "a=6 #amplitude in cm\n", + "n=9 #frequency in Hz.\n", + "\n", + "#Calculation\n", + "vmax=2*(math.pi)*n*6 #calculating velocity in cm/sec\n", + "acc=-((18*(math.pi))**2)*6 #calculating acc. in m/sec square\n", + "\n", + "#Result\n", + "print\"Maximum velocity in cm/sec = \",round(vmax,2),\"cm/sec\" \n", + "print\"Velocity at extreme position = 0\" \n", + "print\"Accelaration at mean position = 0\" \n", + "print\"Accelaration at extreme position = \",round(acc,1),\"m/sec^2\" \n", + "print\"\\n\\nNOTE:Calculation mistake in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum velocity in cm/sec = 339.29 cm/sec\n", + "Velocity at extreme position = 0\n", + "Accelaration at mean position = 0\n", + "Accelaration at extreme position = -19186.5 m/sec^2\n", + "\n", + "\n", + "NOTE:Calculation mistake in book\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:1.12,Page no:26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "g=9.8 #gravitational constant\n", + "m=50 #mass in kg\n", + "l=0.2 #length in m\n", + "T=0.6 #time period\n", + "\n", + "#Calculation\n", + "k=(m*g)/l #calculating constant\n", + "m=2450*((T/(2*(math.pi)))**2) #calcualting mass using given time period\n", + "\n", + "#Result\n", + "print\"Mass of body= \",round(m,2),\"kg\" \n", + "print\"Weight of suspended body=\",round(m,2)*g,\"N\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Mass of body= 22.34 kg\n", + "Weight of suspended body= 218.932 N\n" + ] + } + ], + "prompt_number": 12 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter2.ipynb b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter2.ipynb new file mode 100755 index 00000000..b50ddf47 --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter2.ipynb @@ -0,0 +1,339 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:bc446a4cb1141cc1fc3a73e237c82b9c455db1185763ba734b760bbf57d3288c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "UNIT-2:Application of Sound Waves" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.1,Page no:41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "v=3000 #volume in metre cube.\n", + "theta=0.2 #theta in owu(open window unit).\n", + "s=1850 #area in metre cube.\n", + "\n", + "#Calculation\n", + "a=theta*s #calculating total absorbtion of surface.\n", + "T=(0.165*v)/a #calculating T using Sabine formula\n", + "\n", + "#Result\n", + "print\"Reverberation time of Room = \",round(T,2) ,\"sec\" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Reverberation time of Room = 1.34 sec\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.2,Page no:41" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "v=120000 #volume in metre cube.\n", + "t=1.5 #time in second.\n", + "s=25000 #area in metre cube.\n", + "\n", + "#Calculation\n", + "a=(0.16*v)/(t*s) #using Sabine formula for calculating a\n", + "\n", + "#Variable declaration\n", + "print\"Average Absorbing Power of Surface = \",a,\"o w u\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Average Absorbing Power of Surface = 0.512 o w u\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.3,Page no:42" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "v=6000.0 #Volume in metre cube.\n", + "a=20.0 #surface absorbtion in owu(open window unit).\n", + "\n", + "#Calculation\n", + "T=(0.165*v)/(a) #calculating T using Sabine Formula.\n", + "\n", + "#Result\n", + "print\"Reverberation Time = \",T,\"sec\"\n", + "print\"\\nNOTE:Calculation mistake in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Reverberation Time = 49.5 sec\n", + "\n", + "NOTE:Calculation mistake in book\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.4,Page no:42" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "v=3500 #volume in metre cube.\n", + "n1=370-300 #no. of audience on wooden seats.\n", + "n2=300-70 #no. of empty wooden seats.\n", + "\n", + "#Calculation\n", + "a1s1=0.04*60 #absorption due to wooden doors.\n", + "a2s2=0.03*700 #absorption due to plastered walls.\n", + "a3s3=0.06*50 #absorption due to glass work.\n", + "a4s4=4.2*370 #absorption due to audience on spungy and wooden \n", + "#seats.\n", + "a5s5=2*230 #absorption due to empty seats.\n", + "sum=a1s1+a2s2+a3s3+a4s4+a5s5 #total absorption of cinema hall.\n", + "T=(0.165*v)/sum #calculating T using Sabine Formula.\n", + "\n", + "#Result\n", + "print\"Reverberation Time = \",round(T,2),\"sec\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Reverberation Time = 0.28 sec\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.5,Page no:49" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "l=10 #length in centimetres.\n", + "Y=20*10**11 #Young's Modulus in dyne/cm square.\n", + "R=8 #Density in gram/cc\n", + "\n", + "#Calculation\n", + "n=(1.0/(2*l))*math.sqrt(Y/R) #calculating frequency of vibration using \n", + "#young's modulus.\n", + "\n", + "#Result\n", + "print\"Frequency of vibration=\",n,\"Hz\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of vibration= 25000.0 Hz\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.6,Page no:50" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "t=0.1 #thickness in centimetre.\n", + "Y=8.75*10**11 #Young's Modulus in dyne/cm square.\n", + "R=2.654 #Density in gram/cm square.\n", + "\n", + "#Calculation\n", + "n=(1/(2*t))*math.sqrt(Y/R) #calculating frequency using Young's modulus.\n", + "\n", + "#Result\n", + "print\"Frequency of Vibration=\",round(n),\"Hz\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency of Vibration= 2870936.0 Hz\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.7,Page no:50" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "K=2.026*10**9 #Bulk Modulus in N/m square.\n", + "R=10**3 #Density in Kg/m cube.\n", + "\n", + "#Calculation\n", + "V=math.sqrt(K/R) #Calculating speed using Bulk Modulus.\n", + "\n", + "#Result\n", + "print\"Velocity of sound waves in water = \",round(V,2),\"m/sec\" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Velocity of sound waves in water = 1423.38 m/sec\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:2.8,Page no:51" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "Y=1.41 #Young's Modulus.\n", + "R=1.293*10**-3 #Density of air in g/centimetre cube.\n", + "P=76*13.6*980 #atmospheric pressure in dyne/cm square.\n", + "\n", + "#Calculation\n", + "V=math.sqrt((Y*P)/R) #calculating speed using young's modulus.\n", + "\n", + "#Result\n", + "print\"Speed of ultrasonic wave in air at n.t.p=\",round(V*10**-2,1),\"m/sec\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed of ultrasonic wave in air at n.t.p= 332.4 m/sec\n" + ] + } + ], + "prompt_number": 16 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter3.ipynb b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter3.ipynb new file mode 100755 index 00000000..147c1c8d --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter3.ipynb @@ -0,0 +1,605 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:040e38e52e7b9682cfcedeffe89e523ef70aa22db1a3d6616f3de2ca6dd532ec" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "UNIT-3:Principle of Optics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.1,Page no:69" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "f=15.0 #focal length in cm\n", + "v=10.0 #image distance in cm\n", + "\n", + "#Calculation\n", + "u=1/((1/v)-(1/f)) #calculating u using (1/f)=(1/v)-(1/u)\n", + "\n", + "#Result\n", + "print\"Object Distance ,u= \",u,\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Object Distance ,u= 30.0 cm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.2,Page no:70" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration\n", + "f=80.0 #focal length in cm\n", + "f1=20.0 #focallength of first lens in cm\n", + "\n", + "#Calculation\n", + "f2=1/((1/f)-(1/f1)) #using (1/F)=(1/f1)+(1/f2)\n", + "P=(100.0/f) #power in D\n", + "P1=100.0/20 #power of first lens\n", + "P2=P1-P #power in D\n", + "\n", + "#Variable declaration\n", + "print\"Power= \",P2,\"D\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power= 3.75 D\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.3,Page no:71" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "P=2.5 #Power in D\n", + "\n", + "#Calculation\n", + "f=-(1/P) #calculating f in m\n", + "\n", + "#Result\n", + "print\"Focal length =\",f,\"m\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Focal length = -0.4 m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.4,Page no:72" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "m=4 #magnigication\n", + "f=20 #focal length in cm\n", + "\n", + "#Calculation\n", + "u=(20*3)/(4) #on simplifying (1/f)=(1/v)-(1/u)\n", + "v=(4*u) #calculating v in cm\n", + "\n", + "#Result\n", + "print\"Object distance,u= \",u,\"cm\" \n", + "print\"Image distance,v= \",v,\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Object distance,u= 15 cm\n", + "Image distance,v= 60 cm\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.5,Page no:72" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from scipy.optimize import fsolve \n", + "\n", + "#Variable declaration\n", + "u=14.0 #object distance in cm\n", + "f=-21.0 #focal distance in cm\n", + "\n", + "#Calculation\n", + "v=1/((1/f)-(1/u))\n", + "I=(3.0*v)/(-u) #using m=(1/0)=(v/u) \n", + "\n", + "#Result\n", + "print\"Image distance= \",v,\"cm\" \n", + "print\"I= \",I,\"cm\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Image distance= -8.4 cm\n", + "I= 1.8 cm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.6,Page no:79" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "fe=5 #focal length in cm\n", + "D=25 #distance od distinct vision in cm\n", + "\n", + "#Calculation\n", + "m=1+(D/fe) #calculating magnifying power\n", + "\n", + "#Result\n", + "print\"magnifying Power = \",m " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "magnifying Power = 6\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.7,Page no:80" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "fe=5 #focal length in cm\n", + "D=25 #distance od distinct vision in cm\n", + "\n", + "#Calculation\n", + "mo=30/(1+(D/fe)) #calculating magnification of objective lens\n", + "\n", + "#Result\n", + "print\"Magnification produced by objective lens = \",mo " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Magnification produced by objective lens = 5\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.8,Page no:80" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "u=-6.0 #object distance in cm\n", + "fo=4.0 #focal distance in cm\n", + "fe=6.0 #focal length in cm\n", + "D=25.0 #distance of distinct vision in cm\n", + "\n", + "#Calculation\n", + "v=1/((1/u)+(1/fo)) #using (1/f)=(1/v)-(1/u)\n", + "m=(v/u)*(1+(D/fe)) #calculating m\n", + "\n", + "#Result\n", + "print\"Image distance in cm = \",v,\"cm\" \n", + "print\"Magnifying Power = \",round(-m,2) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Image distance in cm = 12.0 cm\n", + "Magnifying Power = 10.33\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.9,Page no:81" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "D=25.0 #distance of distinct vision\n", + "u=-9.0 #object distance in cm\n", + "fe=10.0 #focal length in cm\n", + "\n", + "#Calculation\n", + "v=1/((1/fe)+(1/u)) #using (1/f)=(1/v)-(1/u)\n", + "m=(v/u) #calculating m\n", + "M=D/u #calculating Magnifying power of lens\n", + "\n", + "#Result\n", + "print\"Magnification of lens = \",m \n", + "print\"Magnifying Power = \",round(-M,1) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Magnification of lens = 10.0\n", + "Magnifying Power = 2.8\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.10,Page no:82" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "fo=0.5 #focal length of eye lens\n", + "D=25 #distance of distinct vision\n", + "L=15 #length in cm\n", + "m=375 #magnification\n", + "\n", + "#Calculation\n", + "fe=(-L*D)/(fo*((L/fo)-m)) #calculating fe\n", + "\n", + "#Result\n", + "print\"Focal length of eye lens= \",round(fe,1),\"cm\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Focal length of eye lens= 2.2 cm\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.11,Page no:86" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "m=5 #magnifying power\n", + "L=24 #length in cm\n", + "fe=4 #focal length in cm\n", + "\n", + "#Calculation\n", + "fo=5*fe #calculating fo\n", + "\n", + "#Result\n", + "print\"Focal length of lens = \",fo,\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Focal length of lens = 20 cm\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.12,Page no:87" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "D=25.0 #distance of distinct vision in cm\n", + "fo=140.0 #focal length of eye lens\n", + "fe=5.0 #focal length in cm\n", + "\n", + "#Calculation\n", + "m=-(fo/fe) #calculating magnifying power\n", + "m1=-(fo/fe)*(1+(fe/D)) #calculating magnifying power\n", + "\n", + "#Result\n", + "print\"(a):Magnifying power at normal adjustment = \",m\n", + "print\"(b):Magnifying power atleast distance of distinct vision = \",m1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a):Magnifying power at normal adjustment = -28.0\n", + "(b):Magnifying power atleast distance of distinct vision = -33.6\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.13,Page no:88" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "M=5 #Magnifying power\n", + "fo=10 #focal length of eye lens\n", + "\n", + "#Calculation\n", + "fe=fo/M #calculating fe\n", + "\n", + "#Result\n", + "print\"Focal length of eye lens= \",fe,\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Focal length of eye lens= 2 cm\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.14,Page no:88" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "fo=75.0 #focal length of eye lens\n", + "D=25.0 #distance of distinct vision\n", + "fe=5.0 #focal of eye lens in cm\n", + "\n", + "#Calculation\n", + "M=-(fo/fe)*(1+(fe/D)) #calculating M\n", + "\n", + "#Result\n", + "print\"Magnifying power = \",M" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Magnifying power = -18.0\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:3.15,Page no:88" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "M=7 #magnifying power\n", + "L=40 #length\n", + "\n", + "#Calculation\n", + "fe=(L/(M+1)) #focal length of eye lens in cm\n", + "fo=(M*fe) #calculating focal length\n", + "\n", + "#Result\n", + "print\"Focal Length of lens=\",fo,\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Focal Length of lens= 35 cm\n" + ] + } + ], + "prompt_number": 13 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter4.ipynb b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter4.ipynb new file mode 100755 index 00000000..67ec2ab8 --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter4.ipynb @@ -0,0 +1,1106 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:5389b8ee7db605c2b6709900953f8acf2763d42f0399c64611452653d4ee8704" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "UNIT-4:Electrostatics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.1,Page no:103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "q=1.0 #no of coulomb\n", + "e=1.6*10**-19 #charge on an electron\n", + "\n", + "#Calculation\n", + "n=(q/e) #calculating no of electrons\n", + "\n", + "#Result\n", + "print\"No of electrons =\",n\n", + "print\"NOTE:Calculation mistake in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "No of electrons = 6.25e+18\n", + "NOTE:Calculation mistake in book\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.2,Page no:103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "g=9.8\n", + "m=4.5 #Massin [kg]\n", + "r=0.03 #radius in [m]\n", + "\n", + "#Calculation\n", + "F=m*g #in Newton\n", + "q=math.sqrt(((r**2)*m*g)/(9*10**9)) #calculating q using F=(1/4*3.14*eo)*((q1*q2)/(r**2))\n", + "\n", + "#Result\n", + "print\"Charge = \",q,\"C\"\n", + "print\"\\nNOTE:Calculation mistake in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge = 2.1e-06 C\n", + "\n", + "NOTE:Calculation mistake in book\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.3,Page no:103" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "q1=2*10**-7 #charge in C\n", + "q2=3*10**-7 #charge in C\n", + "r=30*10**-2 #r in m\n", + "\n", + "#Calculation\n", + "F=(9*10**9)*((q1*q2)/r**2) #calculating F\n", + "\n", + "#Result\n", + "print\"Force = %.e\"%F,\"N\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Force = 6e-03 N\n" + ] + } + ], + "prompt_number": 70 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.4,Page no:104" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "q1=1 #charge in C\n", + "q2=1 #charge in C\n", + "r=1 #r in m\n", + "\n", + "#Calculation\n", + "F=(9*10**9)*((q1*q2)/r**2) #calculating F\n", + "\n", + "#Result\n", + "print\"Force = %.e\"%F,\"N\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Force = 9e+09 N\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.5,Page no:104" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "m=9*10**-31 #mass of electron in kg\n", + "q=-3.2*10**-7 #charge in C\n", + "e=-1.6*10**-19 #charge on electron in C\n", + "\n", + "#Calculation\n", + "n=(q/e) #calculating n\n", + "M=n*m #calculating mass transfered\n", + "\n", + "#Result\n", + "print\"(a):No. of electrons = \",n\n", + "print\"(b):Mass transfered to polythene= \",M,\"kg\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a):No. of electrons = 2e+12\n", + "(b):Mass transfered to polythene= 1.8e-18 kg\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.6,Page no:105" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "q1=1.6*10**-19 #charge in C\n", + "q2=-1.6*10**-19 #charge in C\n", + "r=10**-9 #r in m\n", + "\n", + "#Calculation\n", + "F=(9*10**9)*((q1*q2)/r**2) #calculating F\n", + "\n", + "#Result\n", + "print\"Force=\",F,\"N\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Force= -2.304e-10 N\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.7,Page no:110" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "Va=-10 #voltage in volts\n", + "W=100 #work in Joule\n", + "q=2 #charge in Coulomb\n", + "\n", + "#Calculation\n", + "v=(Va)+(W/q) #calculating v\n", + "\n", + "#Result\n", + "print\"Voltage = \",v,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage = 40 V\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.8,Page no:111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "eo=(8.854*10**-12) #constant\n", + "E=2 #magnitude of electric field in N/C\n", + "r=0.5 #r in m\n", + "\n", + "#Calculation\n", + "q=E*4*(math.pi)*(eo)*(r**2) #calculating charge\n", + "\n", + "#Result\n", + "print\"Charge= %.2e\"%q,\"C\"\n", + "print\"\\nNOTE:Calcualtion mistake in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge= 5.56e-11 C\n", + "\n", + "NOTE:Calcualtion mistake in book\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.9,Page no:111" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "e=-1.6*10**-19 #charge on electron in Coulomb\n", + "q=20*10**-6 #charge in Coulomb\n", + "r1=0.1 #r1 in m\n", + "r2=0.05 #r2 in m\n", + "\n", + "#Calculation\n", + "Va=9*10**9*(q/r1) #calculating voltage at A\n", + "Vb=9*10**9*(q/r2) #calculating voltage at B\n", + "V=Va-Vb #potential difference\n", + "W=V*e #calculating work done in joule\n", + "\n", + "#Result\n", + "print\"Work done to take the electron from A to B = \",W,\"Joule\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Work done to take the electron from A to B = 2.88e-13 Joule\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.10,Page no:112" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "q1=(2.0*10**-8) #charge in coulomb\n", + "q2=(-2.0*10**-8) #charge in coulomb\n", + "q3=(3.0*10**-8) #charge in coulomb\n", + "q4=(6.0*10**-8) #charge in coulomb\n", + "s=1.0 #side in m\n", + "\n", + "#Calculation\n", + "V=(9.0*10**9)*(1.0/s)*(q1+q2+q3+q4) #calculating voltage\n", + "\n", + "#Result\n", + "print\"Voltage in Volts = \",V,\"Volts\"\n", + "print\"\\nNOTE:Calculation mistake in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage in Volts = 810.0 Volts\n", + "\n", + "NOTE:Calculation mistake in book\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.11,Page no:123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "eo=8.85*10**-12 #constant\n", + "q=2*10**-6 #charge in coulomb\n", + "l=9 #length in cm\n", + "\n", + "#Calculation\n", + "fi=(q/eo) #calcualting flux in (N m square)/c\n", + "\n", + "#Result\n", + "print\"Flux through the surface=%2e\"%fi,\"N m^2/c\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux through the surface=2.259887e+05 N m^2/c\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.12,Page no:124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "eo=8.85*10**-12 #constant\n", + "r=1.2 #r in m\n", + "t=80*10**-6 #surface sharge density in c/m square\n", + "\n", + "#Calculation\n", + "q=t*4*(math.pi)*(r**2) #calculating charge\n", + "fi=q/eo #calculating flux\n", + "\n", + "#Result\n", + "print\"Flux=%g\"%fi,\"N c^-1 m^2\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux=1.63576e+08 N c^-1 m^2\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.13,Page no:124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "eo=8.85*10**-12 #constant\n", + "E=9*10**4 #Electric field in N/C\n", + "r=2*10**-2 #r in m\n", + "\n", + "#Calculation\n", + "L=2*(math.pi)*E*eo*r #calculating linear charge density\n", + "\n", + "#Result\n", + "print\"Linear charge density = \",round(L,7),\"cm^-1\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Linear charge density = 1e-07 cm^-1\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.14,Page no:125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "o=17*10**-22 #surface charge density in cm**-2\n", + "eo=8.85*10**-12 #constant\n", + "\n", + "#Calculation\n", + "E=o/eo #calculating electric intensity in region III\n", + "\n", + "#Result\n", + "print\"Electric Intensity in regions I and II = 0\" \n", + "print\"Electric Intensity in region III = \",round(E,12),\"N/C\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Electric Intensity in regions I and II = 0\n", + "Electric Intensity in region III = 1.92e-10 N/C\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.15,Page no:125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "r=0.05 # in m\n", + "eo=8.85*10**-12 #constant\n", + "q=10.0**-9 #charge at point P in Coulomb\n", + "\n", + "#Calculation\n", + "E=q/(4*(math.pi)*eo*(r**2)) #calculating electric field\n", + "r1=0.2 #in m\n", + "V1=q/(4*(math.pi)*eo*r1) #calculating potential difference\n", + "\n", + "#Result\n", + "print\"Electric field= \",round(E),\"v/m\"\n", + "print\"\\nNOTE:Approximate answer is calculated in book\\n\\n\"\n", + "print\"Potential difference between two points = \",round(V1),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Electric field= 3597.0 v/m\n", + "\n", + "NOTE:Approximate answer is calculated in book\n", + "\n", + "\n", + "Potential difference between two points = 45.0 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.16,Page no:126" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "eo=8.85*10**-12 #constant\n", + "o=80.0*10**-6 #surface charge density in c/ square\n", + "r=1.2 #in m\n", + "\n", + "#Calculation\n", + "q=o*(math.pi)*(r**2) #calculating charge in Coulomb\n", + "fi=q/eo #calculating electric flux\n", + "\n", + "#Result\n", + "print\"Charge= \",q,\"C\"\n", + "print\"Electric flux = \",fi,\"N m^2/c\"\n", + "print\"\\nNOTE:Wrong answers in book\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge= 0.000361911473694 C\n", + "Electric flux = 40893951.8298 N m^2/c\n", + "\n", + "NOTE:Wrong answers in book\n", + "\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.17,Page no:138" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "V=250 #potential difference in Volt\n", + "C=10**-11 #capacitance in farad\n", + "\n", + "#Calculation\n", + "q=C*V #calculating charge\n", + "\n", + "#Result\n", + "print\"Charge = \",q,\"C\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge = 2.5e-09 C\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.18,Page no:138" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "r=6.4*10**6 #in m\n", + "\n", + "#Calculation\n", + "C=r/(9*10**9) #calculating charge\n", + "\n", + "#Result\n", + "print\"Capacitance = \",round(C*10**6),\"mu F\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Capacitance = 711.0 mu F\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.19,Page no:138" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "C=2 #capacitance in Farad\n", + "d=0.5*10**-2 #distance in m\n", + "eo=8.85*10**-12 #constant\n", + "\n", + "#Calculation\n", + "A=(C*d)/(eo) #calculating area\n", + "\n", + "#Result\n", + "print\"Area=%.2e\"%A,\"m^2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Area=1.13e+09 m^2\n" + ] + } + ], + "prompt_number": 66 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.20,Page no:139" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "A=0.02 #area in m square\n", + "r=0.5 #r in m\n", + "\n", + "#Calculation\n", + "d=(A/(4*(math.pi)*r)) #calculating distance\n", + "\n", + "#Result\n", + "print\"Distance between the plates = \",round(d*1000,2),\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Distance between the plates = 3.18 mm\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.21,Page no:139" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "eo=8.85*10**-12 #constant\n", + "A=1 #area in m square\n", + "d=2*10**-3 #r in m\n", + "K=4 #constant\n", + "\n", + "#Calculation\n", + "C=(K*eo*A)/d #calculating capacitance\n", + "\n", + "#Result\n", + "print\"Capacitance = \",C,\"Farad\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Capacitance = 1.77e-08 Farad\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.22,Page no:140" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "cm=10*10**-6 #capacitance in Farad\n", + "K=2 #constant\n", + "\n", + "#Calculation\n", + "co=cm/K #calculating co\n", + "\n", + "#Result\n", + "print\"capacity of capacitor with air between the plates= \",co*10**6,\"muF\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "capacity of capacitor with air between the plates= 5.0 muF\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.23,Page no:140" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "v=100.0 #v in volt\n", + "c1=8.0*10**-6 #capacitance in Farad\n", + "c2=12.0*10.0**-6 #capacitance in Farad\n", + "c3=24.0*10.0**-6 #capacitance in Farad\n", + "cs=4.0/(10.0**6) #calculating series capacitance\n", + "\n", + "#Calculation\n", + "cp=(c1+c2+c3) #calculating parallel capacitance\n", + "qs=cs*v #calculating charge\n", + "\n", + "#Result\n", + "print\"Equivalent Series capacitance,C= \",cs*10**6,\"muF\"\n", + "print\"Equivalent parallel capacitance,Cp= \",cp*10**6,\"muF\" \n", + "print\"charge on plate=%.e\"%qs,\"C\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Equivalent Series capacitance,C= 4.0 muF\n", + "Equivalent parallel capacitance,Cp= 44.0 muF\n", + "charge on plate=4e-04 C\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.24,Page no:141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "C=9*10**-10 #capacitance in farad\n", + "V=100.0 #in volt\n", + "\n", + "#Calculation\n", + "U=(1/2.0)*(C*(V**2)) #calculating energy stored\n", + "\n", + "#Result\n", + "print\"Energy stored = \",U,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy stored = 4.5e-06 J\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.25,Page no:141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "eo=8.85*10**-12 #constant\n", + "A=90.0*10**-4 #area in m square\n", + "d=2.5*10**-3 #distance in m\n", + "V=400.0 #in volt\n", + "\n", + "#Calculation\n", + "C=(eo*A)/d #calculating capacitance\n", + "W=(1/2.0)*(C*(V**2)) #calculating electrical energy stored\n", + "\n", + "#Result\n", + "print\"Capacitance = \",C,\"Farad\"\n", + "print\"Electrical Energy stored in capacitor =%.2e\"%W,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Capacitance = 3.186e-11 Farad\n", + "Electrical Energy stored in capacitor =2.55e-06 J\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.26,Page no:142" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "v=100 #v in volt\n", + "c1=1*10**-6 #capacitance in Farad\n", + "c2=2*10**-6 #capacitance in Farad\n", + "c3=3*10**-6 #capacitance in Farad\n", + "cs=6/11.0 #calculating series capacitance\n", + "\n", + "#Calculation\n", + "cp=(c1+c2+c3) #calculating parallel capacitance\n", + "\n", + "#Result\n", + "print\"Equivalent Series capacitance = \",cs,\"muF\"\n", + "print\"Equivalent parallel capacitance= \",cp*10**6,\"muF\"\n", + "print\"Therefore Cp=(11*Cs)\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Equivalent Series capacitance = 0.545454545455 muF\n", + "Equivalent parallel capacitance= 6.0 muF\n", + "Therefore Cp=(11*Cs)\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:4.27,Page no:143" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "eo=8.85*10**-12 #constant\n", + "V=6 #v in volt\n", + "A=25*10**-4 #area in m square\n", + "d=10**-3 #distance in m\n", + "\n", + "#Calculation\n", + "q=(eo*A*V)/d #calculating charge\n", + "W=q*V #calculating work done\n", + "\n", + "#Result\n", + "print\"Charge through battery =%.3g\"%q,\"C\"\n", + "print\"Work done by Battery=%.e\"%W,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge through battery =1.33e-10 C\n", + "Work done by Battery=8e-10 J\n" + ] + } + ], + "prompt_number": 63 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter5.ipynb b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter5.ipynb new file mode 100755 index 00000000..581d450b --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/Chapter5.ipynb @@ -0,0 +1,1035 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:1f51544adf15fc8ba28e47ac7da1a371a1d8835331773ecfcfa211468f9b325d" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "UNIT-5 Electricity" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.1,Page no:152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "n=10**6 #no. of electrons\n", + "e=1.6*10**-19 #charge on an electron in C\n", + "\n", + "#Calculation\n", + "q=n*e #calculating total charge\n", + "t=10**-3 #time in second\n", + "I=q/t #calculating current\n", + "\n", + "#Result\n", + "print\"Current flowing = \",I,\"Ampere\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current flowing = 1.6e-10 Ampere\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.2,Page no:152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "I=300*10**-3 #current n Ampere\n", + "t=60 #time in second\n", + "e=1.6*10**-19 #chatge on electron in C\n", + "\n", + "#Calculation\n", + "q=I*t #calculating charge\n", + "n=q/e #calculating no of electrons\n", + "\n", + "#Result\n", + "print\"No. of electrons = \",n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "No. of electrons = 1.125e+20\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.3,Page no:154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "V=200 #voltage in volt\n", + "R=100 #resistance in Ohm\n", + "e=1.6*10**-19 #charge on an electron in C\n", + "\n", + "#Calculation\n", + "I=V/R #Ohm's law\n", + "t=1 #time in second\n", + "q=I*t #calculating charge\n", + "n=q/e #calculating no of electrons\n", + "\n", + "#Result\n", + "print\"No. of electrons = \",n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "No. of electrons = 1.25e+19\n" + ] + } + ], + "prompt_number": 72 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.4,Page no:156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "l=15 #length in m\n", + "A=6*10**-7 #area in m square\n", + "R=5 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "p=(A*R)/l #calculating resistivity\n", + "\n", + "#Result\n", + "print\"Resistivity= \",p,\"Ohm metre\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistivity= 2e-07 Ohm metre\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.5,Page no:157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "l=0.1 #length in m\n", + "A=10**-4 #area in m square\n", + "R=0.01 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "p=(A*R)/l #calculating resistivity\n", + "\n", + "#Result\n", + "print\"Resistivity = \",p,\"Ohm metre\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistivity = 1e-05 Ohm metre\n" + ] + } + ], + "prompt_number": 74 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.6,Page no:157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "\n", + "#Variable declaration\n", + "L=1 #length in m\n", + "r=0.2*10**-3 #radius in m\n", + "R=2 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "A=math.pi*(r)**2 #calculating area\n", + "P=(R*A)/L #calculating resistivity\n", + "\n", + "#Result\n", + "print\"Resistivity =%.2g\"%P,\"Ohm.metre\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistivity =2.5e-07 Ohm.metre\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.7,Page no:158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "R1=5 #resisitance in Ohm\n", + "\n", + "#Calculation\n", + "#A2=A/3\n", + "#R2/5=3l*3/A*A/l\n", + "#R2=9*5\n", + "\n", + "R2=9*R1 #calculating using R2/A1=(l2/A2)*(A1/l1)\n", + "print\"Resisitance = \",R2,\"Ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resisitance = 45 Ohm\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.8,Page no:159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "R1=5 #resisitance in Ohm\n", + "\n", + "#Calculation\n", + "#A2=A/2\n", + "#R1=rho*l1/A1*R2\n", + "#R2=rho*l2/A2\n", + "#R2/R1=A1/l1\n", + "R2=4*R1 #calculating using R2/A1=(l2/A2)*(A1/l1)\n", + "\n", + "#Result\n", + "print\"Resisitance= \",R2,\"Ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resisitance= 20 Ohm\n" + ] + } + ], + "prompt_number": 70 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.9,Page no:162" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "R1=2 #resisitance in Ohm\n", + "R2=4 #resistance in Ohm\n", + "R3=5 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "R=(R1**-1)+(R2**-1)+(R3**-1) #calculating parallel resistance\n", + "Rp=(1/R) \n", + "\n", + "#Result\n", + "print\"Resisitance = \",Rp,\"Ohm\"\n", + "print\"\\nNOTE:Incorrect answer in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resisitance = 1.05263157895 Ohm\n", + "\n", + "NOTE:Incorrect answer in book\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.10,Page no:163" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "from scipy.optimize import fsolve \n", + "\n", + "#Variable declaration\n", + "Rs=40 #resisitance in Ohm\n", + "\n", + "#Calculation\n", + "#R1+R2=40\n", + "#R1*R2=256\n", + "#R1=256/R2\n", + "#Putting this value in eq 1:\n", + "#(256/R2)+R2=40\n", + "from sympy import solve, symbols, pprint\n", + "R2= symbols('R2')\n", + "a=1\n", + "b=-40\n", + "c=256\n", + "f = a*R2**2 + b*R2 + c\n", + "solution = solve(f, R2)\n", + "\n", + "#Result\n", + "print\"When R2=\",solution[0],\"Ohm R1=\",solution[1],\"Ohm\"\n", + "print\"When R2=\",solution[1],\"Ohm R1=\",solution[0],\"Ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When R2= 8 Ohm R1= 32 Ohm\n", + "When R2= 32 Ohm R1= 8 Ohm\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.11,Page no:164" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "V=2.0 #in volts\n", + "R1=30.0 #resisitance in Ohm\n", + "R2=60.0 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "Rp=(R1*R2)/(R1+R2) #calculating parallel resistance\n", + "I=V/Rp #Ohm's law\n", + "\n", + "#Result\n", + "print\"Resisitance = \",Rp,\"Ohm\"\n", + "print\"Current = \",I,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resisitance = 20.0 Ohm\n", + "Current = 0.1 A\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.12,Page no:165" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "R1=2.0 #resisitance in Ohm\n", + "R2=3.0 #resistance in Ohm\n", + "R3=1.0 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "Rp=(R1*R2)/(R1+R2) #calculating parallel resistance\n", + "R=Rp+1.0 #1 Ohm in series\n", + "Rs=(R1+R2+R3) #series resistances\n", + "Rp=(1.0/R1)+(1.0/R2)+(1.0/R3) #calculating parallel resistance\n", + "\n", + "#Result\n", + "print\"(1)Equivalent Resisitance= \",R,\"Ohm\" \n", + "print\"(2)All resistances in series = \",Rs,\"Ohm\"\n", + "print\"(3)All in Parallel = \",(1/Rp),\"Ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(1)Equivalent Resisitance= 2.2 Ohm\n", + "(2)All resistances in series = 6.0 Ohm\n", + "(3)All in Parallel = 0.545454545455 Ohm\n" + ] + } + ], + "prompt_number": 76 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.13,Page no:166" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "V=20 #voltage in Volts\n", + "R1=2.0 #resisitance in Ohm\n", + "R2=4.0 #resistance in Ohm\n", + "R3=5.0 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "Rp=(1/R1)+(1/R2)+(1/R3) #calculating parallel resistance\n", + "R=1/Rp #Parallel\n", + "I1=V/R1 #calculating current through R1\n", + "I2=V/R2 #calculating current through R2\n", + "I3=V/R3 #calculating current through R3\n", + "I=V/R #calculating total current\n", + "\n", + "\n", + "#Result\n", + "print\"(a)Equivalent Resisitance = \",R,\"Ohm\"\n", + "print\"Current through R1 = \",I1,\"Ampere\"\n", + "print\"Current through R2 = \",I2,\"Ampere\" \n", + "print\"Total current = \",I,\"Ampere\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Equivalent Resisitance = 1.05263157895 Ohm\n", + "Current through R1 = 10.0 Ampere\n", + "Current through R2 = 5.0 Ampere\n", + "Total current = 19.0 Ampere\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.14,Page no:166" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "R=7 #Total resistanc of combination\n", + "\n", + "#Calculation\n", + "def f(n):\n", + " Rp = 6*(1/n) #resistance in parallel\n", + " return(R-Rp-5)\n", + "n=fsolve(f,1)\n", + "\n", + "#Result\n", + "print\"n=\",n[0]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "n= 3.0\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.15,Page no:173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "R1=2 #resistance in Ohm\n", + "R2=6 #resistance in Ohm\n", + "R3=3 #resistance in Ohm\n", + "V=24 #voltage in volts\n", + "R=8 #resistance in Ohm\n", + "\n", + "#Calculation\n", + "I=V/R #Ohm's Law\n", + "V1=I*R1 #Ohm's Law\n", + "V2=I*R2 #Ohm's Law\n", + "V3=I*R3 #Ohm's Law\n", + "\n", + "#Result\n", + "print\"Current = \",I,\"Ampere\" \n", + "print\"Voltage drop across R1 = \",V1,\"Volts\"\n", + "print\"Voltage drop across R2 = \",V2,\"Volts\" \n", + "print\"Voltage drop across R3 = \",V3,\"Volts\"\n", + "print\"\\nNOTE:Wrong answer of R3 in book\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current = 3 Ampere\n", + "Voltage drop across R1 = 6 Volts\n", + "Voltage drop across R2 = 18 Volts\n", + "Voltage drop across R3 = 9 Volts\n", + "\n", + "NOTE:Wrong answer of R3 in book\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.16,Page no:173" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "R=15 #resistance in Ohm\n", + "print\"KVL: 16I1+15I2=6 (1)\" #KVL equation\n", + "I1=-1.66 #from(1)\n", + "I2=2.17 #from (1)\n", + "#Calculation\n", + "V=(I1+I2)*R #calculating potential difference\n", + "\n", + "#Result\n", + "print\"Potential difference= \",V,\"Volt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "KVL: 16I1+15I2=6 (1)\n", + "Potential difference= 7.65 Volt\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.17,Page no:174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "print\"3I1-I2-1=0 (1)\" #KVL equation\n", + "print\"3I1-I2+2I=2 (2)\" #KVL equation\n", + "print\"3I1-I1+2I=2 (3)\" #KVL equation\n", + "\n", + "#Variable declaration\n", + "I1=4/17.0 #from (1)(2)(3)through AB \n", + "I2=-2/17.0 #from (1)(2)(3)through BD\n", + "I=3*I1+I2 #from (1)(2)(3)through main circuit\n", + "\n", + "#Calculation\n", + "Ibc=I1-I2 #calculating current in BC\n", + "Iad=I-I1 #calculating current in AD\n", + "Idc=I-I1+I2 #calculating current in DC\n", + "\n", + "#Result\n", + "print\"Current in branch BC = \",Ibc,\"Ampere\"\n", + "print\"NOTE:Calculation mistake in book while calculating for BC\"\n", + "print\"Current in branch AD = \",Iad,\"Ampere\"\n", + "print\"Current in branch DC = \",Idc,\"Ampere\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3I1-I2-1=0 (1)\n", + "3I1-I2+2I=2 (2)\n", + "3I1-I1+2I=2 (3)\n", + "Current in branch BC = 0.352941176471 Ampere\n", + "NOTE:Calculation mistake in book while calculating for BC\n", + "Current in branch AD = 0.352941176471 Ampere\n", + "Current in branch DC = 0.235294117647 Ampere\n" + ] + } + ], + "prompt_number": 77 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.18,Page no:176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "P=10 #Ohm\n", + "Q=3 #Ohm\n", + "R=12 #Ohm\n", + "S=6 #Ohm\n", + "G=20 #Ohm\n", + "\n", + "\n", + "#Calculation\n", + "print\"-12I+22I1+IgG=0 (1)\" #KVL\n", + "print\"6I-9I1+29Ig=0 (2)\" #KVL\n", + "print\"13I1-3Ig=2 (3)\" #KVL\n", + "#From above equations\n", + "import numpy as np\n", + "a = np.array([[-12,22,20],[6,-9,29],[0,13,-3]]) \n", + "b = np.array([[0],[0],[2]])\n", + "np.linalg.solve(a,b)\n", + "\n", + "\n", + "#Result\n", + "print\"Current through Galvanometer = \",round(Ig*1000,2),\"mA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "-12I+22I1+IgG=0 (1)\n", + "6I-9I1+29Ig=0 (2)\n", + "13I1-3Ig=2 (3)\n", + "Current through Galvanometer = 7.8 mA\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.19,Page no:179" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "P=500 #power in Watts\n", + "V=200 #voltage in Volts\n", + "V1=160 #voltage in Volts\n", + "\n", + "#Calculation\n", + "R=(V**2)/P #using P=V**2*R\n", + "P1=(V1**2)/R #calculating power\n", + "Dp=500-P1 #drop in heat\n", + "D=(Dp*100)/500 #percentage drop\n", + "\n", + "#Result\n", + "print\"Resistance= \",R,\"Ohm\"\n", + "print\"% Drop in heat production = \",D,\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance= 80 Ohm\n", + "% Drop in heat production = 36 %\n" + ] + } + ], + "prompt_number": 79 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.20,Page no:180" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "P1=100 #power in Watts\n", + "P2=500 #power in Watts\n", + "\n", + "#Calculation\n", + "P=P2/P1 #ratio\n", + "\n", + "#Result\n", + "print \"P=\",P\n", + "print\"P>0,I2=5I Therefore I2>I1\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "P= 5\n", + "P>0,I2=5I Therefore I2>I1\n" + ] + } + ], + "prompt_number": 80 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.21,Page no:181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "t=1200 #time in second\n", + "P=100 #power in Watts\n", + "V=230 #voltage in Volts\n", + "\n", + "#Calculation\n", + "R=(V**2)/P #calculating resistance\n", + "V1=115 #supply voltage in Volts\n", + "E=((V1**2)*t)/R #calculating energy\n", + "\n", + "#Result\n", + "print\"Energy dissipated by bulb = \",E,\"J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy dissipated by bulb = 30000 J\n" + ] + } + ], + "prompt_number": 81 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.22,Page no:181" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration\n", + "P=10**4 #power in Watts\n", + "V=250 #voltage in Volts\n", + "R=0.2 #resistance in ohm\n", + "\n", + "#Calculation\n", + "Pl=((P/V)*(P/V))*R #calculating power loss\n", + "print P1\n", + "E=P/(Pl+P) #calculating efficiency\n", + "\n", + "#Result\n", + "print\"Percent Efficiency = \",round(E*100),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "100\n", + "Percent Efficiency = 97.0 %\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.23,Page no:182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#Variable declaration \n", + "P=100.0 #power in Watts\n", + "V=220.0 #voltage in Volts\n", + "\n", + "#Calculation\n", + "I=P/V #Current in Ampere\n", + "R=V/I #resistance\n", + "\n", + "#Result\n", + "print\"Current = \",round(I,3),\"A\" \n", + "print\"Resistance=\",R,\"Ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current = 0.455 A\n", + "Resistance= 484.0 Ohm\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example no:5.24,Page no:182" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#Variable declaration \n", + "V=50 #voltage in Volts\n", + "I=12 #Current in Ampere\n", + "\n", + "#Calculation\n", + "P=V*I #power\n", + "Pd=P*0.7 #power dissipated\n", + "R=(Pd/(I)**2) \n", + "\n", + "#Result\n", + "print\"Resistance = \",round(R,2),\"Ohm\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance = 2.92 Ohm\n" + ] + } + ], + "prompt_number": 82 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/README.txt b/A_Comprehensive_Textbook_Of_Applied_Physics/README.txt new file mode 100755 index 00000000..121834de --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/README.txt @@ -0,0 +1,10 @@ +Contributed By: Deepak Shakya +Course: btech +College/Institute/Organization: DCRUST +Department/Designation: Chemical Engg +Book Title: A Comprehensive Textbook Of Applied Physics +Author: M. Kumar +Publisher: Abhishek Publications,Chandigarh +Year of publication: 2009 +Isbn: 978-81-8247-226-6 +Edition: 1
\ No newline at end of file diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k1.png b/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k1.png Binary files differnew file mode 100755 index 00000000..995e3ebf --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k1.png diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k2.png b/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k2.png Binary files differnew file mode 100755 index 00000000..f0b1ec67 --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k2.png diff --git a/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k3.png b/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k3.png Binary files differnew file mode 100755 index 00000000..90f96617 --- /dev/null +++ b/A_Comprehensive_Textbook_Of_Applied_Physics/screenshots/k3.png |