diff options
16 files changed, 5712 insertions, 0 deletions
diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter1.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter1.ipynb new file mode 100644 index 00000000..e57ef537 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter1.ipynb @@ -0,0 +1,285 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1: Bonding in Solids" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 1-11" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bond energy of molecule is -4.6 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "epsilon0=8.85*10**-12; \n", + "r0=236*10**-12; #equilibrium distance(m)\n", + "I=5.14; #ionisation energy(eV)\n", + "EA=-3.65; #electron affinity(eV)\n", + "\n", + "#Calculation\n", + "V=-(e**2)/(4*e*math.pi*epsilon0*r0); #potential(eV)\n", + "BE=I+EA+V; #bond energy of molecule(eV)\n", + "\n", + "#Result\n", + "print \"bond energy of molecule is\",round(BE,1),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 1-11" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cohesive energy per atom is -3.0684 eV\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.602*10**-19; #charge(coulomb)\n", + "epsilon0=8.85*10**-12; \n", + "r0=0.314*10**-9; #equilibrium distance(m)\n", + "A=1.75; #madelung constant\n", + "n=5.77; #born constant\n", + "I=4.1; #ionisation energy(eV)\n", + "EA=3.6; #electron affinity(eV)\n", + "\n", + "#Calculation\n", + "V=-A*e**2*((n-1)/n)/(4*e*math.pi*epsilon0*r0);\n", + "CE=round(V,4)/2; #potential energy per ion(eV)\n", + "x=(I-EA)/2;\n", + "TCE=CE+x; #cohesive energy per atom(eV)\n", + "\n", + "#Result\n", + "print \"cohesive energy per atom is\",TCE,\"eV\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 1-12" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cohesive energy per atom is -7.965 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.602*10**-19; #charge(coulomb)\n", + "epsilon0=8.85*10**-12; \n", + "r0=0.281*10**-9; #equilibrium distance(m)\n", + "alphaM=1.748; #madelung constant\n", + "n=9; #born constant\n", + "\n", + "#Calculation\n", + "CE=-alphaM*e**2*((n-1)/n)/(4*e*math.pi*epsilon0*r0); #cohesive energy per molecule(eV)\n", + "\n", + "#Result\n", + "print \"cohesive energy per atom is\",round(CE,3),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 1-12" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "potential energy of system is 5.75 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "epsilon0=8.85*10**-12; \n", + "r0=2.5*10**-10; #equilibrium distance(m)\n", + "\n", + "#Calculation\n", + "PE=e**2/(4*e*math.pi*epsilon0*r0);\n", + "\n", + "#Result\n", + "print \"potential energy of system is\",round(PE,2),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 1-13" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cohesive energy of NaCl is -3.46 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration \n", + "e=1.6*10**-19; #charge(coulomb)\n", + "r0=0.281*10**-9; #equilibrium distance(m)\n", + "a=1.748*10**-28; #madelung constant(J m**2)\n", + "n=9; #repulsive exponent value\n", + "m=1;\n", + "\n", + "#Calculations\n", + "Ur0=-a*(1-m/n)/(e*r0**m); #cohesive energy of NaCl(eV)\n", + "\n", + "#Result\n", + "print \"cohesive energy of NaCl is\",round(Ur0,2),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 1-13" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cohesive energy of molecule is -3.59 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "epsilon0=8.85*10**-12; \n", + "r0=0.281*10**-9; #equilibrium distance(m)\n", + "I=5.14; #ionisation energy(eV)\n", + "EA=-3.61; #electron affinity(eV)\n", + "\n", + "#Calculation\n", + "V=-(e**2)/(4*e*math.pi*epsilon0*r0); #potential(eV)\n", + "CE=I+EA+V; #cohesive energy of molecule(eV)\n", + "\n", + "#Result\n", + "print \"cohesive energy of molecule is\",round(CE,2),\"eV\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter10.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter10.ipynb new file mode 100644 index 00000000..8d14ee64 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter10.ipynb @@ -0,0 +1,112 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 10: Lasers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 10-20" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "band gap is 0.8 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "c=3*10**8; #velocity of light(m/s)\n", + "h=6.63*10**-34; #plank's constant(Js)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "lamda=1.55*10**-6; #wavelength(m)\n", + "\n", + "#Calculation\n", + "Eg=h*c/(lamda*e); #band gap(eV) \n", + "\n", + "#Result\n", + "print \"band gap is\",round(Eg,1),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 10-20" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength is 8633 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "c=3*10**8; #velocity of light(m/s)\n", + "h=6.63*10**-34; #plank's constant(Js)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "Eg=1.44*e; #band gap(eV) \n", + "\n", + "#Calculation\n", + "lamda=h*c*10**10/Eg; #wavelength(angstrom)\n", + "\n", + "#Result\n", + "print \"wavelength is\",int(round(lamda)),\"angstrom\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb new file mode 100644 index 00000000..3d0851bb --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb @@ -0,0 +1,549 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 11: Fibre Optics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 11-16" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical aperture is 0.2965\n", + "acceptance angle is 17 degrees 15 minutes\n", + "answer in the book varies due to rounding off errors\n", + "critical angle is 78 degrees 26 minutes\n", + "fractional index change is 0.02\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.48; #Core refractive index\n", + "n2=1.45; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "theta0=math.asin(NA); #acceptance angle(radian)\n", + "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n", + "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n", + "thetac=math.asin(n2/n1); #critical angle(radian)\n", + "thetac=thetac*180/math.pi; #critical angle(degrees)\n", + "thetacm=60*(thetac-int(thetac)); #critical angle(minutes)\n", + "delta=(n1-n2)/n1; #fractional index change\n", + "\n", + "#Result\n", + "print \"numerical aperture is\",round(NA,4)\n", + "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\"\n", + "print \"critical angle is\",int(thetac),\"degrees\",int(thetacm),\"minutes\"\n", + "print \"fractional index change is\",round(delta,2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 11-17" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical aperture is 0.446\n", + "acceptance angle is 26 degrees 29 minutes\n", + "answer for angle in minutes given in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.563; #Core refractive index\n", + "n2=1.498; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "theta0=math.asin(NA); #acceptance angle(radian)\n", + "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n", + "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n", + "\n", + "#Resul\"\n", + "print \"numerical aperture is\",round(NA,3)\n", + "print \"acceptance angle is\",int(theta0),\"degrees\",int(theta0m),\"minutes\"\n", + "print \"answer for angle in minutes given in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 11-17" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fractional index change is 0.0416\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.563; #Core refractive index\n", + "n2=1.498; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "delta=(n1-n2)/n1; #fractional index change\n", + "\n", + "#Result\n", + "print \"fractional index change is\",round(delta,4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 11-17" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical aperture is 0.3905\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.55; #Core refractive index\n", + "n2=1.50; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "\n", + "#Result\n", + "print \"numerical aperture is\",round(NA,4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 11-18" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cladding refractive index is 1.496\n", + "Core refractive index is 1.546\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "NA=0.39; #numerical aperture\n", + "n1_n2=0.05; #difference in refractive indices\n", + "\n", + "#Calculation\n", + "n1n2=NA**2/n1_n2; \n", + "n2=(n1n2-n1_n2)/2; #Cladding refractive index\n", + "n1=n2+n1_n2; #Core refractive index\n", + "\n", + "#Result\n", + "print \"Cladding refractive index is\",n2\n", + "print \"Core refractive index is\",n1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 11-18" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical aperture is 0.3905\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.55; #Core refractive index\n", + "n2=1.50; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "\n", + "#Result\n", + "print \"numerical aperture is\",round(NA,4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 11-18" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical aperture is 0.2965\n", + "acceptance angle is 17 degrees 15 minutes\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.48; #Core refractive index\n", + "n2=1.45; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "theta0=math.asin(NA); #acceptance angle(radian)\n", + "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n", + "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n", + "\n", + "#Result\n", + "print \"numerical aperture is\",round(NA,4)\n", + "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 11-19" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "refractive index of core is 1.6583\n", + "refractive index of cladding is 1.625\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "NA=0.33; #numerical aperture\n", + "delta=0.02; #refractive index of cladding\n", + "\n", + "#Calculation\n", + "x=1-delta;\n", + "n1=math.sqrt(NA**2/(1-x**2)); #refractive index of core \n", + "n2=x*n1; #refractive index of cladding\n", + "#Result\n", + "print \"refractive index of core is\",round(n1,4)\n", + "print \"refractive index of cladding is\",round(n2,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 11-19" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "acceptance angle is 8 degrees 38 minutes 55 seconds\n", + "answer for angle in seconds given in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "NA=0.20; #numerical aperture\n", + "n0=1.33; #refractive index of water\n", + "n2=1.59; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "n1=math.sqrt((NA**2)+(n2**2)); #core refractive index\n", + "x=math.sqrt((n1**2)-(n2**2))/n0;\n", + "theta0=math.asin(x); #acceptance angle(radian)\n", + "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n", + "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n", + "theta0s=60*(theta0m-int(theta0m)); #acceptance angle(seconds)\n", + "\n", + "#Resul\"\n", + "print \"acceptance angle is\",int(theta0),\"degrees\",int(theta0m),\"minutes\",int(theta0s),\"seconds\"\n", + "print \"answer for angle in seconds given in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 11-20" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fractional index change is 6.8966 *10**-3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.45; #Core refractive index\n", + "n2=1.44; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "delta=(n1-n2)/n1; #fractional index change\n", + "\n", + "#Result\n", + "print \"fractional index change is\",round(delta*10**3,4),\"*10**-3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 11-20" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cladding refractive index is 1.44\n", + "numerical aperture is 0.42\n", + "acceptance angle is 24 degrees 50 minutes\n", + "critical angle is 73 degrees 44 minutes\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.50; #Core refractive index\n", + "delta=4/100; #fractional index change\n", + "\n", + "#Calculation\n", + "n2=n1-(delta*n1); #Cladding refractive index\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "theta0=math.asin(NA); #acceptance angle(radian)\n", + "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n", + "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n", + "thetac=math.asin(n2/n1); #critical angle(radian)\n", + "thetac=thetac*180/math.pi; #critical angle(degrees)\n", + "thetacm=60*(thetac-int(thetac)); #critical angle(minutes)\n", + "\n", + "#Result\n", + "print \"Cladding refractive index is\",n2\n", + "print \"numerical aperture is\",NA\n", + "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\"\n", + "print \"critical angle is\",int(thetac),\"degrees\",int(thetacm),\"minutes\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 11-21" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical aperture is 0.446\n", + "acceptance angle is 26 degrees 29 minutes\n", + "answer for angle in minutes given in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.563; #Core refractive index\n", + "n2=1.498; #Cladding refractive index\n", + "\n", + "#Calculation\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "theta0=math.asin(NA); #acceptance angle(radian)\n", + "theta0=theta0*180/math.pi; #acceptance angle(degrees)\n", + "theta0m=60*(theta0-int(theta0)); #acceptance angle(minutes)\n", + "\n", + "#Result\n", + "print \"numerical aperture is\",round(NA,3)\n", + "print \"acceptance angle is\",int(theta0),\"degrees\",int(round(theta0m)),\"minutes\"\n", + "print \"answer for angle in minutes given in the book varies due to rounding off errors\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter13.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter13.ipynb new file mode 100644 index 00000000..2b0281e6 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter13.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 13: Acoustics of Buildings and Acoustic Quieting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 13-14" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "reverberation time of hall without audience is 3.9 seconds\n", + "reverberation time of hall with audience is 1.963 seconds\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable Declaration\n", + "A=92.9; #absorption(m**2)\n", + "V=2265; #volume(m**3)\n", + "\n", + "#Calculation\n", + "T1=0.161*V/A; #reverberation time of hall without audience(seconds)\n", + "T2=0.161*V/(A*2); #reverberation time of hall with audience(seconds)\n", + "\n", + "#Result\n", + "print \"reverberation time of hall without audience is\",round(T1,1),\"seconds\"\n", + "print \"reverberation time of hall with audience is\",round(T2,3),\"seconds\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter2.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter2.ipynb new file mode 100644 index 00000000..1963e4c2 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter2.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2: Crystal Structures" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 2-16" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "free volume per unit cell is 0.007675 nm**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "r=0.1249; #radius(nm)\n", + "n=2; #number of atoms\n", + "\n", + "#Calculation\n", + "a=4*r/math.sqrt(3); #unit cell edge length(nm)\n", + "V=a**3; #volume of unit cell(nm**3)\n", + "v=4*n*math.pi*r**3/3; #volume of atoms in unit cell(nm**3)\n", + "fv=V-v; #free volume per unit cell(nm**3)\n", + "\n", + "#Result\n", + "print \"free volume per unit cell is\",round(fv,6),\"nm**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 2-16" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lattice constant is 3.517 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "N=6.02*10**26; #Avagadro Number\n", + "n=2;\n", + "rho=530; #density(kg/m**3)\n", + "M=6.94; #atomic weight(amu)\n", + "\n", + "#Calculation\n", + "a=(n*M/(rho*N))**(1/3)*10**10; #lattice constant(angstrom)\n", + "\n", + "#Result\n", + "print \"lattice constant is\",round(a,3),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 2-17" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lattice constant is 2.87 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "N=6.02*10**23; #Avagadro Number\n", + "n=2;\n", + "rho=7860; #density(kg/m**3)\n", + "M=55.85; #atomic weight(amu)\n", + "\n", + "#Calculation\n", + "a=(n*M/(rho*N))**(1/3)*10**9; #lattice constant(angstrom)\n", + "\n", + "#Result\n", + "print \"lattice constant is\",round(a,2),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 2-17" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of atoms per m**3 is 177.3 *10**27 atoms/m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=8; #number of atoms\n", + "a=0.356*10**-9; #lattice constant(m)\n", + "\n", + "#Calculation\n", + "N=n/a**3; #number of atoms per m**3\n", + " \n", + "#Result\n", + "print \"number of atoms per m**3 is\",round(N/10**27,1),\"*10**27 atoms/m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 2-17" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of atoms per sq mm is 8.16 *10**12\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=3.5; #lattice constant(angstrom)\n", + "n=10**7; #1mm in angstrom\n", + "\n", + "#Calculation\n", + "N=n**2/a**2; #number of atoms per sq mm\n", + " \n", + "#Result\n", + "print \"number of atoms per sq mm is\",round(N/10**12,2),\"*10**12\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 2-18" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "density is 5434.5 kg/m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "N=6.02*10**26; #Avagadro Number\n", + "n=8; #number of atoms\n", + "a=5.62*10**-10; #lattice constant(m)\n", + "M=72.59; #atomic weight(amu)\n", + "\n", + "#Calculation\n", + "rho=n*M/(a**3*N); #density(kg/m**3)\n", + " \n", + "#Result\n", + "print \"density is\",round(rho,1),\"kg/m**3\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter3.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter3.ipynb new file mode 100644 index 00000000..1af94463 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter3.ipynb @@ -0,0 +1,651 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3: Crystal Planes,X-ray Diffraction and Defects in Solids" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 3-19" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "glancing angle is 21 degrees\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=0.28; #lattice spacing(nm)\n", + "lamda=0.071; #wavelength of X-rays(nm)\n", + "h=1;\n", + "k=1;\n", + "l=0;\n", + "n=2;\n", + "\n", + "#Calculation\n", + "d=a/math.sqrt(h**2+k**2+l**2); \n", + "sintheta=n*lamda/(2*d);\n", + "theta=math.asin(sintheta)*180/math.pi; #glancing angle(degrees)\n", + "\n", + "#Result\n", + "print \"glancing angle is\",int(theta),\"degrees\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 3-19" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength of X-rays is 0.0842 nm\n", + "maximum order of diffraction is 7\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=0.282; #lattice spacing(nm)\n", + "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n", + "n=1; #order\n", + "\n", + "#Calculation\n", + "lamda=2*d*math.sin(theta)/n; #wavelength of X-rays(nm)\n", + "n=2*d/lamda; #maximum order of diffraction\n", + "\n", + "#Result\n", + "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n", + "print \"maximum order of diffraction is\",int(round(n))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 3-20" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fraction of vacancy sites is 8.466 *10**-7\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "T1=773; #temperature(K)\n", + "T2=1273; #temperature(K)\n", + "f=10**-10; #fraction of vacant sites\n", + "\n", + "#Calculation\n", + "x=round(T1*math.log(f)/T2,3);\n", + "N=math.exp(x); #fraction of vacancy sites\n", + "\n", + "#Result\n", + "print \"fraction of vacancy sites is\",round(N*10**7,3),\"*10**-7\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 3-21" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h1=1;\n", + "k1=0;\n", + "l1=0; #miller indices of (100)\n", + "h2=1;\n", + "k2=1;\n", + "l2=0; #miller indices of (110)\n", + "h3=1;\n", + "k3=1;\n", + "l3=1; #miller indices of (111)\n", + "a=1; #assume\n", + "\n", + "#Calculation\n", + "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing(nm)\n", + "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing(nm)\n", + "d111=a/math.sqrt(h3**2+k3**2+l3**2); #spacing(nm)\n", + "\n", + "def lcm(x, y):\n", + " if x > y:\n", + " greater = x\n", + " else:\n", + " greater = y\n", + " while(True):\n", + " if((greater % x == 0) and (greater % y == 0)):\n", + " lcm = greater\n", + " break\n", + " greater += 1\n", + " \n", + " return lcm\n", + "\n", + "lcm=lcm(1/d110,1/d111);\n", + "d100=d100*lcm;\n", + "d110=d110*lcm;\n", + "d111=d111*lcm; #ratio d100:d110:d111\n", + "\n", + "#Result\n", + "print \"ratio d100:d110:d111 is\",d100/math.sqrt(6),\"*math.sqrt(6)\",d110/math.sqrt(3),\"*math.sqrt(3)\",d111/math.sqrt(2),\"*math.sqrt(2)\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 3-21" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1; #order\n", + "theta=38.2*math.pi/180; #glancing angle(radian)\n", + "lamda=1.54; #wavelength(angstrom)\n", + "h=2;\n", + "k=2;\n", + "l=0;\n", + "\n", + "#Calculation\n", + "a=math.sqrt(h**2+k**2+l**2);\n", + "d=n*lamda*a/(2*math.sin(theta)); #lattice parameter(angstrom)\n", + "\n", + "#Result\n", + "print \"lattice parameter is\",round(d,3),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 3-22" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum order of diffraction is 2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=1.6; #lattice spacing(angstrom)\n", + "theta=90*math.pi/180; #glancing angle(radian)\n", + "lamda=1.5; #wavelength of X-rays(angstrom)\n", + "\n", + "#Calculation\n", + "n=2*d*math.sin(theta)/lamda; #maximum order of diffraction \n", + "\n", + "#Result\n", + "print \"maximum order of diffraction is\",int(n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 3-22" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "length is 0.287 *10**-9 m\n", + "volume of unit cell is 0.02366 *10**-27 m**3\n", + "answer for volume given in the book varies due to rounding off errors\n", + "radius of atom is 0.1243 *10**-9 m\n" + ] + } + ], + "source": [ + "#importing modules \n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=0.203*10**-9; #lattice spacing(m)\n", + "h=1;\n", + "k=1;\n", + "l=0; #miller indices of (110)\n", + "lamda=1.5; #wavelength of X-rays(angstrom)\n", + "\n", + "#Calculation\n", + "a=d*math.sqrt(h**2+k**2+l**2); #length(m)\n", + "V=a**3; #volume of unit cell(m**3)\n", + "r=math.sqrt(3)*a/4; #radius of atom(m)\n", + "\n", + "#Result\n", + "print \"length is\",round(a*10**9,3),\"*10**-9 m\"\n", + "print \"volume of unit cell is\",round(V*10**27,5),\"*10**-27 m**3\"\n", + "print \"answer for volume given in the book varies due to rounding off errors\"\n", + "print \"radius of atom is\",round(r*10**9,4),\"*10**-9 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 3-22" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum order of diffraction is 2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=1.6; #lattice spacing(angstrom)\n", + "theta=90*math.pi/180; #glancing angle(radian)\n", + "lamda=1.5; #wavelength of X-rays(angstrom)\n", + "\n", + "#Calculation\n", + "n=2*d*math.sin(theta)/lamda; #maximum order of diffraction \n", + "\n", + "#Result\n", + "print \"maximum order of diffraction is\",int(n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 3-23" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "glancing angle is 20 degrees 42 minutes 17 seconds\n", + "answer in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=0.26; #lattice spacing(nm)\n", + "lamda=0.065; #wavelength of X-rays(nm)\n", + "h=1;\n", + "k=1;\n", + "l=0;\n", + "n=2;\n", + "\n", + "#Calculation\n", + "d=a/math.sqrt(h**2+k**2+l**2); \n", + "sintheta=n*lamda/(2*d);\n", + "theta=math.asin(sintheta)*180/math.pi; #glancing angle(degrees)\n", + "thetad=int(theta); #glancing angle(degrees) \n", + "thetam=(theta-thetad)*60; #glancing angle(minutes)\n", + "thetas=60*(thetam-int(thetam)); #glancing angle(seconds)\n", + "\n", + "#Result\n", + "print \"glancing angle is\",thetad,\"degrees\",int(thetam),\"minutes\",int(thetas),\"seconds\"\n", + "print \"answer in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 3-23" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cube edge of unit cell is 4.055 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1; #order\n", + "theta=19.2*math.pi/180; #glancing angle(radian)\n", + "lamda=1.54; #wavelength(angstrom)\n", + "h=1;\n", + "k=1;\n", + "l=1;\n", + "\n", + "#Calculation\n", + "d=n*lamda/(2*math.sin(theta)); #lattice parameter(angstrom)\n", + "a=d*math.sqrt(h**2+k**2+l**2); #cube edge of unit cell(angstrom)\n", + "\n", + "#Result\n", + "print \"cube edge of unit cell is\",round(a,3),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 3-24" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lattice parameter is 3.522 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1; #order\n", + "theta=38.2*math.pi/180; #glancing angle(radian)\n", + "lamda=1.54; #wavelength(angstrom)\n", + "h=2;\n", + "k=2;\n", + "l=0;\n", + "\n", + "#Calculation\n", + "d=n*lamda/(2*math.sin(theta)); #lattice parameter(angstrom)\n", + "a=d*math.sqrt(h**2+k**2+l**2); #lattice parameter(angstrom)\n", + "\n", + "#Result\n", + "print \"lattice parameter is\",round(a,3),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 3-24" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "interplanar spacing for (111) is 0.208 nm\n", + "interplanar spacing for (321) is 0.096 nm\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=0.36; #cube edge of unit cell(nm)\n", + "h1=1;\n", + "k1=1;\n", + "l1=1;\n", + "h2=3;\n", + "k2=2;\n", + "l2=1;\n", + "\n", + "#Calculation\n", + "d1=a/math.sqrt(h1**2+k1**2+l1**2); #interplanar spacing for (111)(nm)\n", + "d2=a/math.sqrt(h2**2+k2**2+l2**2); #interplanar spacing for (321)(nm)\n", + "\n", + "#Result\n", + "print \"interplanar spacing for (111) is\",round(d1,3),\"nm\"\n", + "print \"interplanar spacing for (321) is\",round(d2,3),\"nm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 13, Page number 3-25" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lattice spacing is 3.575 angstrom\n", + "glancing angle for 3rd order is 16 degrees 27.1 minutes\n", + "answer for minutes given in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "theta=(5+(25/60))*math.pi/180; #glancing angle(radian)\n", + "lamda=0.675; #wavelength of X-rays(angstrom)\n", + "n1=1; #order\n", + "n3=3; #order \n", + "\n", + "#Calculation\n", + "d=n1*lamda/(2*math.sin(theta)); #lattice spacing(angstrom)\n", + "d=round(d,3);\n", + "theta3=math.asin(n3*lamda/(2*d))*180/math.pi; #glancing angle for 3rd order(degrees)\n", + "theta3d=int(theta3); #glancing angle for 3rd order(degrees) \n", + "theta3m=(theta3-theta3d)*60; #glancing angle for 3rd order(minutes)\n", + "\n", + "#Result\n", + "print \"lattice spacing is\",d,\"angstrom\"\n", + "print \"glancing angle for 3rd order is\",theta3d,\"degrees\",round(theta3m,1),\"minutes\"\n", + "print \"answer for minutes given in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 14, Page number 3-25" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "glancing angle is 23 degrees 56 minutes 31 seconds\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=3.04; #interplanar spacing(angstrom) \n", + "lamda=0.79; #wavelength of X-rays(angstrom)\n", + "n=3;\n", + "\n", + "#Calculation\n", + "sintheta=n*lamda/(2*d);\n", + "thetad=math.asin(sintheta)*180/math.pi; #glancing angle(degrees)\n", + "thetam=(theta-int(theta))*60; #glancing angle(minutes)\n", + "thetas=60*(thetam-int(thetam)); #glancing angle(seconds)\n", + "\n", + "#Result\n", + "print \"glancing angle is\",int(round(thetad)),\"degrees\",int(thetam),\"minutes\",int(thetas),\"seconds\"\n", + "print \"answer given in the book is wrong\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter4.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter4.ipynb new file mode 100644 index 00000000..1b0ca557 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter4.ipynb @@ -0,0 +1,668 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4: Elements of Statistical Mechanics and Principles of Quantum Mechanics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 4-41" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "average energy of oscillator is 2.948 *10**-21 joule\n", + "answer given in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "new=5.6*10**12; #frequency(Hz)\n", + "h=6.625*10**-34; #plank constant\n", + "kB=1.38*10**-23; #boltzmann constant\n", + "T=330; #temperature(K) \n", + "\n", + "#Calculation\n", + "x=h*new/(kB*T); \n", + "E=h*new/(math.exp(x)-1); #average energy of oscillator(joule)\n", + "\n", + "#Result\n", + "print \"average energy of oscillator is\",round(E*10**21,3),\"*10**-21 joule\"\n", + "print \"answer given in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 4-41" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy density per unit wavelength is 7.13 Jm-4\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.63*10**-34; #plank constant\n", + "kB=1.38*10**-23; #boltzmann constant\n", + "T=1500; #temperature(K) \n", + "c=3*10**8; #velocity of light(m/sec)\n", + "lamda=6000*10**-10; #wavelength(m)\n", + "\n", + "#Calculation\n", + "new=c/lamda;\n", + "x=h*new/(kB*T); \n", + "y=math.exp(x)-1; #average energy of oscillator(joule)\n", + "Ulamda=8*math.pi*h*new/(y*lamda**4); #energy density per unit wavelength(Jm-4)\n", + "\n", + "#Result\n", + "print \"energy density per unit wavelength is\",round(Ulamda,2),\"Jm-4\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 4-41" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength is 0.0275 nm\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "m=9.1*10**-31; #mass(kg)\n", + "h=6.63*10**-34; #plank constant\n", + "E=2000; #energy(eV)\n", + "\n", + "#Calculation\n", + "lamda=h/math.sqrt(2*m*E*e); #wavelength(m)\n", + "\n", + "#Result\n", + "print \"wavelength is\",round(lamda*10**9,4),\"nm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 4-42" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "velocity is 438.9 *10**4 m/s\n", + "kinetic energy is 54.78 eV\n", + "answer for energy given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=1.66*10**-10; #wavelength(m)\n", + "m=9.1*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E=h**2/(2*m*e*lamda**2); #kinetic energy(eV)\n", + "v=h/(m*lamda); #velocity(m/s)\n", + "\n", + "#Result\n", + "print \"velocity is\",round(v*10**-4,1),\"*10**4 m/s\"\n", + "print \"kinetic energy is\",round(E,2),\"eV\"\n", + "print \"answer for energy given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 4-42" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ground state energy is 37.7377 eV\n", + "energy of 1st excited state is 150.95 eV\n", + "energy of 2nd excited state is 339.6395 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "L=1*10**-10; #length(m)\n", + "n2=2;\n", + "n3=3;\n", + "m=9.1*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E1=h**2/(8*m*e*L**2); #ground state energy(eV)\n", + "E2=n2**2*E1; #energy of 1st excited state(eV)\n", + "E3=n3**2*E1; #energy of 2nd excited state(eV)\n", + "\n", + "#Result\n", + "print \"ground state energy is\",round(E1,4),\"eV\"\n", + "print \"energy of 1st excited state is\",round(E2,2),\"eV\"\n", + "print \"energy of 2nd excited state is\",round(E3,4),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 4-43" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum energy is 2.3586 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "L=4*10**-10; #length(m)\n", + "m=9.1*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E1=h**2/(8*m*e*L**2); #minimum energy(eV)\n", + "\n", + "#Result\n", + "print \"minimum energy is\",round(E1,4),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 4-43" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength of electron waves is 0.01 nm\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "V=15*10**3; #accelerated voltage(V)\n", + "\n", + "#Calculation\n", + "lamda=1.227/math.sqrt(V); #wavelength of electron waves(nm)\n", + "\n", + "#Result\n", + "print \"wavelength of electron waves is\",round(lamda,2),\"nm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 4-43" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum energy is 150.95 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "L=0.05*10**-9; #length(m)\n", + "m=9.1*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E1=h**2/(8*m*e*L**2); #minimum energy(eV)\n", + "\n", + "#Result\n", + "print \"minimum energy is\",round(E1,2),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 4-44" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum energy is 4.2 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "L=3*10**-10; #length(m)\n", + "m=9.1*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E1=h**2/(8*m*e*L**2); #minimum energy(eV)\n", + "\n", + "#Result\n", + "print \"minimum energy is\",round(E1,1),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 4-44" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "de broglie wavelength is 8488 nm\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "me=9.1*10**-31; #mass(kg)\n", + "h=6.63*10**-34; #plank constant\n", + "mn=1.676*10**-27; #mass(kg)\n", + "\n", + "#Calculation\n", + "lamdan=h*10**9/math.sqrt(4*mn*me); #de broglie wavelength(nm) \n", + "\n", + "#Result\n", + "print \"de broglie wavelength is\",int(lamdan),\"nm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 4-44" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ground state energy is 9.43 eV\n", + "energy of 1st excited state is 37.738 eV\n", + "energy of 2nd excited state is 150.95 eV\n", + "answers for energy of 1st and 2nd states given in the book are wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "L=2*10**-10; #length(m)\n", + "n2=2;\n", + "n4=4;\n", + "m=9.1*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E1=h**2/(8*m*e*L**2); #minimum energy(eV)\n", + "E2=n2**2*E1; #energy of 1st excited state(eV)\n", + "E4=n4**2*E1; #energy of 2nd excited state(eV)\n", + "\n", + "#Result\n", + "print \"ground state energy is\",round(E1,2),\"eV\"\n", + "print \"energy of 1st excited state is\",round(E2,3),\"eV\"\n", + "print \"energy of 2nd excited state is\",round(E4,2),\"eV\"\n", + "print \"answers for energy of 1st and 2nd states given in the book are wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 4-45" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "spacing of crystal is 0.382 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1;\n", + "e=1.6*10**-19; #charge(c)\n", + "m=9.1*10**-31; #mass(kg)\n", + "h=6.63*10**-34; #plank constant\n", + "V=344; #energy(eV)\n", + "theta=60*math.pi/180; #angle(radian)\n", + "\n", + "#Calculation\n", + "d=h*10**10/(2*math.sin(theta)*math.sqrt(2*m*V*e)); #spacing of crystal(angstrom)\n", + "\n", + "#Result\n", + "print \"spacing of crystal is\",round(d,3),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 13, Page number 4-45" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ground state energy is 37.696 eV\n", + "energy of 2nd excited state is 339.27 eV\n", + "energy required to pump an electron is 301.57 eV\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "L=1*10**-10; #length(m)\n", + "n3=3;\n", + "m=9.11*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E1=h**2/(8*m*e*L**2); #ground state energy(eV)\n", + "E3=n3**2*E1; #energy of 2nd excited state(eV)\n", + "E=E3-E1; #energy required to pump an electron(eV) \n", + "\n", + "#Result\n", + "print \"ground state energy is\",round(E1,3),\"eV\"\n", + "print \"energy of 2nd excited state is\",round(E3,2),\"eV\"\n", + "print \"energy required to pump an electron is\",round(E,2),\"eV\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 14, Page number 4-46" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum energy is 9.43 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "L=2*10**-10; #length(m)\n", + "m=9.1*10**-31; #mass(kg)\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.63*10**-34; #plank constant\n", + "\n", + "#Calculation\n", + "E1=h**2/(8*m*e*L**2); #minimum energy(eV)\n", + "\n", + "#Result\n", + "print \"minimum energy is\",round(E1,2),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 15, Page number 4-46" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength of electron waves is 0.31 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "V=1600; #accelerated voltage(V)\n", + "\n", + "#Calculation\n", + "lamda=1.227*10/math.sqrt(V); #wavelength of electron waves(angstrom)\n", + "\n", + "#Result\n", + "print \"wavelength of electron waves is\",round(lamda,2),\"angstrom\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter5.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter5.ipynb new file mode 100644 index 00000000..40c994ca --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter5.ipynb @@ -0,0 +1,569 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5: Electron Theory of Metals" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 5-27" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temperature is 1259.93 K\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E_EF=0.5; #fermi energy(eV)\n", + "FE=1/100; #probability\n", + "Kb=1.381*10**-23; #boltzmann constant(J/k)\n", + "x=6.24*10**18; \n", + "\n", + "#Calculation\n", + "KB=Kb*x;\n", + "y=E_EF/KB;\n", + "T=y/math.log(1/FE); #temperature(K)\n", + "\n", + "#Result\n", + "print \"temperature is\",round(T,2),\"K\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 5-28" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total number of free electrons is 8.3954 *10**28 electrons/m**3\n", + "answer in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.602*10**-19; #charge(c)\n", + "m=9.11*10**-31; #mass(kg)\n", + "h=6.63*10**-34; #plancks constant(Js)\n", + "Ef=7*e; #fermi energy(J)\n", + "\n", + "#Calculation\n", + "x=Ef*8*m/h**2;\n", + "n23=x/((3/math.pi)**(2/3));\n", + "n=n23**(3/2); #total number of free electrons(electrons/m**3)\n", + "\n", + "#Result\n", + "print \"total number of free electrons is\",round(n/10**28,4),\"*10**28 electrons/m**3\"\n", + "print \"answer in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 5-28" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "relaxation time is 39.742 *10**-15 s\n", + "answer in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=1.54*10**-8; #resistivity(ohm m)\n", + "n=5.8*10**28; #number of electrons\n", + "e=1.602*10**-19; #charge(c)\n", + "m=9.11*10**-31; #mass(kg)\n", + "\n", + "#Calculation\n", + "tow=m/(n*e**2*rho); #relaxation time(s)\n", + "\n", + "#Result\n", + "print \"relaxation time is\",round(tow*10**15,3),\"*10**-15 s\"\n", + "print \"answer in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 5-29" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "relaxation time is 3.82 *10**-14 s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=1.43*10**-8; #resistivity(ohm m)\n", + "n=6.5*10**28; #number of electrons\n", + "e=1.6*10**-19; #charge(c)\n", + "m=9.1*10**-31; #mass(kg)\n", + "\n", + "#Calculation\n", + "tow=m/(n*e**2*rho); #relaxation time(s)\n", + "\n", + "#Result\n", + "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 5-29" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of conduction electrons is 1.8088 *10**29 /m**3\n", + "mobility is 0.00128 m**2/Vs\n", + "drift velocity is 2.3 *10**-4 m/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "D=2.7*10**3; #density(kg/m**3)\n", + "rho=2.7*10**-8; #resistivity(ohm m)\n", + "w=26.98; #atomic weight\n", + "Na=6.025*10**26; #avagadro number\n", + "e=1.6*10**-19; #charge(c)\n", + "L=5; #length(m)\n", + "R=0.06; #resistance(ohm)\n", + "I=15; #current(A)\n", + "n=3; #number of electrons\n", + "\n", + "#Calculation\n", + "N=n*D*Na/w; #number of conduction electrons(/m**3)\n", + "mew=1/(rho*N*e); #mobility(m**2/Vs)\n", + "vd=I*R/(L*rho*N*e); #drift velocity(m/s)\n", + "\n", + "#Result\n", + "print \"number of conduction electrons is\",round(N/10**29,4),\"*10**29 /m**3\"\n", + "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", + "print \"drift velocity is\",round(vd*10**4,1),\"*10**-4 m/s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 5-30" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mobility is 0.00427 m**2/Vs\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "D=8.92*10**3; #density(kg/m**3)\n", + "rho=1.73*10**-8; #resistivity(ohm m)\n", + "W=63.5; #atomic weight\n", + "Na=6.02*10**26; #avagadro number\n", + "e=1.6*10**-19; #charge(c)\n", + "\n", + "#Calculation\n", + "n=D*Na/W;\n", + "mew=1/(rho*n*e); #mobility(m**2/Vs)\n", + "\n", + "#Result\n", + "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 5-31" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mobility is 0.00428 m**2/Vs\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "D=8.95*10**3; #density(kg/m**3)\n", + "rho=1.721*10**-8; #resistivity(ohm m)\n", + "W=63.54; #atomic weight\n", + "Na=6.025*10**26; #avagadro number\n", + "e=1.6*10**-19; #charge(c)\n", + "\n", + "#Calculation\n", + "n=D*Na/W;\n", + "mew=1/(rho*n*e); #mobility(m**2/Vs)\n", + "\n", + "#Result\n", + "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 5-31" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "relaxation time is 3.64 *10**-14 s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=1.50*10**-8; #resistivity(ohm m)\n", + "n=6.5*10**28; #conduction electrons(per m**3)\n", + "e=1.602*10**-19; #charge(c)\n", + "m=9.11*10**-31; #mass(kg)\n", + "\n", + "#Calculation\n", + "tow=m/(n*e**2*rho); #relaxation time(sec)\n", + "\n", + "#Result\n", + "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 5-32" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "relaxation time is 3.97 *10**-14 s\n", + "drift velocity is 0.7 m/s\n", + "mobility is 0.7 *10**-2 m**2/Vs\n", + "thermal velocity is 1.17 *10**5 m/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=9.11*10**-31; #mass(kg)\n", + "rho=1.54*10**-8; #resistivity(ohm m)\n", + "e=1.602*10**-19; #charge(c)\n", + "E=10**2; #electric field(V/m)\n", + "n=5.8*10**28; #number of electrons\n", + "Kb=1.381*10**-23; #boltzmann constant\n", + "T=300; #temperature(K)\n", + "\n", + "#Calculation\n", + "tow=m/(n*e**2*rho); #relaxation time(s)\n", + "vd=e*E*tow/m; #drift velocity(m/s)\n", + "mew=vd/E; #mobility(m**2/Vs)\n", + "Vth=math.sqrt(3*Kb*T/m); #thermal velocity(m/s)\n", + "\n", + "#Result\n", + "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"\n", + "print \"drift velocity is\",round(vd,1),\"m/s\"\n", + "print \"mobility is\",round(mew*10**2,1),\"*10**-2 m**2/Vs\"\n", + "print \"thermal velocity is\",round(Vth/10**5,2),\"*10**5 m/s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 5-32" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fermi velocity is 1.39 *10**6 m/s\n", + "mean free path is 5.52 *10**-8 m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=9.11*10**-31; #mass(kg)\n", + "e=1.602*10**-19; #charge(c)\n", + "E=5.5; #fermi energy(V/m)\n", + "tow=3.97*10**-14; #relaxation time(s)\n", + "\n", + "#Calculation\n", + "Vf=math.sqrt(2*E*e/m); #fermi velocity(m/s)\n", + "lamda=Vf*tow; #mean free path(m)\n", + "\n", + "#Result\n", + "print \"fermi velocity is\",round(Vf/10**6,2),\"*10**6 m/s\"\n", + "print \"mean free path is\",round(lamda*10**8,2),\"*10**-8 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 5-33" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "electronic concentration is 5.863 *10**28 per m**3\n", + "fermi energy is 8.83 *10**-19 J\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1; #number of electrons\n", + "NA=6.025*10**26; #avagadro number\n", + "D=10500; #density(kg/m**3)\n", + "M=107.9; #atomic weight(kg)\n", + "m=9.11*10**-31; #mass(kg)\n", + "h=6.63*10**-34; #plancks constant(Js)\n", + "\n", + "#Calculation\n", + "n=n*NA*D/M; #electronic concentration(per m**3)\n", + "x=(3*n/math.pi)**(2/3);\n", + "Ef=h**2*x/(8*m); #fermi energy(J)\n", + "\n", + "#Result\n", + "print \"electronic concentration is\",round(n/10**28,3),\"*10**28 per m**3\"\n", + "print \"fermi energy is\",round(Ef*10**19,2),\"*10**-19 J\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 5-33" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current density is 1 *10**7 amp/m**2\n", + "drift velocity is 0.7391 *10**-3 m/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "D=8.92*10**3; #density(kg/m**3)\n", + "w=63.5; #atomic weight\n", + "Na=6.02*10**26; #avagadro number\n", + "e=1.6*10**-19; #charge(c)\n", + "I=100; #current(A)\n", + "A=10*10**-6; #area(m**2)\n", + "n=1;\n", + "\n", + "#Calculation\n", + "J=I/A; #current density(amp/m**2)\n", + "n=n*Na*D/w;\n", + "vd=J/(n*e); #drift velocity(m/s)\n", + "\n", + "#Result\n", + "print \"current density is\",int(J/10**7),\"*10**7 amp/m**2\"\n", + "print \"drift velocity is\",round(vd*10**3,4),\"*10**-3 m/s\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter6.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter6.ipynb new file mode 100644 index 00000000..2dcacfe6 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter6.ipynb @@ -0,0 +1,542 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 6: Dielectric Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 6-23" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dielectric constant is 1.339\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "alpha_e=10**-40; #polarisability(Fm**2)\n", + "N=3*10**28; #density of atoms\n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "epsilonr=(N*alpha_e/epsilon0)+1; #dielectric constant\n", + "\n", + "#Result\n", + "print \"dielectric constant is\",round(epsilonr,3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 6-24" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "capacitance is 8.85e-12 F\n", + "charge on plates is 8.85e-10 C\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=100*10**-4; #area(m**2)\n", + "epsilon0=8.85*10**-12; \n", + "d=1*10**-2; #seperation(m)\n", + "V=100; #potential(V)\n", + "\n", + "#Calculation\n", + "C=A*epsilon0/d; #capacitance(PF)\n", + "Q=C*V; #charge on plates(C)\n", + "\n", + "#Result\n", + "print \"capacitance is\",C,\"F\"\n", + "print \"charge on plates is\",Q,\"C\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 6-24" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability is 2.242e-41 Fm**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=1.0000684; #dielectric constant\n", + "N=2.7*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "alpha_e=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"polarisability is\",alpha_e,\"Fm**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 6-24" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage is 39.73 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=650*10**-6; #area(m**2)\n", + "epsilon0=8.85*10**-12; \n", + "d=4*10**-3; #seperation(m)\n", + "Q=2*10**-10; #charge(C)\n", + "epsilonr=3.5; #dielectric constant\n", + "\n", + "#Calculation \n", + "V=Q*d/(epsilon0*epsilonr*A); #voltage(V)\n", + "\n", + "#Result\n", + "print \"voltage is\",round(V,2),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 6-25" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisation is 212.4 *10**-9 C-m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=5; #relative permittivity\n", + "V=12; #potential(V)\n", + "d=2*10**-3; #separation(m) \n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "P=epsilon0*(epsilonr-1)*V/d; #polarisation(C-m)\n", + "\n", + "#Result\n", + "print \"polarisation is\",P*10**9,\"*10**-9 C-m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 6-25" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "electronic polarisability is 3.29 *10**-40 Fm**2\n", + "answer in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=3.75; #relative dielectric constant\n", + "gama=1/3; #internal field constant\n", + "D=2050; #density(kg/m**3)\n", + "M=32; #atomic weight(amu)\n", + "Na=6.02*10**26; #avagadro number\n", + "epsilon0=8.85*10**-12; \n", + "\n", + "#Calculation\n", + "N=Na*D/M; #number of atoms per m**3\n", + "x=(epsilonr-1)/(epsilonr+2);\n", + "alpha_e=x*3*epsilon0/N; #electronic polarisability(F-m**2)\n", + "\n", + "#Result\n", + "print \"electronic polarisability is\",round(alpha_e*10**40,2),\"*10**-40 Fm**2\"\n", + "print \"answer in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 6-26" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "orientational polarisation is 1.0298 *10**-11 C-m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "x=0.25*10**-9; #separation(m)\n", + "E=5*10**5; #intensity of electric field(V/m)\n", + "T=300; #temperature(K) \n", + "KB=1.381*10**-23; #boltzmann constant(J/K)\n", + "N=1.6*10**20; #avagadro number\n", + "\n", + "#Calculation\n", + "Pd=N*(e*x)**2*E/(3*KB*T); #orientational polarisation(C-m)\n", + "\n", + "#Result\n", + "print \"orientational polarisation is\",round(Pd*10**11,4),\"*10**-11 C-m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 6-26" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability is 2.242e-41 Fm**2\n", + "radius of electron cloud is 5.864 *10**-11 m\n", + "answer for radius given in the book varies due to rounding off errors\n", + "displacement is 0.7 *10**-16 m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=1.0000684; #dielectric constant\n", + "N=2.7*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "E=10**6; #electric field(V/m)\n", + "Z=2;\n", + "\n", + "#Calculation\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "r=(alphae/(4*math.pi*epsilon0))**(1/3); #radius of electron cloud(m)\n", + "d=alphae*E/(Z*e); #displacement(m) \n", + "\n", + "#Result\n", + "print \"polarisability is\",alpha_e,\"Fm**2\"\n", + "print \"radius of electron cloud is\",round(r*10**11,3),\"*10**-11 m\"\n", + "print \"answer for radius given in the book varies due to rounding off errors\"\n", + "print \"displacement is\",round(d*10**16,1),\"*10**-16 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 6-27" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage across plates is 53.8 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=750*10**-6; #area(m**2)\n", + "epsilon0=8.85*10**-12; \n", + "epsilonr=3.5; #dielectric constant\n", + "d=5*10**-3; #seperation(m)\n", + "Q=2.5*10**-10; #charge on plates(C)\n", + "\n", + "#Calculation\n", + "V=Q*d/(epsilon0*epsilonr*A); #voltage across plates(V)\n", + "\n", + "#Result\n", + "print \"voltage across plates is\",round(V,1),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 6-27" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dipole moment per unit electric field is 8.9 *10**-40 F-m**2\n", + "polarisation is 26.7 *10**-15 C-m\n", + "dielectric constant is 1.00302\n", + "polarisability is 8.9 *10**-40 Fm**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "N=3*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "r=0.2*10**-9; #radius(m) \n", + "E=1; #field\n", + "\n", + "#Calculation\n", + "p=4*math.pi*epsilon0*r**3; #dipole moment per unit electric field(F-m**2)\n", + "P=N*p; #polarisation(C-m)\n", + "epsilonr=1+(4*math.pi*r**3*N/E); #dielectric constant\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"dipole moment per unit electric field is\",round(p*10**40,1),\"*10**-40 F-m**2\"\n", + "print \"polarisation is\",round(P*10**15,1),\"*10**-15 C-m\"\n", + "print \"dielectric constant is\",round(epsilonr,5)\n", + "print \"polarisability is\",round(alphae*10**40,1),\"*10**-40 Fm**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 6-28" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability is 1.426 *10**-40 F-m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "N=2.7*10**25; #number of atoms\n", + "epsilon0=8.85*10**-12; \n", + "epsilonr=1.000435; #dielectric constant\n", + "\n", + "#Calculation\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 6-28" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability is 6.785 *10**-40 F-m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilon0=8.85*10**-12; \n", + "epsilonr=4; #dielectric constant\n", + "NA=6.02*10**26; #avagadro number\n", + "D=2.08*10**3; #density(kg/m**3)\n", + "M=32; #atomic weight(kg)\n", + "\n", + "#Calculation\n", + "N=NA*D/M; #number of atoms\n", + "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", + "\n", + "#Result\n", + "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter7.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter7.ipynb new file mode 100644 index 00000000..73c69a71 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter7.ipynb @@ -0,0 +1,444 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 7: Magnetic Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 7-22" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetic flux density is 0.628 wb/m**2\n", + "magnetic moment is -2.0 A/m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "chi=-0.4*10**-5; #magnetic susceptibility\n", + "H=5*10**5; #magnetic field intensity(amp/m)\n", + "mew0=4*math.pi*10**-7;\n", + "\n", + "#Calculation\n", + "B=mew0*H*(1+chi); #magnetic flux density(wb/m**2)\n", + "M=chi*H; #magnetic moment(A/m)\n", + "\n", + "#Result\n", + "print \"magnetic flux density is\",round(B,3),\"wb/m**2\"\n", + "print \"magnetic moment is\",M,\"A/m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 7-22" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetisation is -0.25 *10**-2 A/m\n", + "magnetic flux density is 1.257 *10**-3 wb/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "chi=-0.25*10**-5; #magnetic susceptibility\n", + "H=1000; #magnetic field intensity(amp/m)\n", + "mew0=4*math.pi*10**-7;\n", + "\n", + "#Calculation\n", + "M=chi*H; #magnetisation(A/m)\n", + "B=mew0*(H+M); #magnetic flux density(wb/m**2)\n", + "\n", + "#Result\n", + "print \"magnetisation is\",M*10**2,\"*10**-2 A/m\"\n", + "print \"magnetic flux density is\",round(B*10**3,3),\"*10**-3 wb/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 7-23" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetisation is 3500 A/m\n", + "magnetic flux density is 4.71 *10**-3 wb/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mewr=15; #relative permeability\n", + "H=250; #magnetic field intensity(amp/m)\n", + "mew0=4*math.pi*10**-7;\n", + "\n", + "#Calculation\n", + "M=H*(mewr-1); #magnetisation(A/m)\n", + "B=mew0*(H+M); #magnetic flux density(wb/m**2)\n", + "\n", + "#Result\n", + "print \"magnetisation is\",M,\"A/m\"\n", + "print \"magnetic flux density is\",round(B*10**3,2),\"*10**-3 wb/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 7-23" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetisation is -0.42 A/m\n", + "magnetic flux density is 1.2561 *10**-3 wb/m**2\n", + "answer for flux density in the book varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "chi=-0.42*10**-3; #magnetic susceptibility\n", + "H=1000; #magnetic field intensity(amp/m)\n", + "mew0=4*math.pi*10**-7;\n", + "\n", + "#Calculation\n", + "M=chi*H; #magnetisation(A/m)\n", + "B=mew0*(H+M); #magnetic flux density(wb/m**2)\n", + "\n", + "#Result\n", + "print \"magnetisation is\",M,\"A/m\"\n", + "print \"magnetic flux density is\",round(B*10**3,4),\"*10**-3 wb/m**2\"\n", + "print \"answer for flux density in the book varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 7-23" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetic moment is 3.93 *10**-3 A-m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=0.1; #diameter(m)\n", + "i=0.5; #current(ampere)\n", + "\n", + "#Calculation\n", + "r=d/2; #radius of atom(m)\n", + "mew=i*math.pi*r**2; #magnetic moment(A-m**2)\n", + "\n", + "#Result\n", + "print \"magnetic moment is\",round(mew*10**3,2),\"*10**-3 A-m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 7-23" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetising force is 201.4 A/m\n", + "relative permeability is 17.38\n", + "answers given in the book are wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mew0=4*math.pi*10**-7;\n", + "B=0.0044; #magnetic flux density(wb/m**2)\n", + "M=3300; #magnetisation(A/m)\n", + "\n", + "#Calculation\n", + "H=(B/mew0)-M; #magnetising force(amp/m)\n", + "mewr=1+(M/H); #relative permeability\n", + "\n", + "#Result\n", + "print \"magnetising force is\",round(H,1),\"A/m\"\n", + "print \"relative permeability is\",round(mewr,2)\n", + "print \"answers given in the book are wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 7-24" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "change in magnetic moment is 5.705 *10**-29 A-m**2\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "r=0.52*10**-10; #radius(m)\n", + "B=3; #magnetic induction(web/m**2)\n", + "e=1.6*10**-19; #charge(c)\n", + "m=9.1*10**-31; #mass(kg)\n", + "\n", + "#Calculation\n", + "d_mew=e**2*r**2*B/(4*m); #change in magnetic moment(Am**2)\n", + "\n", + "#Result\n", + "print \"change in magnetic moment is\",round(d_mew*10**29,3),\"*10**-29 A-m**2\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 7-24" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "change in magnetic moment is 3.936 *10**-29 A-m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "r=5.29*10**-11; #radius(m)\n", + "B=2; #magnetic induction(web/m**2)\n", + "e=1.6*10**-19; #charge(c)\n", + "m=9.1*10**-31; #mass(kg)\n", + "\n", + "#Calculation\n", + "d_mew=e**2*r**2*B/(4*m); #change in magnetic moment(Am**2)\n", + "\n", + "#Result\n", + "print \"change in magnetic moment is\",round(d_mew*10**29,3),\"*10**-29 A-m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 7-24" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ssusceptibility at 300K is 3.267 *10**-4\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "chi1=2.8*10**-4; #susceptibility\n", + "T1=350; #temperature(K)\n", + "T2=300; #temperature(K)\n", + "\n", + "#Calculation\n", + "chi2=(chi1*T1)/T2; #susceptibility at 300K\n", + "\n", + "#Result\n", + "print \"susceptibility at 300K is\",round(chi2*10**4,3),\"*10**-4\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 7-25" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "relative permeability of iron is 2153.85\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "B0=6.5*10**-4; #magnetic field(Tesla)\n", + "B=1.4; #magnetic field(Tesla)\n", + "\n", + "#Calculation\n", + "mewr=B/B0; #relative permeability of iron\n", + "\n", + "#Result\n", + "print \"relative permeability of iron is\",round(mewr,2)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb new file mode 100644 index 00000000..2069ff01 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb @@ -0,0 +1,784 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 8: Semiconductors and Physics of Semiconductor Devices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 8-55" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " resistivity is 0.41667 ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=2.5*10**19; #particle density(per m**3)\n", + "mew_n=0.40; #electron mobility(m**2/Vs)\n", + "mew_p=0.20; #hole mobility(m**2/Vs)\n", + "\n", + "#Calculation\n", + "rhoi=1/(ni*e*(mew_n+mew_p)); #resistivity(ohm m)\n", + "\n", + "#Result\n", + "print \"resistivity is\",round(rhoi,5),\"ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 8-56" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of donor atoms is 8.333 *10**19 per m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_n=0.3; #electron mobility(m**2/Vs)\n", + "rho=0.25; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "n=1/(rho*e*mew_n); #number of donor atoms per m**3\n", + "\n", + "#Result\n", + "print \"number of donor atoms is\",round(n/10**19,3),\"*10**19 per m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 8-56" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diffusion coefficient is 54.34 *10**-4 m**2/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mewn=0.21; #electron mobility(m**2/Vs)\n", + "T=300; #temperature(K)\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "\n", + "#Calculation\n", + "Dn=mewn*KB*T/e; #diffusion coefficient(m**2/sec)\n", + "\n", + "#Result\n", + "print \"diffusion coefficient is\",round(Dn*10**4,2),\"*10**-4 m**2/s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 8-56" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 19.4 *10**21 m-3\n", + "hole mobility is 0.03788 m**2/Vs\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "RH=3.22*10**-4; #hall coefficient(m**3C-1)\n", + "rho=8.5*10**-3; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "p=1/(RH*e); #hole concentration(m-3)\n", + "mewp=RH/rho; #hole mobility(m**2/Vs)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",round(p/10**21,1),\"*10**21 m-3\"\n", + "print \"hole mobility is\",round(mewp,5),\"m**2/Vs\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 8-57" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "intrinsic concentration is 556.25 *10**16 per m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.36; #electron mobility(m**2/Vs)\n", + "mew_h=0.17; #hole mobility(m**2/Vs)\n", + "rhoi=2.12; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "ni=1/(rhoi*e*(mew_e+mew_h)); #intrinsic concentration(per m**3)\n", + "\n", + "#Result\n", + "print \"intrinsic concentration is\",round(ni/10**16,2),\"*10**16 per m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 8-57" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resistivity is 0.449 ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.39; #electron mobility(m**2/Vs)\n", + "mew_h=0.19; #hole mobility(m**2/Vs)\n", + "ni=2.4*10**19; #intrinsic concentration(per m**3)\n", + "\n", + "#Calculation\n", + "rhoi=1/(ni*e*(mew_e+mew_h)); #resistivity(ohm m)\n", + "\n", + "#Result\n", + "print \"resistivity is\",round(rhoi,3),\"ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 8-57" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 2.25 *10**9 per m**3\n", + "conductivity is 2.16 *10**3 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "ni=1.5*10**16; #charge carriers(per m**3)\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.135; #electron mobility(m**2/Vs)\n", + "mew_h=0.048; #hole mobility(m**2/Vs)\n", + "N=10**23; #number of atoms(per m**3)\n", + "\n", + "#Calculation\n", + "sigma=ni*e*(mew_e+mew_h); \n", + "p=ni**2/N; #hole concentration(per m**3) \n", + "sigman=N*e*mew_e; #conductivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",p/10**9,\"*10**9 per m**3\"\n", + "print \"conductivity is\",sigman/10**3,\"*10**3 per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 8-58" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 1.7 *10**22 m-3\n", + "hole mobility is 4.099 *10**-2 m**2/Vs\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "RH=3.66*10**-4; #hall coefficient(m**3C-1)\n", + "rho=8.93*10**-3; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "p=1/(RH*e); #hole concentration(m-3)\n", + "mew=RH/rho; #hole mobility(m**2/Vs)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",round(p/10**22,1),\"*10**22 m-3\"\n", + "print \"hole mobility is\",round(mew*10**2,3),\"*10**-2 m**2/Vs\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 8-58" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "conductivity is 4.32 *10**-4 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=1.5*10**16; #particle density(per m**3)\n", + "mew_e=0.13; #electron mobility(m**2/Vs)\n", + "mew_h=0.05; #hole mobility(m**2/Vs)\n", + "\n", + "#Calculation\n", + "sigma=ni*e*(mew_e+mew_h); #conductivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"conductivity is\",sigma*10**4,\"*10**-4 per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 8-58" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "conductivity is 11.2 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=1.5*10**16; #particle density(per m**3)\n", + "mew_e=0.14; #electron mobility(m**2/Vs)\n", + "mew_h=0.05; #hole mobility(m**2/Vs)\n", + "D=2.33*10**3; #density(kg/m**3)\n", + "A=28.09; #atomic weight(kg)\n", + "NA=6.025*10**26; #avagadro number \n", + "\n", + "#Calculation\n", + "N=NA*D/A; #number of atoms\n", + "n=N/10**8; #electron concentration(per m**3)\n", + "p=ni**2/n; #hole concentration(per m**3)\n", + "sigma=e*((n*mew_e)+(p*mew_h)); #conductivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"conductivity is\",round(sigma,1),\"per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 8-59" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resistivity is 4.13 *10**-4 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=2.5*10**19; #particle density(per m**3)\n", + "mew_e=0.36; #electron mobility(m**2/Vs)\n", + "mew_h=0.18; #hole mobility(m**2/Vs)\n", + "N=4.2*10**28; #number of atoms\n", + "A=28.09; #atomic weight(kg)\n", + "NA=6.025*10**26; #avagadro number \n", + "\n", + "#Calculation\n", + "n=N/10**6; #electron concentration(per m**3)\n", + "p=ni**2/n; #hole concentration(per m**3)\n", + "rhoi=1/(e*((n*mew_e)+(p*mew_h))); #resistivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"resistivity is\",round(rhoi*10**4,2),\"*10**-4 per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 8-60" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 1.2 *10**9 m-3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "np=2.4*10**9; #carrier concentration(m-3)\n", + "\n", + "#Calculation\n", + "p=np/2; #hole concentration(m-3)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",p/10**9,\"*10**9 m-3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 13, Page number 8-60" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "density of donor atoms is 8.92 *10**19 electron/m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=0.2; #resistivity(ohm m)\n", + "e=1.602*10**-19; #charge(c)\n", + "mewn=0.35; #mobility of charge carriers(m**2/Vs)\n", + "\n", + "#Calculation\n", + "n=1/(rho*mewn*e); #density of donor atoms(electrons/m**3)\n", + "\n", + "#Result\n", + "print \"density of donor atoms is\",round(n/10**19,2),\"*10**19 electron/m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 14, Page number 8-60" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy gap is 0.573 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "e=1.602*10**-19; #charge(c)\n", + "rho1=5;\n", + "rho2=2.5;\n", + "T1=300; #temperature(K)\n", + "T2=320; #temperature(K)\n", + "\n", + "#Calculation\n", + "Eg=2*KB*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n", + "Eg=Eg/e; #energy gap(eV) \n", + "\n", + "#Result\n", + "print \"energy gap is\",round(Eg,3),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 15, Page number 8-61" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diffusion coefficient is 4.92 *10**-3 m**2/sec\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.19; #electron mobility(m**2/Vs)\n", + "T=300; #temperature(K)\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "\n", + "#Calculation\n", + "Dn=mew_e*KB*T/e; #diffusion coefficient(m**2/sec)\n", + "\n", + "#Result\n", + "print \"diffusion coefficient is\",round(Dn*10**3,2),\"*10**-3 m**2/sec\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 16, Page number 8-61" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy gap is 1.04 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "e=1.602*10**-19; #charge(c)\n", + "rho1=4.5;\n", + "rho2=2.0;\n", + "T1=293; #temperature(K)\n", + "T2=305; #temperature(K)\n", + "\n", + "#Calculation\n", + "Eg=2*KB*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n", + "Eg=Eg/e; #energy gap(eV) \n", + "\n", + "#Result\n", + "print \"energy gap is\",round(Eg,2),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 17, Page number 8-62" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak current is 37.8 mA\n", + "peak output voltage is 18.9 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "Vm=20; #voltage(V)\n", + "RL=500; #load resistance(ohm)\n", + "rf=10; #forward resistance(ohm)\n", + "VB=0.7; #bias voltage(V) \n", + "\n", + "#Calculation\n", + "Im=(Vm-VB)*10**3/(rf+RL); #peak current(mA)\n", + "Vo=Im*RL/10**3; #peak output voltage(V)\n", + "\n", + "#Result\n", + "print \"peak current is\",round(Im,1),\"mA\"\n", + "print \"peak output voltage is\",round(Vo,1),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 18, Page number 8-62" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak current is 0.2828 A\n", + "average DC current is 0.18 A\n", + "dc voltage is 180 V\n", + "ripple factor is 87.178 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "Vrms=200; #voltage(V)\n", + "RL=1000; #load resistance(ohm)\n", + "\n", + "#Calculation\n", + "Im=Vrms*math.sqrt(2)/RL; #peak current(A)\n", + "Idc=2*Im/math.pi; #average DC current(A)\n", + "Vdc=int(Idc*RL); #dc voltage(V)\n", + "x=(Vrms/Vdc)**2;\n", + "gama=math.sqrt(x-1)*Vdc; #ripple factor(V)\n", + "\n", + "#Result\n", + "print \"peak current is\",round(Im,4),\"A\"\n", + "print \"average DC current is\",round(Idc,2),\"A\"\n", + "print \"dc voltage is\",Vdc,\"V\"\n", + "print \"ripple factor is\",round(gama,3),\"V\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter9.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter9.ipynb new file mode 100644 index 00000000..4f07646f --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter9.ipynb @@ -0,0 +1,305 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 9: Superconductivity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 9-22" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "transition temperature is 11.3 K\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "Hc=1*10**5; #critical magnetic field(A/m)\n", + "T=8; #temperature(K)\n", + "H0=2*10**5; #critical magnetic field(A/m)\n", + "\n", + "#Calculation\n", + "Tc=T/math.sqrt(1-(Hc/H0)); #transition temperature(K)\n", + "\n", + "#Result\n", + "print \"transition temperature is\",round(Tc,1),\"K\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 9-22" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "frequency is 4.1 *10**9 Hz\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.626*10**-34; #plank constant\n", + "V=8.5*10**-6; #voltage(V)\n", + "\n", + "#Calculation\n", + "new=2*e*V/h; #frequency(Hz)\n", + "\n", + "#Result\n", + "print \"frequency is\",round(new/10**9,1),\"*10**9 Hz\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 9-22" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "critical field is 0.02166 Tesla\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "T=2; #temperature(K)\n", + "Tc=3.7; #critical temperature(K)\n", + "H0=0.0306; #critical magnetic field(A/m)\n", + "\n", + "#Calculation\n", + "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n", + "\n", + "#Result\n", + "print \"critical field is\",round(Hc,5),\"Tesla\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 9-23" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum critical temperature is 7.2 K\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "Hc=200*10**3; #critical magnetic field(A/m)\n", + "Tc=12; #critical temperature(K)\n", + "H0=250*10**3; #critical magnetic field(A/m)\n", + "\n", + "#Calculation\n", + "T=Tc*math.sqrt(1-(Hc/H0)**2); #maximum critical temperature(K)\n", + "\n", + "#Result\n", + "print \"maximum critical temperature is\",T,\"K\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 9-23" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "critical field is 0.0163 Tesla\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "T=2.5; #temperature(K)\n", + "Tc=3.7; #critical temperature(K)\n", + "H0=0.03; #critical magnetic field(A/m)\n", + "\n", + "#Calculation\n", + "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n", + "\n", + "#Result\n", + "print \"critical field is\",round(Hc,4),\"Tesla\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 9-23" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "frequency is 313.96 *10**9 Hz\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "h=6.625*10**-34; #plank constant\n", + "V=650*10**-6; #voltage(V)\n", + "\n", + "#Calculation\n", + "new=2*e*V/h; #frequency(Hz)\n", + "\n", + "#Result\n", + "print \"frequency is\",round(new/10**9,2),\"*10**9 Hz\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 9-24" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "critical field is 3.365 *10**3 A/m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "T=5; #temperature(K)\n", + "Tc=7.2; #critical temperature(K)\n", + "H0=6.5*10**3; #critical magnetic field(A/m)\n", + "\n", + "#Calculation\n", + "Hc=H0*(1-(T/Tc)**2); #critical field(A/m)\n", + "\n", + "#Result\n", + "print \"critical field is\",round(Hc/10**3,3),\"*10**3 A/m\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_by_S._Mani_Naidu/screenshots/11.png b/Applied_Physics_by_S._Mani_Naidu/screenshots/11.png Binary files differnew file mode 100644 index 00000000..36405465 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/screenshots/11.png diff --git a/Applied_Physics_by_S._Mani_Naidu/screenshots/22.png b/Applied_Physics_by_S._Mani_Naidu/screenshots/22.png Binary files differnew file mode 100644 index 00000000..008f50a8 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/screenshots/22.png diff --git a/Applied_Physics_by_S._Mani_Naidu/screenshots/33.png b/Applied_Physics_by_S._Mani_Naidu/screenshots/33.png Binary files differnew file mode 100644 index 00000000..825ed421 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/screenshots/33.png diff --git a/sample_notebooks/ravindra m gowda/Chapter_1_Basics_of_thermodynamics_Rudramani.ipynb b/sample_notebooks/ravindra m gowda/Chapter_1_Basics_of_thermodynamics_Rudramani.ipynb new file mode 100644 index 00000000..62799900 --- /dev/null +++ b/sample_notebooks/ravindra m gowda/Chapter_1_Basics_of_thermodynamics_Rudramani.ipynb @@ -0,0 +1,461 @@ +{ + "metadata": { + "name": " Chapter 1 Basics of thermodynamics Rudramani" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Basics of Thermodynamics" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.1 # pageno 34" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "f=-40 # medium temperature in -40 degree\nf1=32 # standard value in 32\nT=(f-f1)*5/9 #temperature in degree\nprint \"hence -40 on the fahrenheit scale is equal to \",T,\" on the degree celsius\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "hence -40 on the fahrenheit scale is equal to -40 on the degree celsius\n" + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.2 # pageno 34" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find density\nmass=1600 #mass in kg\nv=2 # volume in 2m3\nd=mass/v # density in kg/m3\nprint 'Density =mass/volume =',d,'kg/m3'\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Density =mass/volume = 800 kg/m3\n" + } + ], + "prompt_number": 107 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Ex 1.3 # page no 35" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find specific weight of oil\nm=1600 # mass of oil\ng=9.81 # acceleration due to gravity\nv=2 # volume\ns=(m*g)/v # specific gravity\nprint s,\"N/m3\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "7848.0 N/m3\n" + } + ], + "prompt_number": 106 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.4 #pageno 35" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "Do=float(800) #Density of oil\nDW=float(1000) #Density of water\n\n#calculation\nSG=float(Do/DW) #Specific grav\n#print SG\n#print ('%.1f' %(SG*.1))\n#output\nprint \"Specific gravity \",SG", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Specific gravity 0.8\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.5 # pageno 35" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find kinematic viscosity\nu=0.001 #viscosity of oil\np=800 # specific gravity\nk=u/p # kinematic viscosity\nprint \"kinematic viscosity\", k,\"m2/s\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "kinematic viscosity 1.25e-06 m2/s\n" + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.6 # pageno 35" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find the absolute pressure\np1=13600 # atmospheric pressue\ng=9.81# vaccum pressure\nh=0.76 #barometric pressure of mercury\nBa=p1*g*h\nprint 'Barometric pressure',round(Ba/1000,1),'kN/m2'\ngauge= 5000# gauge pressure\nAb=(Ba/1000)+gauge # Absolute pressure=atmospheric pressure + gauge pressure\nprint 'Absoulte pressure',round(Ab,1),'kPa = or ',round(Ab/1000,1),'bar'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Barometric pressure 101.4 kN/m2\nAbsoulte pressure 5101.4 kPa = or 5.1 bar\n" + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.7 #pageno 35" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find absolute temperature\nbar=760 # barometeric pressure\nvac=700 # vacuum pressure\nab=bar-vac\nprint ab,'mm of Hg'\np=13600 # specific gravity \ng=9.81 # accelration due to gravity\nh=0.06 # N/m2\nAb=(p*g*h)\nprint 'Absolute pressure',Ab,'N/m2'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "60 mm of Hg\nAbsolute pressure 8004.96 N/m2\n" + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.8 #pageno 35" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#page no35 to find heat required \nt2=1300 # temperature in kelvin\nt1=290 # temperature 290k\nc=.49 # mass 0.49 kj/kg k\nm=200 # mass in kg\nH=(m*c)*(t2-t1)\nprint 'Heat required',H,'kJ'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Heat required 98980.0 kJ\n" + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.9 #pageno 36" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find change in internal energy\nm=-0.3 # mechanical stirrer\nt=5 # min\nt1=5*60 # minutes into seconds\nw=m*t1 # work done by mechanical stirrer\nprint 'work done by mechanical stirrer',w,'kJ'\nq=5*300 # charge in t*w\nu=q+w # U=Q-W\nprint 'change in internal energy of water U=Q-W',u,'kJ'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "work done by mechanical stirrer -90.0 kJ\nchange in internal energy of water U=Q-W 1410.0 kJ\n" + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.10 # pageno 36" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# from tables h=460.545 \nh=460.545 #kJ/kg \nv=0.066484 # m3/kg\np=400 # pressure from table \nu=h-(p*v) # kJ/kg\nprint 'U=',u,'kJ/kg'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "U= 433.9514 kJ/kg\n" + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.11 #pageno 36" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to calculate total work done\np1=4 # bar 1\np2=1 # bar2\ng=1.4 # gamma\nt1=425 # t1 in temperature 425k\nte=(g-1)/g #gamma-1/gamma\ng1=(p1/p2)**te\nt2=t1/g1 # temperature T2\nprint 'T2 =',round(t2,1),'K'\nv1=0.2 # volume of 0.2 m3\nv3=1/g # 1/gamma\nv2=(0.25)**v3\nprint 'V1/V2',round(v2,4)\nvol=v1/v2\nprint 'V2 = ',round(vol,4),'m3'\nR=1-v3\nprint 'R=cp-cv=',round(R*1000,1),'J/kg K'\nm=(p1*v1*10**5)/(t2*t1)\nprint round(m,3),'kg'\nen=70\nt3=(en/m)+(t2)\nprint 'T3 =',round(t3,1),'K'\nV3=vol*t3/t2\nprint 'V3 =',round(V3,3),'m3'\nW=((p1*v1*10**5)-(p2*vol*10**5))/0.4\nprint 'W1-2 =',round(W/1000,3),'kJ'\nW2=p2*10**5*(V3-vol)\nprint 'W2-3 = ',round(W2*100,2),'kJ'\nW1=W+W2\nprint 'W =W1-2+W2-3 =',round(W1/1000,3),'kJ'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "T2 = 286.0 K\nV1/V2 0.3715\nV2 = 0.5384 m3\nR=cp-cv= 285.7 J/kg K\n0.658 kg\nT3 = 392.4 K\nV3 = 0.739 m3\nW1-2 = 65.41 kJ\nW2-3 = 2002026.54 kJ\nW =W1-2+W2-3 = 85.43 kJ\n" + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex1.12\n" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# pageno 36 to find final temperature\n#from figure ddepicts the process given in book\nT1=300 # temperature in 300K\nv2=float(0.003) #volume in 0.003m3\nv1=float(0.03)\nn=float(1.3)#n\nt=(v2/v1)**(n-1)\nprint round(t,3)\nT2=T1/t # temperature in degree c\np=2\nprint 'T2 =',round(T2),'=' ,round(T2-273),' degree C'\np1=(v2/v1)**n\np2=p/p1\nprint 'P2 =',round(p2),'bar=',round(p2),'10**5 N/m2'\nw=((p2*10**5*v2)-(p*10**5*v1))/(n-1)# work done during compression\nprint 'W1-2= ',round(w),'J',round(w,1)/1000,'kJ' ", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "0.501\nT2 = 599.0 = 326.0 degree C\nP2 = 40.0 bar= 40.0 10**5 N/m2\nW1-2= 19905.0 J 19.9052 kJ\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "EX 1.13 #pageno 38" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "Thigh=float(1200) # temperature in high\nK=float(273) # 273 in kelvin\nth=float(Thigh+K) #convert degree into kelvin\nTlow = float(150) # temperature in low\ntl=float(Tlow+K) #convert degree into kelvin\nn=float((th-tl)/th) #effiency in percentage of engine\nprint 'Effiency = ',round(n,3),'=',round(n*100,3),'%'\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Effiency = 0.713 = 71.283 %\n" + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex1.14 #pageno 38" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#to find heat supplied by each source and to effiency of the engine\n# to find reversible engine mentioned in figure in the textbook\nt1=float(1000) # constant temperature\nt2=float(310)# constant temperature\nn1=float((t1-t2)/t1)\nprint 'n1 =',n1\nt3=float(800)# constant temperature\nn2=float((t3-t2)/t3)\nprint 'n2 =',n2\nQ1=25.8 \nQ2=134.2\nW=100# work obtained\nth=W/(Q1+Q2) # heat supllied from the source\nprint 'Thermal efficiency of the engine = ',th,'=',th*100,'%'\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "n1 = 0.69\nn2 = 0.6125\nThermal efficiency of the engine = 0.625 = 62.5 %\n" + } + ], + "prompt_number": 104 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.15 " + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#to find power required to drive the plant\ntlow=float(263) # low temperature\nthigh=float(300) # high temperature\ncop=float(tlow/(thigh-tlow)) #coefficient of performance ideal\nprint 'COP ideal =',round(cop,2)\np=0.6\ncopac=cop*p #coefficient of performance actual\nprint 'COP actual =',round(copac,3)\nhe= 30*10**3\nw=he/copac # power required to drive plant\nprint 'power required to run the plant = ',round(w/1000,3),'kW'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "COP ideal = 7.11\nCOP actual = 4.265\npower required to run the plant = 7.034 kW\n" + } + ], + "prompt_number": 83 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "\nEx 1.16 \n" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find conduction heat transfer rate through the plate\nT2=600 # high temperature\nT1=100# low temperature\nL=0.1 # thickness of slab\nK=20 # thermal conductivity \nA=1 # area in m2\nQ=(K*A)*(T2-T1)/L\nprint 'Q =',Q/1000,'kW'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Q = 100.0 kW\n" + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex1.17" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# To find heat conduction \nt1=1300 #temperature at 1300 degree c\nt3=115 # temperature at 115 degree c\nl1=0.5 # thickneess of slab\nk1=1.4 # thermal conductivity\na=1 # constant a=1\nl2=0.161 # thickness of slab 2\nk2=0.35 # thermal conductivity of second slab\nQ=(t1-t3)/((l1/(a*k1))+(l2/(a*k2))) # conduction of heat transfer\nprint 'Q=',round(Q,1),'W =',round(Q/1000,2),'kW'\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Q= 1450.2 W = 1.45 kW\n" + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.18 pageno 40" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find conduction transfer\nimport math\nt1=float(300)\nt2=float(200)\nl=float(2)\nk=float(70)\nr2=float(0.1)\nr1=float(0.05)\nQ=float((k*2*3.14*l*(t1-t2))/(math.log((r2/r1))))\nprint 'Q= ',round(Q,2),'W =',round(Q/1000,2),'kW'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Q= 126841.75 W = 126.84 kW\n" + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "EX 1.19 pageno 40" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find internal temperature and conduction transfer rate\nimport math\nt1=float(225)# temperature in degree\nt4=float(25) # temperature in degree\nL=1 #length in m\nk1=float(50) #thermal conductivity constant\nr1=float(5)#thermal conductivity constant\nr2=float(5.5)#thermal conductivity constant\nk2=float(0.06) #thermal conductivity constant\nr3=float(10.0)#thermal conductivity constant\nr4=float(15.5)#thermal conductivity constant\nk4=float(1/(k1)) #1/k1\nk3=0.12 #thermal conductivity constant\np=float(1/(2*math.pi*L)) #1/2pil\nk5=float(1/(k2)) #1/k2\nk6=float(1/(k3)) #1/k3\nQ=float((t1-t4)/(p*((k4*math.log(r1/r2))+(k5*math.log(r3/r2))+(k6*math.log(r4/r3))))) #Conduction transfer\nprint 'Q= ',round(Q,2),'W'\nprint 'calculation error in textbook' # error in textbook\nT2=(t1-float(Q*p*(k4*math.log(r2/r1)))) # internal temperature T2\nprint 'T2 = ',round(T2,1),'Degree C' \nT3 =(T2-float(Q*p*(k5*math.log(r3/r2)))) # internal temperature T3\nprint 'T3 =',round(T3,2),'Degree C'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Q= 92.3 W\ncalculation error in textbook\nT2 = 225.0 Degree C\nT3 = 78.6 Degree C\n" + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.20 pageno 41" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to find conduction heat transfer rate through hallow sphere\nimport math3\nt1=290 # inner surface temperature\nt3=20 # outter surface temperature\nk1=float(70) # thermal conductivity k1\nr2=float(0.15) # radius r2\nr1=0.05 # radius r1\nk2=float(15) # thermal conductivity k2\nr3= float(0.2) # radius r3\np=float(1/(4*3.14)) #1/4pi\nr5=float((1)/(k1)) # 1/k1\nr4=float((1)/(k2)) #1/k2\nQ=float((t1-t3)/((p)*((r5*((r2-r1)/(r1*r2)))+(r4*((r3-r2)/(r3*r2)))))) # thermal conductivity\nprint 'Q= ',round(Q,2),'W'\n ", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Q= 11244.51 W\n" + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Ex 1.21 #page no 41" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "# to determine radiation heat exchange between to plates\nsigma=0.567*10**-7 # surface density of square plate\nt1=1273# temperature of plate1\nt2=773 # temperature of plate 2\nf12=0.415 # shape factor\na1=1 # area of size 1mx1m\nQ=a1*f12*sigma*((t1**4)-(t2**4)) # thermal conductivity\nprint 'Q=',round(Q,2),'W =',round(Q/1000,2),'kW'", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "Q= 53392.43 W = 53.39 kW\n" + } + ], + "prompt_number": 44 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |