summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch1.ipynb188
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch10.ipynb218
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch11.ipynb689
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch12.ipynb302
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch13.ipynb165
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch14.ipynb396
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch15.ipynb256
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch17.ipynb112
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch2.ipynb362
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch3.ipynb292
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch5.ipynb70
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch6.ipynb120
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch7.ipynb571
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch8.ipynb125
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch9.ipynb250
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/VvsT7.pngbin0 -> 21144 bytes
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wCvswt2.pngbin0 -> 9908 bytes
-rw-r--r--Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wVSt11.pngbin0 -> 19533 bytes
-rw-r--r--sample_notebooks/Namratha Reddy/chapter3.ipynb907
19 files changed, 5023 insertions, 0 deletions
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch1.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch1.ipynb
new file mode 100644
index 00000000..a58dbced
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch1.ipynb
@@ -0,0 +1,188 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b3a6cfc1d2c872aca30cd5b6a87aa7825822b184d347f3d205eddfb7ba133797"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1 : Introduction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.1 Page No : 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Given\n",
+ "m = 10.; # Acceleration is 2.0m/s**2\n",
+ "a = 2.; # mass\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#a)\")\n",
+ "F = m*a\n",
+ "print \"Force is %dN\"%(F)\n",
+ "#b)\")\n",
+ "t = 4; # time\n",
+ "x = (a*t*t)/2\n",
+ "KE = (F*x)\n",
+ "P = KE/t\n",
+ "print \"Position is %dm\"%(x)\n",
+ "print \"Kinetic energy = %3.1fJ\"%(KE)\n",
+ "print \"Power = %3.1fW\"%(P)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Force is 20N\n",
+ "Position is 16m\n",
+ "Kinetic energy = 320.0J\n",
+ "Power = 80.0W\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2 Page No : 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Given\n",
+ "i = 5.; # current flow\n",
+ "\n",
+ "# Calculation\n",
+ "#As electroms/min is asked so we need to convert A(C/s) to C/min\n",
+ "i1 = 5*60;\n",
+ "#Let e be electronic charge\n",
+ "e = 1.602*10**-19\n",
+ "n = (i1/e)\n",
+ "\n",
+ "# Results\n",
+ "print \"Number of electrons = %3.2f electrons/min\"%(n)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of electrons = 1872659176029962633216.00 electrons/min\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3 Page No : 8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Given\n",
+ "E = 9.25*10**-6 ##Energy is 9.25uJ\")\n",
+ "q = 0.5*10**-6; # #Charge to be transferred is 0.5uC\")\n",
+ "\n",
+ "# Calculation\n",
+ "#1 volt is 1 joule per coulomb\n",
+ "V = E/q;\n",
+ "\n",
+ "# Results\n",
+ "print \"Potential difference between two points a and b is %3.1fV\"%(V)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Potential difference between two points a and b is 18.5V\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4 Page No : 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Given\n",
+ "#Potential difference is 50V\")\n",
+ "#Charge per minute is 120C/min\")\n",
+ "V = 50.\n",
+ "x = 120;\n",
+ "\n",
+ "# Calculation\n",
+ "#As Electrical energy is to be calculated charge per minute is to be converted in charge per second\n",
+ "#Charge per second is nothing but the current\n",
+ "i = x/60;\n",
+ "P = i*V;\n",
+ "#Since is 1W = 1J/s\n",
+ "\n",
+ "# Results\n",
+ "print \"Rate of energy conversion is %dJ/s\"%(P)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of energy conversion is 100J/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch10.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch10.ipynb
new file mode 100644
index 00000000..8e76e755
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch10.ipynb
@@ -0,0 +1,218 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:394dd92513e2eb48cf648e780d5cf6f538e689b0cc60f7f5f5099082361d1701"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10 : Sinusoidal Steady state Circuit Analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.4 Page No : 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "#Problem 10.4\")\n",
+ "\n",
+ "#For V1\n",
+ "Ro1 = 25\n",
+ "Theta1 = 143.13\n",
+ "#For V1\n",
+ "Ro2 = 11.2\n",
+ "Theta2 = 26.57\n",
+ "#We need to find V1/V2\n",
+ "#Let V = V1/V2\n",
+ "Vmag = (Ro1/Ro2) \n",
+ "Vph = Theta1-Theta2\n",
+ "x = Vmag*math.cos((Vph*math.pi)/180);\n",
+ "y = Vmag*math.sin((Vph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "#Let V1+V2 = V12\n",
+ "x1 = Ro1*math.cos((Theta1*math.pi)/180);\n",
+ "y1 = Ro1*math.sin((Theta1*math.pi)/180);\n",
+ "z1 = complex(x1,y1)\n",
+ "x2 = Ro2*math.cos((Theta2*math.pi)/180);\n",
+ "y2 = Ro2*math.sin((Theta2*math.pi)/180);\n",
+ "z2 = complex(x2,y2)\n",
+ "V12 = z1+z2\n",
+ "print V12\n",
+ "R,Theta = polar([[V12]])\n",
+ "print R,Theta\n",
+ "\n",
+ "# Results\n",
+ "print \"V1/V2 = %0.2f+i*%3.2f V1+V2 = %3.2f%3.2f deg)\"%(x, y,R[0,0].real,Theta[0,0].real*180/math.pi)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(-9.98282132757+20.0096932306j)\n",
+ "[[-0.44642546+0.89482083j]] [[ 22.36167581+0.j]]\n",
+ "V1/V2 = -1.00+i*2.00 V1+V2 = -0.451281.23 deg)\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.5 Page No : 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 10.5\")\n",
+ "\n",
+ "# Given\n",
+ "#Voltage is 100(45 deg)\")\n",
+ "#Current is 5(15 deg)\")\n",
+ "#For V\n",
+ "Ro1 = 100\n",
+ "Theta1 = 45\n",
+ "#For I\n",
+ "Ro2 = 5\n",
+ "Theta2 = 15\n",
+ "#We need to find V/I = Z\n",
+ "\n",
+ "Zmag = (Ro1/Ro2) \n",
+ "Zph = Theta1-Theta2\n",
+ "x = Zmag*math.cos((Zph*math.pi)/180);\n",
+ "y = Zmag*math.sin((Zph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "#Let Y = 1/Z\n",
+ "Ymag = (Ro2/Ro1) \n",
+ "Yph = Theta2-Theta1\n",
+ "x1 = Ymag*math.cos((Yph*math.pi)/180);\n",
+ "y1 = Ymag*math.sin((Yph*math.pi)/180);\n",
+ "z1 = complex(x1,y1)\n",
+ "\n",
+ "# Results\n",
+ "print \"R = %3.2fohm XL = %3.2fH G = %0.3fS BL = %0.3fS\"%(x,y,x1,abs(y1));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "R = 17.32ohm XL = 10.00H G = 0.000S BL = 0.000S\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.7 Page No : 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "#Problem 10.7\")\n",
+ "\n",
+ "print \"Voltage v1 = 5*math.cosw1*t\"\n",
+ "print \"Voltage v2 = 10*math.cosw2*t+60\"\n",
+ "#The circuit is modeled as\n",
+ "#resistance is 10ohm and inducmath.tance is 5mH\")\n",
+ "R = 10;\n",
+ "L = 5*10**-3;\n",
+ "#a)\")\n",
+ "w1 = 2000;\n",
+ "w2 = 2000;\n",
+ "#Let Z be the impedance of the coil\n",
+ "Z1 = R+1j*L*w1\n",
+ "Z2 = R+1j*L*w2\n",
+ "#Let V be phasor voltage between the terminals\n",
+ "Vmag = 10;\n",
+ "Vph = 60; \n",
+ "x = Vmag*math.cos((Vph*math.pi)/180);\n",
+ "y = Vmag*math.sin((Vph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "v = 5-z;\n",
+ "#Let I be the current\n",
+ "I = v/Z1\n",
+ "R,Theta = polar([[I]])\n",
+ "R = R[0,0].real\n",
+ "Theta = Theta[0,0].real\n",
+ "print \"i = %0.2f*math.cos%dt%d deg)\"%(R,w1,Theta*180/math.pi);\n",
+ "\n",
+ "#b)\")\n",
+ "R = 10;L = 5*10**-3;\n",
+ "w1 = 2000;w2 = 4000;\n",
+ "#Let Z be the impedance of the coil\n",
+ "Z1 = R+1j*L*w1\n",
+ "Z2 = R+1j*L*w2\n",
+ "V1 = 5;\n",
+ "#By applying superposition i = i1-i2\n",
+ "I1 = V1/Z1\n",
+ "R,Theta = polar([[I1]])\n",
+ "R = R[0,0].real\n",
+ "Theta = Theta[0,0].real\n",
+ "print \"i1 = %0.2f*math.cos%dt%d deg)\"%(R,w1,Theta*180/math.pi);\n",
+ "V2mag = 10;V2ph = 60;\n",
+ "I2 = z/Z2\n",
+ "R1,Theta1 = polar([[I2]])\n",
+ "R1 = R1[0,0].real\n",
+ "Theta1 = Theta1[0,0].real\n",
+ "print \"i2 = %0.2f*math.cos%dt%3.2f deg)\"%(R1,w2,Theta1*180/math.pi);\n",
+ "#i = i1-i2\n",
+ "print \"i = %0.2f*math.cos%dt%d deg)-%0.2f*math.cos%dt%3.2f deg)\"%(R,w1,Theta*180/math.pi,R1,w2,Theta1*180/math.pi)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage v1 = 5*math.cosw1*t\n",
+ "Voltage v2 = 10*math.cosw2*t+60\n",
+ "i = -0.71*math.cos2000t35 deg)\n",
+ "i1 = 0.71*math.cos2000t20 deg)\n",
+ "i2 = 1.00*math.cos4000t25.62 deg)\n",
+ "i = 0.71*math.cos2000t20 deg)-1.00*math.cos4000t25.62 deg)\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch11.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch11.ipynb
new file mode 100644
index 00000000..0cca4cae
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch11.ipynb
@@ -0,0 +1,689 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:83ee6d1c752a11776a3f51dfb2cc636a1d14090445de8f66b53483fb5dea2c8a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11 : AC Power"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1 Page No : 199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import arange,ones\n",
+ "from matplotlib.pyplot import plot,xlabel,ylabel,suptitle, subplot\n",
+ "\n",
+ "#Problem 11.1\")\n",
+ "\n",
+ "# Given\n",
+ "#resistance = 1000ohm\")\n",
+ "t = arange(0,1+0.5,0.5)\n",
+ "i = ones(len(t))\n",
+ "i1 = -i;\n",
+ "\n",
+ "subplot(2,1,1)\n",
+ "plot(t,i)\n",
+ "plot(t+1,i1)\n",
+ "plot(t+2,i)\n",
+ "plot(t+3,i1)\n",
+ "suptitle(\"i vs t\")\n",
+ "xlabel('t in ms')\n",
+ "ylabel('i in mA')\n",
+ "\n",
+ "i = 1.*10**-3*i\n",
+ "R = 1000;\n",
+ "#p = i**2*R\n",
+ "p = i**2*R;\n",
+ "subplot(2,1,2)\n",
+ "plot(t,p)\n",
+ "suptitle(\"p vs t\")\n",
+ "xlabel('t in ms')\n",
+ "ylabel('p in mW')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "[ 0. 0.5 1. ]\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 10,
+ "text": [
+ "<matplotlib.text.Text at 0x10f37cf50>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEhCAYAAACgIq2RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG0FJREFUeJzt3X20XGV96PHvaUJWUYpIqVEIeCAgSqsoKKSAZRDpMtwW\nK14V2mpVltdqLV5r71K0d3G44gpY21KlV/CFFtRK8f1QsUglo17kRQyBIAmSALcQNHpREAyFQOb+\n8dvDzJkzL3ventkz8/2stVf2zOw985uHML88z3728wNJkiRJkiRJkiRJkiRJkiRJUoMlow5AUs9O\nB14ArBt1IJKk6VEG5kcdhCSpWI4BHgXuzP68B3h6wzGrgYcbznkk278W+M/s8Q1N3vsJ4HFgO/C2\nQQYuSRpfxwAV4C3Z49tp3lPZnh0LcAVwJXAAkbCq9mly3tXAVwcSqSRpYhxD9Eyq3gXc1+S4fyOS\nDsAvgeOAXYgez+3AOcCuTc67GofdNKZ+ZdQBSFNkhugJNVoDHAu8PHu8FtgB7AV8BngVsDVFgJKk\n8Vcddjste7wJ+EqLYx8GtgCXZ49/Azgk298X2NnknK8Skw4kSXpSswkHT2tx7DyRqFZlj59PJKRH\nsu2CJue8PHttO/CnA4takjTWjiFmq0lq4DUfabiaXeORJEmSJEmSJEmSJEmSJEmSJEmSJEkDcBGw\nDdjQ5piPAHcANwMvShGUJGmyvZRIKK2Sz4nUlqs/ErguRVCSpMk3S+vkcwHwurrHm4Dlww5IktTa\nNKzttg+xmnDVvcCKEcUiSWI6kg9EEa96LvYoSSO0dNQBJLCVKMZVtYKmVSFXVqKWlySpC1uAA7s9\naRp6PvPAG7L9VcADxOy4BluoVCqF384888yRx2CcxmmcxljdgJW9/DBPQs/nc8CxRL37e4AzgV2y\n1y4kZrqdCGwGfgm8aQQxSpLqTELyOTXHMe8YehSSpNymYdhtopRKpVGHkItxDpZxDtY4xDkOMfaj\ncRbYNKtk45eSpJxmZmagh1xiz0eSlJzJR5KUnMlHkpScyUeSlJzJR5KUnMlHkpScyUeSlJzJR5KU\nnMlHkpScyUeSlJzJR5KUnMlHkpScyUeSlJzJR5KUnMlHkpTcpCSfVwCbgDuA9zR5vQQ8CNyUbX+V\nLDJJ0iKTUEZ7CXA+8HJgK/A9YB7Y2HDct4CT0oYmSWpmEno+RwCbgbuBHcClwCubHGfVVkkqiElI\nPvsA99Q9vjd7rl4FOAq4GbgCOCRNaJKkZiZh2K2S45h1wL7AdmA18BXgOY0Hzc3NPblfKpUolUoD\nCVCSJkW5XKZcLvf9PpMwFLUKmCMmHQCcAewEzm1zzl3A4cDP6p6rVCp58pgkqWpmZgZ6yCWTMOx2\nI3AQMAssA15HTDiot5xa4xyR7f8MSdJITMKw2+PAO4AriZlvnyJmur01e/1C4L8Cb8uO3Q6ckj5M\nSVLVJAy7DYrDbpLUpWkedpMkjRmTjyQpOZOPJCk5k48kKblRJp+XAv8wws+XJI1I6qnWhwGnAq8l\nbvT8YuLPlyQVQIrkczCRcF4H/BT4PDEtr5TgsyVJBZTiPp+dwL8SN4L+R/bcXcD+CT67G97nI0ld\nKvJ9PicDjwDfBi4AjsebWyVpqqVMArsRdXZOBY4DLgG+DHwjYQzt2PORpC712vMZVQ9kT2K9tVOA\nl40ohkYmH0nq0rgkn6cTdXWW1n329xPH0IrJR5K61GvySTnV+gPAG4E7iUkIVccljEGSVAApez4/\nBH4LeCzhZ3bDno8kdanIs92qfkAMu0mSplzKns9LgK8CtwKPZs9VgJMSxtCOPR9J6tI4XPO5BDiH\nSD7Vaz6D+rV/BXAeUcn0k8C5TY75CLCaqGT6RuCmAX22JKlLKZPPw0QCGLQlwPnAy4GtwPeAeaKU\ndtWJwIHAQcCRwMeAVUOIRZKUQ8rk8x1gDZEYHq17fl2f73sEsBm4O3t8KXEza33yOQm4ONu/HtgD\nWA5s6/OzJUk9SJl8DiOG2Rp7HP1Otd4HuKfu8b1E76bTMSsw+UjSSKRMPqUhvW/e60aNF8QWnTc3\nN/fkfqlUolQq9RyUJE2icrlMuVzu+30mYYHPVcAcMekA4AxiQkP9pIMLgDIxJAewCTiWhT0fZ7tJ\nUpfG4T6fYbmRmEgwCywj6gbNNxwzD7wh218FPIBDbpI0MqkrmQ7D40StoCuJmW+fIiYbvDV7/ULg\nCmLG22bgl8Cb0ocpSapKPex2NNFDqSa9CnH/TxE47CZJXRqHm0w/AxwArAeeqHu+KMlHkpRIyp7P\nRuAQBreqwaDZ85GkLo3DhINbgWcl/DxJUkGlHHb7DeA24AaKubCoJCmRlMlnLuFnSZIKbBJuMh0U\nr/lIUpeKfM3nmuzPh4GHGrZfJPh8SVLB2POpsecjSV0qcs9HkqQFTD6SpORMPpKk5Ew+kqTknO0m\nSUrO2W41znaTpC45202SNDZMPpKk5Ma9kumewL8AzwbuBl5LlMhudDdxfekJYAdwRJrwJEnNjHvP\n573AVcBzgG9mj5upACXgRZh4JGnkxj35nARcnO1fDPxBm2OdXCFJBTHuyWc5sC3b35Y9bqYC/Dtw\nI/CWBHFJktoYh2s+VwHPbPL8+xseV2hdovto4EdEQburgE3AdwYVoCSpO+OQfE5o89o2IjH9mCjR\n/ZMWx/0o+/OnwJeJ6z6Lks/c3NyT+6VSiVKp1HWwkjTJyuUy5XK57/cZ9+sgHwLuB84lJhvsweJJ\nB08BlhArKjwV+AZwVvZnPW8ylaQu9XqT6bgnnz2By4D9WDjVem/gE8B/AQ4AvpQdvxT4LLCmyXuZ\nfCSpS9OafAbJ5CNJXXJ5HUnS2DD5SJKSM/lIkpIz+UiSkjP5SJKSM/lIkpIz+UiSkjP5SJKSM/lI\nkpIz+UiSkjP5SJKSM/lIkpIz+UiSkjP5SJKSM/lIkpIz+UiSkjP5SJKSG/fk8xrgB8ATwGFtjnsF\nsAm4A3hPgriGplwujzqEXIxzsIxzsMYhznGIsR/jnnw2AK8Cvt3mmCXA+UQCOgQ4FXje8EMbjnH5\nC2mcg2WcgzUOcY5DjP1YOuoA+rQpxzFHAJuBu7PHlwKvBDYOKSZJUgfj3vPJYx/gnrrH92bPSZJG\nZGbUAeRwFfDMJs+/D7g8218LvBtY1+S4VxNDbm/JHv8xcCTw5w3HbQZW9husJE2ZLcCB3Z40DsNu\nJ/R5/lZg37rH+xK9n0ZdN54kabqtBQ5v8dpSIjPPAsuA9YzxhANJ0ui9irie8wjwY+Dr2fN7A1+r\nO241cDsxtHZGygAlSZIkaSTy3HD6kez1m4EXJYqrUac4S8CDwE3Z9lfJIqu5CNhG3G/VShHaslOc\nJUbflhDXI9cSN07fCpze4rhRt2meOEuMtk1/FbieGGa/DVjT4rhRt2WeOEsU4+8nxH2TN1Gb7NVo\n1O1ZWEuIobdZYBeaX/85Ebgi2z8SuC5VcHXyxFkC5pNGtdhLib9grX7Ui9CW0DnOEqNvS4hZnS/M\n9ncjhoqL+PczT5wlRt+mT8n+XEq00zENrxehLaFznCVG35ZVfwF8lubxdNWe03CfT736G053ULvh\ntN5JwMXZ/vXAHsDyRPFV5YkTRj9V/jvAz9u8XoS2hM5xwujbEuK65fps/2HiRui9G44pQpvmiRNG\n36bbsz+XEf+g+1nD60VoS+gcJ4y+LQFWEAnmkzSPp6v2nLbkk+eG02bHrBhyXI3yxFkBjiK6t1cQ\nSwcVTRHaMo8ituUs0Vu7vuH5orXpLM3jLEKb/gqRJLcRw4S3NbxelLbsFGcR2hLg74D/Aexs8XpX\n7TltyaeS87jGrJ73vEHJ83nriLH3Q4GPAl8ZakS9G3Vb5lG0ttwN+ALwTqJn0agobdouziK06U5i\neHAF8DvE8FWjIrRlpziL0Ja/B/yEuN7TrheWuz2nLfnkueG08ZgV2XMp5YnzIWrd9a8T14b2HH5o\nXSlCW+ZRpLbcBfgi8Bma/8gUpU07xVmkNn2QuPXixQ3PF6Utq1rFWYS2PIoYVrsL+BzwMuCShmOK\n1p6FkueG0/qLZqsYzUXIPHEup/avjCOoLZya2iz5JhyMqi2rZmkdZ1Hacob4H/rv2hxThDbNE+eo\n23Qv4poDwK7EyvfHNxxThLbME+eo27LRsTSf7VaE9iy0ZjecvjXbqs7PXr+Z9nWChqlTnH9GTHNd\nD3yX+I+d2ueA+4DHiLHeN1PMtuwUZxHaEmKW084sjuq02tUUr03zxDnqNn0+MVy1HriFuFYBxWvL\nPHGOui0bHUtttlvR2lOSJEmSJEnS8PSzlE2rc19DLOvxBIvHFM/Ijt8E/G7d88uAjxPXUDYCJ3f/\nVSRJ46CfpWzanftc4DnEzVj1yeeQ7LhdsvM2U5shchbwv+qO/fUev5MkaQCGWUyufokYqC0Rs7Hu\nmGbLMTwT2L/NuZtafN4riVlNO7LzNmcxXA+8CTi47tj7e/lCkqTBGOZNpr0uZbMPsU5Up3Mb7c3C\nGzGr51Tn0J8NfB+4DHhG5/AlScMyzOTT61I2g7aUuNP2GqLa6bXAhxsPWrlyZYWI2c3Nzc0t/7aZ\nHgwz+fS6lM29Oc/t9HnVpR3uJ5am+FL2/BdocvPTli1bqFQqbpUKZ5555shjKMpmW9gWtkX7DVjZ\n4be5qWEmnxuBg6gtEfM6FteAmAfekO2vAh4gVnbNcy4s7DXNA6dkx++fnX8DkZkvB47LjjuemC0n\nSRqRYU44eBx4B3AlMXvtU8SEgepSDBcSM91OJLptvyQmBrQ7F+BVxPTsvYhF+KpLe9xGXM+5LTv/\n7UTigZiq/WngPGJl1urnSJJGoAgFioqiknUhp165XKZUKo06jEKwLWpsixrbomZmZgZ6yCUmnxqT\njyR1qdfkM231fCRJBWDykSQlZ/KRJCVn8pEkJWfykSQlZ/KRJCVn8pEkJTfs5FOUYnJV88CGrr6B\nJGnghpl8lgDnE0nkEOBUmheTO5BYh+2/AR/Lce4GYomdbze81yHEGnCHZOf9bxZ+v5OBh6gtuSNJ\nGpFhJp/6YnI7qBWEq9eqmFy7czcBP2zyea2KyQHsBryLqOnjqg6SNGKTXkxu72z/A0QNn+15Apck\nDdcwV7XOO7w1zJ7IDPBC4ACi5zPb7uC5ubkn90ulkgsHSlKDcrlMuVzu+32GmXz6KSa3S45zO31e\n9b1WAS8G7iK+7zOAq4GXNb5BffKRJC3W+A/zs846q6f3mYZichcQQ3b7A8cQ14sWJR5JUjrTUkyu\naqbJc5KkxJz5VWM9H0nqkvV8JEljw+QjSUrO5CNJSs7kI0lKzuQjSUrO5CNJSs7kI0lKzuQjSUou\nRfIpQkG5XYnVEDYCtwJrevsqkqRBGHbyKUJBueqdtx/Kzn8RcHT2uiRpBNoln5uJH+8/Ihbl7EUR\nCsodCTwCfCs7Zgewjs71gSRJQ9Iu+fwxkYB+l1jg8z7gC0RdnCNzvn8RCso1nrMH8PvANzu8lyRp\nSNqtar0h2y7MHu9FlCz470RV0CU53r8IBeXqY1hK9Iz+nugZLWAxOUlqL0UxuSXExfyjsu1Aoifx\nSeDanO9fhIJyW+sefxy4nZjgsIjF5CSpvUEVk2uXfB4iauP8AzGD7M4e3r++KNx9xGSAUxuOmSdq\n91zKwoJy9+c4FxYXlPtn4G+J4bZqQTmAs4HdgdN6+B6SpAFqN9x1KtHjOQzYSfyIX5ttW9uc12g1\ncB61onBrWFhQDmqz2qoF5da1ORcWFpR7kFpBOYD3AW8mCsq9k7hetQL4D2Kq9WPZcR8FLqqL03o+\nktSlXuv55D3hKcTss6OJ5LAM2K/bDys4k48kdanX5NOpjPZTiaGw6nWflxDXXf5Ptx8kSVJVu2x1\nE9G7uRG4BvgucR/OQwniGgV7PpLUpWEMux1KTLXe2WNM48bkI0ldGuY1n6cDbyBmnVWH6SrA6d1+\nWMGZfCSpS8O65gNwBTHD7RaiFzRD/ptHJUlaJE+2WsfilaMnkT0fSerSMIfd/hL4BXA58Gjd8z/r\n9sMKzuQjSV0a5rDbfwJ/Dbyf2uSDCnBAtx8mSRLkq+fzbmAl8GyitML+5E88RSgkB3A4MXPvDmJR\nUUnSCOVJPncQ9XC6VaRCch8j1nQ7KNssJCdJI5Rn2G07sB5YS+2aT56p1vXF4KBWDG5j3TGtCsnt\n3+bcTS0+r1Uhuf8L/Bq1BUYvAf4A+LcO8UuShiRP8vlKtlWvxuedat2sSFxjEbpuCsl1KmC3N3Bd\nk/fawcJSDFuxiqkkjVSe5PNPPb53EQrJdWVmZq7uUSnbJEk15WzrT57k06siFJK7N3t+RcPzTUtC\nVCpzHT5CkqZdifp/mM/M9FZMLs+Eg17VF5JbRkwGmG84Zp5YugcWFpLLcy4sLiR3Snb8/tQKyf2Y\nuE/pyOz41xPDiJKkERlmz+dxokLpldSKwW1kYSG5K4gZb5upFZJrdy4sLCT3NWqF5G4DLsv+fBx4\nO7Whv7cTw4e7Zp/pZANJGqE811sOJlY5mGXhwqIvG1JMo+IKB5LUpWEur3MLcZ/MOuLGTojk8/1u\nP6zgTD6S1KVhJp/vEysETDqTjyR1qdfkk2fCweXAnwHPAvas2yRJ6kmebHU3ze/Z2X+woYycPR9J\n6tIwh92mhclHkro0jJIKxwPfBF5N857Pl7r9MEmSoH3y+R0i+fw+Jh9J0gA57FbjsJskdWmYs936\nMYxicnsCVwE/BL5BlGGAWFbnH4n7ktYDx9ad8yaiDtDNwNeBX+/1C0mS+jfM5DOsYnLvJZLPc4hh\nwfdmz7+FKPP9AuAE4G+y55cBHyaS0aFEcnrHYL6iJKkXw0w+9cXkdlArCFevVTG5dufWn3MxURgO\nIjmtzfZ/SixS+mJinbefA7sRXcPdabGqtSQpjTzJZ1fg3cCXiUkG7wJ+Ncd5rQrF5TmmWTG56rnL\niZWvyf5cnu3fTCSmJcQ9SIcTJRZ2Au8EbiWSzvOAi3LEL0kakjyrWl9ClCT4CNFz+EPg08BrOpw3\nyGJyraqnVuqev4hILDcSpbO/S6xFtzsR+6HAXcBHgTOADza+2dzc3JP7pVKJUqmU7xtI0pQol8uU\ny+W+3ydP8vlN4rpL1dVE2YJOBllMrr4A3DZiaO7HxJI/P8mefwL4i7pzriEmJTyPSDp3Zc9/nhaT\nH+qTjyRpscZ/mJ911vCKya0Dfrvu8SryrWg9rGJy88CfZPt/Qq0w3K7AU7P9E4hrRZuAO4HnEvV/\nqq/lSZ6SpCHJ0/N5MdGLuIcY4toPuJ2YulwhZpc1M6xicucQReNOIyYkvDZ7fjlRJG4n0Xt6ffb8\nT4H3EZMRdmbnvDHH95YkDUme6y2zHV6/u/8wCsGbTCWpSy4s2j+TjyR1qagrHEiStIjJR5KUnMlH\nkpScyUeSlJzJR5KUnMlHkpScyUeSlNy0FJNbBnycWJlhI3Byr19IktS/aSgmB/B+YiHSg7P3+dYA\nvp8kqUfTUEwOYs24NXWfe3+vX0qS1L9hJp+iFJOrDsudTazGfRnwjF6+kCRpMPKsat2rohSTW0rU\nA7qGqMj6LuDD1Eo5PMlicpLU3qCKyQ1zYdFVwBxx3QaieuhO4Ny6Yy4AysSwGsQEg2OJnkurczcB\nJWrF5NYS9XoaXUOUXbgdeAjYLXt+X+DrwG81HO/CopLUpSIuLFqUYnIV4HLguOy144Ef9PfVJEn9\nGHZJhdXAedQKwq1hYTE5qM1qqxaTW9fmXIip1pcRRe3uJorJPUAkqvpicqdRu260H/Bp4vrPT7LP\naSzpbc9HkrpkPZ/+mXwkqUtFHHaTJKkpk48kKTmTjyQpOZOPJCk5k48kKTmTjyQpOZOPJCm5aann\nUzUPbOjhe0iSBmjS6/nU3/h0MrHGm3eSdjCIRQMnhW1RY1vU2Bb9m5Z6PrsRq1mfjas6dOT/WDW2\nRY1tUWNb9G/S6/msyF77AFFGYXtvX0WSNEjTUM/nhcABRM9nNmdMkqQxtYpYZbrqDBZPOrgAOKXu\n8SaiJ9Pu3E3E0BxEPZ9NLT7/GqLOz58CW4G7iN7Uo8DVTY7fTC2Zubm5ubnl2zZTMEuBLdRq8qyn\n+YSDK7L9VcB1Oc79ELVE9F7gnGy/sZ5PuUlMz8bZbpI08VYTlUQ3E70XiHo+b6075vzs9ZuBwzqc\nCzHV+t9ZPNV6lugF3ZY9v2+TeGaJqdiSJEmSNNn6ufF10nRqiz8i2uAW4hraC9KFllyevxcALwEe\nJ+4bm1R52qIE3ATcSvMh7knRqS32Iq5Pryfa4o3JIkvrImJ2cbvLFtPyu9mTJcQw3iywC52vQx1J\n7TrUpMnTFr8NPC3bfwXT3RbV464G/hV4dargEsvTFnsAP6B2K8NeqYJLLE9bzAFrsv29gPsZ7izi\nUXkpkVBaJZ+ufzenbW23Xm98Xc7kydMW1wIPZvvXU/uxmTR52gLgz4EvEDcxT6o8bfGHwBeJ++8A\n/l+q4BLL0xY/AnbP9ncnks/jieJL6TvAz9u83vXv5rQln15vfJ3EH908bVHvNGr/spk0ef9evJLa\nElCVBHGNQp62OIiY+LOWuK/u9WlCSy5PW3wC+E3gPmK46Z1pQiucrn83J7F72E7eH4zGG18n8Yem\nm+90HPBm4OghxTJqedriPGJqf4X4+zGpyzTlaYtdiJmpxwNPIXrI1xHj/ZMkT1u8jxiOKwEriXUn\nDyXWkZw2Xf1uTlvy2crCKdj7Uhs6aHXMiuy5SZOnLSAmGXyCuObTrts9zvK0xeHEsAvE2P5qYihm\nfujRpZWnLe4hhtoeybZvEz+4k5Z88rTFUcAHs/0txM3sBxM9wmkyLb+bPevnxtdJk6ct9iPGvFcl\njSy9PG1R7x+Z3NluedriucS9dkuIns8GYvX5SZOnLf4WODPbX04kpz0TxZfaLPkmHEzy72Zf+rnx\nddJ0aotPEhdQb8q2G1IHmFCevxdVk5x8IF9b/CUx420DcHrS6NLq1BZ7AZcTvxUbiMkYk+hzxHWt\nx4ie75uZ3t9NSZIkSZIkSZIkSZIkSZIkSZI0vp4GvK3N69ekCkSSND1msXy7JCmxS4HtxCoR5zZ5\n/eHszxJRmO3zwEbgMy3er0ws6/K97LiXAF8mSst/IDvmqcDXiCVhNgCv7esbSJLGzrNp3/OproBc\nAh4A9iZWCP4uzVcSX0utgNnpxLIny4n1x+4h1hZ7NfDxunN2RyqQaavnI41CN+UXbiCSSYXotcy2\nOK66mvat2baNWHfrTmJF4VuAE4BzgGOAX3QbtDRMJh+pWB6t23+C1mVPqsftbDhnZ3bOHdTKHp8N\n/M/Bhin1Z9rq+Uij8BDwawk/bwZ4FlF/6bNEKfTTEn6+1JHJRxq++4np1BuImifvaXi90mK/2eNG\nlRbnPB/4a6In9Bjtp3pLkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0vD9f5xfJ0RAW6K/AAAAAElFTkSu\nQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10f2484d0>"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2 Page No : 204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import arange,ones\n",
+ "from matplotlib.pyplot import plot,xlabel,ylabel,suptitle, subplot#Problem 11.2\")\n",
+ "\n",
+ "t = arange(0,1.5,0.5)\n",
+ "i = ones(len(t))\n",
+ "i1 = -i;\n",
+ "\n",
+ "subplot(2,2,1)\n",
+ "plot(t,i)\n",
+ "plot(t+1,i1)\n",
+ "suptitle(\"i vs t\")\n",
+ "xlabel('t in ms')\n",
+ "ylabel('i in mA')\n",
+ "#Voltage across capacitor vC = (1/C)*integrate(i*dt)\n",
+ "#On integration\n",
+ "t = arange(0,0.001+0.0005,0.0005)\n",
+ "v = 2000*t\n",
+ "v1 = 2-v;\n",
+ "subplot(2,2,2)\n",
+ "plot(t,v)\n",
+ "plot(t+0.001,v1)\n",
+ "plot(t+0.002,v)\n",
+ "plot(t+0.003,v1)\n",
+ "suptitle(\"v vs t\")\n",
+ "xlabel('t in ms')\n",
+ "ylabel('v in V')\n",
+ "\n",
+ "#Power is p = v*i\n",
+ "t = arange(0,.001+.0005,.0005)\n",
+ "p = 2000*t\n",
+ "p1 = p-2;\n",
+ "subplot(2,2,3)\n",
+ "plot(t,p)\n",
+ "plot(t+0.001,p1)\n",
+ "plot(t+0.002,p)\n",
+ "plot(t+0.003,p1)\n",
+ "suptitle(\"p vs t\")\n",
+ "xlabel('t in ms')\n",
+ "ylabel('p in W')\n",
+ "\n",
+ "#Work is (C*v**2)/2\n",
+ "t = arange(0,.001+.0005,.0005)\n",
+ "w = t**2\n",
+ "w1 = t**2+1*10**-6-(2*10**-3*t);\n",
+ "subplot(2,2,4)\n",
+ "plot(t,w)\n",
+ "plot(t+0.001,w1)\n",
+ "plot(t+0.002,w)\n",
+ "plot(t+0.003,w1)\n",
+ "suptitle(\"w vs t\")\n",
+ "xlabel('t in ms')\n",
+ "ylabel('w in J')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 12,
+ "text": [
+ "<matplotlib.text.Text at 0x10f7ca150>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEhCAYAAACz9e1lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYFNW5/z8jmwsgEsIgM+DIMAwQI24IuI7hshlEgxuK\nBuISoiK5jwlXcflJbqKANyaIXsWgETCJbEZERdwug0Q22UUEgRnMMMCgLAIKzHZ+f5yq6Zqerl6r\nuqq738/z1EN39Tmn3ilO96lz3vN9XxAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQYiZ\nRl4bIAgZyLPAcOAEsM1jWwRBEIQ04SCwH/gfrw0RBEEQksPbwHZgL3oAqAE+N86XWMq9CBwAyoz3\nk4FvgX3Av4FaQAHVwBuWeuON8+ZxHLjSlb9EEARB8A13AF+jf/iPAkfQM41SYKal3HnGZ9XAGejB\n6GtgBXAY+AbIAs4EOgRd46Dx+SS3/ghBEATBX5wCVBnHQWAzenZSCQwKKluBHlD+hh6IqoEhaF9K\nLVAOPIoeZKyYg4ssiwmCIGQQh9CDyTZgOfAVerAI5hn0QHHU+LfcON8BmAp8jx6ktgbVk5mLkPac\n5LUBguBDvgCaAKcB7dCDxeEQ5V4EGhvlTgJeAwqBHOD3wGPoQSl4WeyYcf4HLtguCIIg+JQ/oH0u\nB4Hv0APBmzZldxNwzp8O3I9eFjPPVQIPB9X5HXpGIw59QRCEDCIP+MxrIwQhlZFlMUEIjfLaAEEQ\nBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBCG1+Ss6smw4NfQUdADBDcD5yTBK\nEBKkA7AYnQdmEzDGppz0bUFwicvRXyq7weVqYKHxuhc6V4Yg+J126HwvAM3RUZG7BZWRvi0ILpOH\n/eAyFbjZ8n4LkO22QYLgMPOBvkHnpG8LaY3fY4vlEEgjC7ALyPXIFkGIhzz07Hxl0Hnp20Ja4/fB\nBRpm8ZOAgkKq0ByYB/wanVAsGOnbQtrS2GsDIlBO/URLuQSy/VnIV7AjSSYJGcgOoHOMdZoAr6NT\nIM8P8XnEvp2fn6927JB+LbhKPH07Kvw+c1kA/Nx43RudfraiYbEdKKV8dzz++OOe2yB2JX4A+TH2\n2yzgZWAzMDnevr1jh3P92ol7W1OjOPtsRa8b+jPijRG+scvXbfXuzc+GD2fghg3+sss44ujbUeP1\nzOU1dBa+Nuj158fRT3ygU8guRO+q2Y7OCPgLD2wUhFi5FLgN2AisM849DHQ0Xqdk3166FE47DS7r\n/GNe2vISRyuP0rxpc6/N8i9btsDOnXTr25fnDx+m/MQJcpo189qqpOH14HJLFGVGu26FIDjLv4hu\nVSCl+vb06TByJBw50pwrzrqCeZvnMfK8kR5b5WNmzIDbb6dJ48bc8MMf8reKCh7s2DFyvTTB78ti\nKU1RUZHXJoRE7Mo8Er23R4/CG2/A8OG6rZHnjWT6+ume2+XbtmpqYOZMGDFC36927Zi+d6+5FOWd\nXUkkeLdKqqIS/U8TBDuysrLAm++Kb/r1jBkwbx689ZZ+X1lTSc6fclh510o6ndHJW+P8yHvvwWOP\nwapVACil6LJqFX/r1o1eLVt6bFwAN/u2zFwEQYiIuSRm0rRRU2455xZmbpjplUn+JuiGZWVl1c1e\nMgWZuQhCBDJ95lJaCj17Qnk5WP3Ra/es5fo517NjzA5OypLn1DoOHYK8PCgpgdat607/+/hxzl+9\nmvI+fTi5USPv7LMgMxdBEDxj5ky45Zb6AwvA+e3Op0XTFnz81cfeGOZXZs+G/v3rDSwAHU8+mQta\ntODN/fs9Miy5yOAiCIIttbXa32JdEjPJyspyzLGfVgSvIVrIpKUxGVwEQbDF1LZccEHoz4f/eDjz\nt8znaGWo6DYZiKFtoX//kB//rE0bVhial3RHBhdBEGwxH8KzbFbls5tn12leBOq0LTQOLSE8tVGj\nOs1LuiODiyAIIbFqW8IhS2MGFm1LOJzSvPgdGVwEQQjJ66/D5ZdDu3bhyw3uMpjPv/6ckoMlyTHM\nr3z4IeTkwI9+FLbYJS1bUq0Uq44cSZJh3iCDiyAIIQnjl66HaF4MorxhmaJ5EZ2LIEQgE3UudtoW\nOzJe82KjbbHDL5oX0bkIgpBU7LQtdmS85sVG22JHJmheZHARBKEe4bQtdmS85iXaNUQL6b40JoOL\nIAj1iKRtsSNjNS8RtC12pLvmRQYXQRDqEUnbYkfGal4iaFvsSHfNiwwugiDUEa22xY6MWxqLUtti\nRzprXrweXAYCW4BtwIMhPi8CvkWnil0HPJo0ywQhfv4KVACf2XxehE/7dbTaFjsyTvMSpbbFjnTW\nvHg5uDQCnkMPMN3RKY+7hSi3BDjfOP6QNOsEIX5eQffrcPiyX8fhl65HxmleErxh6ax58XJwuRjY\nDuwEqoBZwLUhyqWLFkfIHJYCByOU8V2/Li2Fzz6DwYMTa2fkeSOZsWEGtarWGcP8yqFD8O67MGxY\nQs3cnp3NnH37OF5T45Bh/sDLwSUHKLO832Wcs6KAS4ANwEL0DEcQUh1f9utYtS12ZIzmJUZtix3p\nqnmJbXuDs0TjwVoLdAC+BwYB84EuoQqOHz++7nVRURFFRUUJGyhkJsXFxRQXF7t5Cd/1a1PbMndu\n4m1ZNS9FeUWJN+hXpk+Hxx5zpClzaezmtm0dac+OJPTtOrycmvcGxhNYmx4H1AKTwtQpBS4EDgSd\nl/AvgmvEGSIjD3gL+HEUZT3v10uWwOjRsHFj7FuQQ1FxtILC5wrZ9cAumjdtnniDfmPLFrjqKigr\ni3kLcii+r6khZ/lyNvXsSU6iU8cYSNfwL6uBAvSXsClwM7AgqEw2gT/8YuN18BdQEFIN3/XreLUt\ndqS95iVObYsd6ah58XJwqQZGA+8Bm4HZwBfAKOMAuAG9nXM9MBlIzHMmCMnhNWAZUIj2K96Bj/t1\notoWO9JW85KgtsWOdNO8+G7HSpzIspjgGukeFXnGDJg3D956y9l2K2sqyflTDivvWkmnMzo527iX\nvPee9rWsWuVos0opuqxaxd+6daNXy5aOtm1Hui6LCYLgAxLVttiRtpoXl25YumleZOYiCBFI55lL\nrHlbYiXt8rzEmLclVpKd50VmLoIguIJT2hY70k7z4pC2xY500rzI4CIIGUo8eVtiJe3yvLi1hmgh\nXZbG4hlcLgf+12lDBEFILvHmbYmVtMnzEmfellhJlzwv0Q4uFwD/A3wF/B4dyVgQhBTGaW2LHWmj\neXFY22JHumhewg0uhWgF/Rfovfj/Rjt+ioBn3TZMEAT3cEvbYkfKL425pG2xIx00L+EGly/QM5YB\nwBXoASW9wnYKQgiqqqq8NsF1Es3bEispn+clwbwtsZIOeV7CDS5DgWPAx8BUoC/ps3VZEGzJycnh\nrrvu4qOPPkrpJ8dwJMEvXY+U17wk+Yalg+YlmsGiOTrPyi3AVcBM4A3gfRftihXRuQiO8c033zBv\n3jxmzZrFtm3b2L17N0AfYEWSTXGlX7utbbEjZTUvLmtb7EiG5sVrnctR4O/AYHSY8HXAQ24YIwh+\noE2bNvzqV7+iuLiYTz/91Dz9Z2AH8KR3ljmD29oWO1JW8+KytsWOVNe8RPv4cAZwLjqC8RpgrFsG\nCYKfaN++vflyKvpB6y7vrEmcZGhb7EhZzUuy1xAtpPLSWDSDy++BjWiH/tPAH41DENKWY8eOMWfO\nHIYOHWqe+gnwINDevpb/SZa2xY6U07wkSdtiRyprXqIZXG4G8oEr0T4X8xCEtOTWW2+lY8eOzJkz\nh+GBvbojgEXoVBEpS7K0LXaknOYlSdoWO1JZ8xLN4PI5ellMEDKCAQMGUFJSwrx587j++uu9Nscx\nkq1tsSNllsaSrG2xI1U1L9EMLk+infjvo9O2vkXDjJGCkDaMGDGCFi1aeG2G4yRb22JHymhekqxt\nsSNVNS/RDC4zgYnG8bTlcIKB6FAy29Dr2aGYYny+ATjfoesKgpv8FahAZ5u0I+n92kO/dD1SRvPi\nkxuWDpoXOz6NXCQuGgHb0TvQmqBTvnYLKnM1sNB43Qt7nYESBLcAYl2PuBw9YNgNLknv1yUlSv3g\nB0odP+5YkwmxZvcalTc5T9XU1nhtSmgOHlTq9NOV2r/fa0uUUkp9deyYar10qTpWXe1ou3H07aiJ\nZuayFJiAFpFdYDkS5WL04LITqAJmocWaVoYAM4zXK4FWQLYD1xaEqPjkk0/MlyOM4+dRVFsKHAzz\nedL7tVfaFjt8r3nxSNtiRypqXqLZAnEBenTrHXQ+0R1jOUCZ5f0u9FNcpDK56CUHQXCV2267jZKS\nOr/ARZaPEl3PSWq/NrUtc+e60Xp8WDUvRXlFXpvTkOnT4bHHvLaiHubS2M1t23ptSlREM7gUuXTt\naKdjwZsmQ9YbP3583euioiKKioriMkoQiouLKS4u5r333uPee+9l+fLlAPc7fJmk9eulS+HUU73T\nttgx/MfD+e8l/82RE0do0cxHGyg81rbY8bM2bRi9bRvlJ06QE+cU1OzbycDLQJS90SH9BxrvxwG1\nwCRLmalAMXrJDLTz/0oaPuEZy4eC4Bw33ngjzzzzDDk5ORD7dyUPvbPyxyE+S2q//sUv4Jxz4De/\nSbgpxxny2hCGdhvKyPNGem1KgHHj9Dbkp57y2pIG3L11K51POYUHO3Z0pD2vY4u5xWqgAP0lbIoW\nawZvcV5AYI27N3AIWRITksTXX39N9+7dzbdObsNPWr/2i7bFDt9pXnyibbEjlTQv3shONdXAaOA9\n9M6xl9E5ZEYZn7+I3lFzNdrx/x3wi+SbKWQq5pLUVVddBbFtv38NPRNpg/atPI7eEQlJ7td+0bbY\nMbjLYEa9PYqSgyV0OqOT1+b4Rttih1Xz0qtlS6/NCUu006FL0TMMczBSJO7UdBJZFhNcw82lgwgk\n3K+vugpGjwY/BxoY8+4YWp/SmvFF4702RW+pu/xyuPdery2x5YmvvmLXiRO80KVLwm252bejafRv\nQCe0DsWaidJpB2ciyOAiOMall17KJ598QvPmzcnKyuLo0aOgIyKDfrBK1iNjQv3aq7wtseKbPC8e\n5W2JFSfzvLg5uESzLHYh0B0XxTaC4CdMbYsxqJhfQB9tZ4oOv2lb7LBqXjzdluwzbYsdVs2Ln7cl\nR/OYsAk4021DBEFwDi/ztsSKb/K8+CTcSzSkQjiYaAaXHwKbkcCVgpAyeJ23JVY8z/PiU22LHamQ\n5yWaZbHxbhshCIKzeJ23JVaseV480bx4nLclVqx5XpzSvDhNinS9iIhDX3Ccp59+mmHDhpGbmwsp\ntFvs6FHIzdUP437dghyKf37xT6asnELxyOLkXrimBjp2hPff9+0W5FB88u233LV1K5t79jT9gjHj\nlYjSjNh3FDgSdBx2wxhB8BNHjhyhf2CZZDQpEjTV79oWOzzL8+JzbYsdfs/zEm5wudT4tzl6p4z1\n8Ld6RxAcYPz48Xz++efm2zOBj4GPvLMoOlLIL10Pz/K8pOgN83ueFy/DvwhCKrEX2I/e4OJbSkvh\ns89g8GCvLYmPkeeNZMaGGdSq2uRc8NAhePddGDYsOddzmNuzs5mzbx/Ha2oiF04yMrgIgg3PP/+8\nNQpxG+Au4FzPDIqCVNG22JH0PC8pom2xw895XmRwEQQbysrKmDx5svn2cfSWfN+SStoWO5KueUnR\nJTErfl0ak91ighCBVIkttmSJjiO2cWPqbEEORcXRCgqfK2TXA7to3rS5exfaskUHXysrS5ktyKH4\nvqaGnOXL2dSzZ8x5XmS3mCAIEUk1bYsdVs2Lq6SYtsUOq+bFT6R4N6xDZi6Ca6TCzCVVtS12uK55\nSVFtix3xal7SNVmYIAgOkaraFjtc17ykqLbFDj9qXmRwEYQ0IA380vVwXfOSZjfMj5oXrwaX1sAH\nwJfogJitbMrtBDYC64BVSbFMEJxhILAF2AY8GOLzIuBbdN9eBzwa74VSXdtih2ualxTXttjhN82L\nV4PLQ+jBpQta8fyQTTmF/hKeD1ycFMsEIXEaAc+hB5juwC1AtxDllqD79vnAH+K9WKprW+xwTfOS\n4toWO/ymefFqcBkCzDBezwCuC1M2XTYdCJnDxcB29My7CpgFXBuiXMJ9Ox20LXa4pnlJsyUxK35a\nGvNqcMkGzH1zFdgHBFTAh8Bq4O4k2CUITpADlFne7zLOWVHAJcAGYCF6hhMzqZa3JVYcz/OSYnlb\nYsVPeV7cHFw+AD4LcQwJKqewT6F8KXrJYBBwH3C5K5YKgrNEs394LdAB6AE8C8yP50Lpom2xw3HN\nS5poW+zwk+bFzTvcL8xnFUA7dDDAM4F9NuX2GP9+DbyBXm5YGqrg+PHj614XFRVZY0IJQkwUFxdT\nXFycSBPl6IHDpAN69mLFumf0XeB59EaXA9ZC4fr10aPwxhswYUIipvqfkeeNZMrKKYknEaup0Q6q\n9993xC6/MrJdO+7aupX/6tChgebFgb7te54isIPmIWBiiDKnosP7A5yGjhhgN5dVguAWRDcTsdIY\n2AHkAU2B9TR06GcT8LlcjPbPxNSvp09XavDgJN0EDzlRfUK1eaqN2nFgR2INLVqkVM+ezhjlY2pr\na1XnFSvUim+/jVg2jr4dNV75XCaiZzZfAj8hMLi0B94xXrdDz1LWAyuBt9HblgXB71Sjk4u9hw52\nORv4AhhlHAA3oJeJ1wOTgZj3xaaxX7oejmleMuSG+UXzki4rtcYgLAjO48fwL6Wl0LMnlJen3xbk\nUKzds5br51zPjjE7OCkrjmfiQ4cgLw9KStJuC3Io/n38OOevXk15nz6c3KiRbTkJ/yIIQj3SVdti\nR8KalzTVttjhB82LDC6CkGKks7bFjoQ1LxmyJGbF66UxGVwEIcVId22LHXFrXtJc22KH15oXGVwE\nIcVId22LHXFrXtJc22KH15oXGVwEIYUwtS3Dh3ttiTfEvDRmaltGjHDNJj9jLo15seFJBhdBSCHS\nLW9LrMSc5yXN8rbEipd5XmRwEYQUIgP90vWIWfOS4TfMS81Luqzais5FcA2/6FwyTdtiR9SalwzT\nttgRTvMiOhdBEDJO22JH1JqXDNO22OGV5kUGF0FIATJR22JH1JqXDF8Ss+LF0pgMLoKQAmSqtsWO\niJqXDNW22OGF5kUGF0FIATJV22JHRM1Lhmpb7PBC8yKDiyD4nEzXtthhuzSW4doWO5KteZHBRRB8\nTqZrW+yw1bxkuLbFjmRrXmRwEQSfI37p0NhqXuSGhSTZmpd0WcEVnYvgGl7qXEpKlGhbwtBA8yLa\nlrAEa15E5yIIGYpoW8LTQPMi2pawJFPz4tXgciPwOVADhNtcORDYAmwDHkyCXY5SXFzstQkhEbuS\nQjR9d4rx+Qbg/FAFnNK2OHlv/dSWVfNSXFzs2JKYn/5Gp9tK1tKYV4PLZ8DPgHAS20bAc+gvaXfg\nFqCb+6Y5h19/LMUu14mm714NdAYKgF8CL4RqyClti99+4Jxsy9S8vD/7H45pW/z2NzrZVrI0L14N\nLluALyOUuRjYDuwEqoBZwLXumiUIjhBN3x0CzDBerwRaAdnBDYm2JTKm5uXgisWibYmCZGle/Oxz\nyQHKLO93GecEwe9E03dDlckNbki0LdEx8se30/yLEtG2RInXKZAT5QP08lfwcY2lzGLsfS7XA9Ms\n728DnrUpux1Qcsjh0rGd2Iim774FXGp5/yENvwvSr+Vw+4i1b0eNm/PHfgnWLwc6WN53QD/dhaJz\ngtcSBCeJpu8Gl8k1zlmRfi0IcbIYuNDms8bADiAPaAqsJ8Uc+kLGEk3fvRpYaLzuDaxIlnGCkM78\nDL3efAzYC7xrnG8PvGMpNwjYip66jUumgYKQIKH67ijjMHnO+HwD4bfkC4IgCIIgCKmEI6I0l4hk\nWxHwLbDOOB5Ngk1/BSrQmyjs8OJ+RbKriOTfK9D+j8Voce8mYIxNuVjuWSJ9NlTdgegt/N8DXwPv\no7cwm4wDDgGV6GW5cO2Z73cY574Mai8PqAaOo1cY5kTR1h70SkQocfQnhl3HgXsSaCseuw4C+9D3\n+J/A6QnYZddWPHbtB3ajl00/or4PLla77NqKxa5gfgPUAtZwB+OM8luAtEiW0wi9fJAHNCHyGnYv\nkreGHY1tRcCCJNljcjn6x8XuR9yr+xXJriKSf68A2gHnGa+bo5e0EuljifTZUHV/ZJybCjxknPsj\nMNGo0x09ULxr1CuL0N5Xxvs/on+UuqF/YMz2RgKHo7TNbOsc4Au0bsc6IIwy2moCXIf+oTspzrbi\nsWsggfs/0fI3xmOXXVvx2HWGpa37gZcSsMuurVjssvbPDsAioJTA4NLdKNfEqLedMHIWP+tcrDgm\nSvPINkh+4MOl6KcsO7y6X5HsAm+CRO5Ff3EAjqJ/2NoHlYnlnsXbZ9vZ1L3POFcEvGKcO47+8cFo\n+2tgulHvc6OtUO0tM+ruBAajZ5PXGraY7fVDz4Ii2WZta5PRRpugv/MO9NbrKmA++kl6YJxtxWPX\nIgL3fyUBPVE8dtm1FY9dBy1tNQe+ScAuu7aitSu4f/4J+C/qcy3wmlF+p1H/YmxIlcHFMVGaC0Rj\nmwIuQU+lF6KfALzGq/sVCT/cqzz07Gpl0PlY7lm8fTYHPagFn88zzmWjlxV3oZdkzMGtPXpnWpml\nzmGb9qqMA6P+FqNchaW9bPQP+zqgGDgSRVvmdYPDbLZFL6WYfIueicXTViJ25aB/uM3ZYiJ2BbcV\nr119gEfQM4wJCdpltjWCwIwqWrus/fNa4/1G6tOe+lvqwwrbUyVOgoqyXPATb7T1EiGaa6xFTzO/\nR+8img90cdOoKPHifkXC63vVHJgH/Bo9gwkm2nsWb5+1KxPtdbLCfBYJU1gH+ol4KPpJ/QL0U/Kp\nMbZnZ1c8tpkkYtdF6CXAfzhgV3Bb8do1F/g3WuM0GfhFAnZZ2/qz0Vasdp0CPEx9nWK4PmprV6rM\nXJwSpblBNLYdQf9Ygl4Tb0J9J5kXeHW/IuHlvWoCvA78DT2oBRPLPYu3z+6yOV9qnKtAL2t0QD/R\n7rO0VWmpl4ue2YRqr4lxYLTXzSh3pqW9XQSc+2vRjvVmEdoy/87giIgV6ACdJqejl+3iaSteu641\n/j5rQJ147QrVViL3axd6kOqZoF2h2orWLrNuPnqWvAHd53KBNegZkF9/MxLCz6K0aGzLJjD6X4xe\nr0wGeUTn0E+2iC8Pe7u8uldZwEz0E58dsdyzRPpsqLrnGOemop8s1wNPE9qhfzb6hyJce/+moUP/\nIUt7wyy2DUX/yLeK0Jb5fiX1xdGmg7opWuN2HH2/42krHrsGo3dK9aE+8dhl11Y8dpkOctMJ/2oC\ndtm1FYtdoUTqoRz6TdF9bAdpknDSz6K0SLbdh3ZQrkdPS3snwabX0D8alei11Tvwx/2KZJcX9wrg\nMvS2y/UEtkEPIrF7lkifDVV3EHot3roV+T8t7T1MYCtySYT2zPclxrkvgc1Ge6B/iPajf4y+p/7W\nbLu29hjXP4aeVW2y1FlOYGvtfQm0dX0cdlWiHd7r0D/GxQnYZddWPHYdJbCRZC3w2wTssmsrlv/H\nUJRQf+XgYaP8FmCATR1BEARBEARBEARBEARBEJKPG+E2hMzC6fAqoNeXP6BhOBSwD31xIXqDwjbg\nGcv5K9Dr31XoNXkrI4xrfAn83P5PFAQhVpwOtyFkFk6HVzHrPkVAmWwNhxIq9IW5U2YVAaXyQvTA\nBXAW8GO00tw6uLRG77RpZRzma0FIG7zUuTgdbkPILJwOr3JtiDrWcCihQl/0QusdWqAHGNDbmc06\nX6FnNLVBdg1Az4oOGccHBAYkQUgL/CKizCPxcBtCZuF0eBWzrhleBeqHQ7ELfRF8vjyEHcHEFEZD\nEFIRP4R/STjcRn5+vtqxY4cLpgkpwF1B70cHvR8c9H51FHWD+9h2Agntkob0ayEJ7MCldNpez1wc\nCbexY8cOlFKOHI8//nhC9WtqFP36KR5+OPG2nLTLt23V1qJuvRV1550xtbV8+XIGDBhQ9/7JJ59k\n4sSJ9ewaNWoUr732Wt25wsJC9u7dG7ZuYWEhe/bsQSnF7t27KSwsBB0SI1yoltyg86FCYlgHrGhC\nw/iqX5vHlCmKZpe3Zv2e9b6yy7dtzZlDx5/9jPf27/eXXcZh9G1X8HJwyQJeRquCJ9uUWUBgJ01v\n9Pp0hU1ZXzBhAhw/Dr/7ndeWpAgvvwwbN8KUKTFVu+iii9i2bRs7d+6ksrKS2bNnM2TIkHplhgwZ\nwsyZMwFYsWIFrVq1Ijs7O2zdIUOGMGOGdrnMmDGD664z3ScsQIfSMENfFKD9LHvRoTp6ofv07TR8\nUMqi/gz8PfRus1boPBz9jHO+p7gYzjwlj+KdxV6bkhoUF5OXlUXxoUORy6YZXi6LXQrchg7rvM44\n9zDQ0Xj9InrnzdXoZYnvCEQM9SVLlsBzz8Hq1dDYDwuOfmfjRhg3DpYuhVNjC7jbuHFjnnvuOQYM\nGEBNTQ133nkn3bp148UXX6wrc/XVV7Nw4UI6d+7MaaedxiuvvBK2LsBDDz3ETTfdxMsvv0xeXh5z\n5sxh0qRJoB+C5hj/VgP3EpiN3IvOo3IKus8uMs73RGcrPAO9PDcevXvsIPB74FOj3O8I5NzwLbW1\nuo9ffE0exV8V8+vev/baJP9TXEzeJZdk5OCSLiinWLx4cVz1KiqUyslRatGixNsKRdq1dfiwUoWF\nSr36auJthcDJtvAuFYFjf4MT92PjRqUKCpSa+85c1XpSa1VTW+MLu3zbVkWFUq1aqXfff1+dtmSJ\nOlJV5Q+7LLjZt9MioiX6S+jZxWtrYeBA6NkTnnjCMzNSB6XgttvglFPgpZcil/eYrKws8Oa74mm/\nDubZZ+Gzz+Avf4HC5wqZc8McerTr4bVZ/mXuXHj1VViwgCvWrePRs86if2uvM23Ux82+7bVDPy0Q\nP0uMxOlnEbyluBiKivTrorOKxO8SCcsNK2rVKuOWxmRwSRDTz/Laa+JniQrTzzJ3bsx+FsE7TH/L\nlVfq90WmyK9eAAAgAElEQVR5RRR/VeypTb5HBhchXvbtg+HDYfp0yBEJXGSOHIGbboI//xm6dvXa\nGiEGPv8cWrcO9PMr867k468+plYFBx8QAP3jsHs39NDLhr1btmTj0aMcra722LDk4fXg8lf01mK7\nrIRF6ERBZvKmR5NjVmRqa7XbYORIGCApcyKjFPzqV3DZZfrGCSmFdUkMoH2L9rQ5tQ2fVdh9dTOc\nJUvg8suhUSMATm3UiAtatGDZ4cMeG5Y8vB5cXiFyTKUl6NAw5wN/cN2iKJkwAU6cgPHjvbYkRRA/\nS0oTPLiA+F3CEuKGZdrSmNeDy1L0nv9w+G5Hm/hZYkT8LClNsL/FRPwuYZDBxfPBJRIKuASdi2Mh\nOuy5p5h+lhkzoH1wDGehIeJnSXmC/S0m4nexIcjfYpJpfhe/P3evRcdd+h4YhA6r0SVUwfGW9ami\noiKKgufwDmD1s/TvH7G4kKJ+luLiYoqLi702wzeEWhKD+n4X0btYCPK3mFj9Ln7Tu7iBH5ac8oC3\n0GExIlGKzvp3IOh8UsRmTzwB778PH30ky2FR8dJL8MwzsHJlSi+HZbqI8vrr9XHrrQ0/G/XWKLr/\nsLuEgrFy332Qnw8PPNDgo/9XWkq1UjzZqZMHhjUkk0WU2QT+8IuN18EDS1IQP0uMiJ8lLbDzt5iI\n3yUEdlM9Msvv4vXg8hqwDChEJ2+6AxhlHAA3oLcpr0dHTh7mgY3iZ4mVJPlZFi1aRNeuXSkoKDCD\nSzZgzJgxFBQU0KNHD9atWxex7oEDB+jXrx9dunShf//+HKr/QzAO2AZsQUc1NrkQ3U+3Ac9YzjcD\nZhvnV6DTHoN+SJoCfI4OhGmt4yvs/C0m4ncJwsbfYpJpfpd0wNFgblZqapTq10+pRx5x7RLpRW2t\nUrfeqtSdd7p6merqapWfn69KS0tVZWWl6tGjh9q8eXO9Mu+8844aNGiQUkqpFStWqF69ekWsO3bs\nWDVp0iSllFITJ05UDz74oBncrzv6IacJeil3O4FZ9Sr0zBr0xhNze/29wPPG65vR6ZRB67f+ZdQ/\nCf2AFWpu4Oo9jIYpU5S6++7wZbo820Wt37M+OQb5nTlzlLrmmrBFLl+7Vr23f3+SDAoPLgau9Hrm\n4ntEzxIjSdKzrFq1is6dO5OXl0eTJk0YNmwYb775Zr0yCxYsYMSIEQD06tWLQ4cOsXfv3rB1rXVG\njBjB/Pl1qVmuRc+0q4Cd6MGlF3Am0AI9wADMBMwkMEOAGcbr14G+xut96LwwzdBh+pug88L4jjAr\nPHWI3sVCFDcsU5bGZHAJg/hZYiSJfpby8nI6dAgkc8zNzaW8vDyqMrt377atW1FRQXZ2NgDZ2dlU\nVNTlprPLex98vtw4j/FvmfG6Gh1tojV6Kex9YI9RfhGwNZa/PxlE8reYiN/FggwudcjgYoP4WWIk\nyXoWY5dLRFQUu62UUiHby8rKivo6MXIFcBV68MlBz2guc+NCiRDJ32IifheDCP4Wk0zxu3j9PP5X\n4KfoZQK7rchT0BqX74GRBLJWuoboWWLEAz1LTk4OZWVlde/LysrIzc0NW2bXrl3k5uZSVVXV4HyO\n8QuanZ3N3r17adeuHXv27KFt27YcPHgQGua9z0XPWMqN18HnzTodgd3o79rp6N2OfYB30X0a43Uf\ntB+mHsnQb9kRzZIYiN6lDht9SzBe6l0yScN1OTpmmF30u6vRDlLQ69srbMo56uT6wx+UuuIKpRxI\nHJcZTJum1DnnKPXdd0m7ZFVVlerUqZMqLS1VJ06ciOjQX758eZ1DP1zdsWPHqokTJyqllJowYUIo\nh35T4GxgBwGH/kqjf2bR0KH/gvF6GAGH/hDgA6AR2t/yIfohy9V+HStDhyr1979HV/aXC36pJi+f\n7K5Bfufee5V6+umoij5WUqLG7djhskGRwbssq0khD/vBZSp6l43JFrT2JRjHbnZxsVLt2ilVXu5Y\nk+nNhg1KtWmj1BdfJP3SCxcuVF26dFH5+fnqySefVEopNXXqVDV16tS6Mvfdd5/Kz89X5557rlqz\nZk3YukoptX//ftW3b19VUFCg+vXrpw4ePGj9Aj6MduRvAayxsM2tyNvRM22TZsAcAluR8yyf/RnY\nhN6O/Eeb/p+8mxlETY1SP/iBUrt2RVf+Hxv/oa6bdZ27Rvmd7t2VsvSxcHx04IDqE2VZNyGDB5e3\n0LHFTD5Ef5GDceRGV1QolZOj1HvvOdJc+nP4sFKFhUq9+qrXlrgK3n0BPfubN25UqqAg+vLlh8tV\n60mtVU1tjXtG+ZmKCqVatVKqujqq4t9VV6vTlixRRzxeHnGzb6eCQz/Yo+rKzaithdtvFz9L1CgF\n99yTcnHDhOiI1t9ikvH5XaL0t5hkQn4Xrx36kQjlRC0PVTBRx+eECXD8uOhZoubll2HDBh03LM3I\nJKenHcXFOp5YLJh6l4x06sc6GhPYkpwJQSy9Io/oHPq9ccmhL36WGPHQz+IFZNiyWKz+FpOM9rvE\n4G8x8YPfxc2+7fWyWKTYYguBErSj9EX07htHET1LjEh+lrQnWn1LMBmrd4lS3xJMuutdvF4WuyWK\nMqPdurjoWWIkRfOzCLERxwoPkMF6lxj9LSbpnt/F65mLp0jcsBhJUtwwwVviHVwgQ+OMJXDD0jkU\nTMYOLhI3LEYkP0tGEG08MTsyMs6YDC4hycjBRfwsMSJ+lowhXn+LScb5XeL0t5iks98l4wYX8bPE\niPhZMopElsQgA/UucfpbTNJZ7+L14DIQHUpjG/BgiM+L0GHK1xnHo4leUPwsMSJ+lowi0cEFMszv\n4sANS9elMS8Hl0bAc+gBpjt651i3EOWWoINbng/8IZELip8lRsTPklEk6m8xySi/iwwutoQbXM6j\nYegVJ7kYrV/Zic7uNwud7S8YR2wQP0uMiJ8l40jU32KSMX6XBP0tJunqdwk3uLyMzj3xIfA7oD86\nnatTWLP0QSCznxWFDly5AS2o7B7PhcTPEiMp4mdZtGgRXbt2paCggEmTJoUsM2bMGAoKCujRowfr\n1q2LWPfAgQP069ePLl260L9/fw7Vf6Ich17C3YL+PpiYUZG3Ac9YzjcDZhOIinyW5bOO6GyUm9GR\nka2feYITS2KQQX6XBP0tJunqdwm3OHQhcBp6hnEJMAb4Gzo16zLgngSvHU3YgbXo2GLfoxOGzQe6\nhCoYLraY+FlixPSz+DhuWE1NDaNHj+bDDz8kJyeHnj17MmTIELp1C6ysLly4kO3bt7Nt2zZWrlzJ\nPffcw4oVK8LWnThxIp06deLSSy/lX//6F4MHDzab645O/9Ad/RD0IVCA7scvAHcCqwjkc1lknNtv\nlLsZmITO6wIwE/g98BFwKj4IfR5PPDE7MiLOmFOjMZkdZ6w5OhXr4+gkSaUOtNkb/QU0GUdop76V\nUnQO8mBsY+dI3LAYSZG4YcuWLVMDBgyoez9hwgQ1YcKEemVGjRqlZs2aVfe+sLBQ7dmzJ2zdwsJC\ntXfvXqWUUnv27FGFhYVm/KXg/rnI6MNnAl9Yzg9D5yEyy/QyXjcGvjZedweWRujrYfu108QbT8yO\njIgzFkc8MTu8ijOGiw814WYuw9EzlvOAE8Cn6Kn9pcBeB669Gv1El4dOA3szDcPBZKNTICv0DCoL\nvVQXFeJniZEk+lnuv/9+28+aNWtG586dGT58OC1ahF6JLS8vp0OHQMDs3NxcVgbNtEKVKS8vZ/fu\n3bZ1KyoqyM7W+eiys7OpqKgwi7WnfuBUcxm3ikBaY9BRu83lXevSbzV65+MP0LPvQ8Dr6KyWHwIP\nAZ45KZzyt5hcmXclo98dTa2q5aQsrzeluoBD/hYTq9+leZrsNgr3V7wIbEU/hX1svHaSanTcsPfQ\nO8deRj8BmkErXwRuQC+/VaOXxoY1bCY04meJkST7WS688EKyskLv1aiurmbTpk0MHTqUDz74IGQZ\nu7rB6IezyGVCtZeVlRX1dWJAob93l6Mf3MrQfpmRwF+DCyeaSiJaHFzhATIgzphD/haTZMUZS2Y6\niXCDSyugB9AHvRzWlYC/ZTnwfw5c/13jsPKi5fX/GkfMiJ8lRpLsZxk5cmTEMoMGDbL9LCcnh7Ky\nwH6QsrIycnNzw5bZtWsXubm5VFVVNTifYzyyZ2dns3fvXtq1a8eePXto27YtBw8ehNC5hXYZ53ND\nnDfrdETPzBsDp6Nn3ruA9eidkqB9ib2JMLi4iZP+FpO09rs4PRqTHL9L8APK7373O9euFQvZwP1o\nn0uNx7YEU28d0fSzOLV+nPakiJ/FSlVVlerUqZMqLS1VJ06cUD169FCbN2+uV+add95RgwYNUkop\ntXz5ctWrV6+IdceOHasmTpyolNK+mAcffNBcl+6OHhCaopeydhDYJr8S7VvJIuDQB50i4gXj9TD0\ndnvQM/X1QBvj/SuE3iCTlHvptL/FJK39Lg76W0y88Lvg0UaSHugO/yr6i2RO338N9PTCoDDU3ayK\nCqVycpRatCip/0epy+HDShUWKvXqq15bEjMLFy5UXbp0Ufn5+erJJ59USik1depUNXXq1Loy9913\nn8rPz1fnnnuuWmP54oaqq5RS+/fvV3379lUFBQWqX79+6uDBg9Yv4MNobdYWYICl/5lbkbcD1lAG\nzYA5BLYi51k++w/0FvuN6BlLqFWEpNzHjRuVKihwvt3yw+Wq9aTWqqa2xvnGvaSiQqlWrZSqrna0\n2e+qq9VpS5aoI1VVjrYbDlwcXMItKK8D/oVeBlsGfOWWEQ6glFLU1sLAgdCzJzzxhNcmpQBKaf/K\nKafASy95bY1vMfwubgqK7TC+/+7y7LPw2Wfwl78433bhc4XMuWFOei2NzZ0Lr74KCxY43vQV69bx\n6FlnJW1Lspt9O5zP5Xw3LugmEybA8ePgk2VE/+MDPcu+ffuYNm0aO3fupNpQKGdlZfHXvzZwPwgu\n4Ya/xSQt/S4u+FtM0knv4vUewUiBK0EvM2xDLyHYDngSNyxGfBI37Nprr+Xw4cP069ePn/70p3WH\nkByciidmR1rGGUvC4CIkRiP0GnUe0ATt4AwOXHk12kEK2mG6gtCInyUWfORn6dGjh9cmRATv1POu\n/21u+VtM0s7v4pK/xSTZfhc3+7aXM5doAlcOAWYYr1eit0dnh2psxAgYMCDUJ0I9fBY3bPDgwbzz\nzjtem5GxuPgQDqRhnDGH9S3BpFOcsWgGl0JgGvABsNg4nNC4RBO4MlSZXEIgfpboWP/E/VSuX+Ob\n/CyTJ0/mmmuu4eSTT6ZFixa0aNGCli1bem1WHR9pjUva4vbgAmmW3yUJNyxdlsai8U7MRe/Vf4mA\nvsWJqVS0bQTvZAhZ7w9/GF/32k0lcyqzsWIj81ZN546X5tDJJ/lZjh496rUJDTBVzIeqqpi2Z4/X\n5riG6W9x+zmjKK+IOZvn8Ovev3b3QsmguBjuvNPVSxS1asWjpU6Eb/SWaLagrUHv43ea3sB4AoKz\ncejYStbY6VOBYgLisy3AlUAF9TGWDwU7jpw4Qs9pPXn0ike57Vzvl8O++OILunXrxtq1a0N+fsEF\nFyTZovpU1tZyxbp13Ni2Lb/t2BHScCvyZ5/pXWJffunaJQDYfWQ3P37hx3w99uvUjjO2bx8UFsI3\n37i2LAbwfU0NbT/5hL2XXOJ6nDGvtiKbvAXcB/wTHcDSJOoAkjZEE7hyATr+2Cz0YHSIhgOLEAGl\nFL9651dc1vEyXwwsAH/605+YNm0aDzzwQMj4XYsXL/bAqgDjSkpo27QpD+Tm8ltPLXGPZCyJQRrF\nGXPZ32KSrDhjbhPN4DISvRQV/B07O8FrRxO4ciF6x9h24DvgFwleMyN5ed3LbKzYyMq7/JOfZdq0\naQBJC6IXC29+8w2vf/01ay+6yI3Alb7BTX1LMGmhd0nWaEx66F3S5Zsjy2I2bKzYSN+ZfVn6i6V0\nbSPpiiOx89gxeq1dy/xzzqHP6acD6anQr62Ftm1hwwbnwuyH47XPXmPO5jm8cfMb7l/MLX70I63M\nT8KS7f8dPMijpaUsc/laXi2L9UVnybue0E70f7phkOAcR04c4aa5N/HnAX+WgSUKKmtrGbZ5M//V\nsWPdwJKuOJ2/JRIpn9/F4fwtkUiH/C7h/pevMP69xuYQfIwf/SxOs2jRIrp27UpBQQGTJk0KWWbM\nmDEUFBTQo0cP1q1bF7buuJISWh07xqI77qBLly7079+fQ/W3hI5DR4vYAlizBJmBK7cBz1jON0MH\nezUDV54VZF5L9Pb6Z2P92xMliSs8QBroXZLkbzFJJ71LqpMUNWsqMW3NNHXO8+eo7yq/89qUsAwf\nPlz95S9/UV/EGO6/urpa5efnq9LSUlVZWRkx5P6KFSvqQu6HqvvsJ5+os5YtU/c/8ICaNGmSUkqp\niRMnhgq53wS9CWU7geWEVWhRMDQMuf+88fpmArseTZ4B/o794OLAHQ7N0KFK/f3vrjUfkl8u+KWa\nvHxyci/qFPfeq9TTTyf1ko+VlKhxO3a4eg3SUKHfGi3K/BJ4H628D8VOdEjydegvsBAFGys2Mu6j\nccy9cS6nNvGHnsWOO+64g927d3P//fdz9tlnc/311zN58uSI9VatWkXnzp3Jy8ujSZMmDBs2jDff\nfLNemQULFjBixAgAevXqxaFDh9i7d2+DugOuv56HZs7kte7def+dd+rqjBgxgvnz55vNXQu8ho4m\nsRM9uPQCzgRaEOifM4HrjNfWCBOvo5eaTS4E2qL7f1JxO56YHSkdZyzZUz1SX0zp1eDyEHpw6YL2\n6zxkU04BReiAlRfblBEspJqf5Sc/+QmPPPIIv//977n77rv59NNPeeGFFyLWKy8vp0OHQGLI3Nxc\nysvLoyqze/fuuvOVtbW8Dpx34gR9Tj+diooKsrN1hKHs7GwqKup2vrcnkGESAhElgs+XE4g0YY0w\nUQ18i36wOgn4I/CbiH+oCyTb32JyZd6VfPzVx9Sq2uReOFGS7G8xsfpdUhGvPEVD0GJI0E92xdgP\nMOmyo811VAr6Wfr27ct3331Hnz59uOyyy1i9ejVt27aNWC/aLcIqwm6rcSUltGjUiPObNw95DRe2\nImehl8sWovVdYS9gTXPsVOQJDx7CgRTWuyTZ32Liht7FjD6RDKIZXE5BfxkuQ88klqLDwRxP4LrZ\nBMSQFdgEozSu9yE67MyL6Bhngg1+1LNE4txzz2X16tVs2rSJli1bcsYZZ9CnTx9OOeWUsPVycnIo\nKwuEnSsrKyM3NzdsmV27dpGbm0tVVRVlZWV1epbba2tpbtTNzs5m7969tGvXjj179tC2bVsO6vhi\n5UAHS/O56BlLOfXj3ZnnzTod0YNIY+B0YD9aEHw5+nvVHJ06+Qg602U9rIOLUyRT3xJMSupdvBqN\ncV7vEvyA8juPgzLORQscrwJ+go4xNjeKeh+gd9AEH0OA4GiAdmr/M41/f4h2pl5uU85Vp1cqsGHv\nBtXmqTbqi69jc4z7hcOHD6spU6aojh07qqZNm0YsX1VVpTp16qRKS0vViRMnIjr0ly9fXufQr6qq\nUh3PPlv9YO5ctWTfvnp1x44dqyZOnKiUUmrChAmhHPpN0QLiHQRmHSvR/pcsGjr0zTW+YTR06AOM\nIIkO/ZoapX7wA6V27XK86aj4x8Z/qOtmXefNxeOle3elkpzb3uSjAwdUHxevjYsO/WhmLj9Cf7FM\n/g/YHEW9fmE+qwDaAXvRA8g+m3Jm1MCvgTfQfpeloQq6sXyQKqSan8XKs88+y9KlS1mzZg1nn302\nd9xxB5dfbvcMEaBx48Y899xzDBgwgJqaGu688066devGiy++CMCoUaO4+uqrWbhwIZ07d+a0007j\nlVdeAaD2pJM45T//k2MPPsgdWVl1dQEeeugh+vXrx1NPPUWrVq248cYbzUtuBuYY/1ajBw7zi3kv\nMB09y18ILDLOvwy8it6KvB89wIQiaQpgr/wtJimnd/HI32KSDnqXcPwN6GN53xv9hUmEpwhknnwI\nmBiizKnoXTgApwGfUF9bYMW1kd3v1NbWqltfv1Xd+eadXpsSF0899ZRasWKFqqysTNo1H9i2TV2z\ncaOqra2NqjxplCxsyhSl7r7b8WZjosuzXdT6Peu9NSJa5sxR6pprPDXh8rVr1Xv797vStpt9O5qh\n8CL0D3uZYUhHYCt6iUsB58Zx3Ynop8A70ds6bzLOt0f7VX6KntmYUQAao/UASd+26XdS0c9iZezY\nsUm9XqbEDbPDS3+LSUr5XTz0t5ikapyxaL5deRE+35m4GQljDMKZhcQNi41QccOiIV1iiyU7npgd\nKRVnLInxxOxwM86Y1yH3d7pxYSExUtnP4gWZFDfMDq/9LSYp43fx2N9ikqp+Fx//zwp2qBTUs3iN\nNT9LpuKDFR4gheKMeaRvCSZV44zJ4JKCmH6WKYNczk+bJiww/CzTu3bNSD+LiV8GFwj4XXyNj25Y\nKoaCkcElxUiluGF+4Kvjx7l761Ze696d1k2aeG2OZ3gVT8yOlIgzJoNLQng1uNwIfI5W3ofzUg1E\nhzffRmDrcsYifpbYqKyt5ebPP89oP4uJX/wtJr6PM+YTf4tJKsYZ82pw+Qz4GfBxmDKNgOfQA0x3\n4Bagm/um+RPxs8TOw+JnqcNHD+FACvhdfOJvMUlFv4tXg8sWdLj9cFyMDmu+Ex3mfBY67HlGIn6W\n2FjwzTfMEz9LHX4bXMDnfhcf3rBUWxrzs8/FGq4cAiHOMw7xs8SG+Fnq4zd/i4mv/S4yuCSMm5um\nP0Cr7IN5GHgrivoxqcfSNbaY6Wf5U/8/iZ8lCkw9y9gOHeL2syQzLHkyeP11OPNM//hbTK46+ypG\nvzuaHQd2kN8632tzAnz8MRw44Bt/i0mfli3Z+v33rD1yhAtatIhcIcNZjL1DvzeBAICg85fbOfVd\nibvjNakeNywZvPvuu6qwsFB17txZTZw4Uf0mRNyw+++/X3Xu3Fmde+65au3atbZ1Tfbv36/+4z/+\nQxUUFKh+/foFx18ah95gsoX6se4uRPsSt6HTF5s0A2Yb51cAZxnnzwOWAZuADQRCIDnar3fsUOqH\nP1Rq5cqEm3KFKSumqAtevEAdrzrutSmaigqlcnKUevddry0JyayKCpW/fLk6VFXlSHt4FzfPdRaj\nv5ShaIwOa56HDnO+HnuHviM32m9MWzNNnfP8Oeq7yu+8NsWXVFdXq/z8fFVaWqoqKyvV2T/6kWr/\nj3+o/ZYgmNaw+ytWrKgLux9cNzjs/qRJk5RSSk2cONH6BTTD7jcx+uV2AqEzVhHIlhocdv954/XN\nBMLuFwDm4/qZ6JwvLZ3s18ePK3XhhUpN9nHa+traWjV09lA1+p3RXpui8xH076/UuHFeWxKWe7Zu\nVTdu2hR14NVwkIaDy8/Q/pRj6LD77xrn2wPvWMoNQgfJ3I5+YrTDgf8yf5Hq+VmSwbJly9SAAQOU\nUkrtPHZMnTZqlPrV44/XKzNq1Cg1a9asuveFhYVqz5499eoqpXO3TJgwoa7M3r17lVJK7dmzx/oF\nDJ49L0LPsM8EvrCcHwZMtZTpZbxujE4fEYr1BAYbR/r1/fcrdd11SjnwG+QqB48dVJ2e6aTmfj7X\nW0OeeEKpyy5TyqFZgVscq65W5336qfpfB5Ly4HFUZDd4wziC2Y2OiGzyLoGBJ2MQPUt0lJeX06FD\nhzo9y5Bu3Wi8fXvIMia5ubmUl5eze/fuBudXrtSRpSsqKsjO1slRzX8N2qOXtkzMTSZVBLJPgs5A\naXo4rBtTqoFvgdbUT5B3MXo2tCPqPz4Cr78Ob70Fa9eC3zfLtTq5FbNvmM3Vf7+a89ud743/5eOP\nYcoUWL0afB6/6+RGjZjTvTuXrFtH75Ytfet/8fNusYxEiZ4laswtxqaeZZBNSHIVRWRhpVTILctJ\n2MZ8JjAT+IVTDZaUwD33wOzZcMYZTrXqLhe1v4jHrniMm+bdxInqE8m9+L59cOutMH06pIgmquDU\nU3muoICbPv+cb30qrPT3EJ2BpHp+lmSSk5PDmh07OGDkZ3nx7bfJDfpxyMnJoawssKN9165d5Obm\nUlVV1eB8jrGdKjs7m71799KuXTv27Nljba4c6GB5n4uesZQbr4PPm3U6omfljYHTCcxaWgJvo3dQ\nrgr1N8a6C/LECbjpJnjkEbj44rBFfcfoi0dT/FUxv33/tzx7tV3mZ4eprYXbb4ef/xwGDoxc3kfc\n3LYtSw4d4u6tW5ndvXtUD0LpthMyGSS89ugHxM8SG9uPHFEntW+vXt+wQZ04caKeU97E6tBfvnx5\nnUO/qqpKderUSZWWljaoO3bs2LrdYxMmTAjl0G8KnI1exjK/0SvRvpUsGjr0XzBeDyPg0G8KfAT8\n2sl+nSp+FjuS7n9JET+LHYn6X0hDh77TOPxflnwOHz+sCp8tVK9ueNVrU1KCEzU1qtfq1erOGTNU\nly5dVH5+vnryySeVUkpNnTpVTZ06ta7sfffdp/Lz89W5556r1qxZU3d+4cKFDeoqpbci9+3b124r\n8sPoDSZbgAGW8+ZW5O2ANYxCM3TWVXMrcp5x/jagElhnOYKzusZ0T+bNUyovT6kDBxK8uR7zafmn\n6odP/VBt37/d3QstWaJUdrZSZWXuXsdlvvzuO9XmX/9Saw4fjrkuLg4uXrn6bgTGA12BnsBam3I7\ngcPoAJdVBLZ6BmPcp9REKcVtb9zGKY1P4aUhL3ltTkrwm+3b2XbsGG+ec47rfpFUyERZUgK9e8Pb\nb6feclgonl35LNM3TGfZHcto1riZ8xfYt09nl3zppZRbDgvF7H37eKSkhDUXXcTpMWxIcLNv+zlw\nJehRtQg4H/uBJeWRuGGx8abkZ6lHKvtZ7Bh98WjyWuXx2/d/63zjKexnsePmtm3p37o1d2/dGtUG\nlmTg58CVJmn96yFxw2Jj57Fj/FLihtVj7Fjo0AHGjPHaEufIysri5SEvs3D7QuZtnuds4xMnwvff\nw+WeKBoAAAvXSURBVH//t7Ptesyf8vPZduwYL+ze7bUpviBc+BeAEvRa9Grg7jDlHF3DTBbiZ4kN\n08/yx3//O6nXxTunZ0Tb0sXPYofj/pc08bPYEav/xc2+7efAlQCXAnuAHxrtbQGWhiqYaoErlehZ\nYmZckvKzpMp2TVPP8vbbqaNniRWr/iVh/0sK6llixap/idX/4jReLzktBn6DvUPfyuPAUeDpEJ8Z\ng3Dq8NLal3hm5TOsvGulLIdFwZvffMOvt21j7UUXJX05zI8O/RMn4NJLtevg1+E2M6cBSilumHsD\n7Zu3j1//UlsLgwbBhRfCk086a6APuffLL/mmqiqi/iUdHfpW7P6wUwEzrsFp6Ai0Pk1bFxviZ4kN\n8bM0JB39LHY44n9JUz+LHZnsf4kmcGUntGBtPToseVoErhQ/S2x45Wexgs98LunuZ7Ejbv9LmvtZ\n7IjG/+Jm3/Z6WcwpjPvkb5ToWWImmXoWO/y0LJZuepZYiVn/kmZ6lliJpH9J92WxjEH0LLEhepb6\npKOeJVZi0r+koZ4lVrzUv8jgkiTEzxIb4mdpSCb5WeyIyf+SYX4WOzLZ/+IESVnDjBfxs8SGH/ws\nVvCBzyVT/Sx2RPS/ZKifxQ47/4ubfdurmcv/oDP3bQD+iQ5DHoqBaG3LNupnAEwZlOhZYiZaPcui\nRYvo2rUrBQUFTJo0KWSZMWPGUFBQQI8ePVi3bl3EugcOHKBfv3506dKF/v37c+jQoXqmofviFvTu\nRRMzaOU24BnL+WbAbAJBK8+yfDYCHaXiS+Dn4f7OVMzP4jZh879kgJ4lVlIh/4tT9CMwsE00jmAa\noSPM5qGz9K0Hutm059gIv3jxYkfbmrZmmjrn+XPUd5XfJdyWU/i5rflff63OWrZM7a+sDFu2urpa\n5efnq9LSUlVZWdkg3P7ixYvrhdtfsWJFXbj9cHXHjh2rJk2apJRSauLEierBBx80n+7McPtNjD65\nnYAjdBWB2HfB4fafN17fTCDcfmt0uP5WxmG+btCvjx9X6sILlZo8OfF76xR+aau2tlYNnT1UjX5n\ndKCtmhql+vdXatw4z+zyc1v3bN2qbty0SdUaORlIw5nLB0Ct8Xol9RMtmVyM/gLvREdEngVc67Zh\nTiqzZ7892zE/i5N2+bWt+R98ELWfZdWqVXTu3Jm8vDyaNGnCsGHDePPNN+vZtWDBAkaMGAFAr169\nOHToEHv37g1b11pnxIgRzJ8/32zyWuA1dF/cie6bvdCZJFsQSPY1E7jOeD0EmGG8fh3oa7weALwP\nHDKODwgMSPVwys/i1//zRNoK9r8UFxc75mfxy9/odFvJ9L/4IRPlHegvbTDW3OOgM/v1SopFDnDk\nxBHmbp7L5J9Ppmubrl6b43sqa2uZ9/XX/FfHjvQ53W6VNEB5eTkdOgSSQubm5rJy5cqIZcrLy9m9\ne7dt3YqKCrKzswGdkbKiosIs1h69tGWyC91HqwhknQSdeTLHeG3tw9XAt8APjLasdXZZ6tTjrbdg\n7VqQzXKhaXVyK2bfMJur/341t315OfzfJ7B6NXgY9sTPnNyoEXO6d+eSdevo3bKlq9dyc+byAXod\nOvi4xlLmEXTCpH+EqO9/4UoY7lt4Hx1P7yh+lih5pLSUUxs1ijpuWLRbk1UU2y+VUiHby8rK8nwL\ntPhZInNR+4t4oscDnPTP+VS//JL4WSJg9b+kKyOBT4CTbT7vDSyyvB+HvVN/O3owkkMON47twEPG\nYbIIPZNuh96cYnILgbTGi9D9GPQqwdfG62HAVEudF9E+mWCkX8vh9rGdNGMg8DnQJkyZxmhHZx46\n33g4h76QeUTTP65GO9hB/8iviKLuUwQeYh4isNnEdOg3Bc426pvTmpXogSaLhg59c6AZRn2Hfgna\niX+G5bUgCAmyDfiKQO5wc0eNNbYYwCBgK3p0DRdbTMhMQvWPUcZh8pzx+Qbq5w6y61utgQ/RW4Tf\np/6P/sNG+S1op7yJuRV5O2ANv9AMmENgK3Ke5bNfGOe3obclC4IgCIIgCKlANGLJKcbnG4Dzw9Q1\n3+8wzoV6Av0EvZHgOHBPAm3loXcBHUdHeJ4TRVt70JGga2iYhTNWu+zaiseug8A+QgtbY7XLrq14\n7NoP7EYvSX0EdLDUidUuu7ZisSuY36C31be2nDPFlmXAv8PUhej7tXnuS+B7tP8muF+PQ29trkT3\n2US+J3lI35a+bd+3g4XEviQasaR17bwXgbXzUHW/Mt7/EX2zu6FvnLl2Pgo4bJS/Dn3TT4qzrZFG\nW7HYdQ7aAbyS+l+aeOyyayseuwYSuPdWYWs8dtm1FY9dZ1jauh8ww0nHY5ddW7HYZe2bHdBO+1IC\nX0DTN9MMrYfZSXQ+oUjX/ZFxbiraF7Qe3S+tPqEd6PQVeeiBLZHvSSz3RPp2ZvVtq5DYdsexHwJX\nRiOWtIrRVqKfrtqFqLsM/R+xExgM/NVoawYBYdsd6DTLVcB89Kg+MM62+qGfFGOxa5PRRvBmhnjs\nsmsrHrsWEbj3VmFrPHbZtRWPXQctbTUHvknALru2orUruG/+Cfgv6mOKLS9AP91tMV4n0q9nAfcZ\n54qAV4xzxwn0xWvRs5npRr3Pjbbi/Z5I35a+bde3rUJi2/jcflAaRSOWDFUmB70BwHq+yjgAstFf\n7F5AhfEeoC2B5GSghW0/Qu/YibWtbHTnX2e0cyQKu0z7g5NRxGOXXVuJ2NULuJSAsDURu4Lbiteu\nPsBP0E/YZmeO1y6zrXIC24SjtcvaN6813m+kPqbY0uyzWcbrRPr1LuAK45zZB832zL7YHj1DKrPU\naW/TnvTtxO3K5L5trRNS/Av+GFxUlOUSUbOZe7rt2orWhuC2jgND0U8zF6CfJBKJ85KIXVYSsesi\ndEe3ClvjtSu4rXjtmov2XZQDk9E7reK1y9rWn422YrXrFPTOsX6Wc+FsCWdXNP06K0wbweezwnwW\nCenb0rej6dtR2eWHwaWc+o6sDtQPjRGqTK5RpknQ+SbGAfoprJtR7ky0E848X2Cpczp6CeFgHG3t\nIuAAXYt2PjYLYa+1LfNvDArlGpdddm3Fa9e1xt93lQN2hWorkfu1C/2UaPooErlfwW1Fa5dZNx+9\n5rzBOJ8LrEE/+Zl1ii11y9FPlPH261z02ndn4+9uZ3z+LYG+WI52AHew1Dndpj3p24nZlel9G8tn\n5fgYp8Vw/6aho9IqhjOdZU2Bn6FH9qw42xpmsWso+ovQKkJb5vuVaH2ESTx22bUVj12D0btJ+lCf\neOyyayseu0wnoumofDUBu+zaisWuUELeUE7PU9DO1q/C1I2lX59jnJuKfrJcDzxNaIf+2egfikS+\nJ9K3pW9D6L4dSkjsW5wUw5nvS4xzXwKbgf+01FlOYJvffQm0NRS9BfAEenvomCja2oN2sB1DP3lu\nSsAuu7auj8OuSvST0Tp0hy1OwC67tuKx6yh6S+p69JOXNb9trHbZtRXL/2MoSqi/XdMUW5YZh1Mi\nz0HobaDWrcj/aWnvYQJbkUsitCd9Oz67pG+HFhILgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI\ngiAIgiAImcnp1A/BHcwnyTJEEBxG+rYgeEgeOuuhIKQbeUjfFgTPmIVW2q4DJoX4/KjxbxFaPTwX\nnRfjbzbtFaPDa39qlOsJvIFWbP/eKHMaOv30evSX/6aE/gJBCI30bUHwkLMI/3R3xPi3CB0+oz06\n/s8ydIjwYBYDE4zXY9BxprIJhG9vjQ5t8RdLnZbxmS4IYZG+nUb4IVmYEBuxBIpbhf5CKfSTWZ5N\nuQXGv5uMo4JAfKpcdF6HfuighpcRyGwnCE4ifTuNkMElvbGGK6/BPsWCWa42qE6tUWcbOh/7Z8Af\ngMecNVMQYkb6ts/xQz4XITaOAC2SeL0sdO6Kg8Df0RFq70zi9YXMQfp2GiGDS+qxH70l8zN0noYH\ngz4PlwExUja74Iyd5rkfA/+DftqrJPx2UUGIF+nbgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI\ngiAIgiAIgiAIgiAIgiAIgr/5/42yfhlSbeFgAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10f596750>"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.4 Page No : 206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 11.4\")\n",
+ "\n",
+ "# Given\n",
+ "#Veff = 110V Z = 10+i8 ohm\")\n",
+ "Veff = 110;\n",
+ "Z = 10+1j*8\n",
+ "Zmag = math.sqrt(10**2+8**2)\n",
+ "Zph = (math.tan(8./10)*180)/math.pi\n",
+ "P = (Veff**2*R)/(Zmag**2)\n",
+ "pf = math.cos((Zph*math.pi)/180)\n",
+ "\n",
+ "print \"Power factor is : %.4f\"%pf"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power factor is : 0.5151\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.5 Page No : 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 11.5\")\n",
+ "\n",
+ "# Given\n",
+ "#Veff = 110V Ieff = 20(-50 deg)\")\n",
+ "Imagn = 20;Iph = -50;\n",
+ "Veff = 110;\n",
+ "\n",
+ "P = Veff*Imagn*math.cos((abs(Iph)*math.pi)/180)\n",
+ "Q = Veff*Imagn*math.sin((abs(Iph)*math.pi)/180)\n",
+ "print \"Average power is %3.1fW\"%(P)\n",
+ "print \"Reactive power is %3.1fvar\"%(Q)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average power is 1414.1W\n",
+ "Reactive power is 1685.3var\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.10 Page No : 213"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "#Problem 11.10\")\n",
+ "\n",
+ "# Given\n",
+ "#Veff = 10V v = 10*math.sqrt(2)*math.cos(w*t)\");\n",
+ "Veff = 10;vmag = 10*1.414\n",
+ "\n",
+ "#a)\")\n",
+ "Z1 = 1+1j\n",
+ "R,Theta = polar([[Z1]])\n",
+ "R = R[0][0].real\n",
+ "Theta = Theta[0][0].real\n",
+ "print \"i1 = %d*math.cosw*t-%d)\"%(vmag/R,Theta)\n",
+ "I1eff = (vmag/R)/1.414\n",
+ "#p1(t) = 100*math.sqrt(2)*math.cos(wt)*math.cos(wt-45)\n",
+ "#On solving\n",
+ "#p1(t) = 50+50*math.sqrt(2)*math.cos(2*w*t-45) W\")\n",
+ "P1 = Veff*I1eff*math.cos(Theta)\n",
+ "Q1 = Veff*I1eff*math.sin(Theta)\n",
+ "S1 = P1+1j*Q1\n",
+ "S1mag = math.sqrt(P1**2+Q1**2)\n",
+ "pf1 = P1/S1mag\n",
+ "print \"P1 = %dWQ1 = %dvarpf1 = %0.4flag)\"%(P1,Q1,pf1)\n",
+ "\n",
+ "\n",
+ "#b)\")\n",
+ "Z2 = 1-1j\n",
+ "R,Theta = polar([[Z2]])\n",
+ "R = R[0][0].real\n",
+ "Theta = Theta[0][0].real\n",
+ "\n",
+ "print \"i2 = %d*math.cosw*t%d)\"%((vmag/R),Theta)\n",
+ "I2eff = (vmag/R)/1.414\n",
+ "#p2(t) = 100*math.sqrt(2)*math.cos(wt)*math.cos(wt+45)\n",
+ "#On solving\n",
+ "#p2(t) = 50+50*math.sqrt(2)*math.cos(2*w*t+45) W\")\n",
+ "P2 = Veff*I2eff*math.cos(Theta)\n",
+ "Q2 = Veff*I2eff*math.sin(Theta)\n",
+ "S2 = P2+1j*Q2\n",
+ "S2mag = math.sqrt(P2**2+Q2**2)\n",
+ "pf2 = P2/S2mag\n",
+ "print \"P2 = %dWQ2 = %dvarpf2 = %0.4flag)\"%(P2,Q2,pf2)\n",
+ "\n",
+ "#c)\")\n",
+ "Zmag = (Z1*Z2)/(Z1+Z2)\n",
+ "print \"i = %d*math.cosw*t)\"%(vmag/Zmag).real\n",
+ "Ieff = (vmag/Zmag)/1.414\n",
+ "#p(t) = 100*math.sqrt(2)*math.sqrt(2)*math.cos(wt)*math.cos(wt)\n",
+ "#On solving\n",
+ "#p2(t) = 200*math.cos(w*t)**2 W\")\n",
+ "P = (Veff*Ieff).real\n",
+ "Q = 0\n",
+ "S = P*Q\n",
+ "Smag = math.sqrt(P**2+Q**2)\n",
+ "pf = P/Smag\n",
+ "print \"P = %dWQ = %dvarpf = %0.4f\"%(P,Q,pf)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i1 = 19*math.cosw*t-1)\n",
+ "P1 = 22WQ1 = 139varpf1 = 0.1559lag)\n",
+ "i2 = 19*math.cosw*t1)\n",
+ "P2 = 22WQ2 = 139varpf2 = 0.1559lag)\n",
+ "i = 14*math.cosw*t)\n",
+ "P = 100WQ = 0varpf = 1.0000\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.11 Page No : 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 11.11\")\n",
+ "\n",
+ "# Given\n",
+ "#v = 42.5*math.cos(1000*t+30 deg)V Z = 3+i4 ohm\")\n",
+ "Vmag = 42.5;\n",
+ "Z = 3+1j*4;\n",
+ "R = math.sqrt(3**2+4**2)\n",
+ "Theta = math.tan(4./3)*(180/math.pi)\n",
+ "Veffm = Vmag/math.sqrt(2)\n",
+ "Veffph = 30\n",
+ "Ieffm = Veffm/R\n",
+ "Ieffph = 30-Theta\n",
+ "\n",
+ "Smag = Veffm*Ieffm\n",
+ "Sph = Veffph-Ieffph\n",
+ "x = Smag*math.cos((Sph*math.pi)/180)\n",
+ "y = Smag*math.sin((Sph*math.pi)/180)\n",
+ "z = complex(x,y)\n",
+ "pf = math.cos((Theta*math.pi)/180);\n",
+ "\n",
+ "print \"Real Power is %fW\"%(x)\n",
+ "print \"Reactive Power is %fvarinductive)\"%(y)\n",
+ "print \"Complex Power is %fVA\"%(Smag)\n",
+ "print \"Power factor is %3.1flag)\"%(pf)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Real Power is -99.086517W\n",
+ "Reactive Power is -151.020703varinductive)\n",
+ "Complex Power is 180.625000VA\n",
+ "Power factor is -0.5lag)\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.12 Page No : 220"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 11.12\")\n",
+ "\n",
+ "# Given\n",
+ "#pf1 = 1 ; pf2 = 0.5 ; pf3 = 0.5\")\n",
+ "#P1 = 10kW;P2 = 20kW;P3 = 15kW\")\n",
+ "#Power supply is 6kV\")\n",
+ "P1 = 10000;\n",
+ "P2 = 20000;\n",
+ "P3 = 15000;\n",
+ "Veff = 6000;\n",
+ "pf1 = 1 #implifies that theta1 = 0\n",
+ "t1 = 0\n",
+ "Q1 = P1*t1\n",
+ "\n",
+ "pf2 = 0.5 #implifies that theta1 = 60\n",
+ "t2 = 1.73;\n",
+ "Q2 = P2*t2\n",
+ "\n",
+ "pf3 = 1 #implifies that theta1 = 53.13\n",
+ "t3 = 1.33;\n",
+ "Q3 = P3*t3\n",
+ "\n",
+ "PT = P1+P2+P3\n",
+ "QT = Q1+Q2+Q3\n",
+ "ST = math.sqrt(PT**2+QT**2)\n",
+ "pfT = PT/ST\n",
+ "Ieff = ST/Veff\n",
+ "Ieffph = math.cos(pfT)*(180/math.pi)\n",
+ "print \"PT = %dWQT = %dvarST = %dVApf = %0.2flag)Ieff = %3.1f%3.2f deg)\"%(PT,QT,ST,pfT,Ieff,Ieffph)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "PT = 45000WQT = 54550varST = 70715VApf = 0.64lag)Ieff = 11.846.08 deg)\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.13 Page No : 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 11.13\")\n",
+ "\n",
+ "# Given\n",
+ "#Power factor is 0.95(lag)\")\n",
+ "vmag = 240;Zmag = 3.5;Zph = 25;\n",
+ "I1mag = vmag/Zmag;iph = 0-Zph;\n",
+ "#Smag = Veff*Ieff\n",
+ "Smag = (vmag/math.sqrt(2))*(I1mag/math.sqrt(2))\n",
+ "Sph = 0+abs(iph)\n",
+ "x = Smag*math.cos((Sph*math.pi)/180)\n",
+ "y = Smag*math.sin((Sph*math.pi)/180)\n",
+ "z = complex(x,y)\n",
+ "pf = 0.95\n",
+ "theta = math.cos(0.95)*(180/math.pi)\n",
+ "#From fig 11.11\n",
+ "#Solving for Qc\n",
+ "Qc = y-(math.tan((theta*math.pi)/180)*x)\n",
+ "print \" Qc = %dvarCapacitive )\"%(Qc)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Qc = -1426varCapacitive )\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.14 Page No : 223"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 11.14\")\n",
+ "\n",
+ "# Given\n",
+ "#Power = 1000kW ; pf = 0.5(lag)\")\n",
+ "#Voltage source is 5kV\")\n",
+ "#Improved power factor is 0.8\")\n",
+ "\n",
+ "#Before improvement\n",
+ "P = 1000*10**3;\n",
+ "pf = 0.5;V = 5*10**3;\n",
+ "S = (P/pf)*10**-3\n",
+ "I = S/V\n",
+ "\n",
+ "#After improvement\n",
+ "P = 1000*10**3;\n",
+ "pf = 0.8;V = 5*10**3;\n",
+ "S = (P/pf)*10**-3\n",
+ "I1 = S/V\n",
+ "\n",
+ "#Current is reduced by \")\n",
+ "red = ((I-I1)/I)*100\n",
+ "print \"Percentage reduction in current is %3.1fpercent\"%(red)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage reduction in current is 37.5percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.16 Page No : 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from numpy import real,imag\n",
+ "#Problem 11.16\")\n",
+ "\n",
+ "# Given\n",
+ "#Vg = 100V(rms)\")\n",
+ "#Zg = 1+i Z1 = 2\")\n",
+ "Vg = 100;\n",
+ "\n",
+ "#a)\")\n",
+ "Zg = 1+1j;\n",
+ "Z1 = 2\n",
+ "Z = Z1+Zg\n",
+ "Zmag = math.sqrt(Z.real**2+Z.imag**2)\n",
+ "I = Vg/Zmag\n",
+ "PZ1 = real(Z1)*(I**2)\n",
+ "Pg = real(Zg)*(I**2)\n",
+ "PT = PZ1+Pg\n",
+ "print \"PZ = %dW Pg = %dW PT = %dW\"%(PZ1,Pg,PT);\n",
+ "\n",
+ "#b)\")\n",
+ "#If Z2 = a+i*b\n",
+ "#Zg* = 1-i\n",
+ "#Given that\n",
+ "#(Z1*Z2)/(Z1+Z2) = 1-i\n",
+ "#As Z1 = 2 and solving for Z2\n",
+ "print (-1j,\"Z2 = \") \n",
+ " \n",
+ "#c)\")\n",
+ "#If Z2 is taken the value as calculated in b) then Z = 1-i\n",
+ "Zg = 1+1j;\n",
+ "Z1 = 2;\n",
+ "Z = 1-1j;\n",
+ "Zt = Z+Zg\n",
+ "Zmag = math.sqrt(real(Zt)**2+imag(Zt)**2)\n",
+ "I = Vg/Zmag\n",
+ "PZ = real(Z)*(I**2)\n",
+ "Pg = real(Zg)*(I**2)\n",
+ "#To calculate PZ1 and PZ2 we need to first calculate IZ1 nad IZ2\n",
+ "VZ = I*(1-1j)\n",
+ "IZ1 = VZ/Z1\n",
+ "IZ1mag = math.sqrt(real(IZ1)**2+imag(IZ1)**2)\n",
+ "PZ1 = real(Z1)*(IZ1mag**2)\n",
+ "PZ2 = PZ-PZ1\n",
+ "PT = PZ1+PZ2+Pg\n",
+ "print \"PZ = %dW Pg = %dW PT = %dW\"%(PZ,Pg,PT);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "PZ = 2000W Pg = 1000W PT = 3000W\n",
+ "(-1j, 'Z2 = ')\n",
+ "PZ = 2500W Pg = 2500W PT = 5000W\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.17 Page No : 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 11.17\")\n",
+ "\n",
+ "# Given\n",
+ "#v1 = 5*math.cos(w1*t) v2 = 10*math.cos(w2*t+60)\")\n",
+ "#The circuit is modeled as\n",
+ "#resistance is 10ohm and inducmath.tance is 5mH\")\n",
+ "R = 10;L = 5*10**-3;\n",
+ "#Let V be phasor voltage between the terminals\n",
+ "Vmag = 10;\n",
+ "Vph = 60; \n",
+ "x = Vmag*math.cos((Vph*math.pi)/180);\n",
+ "y = Vmag*math.sin((Vph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "\n",
+ "#a)\")\n",
+ "w1 = 2000;w2 = 4000;\n",
+ "#Let Z be the impedance of the coil\n",
+ "Z1 = R+1j*L*w1\n",
+ "Z2 = R+1j*L*w2\n",
+ "V1 = 5;\n",
+ "#By applying superposition i = i1-i2\n",
+ "I1 = V1/Z1\n",
+ "R1,Theta = polar([[I1]])\n",
+ "R1 = R1[0][0].real\n",
+ "Theta = Theta[0][0].real\n",
+ "\n",
+ "print \"i1 = %0.2f*math.cos%dt%d deg)\"%(R1,w1,Theta*180/math.pi);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i1 = 0.71*math.cos2000t20 deg)\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch12.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch12.ipynb
new file mode 100644
index 00000000..06ddfb38
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch12.ipynb
@@ -0,0 +1,302 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:28034dbb342684d685a8a92f980deb80fefbb2dbd59fa3d7d9f9191f36310311"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12 : Polyphase Circuits"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2 Page No : 245"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "\n",
+ "# Given\n",
+ "#The system ABC is DELTA connected\")\n",
+ "#Effective line voltage is 120V\")\n",
+ "#The three impedances are 5(45 deg)\")\n",
+ "Zmag = 5;Zph = 45;\n",
+ "#Let maximum line voltage is Vmax\n",
+ "Vmax = 120*math.sqrt(2)\n",
+ "#From fig 12.7(a)\n",
+ "#VAB = Vmax(120 deg)\n",
+ "#VBC = Vmax(0 deg)\n",
+ "#VCA = Vmax(240 deg)\n",
+ "\n",
+ "#From figure 12.8\n",
+ "IABmag = Vmax/Zmag\n",
+ "IABph = 120-Zph\n",
+ "print \"IAB = %3.2f%d deg)\"%(IABmag,IABph);\n",
+ "\n",
+ "IBCmag = Vmax/Zmag\n",
+ "IBCph = 0-Zph\n",
+ "print \"IBC = %3.2f%d deg)\"%(IBCmag,IBCph);\n",
+ "\n",
+ "ICAmag = Vmax/Zmag\n",
+ "ICAph = 240-Zph\n",
+ "print \"ICA = %3.2f%d deg)\"%(ICAmag,ICAph);\n",
+ "\n",
+ "#Applying KCL equation \n",
+ "#IA = IAB+IAC\n",
+ "#IB = IBC+IBA\n",
+ "#IC = ICA+ICB\n",
+ "\n",
+ "x = IABmag*math.cos((IABph*math.pi)/180);\n",
+ "y = IABmag*math.sin((IABph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "\n",
+ "x1 = ICAmag*math.cos((ICAph*math.pi)/180);\n",
+ "y1 = ICAmag*math.sin((ICAph*math.pi)/180);\n",
+ "z1 = complex(x1,y1)\n",
+ "\n",
+ "x2 = IBCmag*math.cos((IBCph*math.pi)/180);\n",
+ "y2 = IBCmag*math.sin((IBCph*math.pi)/180);\n",
+ "z2 = complex(x2,y2)\n",
+ "\n",
+ "IA = z-z1;\n",
+ "RA,ThetaA = polar([[IA]])\n",
+ "RA = RA[0][0].real\n",
+ "ThetaA = ThetaA[0][0].real\n",
+ "\n",
+ "IB = z2-z;\n",
+ "RB,ThetaB = polar([[IB]])\n",
+ "RB = RB[0][0].real\n",
+ "ThetaB = ThetaB[0][0].real\n",
+ "\n",
+ "IC = z1-z2\n",
+ "RC,ThetaC = polar([[IC]])\n",
+ "RC = RC[0][0].real\n",
+ "ThetaC = ThetaC[0][0].real\n",
+ "\n",
+ "#Therefore\")\n",
+ "\n",
+ "print \"IA = %3.2f%d deg)A\"%(RA,(ThetaA*180/math.pi));\n",
+ "print \"IB = %3.2f%d deg)A\"%(RB,(ThetaB*180/math.pi));\n",
+ "print \"IC = %3.2f%d deg)A\"%(RC,(ThetaC*180/math.pi));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "IAB = 33.9475 deg)\n",
+ "IBC = 33.94-45 deg)\n",
+ "ICA = 33.94195 deg)\n",
+ "IA = 0.713368 deg)A\n",
+ "IB = 0.263368 deg)A\n",
+ "IC = -0.973368 deg)A\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5 Page No : 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "#Example 12.5\")\n",
+ "\n",
+ "# Given\n",
+ "#The system ABC is DELTA connected\")\n",
+ "#Maximum line voltage is 339.4V\")\n",
+ "#The three impedances are 10(0 deg),10(30 deg),15(-30 deg)\")\n",
+ "\n",
+ "ZABmag = 10;ZABph = 0;\n",
+ "ZBCmag = 10;ZBCph = 30;\n",
+ "ZCAmag = 15;ZCAph = -30;\n",
+ "#Let maximum line voltage is Vmax\n",
+ "Vmax = 339.4\n",
+ "#From fig 12.7(a)\n",
+ "#VAB = Vmax(120 deg)\n",
+ "#VBC = Vmax(0 deg)\n",
+ "#VCA = Vmax(240 deg)\n",
+ "\n",
+ "#From figure 12.15\n",
+ "IABmag = Vmax/ZABmag\n",
+ "IABph = 120-ZABph\n",
+ "print \"IAB = %3.2f%d deg)\"%(IABmag,IABph);\n",
+ "\n",
+ "IBCmag = Vmax/ZBCmag\n",
+ "IBCph = 0-ZBCph\n",
+ "print \"IBC = %3.2f%d deg)\"%(IBCmag,IBCph);\n",
+ "\n",
+ "ICAmag = Vmax/ZCAmag\n",
+ "ICAph = 240-ZCAph\n",
+ "print \"ICA = %3.2f%d deg)\"%(ICAmag,ICAph);\n",
+ "\n",
+ "#Applying KCL equation \n",
+ "#IA = IAB+IAC\n",
+ "#IB = IBC+IBA\n",
+ "#IC = ICA+ICB\n",
+ "\n",
+ "x = IABmag*math.cos((IABph*math.pi)/180);\n",
+ "y = IABmag*math.sin((IABph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "\n",
+ "x1 = ICAmag*math.cos((ICAph*math.pi)/180);\n",
+ "y1 = ICAmag*math.sin((ICAph*math.pi)/180);\n",
+ "z1 = complex(x1,y1)\n",
+ "\n",
+ "x2 = IBCmag*math.cos((IBCph*math.pi)/180);\n",
+ "y2 = IBCmag*math.sin((IBCph*math.pi)/180);\n",
+ "z2 = complex(x2,y2)\n",
+ "\n",
+ "IA = z-z1;\n",
+ "RA,ThetaA = polar([[IA]])\n",
+ "RA = RA[0][0].real\n",
+ "ThetaA = ThetaA[0][0].real\n",
+ "\n",
+ "IB = z2-z;\n",
+ "RB,ThetaB = polar([[IB]])\n",
+ "RB = RB[0][0].real\n",
+ "ThetaB = ThetaB[0][0].real\n",
+ "\n",
+ "IC = z1-z2\n",
+ "RC,ThetaC = polar([[IC]])\n",
+ "RC = RC[0][0].real\n",
+ "ThetaC = ThetaC[0][0].real\n",
+ "\n",
+ "#Therefore\")\n",
+ "\n",
+ "print \"IA = %3.2f%d deg)A\"%(RA,(ThetaA*180/math.pi));\n",
+ "print \"IB = %3.2f%d deg)A\"%(RB,(ThetaB*180/math.pi));\n",
+ "print \"IC = %3.2f%d deg)A\"%(RC,(ThetaC*180/math.pi));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "IAB = 33.94120 deg)\n",
+ "IBC = 33.94-30 deg)\n",
+ "ICA = 22.63270 deg)\n",
+ "IA = -0.313135 deg)A\n",
+ "IB = 0.713756 deg)A\n",
+ "IC = -0.981714 deg)A\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.6 Page No : 252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "\n",
+ "# Given\n",
+ "#The system CBA is WYE connected\")\n",
+ "#Maximum line voltage is 150V\")\n",
+ "#The three impedances are 6(0 deg),6(30 deg),5(45 deg)\")\n",
+ "ZAmag = 6;ZAph = 0;\n",
+ "ZBmag = 6;ZBph = 30;\n",
+ "ZCmag = 5;ZCph = 45;\n",
+ "#Let maximum line voltage is Vmax\n",
+ "Vmax = 150\n",
+ "#Let the line to neutral voltage magnitude be Vn\n",
+ "Vn = Vmax/math.sqrt(3)\n",
+ "#From fig 12.7(b)\n",
+ "#VAN = Vn(-90 deg)\n",
+ "#VBN = Vn(30 deg)\n",
+ "#VCN = Vn(150 deg)\n",
+ "\n",
+ "#From figure 12.16\n",
+ "IAmag = Vn/ZAmag\n",
+ "IAph = -90-ZAph\n",
+ "print \"IA = %3.2f%d deg)A\"%(IAmag,IAph);\n",
+ "\n",
+ "IBmag = Vn/ZBmag\n",
+ "IBph = 30-ZBph\n",
+ "print \"IB = %3.2f%d deg)A\"%(IBmag,IBph);\n",
+ "\n",
+ "ICmag = Vn/ZCmag\n",
+ "ICph = 150-ZCph\n",
+ "print \"IC = %3.2f%d deg)A\"%(ICmag,ICph);\n",
+ "\n",
+ "#Now to calculate IN\n",
+ "#IN = -(IA+IB+IC)\n",
+ "x = IAmag*math.cos((IAph*math.pi)/180);\n",
+ "y = IAmag*math.sin((IAph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "\n",
+ "x1 = ICmag*math.cos((ICph*math.pi)/180);\n",
+ "y1 = ICmag*math.sin((ICph*math.pi)/180);\n",
+ "z1 = complex(x1,y1)\n",
+ "\n",
+ "x2 = IBmag*math.cos((IBph*math.pi)/180);\n",
+ "y2 = IBmag*math.sin((IBph*math.pi)/180);\n",
+ "z2 = complex(x2,y2)\n",
+ "\n",
+ "IN = -(z+z1+z2)\n",
+ "\n",
+ "R,Theta = polar([[IN]])\n",
+ "R = R[0][0].real\n",
+ "Theta = Theta[0][0].real\n",
+ "\n",
+ "\n",
+ "print \"IN = %3.2f%d deg)A\"%(R,(Theta*180/math.pi));\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "IA = 14.43-90 deg)A\n",
+ "IB = 14.430 deg)A\n",
+ "IC = 17.32105 deg)A\n",
+ "IN = -0.97585 deg)A\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch13.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch13.ipynb
new file mode 100644
index 00000000..9462b7ed
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch13.ipynb
@@ -0,0 +1,165 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b50fbda5069b9b2f766870fdc83a2feaf1f182dfb36d43f632160c82ec149201"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13 : Frequency Response Filters and Resonance"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.2 Page No : 260"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Problem 13.2\")\n",
+ "\n",
+ "# Given\n",
+ "#|Hv| = 1/math.sqrt(2) (1)\")\n",
+ "#resistance R1 = 5kohm\")\n",
+ "R1 = 5000;\n",
+ "#Hv(w) = 1/1+%i*(w/wx) (2)\")\n",
+ "#wx = 1/(R1*C2)\n",
+ "#On solving we get\n",
+ "#wx = 2*10**-4/C2 (3)\")\n",
+ "\n",
+ "#a)\")\n",
+ "C2 = 10*10**-9;\n",
+ "#Taking modulus of (2)\n",
+ "#|Hv(w)| = 1/math.sqrt(1+(w/wx)**2)\")\n",
+ "#Equating (1) and (2)\n",
+ "wx = 2*10**-4/C2;\n",
+ "fx = (wx/(2*math.pi))*10**-3\n",
+ "print \"Frequencya) is %3.2fkHz\"%(fx)\n",
+ "\n",
+ "#b)\")\n",
+ "C2b = 1*10**-9;\n",
+ "#As frequency is inversely proportional to C2 (from (3))\n",
+ "fx1 = (C2/C2b)*fx\n",
+ "print \"Frequencyb) is %3.2fkHz\"%(fx1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequencya) is 3.18kHz\n",
+ "Frequencyb) is 31.83kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.7 Page No : 265"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Given\n",
+ "#From the above transfer function\n",
+ "#Comparing the denominator with s**2+a*s+b with w = math.sqrt(b)\n",
+ "a = 300;b = 10**6;\n",
+ "#Therefore center frequency is\n",
+ "w0 = math.sqrt(10**6)\n",
+ "#The lower and upper frequencies are\n",
+ "wl = math.sqrt(a**2/4+b)-a/2\n",
+ "wh = math.sqrt(a**2/4+b)+a/2\n",
+ "B = wh-wl #It can be inferred that B = a\n",
+ "Q = math.sqrt(b)/a\n",
+ "print \"Center frequency = %drad/s\"%(w0);\n",
+ "print \"Low power frequency = %3.2frad/sHigh power frequency = %3.2frad/s\"%(wl,wh);\n",
+ "print \"Bandwidth = %drad/sQuality factor = %3.2f\"%(B,Q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Center frequency = 1000rad/s\n",
+ "Low power frequency = 861.19rad/sHigh power frequency = 1161.19rad/s\n",
+ "Bandwidth = 300rad/sQuality factor = 3.33\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.8 Page No : 266"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Given\n",
+ "#From the above transfer function\n",
+ "#Comparing the denominator with s**2+a*s+b with w = math.sqrt(b)\n",
+ "a = 30;\n",
+ "b = 10**6;\n",
+ "#Therefore center frequency is\n",
+ "w0 = math.sqrt(10**6)\n",
+ "#The lower and upper frequencies are\n",
+ "wl = math.sqrt(a**2/4+b)-a/2\n",
+ "wh = math.sqrt(a**2/4+b)+a/2\n",
+ "B = wh-wl\n",
+ "Q = math.sqrt(b)/a\n",
+ "print \"Center frequency = %drad/s\"%(w0);\n",
+ "print \"Low power frequency = %3.2frad/sHigh power frequency = %3.2frad/s\"%(wl,wh);\n",
+ "print \"Bandwidth = %drad/sQuality factor = %3.2f\"%(B,Q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Center frequency = 1000rad/s\n",
+ "Low power frequency = 985.11rad/sHigh power frequency = 1015.11rad/s\n",
+ "Bandwidth = 30rad/sQuality factor = 33.33\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch14.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch14.ipynb
new file mode 100644
index 00000000..f1a83db8
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch14.ipynb
@@ -0,0 +1,396 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9734f6fd136104d84e59a3bf0cf93b5573206727114793dcfbc73fa18b870ce6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 14 : Two Port Networks"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.1 Page No : 276"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from sympy import Symbol\n",
+ "\n",
+ "s = Symbol('s');\n",
+ "#Applying KVL equation to the two loops we get\n",
+ "#V1 = 2*I1+s*(I1+I2)\n",
+ "#V2 = 3*I2+s*(I1+I2)\n",
+ "\n",
+ "#On solving we get\n",
+ "#(s+2)*I1+s*I2 = V1 (1)\");\n",
+ "#s*I1+(s+3)*I2 = V2 (2)\");\n",
+ "\n",
+ "#The equations which contain Z parameters are\n",
+ "#V1 = Z11*I1+Z12*I2\n",
+ "#V2 = Z21*I1+Z22*I2\n",
+ "\n",
+ "#On comparing (1) and (2) with above equations\n",
+ "Z11 = s+2;\n",
+ "Z12 = s;\n",
+ "Z21 = s;\n",
+ "Z22 = s+3;\n",
+ "\n",
+ "print \"Z11 = \",Z11\n",
+ "print \"Z12 = \",Z12\n",
+ "print \"Z21 = \",Z21\n",
+ "print \"Z22 = \",Z22\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Z11 = s + 2\n",
+ "Z12 = s\n",
+ "Z21 = s\n",
+ "Z22 = s + 3\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2 Page No : 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from sympy import Symbol\n",
+ "\n",
+ "s = Symbol('s')\n",
+ "#Applying KVL equation to the two loops we get\n",
+ "#V1 = 2*I1+s*(I1+I2)-I2\n",
+ "#V2 = 3*I2+s*(I1+I2)\n",
+ "\n",
+ "#On solving we get\n",
+ "#(s+2)*I1+(s-1)*I2 = V1 (1)\");\n",
+ "#s*I1+(s+3)*I2 = V2 (2)\");\n",
+ "\n",
+ "#The equations which contain Z parameters are\n",
+ "#V1 = Z11*I1+Z12*I2\n",
+ "#V2 = Z21*I1+Z22*I2\n",
+ "\n",
+ "#On comparing (1) and (2) with above equations\n",
+ "Z11 = s+2;\n",
+ "Z12 = s-1;\n",
+ "Z21 = s;\n",
+ "Z22 = s+3;\n",
+ "\n",
+ "print \"Z11 = \",Z11\n",
+ "print \"Z12 = \",Z12\n",
+ "print \"Z21 = \",Z21\n",
+ "print \"Z22 = \",Z22"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Z11 = s + 2\n",
+ "Z12 = s - 1\n",
+ "Z21 = s\n",
+ "Z22 = s + 3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.4 Page No : 282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from sympy import Symbol\n",
+ "\n",
+ "\n",
+ "s = Symbol('s')\n",
+ "Ya = 3/(5*s+6);\n",
+ "Yb = 2/(5*s+6);\n",
+ "Yc = s/(5*s+6);\n",
+ "\n",
+ "#Writing KCL equations \n",
+ "#I1 = (Ya+Yc)*V1-Yc*V2 (1)\")\n",
+ "#I2 = -Yc*V1+(Yb+Yc)*V2 (2)\")\n",
+ "\n",
+ "#The equations which contain Y parameters are\n",
+ "#I1 = Y11*V1+Y12*V2\n",
+ "#I2 = Y21*V1+Y22*V2\n",
+ "\n",
+ "#On comparing (1) and (2) with above equations\n",
+ "#Y11 = Ya+Yc\")\n",
+ "#Y12 = -Yc = Y21\")\n",
+ "#Y22 = Yb+Yc\")\n",
+ "\n",
+ "#Substituting Ya , Yb and Yc\n",
+ "Y11 = Ya+Yc\n",
+ "Y12 = -Yc\n",
+ "Y21 = -Yc\n",
+ "Y22 = Yb+Yc\n",
+ "\n",
+ "print \"Y11 = \",Y11\n",
+ "print \"Y12 = \",Y12\n",
+ "print \"Y21 = \",Y21\n",
+ "print \"Y22 = \",Y22\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Y11 = s/(5*s + 6) + 3/(5*s + 6)\n",
+ "Y12 = -s/(5*s + 6)\n",
+ "Y21 = -s/(5*s + 6)\n",
+ "Y22 = s/(5*s + 6) + 2/(5*s + 6)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.6 Page No : 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from sympy import Symbol\n",
+ "\n",
+ "\n",
+ "s = Symbol('s')\n",
+ "#From example 14.4\n",
+ "\n",
+ "Y11 = (3 + s)/(5*s+6)\n",
+ "Y12 = - s/(6 + 5*s)\n",
+ "Y21 = - s/(6 + 5*s)\n",
+ "Y22 = (2+s)/(6+5*s) \n",
+ "\n",
+ "DYY = Y11*Y22-Y12*Y21\n",
+ "\n",
+ "Z11 = Y22/DYY;\n",
+ "Z12 = -Y12/DYY;\n",
+ "Z21 = -Y21/DYY;\n",
+ "Z22 = Y11/DYY;\n",
+ "\n",
+ "print \"Z11 = \",Z11\n",
+ "print \"Z12 = \",Z12\n",
+ "print \"Z21 = \",Z21\n",
+ "print \"Z22 = \",Z22"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Z11 = (s + 2)/((5*s + 6)*(-s**2/(5*s + 6)**2 + (s + 2)*(s + 3)/(5*s + 6)**2))\n",
+ "Z12 = s/((5*s + 6)*(-s**2/(5*s + 6)**2 + (s + 2)*(s + 3)/(5*s + 6)**2))\n",
+ "Z21 = s/((5*s + 6)*(-s**2/(5*s + 6)**2 + (s + 2)*(s + 3)/(5*s + 6)**2))\n",
+ "Z22 = (s + 3)/((5*s + 6)*(-s**2/(5*s + 6)**2 + (s + 2)*(s + 3)/(5*s + 6)**2))\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.7 Page No : 288"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#From figure 14.9\n",
+ "#V1 = 50*I1 (1)\");\n",
+ "#I2 = 300*I1 (2)\");\n",
+ "\n",
+ "#The equations which contain h parameters are\n",
+ "#V1 = h11*I1+h12*V2\n",
+ "#I2 = h21*I1+h22*V2\n",
+ "\n",
+ "#On comparing (1) and (2) with above equations\n",
+ "\n",
+ "print \"h11 = %d\"%(50);\n",
+ "print \"h12 = %d\"%(0);\n",
+ "print \"h21 = %d\"%(300);\n",
+ "print \"h22 = %d\"%(0);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "h11 = 50\n",
+ "h12 = 0\n",
+ "h21 = 300\n",
+ "h22 = 0\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.8 Page No : 290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#From figure 14.10\n",
+ "#By inspection\n",
+ "#V1 = 10**9*I1\n",
+ "#V2 = 10(I2-10**-3*V1)\n",
+ "\n",
+ "\n",
+ "#On solving we get\n",
+ "#I1 = 10**-9*V1 (1)\");\n",
+ "#V2 = 10*I2-10**-2*V1 (2)\");\n",
+ "\n",
+ "\n",
+ "#The equations which contain g parameters are\n",
+ "#I1 = g11*V1+g12*I2\n",
+ "#V2 = g21*V1+g22*I2\n",
+ "\n",
+ "#On comparing (1) and (2) with above equations\n",
+ "\n",
+ "print \"g11 = %2.1e\"%(10**-9);\n",
+ "print \"g12 = %d\"%(0);\n",
+ "print \"g21 = %2.1e\"%(-10**-2);\n",
+ "print \"g22 = %d\"%(10);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "g11 = 1.0e-09\n",
+ "g12 = 0\n",
+ "g21 = -1.0e-02\n",
+ "g22 = 10\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.10 Page No : 292"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from sympy import Symbol\n",
+ "\n",
+ "s = Symbol('s')\n",
+ "#Applying KVL equation to the two loops we get\n",
+ "#V1 = 3*I1+3*(I1+I2)\n",
+ "#V2 = 7*I1+3*(I1+I2)+2*I2\n",
+ "\n",
+ "#On solving we get\n",
+ "#6*I1+3*I2 = V1 (1)\");\n",
+ "#10*I1+5*I2 = V2 (2)\");\n",
+ "\n",
+ "#The equations which contain Z parameters are\n",
+ "#V1 = Z11*I1+Z12*I2\n",
+ "#V2 = Z21*I1+Z22*I2\n",
+ "\n",
+ "#On comparing (1) and (2) with above equations\n",
+ "Z11 = 6;\n",
+ "Z12 = 3;\n",
+ "Z21 = 10;\n",
+ "Z22 = 5;\n",
+ "\n",
+ "\n",
+ "print \"Z11 = \",Z11\n",
+ "print \"Z12 = \",Z12\n",
+ "print \"Z21 = \",Z21\n",
+ "print \"Z22 = \",Z22\n",
+ "\n",
+ "#As DZZ results in zero(0) therefore Y parameters are not defined \")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Z11 = 6\n",
+ "Z12 = 3\n",
+ "Z21 = 10\n",
+ "Z22 = 5\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch15.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch15.ipynb
new file mode 100644
index 00000000..b4e2fcad
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch15.ipynb
@@ -0,0 +1,256 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:573d3c26bc06249cf2f9f4748e6d10f443e0ca37c6357e39541ace7a1534cbe6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 15 : Mutual Inductance and Transformers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.4 Page No : 306"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 15.4\")\n",
+ "\n",
+ "# Given\n",
+ "#L1 = 0.1H L2 = 0.2H\")\n",
+ "#i1 = 4A i2 = 10A\")\n",
+ "L1 = 0.1;L2 = 0.2\n",
+ "i1 = 4;i2 = 10;\n",
+ "#The energy stored in coupled coils is\n",
+ "#W = (L1*i1**2)/2+(L2*i2**2)/2+M*i1*i2\")\n",
+ "\n",
+ "#a)\")\n",
+ "M = 0.1;\n",
+ "W = (L1*i1**2)/2+(L2*i2**2)/2+M*i1*i2;\n",
+ "print \"Total Energy in the coils = %3.2fJ\"%(W);\n",
+ "\n",
+ "#b)\")\n",
+ "M = math.sqrt(2)/10;\n",
+ "W = (L1*i1**2)/2+(L2*i2**2)/2+M*i1*i2;\n",
+ "print \"Total Energy in the coils = %3.2fJ\"%(W);\n",
+ "\n",
+ "#c)\")\n",
+ "M = -0.1;\n",
+ "W = (L1*i1**2)/2+(L2*i2**2)/2+M*i1*i2;\n",
+ "print \"Total Energy in the coils = %3.2fJ\"%(W);\n",
+ "\n",
+ "#a)\")\n",
+ "M = -math.sqrt(2)/10;\n",
+ "W = (L1*i1**2)/2+(L2*i2**2)/2+M*i1*i2;\n",
+ "print \"Total Energy in the coils = %3.2fJ\"%(W);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total Energy in the coils = 14.80J\n",
+ "Total Energy in the coils = 16.46J\n",
+ "Total Energy in the coils = 6.80J\n",
+ "Total Energy in the coils = 5.14J\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.7 Page No : 311"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "\n",
+ "#Example 15.7\")\n",
+ "\n",
+ "# Given\n",
+ "#N1 = 20 N2 = N3 = 10\")\n",
+ "#I2 = 10(-53.13 deg) I3 = 10(-45 deg)\")\n",
+ "N1 = 20;\n",
+ "N2 = 10;\n",
+ "N3 = 10;\n",
+ "I2mag = 10;\n",
+ "I2ph = -53.13;\n",
+ "I3mag = 10;\n",
+ "I3ph = -45;\n",
+ "#From figure 15.14\n",
+ "#N1*I1-N2*I2-N3*I3 = 0\")\n",
+ "#Solving for I1\n",
+ "Xmag = N2*I2mag \n",
+ "Xph = I2ph\n",
+ "x = Xmag*math.cos((Xph*math.pi)/180);\n",
+ "y = Xmag*math.sin((Xph*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "\n",
+ "Ymag = N3*I3mag \n",
+ "Yph = I3ph\n",
+ "x1 = Ymag*math.cos((Yph*math.pi)/180);\n",
+ "y1 = Ymag*math.sin((Yph*math.pi)/180);\n",
+ "z1 = complex(x1,y1)\n",
+ "\n",
+ "I1 = (z+z1)/N1\n",
+ "R,Theta = polar([[I1]]);\n",
+ "R = R[0][0].real\n",
+ "Theta = Theta[0][0].real\n",
+ "\n",
+ "print \"I1 = %3.2f%3.2f deg) A\"%(R,(Theta*180)/math.pi);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I1 = 0.66571.52 deg) A\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.8 Page No : 316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.linalg import polar\n",
+ "#Example 15.8\")\n",
+ "\n",
+ "# Given\n",
+ "#L1 = 0.2H L2 = 0.1H\")\n",
+ "#M = 0.1H R = 10ohm\")\n",
+ "#v1 = 142.3*math.sin(100*t)\")\n",
+ "L1 = 0.2;L2 = 0.1\n",
+ "M = 0.1;R = 10;\n",
+ "v1mag = 142.3;\n",
+ "w = 100;\n",
+ "#Let Input impedance be Z1 and can be calculated as\n",
+ "#From the equations in 15.10\n",
+ "#Z1 = 1j*w*L1+((M*w)**2)/(Z2+1j*w*L2)\")\n",
+ "Z1 = 1j*w*L1+((M*w)**2)/(R+1j*w*L2)\n",
+ "R,Theta = polar([[Z1]])\n",
+ "R = R[0][0].real\n",
+ "Theta = Theta[0][0].real\n",
+ "\n",
+ "#If I1 is the input current\n",
+ "I1mag = v1mag/R\n",
+ "I1ph = -(Theta*180)/math.pi\n",
+ "#In time domain form\n",
+ "print \"i1 = %3.1f*math.sin%d*t%3.1f deg) A)\"%(I1mag,w,I1ph);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i1 = 450.0*math.sin100*t-905.9 deg) A)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15.9 Page No : 318"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from sympy import Symbol\n",
+ "\n",
+ "s = Symbol('s')\n",
+ "# Given\n",
+ "#L1 = 0.2H L2 = 0.1H\")\n",
+ "#M = 0.1H R = 10ohm\")\n",
+ "#v1 = u(t) a unit step function\")\n",
+ "L1 = 0.2;\n",
+ "L2 = 0.1\n",
+ "M = 0.1;\n",
+ "R = 10;\n",
+ "v1 = 1;\n",
+ "w = 100;\n",
+ "#Let Input impedance be Z1 and can be calculated as\n",
+ "#From the equations in 15.10\n",
+ "#Z1(s) = L1*s-((M*s)**2)/(R+L2*s)\")\n",
+ "Z1 = L1*s-(((M*s)**2)/(R+L2*s))\n",
+ "#Proper rearranging of co-efficients\n",
+ "Num = Z1/0.01\n",
+ "Den = Z1*100\n",
+ "\n",
+ "print \"Z1(s)\",Num/Den\n",
+ "Y1 = 1./Z1\n",
+ "print \"Y1(s)\",Den/Num\n",
+ "\n",
+ "#As the input is unit step function the value is 1V for t>0\n",
+ "#In exponential form the value is represented as exp(s*t) with s = 0 as the pole of Y1(s)\n",
+ "\n",
+ "#Therefore forced response\n",
+ "k = 1/L1;\n",
+ "print \"Forced response i1,f = %d*t) A)\"%(k);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Z1(s) 1\n",
+ "Y1(s) 1\n",
+ "Forced response i1,f = 5*t) A)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch17.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch17.ipynb
new file mode 100644
index 00000000..3f56f162
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch17.ipynb
@@ -0,0 +1,112 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:974ed2f2844a32c3679f774415b0c9458096cf6af36688e6d18e22415c8dce7e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 17 : The Laplace Transform Method"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.2 Page No : 327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from sympy.abc import t,s\n",
+ "import math\n",
+ "\n",
+ "x = 3*math.e**(2*t)\n",
+ "print \" X(s) = \" ,x\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " X(s) = 3*2.71828182845905**(2*t)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17.4 Page No : 330"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from sympy.abc import t,s\n",
+ "\n",
+ "#Factorizing the denominator\n",
+ "I = (s-10)/((s**2)*(s-1j)*(s+1j));\n",
+ "print \"I(s) = \",I\n",
+ "#The principal part at s = 0 is\n",
+ "#B1/s+B2/s**2\n",
+ "#Taking the limit s->0 to (s-10)/((s-1j)*(s+1j))\n",
+ "\n",
+ "B2 = -10\n",
+ "\n",
+ "#Taking the limit s->0 to (s*(s-10))/(s**2)*(s**2+1)+(10/s)\n",
+ "\n",
+ "B1 = 1\n",
+ "\n",
+ "#The principal part at s = 1j is\n",
+ "#A/(s-1j)\n",
+ "#Taking the limit s->1j to (s-10)/((s**2)*(s+1j))\n",
+ "\n",
+ "A = (-0.5-1j*5)\n",
+ "\n",
+ "#As the other co-efficient is conjugate of the above we can write the partial fraction expansion of I(s)\n",
+ "I = (1/s)-(10/s**2)-(0.5+1j*5)/(s-1j)-(0.5-1j*5)/(s+1j);\n",
+ "#Taking inverse of each term\n",
+ "I1 = 1/s\n",
+ "I2 = 10/s**2\n",
+ "I3 = (0.5+1j*5)/(s-1j)\n",
+ "I4 = (0.5-1j*5)/(s+1j)\n",
+ "I = I1-I2-I3-I4\n",
+ "print \"i(t) = \",I\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I(s) = (s - 10)/(s**2*(s - 1.0*I)*(s + 1.0*I))\n",
+ "i(t) = -(0.5 - 5.0*I)/(s + 1.0*I) - (0.5 + 5.0*I)/(s - 1.0*I) + 1/s - 10/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch2.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch2.ipynb
new file mode 100644
index 00000000..5c1b6c1b
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch2.ipynb
@@ -0,0 +1,362 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5a1d02642ba326d7757177778dd65e7a62f775fca699b7b0ae036b996c589a62"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2 : Circuit Concepts"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1 Page No : 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "from matplotlib.pyplot import subplot,plot,xlabel,ylabel,suptitle\n",
+ "from numpy import linspace,arange,array,sin\n",
+ "from scipy.integrate import quad\n",
+ "import math \n",
+ "\n",
+ "\n",
+ "# Given\n",
+ "#resistance used is 4 ohm\")\n",
+ "#Current flow is i = 2.5*math.sin(w*t)\")\n",
+ "#Angular frequency(w) = 500 rad/s\")\n",
+ "R = 4;\n",
+ "iamp = 2.5\n",
+ "w = 500;\n",
+ "t = arange(0,0.012566+0.001,.001)\n",
+ "i = 2.5*sin(w*t)\n",
+ "\n",
+ "# Calculation and Results\n",
+ "Vamp = iamp*R;\n",
+ "print \"v = %d*math.sin%d*t)V)\"%(Vamp,w)\n",
+ "\n",
+ "pamp = iamp*iamp*R;\n",
+ "print \"p = %d sin%d*t))**2W)\"%(pamp,w)\n",
+ "p = pamp*sin(w*t)**2;\n",
+ "\n",
+ "#On integrating p with respect to t\n",
+ "W = 25*(t/2-sin(2*w*t)/(4*w))\n",
+ "\n",
+ "def f(t):\n",
+ " return pamp*sin(w*t)**2\n",
+ " \n",
+ "w1 = quad(f,0,2*math.pi/w)[0];\n",
+ "\n",
+ "\n",
+ "subplot(221)\n",
+ "plot(t,i)\n",
+ "suptitle ('i vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('i ');\n",
+ "\n",
+ "subplot(222)\n",
+ "plot(t,p)\n",
+ "suptitle('p vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('p ');\n",
+ "\n",
+ "\n",
+ "\n",
+ "subplot(223)\n",
+ "plot(t,W)\n",
+ "suptitle ('w vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('w ');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "v = 10*math.sin500*t)V)\n",
+ "p = 25 sin500*t))**2W)\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEhCAYAAAC6Hk0fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXeYFGXSwH/LAgaSp6igoEi6ExXFQ0SCBOEUjHyeAbOe\nmBUVPQUDoHh3yKcoYvhUUMwBBUGRoJIkZySpICAuSBZkhYVd+vujem6H2Zndnpnufrtn6vc88+zM\ndHd17cw7Xf1W1VsFiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqJkALmmFVCULOdUoA9w\nDDDfrCqKoihKWLkB+AUYZVgPRVEUJUU+B74AVgBbgSLgY+Ah4Keo/f4CrLMfAHWAPOBX4D9AAbAf\nKARGxJxjMbAPyAG2AxZwO/AWsMuWYdmPAnuboiiKEiJuAtYjhmAX8DvwBvAjcrGPZgFiLP6EGJuN\nwGuIUdli71MVqB1z3MvADuBOe999wDhgpf38esRIfebev6Uo/lPOtAKKYpD3gSORi3wBYkQ2A8fb\n26L5CJm99AYuB44AHgV+Aw4HVgP3IC6raKYC2xCjsQfYBPwV+e1tQGYskYeiKIoSUn4D8oFJwABg\nDjJTiaUu8DPilvoFMUAAFRHjsggxSN/HHFcLWIXMfHYAYxCjsgb4EI2ZKBmCzkyUbGc5cChiDN5A\nZg074+z3E2JIjgIqITOXSkATYBpwNmIkYt1cvyCxmEqIm2wS8rurjRiTnYjxqurev6QoiqL4TT8k\n+P0hsAy5sCeKX/SgOFheDagB/GAfsx+ZmfSKc9xbwF7E5dUian+QGMzyqONvS/cfUhRFUfynDvCd\naSUUJeyom0tRZKahKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiZDgHA7OA\nhUipi3+bVUdRkqI2MBFYCixBqgqDdFb8BSlrvwA4z4RyipJtHGr/LQ/MBFoZ1EVRkqEGcJr9vDJS\nUfhEpIz9/aaUUhQvKG9aAQf8Yf+tiPSs32ZQF0VJhl/tB0gJ+uXAsfZr7V+iKD5TDnFz/Q48bVgX\nRUmVOsBaZIbSG+lnsggYAhxmTCtFyUKqIW6utob1UJRkqQzMBS6xXx9FcXfFfohBURTFRx4DHoi8\nqFevXqS3hD704dVjJelRAen5fm+C7XWIUwJfx7Y+PH6kO65LEPQS9NUpdgEcAnREsl8AWLVqFZZl\nuf7o3bt31ssNk65eygXqpTF+c5BZxzLguaj3a0Y970IcY2JybD/+uMW551pUr26xfn3mfadhkhvQ\ncR2XoAfgawLDEKNXDngb+NqoRorinJbANcBiim+CegFdkSwvC1gN3GpEuzjs3w/DhsGnn8Inn8Dd\nd8Pw4aa1UsJA0I3Jd8DpppVQlBT5lviz/y/9VsQpU6ZA1arQpAk0agSNG8Nnn8HFF5vWzH/mzIGD\nDoJTToEczb0rk6C7uYzQtm3brJcbJl29lJtplPU5vfkm3HCDXDwPPhheew3uugt27kxdZqqYlnvV\nVXDeeWJUe/eGpUvdkZsMYRrXYbe3lu3/UxRPyJFbUhO/E9/H9q5dUKsWfP89HH108fvdukHFivDi\ni76qY5SVK6F1a8jLkxnKRx/Jo2pVuPxyeZx4omktU8eLca0zE0VRAImRtG59oCEBePppGDECpk83\no5cJxo2TWUm5cnDmmfDMM7B2Lbz+OmzfDh06iPvrySfF+CpqTNLi++/hu+9AJ0dKJvDmm3D99SXf\n/9Of4PnnZYZSUOC7WkYYNw7OPffA98qVg7POgueeg3Xr4OWXYfNmaNcO/vpX2LrVjK5BQd1cKbBz\np/hQ331X/MpVqsAVV8CVV0LDhr6ro3hItri51qyBpk3FrXPQQfGUkSB806bw+OO+qWWEggI46ij4\n6Sc44oiy9y8qggsvhGuvha5dvdfPDdTNZRjLgg8+EF/pjh0SkFuzRoKUW7ZAmzZw+uniFlizxrS2\niuKct96Sm6F4hgQkIP/ii/DCC7B8ub+6+c20afIbd2JIAHJzZRYzcaK3egUdnZk4ZMUKuPNOMRov\nvQQtW5bcp6hIUis/+ED8zw0ayA/0ssvgmGN8UVNxmWyYmVgW1K8v4/aMM0rfd/Bg+PBDmDxZ3D6Z\nyEMPicehb1/nxyxeDJdeCj/+6J1ebqIzEwPk50OvXtCqFVx0EcybF9+QgNyhtGsH//d/sGGDuMIW\nLICTToK2bWHJEl9VVxRHfPutXDybNi1739tvh8JCmY1nKmPHSvA9GU4+GX77DX75xRudwkDQjUmi\n5kKeY1kwcqQYgjVr5M6je3co73CZZ4UKMiDffFMMy2WXwQUXwKZNXmqtKMkzbJgE3p0szMvNFUPy\n6KOwfr33uvnN+vUSXC9rhhZLuXLi5s5mV1fQ3Vw17MdCpPLqPKTyasRr64kr4Kef4J57YNUq8RO3\nb++O3Mceg0mT4KuvEvumlWCR6W6u/HxZW7J0aXKu2Mceg2XLxJ2bSbz5JowZI2tKkuXFF8VzMXSo\n62q5Tja6uX5FDAkUNxfyNPrw0UfQrJm4tRYtcs+QgPhgjzxSXAWaTqwEgREjJN012ZjeI4+IARo5\n0hu9TJGKiytCu3Y6MwkLdYDJwEmIYQGX795WrYLmzWHCBDjttLL3T4Vdu8RQXX893HefN+dQ3CPT\nZyYdO8LNN0tqe7JMmQJXXy2xwGrV3NfNb4qKZMHmokVw7LFl7x+LZUHNmjBzJtSp47p6rpKNM5MI\nlYHhQHeKDYmrFBbCNdfIHZdXhgSgcmUpnPf00/BlYMv9KS6RKOZ3ODAB+AEYj6FOi+vWwfz5qRdx\nPPts6NwZevZ0Vy9TzJ0rxiAVQwISc2rbNntnJ0GvGgzSXOgT4B2gxKS6T58+/33etm3blAuj9esn\ndXfu8SHEf/zxUta7Sxe5u/vLX7w/p+KMSZMmMWnSJLfE7QPu48CY3wTgRvvv08BDwMP2w1feflsS\nQw4+OHUZ//mPxFyeeQYOOcQ93UyQjosrQsTVdeON7uikuEcO8BYwMMF2yw2mTbOso4+2rPXrXRHn\nmDfesKz69S1r61Z/z6s4B+k54hYjgQ7ACiBSAauG/dqTsZ2I/fstq0EDy5oxI31ZzZpZ1pQp6csx\nzVlnWdZXX6Un4/vvLatWLfl8g4zL4xoIvpsr0lyoHdJcaAGQ5r3DgezcKe6tV16RKa6f3HCDuBgu\nvxz27fP33Irv1AGaALMQQ7LRfn8jxYbFN2bMKC5imC4tWsiq8TCzbZvEflq1Sk9OgwbSYGzVKnf0\nChNBd3Mlai7kGnfdJUHISy7x8iyJ6d9f6vrcd5+sLlYyksqIq7Y78HvMtoR3iW65cOORzNqSsmjZ\nUsqxhJmvvpIYULop+zk5xa6u+vXd0c0NXHbfxiVM2VzxsGdsqfHBB7JKff58qFTJRa2SZMcOySLr\n3h1uu82cHkpJXMh6qQB8jnRXjPSBXwG0RVLfayJB+tjIWVpjuzR275Yg8+LFEu9Il/XrpSPj5s3h\n7Uj4j39Id8m77kpf1pAh8PXX8N576cvyimzO5nKdn3+WYPt775k1JCBplaNHi2HL1kyQDCUHGAIs\no9iQAIwCIsXerydOYomXfPaZrPB2w5CArFGpUgV++MEdeX5jWRJ8jy05nyqRmUm2rSXLSmNSVCTl\nonv0kD4EQaB+fXj/fSlhnY3+1gwlUczvP0BHJDW4vf3aNxL1LUmHMMdNliyRjDa33FInnCCdKbOt\naVZWGpOnn5bp+AMPmNbkQNq3l14RF14oixuV0BOJ+Z2GBN+bAGOBbUhWV0Pgb8BvfimUlwezZ7sf\nI2zZMrydGCNdFd1y0UXiJt984468sJB1xmTuXBg4UHLsc3NNa1OSO+6QRZP/8fVeVckW3nlHSqUf\neqi7csM8M3HTxRUhG0urhDRc9l+SClLm50uQrV8/SccNKuvWiUFZsACOO860NtlNJpVTsSxo1Ej6\nmCdqo5AqRUVw+OHOuxMGhfx8qFFDkgiqVHFP7s8/iwt948Zg9n3RAHya3Hef3EEF2ZAA1K4tM5Re\nvUxromQSc+ZI2aAWLdyXnZsrBVJnzHBftpdMmiTJCG4aEpCbwGrVpBhmtpA1xmTECEnXGzTItCbO\neOgh8bnOnm1aEyVTiATevUrfDWPcxAsXV4Rsc3UF3ZgMRVYIf5eOkA0bpOz7O+9I/a0wULkyPPmk\nZJxlW4qh4j6WJSnBqVQHdkoY4yaR4LsXqDEJFm/gQvmURx+VO7KzznJBIx+54QYp9/Lpp6Y1UcLO\nzz9LXMPLVdnNm0tzqL17vTuHm6xaBb//LgsuvaBdO5g8WcqrZANBNyZTge3pCFi2TBYEhrFMdm6u\nVGP95z+hoMC0NkqYmTFDbqa8XKFetSrUqwcLF5a9bxAYN05cXF59JjVrwlFHSX+UbCDoxiRtHnlE\nLsaHGekYkT4dOkgGjtbtUtIhYky8pmXL8Li6vHRxRcgmV1fQCz2WSWnF8KZPl2n3++/7r5ebDBgA\nrVuLq656ddPaZDZ+FMQzwfTpsr7Ka1q0kNhM0LuI7t0rmVxe92tv107WtN1/v7fnCQJhWGdSBxgN\nnBJnW8JcfMuCNm2kSU0mNKq5+275+8ILZvXINjJhncnu3XITsmWL9w2sVq+W2UleXrCLPk6cCA8/\nDLNmeXueTZugYUP57MsH6NZd15kkwZgxsHUrXHedaU3coXdvqXK8Il4bJUUphblz4aST/OmEGOl9\nvnat9+dKBz9cXCAxk1q1ZAFyphN0Y/I+MB2pYbQOaXdaJkVFEnD/17+CWTIlFapXlzupBx80rYmS\nBPFS2/sAv+BRs7d4TJ/uzULFeOTkhCNF2I0WvU7JlrhJ0I1JV+AY4CCgNpIqXCbvvisrWi+6yEvV\n/OeuuyQ77euvTWuiOCRearsFPMuBhR89xa/ge4SgL17csEFSpc84w5/zqTEJKQUFUnm3f/9g+2xT\n4aCD5P/q0UNmX0rgSZTa7tvItCz/jUnQZybjx0uWpF8xjDZt5PPI9NbcGWdMXn4ZTjkl/V7OQeXS\nS2V1/LBhpjVR0uBuYBHSOMvTpPWffoIKFaTem180aQIrV8qC2yDiZQmVeBxxBNStK7GrTCZA+QXp\ns2MH/Pvfme0GysmBZ5+VfhSXXy6GRXHOjBlSzbViRWMqvAw8YT9/EngG+Ee8Hd3oAe/HYsVYKlaE\n00+XTKmOHf07rxOKimDCBEm395OIq8tUFQ7tAV82B6RPPvaYlG9/801zCvnFNdfI3c4TT5S9ryLk\n5cmsdckSaTXrBBdSKOuQOLW9tG2upAbfcQc0aOD/uo+ePaV7Ye/e/p63LGbPln7v36VV7S95Ro2S\ntP4JE/w9byI0NbgUfv0VXnoJ+vY1rYk//Otf8OKLYjwVZ/TrJxcSp4bEI2pGPe9CmkVMy8LveEmE\noMZN/HZxRTj7bJg5M7PLImXMzOSOOySP/plnDGvkI48+Klkpb71lWpPg89NPkr3z/ffJVRFI8w7u\nfaANUB1JEe4NtEXa+FrAauBWe1ssac9Mdu2Co4+GbdskecNPtmyROl3btgUrPb99e0mv79TJ/3M3\nbSpVCFq39v/csXgxM8mImMnKlfDRR3KhyCYeekhW1y5cKJ0ZlcT07Sup1T6Xo+ka5z2PC3gUM3u2\njAu/DQnI51yzprgUTz3V//PHY+9eaRDm15qbWCJxkyAYEy/ICDfXo4+KTzhM7ULdoEoV6cb46KOm\nNQk2y5bBl19mR32kaEy5uCIErejj/PlSgr9aNTPnz/T1JkE3JucBK4AfgYfi7TBvHkydCvfe66te\ngeGWWySYGORFYqZ5/HF44AFzFxFTmDYmLVoEa1xOnWp2VtC6tcyM9uwxp4OXBNmY5AKDEYPSCHEZ\nnBi708MPSxZXpUo+axcQDjpIMmZ69dKOjPGYP18uaHfdZVoTfzGxWDGWoM1MTBuTKlXg5JPle8lE\ngmxMmgErgTXAPuAD4OLYndaulQydbOa666RExFdfmdYkeDz6qBjaQw81rYm//PCDXLxMZq41bCgL\nF9evN6dDhP37xbCZjldksqsryMbkWKS4Y4Rf7PcO4KmnZIVvNlO+vPSL19nJgUybJvGSbt3SFnUI\n0AMYAXwK3AccnLZUDzE9KwEoVy44rq5ly+Dww6FGDbN6tG8P33xjVgevCHI2l6PL4pIlfVi6VJ6n\nuko4E/j732X1/8iR0KWLaW3MY1nSZfPxx5PLZkqwUvgtYCcwCEmnvAp4G7jMFWU9wM9KwaURMSZ/\n/7tZPUy7uCK0bCnZl/n52euaN0FzDqyo2pOSQXhLKeaLLyyrUSPLKiw0rYl5xo+3rIYNLWvfvvTk\nIDc1y+KMz3jvuUlaep98smXNmZPe/+4GkydbVrNmprWwrK5dLWvoUNNaCK1aWda4cWZ1wOHNejKk\n6+aKhNd2Ab/HPNIt8zYXaICUnKgIXAGMSlNmRtOpk/S6D3ub4nSJzEr69nWtMux8INpp1ByY54pk\nD9ixQzoeBmF9xxlnyFqT3bvN6WBZwZmZQObGTdI1Ji3tv5WBKjGPqmnKLgTuAsYhd4EfAsvTlJnR\n5ORImZXevWWBVrYyapSUrbj8ctdENkVunNYiCSHT7fe+Axa7dhaXmDVLilkGIZZ4yCGSwTRnjjkd\n1q6FwkJZkR8E2rfPTGMS5JgJwJf2Q3FImzayMGvoULjtNtPa+M/+/ZIq/tRTEgB2CZ968rlDEILv\n0USaZZ19tpnzR2YlQelv1Ly5zNZ27oSq6d5yB4ggZ3MpKfLUU5LdZdK1YIoPP5Q04AsucFXsmjIe\ngSIowfcIpos+BsnFBVJNuVkz0SuTUGOSgTRtKnc/L75oWhN/KSwUF99TTwXmLjReD/jDgQnAD8B4\nXG6OtX+/uLmaN3dTanpEMrpMpa0HzZhAZqYIqzHJUJ54QhoABbXbnRcMGwa1asE555jW5L/E6wH/\nMGJMGgJf269dY/lyKbJ41FFuSk2PY44Rd46JQqybN8uC3lPidYwxSCYG4dWYZCgnnSR9GwYONK2J\nPxQUiAF96inTmhxAvB7wFwGRpsvDgEvcPGHQXFwRTJVW+fZb+TyCVAYfJMtt5Uop0Z8pqDHJYPr0\nke5uW7aY1sR7Xn1V7j6DFHhOwNEU9y/ZaL92jaAF3yOYWgkfRBcXSGvjFi1g8mTTmrhH0LO5lDSo\nW1fSY/v397/ntZ/k58vq/zFjTGuSNKUuHkulB/yMGXDPPS5o5jItW8KgQf6fd+rU4M7OI64uPypW\naA/4srEXcyqJWL9e7tgXL4ZjS1Q2ywz695fqwB9+6L5sD3rAr0C6Lf6KtPCdCPwlznFJj+1t26BO\nHfnr0mJN1ygqktpYq1b516Bs1y6pxbV1q5kGYWVhqh89aA94JQWOOUYGbL9+pjXxhg0b4H//V+Il\nIWEUcL39/HpgpFuCZ84UX3zQDAlIzOLMM/0tvz5jBpx+ejANCYhu69bBpk2mNXGHIBuTy4ClQBFw\numFdQs1DD8HHH0sf9EzjwQfh5pvhz382rUlc3kdWy/8ZqYB9I/AfoCOSGtzefu0K06cHM14Swe+4\nSVDjJRHKlxf9PPY++UaQjcl3QBdgimlFws4RR8Ddd8sajExi8mS5YAS4bXFX4BiktlxtJFV4G9AB\nSQ3+G/CbWyebMSOYmVwRWrb0d6Fe0I0JZFaKcBhiJhORXhLz42zTmIlDdu6EE0+UuEKrVqa1SZ99\n+6BJE3Fv/c//eHceL3zLDklqbBcWSkxizRr5G0T27JEYxo8/wpFHenuuvXvlJiovL9glSxYuhCuu\n8H8NjsZMlJSpWhWef156xhcUmNYmfQYNkgWK2rtFWLJEEiyCakhAyoh07AijR3t/rnnzoEGDYBsS\ngMaNJXU/L8+0JuljOlQ3AYjX+6wXkgFTJqmkT2Yrl14Kb70FTz8txRDDSl6epALPmOF+2RQ/Uii9\nIKjrS2Lp0kVaJNx0k7fnCYOLC6QYaZs24uq65hrT2qSHurmyjHXrxD00bVpgg9ZlcuWVctf55JPe\nnyssbq7rrpOLpwstij1lxw6oXVtuCKpU8e48F14I119vvsOjEwYPhgULYMgQ/86ZzW6uMBi9UFC7\ntrSyveUWKQoYNr7+WgoZ9uxpWpNgEdQyKrFUqyZ6jh1b9r6psn+/3CyFYWYCmROED7Ix6YKkUzYH\nvkD7mrjGnXdKMHToUNOaJEdBgej+/PNSZl4RNm0Sv/uJJ5rWxBldusCnn3onf+lSWRh5tKuFaryj\nUSOp4rBmjWlN0iPIxmQEkk55CBJX6WRWncwhNxdeew169YJffzWtjXMGDhT31kUXmdYkWMycKQsC\nXWwG5ikXXywzE68SQcISL4mQk5MZs5OQDD/FbRo3lpXx995rWhNn/PyzrHR//nnTmgSPsLi4ItSo\nIVWtvernETZjAmpMlJDz+OMwdy588YVpTcrmvvukgGHduqY1CR5hyeSKpksXGDHCfbmWFV5j8s03\n5hqIuYEakyzmkEPglVfgjjukKF5QGTsWFi2Cf/7TtCbBY98+WVNx5pmmNUmOLl3gs8+kAKSbrFkj\nAfiw3XQ0aCB/V640q0c6qDHJcjp0gLZtZZYSRPbskVIwL7wgi96UA1m0CE44QbKkwkTduuLucrvw\nY2RWEpC2zY7JhLiJGhOFZ56B996DOXNMa1KSAQPg5JOhU+alX6wBFgMLgNmpCgmjiyuCF66uMLq4\nIkRcXWFFjYlC9eoS3O7WTdwmQWH1anjuOXlkIBbS16QJ0CxVIZMnh9+YuBknCLMxad9eKgiHNW6i\nxkQB4Oqr4aijgnXh7t4devSA4483rYlnpOWMWbvWv059XtC4sfxdvNgdeZs2wcaNMpMNI3XqSBxz\n+XLTmqSGGhMFEJ/tK69I18Ig9D0ZNUoqqfboYVoTz7CAr4C5QEpFUJ59VtK7DzvMVb18IyfHXVfX\nt99KinRurjvyTBBmV1eQjckAYDmwCPgUCFmIMXzUrSsZU7ffbnaqPW2aNLx67bXgdslzgZaIi6sT\ncCeQlHNm61Z4++3wrBNKhJvGJMwurgjt24c3CB/knIeOwNfAfoq70T0cs48WenSZffuk9esDD5ip\nYjplilQ3fucdOPdc/88fi0+FHnsDu4Bnot6zekd1M4utiN23rxTtfP11jzXzmKIiKZ0/bRrUq5ee\nrKZNZVFry5bu6GaCvDxx/23e7G5Fg9hq2H379oVgX/89owvwTpz3LcV95syxrOrVLWvkSH/PO3Gi\nnHfCBH/PWxqIO8ptDgUiNXMrAdOQrouOxvauXZZ15JGWtWKFjx+Eh3TrZlkDBqQnY+dOy6pUybL2\n7HFHJ5M0aGBZCxZ4ew4vxnWQ3VzR3ASMMa1EttC0KYwZI4sZn3vOH5fX11/D5ZfDRx/J2pcM52hg\nKrAQmAV8Dox3evCQIeLOCWsLgVjccHXNmAF//WtmuEXD6uoKQ3OsR4C9wHvxBGhzLG844wyp+XTB\nBdJm9fnnobxHo2X8eHGpDR8OZ5/tzTmc4lNzrNXAaakcuG+frAv6+GOXNTJI+/Zw1VVSdLRGvKuB\nAzIhXhKhXTtx8953n2lNkiPoPrMbkEyXc4A9cbbbMzbFK3bskBlDbq70j3e7odHYsdLY6dNPg9mb\nPmjNsd5+G954I7wZP4m46irpOHjrrakd37at9LgJQpwtXTZulFnnli3e3cBlW3Os84AHgYuJb0gU\nH6hWDT7/XJpqtWoFv/zinuwvvhBD8tlnwTQkQcOypOXyQw+Z1sR90nF1FRRIfbKwLt6M5eijoVYt\n6b4YJoJsTF4AKiOusAXAS2bVyV4qVJA1KNdeKz/Y+fEaKCfJqFFw440wenTmXAS8ZswYuVP9W2yo\nPgPo1Encqjt2JH/svHnQsCFUreq+XqYI43qTIBuTBsDxSC5+E+AOs+pkNzk5ki783HNw3nliBFJl\nxAgp3fLFF+GrdmuS/v1lVhK2IoZOqFxZ3FzJtkMoKoIXX5SLbyYRxqKPQTYmSgC59FJxe916Kwwa\nlPzxw4fLosgvv5Qgv+KM6dPFxfj3v5vWxDuSdXUVFsL118OGDRCVh5MRtGkj3/nevaY1cU7Y73E0\nAG+INWvg/PMlE2fgQHG/7N0rK7O3bYv/d+NGMSJjx8JpKeUy+U9QAvAXXyzB5TsyeH6+ebP09diw\nQWpUlcbevRK0z8+X5I2y9g8jTZrA4MHeLML0YlyrMVFS5rff4LLLpKfGH39IIPTww+GIIxL/Pecc\nqF/ftObOCYIxWbZMjPbq1Zl50YymbVupx3bhhYn32bNHZmgVKsAHH2TG2pJ43H+//G4efdR92WpM\nSqLGxDBFReJ++dOfJG040/z5QTAmN9wgd+yPPGJAC595/nm5ORk6NP72/Hy45BJpm/DWW2JQMpXP\nP4d+/SSOdMQR7spWY1ISNSaKp5g2JuvWwamnwqpVYrAznbVrZSX7r7+WXGOxc6csoq1XT2qShbk6\nsBPy8+VGYtw4GQMXXCCPRo3Sv2nLtnUmipL1DBwIN92UHYYEpHfN8cfLivZotm+Hjh2lV8mQIZlv\nSAAqVZJKB5s2yax03Tro3Fmqe999txiZPQFagaczE0UpBZMzk61bLerXh+++k8q62UK/fnIBjWQL\nbt4sa2vatZNSMpnmSk0Gy4KlS8UF9vnnMjbat5cZS+fOULOmMznq5iqJGhPFU0wakyeesFi9OnH8\nIFNZulQWMa5dK+6uDh0kbfjJJ7PbkMRjyxbJjvz8c0mVHj7c2XHZ5uZ6EmmMtRDpa1LbrxN7Vegv\nTHLDpKuXcj3kPGAF8CMQt0DK4MHw4IPunjQMY6VRI8la69dvEm3aSApwv37uGZIwjcGyZFavLkVS\nP/jAuSHxiiAbk6eBU5HqqiORBkK+EKbB5pXcMOnqpVyPyAUGIwalEdAVODF2pxYt4MQS76ZHGMZK\npJ3v449P4vbb3c9iC9MYDNO4Nl2CvjR+j3peGdhiShFFcZlmwEpgjf36A6Sg6fLonTKxoKNT7rpL\n1tWErQx7NhNkYwLwFHAt8AfQ3LAuiuIWxwLrol7/ApSoUtY8i0d8rVruz8oUbzEdznLSHAuk9/uf\ngRtj9lvhAnbQAAAZqElEQVQJpNk5WlFKZRXg9pr9SxEXVzf79TWIMbk7ah8d24qXuD6uTc9MOjrc\n7z3it+0NUWEORfkveRyYUFIbmZ1Eo2NbUVyiQdTzu4G3TSmiKC5THrkzrANURDIW1amjKB4xHPgO\n+aF9AhxlVh1FcZVOwPeIO6unYV0URVEURVGUWMpcyAUMsrcvQjowlnXs4cB8YC+QT+L1KsnK/Rgo\nsB9LgGouyIxs2whYQB+XdAVpexzRd5JLcu8BdgN7kOykeO2uEskcivyf38Xsn+73lUjuAOBnW9dd\nLsqN0APYb+sfS5jGdbqfUyK5kfc3k/hzCsq4bobMGvfYjxeSlOv32E7nWpTOuA4suciUvw5Qgfh+\n5M4UB+LPBGY6OHYAskalDuJO2OiC3FwkiHqC/f5G4DUXdM1F1h5MBlYjX7Abn8E5SHp1fXubG3Jz\nEUNynf3+KmCWQ5kArZFBHe+in+r3VZrcc6P+j6ddlAsSQB+LfGexP7owjWtI73MqbaysBM4CxiEX\nvdjE56CMaxCjlGdvuwBZ8+bGWPFibKdzLSpNVyh9XJcgSCvgoxdy7aN4IVc0FwHD7OezgMOQ1OLS\njr0MWGxvewNJh05XbjPkw19tvz8eaOqCrs2AgylOEf3Upc+gF3LHstLe9q5Ln8F25M5tHzAbCSY7\nkQkw1T4+lnS+r9Lk7oz6P2YA612SC/As8M8E28I0riG9z6m0sbISuB94ELkr7+SCrl6Ma5CZw2Z7\nWxV7PzfGihdjO51rUWm6QunjugRBMibxFnLF1kpNtM8xpRxbHblrBrHalVyQG7v/ScAmF3S9BBnE\ni+3X613QFaAucgczE7nrquCC3GORGdQziFvkXOTuzonM0kjn+yqN6GNuAqa7JPdie7/FCbaHaVzH\nHpPs51TaWClH8edUCMTWtw3KuAa5iauPjOsByIXfjbHixdhO51pUGmWN6xIEyZg4Lf/rZKFlTgJ5\nVinnSWYBZ7SMR5Afxw9pyjwE6ALMc3B8sotNywEHIa6FBzlwcVyqci3gbCRuchzwDuJ2KEtmMmWe\nk/m+ypIb2f4Icuc5wwW5hyJ3x9G+71T/3yCM64gsSP5zKo0KSI290j6nZGWCN+Ma4A7EiB4H3Efx\n4tKy5JoY26lei9Id1yUIkjFxspArdp9a9j7x3s+zn2+heCVxTcTHmqrc2jHv34D4I0e7ILMecudy\nOTJlrQX8m5JT0GTlRo7Jt5/PQe7mtqUpNw84Ghhhv78BONKBzDxKJ9Xvqyy5echFpzNwNc7HV2ly\n6yH+70UUf2fzODCNPUzjOnJMKp9TaXJzkKBw5HM6AqkCUNrnZGpcg3yu++3nw5E1b26MQS/GdqrX\nonTHdaBxspArOpDUnOJAUmnHDgC22tseoeyglxO55REX1A/IoHBL1+htTgLwTuXejvzI6iDT4L0u\nfQYFwBX2+yspGcRLJDNCnTjHpPN9lSa3M/J/NyH58VWa3GjiBSrDNK4jx6T6OZU2VqLfLysAb3Jc\ng2RcRQLw5yIXfTfGihdjO51rUWm6RuMoAB804i3kutV+RBhsb18EnF7GsSAfwgJkoP0B9HVJbh4S\n8CpAvsyXXJAZvW0f8IRLulZAesIUIAHzV12SG0kNLgDWIhcgpzLfRz63AsSfG6m7lu73lUjuj8iP\nd4+9LfKDSlduND8R/0cXpnGd7ueUSG70+9ts/YM6rpsiKcN7kPE9KEm5fo/tdK5F6YxrRVEURVEU\nRVEURVEURVGSo6wyEn9BUg/3IMv2ozkMyaRYDixDm2MpiqJkJU7KSByJBLv6UdKYDEMWTYFkLMSr\nN6MoiqIEAC/XmTgpI7EZmGtvj6YaUjNmqP26ENjhlaKKoihKenhpTFJZwh/hBMTQvIHkfL+GrMpU\nFEVRAoiXxiSZ0gKxlEdyoV+y/+YjfeAPoF69epGSBPrQh1ePlShhopdpBbIVL42JkzISifjFfsyx\nXw/nwIU2AKxatQrLslx/9O7dO+vlhknX3bstevTozerVFsuXWyxYYDFjhsXEiRZffmkxYoTF++9b\nvPGGxUsvWezY4Vw2xeUvlHCgXSsNUd5D2XORmjZ1kBWWVwBdE+wbW0TsV8RF1hApE9ABWOqJlkoo\nsSyYNQtefx2GD4fCQvl78MFlPy69FKpWNf0fKCnyIMUNqwYCjZECo+2BO5GCqQuQ0vTXGtIxK/HS\nmBQCdyHNcHKBIUiab2SJ//8hNfXnAFWRwmrdgUZIh7e7kf4EFZEaOvGW+StZxtat8M47YkQKCuDm\nm2HFCnjlFejTx7R2ig9MQTI/X0AyQSsg17FWyLXmbxzYSVBRHGF5wcSJE7NebpB0LSqyrK++sqwr\nr7SsatUs65prLGvSJMvavz89uU5A4iZKcIh09awCTEBmJ83t5yciXREVAyRb5z9o2L93JRPJy4M3\n34QhQ8Qt1a0bXHUV/OlP/umQk5MD4f+dZBpfAZ8hLRsWA38GbkaaZf2OGBrFZ4LUz0RRANi/H+65\nB045BX75BT7+GBYsgDvv9NeQKIFlKvAA0ulzKnAbEicBWbPmpfteSYB+6EqgsCy4/36YOxfWrNFA\nuRKXqUgK8AykRPxu+z2QMvSLkWZOGoD3kbBP39XNlWH07g2ffQaTJsFhh5nWRt1ciuIUr91c6RR6\nBMkCW4C0olQynGefhQ8/hPHjg2FIFEVxjpdurlyku1cHZAHjHGAUkh4cYSuSAnxJAhndkYrBGlDL\ncF5/HQYNgqlT4ajQdJpWFCVCUAs9gjSx7wy8jroZMpoPPxT31oQJULt22fsrihI8glroESR//EFk\nMaOSoXzxhWRujR0LDRqY1kZRlFTx0s2VTmT8AmATEi9pW9qOfaKWPbdt25a2bUvdXQkQkyfDjTfC\n6NGSBhwEJk2axKRJk0yroSihw0v3UXOgDxKEBynAth/oH2ff3kgJlWfs1/9C0voKgYORciufANfF\nHKfZXCFlzhw4/3xxcbVrZ1qbxGg2l6I4w0s3V3Shx4pIocdRCfaN/bH2QqoMnwBcCXxDSUOihJQl\nS+DCC2Vle5ANiaIozglyocdodPqRIaxcCeeeCwMHikFRFCUzCPv0Xd1cISIvD1q1gp494ZZbTGvj\nDHVzKYozwv4jUWMSEgoLoW1b6NQJHnnEtDbOUWOiKM7QQo+KL/TvL42pemofPEXJSMJ+x6UzkxAw\ndy507gzz50OtWqa1SQ6dmSiKM/yYmaRan6s2MBFp17sEuMdbNRUv+OMPuOYaeOGF8BkSRVGc4/Ud\nVy7wPQfW5+rKgfW5jgSOR+pzbad4rUkN+7EQqIyUlL4k5lidmQScO++EHTuk1W4Y0ZmJojjD634m\n0fW5oLg+V7RB2Gw/zo859lf7AZIqvBw4JuZYJcCMGSPlUhYuNK2Joihe47WbK936XBHqAE2AWS7o\npPjA5s1w880wbJiWk1eUbMBrY+KGD6oyMBxZ0Bi7mFEJIJYl/dqvvRbatDGtjaIofuC1mysPCaRH\nqI3MTpxSAanJ9Q4wMt4OWugxeAwdKi13P/zQtCbJo4UeFSU1vA4slkcC8OcA64HZlAzAR+gD/E5x\nAD4HGIY00LovgXwNwAeMlSuheXOpCHzSSaa1SR8NwCuKM/z4kXQCnqO4Pte/Kb0+1+9Ifa7TgCnA\nYordZT2BsVGy1ZgEiMJCaN0arrwSunc3rY07qDFRFGeE/UeixiRAPPGEtN0dNw7KZUhtBTUmiuKM\nsP9I1JgEhNmzpQrw/PlwbCr5egFFjYmiOCND7h8Vk+Tnyyr3wYMzy5AoiuKcsN9x6cwkANx2G+ze\nLWtKMg2dmSiKM7xODVYynOHDJUaiq9wVJbvx2s2VapFHJ8cqhpk5E26/XQxKtWqmtVEUxSReTt/T\nKfLo5FhQN5cxVq2SromvvQYXXGBaG+9QN5eiOMPLmUl0kcd9FBd5jGYzMNfenuyxiiG2bpX+JI89\nltmGRFEU53hpTNIp8uhWgUjFZfbsgUsugYsugjvuMK2NoihBwcsAfDr+J8fHam0u/9i/H268EWrU\nkDa8mYjW5lKU1PDSF9wcqbd1nv26J1IuJd5lqDdSETgSM3F6rMZMfKRXL5g0Cb7+Gg45xLQ2/qAx\nE0VxhpdurrlAA6QXSUXgCmBUgn1jf6zJHKv4wKuvwscfw6hR2WNIFEVxjpdurkLgLmAcxUUel1N6\nkcfuSJHHXQmOVQzw5Zfw+ONSd6t6ddPaKIoSRMI+fVc3l8csXAgdO8Jnn0GLFqa18R91cymKM7Q2\nl5KQdeukeONLL2WnIVEUxTlqTJS47NwJ558P99wDl11mWhtFUYJO2Kfv6ubygN27ZS1JvXrw4ouQ\nE/ZRkgbq5lIUZ+jMRPkvu3bBgAFQt66sJRk0KLsNiaIozjFd6BFgkL19EdAk6v2ewFLgO+A94CDv\n1MxuduyAfv3EiMybJ1WAhw2D8lpTWlEUh3hpTHKBwYhBaYQUajwxZp/OQH1kTcktwMv2+3WAbsDp\nwCm2rCs91DUr2bpV6mvVqwc//ghTpsAHH0DjxqY1UxQlbDgxJu8gF/a/JCnbSbHGi4BIS6VZwGHA\n0cBO+5hDkbUwhyLVgxUX2LQJHnoIGjaEjRth1iyZifwl2W9YURTFxokxGQocA7wArAY+Ae51cJyT\nYo2J9tmGlFb5GVgP/AZ85eCcSink5cG994rR+OMPWLBAVrbXq2daM0VRwo4Tr/g3wBSgKdAeuA04\nGXiujOOcplnFC/HWQwxWHWAH8DFwNfBu7I7ZWuhx926YMwdmz4bt2yV4Hnnk58d/XVQE3brB0qVQ\ns6bp/yCYaKFHRUkNJ7k6XwOVkI6I3wJTgU0OjnNSrPEVYBLiAgMJ1rcB2gIdgZvt96+15d0Zc46s\nSQ3esgWmTYNvv5W/ixbBySfDmWfCUUdB5crxH5UqFT+vUkWD6smiqcGK4gwnl5bFyKzkZCSWsR0x\nLLvLOC66WON6pFhj15h9RiE1uD5AjMVvwEaky+JjwCFIS98OwGwHumYEliWdDCOG49tvYf16OOss\n6W741FPQrJkYCkVRlCCQzB1XFeAG4AGkQKOTVN1OiDssUqzx3xxY6BGKM77ygRuB+fb7/wSuR2Yz\n85FZSmxHxoybmfzwA1x8Mfz+O7RuDS1bigE55RTIzTWtXfahMxNFcYaTH8ndQGvgr0gAfqr9+MZD\nvZySUcZk2jS49FJZ8/GPf+iCwSCgxkRRnOHEzXUwklk1n5IzA8UlPvkEbr8d3n4bzj3XtDaKoijJ\nEfY7royYmQwcCM88A6NHQ5MmZe+v+IfOTBTFGZrbY5CiIujRA776CqZPh+OOM62RoihKagS5Ntdh\nwHCkw+IyJNsrY9i9W0q7L1ok2VpqSBRFCTNBrc0F8Dwwxj6mMRnUtnfzZmjfHg49FMaOhcMOM62R\noihKenhpTNKpzVUNySAbam8rRFbCh56VK6VrYfv2Emw/SGshK4qSAXhpTFKtzVULOAHYDLyBZJG9\nhhR7DDUzZ8rakQcflIWHmvqrKEqm4KUxSbU2l4UkBpwOvGT/zQcedk81/xk9Gi66CIYMgVtuMa2N\noiiKu3iZzZUH1I56XRuZeZS2Ty37vRx73zn2+8NJYEzCUOhxxQq46SYYMwbOOMO0NkppaKFHRQke\n5YFVSG2uisBC4gfgx9jPmwMzo7ZNARraz/twYIHICFbQ2bPHsk47zbJeftm0Jkoq4HyGrShZjZcz\nk0KkiOM4imtzLefA2lxjEIOykuLaXBHuRkrOV0SMUvS20NCzJ9SpA7feWuauiqIooSXsIWD75jGY\njB0r/UMWLoQjjjCtjZIKugJeUZyhK+A9YuNGiZO8+64aEkVRMp+w33EFcmayfz+cfz6cfrqkACvh\nRWcmiuIMr8upZCXPPy+tdKMSzRRFUTKasN9xBW5msmAB/O1vMGsW1K1rWhslXXRmoijOCHKhR5As\nsAXAaK8UdJP8fOjaVWYmakgURckmglzoEaA7UjE4WNOPBHTvDmeeCVddZVoTRVEUfwlqoUeQ1fCd\ngdcJgZvh449h8mQYPNi0JoqiKP4TxEKPkX0GAg8C+71S0C3WroU774T33oMqVUxroyiK4j9erjNJ\ntdBjDnABsAmJl7Qt7WDTtbkKC+Hqq+GBB7TuViagtbkUJTW8dB81R2pqnWe/7onMMqJrbL0CTEJc\nYCDB+rbAPcC1SEmWg4GqwCfAdTHnMJ7N1acPTJsG48ZBOU20zjg0m0tRzJNuoccIbUiczWWuAqBl\nWVOmWFaNGpa1fr1RNRQPISTJH4pimiAXeowmcD/ojRsla+v116FmTdPaKIqimCXs03f75tFfCgtl\nYWKLFtCvn++nV3xE3VyK4oyw/0iMGJOHH4b58+HLLyE31/fTKz6ixkRRnKFVg5Nk5Eh4/32YN08N\niaIoSoSw33H5OjP58Udo2VL6uZ95pm+nVQyiMxNFcYYmszokPx8uvRT69lVDoiiKEosfxiTVYo+1\ngYnAUmAJsvbECJYFt90Gp54qfxVFUZQD8TpmEin22AHIA+YAo5AU4QjRxR7PRIo9Nkfqed2HrE+p\nDMwDJsQc6wuvvAKLFsHMmZCjDg9FUZQSeD0zSafY46+IIQHYhRiRY7xVtySzZ0Pv3vDJJ3DooX6f\nXVEUJRx4bUxSLfZYK2afOoj7a5bL+pXKli1w2WXw6qvQoIGfZ1YURQkXXru5Ui32GH1cZWA40ttk\nV+yBXhV6LCqSFe5du8Ill7giUgkBWuhRUVLD6whAqsUe2wAbgQrA58CXwHNx5HuWGvzYY1LAcfx4\nKK+rcbIWTQ1WFGd47eaaiwTW6yDFHq9AAvDRjKK4GnBz4DfEkOQg9byWEd+QeMbnn8Obb8riRDUk\niqIoZeP1pTKdYo8tgWuAxUhfE5CZzVgvFf7hB7jpJlnpfvTRZe+vKIqihH/67pqby7JgyBDo2RP6\n9xeDoijq5lIUZ6gTB1i/Hrp1gw0b4Jtv4JRTTGukKIoSLrK6nIplSd/2Jk2gaVNZlKiGRFEUJXmy\ndmayeTPcfjssXw5ffCHGRFEURUkNr2cmqdblcnpsSowcCY0bwwknSCl5NSSKoijBJRfJ0KqDrBcp\nqwf8mRT3gHdyLCTZA377dsu67jrLqlfPsqZOTbzfxIkTU2kXXiZhkhsmXb2USwBbRitKEPFyZpJq\nXa4aDo9NivHjZTZSpYoUbWzVKvG+Xq2ADpPcMOnqpVxFUZzhZcwkXs2t2E4giWp3HePg2P9iWbB9\nO/z8szzWrSv5F2DoUOjQIeX/R1EURUmAl8Yk1bpcSXHiiWIwKlaE2rXhuOOK/zZuXPy8Vi1dza4o\nihJGmnPgavWelAykvwJcGfV6BVJ+3smxIK4wSx/68PCxEkVRjFIeWEVxXa6yAvDNKQ7AOzlWURRF\nyRI6Ad8jd3c97fdupbg2F0gnxpVIavDpZRyrKIqiKIqiKIriPV4scjwcmA/sRaoS93ZJ7sdAgf1Y\nAlRzQWZk20bEX9/HJV0BXorSd5JLcu8BdgN7kOy7M5KQORT5P7+L2T/d7yuR3AHAz7auu1yUG6EH\n0qvn8ATbFUXxCa8WOQ4AttjbeiIXhHTl5gJ5wAn2+xuB11zQNRdZWzMZWI1cuNz4DM4B/gDq29vc\nkJuLGJLr7PdXUbKtciKZAK2Ri3W8i36q31dpcs+N+j+edlEuQG0kYWQ1akyULCVIhR69WuR4GdIT\nZQ3wBpKKnK7cZshFZbX9/nggtihLKro2Aw4G7rZff+rSZ9ALmT2ttLe969JnsB25098HzEaSJZzI\nBJhqHx9LOt9XaXJ3Rv0fM4D1LskFeBb4Z4JtipIVBMmYJFrA6GSfeIscI8dWR+6aQe5GK7kgN3b/\nk4BNLuh6CbAZuZiCXPDc+AzqIjOJmYiLq4ILco9FZlDPIO6jc5FZixOZpZHO91Ua0cfcBEx3Se7F\n9n6Ly9hPUTKaIBkTy+F+ThY55iSQZyV436ncaDkRHkE6Sv6QpsxDgC7APAfHJ7vQsxxwEJJ+/SDF\nM5905FrA2Ujc5DjgHcSdVpZMp99zZF+n31dZciPbH0HiMTNckHsoMuuLjr9oIy0lKwmSMclDfM8R\naiN3fKXtU8veJ977efbzLUA9+3lNJHaQqtzaMe/fgPjZR7sgsx5yV3454j6rBfybkq6VZOVGjsm3\nn89BZinb0pSbhywwHWG/vwE40oHMPEon1e+rLLl5iDHtDFyN8/FVmtx6SAxmEcXf2TzgqDJ0URTF\nQ7xa5DgA2Gpve4SyA69O5JZHXFA/IBc8t3SN3uYkAO9U7u2I8aiDuOT2uvQZFABX2O+vpGRwOpHM\nCHXiHJPO91Wa3M7I/92E5MdXaXKj0QC8ogQELxY5Hg4sQC4kfwB9XZKbhwSeCxDD8pILMqO37QOe\ncEnXCsDXtq57gFddkhtJDS4A1iIXaqcy30c+twIkTnGj/X6631ciuT8ihmmPvS1iKNKVG81PqDFR\nFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFCV89DKtgKIoihJ+fjetgKIoihJ8ogs6\nDkRWwAO0Bz5BilMuAN72XzVFUTKNIBV6VNxlCtLQCaTXSiWknlYrYBxSBqUJcK0R7RRFySjUmGQu\n84G/AlWQelQzEKPSGmn0pCiK4hrlTSugeMY+pIrtDUgjqMWIi6sesNycWoqiKErY6I1U822P9Nj4\nGYmXgJSk15sJRVFcQd1cmc1UpIf5DKSt8G6KXVyvIrMVDcAriqIoiqIoiqIoiqIoiqIoiqIoiqIo\niqIoiqIoiqIoiqIoiqIoiqIoiqIoihIM/h9hoa5htwQhEAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10bd54f50>"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2 Page No : 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math\n",
+ "from numpy import arange,sin,cos \n",
+ "from matplotlib.pyplot import plot,subplot,xlabel,ylabel,suptitle\n",
+ "#Example 2.2\")\n",
+ "# Given\n",
+ "#Inducmath.tance used is 30mH\")\n",
+ "#Current flow is i = 10*math.sin(50*t)\")\n",
+ "L = 30*10**-3;\n",
+ "iamp = 10;\n",
+ "t = arange(0,0.06283+0.01,0.01);\n",
+ "i = 10*sin(50*t)\n",
+ "#v = L*d/dt(i)\n",
+ "#d/dt(math.sin 50t) = 50*math.cos t\n",
+ "vamp = L*iamp*50;\n",
+ "v = vamp*cos(50*t)\n",
+ "\n",
+ "#math.sinA*math.cosB = (math.sin(A+B)+math.sin(A-B))/2\n",
+ "\n",
+ "pamp = vamp*iamp/2;\n",
+ "p = pamp*sin(100*t)\n",
+ "#On integrating 'p' w.r.t t\n",
+ "\n",
+ "wL = 0.75*(1-cos(100*t));\n",
+ "\n",
+ "\n",
+ "subplot(221)\n",
+ "plot(t,i)\n",
+ "suptitle ('i vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('i');\n",
+ "\n",
+ "subplot(222)\n",
+ "plot(t,v)\n",
+ "suptitle ('v vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('c');\n",
+ "\n",
+ "\n",
+ "subplot(223)\n",
+ "plot(t,p)\n",
+ "suptitle ('p vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('p');\n",
+ "\n",
+ "subplot(224)\n",
+ "plot(t,wL)\n",
+ "suptitle ('wL vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('wL');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm8VeP3x99XgyY0UoTSQIkIDeRbFBpIZMgQFX0zVGRs\nolIRfcOvKImoUCRTRRqUQpPm0qzSQINIc93u/v2x9nHvPZ1777nn7LOfvfdZ79frvM5w93n2Ouc+\n+6xnWOuzQFEURVEURVEURVEURVEURVEURVEURVEURVEURVEURVEURVGiIhU4z6Vz9QDuzvD8W5fO\nqyiKojjEMdxzGquAsRmeWy6dV1EURYmCicA4+/Ei4DDwB/AzcBRYCRwns9MYBmzM8Pwo8CdQBvgN\n+aE/ardxMMPtBmAvcCpws33cfKCAfY5DQJr9OA1Yax9zEPjVsU+sKIqixExbYIv9eC/yw20BC4FR\nwF+c6DQuAfYB5eznh4HNyNLSHuAIkALsBNrZx5RAnMNeoAnwnv2+g0A9+5z7kJnGDvvcoDMNRVEU\nT1EQWX4qg8wWViB7GH8BjwDLkVF/+PLUDqAvUB354T+C/PgfR378OwPf2I/HAZfZ71sGvI3MIt5G\nnMIg+32LgN/tthrbx6vTUHzBSaYNUBSXOAT8g/xwLwd+RH6oTwXOAmZk8b6xwH1Ae2CX3U4JxIHM\nQGYd5wD3AIWAeUAjYDJwnd3+W/a5WiOzkunAKUA+xOEoiqIoHuQ7ZHbxBNAQ+SE/BqwBPkBmARXD\n3lMVmUXsBXohTmQLsuQE8CQyYwixBZmZ1LPb3ma/HloOe9du08rQBsgs5+T4Pp6iKIriJE8gP9bF\nkH2KNGQj+wCytHQMcRyp9m2B/b7t9vvOIf0HPxWZbexHHMNhxDFsRJbCCtptTbPbWG6/r7z9PNX+\n+0Ek9HYO4nx0I1xRFMWDlEN+yBVFyQW6p6EkM7r5rCiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiK\noiiKoiiKoiiKoihKUjICURHNmJlbHJiKqINOAYoasEtR4iFSv+4FbAUW27dG7pulKP7nauBSMl9c\nrwDP2I+fBfq7bZSixEmkft0T0b5SFF9jWkZkNlLPICPNgJH245FAc1ctUpT4idSvQQo2KYqvMe00\nInEGMrXHvj/DoC2K4iQdgaWIPLouuyq+xItOIyMWKiqnBIOhiCz6JUjVvoFmzVGU2PCi09gBlLYf\nl0EqnWWiQoUKIWeiN70l6rYeZ9mZoe13gJqRDipTRvu23hJ6i7tfe9FpfAXcbz++H/gi/IANGzZg\nWZYjt549ezrWVqztpaZaDB1qUaqURceOFnv2pLd16JDFl19a3HOPRdGiFtdcI8fu2GHucyZDW0AF\nh/t1mQyPbyGLWh6//77h3z4xa5ZFp04WZ51lUbWqxXPPWSxdapGW5u/vVtsy15YT/dq00xgD/ASc\nj5TJbINES12HhNxeS8Cjp+bMgSuugI8+gmnTYNAgKFYs/e8FCkCzZvDBB7B9O3TqBLNmQeXK0LAh\nvP027Nplzn4lIuH9ui3wMrAM2dOoB3TOroE8eeDqq+H//g9++w3efRcOHoSbb4bzz4euXWHhQpDf\nAUVxj7yGz39XFq83dNUKA+zYAc8+C1OnwoABcNddkJJDbE3BgtC8udwOHYJvvoFPPoFnnoGaNeGO\nO+CWW6BECXc+g5Ilkfr1iFgbO+kkqF1bbgMGwKJF8Omn0LIlpKZCixZyq1VLjlWURJL0Xax+/fqu\ntpeaKqPHatWgVClYvRruvjuyw8iurYIF4dZbYexYmYH8978wZQqcdx40agQjRsCePdHblRuSoS2v\nkpICl10GL70Ea9fCl19C4cLw4INwzjnw2GMyEz1+3LvfrbZlri0n8GvcuGX5cF4+cyZ07AilS8sy\nVJUqzp/jwAGYNElmIFOnwlVXiVO6556cZzJKOinyZZn4xmLu26tWwfjxMgv54w9xIF266P9dSceJ\nfu3X7uQrp7FtGzz1FPz0E7z6qswQ3LiQ9++HiRNlVHr77dCjR+LPGRT86DQysnatDBSqV4e33oK8\npheiFU/gRL9O+uWpRHL0KLzyily4FSvCL7/I2rNbI78iRWTd+9tvYfhwmX0oyUHlyjBjBmzdKvtc\nBw+atkgJCuo0EsSUKXDRRbK+PHcu9Okja88mKF0avvoKOnSA+fPN2KC4T5EiMGGCROM1aAB//mna\nIiUIqNNwmE2bZPnp4Ydh4EBZHqpY0bRVMtt5910Zdf72m2lrFLfIlw/efx/+8x/Z39q82bRFit/x\nqtPoCqxEEqA+Ak42a07OWBa8+CJcfjnUqAErV8KNN5q2KjM33QRPPin3+/aZtkZxi5NOgpdfhoce\ngrp1YXnEtEJFiQ4vboSXA74DqgBHgI+Br0lXvgUPboQPHQrDhkkI5LnnmrYmaywL2reH33+HL76Q\nJDLlRPy+EZ4VY8dKgui4cVCvXsJOo3iUoG6E/wMcAwohyYeFgG1GLcqBFSvguefg44+97TBANuHf\nfFM2Rp95JufjlZjwbHGxli1hzBiJphs/3oQFit/xotPYgyiA/gZsB/4Gphm1KBsOHZILccAAkXfw\nA/nySSz/pEkiQ6I4znucWJmvC+I0KgPT7edGaNBAIuo6dZIBhKLkBi9Gb1cAHkeWqfYC44B7gA8z\nHtSrV69/H9evX99Y1uSTT0qUVOvWRk4fM8WKSWTN1VdDhQryQ5LMzJw5k5kzZzrV3Gyk/2akGaI5\nBbLUOhODjuPSS+GHH+CGG2Spsk8fTQJUosOL3eRORLDwQft5K6A28GiGYzyxp/HFF9C5MyxZAqed\nZtqa2Pj+e9Gs+v57uOAC09Z4BwfWfssBE4CL7Od/ASEpyhRkRl3sxLe527d37YKmTWXgM2yYJgEG\nnaDuaaxGnERB5MM1BH4xalEEtmyRDeWPPvKvwwDZDO3fXyKqNI7fNUK1DYxTqhR8953MNpo3Fxka\nRckOL44rlgKjgJ+BNGAR4KmV9+PHoVUr0fapU8e0NfHTpg2sWSP5JVOnQv78pi0KJKHiYn+QRXGx\nEG4vvRYpIlF/7drJMuXEiVCyZEJPqbiEw8uugDeXp6LB6PJU374wfbrUvwhKyGpamkicFCsmSYDJ\nvr6dgOWpV4A/kboaXZDoqUh7Gsb6tmVBt27w+ecweTKUK2fEDCWBqGChAX76SUbkCxfCWWcZMSFh\nHDggG+N33im1PpKZOC+uMcimd0lkhvE88CXwCXAOsAm4A4kMDMf4ft2gQaKZNmmSKAkowUGdhsv8\n/bdEnbz+ulRQCyLbtkkxn0GDxDkmK0FN7ouWTz4RrbJPPgGPlXNQ4kCdhqsnlBH46afDG2+4emrX\nWbhQCjlNniwFf5KRZHcaICq5d94puRy3327aGsUJgho95UlGjJAqewMGmLYk8Vx2mST9NW8uMw8l\nObnmGlFr7txZpPUVBXSmERWrV8ta//ffQ9Wqrp3WOC+/LNIos2ebk3U3hc400tmwQRRyx4wRR6L4\nlyAvTxUF3gEuROLZ2wJzM/zdtQvryBGoXVsUQtu3d+WUnsGyoG1b2csZP17UUpMFdRqZmTZNwszn\nzZNa5Io/CbLTGAl8jwi/5QUKI5IiIVy7sDp3lvoTn36anGGoR4/CdddJPkr//qatcQ91GicycKAk\ns/7wAxQsaNoaJRaC6jROAxYD52VzjCsX1qRJUkxpyRIoXjzhp/Msu3fLbKt7d0kETAbUaZyIZUnd\n8VBhp2QcRPmdoG6Elwd2IUqhi4DhiDy6q/z+Ozz4IHzwQXI7DJDs4IkToUsX2ddRkpOUFHjnHVi6\nNPgRhErWeNFp5AVqAEPs+wO4rAaalgb33Qf//a+UyVREzPCjjyQE848/TFujmKJQIckY79dPBxDJ\nihe1p7batwX280+J4DQSqc/zv/9JnYznnnOsyUDQoIE40+7dRWokSCRCoycLNiGFxo4jxcZqunFS\nJylfHkaPljoy8+fD2WebtkhxE6+uSs5CpNHXAr0QxduMwhYJW/ddsEBqe8+f7/0qfCb45x8pNjVp\nktRCDyoJ3NPYCFyGSKNHwrN7GuEMGCAZ47Nm6ca4XwjqRjhAdSTkNj+wAWiDC9FT//wjP4T9+8Nt\ntznefGB45x0YOVJ+LIK6GZpgp3E5Il4YCd84DcuCu+6CAgXgvfeC2xeCRJCdRk4k5MJq1UpGTFoC\nNXuOH4fLL4euXaWAUxBJoNP4FRkAHQeGIYEeGfGN0wARuaxTR/b/OnQwbY2SE070ay/uaRhh9Gj4\n+We5KdmTJ4+INt5/vxRv0qWJXHEV8DtQCqkZvhopD/svXillHA2FC0sFyzp14OKLNXDEa2g9jXQc\nHY2tXy+dfto0lYLODbfdBpdcAj16mLbEeVzK0+gJ7AcGZnjNVzONEFOmQOvWkjGuG+PeRZenHODo\nUahbV5amOnZ0pMmkYeNGWaZatix4tUUS5DQKAXmAfYjKwRSgt30fwpdOA0SrbPx42esqUMC0NUok\n1Gk4wLPPwi+/wFdf6UZeLHTrBlu3wqhRpi1xlgQ5jfLA5/bjvMCHwEthx/jWaYTKBxQpotUfvYo6\njThZskTqRixfDqVKOWBVErJvnyT+ffaZFG8KCiojEhv798tS78MPwyOPmLZGCUedRpxcf73UjNDO\nHR/vvw/Dhkkp3KCMLtVpxM6GDXDllbJUVbeuaWuUjARVeypEHkS4cEIiGp8yBTZvhnbtEtF6cnHf\nfZCaKjIjilKhguTx3HGHLF0qwcLLTuMx4BeknoajHD8OzzwjSXz58jndevJx0kkSgtuli8TtK0qj\nRhJY0qKF1KRRgoNXnUZZoAmSFe74EsGHH0p8efPmTrecvFx1lSxFvPKKaUsUr9Cli4TfPvqobJIr\nwcCrK9DjgBeBU4GngJvC/h7zuu+hQ6KdNHasrLsqzvHbb3DppbB4sf+ru+mehjPs3y+1WDp0kOqX\nilmCmhF+I7AT2c+on9VBsWbNDhoEV1yhDiMRnHOO/Dg8+6zUk/YTLqrcJhVFioiU+lVXwUUXyb3i\nb7w403gRaAWkAgWQ2cZ44L4Mx8Q0Gtu9G6pUgR9/hMqVnTBVCefAAQnBHTvW3z8QOtNwlq+/lqCT\n+fODlwjqJ5Ih5LYeDi5Pde4Mx45p1bFE8+GH8Npr8gNxkld3zXJAnYbz9OsnFSBnzoSTTzZtTXIS\n9JDbEI5cQb/+KqKEzz/vRGtKdtx9t0SljR5t2hJP0ggRKVxH5hoxgadbNzjzTJXr8Tten2lkRa5H\nYy1bQrVqwRTX8yLz5sGtt8KaNbKu7TcSNNPIA6wBGgLbkOqUdwGrMhwT2JkGiILAFVeIrP7995u2\nJvlIlplG3MyfD7Nny/KU4g61asG118JL4cpKyU1NYD1S8vUYMBa42aRBbnPKKfDpp/DUUyJ0qfiP\nwDsNy5JEvt69JTdDcY/+/UVeZONG05ZE5r777uOvv/769/mePXto27ZtIk95FrAlw/Ot9mtJRbVq\nkgzaogXs3Zvz8Yq38GLIraNMmgS7donWv+IuZ50Fjz0mTnvcONPWnMiyZcsoVqzYv8+LFy/OokWL\nEnnKqNad/FSEKVbuuUeiGNu0EY2qoGiWeQ2vFGH6Eak+tp8TLwILCZFNNFGt+6amSlGlV16Bpk1d\nsEo5gUOHJAR31CioV8+0NZmpXr06M2bMoHjx4oDMNOrVq8fy5csTtadRG+iFbIYDdAXSgJczHBPo\nPY2MHDkCV18tGlVPPWXamuTAVHJfKPre89ub778Pp58OTZqYtiR5KVhQnPbjj0sp3Tx5TFuUzpNP\nPkmdOnW44447sCyLcePG0b1790Se8megElAO2A7ciWyEJyUnnywz0Jo15aalYv2BVyeFZwOjgNOR\n2cvbwKAMf89xNHbggCTwffGFRGso5rAs+UG4/3548EHT1mRm5cqVfPfdd6SkpHDttddStWpVIKF5\nGo2B15FIqncJUBGmWPnmG+kXCxdC6dKmrQk2QU7uK23fliAzmoVAc9JDE3O8sPr0kYp8fpOzCCoL\nF8KNN0oI7qluLGDGiSb3uUvPnvD99zBtGuQN/E6rOYLsNML5AhgMTLefZ3th7dgBVavCggVw3nlu\nmKdEQ9u2ULKkP5Rw1Wm4y/Hjsox86aUSdackhmRxGuWA74ELkc13yOHCevRRyJ9fpCwU7/DHHxJu\nOXcuVKxo2prsUafhPrt3Q40aMHgw3JxU2SvukQxOowgwE+iLzDZCZHlhrVkjdR1Wr4YSJRJvoJI7\n+vcXp/HFFzkfaxJ1GmaYOxeaNYM5c6QCoOIsQZVGD5EPUbf9gMwOA8g6lr1rV3j6aXUYXuXxx2Xp\ncPp0aNDAtDXpqDS6N6hdG557ThL/5syR6DvFW3h1ppECjAT+BCKJf0Qcjf34I9x1l8w2tLN5l88+\nk43PxYu9u+mpMw1zWJaIXhYqBO++a9qaYBFk7amrgHuBa5BiTItJT4iKiGXJDKNvX3UYXueWW2RD\nfPhw05YoXiQlRfrGnDkwYoRpa5RwvDrTyIkTRmOffQYvvCChnV5KIFMis3QpXH+9zAqLFjVtzYno\nTMM8q1ZJfs/UqXDJJaatCQZBnmnkimPHpIj9K6+ow/AL1auLtMuAAaYtUbxKlSoSSdWiBfz9t2lr\nlBCBmGm8+SZ8+SVMmWLQIiXXbNkiI8gVK6BMGdPWZCYBM41ewIPALvt5V2ByhON0phFGx47w229S\na9yvlSC9QjKE3GbFvxfWP/+IXMjkyTqF9SNPPQUHD8KQIaYtyUwCnEZPYB/wag7HqdMI4+hRWaa6\n5RZ4NqlqHTqPLk8hyxs33KAOw6907QqffALr15u2xBX8OkgzSv780kdee03qiytm8WsntizLYvt2\nuOgiCd085xzTJimx0q+fLFF5SScsQTONNsBeRO32SSDSSr3ONLJgyhSpi7NwofeWM/1C0i9PtWsH\nxYvDyy/n/AbFuxw4AJUqwcSJIiPhBWK8uKYiQpvhdAfmkr6f0QcoAzwQ4VirZ8+e/z4JahGmWHnh\nBRE1nD4d8uUzbY33CU9a7d27NwTUaTQiXT76HTIXqQGwVqywuOYaWLvWmyGbSu4YMkSCGb791rQl\nQoJDbssBE4CLIvxNZxrZkJYmUXfVqmnkXSwEdU8jD/AG4jiqIkVqqoQf9Oyzsh6uDiMYtGsHGzbA\nd9+ZtiRhZFxQuQVYbsoQP3PSSfDBB1K86bPPTFuTnHhxplEHWf8NZYB3se8zCiZb5ctbrFol1b+U\nYDBmDLz+uojWma4ZnYCZxijgEqSo2EagPbAjwnE604iC+fNlxvHTT7K0qURHUGcaZwFbMjzfar+W\niRdfVIcRNO68U8IrP//ctCUJ4T7gYqA6UlAsksNQoqRmTSm0duONIrmvuIcX5eKiGmatWtWLkNCt\nbhYGg5NOgpdeEiXcZs3cFTNUlVv/8dBDsHOnqCXPnAmlSpm2KDnw4vJUbSR7NrQ81RVII/NmuE7h\nA4plwbXXwj33mK0nrtpT/sCyREp94kTZDyte3LRF3iaoIbd5gTVAA2A7MB/ZDF+V4Ri9sALMvHlw\n220SGWdKsVidhn+wLHjmGZgxQ8JxNTgma4K6p5EKdAC+BX4BPiazw1ACTq1acMUV8MYbpi1R/EBK\nioiVXnUVNG4s0kJK4vDiTCMadDQWcFatgnr1zOXh6EzDf1gWPPKIqAt88w0UKWLaIu8R1JmGolCl\nCtx0k4wgFSUaUlJE8bpyZQmkOHjQtEXBRGcaimcJSacvXw5nnunuuXWm4V+OHxeNqp07RWWgQAHT\nFnmHoG6ER4NeWEnC00/D/v0wdKi751Wn4W9SUyUC78AByRzPn9+0Rd5Al6eUwNOli0hGrFtn2pKo\nuR1YCRwHwuUXuwLrgNXA9S7blVTkzStyI/nzS9LosWOmLQoO6jQUT1OiBDzxhMTi+4TliLbUrLDX\nqwJ32veNgCHo9ZdQ8uWDsWPFYdx7r8w+lPjxYqcdgITYLgU+A04za45imsceg1mzpI6CD1gNrI3w\n+s3AGOAYsAlYD9R0z6zkJH9++PRTqTHeurXsdyjx4UWnMQW4ENHoWYtM6ZUkpnBhmWl09XdPOBPR\nUQsRUVNNcZ4CBeCLL2D7dlFTTkszbZG/8aL21NQMj+cBLUwZoniHBx+EgQOl+E6DBqatybLYUjek\nTka0RNzx7hUSVUN11ZyiYEGYMEGS/x55RAIrTCspu0EiNNW8/rVNQKb0H4W9rhEmScjYsfDqqyIz\nkugL3oEokxlISddF9vNwif/JSAmAeWHv076dQPbtg+uvF8WB//u/5HAcGfFz9NRUZMMw/HZThmO6\nA0c50WEoScodd8hm5vjxpi2JmowX51dASyA/UB6ohOiqKS5yyimSLf7TT6JXpf4595hanrouh7+3\nBpogooUR0Sl88hGSTu/UCZo3d1Y63cFp/C3AIKAkMAlYDDRGdNQ+se9TgUeIsgyA4ixFi8KUKaKm\n3KMH9O2bfDOOePDiV9UIGAjUA3ZncYxO4ZMUy5I9jbvukk3NRKHJfcFn926oX19msM8/b9oadwhq\nRvg6ZAq/x34+BxmVZUQvrCRm/ny49VZJ+EuUdLo6jeRgxw4RxmzTBp591rQ1iSeoTiMa9MJKclq0\nEAn1Z55JTPvqNJKH7dvFcdx9tygQmKrh4gZ+3ghXlLjo1w8GDIC//jJtieJ3zjxTCjgtXw4VKkhU\n1aFDpq3yLuo0FF9ywQVw880qna44Q9myImw4aZI4kIoVYfBgOHzYtGXeQ5enFN+ydStUr54Y6XRd\nnkpuFi2CXr3kvksXSS4NgsS6Lk8pSU3ZsvDAA/DCC6YtUYJGjRrw1VciP/Ltt1CpEgwZAkeOmLbM\nPDrTUHzNnj1w/vnw449Ssc0pdKahZGTBApl5LF8O3bpB27b+rNGhMw0l6SleXKTTe/QwbYkSZK64\nQvY7xo2TaoCVKsHbb8PRo6Ytcx+vOo0ngTSgeKJP5LSYl5PtaVvR0amT5G6MGxd/Ww6QVRGmcsAh\nJEN8MVJPI6F47f8UhLZq1RIZkrFjRc7m/PPhnXdOLPIUq13HjsH69XKOQYOkb7duHVtbicKLTuNs\nRGZksxsnU6fh/7YKF4ZVq2DlyvjbcoCsijCB1NC41L6FJ6w6jtf+T0Fqq04d2ev48EP45BNxHiNG\npDuP7NqK5BgaN5bZyymniKDia6/BmjVQvjxA9Ha5gRel0V8FngG+NG2I4h88lJC12rQBintceaXo\nWP3wg+x59OsntV9CjmHdOrmFHq9fD1u2SLRfxYriKCpWFEdRsaI4iZNPznyODDJ7nsBrTuNmpDjN\nMtOGKEoCKI8sTe0FegA/mDVHcYq6dWHaNKkw2asXzJwJY8ZE7xiU7MlKFr0ZMBc41T5uI1AiizbW\nIwqhetNbom7ryZpopP1nkHlPIz9QzH5cA/gNOCVC29q39ZbIW3b92ndUA3YgzmIj6bWUTzdok6LE\nygwyO43c/l1RlFyyEReipxQlQcwALsvwvCSQx358HrIMW9RtoxQlyPyKOg3Ff9wCbEHCa/8AvrFf\nbwGsQPY0FgJNjVinKIqiKIqSzDRCwhbXAVmVRRlk/30pEvOe1XvjaWsEsseyPE67zkaWKlYiI81O\ncbRVAJgHLEHKhr4U52cEWTJZDEyIs61NSNTbYqT2dTxtFQU+BVbZn/PxGNs6n/RkulDU0tA47OqK\n/B+XI7XrcxsDo30767a0b/u7bxsjD7K7Xw7Ih3SgKmHHNAG+th/XQiKusnrv5hjbArga+VKXx2lX\naeAS+3ERYE2cdhWy7/Par2+Noy2AJ4APga/i+IyQeQ8qnu8LYCTQ1n6cH1mqjOczgiSy/o78AMTS\nVjnbjtDF9DFwf4TzZIX27Zzt0r7tg77ttYzwmsg/ZBMSPTUWyd3ISDPkiwcZmRRFOm/4e38CDsfY\nFsBsIFTiJ1a7zkDWtZfYr++3n++IsS2Ag/Z9fiQ8eWMcbZVFOtI7yEUR62cMERJCi+f7Og35URth\n/+0yYG2cdgE0BHYiI7FY2vrHfk8h5EetELCN6NG+nX1boH3bF33ba07jLGQTMcRW+7Vojjkz7PVj\n9i2Wtpyyq2zYMeWAqsg0MNa28iAX6g6kw60OOy43n/E14GlE56tANsdF05YFTAN+Bu6Lsa2ySALc\nLuA9YBHQB9geY1sZaYksLcT6GfcAA5H8iu3A38jnjRbt2zm3pX3bB33ba07DivI4JyWrw9uKZEOs\ndmV8XxFkLXMEkBpHW8eRJYGyyEVaJoa2UoAbkdHJYvt5vN99XWTJozGy5ls6i+Oya8tCRjo1EEG/\nGsiI+hJyJrvvPj+SePdTFO1EagugArL+XA75ES8C3BNle+H25PbcsaJ9W/t2Tm1BLvu215zGNmRz\nLcTZiDfM7piy9jHhr+ezb7ltK9K0LFa7Qm3lA8YDHwCfx9lWiL3IJmTFGNu6EpmubgTGIMmVTeKw\nKzRi2oWMUirF2NZW+7bAfv0rMo+sYvm+GiNhrquI/bu/HLkw/0R+GD9DvsNo0b4dvV3at6OzC7zR\nt42SF9iAeLz85LyZU5v0zZxI7/0txrZClEM2C+OxKwUYhUyX4/2MJUlPCCuIKKluj/MzAtQDJsZh\nVyHSJTEKAz/GadcsIFRS6QVk/T2ezzgW2diL57u/BIkQKoj8T0cCjxI92rezb0v7tn/7tnEaI1EY\n65EwMID29i3EG/bfl5JZiiH8vfG0NQbpHEeQdcBXY2yrLrKuuoT08LgeMbZ1EbIWugQJAXw6zs8Y\noh4y6om1rfNsm5YgnS/e7746Mhpbiox6WsTRVmFgN+kXfjx2PUN6WOJIMo/2o0H7dtZtad/2d99W\nFEVRFEVRFEVRFEVRlGQgUup6caRewVpgCqoEqviDcGmOSNRH1v1X4LUanoriA8oROXX9FWRTBkQ/\npb/rlilK7skozRGJosgAKRRiWdINoxQlSBRHdvqLIeFiE4DrkCzQUJp8abTmsuIfypG103gECbFU\nFF9jMrkvUur6VMRh7LCP2cGJOiuK4kcqIQOlGYgcRSuz5ihKbOQ1eO6Mqet7gXHAvWHHhOraZn5j\nhQrWhg1Jexo+AAAgAElEQVQbEm2fktxsIHNGcrzkQ+LiGyAJY3OQ5Kp1GQ/Svq0kmLj7tcmZRqTU\n9TqIUmZI26UMoiGTiQ0bNmBZliO3nj17OtaW0+1pW+baQgY1TrIFCew4ZPf5WUiily/6trYVjLac\n6NcmncZqJJU9lLreEClKMoF0Lff7gS+MWKcozvIlkkGdB5lp1EL6u6L4CpPLU0sR3ZqfESmCRcDb\nSEr8J8ADiDb8HYbsU5TcMAaRrCiJzCp6ki7FMAwZJE1GJDLSgOGo01B8iEmnARJe+0rYa3uQWYcr\n1K9f37PtaVvm2oqBu6I45n/2zRW8+t1qW+bacgIntfvdxLLX5xQlIaSkpICZ60P7tpIwnOjXXqun\noShKgNm7F37RRTlfo04jDo4ehRUr4OOP4bnn4LHH4MgR01YpijexLGjVCi6/HD74wLQ1SqyY3tPw\nBampsGGDOIiVK9Pvf/0Vzj0XLrxQbosWwfDh0KGDaYsVxXu88w5s2QI//ggtWsDq1fDCC3CSDl19\nhek9jaLAO8CFSBJfGyTZ6WPgXNKjp/4Oe19C1n3T0mDjxsyOYeVKWLsWypSBatXSHUS1anD++VCg\nQPr7Fy+Gpk1h3TooXNhx8xQXiWHtdwTQFMkruiib465AEvvuQHKTwgnknsb69VC7Nnz/vVw/u3bB\nLbfIdTVyJBQqZNrC5MCJPQ3TTmMk8D1yweVFKlF1R6pRvYIIFhYDuoS9z5ELy7Jg2DCYO1ecxOrV\nUKJEulMIOYgqVaJ3ArffLtPvZ5+N2zzFIDFcXFcD+5Ew8qycRh5EKucg8B5SWzucwDmN1FS4+mpo\n2VKWcEMcOQLt2skex1dfwZlnmrMxWfC70zgNkYk+L+z11Ui8+w4kM3wmcEHYMY5cWJMnQ8eO8gNf\nrRpUrQqnnhpfm6tWQb16Mts47bS4TVQMEePFVQ5JTs3KaTwOHEVmGxNJEqfRty/MnAlTppy4FGVZ\n0L8/DBkCX34JNSIVbFUcw+/RU+WBXciIaxGS7FQYFwULX3wReveGBx+UqXO8DgNkVtKkCbz6avxt\nKYHiLOBmYKj9PFieIQt+/hkGDYL334+8d5GSAl27wuuvww03wGeRFuwUT2FyIzwvIuDWASm0/joR\nlqHI4uLq1avXv4/r16+f6wSYH36AbdvgjgTkm/fsKUtUHTpAqVLOt684z8yZM5k5c2YiTxHq3xYy\n0stytBdv3/YKBw/CvfeK0yhbNvtjW7SAcuWgeXNYswa6dBGHosRHIvq1yX9LaWRDsLz9vC5Sye88\n4BpEuLAMIiXt+PJU06bQrBm0bx9XM1ny6KNQsCD8z7X8X8VJErA89WuG9koi+xrtgK/CjgvM8lTH\njvDnn/DRR9G/Z9s2uS6rVYO334aTT875PUr0+H156g9Eo6ey/bwhUtks4YKFS5bI7f77cz42Vrp3\nh/fek4tAUZDBUHn79inwMCc6jMDw7beyR/Hmm7l731lnwaxZsH8/NGggUVaKtzAdId0R+BARL7wY\n6IeUd70OqRF+LQko99q/P3TunDlc1mnOPBPatpVNQCUpGINI/Z+PDIbaAu3tW1Lx55/wwAMyaCpW\nLPfvL1wYxo2TgJJatSTsXfEOfl01jHkKv3YtXHWVJOadcorDVoWxezdccAHMnw/nhceIKZ5Gtadi\nw7Jkn/Dss50JBhk9Gp58EkaNgkaN4m8v2fH78pQRXnlF9hsS7TAASpaUzfDevRN/LkXxAh98IGHn\nL77oTHutWsHnn0ObNjB4sDglxSxJNdPYuhUuvlhyKEqUSIBVEfjnH6hYUeLUq1Z155zJyEMPwfPP\nO5cgpjON3LN5s0QNTp0Kl1zibNsbN8JNN8F//gP/93+QL1/O71FORGcauWTgQBmxuOUwQHI/nnpK\nftCUxDB/vmy8npGwjB4lJ44fl8CSp55y3mEAlC8PP/0EmzZJHtTf4cJCimt4wWnkQTLDJ9jPiyNS\nC2uRmspFnTjJ7t2icfPEE060ljs6dJAOv2iR++dOBgYPliXHPHmMmjECSUZdnsXf70ECPpYBPyKB\nH4HhtddEu+2ppxJ3jlNPFbmRCy+UZNz16xN3LiVrvOA0HkPKXobm5F0Qp1EZmM6JCX8xMWgQ3Hab\nhPS5TaFCEoLbo4f75w46f/wBEydKpJph3gOy26r9FfgP4iz6IKWNA8GyZfDyy7JZnWjHnTevZI8/\n/jjUrQuzZyf2fIr3KAtMQ5L5QjON1aRLh5S2n4dj5Ya9ey2rRAnLWrcuV29zlCNHLOvccy1r9mxz\nNgSR3r0tq10759slNpmPcmQ908hIMWBrFn9z/sMkkEOHLOuiiyzrvffcP/cXX1hWxYqWdfy4++f2\nKzH260yYnmm8BjwNpGV4zXHtqbfeguuvlw1pU+TPD716yYzDp/ucnuPoUfnfduxo2pJc8wDwtWkj\nnKBHD6hUKbGJslnRrJksWU2e7P65kxmTTuNGpPbAYrLezY/bMx46JOutXRxZ5IqPe++FHTskukSJ\nn/HjpabJRdlVr/Ae1yCJf74Xz58xA8aMkfICJnSiUlJkwDB4sPvnTmZMChZeCTQDmgAFgFOB0aRL\nooe0p3ZGenO0om7vvy9hgBd7YNsxb16pVNa9O1x3nQqyxcvgwc5tvLogWAiynzEc2fv4K6uD/CBY\nuHcvtG4t1fhKljRnR8uWUtpgzRoZQCiZCZpgYUbqAU8BNyHFl/4EXkY2wYsSYxGmY8egcmURTKtT\nx1mDYyUtDS67TEJwb7nFtDX+5eefRRl1wwZxxk6TAMHCc4DvgHuBudm0EVXfNk2rVpIgO2SIaUtk\nELZvnwS7KNkTtDyN0JXimPbU2LEit+wVhwFSU6BvX3juOYltV2Jj8GB45JHEOIwYyUl76nlkA3wo\nsiQ734CNjvDJJ5IbM2CAaUuEhx+WTPR9+0xbkhx4ZaaRW3IcjaWlyVr3a6/JJriXsCzRv3rkEdnn\nUHLHzp2yFLF+feISNTUjPDLbtkl1vQkToGZN09akc/vtInDYoYNpS7xN0GYajvLVV1LP4rrrTFty\nIikp0K+fRFMdO2baGv8xfLgsTbmZ2a/IQKxNG0mk9JLDAOjUSWafaWk5H6vERyCdhmWJYFq3bt7d\nbL7mGpFGeO8905b4i2PHYOhQX4bZ+p433xQttW7dTFtyInXryiBRIxMTTyCdxnffyfpm8+amLcme\nfv2gTx84fNi0Jf7h889FZr56ddOWJBerVknk3+jRntpH+hcNv3WPQDqNF1+UvIxIhey9RM2asj48\ndKhpS/zD4MGyFKG4x9GjsvfWt68k8nmVu++WDXrVpEosJn9Wz0bqf68EVgChn4K4BAvnzZNOc/fd\nDlqaQPr0Ed2e/ftNW+J9Fi8WlVOPziBzEiwEGASsQ4QLL3XDKCd46y0oVQr++1/TlmRPwYKiQZbb\nErNK7jDpNI4BnYELgdrAo0AV4hQsfOklePpp/+jtX3wxXHut1AhQsseDYbYZyUmwsAlQEagE/BcJ\nvfU8aWnwxhsiF+LV/cGMPPywCCfqICxxmHQafwBL7Mf7gVXAWUiW+Ej79ZFA1OPKFStg7lypT+wn\neveW0OC/sswRVnbvlv2Mdu1MW5Ils8kmy5vM/XoeMoP2fAWQadNkBH/VVaYtiY5zz5XQ29GjTVsS\nXLyy6l8Oma7PIw7Bwv79RTK5YEHH7UsolSpJdrhXkqW8yPDhsixlUrIiTs5Ckv5CbEVUnj3Nm29K\niK0fZhkhQuG3Hk538TVemOgXAcYjdTXCczqzFCwM1+c555z6TJ7s3/XM556DSy+Fxx7TCnThpKZK\nsMAXXyTuHC5pT4X/9EbVt01pT23eDD/8IDI8fqJePanrMX06NGxo2hqzBFF7Kh8wEfgGeN1+bTVQ\nn3TBwhnABWHvOyFr9uGHoXhxCWP1K489Jve6v5GZ8eNl+e6HH9w7ZwK0p94CZgJj7eerEc21HWHH\neSYjvGtXUYl+/fWcj/Uab78NkybBl1+atsRbOJERbtJppCBrvH8iG+Ihci1Y+PvvUgJy9Wo4/fSE\n2pxQduyAqlUlSuicc0xb4x3q1ZMN8DvvdO+cCXAaTYAO9n1tZJBUO8JxnnAahw/L/sDs2SL66TcO\nHBD7FyyQJFpF8LvTqAvMQmomh66SroiQ2yeIKugm4A4gvIx8pgvrmWekkwdB5bJbN9i1S9bwFSkl\n2qQJbNzobkRcDBfXGGTmUBKZPfREZtIAw+z7N5AIqwNAGyBS1XhPOI3Ro0UE8NtvTVsSO08/Lfe6\nV5iO351GPPx7Ye3ZIxX5liwJxuj8r79kY3zOHG8nUrlFu3YyYnS7vnqyCxbWri0DmGbNTFsSOxs3\nwhVXyN5M4cKmrfEGKliIxJA3bx4MhwFQrJhEgPXsadoS8/z5J3z6qfeTyoLGwoXwxx/QtKlpS+Kj\nfHkJFf7wQ9OWBAtfzzT27xcdotmzg1W1a98+qFAheJ8rt7zyCqxcCSNH5nys0yTzTKNtW9nH8EKJ\n5HiZNg06d5ZlTj+FDSeKpJ9pDB8um6RB+2E95RR46KHkjqJKTZWqcKpm6y5//gmffea/BNmsaNBA\nip19/71pS4KDb53GkSMwcKCEBQaRRx6BMWPkIk5GJkyAMmWkvrth/mfaADcZMUL2MUqVMm2JM4TU\nb4MQJOMVvOo0GiFx7OuAZyMdMGqUVOarUcNVu1yjdGnJEh82LOdjg4iH1GyjDfTNqc+WBCYj0jkr\ngNZOGOckx49LEuWjj5q2xFlatZKZxubNpi0JBl5c5csDrAEaAtuABcBdiDZVCKtCBYsRI+A//zFg\noUssXw433CBRICefbNoa91ixQkr0btoE+fObsSHD2u8WRJE5O6Lps72Ak5Gw8pL28WcAqWFtGdvT\nmDRJAjAWLAje+n/nznIN9e9v2hKzuLWnURB4Evgc+AxJxCsQz0lzoCawHsnROIZk0N4cflDp0nD1\n1Qm0wgNcdBFUqwYff2zaEncZPBjat3fPYezZs+eEm00JortGoumzvwOn2o9PRRJYwx2GUfyoMxUt\njz4K774rGe5KfESjPTUK+AepBZAC3A2MBm5PkE2RhN1qhR/k5VKuTvLEExLF0qpVcnzev/6CTz6R\nSnFuUaNGjdAILJyfgaNRNBFNnx0OfAdsB05BklY9w4YNMsMYP960JYmhYkWoVUt0tIKyyW+KaJzG\nhUDVDM+/A35JjDlAFiJu4cyb14v58+WxSVG3RHPDDfDkkzBjhtTdCDojRkh+QOnS7p1z06ZNzJw5\nk06dOnHuuedyzjnnMGTIEIBoBSii6bPdkP2M+kAFpGZMdU4U6TQiWDh0KLRu7T+F6NzQsSM8+6yE\nFCfDAAxcE+I8gQ+AOhme10ZmGomiNrJhGKIrJ24sWsnE8OGW1bSpaSsST2qqZZUrZ1nz5pk5//Tp\n063evXtbDRs2DKkrjwced6jPfg1krEoxHYgUG+b65z5wwLJKlLCsDRtcP7WrHD9uWZUrW9asWaYt\nMQdRDsrjZTWQBmxG1mzTkA2+5YhulNPkBTYg4m/5kdFZlbBjTH/3rnLwoGWdfrplrVpl2pLE8uWX\nllWzplkbjh07Zs2ZMyd0cf2GbFg70WdfRfSoQDbAtyKljcNx/TO/+65lNWni+mmNMHiwZd1+u2kr\nzIEDTiOa5ansSlgmglREDfRbJCrlXTJHoSQdBQuK9Pvrr0u95qAyeLDZZL4GDRpw4MAB6tT5d2J9\nObAzirdm1Wfb238fBryIlIRdimyuPwPsOaEll7Es2QDv29e0Je5w//3w/POwZQucnVNMnBIRv67s\n2U4zedixAy64ANauDU7iVUZ++UWydzdtMhde3LlzZ37++WcKFCjAtGnTABoAcwA3Y25c7dtz58K9\n90q/OsmrWVsO06mTqC74ufZOrKjKbZLx4IOi+Prcc6YtcZ5HHhFn2Lu3aUtg3759nHrqqSDLU6WR\n/Aq3cLVvt2oFl1wiwRbJwtq1Eq6/eTMUSGTygAdRp5FkrFyZPhoPUmf/+29RJF25Es4805wdgwcP\nZvbs2SxcuJBff/0VJCFvNhIx6Bau9e2dO0W3bcMGqXqZTDRuDC1bynJVMpH0goXJxoUXyqhwzBjT\nljjLe+/JRWzSYQAcPnyYJ598ktWrV4de6o27DsNV3n0Xbr01+RwGpOtRJeHYM25MzTQGADciiVMb\nkCpme+2/dQXaAseBTsCUCO9PypkGwJQpspQQFKnntDSR4R49GurUyfl4t4hhRNYIKeGaB3gHKVcc\nTn3gNaSi3277eTiu9O3jx6WswOefB1e/LTvS0mSWNXIkXHmlaWvcw88zjSlI0mB1YC3iKECSCO+0\n7xsBQ9DZUCauu07uZZ/W/3zzDRQtKpXifEwe0ku5VkV0p8JDbosCbwI3AdWA29w0MJyJE2Vml4wO\nA2TT/9FHJWJPyR2mfpCnIvkeAPOAsvbjm5Fay8eQnJD1iK6PYpOSItIir75q2hJnGDRIoll8PmuK\nRnvqbiRZcKv9fLdbxkXijTeCp2abW9q0kRro27ebtsRfeGEU3xbJlgU4k/SLCvvxWa5b5HHuvltq\noq9cadqS+FizRj7HndGKj3uXSNpT4f22EpLMNwPRtGrljmknsmaNLG/enij1OJ9w2mlw113Bzn1K\nBIl0GlORrPHw200ZjumO7Gt8lE07ybl5kQ0nnywhqq+/btqS+HjjDWjXLhCy79H00XxADaAJcAPw\nHOJIXGfIEBHtC8D3HjcdOsDbb0tRNyU6oskIj5Xrcvh7a+QCapDhtW1krl1Q1n7tBEyIunmJhx6S\nDeR+/eD0001bk3u2bpUosKVLTVsixCnsFt5vzybzjBlkJrIbSRQ8BMxC9vTWhTeWyL69fz988AEs\nXuxYk76mShUpQTBunCQ5Bo1ECBaaWkluBAwE6pF5bbcqMuuoiUzvpwEVOXEkl7TRUxlp3142M3v2\nzPlYr3H33SJX/cILpi2JTC6jTPIiGlUNEOnz+ZxYhOkCZLP8BiRZcB4S9BGuGJ3Qvj1smAQffPFF\nwk7hOyZMgD59+Fc1O8j4OblvHSLsFtLemQM8Yj/uhuxzpAKPIXo+4ajTQGpOXHON/5L9Zs2STORV\nq6BQIdPWRCaGi6sx6SG37wIvkVl7CuApJLw8DamvEalydcL6tmVB9eowcGB6FJ4i4ceVKsnMt9YJ\nlXuChZ+dRryo07Bp2lQStPxSWCY1FS67DHr08PZGrBMXV4wkrG/Pni1SNKtWJY/OVLQMHCgzjaBX\nyfRznobiEKHwW7/40LffhhIl4DajWQrJSaicqzqME2nfHn76CX74wbQl3kdnGj7HskRa5JVXpMqf\nl9m9G6pWhe++k9rnXiZoM43ff5fvftMmCTVVTmTsWOjfHxYuhDx5TFuTGHSmofgq2a9HD4mL97rD\nCCLDh0s+jDqMrLnzTlEnGDYs52OTGZ1pBIAjR0QldsoU7/4gL1oETZrA6tVyYXqdIM00jh2T/vHN\nNxJeqmTNsmXQsKHUdylZ0rQ1zhOEmcaTSCRJRp3Nrkh01WrgehNG+Y2TT5a16tdeM21JZCxLVEX7\n9vWHw4iRRkifXceJ9cEzcgUSGXirG0YBfPmliBOqw8iZiy8WyfQePUxb4l1MOo2zkQTAzRleU8HC\nGGnfHj77TCr8eY0PP4SjR6FtW9OWJIxoBAtDx70MTMbFWUxoA1yJjhdekDyWhQtNW+JNTP4gv4rU\nSc6IChbGSMmSMkIaMsS0JZnZtw+efVbURAMctRONYCFAR+BTYJdbhq1cKVpTt9zi1hn9T9GiorTQ\nsaNIqCuZMXUZ34zILCwLe10FC+Pg8cdFfO2QmxWtc6BvX0kk87n0eU5EI1h4FtLvh9rPXdmUGzJE\n9L3y53fjbMGhTRvJKRo92rQl3iOR2lNTkfrK4XRH9i0y7ldkN1WPeHElu/ZUJM4/XzJaP/hAfihM\ns2YNjBgBy5ebtiRn4tToicYBvA50sY9NIZs+71Tf/ucfyXL2w/fvNU46SQQ1mzeXm1+jzoKiPVUN\nmA4ctJ+HRAlrIRILAP3t+8lAT0SnJyMaPZUFM2eKAu6KFWaXgyxLoqWuu05Cgv1GLqNMaiP1xBvZ\nz7siAR4Zq/f9mqG9kkj/bwd8FdaWY337zTelP4wb50hzSckDD8hy1cCBpi1xBoNRgY6ykfToqarA\nEkSXqjxSCjbSB7SUyKSlWdall1rW11+btePLLy3rggss68gRs3bECrlbPspr99Vydt9dQuSN8BDv\nkXX0lCP2p6VZVpUqljVjhiPNJS07dlhWyZKWtXKlaUucIZf9OiJe2JrM+CF+AT6x779BRAx1SpEL\nQsl+JkdGhw9D585SlS9J1tJTgQ6IuOYvwMeIwm170kULXeXbb2WmWa+eibMHh9NPh+eek+qSurgh\n+HWaYjtNJRJHj0oy19dfi6qp2/TrJ+GKn33m/rmdws/JfRs2QN26sp/UuLFDViUxqalw6aXQqxe0\naGHamvhQlVslS/r3l+zr999397xbtsgFtmCBOC6/4len8eefcOWVEkn38MMOWpXkzJwJ99/vbTn/\naFCnoWTJnj1S5GjlSihTxr3ztmwpUVy9e7t3zkTgR6dx+LAEHtSpIwKWirO0bCnVMr1aOCwa1Gko\n2dKhg0R+9O3rzvlmzoTWrUW3x8+jMfCf00hLk2qIaWmi1hrgREpjbN0qitLz54ssix9Rp6Fky7p1\nslSxeXPif8RTU6FGDXj++WDUyvCb0+jaVSoiTp/uryqOfuOll2DuXNHz8iN+FyzsiESYrCBzPLsK\nFjpEpUpw1VUwalTiz/XWW1CqlP83CuMkJ9HCe4CliBLCj8DFTpz07bdh/Hj5IVOHkVieeEJm0t98\nY9qS5OMaJGM8n/28lH0fytPIh8S8ryeyY3M3uNnHfP+9ZVWqZFm7dyfuHDt3WlapUpa1YkXizuE2\n5D7UO4/dX8vZ/TdSrkYdIJRb3AiYG2/f/vpryzrjDMtaty5BX4RyAhMnyjV1+LBpS3JPDP36BEzN\nNB4GXkLE3SBdwE0FCx3m6qslM7tyZZF73rPH+XN07y7r6Rde6HzbPiIa0cI5wF778TxEDSFmFi+G\n++6T0OaKFeNpSckNTZtKsMfrr5u2xAymnEYl4D/ISGsmcLn9ugoWOkxKinTuhQtFNr1yZejZE/7+\n25n2f/4ZJkyQGPYkJxrRwow8AHwd68l++w1uugmGDpV9K8VdXnsNBgyAbdtMW+I+pgQL8wLFEM2e\nK5As8KziEVSw0AHKlZOSn127SjRVxYoi/fz447GLsaWlSaZsv37+L67kgLBbbqb91wBtgasi/TGn\nvr13r4x2O3cORtCBH6lYER56CJ5+Gj76KHHn+e03qSZ4442xvT8RgoWm+AbIKHCwHhFx62LfQkxG\nhAzDMb006HvWrbOs++4TXZ0+fSxr797ctzFypGVdcYVlHT/uvH2mIfdrv7Xt/hqiK5E3wy+2+3tW\nC0rZ2nX0qGU1bGhZjz4q+lKKOfbvt6yzz5Z9Q6fZvt2yOna0rOLFLatfP+fajaFfe4b2QCj9qzLw\nm/1YBQtdZs0ay7r3XtnIfvFFy/rnn+jet3evZZUpY1lz5ybWPlOQ+4srGtHCcxCHkV11kSxtSkuz\nrNatLevGGy3r2DEXvwwlSz7+2LIuvti5/8euXZb19NOWVayYZT3+uGX98Ycz7YaIoV+fgKk9jRHI\nctRyZOP7Pvt1FSx0mcqVpdDMrFlSd6FiRXj5Zdi/P/v39ekDjRpJ/Q4FiE608HlkWXYosBiYn5sT\n9Okj/6OxYyFvIheWlai5/XYoUUJCzuPh778lx+n88+XaW7ZM9k3OOMMZOxWdaSSMlSst6447JIxz\nwADLOnDgxGNWrZJlLadHQV4Cc4OViPaMHGlZ5cpZ1u+/u/xFKDmyYoXM1HfuzP179+2T5aeSJWUW\n+euvztuXESf6tYoNKJmoWhU+/himTYN586BCBRnxhErIWhY89hh066ajILf47jvZcJ00CUpHCi1R\njHLhhRJy3r179O85dAhefVVm9itWwA8/wHvv+UPkU2VElGxZtkzCaefOhS5dpL7ACy/A0qWQL1+O\nb/ctXpERWbkSrrlGHPk11xiwRomKv/+GKlUk/Pzyy7M+7uhReOcdiTisWVOupYsucs/OoFTui4XE\nzuGUE1i0yLKaNbMssKypU01bk3jwwPLU9u2Wde65ljVqlLnvQYmeESMsq1atyNGEx45Z1rvvyv+z\ncWPLWrDAdfMsy/L38lRNZBNwMbAAydUIodpTHuTSS0XbaOdOaNjQtDWeJCfdKYBB9t+XApdm19j+\n/RKb/8AD0KqVo3YqCeL+++V+5Mj0144flzyOqlUl4OTDD6U4WnazESUyM4Eb7MeNgRn2Y9e1p2Y4\nXETZyfa0LXNtkbsRWTS6U01IzwCvRWTdKQDr2DHLatrUstq0iS8Xw6vfbZDbWrDAskqXtqwJE2ZY\n48db1oUXWlbt2pY1bVrs/0uD/ToipmYav5Mu3FYUCCXju6495XS2pJPtaVvm2sol0ehONQNCY9B5\nSL+PGErw2GNw5AgMGyYyMLHi1e82yG1dfrnMEG+/fSZ9+0oxrJ9+ggYNYv9fei2j21S0dxfgB+B/\niOOqY79+JplHYKo9pfiBSLpT4RkskY4pC+wIb2z2bLkFOdAgyPzvfxIdNWpUMIthmdKe6mTfPgdu\nR5L9rsuiHQ2TUrxOtH00fKwZ8X2TJsWuB6aY57TTJJQ2iA7DJP9keJxCulx0tNpT65ELTm96S9Rt\nPdETje7UW0DLDM9XE3l5Svu23hJ5y02/9hSLSBcsbIBEUEH02lOK4iWi0Z3KuBFem6w3whVFicDl\nyGbgEqQwTcbww26IN1xNeoSVonidxsAapO92tV/LqDsF8Ib996VADVetUxRFURRFUeJLkgp/bzxt\njUAiW5bHadfZSB7KSmAFEgAQa1sFSJ+h/YKUzI03qSwPkmQ5Ic62NgHLSFdvjaetosCniErsL8Dj\nMUqRDoEAAAQ3SURBVLZ1vm1P6LYXUZiN1a6uyP9xOfARcHIW788K7dtZt6V929992xjxJElFeu/m\nGNsCuBr5UpfHaVdp4BL7cRFkCSMeuwrZ93nt17fG0RbAE8CHwFdxfEaAjUBx+3G8yW4jkcp2IHsE\nv8b5GUFCu39HfgBiaaucbUfoYvoYuD/CebJC+3bOdmnf9kHf9lpQWKxJUqUjvPcn4HCMbQHMBv6K\n064zgD+QfyDAfvv5jhjbAjho3+cHTkU6dKxtlUU60jvIRRFvglooaCGe7+s05EdthP23y4C1cdoF\n0BDYiYzEYmnrH/s9hZAftUKkJ6VGg/bt7NsC7du+6NtecxqREqDCk/uyOubMsNeP2bdY2nLKrrJh\nx5RDIsRWxtFWHuRC3YF0uNUxtBU65jXgaSANWR6I9bsHCeebBvyMFNWK9fsqD+wC3kOi7PoA22Ns\nKyMtkaWFWD/jHmAgUmVyO/A38nmjRft2zm1p3/ZB3/aa07CiPM7JMNxoEq5itSvj+4oga5kjkCpv\nsbZ1HFkSKItcpGViaCsFuBEZnSy2n8f73ddFljwaI2u+0VR+iPQZ8yKRRUPs+8OkL4Hktq0Q+YGb\nkBF6NET6jBWQ9edyyI94EeCeKNsLtye3544V7dvat3NqC3LZt73mNLYhm2shzka8YXbHlLWPCX89\nn33LbVuRpmWx2hVqKx8wHvgAyYKPp60Qe5FNyIoxtnUlMl3diOh9VUOm87HaFRox7UJGKZVibGur\nfQvl7nxF5pFVLN9XY2AhsvkY63d/OXJh/on8MH6GfIfRon07eru0b0dnF3ijbxslniSpSO/9Lca2\nQpRDNgvjsSsFGIVMl+P9jCWRdUiAgsAspEPH8xlBEi0nxmFXIeAU+3Fh4Mc47ZoFVLYfv4Csv8fz\nGcciG3vxfPeXIBFCBZH/6UjgUaJH+3b2bWnf9m/fNk48SVLh742nrTFI5ziCrAO+GmNbdZF11SWk\nh8f1iLGti5C10CVICODTcX7GEPWQUU+sbZ1n27QE6XzxfvfVkdHYUmTU0yKOtgoDu0m/8OOx6xnS\nwxJHknm0Hw3at7NuS/u2v/u2oiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoihKstLNtAGK\nkgC0XytKgthn2gBFSQDarxUlRp4GOtqPXwOm24+vRTSCUpHM3dHum6YoMaP92iN4TbBQiZ9ZiGY/\niBBZYUSXpi7wLXAIUexsZcQ6RYkN7dceQZ1G8FiEFHc5BZFenoNcZFcjxXcUxY9ov/YIeU0boDjO\nMUQSujUid7wMmcJXQOSTFcWPaL9WlATSE6nVfC1wOiKjPd7+2x50sKD4E+3XHkCXp4LJbKS62Byk\ngtkh0qfwbyOjNN0wVPyG9mtFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRF\nUZKP/wf7h0iHn2nZYwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10c0773d0>"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3 Page No : 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math\n",
+ "from numpy import cos,arange,sin\n",
+ "from matplotlib.pyplot import plot,xlabel,ylabel,suptitle \n",
+ "\n",
+ "#Example 2.3\")\n",
+ "# Given\n",
+ "#capacitance used is 20uF\")\n",
+ "#Voltage is v = 50*math.sin(200*t)\")\n",
+ "C = 20*10**-6;\n",
+ "# Given that v = 50*math.sin(200*t);\n",
+ "vamp = 50;\n",
+ "t = arange(0,0.015+0.001,0.001);\n",
+ "#q = C*v\n",
+ "qamp = vamp*C\n",
+ "q = qamp*sin(200*t)\n",
+ "#i = C*d/dt(v)\n",
+ "#d/dt(math.sin 200t) = 200*math.cos t\n",
+ "iamp = C*vamp*200;\n",
+ "i = iamp*cos(200*t)\n",
+ "\n",
+ "#math.sinA*math.cosB = (math.sin(A+B)+math.sin(A-B))/2\n",
+ "\n",
+ "pamp = vamp*iamp/2;\n",
+ "p = pamp*sin(400*t)\n",
+ "\n",
+ "#On integrating 'p' w.r.t t\n",
+ "\n",
+ "wC = 12.5*(1-cos(400*t));\n",
+ "\n",
+ "plot(t,wC)\n",
+ "suptitle ('wC vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('wC (mJ)');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEhCAYAAACKklw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmclXP/x/HXqCgia0p0p0WRXUWURkqpKGu4Q7KUH1Ki\n/da+WLInFCEq3IU7RQtGIUm072UrWSpLohrN+f3xOaNpTNOZmes63+u6zvv5eMyjM2fOmfOWrvM5\n3x1EREREREREREREREREREREREREREREJIBKA08Dq4HPgPeBOkl8/ZbA8Ul8PRFPFHcdQCRJRgFr\ngKrx7ysBJyTx9S8BJgHLkviaIiIC3APcEb/9MPBu/HZD4CWgMrAWSNvL72kP3J/j+7bA48D+wGRg\nPrAIuDLX88pirROAU4As4Oj492uAusCmeIYv4nlERCRJzgRejd+eBXyCtZL7ADcDFwETE/g9hwOr\ncnw/BTgbuBR4Jsf9B+Xx3MXAgcDtwBzgGuBfwMfxn4+O/x6RUNnHdQARD3wOnIG9SW8DZgO1gHpY\n0UjURuzT/pnAYUAN7E1+EdAYGBr/nb/l8dyPgXOA+sAQ4Nz4Y2fmeMzeWjIigaMiIVGQCXyJdQ99\nDHyIdTVVBZYDS7FuoET+vY/HupMuZVfrYxVwGlYsBgL/yeN5M7HCUBF4EziVfxapWOL/SSIi4qU+\nwNdYcSgLfANMyPHzV4ABOb6vBDTL4/ccjI0jvIe1RgDKAyXjt1sAr+fxvH/FX/PF+PdT4nnKxL9/\nDCtiIiLiQENgO1Aq/v0KoFOOnx+IjSusxloE72NdVHmZFH9ctguABdig8xzg9D087xvgpvjtHthA\nd7azgSXAPDRwLSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpLijsG2PliCbaPcMX5/X2Ad\ntsXBF0BTF+FERMStcthOmGBHR67Ajm/sA9zlKpSIiCTOz+NLv49/AfyOHdtYIf699tUXEZG/VcK2\nTS6NtSS+wnbVfBbbmllERFJUaez831bx78tiLYk07ACXZx3lEhGRvfC726cE8BbwNvBIHj+vhO3d\nf1LOO6tUqRJbs2aNz9FERCJnDXYio2f8PL40DWslLGX3AlE+x+1LsANgdrNmzRpisVjgv/r06eM8\ng3J695WZGWPmzBhdu8Y4/vgYRx4Z48YbY7z+eowtW3bP+d57MWrVinHGGTFmzHD/dxfEv88o5QxD\nxlgsBlDF6zdyPweuzwHaAAuxqa4APYGrsVlPMexc4vY+ZhDJ1y+/wNSpMGkSvPMOHHMMXHQRPP88\n1KoF++zhY9R558Gnn8Jrr0H79lClCtx3H5x6at6PFwkrP4vEh+TdUnnbx9cU2atVq6wovPUWfPYZ\nnHsutGgBQ4fC0Ucn/nvS0uDKK6FVKxg5Epo2hcaNYcAAqFTJt/giSeVnd1Pkpaenu46QkFTP+ddf\n8MEHcPfdUKMGNGgAy5dDp06wYYMViw4dEi8QuXPuuy/cdpsVn8qV4Ywz4K67YNMm7/9bCiLV/797\nKQwZ/RLU9QqxeP+aSKHNng2PP27dSccea62Fiy6C007bczeSF77/Hvr3t66oLl2gY0fYf3//Xk8k\nW1paGnj8vq4iIZH0ySdWEPr1g5YtoUKFvT/HaytXQq9eVqz69YPrr4fifnbwSspTkRBJwNKl0LAh\nPPssNG/uOg3MmQNdu8LGjTBkiBWvtKBeeRJqKhIie/HNN1CvHgwaBNde6zrNLrEYTJkC3bvDwQfD\n/fdD3bquU0nU+FEkNHAtkbFxIzRpAp07B6tAgLUcmjeH+fPhxhuhdWu49FJYscJ1MpH8qUhIJPz+\nu70Jt2plRSKoihWDtm2tONSta62eDh3g119dJxPJm7qbJPR27LCZSxUr2nqFMPX3b95ss59++w3e\neMPfWVcSfRqTEMklKwuuuQa2b7cpp2GcPbRjB6Snw8UX25iFSGGpSIjkEIvBHXfA4sW2pUbJkq4T\nFd66dVC7Nowda1t+iBSGBq5FchgwAD76CN58M9wFAmy195gx8O9/w/r1rtOI7KIiIaE0YgS8+KK1\nIMqUcZ3GG40a2fYerVtDZqbrNCJG3U0SOq++ajOYZs2yvZKiJCvLxiaOOw4eesh1GgkbdTdJypsx\nA26/Hd5+O3oFAmx204sv2kyn//7XdRoRtSQkRObOtbUQEyZA/fqu0/hr3jzbevzDD6F6dddpJCzU\nkpCUtWKFdcOMGhX9AgG23figQXDZZbB1q+s0ksrUkpDAW7fOVib37WurlVNFLAY33GDnYYwZE65F\nguKGWhKScjZvtv2YbrsttQoEWFF48klYtAieesp1GklVQf1sopaEsHWrHQdar57tmpqqVq2Cc86x\nE/Tq1HGdRoJMK64lZWRm2mFBRx4Jzz2nrpbXX7dpv/PmwWGHuU4jQaUiISkhKwuuu842vZs4MZz7\nMfmha1dYuBAmT7bdZEVy05iERF4sBnfdBV9/Da+8ogKR0+DB8OefMHCg6ySSSnQJSqAMGQLvvQcz\nZ0KpUq7TBEvx4jB+PNSqBWedZQP6In5TS0ICY+RIO5d66lQ74lP+qXx5GDcOrr/ejmoV8ZvGJCQQ\nJk+Gm2+2FkTVqq7TBN8DD9i2HTNnwn77uU4jQaGBa4mkrVuhRg14+WU491zXacIhFrMzso86CoYP\nd51GgkID1xJJQ4faVhsqEIlLS4Pnn4dp0+ygIhG/qCUhTq1dayeyLVhgB+9IwSxcCOefDxkZULOm\n6zTimloSEjl3321TXlUgCufkk+HBB20jwC1bXKeRKFJLQpyZMQNuuQWWLg3/8aOutW8PP/9sa0tS\nfXV6KlNLQiIjMxPuvNNOX1OBKLpHH4U1a+xPES9pMZ04MWKEzcxp2dJ1kmgoWdKmxJ51lo3xnHOO\n60QSFUFtmKq7KcJ++glOOAE++MD+FO9MngwdOthGgGXLuk4jyaZ1EhIJ7dvblhuPPOI6STT17g0f\nf2zTY7X3VWpRkZDQ+/xzaNYMli/X1ht+2bkTzjsP/v1vK8iSOlQkJNRiMVs0d/31tgWH+GfePLjo\nIjuw6IADXKeRZAnb7KZjgPeBJcBioGP8/kOB6cBKYBqgz5MpYvx4+OMPaNfOdZLoO+MMaNAAHn7Y\ndRIJOz9bEuXiX/OB0sA8oBVwA7ARuB/oBhwCdM/1XLUkIiZ7f6bx4zXzJlnWrIEzz4Rly+CII1yn\nkWQIe3fTG8AT8a8GwA9YEckAauR6rIpExPTuDV9+aZv4SfJ07GiL67R+IjWEuUhUAj4ATgS+wVoP\n2a+/Ocf32VQkImTtWqhTx/ZnqlDBdZrU8uOPNs3400+hcmXXacRvfhSJZEyQKw1MAO4Ecu8uE4t/\n/UPfvn3/vp2enk56ero/6cR3XbrY/kwqEMlXtqytbO/dW7vFRlFGRgYZGRm+vobfLYkSwFvA20D2\nrPjlQDrwPVAeG9xWd1NETZ9ui7uWLNH2G65s3QrVqsGkSTagLdEVttlNacCzwFJ2FQiA/wHXx29f\nj41VSARpf6ZgOOAAuPde6NbNpiGLFISfLYl6wExgIbu6lHoAnwKvAhWBr4ArgV9yPVctiQh49FHb\nJmLqVO1M6lpmJpx4Ijz+OFxwges04pcwD1wXlIpEyGXvzzRzJhx/vOs0AjBhAgwcaAvt9tH+z5EU\ntu4mSWG9ekGbNioQQXLppdbtN26c6yQSJmpJiOfmzYPmzbU/UxDNnGnboixfDvvt5zqNeE0tCQm8\nWMwGqwcOVIEIonPPtbGJJ590nUTCQi0J8dTYsTBsmC3eKlbMdRrJy+LF0LChbf5XpozrNOIlDVxL\noP3+u+3P9Mor2p8p6Nq1g3LlYPBg10nESyoSEmi9esHXX8NLL7lOInuzbh2ccgosXKiV8FGiIiGB\nlb3jqPZnCo/u3WHTJhg50nUS8YqKhARWq1ZWJHr0cJ1EEvXzz1C9OmRk6KzxqNDsJgmkadNsMLRz\nZ9dJpCAOOcS26ujZ03USCTK1JKRIMjOtb3voULj4YtdppKC2bbPWxNixmmwQBWpJSOAMHw4VK9p5\nyhI+JUvCgAHQtas2/5O8qSUhhfbjj1CzJsyaZVNfJZx27oTTT4d+/WxsScJLA9cSKDffDAceaFuB\nS7i9/bYdDLVoERRPxlFk4gsVCQmMefOgRQvbA0irdsMvFoPzz4err7biL+GkIiGBEItBvXq2avfG\nG12nEa/MnWvdTStX2kFFEj4auJZAeOUV2L4dbrjBdRLxUu3aVvwffdR1EgkStSSkQLKybLD6sceg\ncWPXacRrq1fDWWdZN+Lhh7tOIwWlloQ4N3EiHHQQNGrkOon4oWpVuOoq2+pdBNSSkAKIxeC00+wN\npEUL12nELz/+aCcKfvYZHHus6zRSEGpJiFOTJ9ufzZu7zSH+KlsWOnaE3r1dJ5EgUEtCEhKLQd26\ncPfdcPnlrtOI337/HapVgylTrPUo4aCWhDjz7rvw229w6aWuk0gylC4N//mPbQAoqU1FQhIycKDt\nFrqP/sWkjJtvhq++gunTXScRl3TJy17NmgXffmuzXiR1lChhx5t262ZTnyU1qUjIXg0aZIcJaU+f\n1HPZZVYsxo93nURc0cC15GvuXHujWL0a9t3XdRpx4YMPbHX9smWw336u00h+NHAtSTdokJ01oAKR\nuho0sHUTTz3lOom4oJaE7NHChdCkCaxdC6VKuU4jLi1aZKvsV62yFfcSTGpJSFINHgxduqhACJx0\nkm0lrtZE6lFLQvK0YgXUr2+tiNKlXaeRIFi4EJo2tX8TJUu6TiN5UUtCkmbIENuaQQVCsp18MtSq\nBaNHu04iyaSWhPzDl1/a2QKrV8PBB7tOI0EyezZcc42NTWhKdPCoJSFJMXQodOigAiH/VLcuVKqk\ndROpRC0J2c26ddatsHKlDp2RvE2bBp0724wnbdMSLGpJiO8eeMDOrlaBkD1p3NhmvE2a5DqJJINa\nEvK3H36wRVNLlkD58q7TSJBNmAD33w+ffAJpQX0XSUFhbEk8B/wALMpxX19gHfBF/KupzxkkQQ89\nZIOSKhCyN5dcYlvHv/ee6yTiN78/A9QHfgdeBE6K39cH2AI8lM/z1JJIsk2b7JCZ+fOhYkXXaSQM\nXngBxoyBGTNcJ5FsYWxJzAJ+zuN+NVAD5rHH7EAhFQhJVPZU2E8/dZ1E/ORq4PoOYAHwLKCJlo79\n+isMHw7du7tOImFSogTcc48tvJTocrEcZgTQP357ADAMuDH3g/r27fv37fT0dNLT05MQLTU9+aRt\nt1C1quskEjbt2tmphUuWQM2artOknoyMDDIyMnx9jWR0+1QCJrFrTCKRn2lMIkm2boXKleH99+GE\nE1ynkTAaMsTOmnjxRddJJIxjEnnJOXfmEnaf+SRJ9swztpGfCoQU1v/9H0yebNu5SPT43ZIYBzQA\nDsemwvYB0oFTgRjwJdA+/rOc1JJIgm3boEoVeOstOO0012kkzHr2hF9+sa5LccePlkRQZxmpSCTB\niBH2CfCtt1wnkbD78UeoUQOWLoVy5VynSV2uikRN4Fxs/CAGfIVNbV3iZZBcVCR8lplpA9Xjx9um\nbSJFdccdsP/+cN99rpOkrmQXiWuxqaqbgE+B7+KPLw/UwbqQHgVe8jJQnIqEz0aPhpdf1kIo8c7X\nX8Ppp9sW84cc4jpNavKjSOQ3BfYQ4HxsdXReDgLaehlGkmPnTjuadORI10kkSv71L7joIltz07u3\n6zTiFY1JpKBx4+xCnjVLm7OJt5Ytg/R0O+L0gANcp0k9ye5uejyfn20HVgMvs+eWRlGoSPgkK8vO\ni3jwQVtAJ+K1yy+3adV33uk6SepJdpFoiw1U5/W44tiA9olAYy8DxalI+OT112HQIJg7V60I8ce8\nedCqFaxZA/vu6zpNagniFNi3gQu9CJKLioQPYjE44wy49167iEX80qQJtG5t23ZI8rgqErWBntgU\n2OyB7hhwspdBclGR8MGUKdCtGyxYoGMnxV8ZGXDLLTZGUayY6zSpI9mzm7K9DNwNLAayvHxxSZ5Y\nDAYMgF69VCDEfw0a2BG4EyfCFVe4TiNFkcjbxU/A/4C12EK67C8Jkfffh82bdcFKcqSlQY8eNtVa\nnQLhlkiz5AKgNTAD2BG/LwZM9CsU6m7yXMOGcP319iWSDFlZcOqptgL7Qj9GLuUfXI1JvAxUx7bh\nyNnddIOXQXJRkfDQRx9BmzawcqUdFCOSLOPG2R5hM2e6TpIaXBWJFUANdk2HTQYVCQ81awYtW0L7\n9q6TSKr56y+oXt3Ow65Xz3Wa6HN1nsTHgE4bCKl582DhQmjb1nUSSUXFi9uMOh1xGl6JVJzlQBXs\n7Ift8fs0BTYkLrvMPsF17uw6iaSq7dvt9MPJk22MQvzjqrup0h7u/8q7GP+gIuGBpUvhvPO0j464\nN2yYrfIfP951kmhLdpE4kL3vy5TIYwpDRcID111n/cG9erlOIqluyxZrTXz0ERx3nOs00ZXsIjED\nG7R+E/gM2By//zCgFtAKqAY08jJQnIpEEa1dC7Vr2/45Bx/sOo0I9O0L69bBqFGuk0SXi+6mhsA1\nwDnAUfH7vgM+xKbGZngZJgcViSK69VY7+GXwYNdJRMymTVCtmk2kOPpo12miKYgb/PlFRaIIvvsO\nTjwRli+HsmVdpxHZpUsXW2T38MOuk0STioQkpEsXm5/+6KOuk4jsbv16OOkkW9h5+OGu00SPioTs\nlZr0EnS33ALlykH//q6TRI+KhOzVvffChg06v1qCa/VqqFvXJlcceKDrNNGS7CJRBzgcmJLr/mbA\nD8A8L4PkoiJRCL/9ZtMMP/kEqlZ1nUZkz66+Gk4/He65x3WSaEn2thz3AUvzuH8p8KCXIcQbI0bA\nBReoQEjw9ehhg9fbtrlOInuTX5E4kLxXVX+FtTAkQP780y66Hj1cJxHZu5NPtqN0n3/edRLZm/yK\nRH5LsEp5HUSK5tln4cwzbeaISBj06GFnTfz1l+skkp/8isS7wCB279/aBxgAvOdnKCmYHTvg/vuh\nZ0/XSUQSd/bZUKkSjB3rOonkJ78BjtLAKGwAe378vlOwLTpuwp89m7Jp4LoARo+Gl1+GGTNcJxEp\nmPfft3NOli2DYsVcpwk/V1NgKwM147eXAmu8DLAHKhIJ2rkTjj8enn7adnwVCZNYDM4917aRueYa\n12nCz9WhQ/2BcsAqklMgpAAmTIDDDoP0dNdJRAouLc3W9gwcaB94JHgSKRLPYZv7PY4dPDQB6ORn\nKElMLGYb+PXqZRebSBg1agRlytgHHgmeRN9aimPbgzcEOgB/AtX9CoW6mxIyebINVs+fryIh4fb2\n29C1KyxYAPsk8tFV8uSqu+ldbGvw1tj5ErXwt0BIAmIxGDTIioQKhIRd06ZQsiS88YbrJJJbIkVi\nIZAJnIida30iWifhXEYGbNwIl1/uOolI0WWPTfTvbx+AJDgSKRKdgfrApcBGYDTwS4K//zlsn6dF\nOe47FJgOrASmkf+iPdmDwYOhe3dNG5ToaNHCisWkSa6TSE6JFIk7gFextRItsTf+CxP8/aOBprnu\n644VieOwrqzuCf4uifv0U9uPv00b10lEvKPWRDAl0pt9DzAT+BzrdiqoSsAkIHvDiOVAA6yFUQ47\nArVGrudo4DofrVrZjJDbb3edRMRbWVlw6qkwdCg0a+Y6TfiE9TyJSuxeJH4GDsnx+ptzfJ9NRWIP\nFi2ynV7XroVSGhmSCHrtNRg2DGbP1qSMgnI1u8lPsfiXJGjoUOjUSQVCouuyy2DLFpg+3XUSAVv/\nkGzZ3UzfA+WBH/N6UN++ff++nZ6eTrqWFLN6NUydaudGiETVPvtA797Qrx80bqzWRH4yMjLIyMjw\n9TVcdDfdD2zCDjXqjs1uyj14re6mPNx8M5Qvr7OBJfp27oQTTrAPRA0buk4THmEckxiHDVIfjrUg\n7gXexGZLVcQOMLqSf06pVZHIZd06O6hl1Srbq0kk6saMsXNSfP6gHClhLBKFpSKRS6dOtiZi2DDX\nSUSS46+/oEYNKxQNGrhOEw4qEinqp5+genVYvBiOOsp1GpHk0VkpBRPF2U2SgEcegSuvVIGQ1NOm\nDaxZAx995DpJ6lJLIuB+/RWqVIG5c+HYY12nEUm+kSNtG/F33nGdJPjUkkhBw4fbylMVCElV119v\nx5vOmeM6SWpSSyLAtm6FypXtHOATTnCdRsSdESPs/JS33nKdJNjUkkgxo0ZBvXoqECLt2tnhWvPm\nuU6SetSSCKjt26FqVTuE5YwzXKcRce/xx+Hdd3UwUX7UkkghY8ZAzZoqECLZbrrJtsmfP991ktSi\nlkQAZS8iGj0a6td3nUYkOB5+2KbD/ve/rpMEk1oSKeK112yPJhUIkd21bw8ffmgLSyU5VCQCJivL\njibt1ct1EpHg2X9/6NIFBg50nSR1qEgEzKRJsO++0KSJ6yQiwXTrrTYtfNky10lSg4pEgMRi1oro\n2VN76IvsSenStuHloEGuk6SGoL4VpeTA9dSp9o9/yRI7eEVE8vbbb7ZdzUcfwXHHuU4THBq4jrCd\nO+Huu2HIEBUIkb056CDo2NFa3uIvtSQCYuRIeOklO2BFXU0ie/fLL7bgdM4ca1WIzpOIrC1b7LyI\nSZO0eE6kIPr0gfXrbQsbUZGIrN694Ztv4MUXXScRCZfNm6FaNdvTqVIl12ncU5GIoG+/hVNPta0G\njjnGdRqR8OnVCzZtgqeecp3EPRWJCLr2WvsENGCA6yQi4bRxo3XX6oOWikTkzJ0LLVvCypU291tE\nCqdbNzt/5YknXCdxS0UiQmIxaNDATt268UbXaUTC7ccfbVPMRYugQgXXadzROokIef11O7+6bVvX\nSUTCr2xZu5YeeMB1kuhRS8KBHTvstLmnnoJGjVynEYmGDRvsDJalS6FcOddp3FBLIiKGD7eBNhUI\nEe+ULw9t2sCDD7pOEi1qSSTZ5s3Wd5qRobOrRby2fj2cfDJ88QVUrOg6TfJp4DoCOnWCzExrTYiI\n9/r1gwULYOJE10mST0Ui5FauhLPPtn3wjzjCdRqRaNq2DU46CR55BJo3d50muVQkQu6SS6BuXeja\n1XUSkWibNg06dLBt90uVcp0meVQkQuyDD2yK3rJlULKk6zQi0XfllTZBJJV2M1CRCKmsLKhd21oQ\nrVu7TiOSGtavh1NOsYOJqld3nSY5NAU2pF56yc6tvvJK10lEUkeFCrb53+232w4HUjhqSfjsjz/s\nU8yrr9p4hIgkz19/2RktPXumRite3U0hNGCADZ6NH+86iUhq+ugja8UvW2bHnkaZikTIbNgAJ54I\nn30Gxx7rOo1I6rrpJttp+ZFHXCfxl4pEyNx0Exx2GNx3n+skIqlt40bb12nqVDvkK6qiViS+An4D\ndgKZQJ0cPwt9kViwAJo0gRUroEwZ12lEZNQoePZZ637aJ6JTdqI2uykGpAOnsXuBCL1YDLp0gXvv\nVYEQCYp27SAtzQqFJM51PQ1qd1eRTJkC330Ht9ziOomIZNtnHxgxwqbF/vST6zTh4fJNei3wK9bd\n9DQwMsfPQtvdlJlpu1A++GDq7RsjEgadO9uBX8895zqJ9/zobiru5S8roHOADcARwHRgOTAr+4d9\n+/b9+4Hp6emkp6cnN10hjRwJRx8NzZq5TiIieenXz7bp//BDqFfPdZqiycjIICMjw9fXCEp3Tx/g\nd2BY/PtQtiR+/dUWzk2datsBiEgwvfqqrWH6/HMoUcJ1Gu9EaeB6f+DA+O0DgAuARY6yeGbwYGjR\nQgVCJOiuuMJOsnvsMddJgs9VS+JY4PX47eLAy8CQHD8PXUviyy+hVi1YvNj+8YlIsK1aZVvlzJ9v\nXcRRELV1EvkJXZG46ipbrPOf/7hOIiKJ6tMHli6F115zncQbKhIBNXu27Q2zYgXsv7/rNCKSqD//\ntK1zhg+Hpk1dpym6KI1JREYsBnfdBYMGqUCIhE2pUvDEE3DbbVYw5J9UJIro1Vdhxw5o08Z1EhEp\njAsvhNNO0x5re6LupiLYtg2OPx6efx4aNHCdRkQK69tvrVDMng3VqrlOU3jqbgqYxx6zHSVVIETC\n7ZhjoEcPnWKXF7UkCmnDBjjpJPj4YzjuONdpRKSoMjPh9NNtY84rrnCdpnDUkgiIbdvgkkvgzjtV\nIESiokQJ2wCwc2fYssV1muBQS6KAYjEbpM7KgrFjbethEYmOdu3g4IPhoYdcJyk4rZMIgEGD4M03\n4YMPbPqciETLTz/Zwtjp08O3xY66mxybMAGeftqKhAqESDQdcQQMHAj/93/WY5DqVCQS9Pnn0KGD\nFQjtzSQSbTfdBDt3wujRrpO4p+6mBHz3HZx5Jjz6KFx6qes0IpIMX3xhW3UsWQKHH+46TWI0JuHA\nH3/YOohLLoGePV2nEZFkuvNOew8YOXLvjw0CFYmkh7DdXUuUgDFjNJNJJNX8+qudYvfaa3D22a7T\n7J0GrpOsf3/45hsYNUoFQiQVlSkDw4bBLbfAzz+7TuOGisQevPKKHZT+xhtQsqTrNCLiSuvWcMEF\n0KgRbN7sOk3yBfXzsdPuprlzoVkzmDEjfPOkRcR7sRh062ZrJ6ZPD+5Ath/dTcW9/GVRsG6dDVKP\nHKkCISImLc22Ei9eHBo2hHfftfUUqUBFIoetW6FlS7jjDmjVynUaEQmStDTbcaF4cTjvPCsURx7p\nOpX/1N0Ul5VlR5AecICdD6GBahHZk/79Ydw4eO+9YC2uVXeTj/r0ge+/t08HKhAikp9774VixSA9\n3QpFhQquE/lHRQLbzfWll2DOHNhvP9dpRCQMevWyrqf0dHj/fTj6aNeJ/JHyRWLOHOjUyVoQZcu6\nTiMiYdKtmxWKBg2sUFSs6DqR91K6SHz7re3F9NxzdsqciEhBdemyq0Xx3ntQqZLrRN5K2SLx++9w\n0UVw113QooXrNCISZnfeuXuhqFzZdSLvBHWI1tfZTVlZcNllcOih2nJDRLzz1FMwZIh1X1etmvzX\n1+wmj/TubcvrX3lFBUJEvNOhw651FDNmQPXqrhMVXcoViTFjrDjMmQP77us6jYhEzU032fTYhg2t\nUBx/vOtekPkxAAAGSklEQVRERZNSReLjj22QKSMjuHuviEj43XCDtSjOP9/2eqpZ03WiwkuZIvH1\n13D55fDCC7Y/vIiIn6691loUjRrB1Klw8smuExVOShSJ+fPhuutsTvOFF7pOIyKp4pprrFBccAG8\n8w6ceqrrRAUX2SKxYwdMnAhPPGGtiLvugo4dXacSkVTTurV1PTVtClOmwOmnu05UMJErEt99B888\nY181akDnzraza/HI/ZeKSFhcdpm1KC68EN56C2rXdp0ocZF464zF4MMPrdUwbRpcfXX4B4tEJFpa\ntbJC0bw5/O9/cNZZrhMlJqirBBJaTLd1K7z8MgwfDtu2we2329hDmTJJSCgiUghTpkDbtnY08tln\ne/u7/VhM56pINAUeAYoBo4D7cv083yKxejU8+aTNVKpfH267zaaa7aMTu0UkBKZOhWHD7E8vF/T6\nUSRcvK0WA57ACsUJwNXAXpeb7NwJkydbn17durYQbt48q8aNG7spEBkZGcl/0UJQTm8pp7fCkNPr\njE2aeF8g/OKiSNQBVgNfAZnAeKDlnh68eTM8+CAcd5wdDHTVVbZ769Ch7ndbDMM/blBOrymnt8KQ\n04+MYSgQ4GbgugLwbY7v1wFn5n7QF1/YWMOECbZL69ixUKdOeP5iRUSiwEWRSGh714svhltvhRUr\ndBiQiIgrLj6XnwX0xcYkAHoAWew+eL0aqJLcWCIiobcGcLBJubeKY/8hlYB9gfkkMHAtIiKp40Jg\nBdZi6OE4i4iIiIiIBFVTYDmwCui2h8c8Fv/5AuC0BJ57KDAdWAlMAw4OaM4HgGXxx08Eiroe3I+M\n2bpg40OHFjGjnznvwP4+F/PPRZhByVkH+BT4ApgLeLFTT1FyPgf8ACzK9figXUN7yun1NeRXzmxe\nXUd+ZfT6GiqyYli3UiWgBHmPQTQDpsRvnwl8ksBz7we6xm93A4YGNGdjdq1HGVrEnH5lBDgGeAf4\nkqL/4/Yr53nYm1qJ+PdHBDRnBtAkfvtC4H2HOQHqY28gud8wgnQN5ZfTy2vIz5zg3XXkV8YCX0PJ\nWEyXyOK5i4EX4rfnYJ9oyu3luTmf8wLQKqA5p2OfKrKfc3QAMwI8xK43jKLyK+etwJD4/QA/BTTn\nBnZ92j0YWO8wJ8As4Oc8fm+QrqH8cnp5DfmZE7y7jvzKWOBrKBlFIq/FcxUSfMxR+Tz3SKw5RfzP\nIwOaM6d27Kr8QcrYMv79wiJkS0bOasC52CemDKBWQHN2B4YB32BdJUWdnFGUnPkJ0jWUqKJeQ4lm\nKExOL68jvzIW+BpKxmK6hBbPkdiajbQ9/L5YAV5nT7zMmZdewA5gbCGfD/5kLAX0xJr0hXl+Xvz6\nuywOHIKttakNvApULuDvyMmvnM8CHYHXgSuw/uHG+T4jf4XNWZBrwuU1lOjzvLiGCvJ6Bcm5P95e\nR379XRb4GkpGS2I91k+X7Ris4uX3mKPjj8nr/uym+w/salqVB34MUM7cz22L9R/+O4AZq2D9nguw\nftSjgXlAUda5+/V3uQ4buAQbEM4CDgtgzjpYgQD4b/z7oihszr11cwXlGkqkO64t3lxDeWXwIqfX\n15Fff5deX0OeSGTxXM4BmLPYNQCT33PvZ9eIf3eKPpjlV86mwBLg8CLm8zNjTl4MXPuVsz3QL377\nOKw7J4g5PwcaxG+fj12MrnJmq0TeA9dBuYbyy+nlNeRnzpyKeh35ldHra8gzeS2eax//yvZE/OcL\ngNP38lyw/wEz8Hb6nh85VwFfY9MhvwCeDGDGnNbizRRYP3KWAMZg//DnAekBzVkLG0icD8xm96mJ\nLnKOA74DtmN92DfE7w/aNbSnnF5fQ37lzMmL68iPjH5cQyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIS\nDT1dBxARkeDa4jqAiIi4cw92QAvAw8C78dsNgQnAX9gK4DHJjyaSHMnY4E8krGZih7eAbbVxALan\nTj1gKvAntuXGtU7SiSSBioTInn0OnAEcCGzD9mGqhRWOWQ5ziSRNMs6TEAmrTGw3z7bAx9hhMg2x\nbaGXuYslIiJB0QfbgbQhdjbAN9h4BMBm9EFLIk7dTSL5m4UdzDMbO5TnT3Z1NT2DtS40cC0iIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISVv8Pmb4Yc828YNgAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10bdaab10>"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4 Page No : 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "\n",
+ "# Given\n",
+ "#Current through diode is 30mA\")\n",
+ "#From the table the nearest value is at v = 0.74V\n",
+ "V = 0.74;\n",
+ "I = 28.7*10**-3;\n",
+ "R = V/I;\n",
+ "delV = 0.75-0.73\n",
+ "\n",
+ "# Calculation\n",
+ "delI = 42.7*10**-3-19.2*10**-3\n",
+ "r = delV/delI\n",
+ "p = (V*I)*10**3\n",
+ "\n",
+ "# Results\n",
+ "print \" Static resistance is %3.2fohm\"%(R)\n",
+ "print \"Dynamic resistance is %3.2fohm\"%(r)\n",
+ "print \"Power consumption is %3.2fmW\"%(p)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Static resistance is 25.78ohm\n",
+ "Dynamic resistance is 0.85ohm\n",
+ "Power consumption is 21.24mW\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.5 Page No : 34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Given\n",
+ "#a)\")\n",
+ "#Current through diode is 10mA\")\n",
+ "#From the table the value is at v = 2.5V\n",
+ "V = 2.5;\n",
+ "I = 10*10**-3;\n",
+ "R = V/I;\n",
+ "delV = 3.-2\n",
+ "delI = 11.*10**-3-9*10**-3\n",
+ "\n",
+ "# Calculation and Results\n",
+ "r = delV/delI\n",
+ "p = (V*I)*10**3\n",
+ "print \" Static resistance is %3.2fohm\"%(R)\n",
+ "print \"Dynamic resistance is %3.2fohm\"%(r)\n",
+ "print \"Power consumption is %3.2fmW\"%(p)\n",
+ "\n",
+ "#b)\")\n",
+ "#Current through diode is 15mA\")\n",
+ "#From the table the value is at v = 5V\n",
+ "V = 5;\n",
+ "I = 15*10**-3;\n",
+ "R = V/I;\n",
+ "delV = 5.5-4.5\n",
+ "delI = 16*10**-3-14*10**-3\n",
+ "r = delV/delI\n",
+ "p = (V*I)*10**3\n",
+ "print \" Static resistance is %3.2fohm\"%(R)\n",
+ "print \"Dynamic resistance is %3.2fohm\"%(r)\n",
+ "print \"Power consumption is %3.2fmW\"%(p)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Static resistance is 250.00ohm\n",
+ "Dynamic resistance is 500.00ohm\n",
+ "Power consumption is 25.00mW\n",
+ " Static resistance is 333.33ohm\n",
+ "Dynamic resistance is 500.00ohm\n",
+ "Power consumption is 75.00mW\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch3.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch3.ipynb
new file mode 100644
index 00000000..f38809ed
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch3.ipynb
@@ -0,0 +1,292 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:07d1a1891f05681129f5b923a45c9d13a9e8c4e25902a3f29878a40044aa6a7c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3 : Circuit Laws"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3 Page No : 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Given\n",
+ "#Equivalent resistance of three resistors is 750 ohm\")\n",
+ "#values of two resistors are 40 ohm and 410 ohm\")\n",
+ "Req = 750;\n",
+ "R1 = 40;\n",
+ "R2 = 410;\n",
+ "\n",
+ "#For series resistance \n",
+ "#Req = R1+R2+R3\")\n",
+ "#On solving for R3\n",
+ "R3 = Req-R1-R2\n",
+ "print \"Value of third ohmic resistor is %d ohm\"%(R3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of third ohmic resistor is 300 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4 Page No : 49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 3.4\")\n",
+ "# Given\n",
+ "#values of two capacitors are 2uF and 10uF\")\n",
+ "C1 = 2*10**-6;\n",
+ "C2 = 10*10**-6;\n",
+ "#For two capacitors in series\n",
+ "#Ceq = (C1*C2)/(C1+C2)\")\n",
+ "#On solving for Ceq\n",
+ "Ceq = ((C1*C2)/(C1+C2))*10**6\n",
+ "print \"Value of equivalent capacitance is %3.2fuF\"%(Ceq)\n",
+ "\n",
+ "#If C2 = 10pF\")\n",
+ "C2 = 10*10**-12;\n",
+ "\n",
+ "Ceq = ((C1*C2)/(C1+C2))*10**12\n",
+ "print \"Value of equivalent capacitance is %3.2fpF\"%(Ceq)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of equivalent capacitance is 1.67uF\n",
+ "Value of equivalent capacitance is 10.00pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.5 Page No : 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 3.5\")\n",
+ "# Given\n",
+ "#a)\")\n",
+ "#values of two resistors are 60 ohm and 60 ohm\")\n",
+ "R1 = 60;\n",
+ "R2 = 60.;\n",
+ "#If resistors are parallel\")\n",
+ "Req = (R1*R2)/(R1+R2)\n",
+ "print \"Value of equivalent resistance is %d ohm\"%(Req)\n",
+ "\n",
+ "#b)\")\n",
+ "#values of three equal resistors are 60 ohm\")\n",
+ "R1 = 60.;\n",
+ "R2 = 60.;\n",
+ "R3 = 60.;\n",
+ "#If resistors are parallel\")\n",
+ "x = 1/R1+1/R2+1/R3\n",
+ "Req = 1/x;\n",
+ "print \"Value of equivalent resistance is %d ohm\"%(Req)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of equivalent resistance is 30 ohm\n",
+ "Value of equivalent resistance is 20 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.6 Page No : 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 3.6\")\n",
+ "\n",
+ "# Given\n",
+ "#values of two inductors are 3mH and 6 mH\")\n",
+ "L1 = 3*10**-3;\n",
+ "L2 = 6*10**-3;\n",
+ "#If inductors are parallel\")\n",
+ "Leq = ((L1*L2)/(L1+L2))*10**3\n",
+ "print \"Value of equivalent inductance is %3.1f mH\"%(Leq)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of equivalent inductance is 2.0 mH\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.7 Page No : 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 3.7\")\n",
+ "\n",
+ "# Given\n",
+ "#Total resistance of three resistors is 50 ohm\")\n",
+ "R = 50;\n",
+ "#Output voltage is 10 percent of the input voltage\")\n",
+ "#Let v be input voltage and v1 be output voltage\n",
+ "#Let v1/v = V\n",
+ "V = 0.1;\n",
+ "#As V = R1/(Total resistance)\n",
+ "\n",
+ "#Solving for R1\n",
+ "R1 = V*R;\n",
+ "#As R = R1+R2\n",
+ "#Solving for R2\n",
+ "R2 = R-R1;\n",
+ "\n",
+ "# Results\n",
+ "print \"R1 = %dohm R2 = %dohm\"%(R1,R2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "R1 = 5ohm R2 = 45ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.8 Page No : 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 3.8\")\n",
+ "\n",
+ "# Given\n",
+ "#Total current is 30mA\")\n",
+ "#Branch currents are 20mA and 10mA\")\n",
+ "#Equivalent resistance is equal to or greater than 10 ohm\")\n",
+ "\n",
+ "#From Fig 3.6\n",
+ "#Current flowing through R1 be i1 and let it be equal to 10mA\n",
+ "#Current flowing through R2 be i2 and let it be equal to 20mA\n",
+ "i1 = 10*10**-3;\n",
+ "i2 = 20*10**-3;\n",
+ "i = 30*10**-3;\n",
+ "\n",
+ "# Calculation\n",
+ "#Let R1/(R1+R2) = X1 (1)\n",
+ "#Let R2/(R1+R2) = X2 (2)\n",
+ "X1 = i1/i;\n",
+ "X2 = i2/i;\n",
+ "#Let R1*R2(R1+R2) = Y (3)\n",
+ "\n",
+ "# Results\n",
+ "#Given that \n",
+ "print \" Given\"\n",
+ "#R1*R2(R1+R2)> = 10\")\n",
+ "#Solving (1),(2) and (3) we get\n",
+ "print \"R1> = %dohmR2> = %dohm\"%(15,30)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Given\n",
+ "R1> = 15ohmR2> = 30ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch5.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch5.ipynb
new file mode 100644
index 00000000..73863ca1
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch5.ipynb
@@ -0,0 +1,70 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:542e92bd62de523a8cd9abe5adfd1eec8e64f2ebaa6b2ac5b00d208e9be115e3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Analysis Methods"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.8 Page No : 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#From figure 5.13(a)\n",
+ "\n",
+ "#Applying KVL equation to the loop \n",
+ "I = (20.+10)/(3+6)\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#As current will not flow in upper 3 ohm resistor so Thevenin voltage is equal to either of the two parallel branches\n",
+ "V1 = 20.-I*3\n",
+ "print \"Thevenin voltage = %dV\"%(V1)\n",
+ "\n",
+ "# Left 3 ohm and 6 ohm resistor are in parallel and their equivalent is in series with 3 ohm\n",
+ "R1 = 3+(3.*6)/(3+6)\n",
+ "print \"Thevenin resistance = %dohm\"%(R1)\n",
+ "\n",
+ "#Now to find Norton's equivalent\n",
+ "I1 = V1/R1\n",
+ "print \" Norton current = %dA\"%(I1)\n",
+ "#The value of resistance in Norton equivalent will not change but will come in parallel with current source\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thevenin voltage = 10V\n",
+ "Thevenin resistance = 5ohm\n",
+ " Norton current = 2A\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch6.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch6.ipynb
new file mode 100644
index 00000000..0fd76374
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch6.ipynb
@@ -0,0 +1,120 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2130051c161e1eb65736d42ad2b9fa42d44b0f62f874e5840e1f283681b2b0e1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6 : \n",
+ " Amplifiers and Operational Amplifiers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.8 Page No : 84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 6.8\")\n",
+ "# Given\n",
+ "#R1 = 10kohm R2 = 50kohm Ri = 500kohm R0 = 0\")\n",
+ "#Open loop gain (A) = 10**5\")\n",
+ "A = 10**5;\n",
+ "R1 = 10*10**3;\n",
+ "R2 = 50*10**3;\n",
+ "Ri = 500.*10**3;\n",
+ "#From figure 6.11\n",
+ "#Applying KCL equation at node B\n",
+ "#(v1+vd)/10+ (v2+vd)/50+ vd/500 = 0 (1)\")\n",
+ "#Since R0 = 0\n",
+ "#v2 = A*vd\")\n",
+ "#Solving for vd\n",
+ "#vd = 10**-5*v2 (2)\")\n",
+ "#Substituting (2) in (1) we get\n",
+ "print \"v2/v1 = %d\"%(-5)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "v2/v1 = -5\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.10 Page No : 87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "# Given\n",
+ "#R1 = 1 ohm;R2 = 1/2 ohm;R3 = 1/4 ohm;R4 = 1/8 ohm\")\n",
+ "#Rf = 1 ohm\")\n",
+ "#From figure 6.14\n",
+ "#THe output of summing circuit can be written as\n",
+ "#v0 = -((Rf/R1)*v1+(Rf/R2)*v2+(Rf/R3)*v3+......\")\n",
+ "#From above equation\n",
+ "#v0 = -(8v4+4v3+2v2+v1)-----------(1)\")\n",
+ "#a)\")\n",
+ "v1 = 1;\n",
+ "v2 = 0;\n",
+ "v3 = 0;\n",
+ "v4 = 1;\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#Substituting in equation (1)\n",
+ "v0 = -(8*v4+4*v3+2*v2+v1)\n",
+ "print \"v0 = %dV\"%(v0);\n",
+ "\n",
+ "#b)\")\n",
+ "v1 = 0;v2 = 1;v3 = 1;v4 = 1;\n",
+ "#Substituting in equation (1)\n",
+ "v0 = -(8*v4+4*v3+2*v2+v1)\n",
+ "print \"v0 = %dV\"%(v0);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "v0 = -9V\n",
+ "v0 = -14V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch7.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch7.ipynb
new file mode 100644
index 00000000..eef55c8a
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch7.ipynb
@@ -0,0 +1,571 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:db1129af4b6edac97bc68145183b0a38a23673506c4e39ac725040265d12dfa4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7 : Waveforms and Signals"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1 Page No : 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import cos,sin,arange\n",
+ "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
+ "#Example 7.1\")\n",
+ "\n",
+ "t1 = arange(-5,8+0.5,0.5)\n",
+ "v1 = cos (t1)\n",
+ "\n",
+ "\n",
+ "# Calculation and Results\n",
+ "plot(t1,v1)\n",
+ "suptitle ('v1 vs t1')\n",
+ "xlabel('t1')\n",
+ "ylabel('v1 ');\n",
+ "#From the graph\n",
+ "print \"Time period1 = %3.3fs Frequency 1 = %0.3fHz\"%(6.2832,0.159)\n",
+ "\n",
+ "t2 = arange(-4,10+0.5,0.5)\n",
+ "v2 = sin (t2)\n",
+ "\n",
+ "plot(t2,v2)\n",
+ "suptitle ('v2 vs t2')\n",
+ "xlabel('t2')\n",
+ "ylabel('v2 ');\n",
+ "#From the graph\n",
+ "print \"Time period 2 = %3.3fs Frequency 2 = %0.3fHz\"%(6.2832,0.159)\n",
+ "\n",
+ "t3 = arange(-1,1.5+0.05,0.05)\n",
+ "v3 = 2* cos (2*math.pi*t3)\n",
+ "\n",
+ "plot(t3,v3)\n",
+ "suptitle ('v3 vs t3')\n",
+ "xlabel('t3')\n",
+ "ylabel('v3 ');\n",
+ "#From the graph\n",
+ "print \"Time period 3 = %ds Frequency 3 = %dHz\"%(1,1)\n",
+ "\n",
+ "t4 = arange(-5,12+0.5,0.5)\n",
+ "v4 = 2*cos (math.pi*t4/4-math.pi/4)\n",
+ "plot(t4,v4)\n",
+ "suptitle ('v4 vs t4')\n",
+ "xlabel('t4')\n",
+ "ylabel('v4 ');\n",
+ "#From the graph\n",
+ "print \"Time period 4 = %ds Frequency 4 = %0.3fHz\"%(8,0.125)\n",
+ "\n",
+ "t5 = arange(-1,1+0.005,0.005)\n",
+ "v5 = 5*cos (10*t5+math.pi/3)\n",
+ "\n",
+ "plot(t5,v5)\n",
+ "suptitle ('v5 vs t5')\n",
+ "xlabel('t5')\n",
+ "ylabel('v5 ');\n",
+ "\n",
+ "#From the graph\n",
+ "print \"Time period 5 = %0.3fs Frequency 5 = %3.2fHz\"%(.62832,1.59)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time period1 = 6.283s Frequency 1 = 0.159Hz\n",
+ "Time period 2 = 6.283s Frequency 2 = 0.159Hz\n",
+ "Time period 3 = 1s Frequency 3 = 1Hz\n",
+ "Time period 4 = 8s Frequency 4 = 0.125Hz\n",
+ "Time period 5 = 0.628s Frequency 5 = 1.59Hz\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEhCAYAAABycqfJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMXegN+zyaaRXimhEwKEICAqYIsiigXs2EFR72fn\ner1WrNdr7/1aQBQFKYoioiJg6Kg0CQlJ6ISWRoBA2u6e+f44m7C9JFsCzPs8ebLZzJkzu8nOb34d\nJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonkhOViQFh8GXw8fy4wz+LnbTb3\nW+Hj+0kkEonES3qjbcjvAD8AKtDLh/PXAYctfv4Z2AgsAfYBFT68l0TiE3TBXoBE4ifqgUqLnxs3\n6E3mn1OB+WhCIcrm2nfMzzcyweLneo6d7htsrpsAhAMx5t//BpQAacDLQA0Q0twXJJFIJBLv+Arr\nzVwA96EdfgSaJuBoM7ccP8H8+AhwFLjMZs6zHVxXg7VG8J3N/eZ68yIkEolE0jIEcCfwJcc28PuA\nN4F2wAHz8zc6uPaI+atxnv8CbcyPTUARkOLgOktBoANWAZnAzYDR/CWRSCSSAFEHVKGZc6rMz30F\n7DI/dwjtpF7s4Nrn0Db9V7DWAtoD69CEgXBwnaUgiAPK0XwDDUCt+ZqBzX1BEolEIvGODzlmzx9j\nfm4osBgYDzxj/t0dTq5vNOk0buwDgJvMj8/DsSA4jCaAGrkf2AJ0B8rQBIhEIpFIAkijIGhknsVz\njT6Cfk6uPWwe87D553E21+52cM0rFr//DU0oWF5T0PyXIpFIJBKJRCKRSCQSiUQikUgkEolEIpFI\nJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSyfFKPDALrUZ8ATA4uMuRSCQSSaD5Aq1+C0Ao\nWrVGiUQikZwkxKH1c5VIJBJJEAlmq8quaLXaPwfWAp9i3zJQIpFIJH4mmIIgFK1Bx4fm70eBx4K4\nHolEIjkpCQ3ivXebv/4y/zwLG0HQvXt3sXXr1kCvSyKRSI53tgI9PB0cTI1gP1AC9DT/fAGQbzlg\n69atCCFa1dczzzwT9DUcL+uSa5JrOhnW1RrXhNYRz2OCqRGA1sbvayAMTYLdFtzlSCQSyclHsAXB\n38BpQV6DRCKRnNQE0zR0XJKTkxPsJTikNa5Lrskz5Jo8pzWuqzWuyVuUYC/ADcJs75JIJBKJhyiK\nAl7s71IjkEgkkpMcKQgkEonkJEcKAolEIjnJkYJAIpFITnKkIJBIJJKTHCkIJBKJ5CRHCgKJRCI5\nyZGCQCKRSE5ypCCQSCSSkxwpCCQSieQkRwoCiUQiOcmRgkDiErVBpX5vvcfj63bWYTxs9Hj80YKj\nzVmWRCLxIVIQSFyy/cntrOyw0uPxq7qvYsu/tng01lBl4K+sv6heX93c5UkkEh8gBYHEJY3agMdV\nYE1QW1Tr0dCjeZo2UFNY06y1SSQS3yAFgcQlhlIDAMYD7s09plqTV3M37GvQvu9p8H5hEonEZ0hB\nIHGJoUoTBPX73PsJjAc1YdFQ6tnG7s3cEonEf0hBIHGJ6ZAJfYoeY5V7jcB40Ig+RY+h3ODR3MYq\nI6EJoZgOeadJSCQS3yIFgcQlxkNGwjuGYzrsfrM2HjQS3ikcY7XRI5+C8aCRiM4RXkUZSSQS3yMF\ngcQljYLAk83aeNBIWEoYSqiCWqe6H19lJLxzOMZDUhBIJMFECgKJU0x1mhYQlhrmsUYQGh9KaEwo\npmoPxlcZiegS4dHcEonEf0hBIHGK8aCR0LhQQmJCMFZ7phGExocSEhvisQYR0TlCagQSSZCRgkDi\nFNMhE6FxoYTGhnqmERwyEhIXQkhMiGcaQbWR8A6e+R8kEon/kIJA4hRjtZGQmBCPT/hqjUpIVIjH\npiG1VkWfqvdI25BIJP5DCgKJU9RaFV2UjpCoENQa985ftVZFF6nzWCNQa1X0iXrUWvdzSyQS/yEF\ngcQpap2KLkKHLlLn0WZtqjU1jfcky9hUYyI0PhRhEAiThyUsJBKJz5GCQOIUtVYlJDLE4429USPw\nVHCotSohbULQReg8CjeVSCT+oTUIghBgHfBjsBciscZbjUCt0wRHSGSIx4KgUXB4W6dIIpH4jtYg\nCMYDBYC0DbQymmz+3m7sEe4FhxDCWtB44IOQSCT+IdiCIB24BPgMUIK8FokNap33pp6mjd2NqUet\nU9GF61B0iuaMlg5jiSRoBFsQvAU8DMhdoBXitfO31uSxqadRewCkaUgiCTLBFASXAWVo/gGpDbRC\nvHb+eqFB2AoCqRFIJMEjNIj3HgqMQjMNRQCxwJfAGMtBzz77bNPjnJwccnJyArbAk51GG743PoJG\nZ3HDXtc9CUw1JkKiQgA8nl8ikTgmNzeX3NzcZl8fTEHwhPkL4Fzg39gIAbAWBJLAotaq6JP0zfMR\neKMRROkw1UjTkETSXGwPyc8995xX1wfbR2CJjBpqZVhG9XiVR+BBXoA0DUkkrYdgagSWLDZ/SVoR\ntj4CIQSK4tyd442zWJqGJJLWQ2vSCCStjCbnb6gW5ikMrpW2ZjuLZWaxRBJUpCCQOKUxfBTcb9ZC\niCYfgScn/EazE4ASrqA2SEEgkQQLKQgkTrE8tSthrjdrYRAoOgVdqNlHUO9GEDRoCWUAujAdol66\niCSSYCEFgcQplqd2XbjrzdpOaLgRBKJeoIQpTXO7Gy+RSPyHFAQSpzTmBYB5s3ahEVgJjTAdosGN\nP6FBRRcmTUMSSWtACgKJUxqdv+D+lN8YMQTmjd2dRtAgUMLNGoE0DUkkQUUKAolTGp2/YDYNuTjl\niwZhbfP3QiOQpiGJJLhIQSBxiqVD151GoDaoXtn8RcMxH4E7R7REIvEvUhBInGK5Wbvb3EWDQKf3\nLMIIQK231gikaUgiCR5SEEicojaoKHoLO74Lc4+tRuBuY/dWg5BIJP5DCgKJU4RBWEf2uNMIwjzX\nCCx9CtI0JJEEFykIJE6xOrW70QiEQdiNFcK1BiFNQxJJ60AKAolTLE/57sw3VnkBOgUl1HVtIruE\nMqkRSCRBQwoCiUOEENop3+wjcJf0ZelY9mS8leDwIBNZIpH4DykIJA4RBoESqjSVnXaX9GW5sXsy\n3jYiSZqGJJLgIQWBxCGWNn9wb76x1QjclqSwLDonTUMSSVCRgkDiENsTvicJZV6Nr1etE8qkaUgi\nCRpSEEgc4uiE79bUo7cZ764khYwakkhaBVIQSBximUwG7mP9LUNNm8Z7U5JCmoYkkqAhBYHEIZYn\ndvCwxITNeE81AmkakkiCixQEEoeoBusTvtsSEw7Gu/UphEvTkETSGpCCQOIQ2xO+NyUmmsa7ijKq\nl9VHJZLWghQEEofY2vzdmXrsxnuRdyCLzkkkwUUKAolDLMtKg3tTj51G4K7ZfYNNbaJ617WJJBKJ\n/5CCQOIQ24QyT0pG2CWUeVqbKESBEBBGKQgkkmAgBYHEIc0pGWE33pUpqV5t6lncOF6ahySS4CAF\ngcQhDktGuMsL0HuuQTgyJbmqViqRSPyHFAQSh9ht7Ho3ZaUdaQRunMVWgkavk4JAIgkSUhBIHGJ3\nYtcrqAYvM4u90QjcCBqJROI/gi0IOgK/A/nARuCB4C5H0ohtgphbjcBgoxG4OOEL1brXAZgFhwtB\nI5FI/EdokO9vAB4E1gPRwBrgN2BTMBcl8d75a9eYxoXgaIxIaux1AGbB4WJ+iUTiP4KtEexHEwIA\nR9AEQPvgLUfSiJ2pxwPTkF0egZPxtmMb55emIYkkOARbEFjSBRgA/BHkdZy8bN4MX30F2CeUeeIs\ntnL+7t6BOFDt0djG+W0Fh1FVWVxezttz57K2ulomnElaTI3JxJyKCj7Ys4dttbXBXk6rIdimoUai\ngVnAeDTNoIlnn3226XFOTg45OTmBXNfJRVgYjB8PF11k36EszHVUj9Upv6oK5ZupqD2ygWzXYy3n\nbxAcNhr59cAB5lRWMq+yki5HjnBqbi4fREdTFx7OyKQkRiUlcV5CAuG61nSOkbRW9tXXM7eykjmV\nlSw+eJDTYmLoGB7O8zt2kKzXMyo5mVFJSZweG4tOUdxP2ArJzc0lNze32de3hletB+YCPwNv2/xO\nyFNggLn3XoiLY2fM/2E6bKLbS90AqNlcw4aLNzB4y2CHl605bQ0ZH2YQe1os/Oc/7PpWT8PmCnrk\n3QPdu1uNrd1Ry/pz1zNk5xAAdtbVkX/Wembdp2dW9xrOiotjVFISlyUkkJ6ZCSNHIrZupei775hT\nWcmcigryjh5leEICo5KTuSQxkeSwMP++L5LjBiEEeUeP8qP5f6W4tpYRiYmMSkpiRGIiCXo9AKoQ\n/Hn4sDauspLyhgYuTUpiVHIyFyQk0CYkJMivpPmY/W8e7+/B1ggUYCJQgL0QkASD0aPhiScQF/7D\nq6ghq7yD3Fx0Q59A1BXCsmV2gkA0CHThOuZUVPD09u3saWjgPQWuiG/LO0NOISbU/G+5eTOEhMAr\nr6C0bUuviAh6derEI506Ud7QwE+VlfxQUcH9mzdzSnQ0b/XowakxMT5/SyTHB0II3t69m3f37AHg\n8qQkXuzWjbPj4ghzoD3qFIXBcXEMjovjhW7d2FZby4+Vlby7eze3bNrEsIQEPsjIoH14eKBfSsAJ\ntiA4E7gZ2ACsMz/3OPBL0FZ0spOdDXl5qOeq6KI8CwcFiygjIWDDBpTh7RHxFbDhL7uxaoPKAcXE\n3cXFfN6rF8MSEtgYv4GObWKPCQGADRu09cTEQGoqbN0KPXsCkBIWxq3t2nFru3bUmUzMKC9nxIYN\nfJ6ZyWXJyb57PyTHBQZV5Z7Nm1lTXc33ffvSr00bq6g0T+gWGcn49HTGp6dTZTDwzu7dDF27lrnZ\n2fSNjvbTylsHwRYEy2hdDmtJYiLExiIqDqLrcWxDdVcCoinKaP9+UBSUpHjU+CTIy7MaZxKCV7fs\npIdiYMXAM+gcEaHNr1fsw0fz8qBfP+1xv37az2ZBYElESAhj2rYlMyqKKzdu5Mn6eu7p0KGZb4Dk\neOOw0ci1+fmEKgpL+vcnOrTl21qCXs+zXbvSMyqK8//+m6m9e3NBYqIPVts6kZuwxJ7sbNT9Ffbh\no64yhRsTyvLyIDtb618Qk2AlCI6aTFy9cSM7DtXSK65NkxBomt823NQ8V+OabIWKLWfExrJswADe\n3b2bf2/Zgir9Syc8u+vqOGvdOrpFRvJD374+EQKW3JiWxqysLG7atInP9+3z6dytCSkIJPZkZyNK\nD3icKQwWGoF581b0CkIfCbW1UFHB/vp6ctavJz40lDc6dUMfbu2Ic+iD8FIQgKberxg4kNXV1Vyb\nn0+NyeT565YcV6yvrmbIunWMSUvjw4wMQv0URXZOfDxLBgzgvzt38tT27SdkGLMUBBJ7MjNRqw57\nV2Ki0UdQXAyZmeYTvoCePSkoKmLIunWMTEri8169CDFhl0dgl7lsMsGOHZCR0bQmios9Wn6iXs+v\np5xCpE7H+evXU9bQ4PFLlxwf/FxZyfANG3ize3f+3amT1/4Ab8mMimLlwIH8duAAt2zaRL16YpVD\nkYJAYk/HjojqOvuEMqPzLmJNGkFJCXTs2CQ4fh88mPPq63muSxee7tIFRVHsktUa57cyDe3bB0lJ\nWm6DeU2UlHj8EsJ1Oqb07s3wxESGrF1LUU2N569f0qr5eO9exhUV8UPfvlybmhqw+6aGhbGof39q\nVJWL/v6bKoMhYPf2N1IQSOzp2BFxtM5aI1AUlFAX9YMaNYLdu6FjR3RhOnYfqeP6Sy7hm82bGdO2\n7bGxNgXnwIHGYRYoTSQmQkMDVDvOVnaEoig837UrEzp35px161hy8KDH10paH6oQPLp1K2+WlLBs\nwACGxsUFfA1RISHMzMri1JgYhq5bx/YTJDtZCgKJPR07oh41oHO3WZsRwqKaqHkDn1VVzrbDtfy+\ndSvnbbKuIagaVDtBYJe5bCsIFEX7efdur1/OuHbt+Kp3b67Jz+f78nKvr5cEH1UIbt60iRWHD7Ni\n4EC6R0YGbS0hisIbPXpwb/v2nLluHXlHjri/qJUjBYHEnuhohC4Mpf6o1dPOCskJg0AJVVCOHoX6\nen4SglkHKxkU0YY+KSl2Jh3bktXgICrJVhCA1+YhS4YnJjIvO5s7i4vZdPSo+wskrYoXd+5kV10d\nv/XrR5I5MzjY3JeezsvdunFVfj6HjMZgL6dFSEEgcYgaEY3uUIXVc85KRVv6B7b378+4oiKe7tEF\nvUlxuHmLhmaYhqBFggBgUGwsL3frxtX5+Rw5zj+4JxO/HTjAh3v3MiMri4hWVvZhTNu2DE9I4NbC\nwuM6mkgKAolDRFgblAPWZhSnpiGzf6CupIRr7r+fxzt14pTEGG2sA3OOQ9OQbXiq2ddgRQsFAcDt\n7doxJDaWO4uLj+sP7slCSV0dYwoL+bp371Zb6uGtHj3YU1/PGy383wwmUhBIHKLqI1EOlFo956wn\nQWOl0vG1tXSvq2N8evoxU0+7dlBRoTl6LcbbmYZsW1uWlEB6uvWN0tNbLAgA3s/IoLCmhg/MNWkk\nrZMGVWV0QQHjO3TgvISEYC/HKeE6HTOzsni9pOS4DUiQgkDiEBEagc5GEDjrUqY2qNSGCnL1ej7b\nsQNFUY6d8ENCIC1NCwdtnNsT09CePY4FQTOcxbZEhoQwKyuL/+zcyapDh1o8n8Q/PLx1Kyl6PY90\n6hTspbilc0QEk3v14oaCAvbX1wd7OV4jBYHEIaoShnLQ2kfgzDRUWHWECox8u2QJsSkp9mPbtoXS\nY0LFrWlIVaGsTBMgltjM0xK6R0byaWYmowsKKJcJZ62Ob0pLmVtZyRe9eh03PQJGJCVxZ7t2XFdQ\ngPE4SziTgkDiEEEouip7H4GtaeiQ0cgDBZtJigqj7+bNTZu3laknLc1qA3eYR2BZ1K6qCtq0AVub\nsM08LeXy5GRuTE3lpk2bMEl/Qath09Gj3L9lC7Oyspp6BxwvPNWlCxE6HRO2bw/2Urwi2NVHJa0U\nlVCUA2VWz9lqBEIIxhUWcmZULPGRNdSXlLJkQxqzFsDGXB2P7Rc8/TTcZUojqaSUxm3dbfhoaam9\nNgBaKeqKCk1j0OkQQrB+/3p+KPqBn7f8TFx4HNmp2WSnZZOdmk2flD5E6l3Hm/+3a1eGb9jAf3bs\n4LmuXb1+n05EhIAtW+DwYair08pF1dVZP66tBYMBRoyArCzf3bvaaOSKvA3cm6Rn//5lTNy8l73V\ne9lTvYfK2kqGdxvOdVnXERcR+GQyTwhRFL7u3ZtT16xhaFwclx8nJdGlIJA4RKg6dJX7rZ6z9BEI\nAU9u2M26/fV0ntiD/KLNJBlL+SEujT6XwR3XKBy5RmA0woK8NLYvLOXXr+Dcc2HYDpVO3W1aVVqa\nhpwJAr0eERvL8rU/MLM8l++LvidUF8qVva7k5WEvU2OoIa8sj9+2/cabK99k84HNdIrrRL+0fpqA\nSM3m3C7nkhh5rJxwqE7HtN69GbRmDYNjY7k4Kcm3b+RxhBDw++/wzDOwbZv2J4iMhIgI7avxceN3\nIeCCC+CUU+Bf/4Lhw7W8P29QhcpXG77ikzWfUHJ4N7vbjyVUUfl23fesjGlPh5gOtI9pT7+0fsSE\nxfBD0Q888tsjjMwcybj+4zi3y7nolNZl2EgOC2NGVhYj8/LIioqiR1RUsJd03CMkwWF52jJRp28r\nhKo2Pbf2nLWiaMYBcdttQqQOqxK62cvEpeNqxaSHDoql/VYLNSZGiAMHhBBCNBxoEEvilmgXvvWW\naLj7frFwoRBPPy3E8x23iLH6HWLQICHeeEMIg0GIvZP2ik23btLGT5smxDXXNN33SP0R8V3Bd2LM\n7DGiKCVEjH66j3h+8fMirzRPqBbrs6XeWC827N8gvt7wtXjst8fExV9dLFJfSxWT1k6yu25JVZVI\nXbZM7Kit9dE7eHyxaJEQ55wjREaGEFOmCGE0enZdXZ0Qn38uRHa2EFlZQkycKISnb2Hu9lwx8OOB\n4oxPzxDziueJZ4rXi35//iFq3Ny8/Gi5eHvl2yL7w2zR9e2u4rnc58SOqh2e3TSAvL97tzjlzz/d\nvh5/AJxQts6Av4ESjaWJS0VDm3ZCVFUJITR5MK/POnF+bKV48Pk6kbZ4uZhXUSGEEKJqcZVYO3S1\nEGFhTYLDeMQoFkcu1iabOlWI0aOb5t784Gax9aVdYvFiIYYNE+KMM4RY+8o+kX9jvjbg7beFuPde\noaqq+PDPD0XcS3Higi8vEO//8b6oPXOwEAsWNPt1rdm7Rgz6ZJA45/NzREFZgdXvXt+1SwxavVrU\nmUzNnv944/ffhTj3XCF69BDiyy81odwcVFWI+fOFuPhiIdLShHjuOSHKyhyPLa4oFld+c6Xo/FZn\nMS1vmlBVVaw8eFCkLFsmttTUeHFPVazes1rc+9O9IvGVRDH8y+Fi6oapos5Q17wX4WNUVRU35OeL\n2zZtCvi9kYLAfxhNRjF943SXp9AThSXRS4Sha5YQRUVi714hRo4U4oOYv8Wqd8vFeevWiae3bWsa\ne2DBAbFu6Eoh0tObnjPVm0RuaK72w8KF2m5jpvi+YlHybok2ziTEBx8IMTK6VHx3ykbtJPrEE+Lo\nU4+JK765Qgz43wBRWF54bGGjR2uCpQUYTUbx3h/vieRXk8WEhRNETYO2+aiqKq7KyxP3FBW1aP7j\ngcWLhcjJEaJ7dyEmT26+AHBEfr4Qd94pRHy89r3xX6WyplL88+d/iqRXksRLS19qet8rGhpEpxUr\nxPfl5c2+Z62hVkzLmyZyJueIgR8PFNsObHN/UQCoNhhE7z/+EBP37g3offFSELQu41orp6quileW\nv8Its2+h1nBiVB10hmpQITWJBV+X0r+/Zgc+81yFgsgKjELwdJcux8Y2qChqg5Vd36pstU20j2Wj\ne50O7rkHXnhFYd9uQU4ObNmwnv8Ufky3+G6svH0lmcmZxxbmg8ihEF0I951+H3/f9TfFlcVkf5TN\n/K3zURSFSb16MbeykgUHDrToHq2V/HwYNgxuuw3GjoXCQu27Lxt79ekDn3wCRUVaxO8ZQxu4+4t3\n6PV+L2qNteTfk89jZz3W5Mj/55YtXJGc3CLHakRoBNf3vZ5FYxYxpt8YBk8czE/FP/nqJTWb6NBQ\nZmZl8ei2beyqqwv2cpwiBYEXJEcls/S2pahC5ezPz2b34ZYnN7VWRINg9a5k5k4sZe5ceP55qAtV\n+W5fORMzMwmx8AoKg0BnshEEjWWrjfaCQBjs+xG066Qw9HQTkZc+xaaChXSJvp/Xhr9BeKj/Qkjb\nx7RnxrUzePfid7lr7l3c+O2N1NZV8L+ePbmzuPiEq0f0yy9w3nlwzTWaALj1Vt8KAFtSU2HYuMWE\nP9iXSUt+ZiyL+OjS/5EWfez/ZF5lJSsOHeLFbt18ck9FURg/eDyzr5vNXT/dxVOLnsKkBrdLXVab\nNvwzPZ3/a8VlTaQg8JIofRRfX/U112VdxxmfncHyXcuDvSSf8+0MgSpApKXy2r9LOe00LVT0r9oj\nXBmXRIZNFIQwCBRjnV2kT1ND+sREOHKkqcyEozyC8vpy/tr5J7r0v8iJ7M3qPy/mggu0JmVW+DiX\nAOCSjEvYeM9GLcLoo37s3fk958TFHXex4K744ANNC5g9G+6+GwIRnv/1hq+5dua1fHj5GxQ//QsL\npvZl7Fgt/BS0pvN3FRfzaWYmbXxcTG5ox6Gs+ccalpcsZ8TXIyg/Gtzy44907Mj+hgam+Ph/11dI\nQdAMFEXh4TMf5rORn3Hl9Cv5dM2nwV6STzh0CG68EZ56QkUXpjBkVCr6g9oH6LN9+6gLFVwUHW93\nndqgaoLApltUUwKaTqd1G6vQMpVVg2rV9Gb6xuncM/8e2oa3Zd5N84g5epCPZ6cyYgScdhp89pnF\npKmp4IeeAlH6KF6+4GUWjlnIayteI2HPNGaWl7P8OC9BYTTCAw9ogmD5cjjzTP/fUwjBy8te5olF\nT/D72N8ZmTmSzp1h2TKor4dzztEqiDyydSsjEhM53091hFLbpDL/lvmc1v40Tv3kVFbtXuWX+3iC\nXqdjUmYm/966tVWWoJCCoAVcnHExy8Yt481Vb3LfvPswmI7f1nVlZZCTAzEx8McyQUiYDpKTobyc\n3XV1PLF9O2cmxaM40LKFQaAz1GrjLbBKQDPPBTS1qjzacJTbf7idp35/ipcvfpkOUR20mPDyckLS\nknnkEcjNhTfegAkTtLh1y3n8QXZaNsvGLWPF9l/oXfUbtxcWUmcKrmmhuVRXw+WXw6ZNsGIF+Mj6\n4hKTauLeefcybeM0VoxbQVbqsWyzNm3gm2/giiug/61VzN53gNe6d/frekJ1obw47EXev+R9Rk0b\nxft/vh8088yAmBjuaNeOezdvDsr9XSEFQQvpmdSTVbevYsfBHQyfMjzoKmhzKCnRTmmjRsH//gcR\nerPpJiUFUV7O3Zs3c1+HDiRFhTkuQ20QKIZaMNcZasSq61hKyjFBYBDUiBoumHIB9aZ61v7fWnq3\n662ZkRpTVmNiAC1rdckSzb59//2gJqX4VRCA5gtaNHYRIQeWc7hqA09t2+LX+/mDXbu00396Osyb\nB/H2ipzPqTHUcNWMqyiuLGbpbUvpENvBboyiwPhHTYQ+XkTdyxnM/iowOa2jMkex8vaVTFw3kZu+\nu4kjDcHpKvZ0584U1NQwq6zM/eAAIgWBD4iLiOOH63/gzI5ncvpnp7N+//pgL8ljNm+Gs8+Gf/wD\nnntO+6A2FYVLSWFq27bsrKvj8U6drOsBWaAaVJT6GjtBYFU2IiWlyTRUX1fP40se5/T2pzPlyilE\nh0Uf0x7Ky7WxFs7olBRYtAj+/hvufjoFUWFdDM8fRIdFM/fGuZx2dAXv7NrM4op97i9qJfz1FwwZ\nojmD//e/wPgDyo+Wc/4X5xMbHsu8m+YRGx7rdOxT27czrG0sK99M5oUX4J//1ExY/qZ7YndWjFtB\nRGgEZ006i7Kjgd+MI0JCmJiZyf1btlBpaD0WBCkIfESILoQXhr3AKxe8woVTLuSXLb8Ee0lu2bBB\nMwc9+aRuDWv2AAAgAElEQVRWIqCRxkYzZUlJ/OuCC5iUmUmYTmffTtJyfP0Rh4LAViPYV72PNbvW\nMLDjQN4e8TaKecNv8idUVNjNAxAXB7/+CrsOxWGsrqXukP/trGEhYcy+aiLnGjcxYvUidh1u/cLg\n22/hkkvgo4+0v2kgCnduPbCVoZOGMqzrML684kvCQsKcjl116BDTysp4u0cP+vSBP//UTFeXXgqB\n6CAaqY9k4qiJjOw5kvO+OI/9R/a7v8jHDI2L47qUFP65pfVomieFIHj3Xe00GQhGZ41mzg1zGDN7\nDHOL5wbmps1g1SqtNsxbb8Edd1j/rjGq536jkVtzcxkUq53u7LqIWY6vO2LnI7Aan5zMoZKtnDv5\nXNqGt+WOM+5oEgJgUceovNxqHmES1O/XNv2oKPhhjsKR8CTGXlpBIHqG6xQdvw5/iI4RkfSf9zJb\nD2z1/02byeuva6frX3/VzHyB4M89f3LW52fx0JCHeGHYC1Z/U1vqVZVxRUW806MHyWGasEhIgJ9+\n0vINLruMgPxNFUXh+fOf5/qs68mZnMOew4FvUPRCt24sP3SIeZWVAb+3I04KQdCuHVx0EaxbF5j7\nDU4fzNwb53L7nNv5ofCHwNzUCxYs0DaKzz+H0aPtf68aVI7qVNYbjTz78cdmL63zfgSqQUWpdaAR\nWJSiLo+COSsmcfegu0mPSnfemKbRNGTGUGFgdb/VTT+HhUF8Rgq9UyoYPhwCkfel0+lYOPgSDG1H\nMuSbG1ql6e/557XoqpUrYeDAwNzzp+KfuGzqZXxy2SfcNegut+Of37GDzKgorrX5PwkNhUmToGtX\nTZuprvbXiq156tynuK3/bZw7+Vx2HdoVmJuaaRMSwqeZmfxfcXGraHzvjSDoBlwN9PLh/UcAhcBm\n4FEfzmvFtddq4XMjRsDatf66izWndzideTfO4//m/h/fbfouMDf1gB9+0EJEZ83SPnSOOFRjYK8w\nMLFXLyL1ejC331PCnLSqrGlAJxq0sBALGjf3wopCns5/j6ERGTw45EHnZagNqp0gsA01BVBSUnjm\nnnKGDNFMW/sDoN13jIjg9Z59iOv3AsOnXMTiHYv9f1MPee45mDpVqxxq29TNX3xb8C23z7mdH2/4\nkZGZI92OX19dzSf79vFhRoZDrSEkRBNkmZna5/TwYX+s2p5Hz3qUe0+7l3Mnn8v2qsDmjQxLSODi\nxEQe2Rp8LdOVIPje4vHlwELgMmAOcJsP7h0CvI8mDPoANwC9fTCvQ66+WnOcXXwxrF7tfrwvOLX9\nqfxy8y/c89M9zMyfGZibumDKFLjrLvj5Zy1KyBlvbC8hOiKUs+LjrcI1dXrHrSrFwaMobcLtDNI6\nvY7N+zdz/hfnc+VZd9LdqEUCOUooa4owsjUNNdhnIZOcjFJRzhtvaEL+nHNg505v3onmcWe7dqRH\np3DV8KlcM/Ma5m2e5/+bukAIePppmDFDC7Nt1y4w952RP4N7593LLzf/whnpZ7gdbzCbhF7t1o12\nLhrQ63Tw8cfQrx9ceKGW1xIIHhzyIA8PfZicL3LYciCwdvvXundn3oED/F5VFdD72uJKEHS2ePwY\ncD6aABgKPOiDe58ObAF2AAbgGzSB4zeuvFKrgXLJJZqTKhD0b9uf+bfM54FfHmBa3rTA3NQBH30E\nTzwBCxfCqac6H/frgQOsr6omvY35A2sR7ePUNHS4BqVNhN3zR8QRHpr3EO+MeIcLB990LKGswb5V\nZVMWso2z2JHQaFyTosBTT8G992qRT8XFnrwTzUenKHyWmcm3R8L54KrvufX7W/mx6Ef/3tQJQmhO\n/tmzNU3AUfsGf/DNxm8Y/8t45t8yn/5t+3t0zeslJaTq9Yxt29btWJ0OPvxQSyQcPlxrVhcI7jnt\nHp465ylyJudQWFEYmJsCcaGhfJSRwR1FRRwNYr6Kp6ahMKBRb6oAfNGQswNQYvHzbvNzPuevw4c5\naA7VuvxymDhRc0ytClCiYb+0fvx2y288NP8hpvw9JTA3teCtt+C112DxYq0gmDOqjUb+UVTEY+06\nagllYBX/76hVJYCorkGJsRYES3cuZX3leh457RGuzbrWLo/AkSDw1DRkORfA+PHw7LNaHZ2CAnfv\nRsvoHhnJE50788HhKObc8CO3z7md7wu/d3+hDxFCE+pz52phtTYJ3X5jat5UHvz1QebfPJ9+af08\numbT0aO8UVLCx5mZLh3JliiKFuBx5pla45tA1f+7Y+AdvDjsRc7/4nw2lm0MzE2By5KTGRwby5NB\nLGniKpujH9DotokA2gH7gHB842T2KL3v2WefbXqck5NDTk6O1zeavH8/9arKZ70098bIkTB5suYw\n/f57GDrU6ym9pm9qXxaOWcgFUy7AJEzc2v9W/98UeOUVzfaamwudOrke+9i2bQxLSGBQbTQ7w8zR\nDJamoTAnpqHqWnQxx1pCLti2gBu+vYHp7adzSttTtCeTkqCyElTVqY/AG9MQG60/qOPGaY7kYcO0\nqJl+nu1TzWJ8ejozyspYp6Tz800/c8nUSzCpJq7uc7X/bmpGCHj0UfjtN027C1QnxK82fMUjvz3C\nglsWWGULu8IkBLcXFfFc1650jrDXGF2hKPDmm/DII9rf9LffAvNax5wyBr1Oz/Apw/nlpl+O/f/6\nmXd69CB79WpGp6QwJM77Npy5ubnk5ub6fmEuiAeG+GCewYBlsP3j2DuMfVKb+5DBIDqtWCF+q6y0\nev7nn4VISRFi6VKf3MYjCssLRfqb6eLTNZ/6/V7/+Y8QmZlC7NnjfuziqirRYflyUdXQICp+rhDr\nL1yv/eKRR4R48UUhhBB7J1p0EbOgcMgMsfu8t4QQQvxY9KNIeTVFLNmxRGwYuUGUf29RYz4+XoiK\nCrG87XJRt9e6eYhqVMXv/C7UjJ5aQXszh1YdEqtPW219w+nThbj6aoevY/p0rTHKmjXuX3NLyD9y\nRCQvWyZ21taKdfvWibTX0sT0jdP9ek9VFeJf/xJiwAAhzD2BAsLkdZNF+zfai/yyfPeDLXi7pESc\ns3atMLWgf4eqCvHYY1oHNGeNbvzBrPxZIu21NLGqZFXA7jm9tFT0/uMPnzRGwg+NaR7CPyabUGAr\n0AXN9LQee2exD95ejZ8rKkSXlStFtU0Hjl9/FSI5WYglS3x2K7dsrtwsOr7ZUbz/x/t+mV9VhZgw\nQWsduH+/+/FHjUaRsWpVU2OQ8jnl4u9L/9Z++dpr2u4jhNj35T6Rf5P9ZrCp3xSx54pPxYyNM0Tq\na6nij91/CCGEyLs6T5TOLD02MCNDiMJCsTRxqagvr7eb53fd78KUkGz1ia9aWiXWnGmzqy9aZNXo\nxpbZs4VITRXijz/cv/aW8Pz27WLE338LVVXF3/v/Fm1fbyu+3vC1X+6lqkKMHy/EqacKYXOe8SsT\n104UHd7oIDaVe9dla2tNjUhaulQUHz3a4jWoqhBPPqn9PwdSGMwtmitSXk0RC7ctDMj9VFUVV+Tl\niQlbt7Z4LvzQmCYGmA8sA+4DfOWWMprn+xUoAKYDm3w0tx0jkpI4Jy6OJ2zscBdeCNOmaVFFv//u\nr7tb0yOxB4tvXczbf7zNc7nP+bQIlhCaOj13rudOxGd27GBgdHRTYxAr042FPd6qdpDlPWsa2Gba\nzwO/PMD8m+dzeofTtfG2UUbmuRyZhsBsHjp0VCtb3Ti3I9NQiut6Q1dcocWlX3aZVnHTXzzaqRP7\n6uv5srS0yQ/07/n/5su/v/TpfVRVqyC6YoVmIrF4e/zKZ2s/45ncZ1g0dhG9kj2PGhdCcGdREY92\n6mRXsrw5KIqWJ/HEExDrvHKFz7m056XMvHYm18+6PiD5QIqi8GFGBp/s28e6QCVTNINTgBeAIrRQ\n0kDQYsloSWVDg2i3fLlYdvCg3e8WLdLMRDNm+PSWLtlfvV/0/19/cc/ce4TR1PIG16oqxAMPCDFo\nkOenxj8PHRJpy5aJsvpjJ/T90/aLjaM3aj/MnSvEiBFCCCHKvi0TeVfk2c3xR8ob4vlzRtn1AC64\npUDsm7zv2BOjRgnx3XdiccRiYayxf71LohcLQ2JHq+cqf6kU64evtx64b5/2x3LDr79qw37/3e3Q\nZrPm8GGRsmyZ2FenmboKygpE+zfai0lrJ/lk/ro6Ia6/XoihQ5vaRweEj1d/LDq+2VEUVxR7fe0n\ne/aIQatXC8MJ0vv5rz1/ibTX0sSUv6cE5H6f790r+v/1l2howfuHH1tVlgH7gUrAvhjMcUCiXs/7\nGRkOSwufdx7Mnw8PPghvvx2Y9aRFp5E7NpeCigJu/O5G6o3Nr5+jqlrDkT//1DKHPTk1Npjju9/q\n0YOUsGP1YayiemzCR22jht5a+Rb1R2u4Zuit9E6xtuzZjTfP1VTUzgYlRKAmWofAOIwaSkrS4gpV\n18FrF14I06dr2dMLFrgc2mwG2pQW7p3Sm0VjFvF07tMt7lNx8KCWXFVfr60/EBVEhRD8d8l/eXHp\niywau4iMpAyvrm8sWT4pM5NQ3YlRuGBQ+0EsGruIxxc+zod/fej3+41t25Y0vZ7XSkrcD/YRnvyl\n7gFy0bSAZOAOtIii45KrUlLIjo7mOQcZSP37a+r3J5/AQw+53Wd8QlxEHD/f9DMGk4HLpl1Gdb33\nKqHJpNULys/XhJmnQQcv7txJ14gIrreJP7RqJWkTPmppGnphyQt8tPojYokmOb2r3fx2pqSUFERp\nOZhACXEgCHQCkeRiLY3o9VqZag+CzM87D777Tsumnuen/C/b0sKZyZn8PvZ3nl/yPK+veL1Zpr/d\nu7XciOxsmDkTIiPdX9NS6o31jP1+LN8Xfs/K21fSI7GHV9cLIZpKlmdHR/tplcGhT0oflty6hDdX\nvslLS1/ya08DRVH4ODOTN0tK2BSISnx4Jgg6Av9Ey/59Bs2ef1zzfkYGk/btY40DO1ynTppd+a+/\ntM0jEM2EIkIjmHHtDLrEdWHYl8O86mlQVwdjxmgtHX/5pamMv1s2HDnCB3v38lHPnnbx3cIgjp3C\nbcNHDVpD+gkLJzB141QW37oYpUFFSbSXPk1JYo0kJyNKK1HCFIcx5TqdCZFgrWyKBgcJZTbrcsdZ\nZ8GcOVpZ5pl+SPB2VFq4R2IPlo1bxtS8qYz9fiy1hlqP59u4UQtpHjMG3nlHK7/gbyprKhk+ZThH\nGo6w+NbFtIvxPk15allZU8nyE5GuCV1ZettSvs77mscWPOZXYdA5IoLnunZlXFERpgA00vFEEDyO\nFtFzwpAWFsbr3bszrrCQBgfH/oQE7WStqlqxukBkN4bqQvlk5CcM7zacsz8/26MiWNu2aRuG0ag5\nh21K/TjFqKqMKyzkpa5d6eAg5d8q8zc6WlM5amqaylA/+OuD/LzlZ23DiEhGNYKSZO/Fc2QaUssq\nHW/sgKKYUOOtBYFD05B5Lm8a1AwerOUXPPww/PvfWu8bX+KotHCnuE4sG7eMBlMD504+16Mql7//\nDuefDy+/rK01EGWkiyuLGTxxMEPShzBr9CzahHn4j2RBWUMD/9qyhYnmkuUnKu1i2rH41sXk7szl\nrrl3YVL9lw18d/v26BWF93bv9ts9Gjlx/2JuuDktjQ7h4byyy/GGGxGhtdUbMEBT0QNhrlMUhReG\nvcBdg+7irElnUVDuXPn68cdjzUe++UYr0ewpb+7eTXxoKLc7KU5jZY5RlCbbfnl9OQX7Csgry2PR\n2EUkRyXDgQMIfQS6cPtjq11JipQUREWVvamncTxGRHyS87VYYuG78JQBA2DNGi37+PzzYe9ery53\ni6PSwlH6KKZdPY2rel/F6Z+dzoqSFU6v/+YbuO46za9x442+XZszcnfkcvbnZ/PI0Ed4ZfgrWqvQ\nZnD/5s2MbduW0wIZ1hMkkqKSWHDLAjYf2MzNs2/2W4tanaIwMTOT/+7cybZazzXKZt3Lr7O3YhRF\n4eOePXl3zx7yndjhdDqtPMPtt2sn7w0bArO2fw7+Jy8Ne4nzvjiPlSUrrX5nNGphdPfeq2VFP/CA\nd6fGopoaXt21i09dpPzblYBISWHRn9O5Ze4tJIQkMP/m+cRHmD2X5eWI0AiHp3y7TOSUFET5Qaca\ngU41IGKtvdxOTUNeagSNJCVp2tNFF8GgQVrGta9wVlpYURQeO+sxPh35KVd8cwUT1060uk4IrZfA\nI49o2cLnnee7Nbli8vrJjJ45mqlXTeXOU+9s9jyzy8tZd+QIz3Xp4rvFtXJiwmOYd9M86ox1LNu1\nzG/3yYiK4tFOnbijqMivpqiTVhCAVlr4v127Mq6w0KUd7sEHtQbqF1ygfVADwU39bmLy5ZMZ9c0o\nnlj4BDWGGkpLtUiYv/7STrZDvMzvVoXgjqIinu7Sha4uvI9qwzFzTI2hhgJRxpSFb/LWpW+REpZC\niM7i9F9ejhoS7tB8Y2caSk5GrTjo2NQDKKLBThA4NQ21oIm9TqcVbPvyS7jhBs0M46vAgGEJCYxw\nUlr4koxLWHrbUl5d8Sr3z7sfg8mAyaQ1k5k8WfNNZWf7Zh2uUIXKhIUTeH7J8yy+dTHDug1r9lxV\nBgP3bd7MxMxMIgPhzGhFRIRG8N3o7zivq38l94Pp6VSbTHy6z38d8k5qQQBaaeGokBDedmOHGz1a\nq+F/001w552BqYF/ccbF/H3X32yt2krGW9lkXf4LZ52lOYUddHN0y4d79qAKwX0dXCeKN5pjNpRu\nYNAngzgQq+fDQc/Sr2M/+4SysjJESIRD842daSg1FVF50LlpyFSPaqsRODMNpaVBCxuAX3CBJlTn\nzNGS0HzlC3rdRWnhzORM/rjjD7Yd3Mbp711I/6EVFBTAsmXQsaNv7u+KGkMNN3x7A7k7c1l1+yq7\nkF9v+dfWrVyZnMzZgYhtbYV4WkivJYTqdEzKzGTC9u3srqvzyz1OekHQWFr4pZ072VJT43LsOedA\nYaEWntm3L7z0EvjZdEe76PacsWs6NTM/QH/FPRT1u46yGu9PBjtqa3l2xw4mZmaic/PPqzaorNq/\nimFfDuPxsx7nrEFXEXngsONWlaWlCJ3esWnIdnxUFCI0EiXEsfalM9QhohOsnnNqGkpLg9JSl6/D\nE9LTNfNQt26aqcgXXezclRYuL4lHP3MO25cOofTy03j5i7V+zxGoM9bx3h/vkfFeBpGhkSwcs5CU\nNi1LB/rVLOxe6tbNR6uUOCM7Opr7OnTgruJiv5iITnpBAFpp4QmdO3OLkygiS+LjNXvuqlXaabJ3\nb83J5w/z3bZtWuOVadNg/awRbH1oI90TutPvf/344M8PPI5YMKoqYwsL+XfHjvRyE1pUfrSc2Rtn\ns7piNStvX8ktp9zStOlatp5sorQUVXEsCByNVxNTUXSO160YalGjrXdEp6YhHwkC0KqWvv22Jtgv\nukgrgdzS8O3LkpMZEhvLgxZRRFVVWkP5IUNg8Bkh7P/6Rd4d9RKXTL2YS6deyoJtC3z+Ia831vPR\nXx+R8V4G87fNZ871c5h8xWQiQr2rBmpLeUMDdxYV8UlmJjGhrooYS3zF4506UVJfzyd+MBFJQWBm\nfHo6KXo9D3vYNq5HDy1RafJkePVVrXb6H3+0fB1Hjmhz5uTAGWdARoZmNujcWYtAeXHYi+SOzeWb\n/G8YOmmoR/1zn9i+nUidjoddxHdvObCF11e8zoCPB5Acmsx9Q+87llDUKAgcNaYpLUUQ6rx2kM14\nkZiKDgc9Wg0GdKZaRKR1IoRL05CPBEEjo0fDkiVamGl6upakt2xZ84X8hz17svjgQSbt2c/770Ov\nXpqAyc+Hxx7TItOu73s9O8bv4MpeVzL+l/Gc8r9TmLRuEnXGlpkADCYDn675lJ7v92RO8Ry+Hf0t\nP97wI6e2d9GVyENMQnDjpk3clJbGhYEqfCQhTKdjRlYWT27f7jAHqiVIQWBGpyh80asXcysrme6F\n7TknR2t9+Y9/wFVXaT4EJxGpThECli7Vaup37AjffqtFA+3Zo51SbUP9s1KzWHzrYv4x8B9cOOVC\nHvzlQZbsXEJVrb1NenZ5OdPLyviqd29CLExCQghW713Nk4uepO+HfTn787PZXLmZ6ddMZ2i7oejD\n9ccmMW+6DovOlZYiRIhnpiFAJKSgqA7C7crLUcJ0CJNNcpufTUO29OoFP/2khZj27Kn5gzIz4cUX\ntWxfb4gJCeWByiz+sXYrX608woIFWitG20KAkfpI7hh4Bxvv3sjrF77OzIKZdHm7C8/mPkvpEe9e\no8FkYNK6SfR8vyczC2byzdXf8PNNPzcVAvQFz+3YgUkInj+JooRaC5lRUXyUkcE1+fkc8GEyjNTp\nLEjQ65mVlcWFGzbQr00benuYoaXTafH811yjaQf9+0OXLtqpskMH++8dOmhVFHft0iJXJk/WNvvb\nbtM2HA86+qFTdNw+8HZGZo7kpaUv8eiCR9lYtpG48Diy07LJTs0mNXkgLx5px5y+WSSHhdFgamDx\njsV8X/g9PxT9QJuwNlzZ60o+G/UZp3c4vSmGvNBQaL35ujMNqTqnpiFbQaDGJ6OUOPgHLi1FFxFi\nb0oyqITqHfybJiZCdbWWGabX2/++hbRrp4VzPvywpulNnqw1uzntNO3vdMUVmkmprEwT2Lt3a98t\nH+/cCSEh0Yx/uztzHsinU+9TcfWRUxSFC7tfyIXdL6SgvIB3Vr1Drw96cWWvK7lr0F3EhsdSY6ih\n1lBLjaFGe2ysbXruYN1BPl//OZ3jOzPlyimc1eksn78v8yortaz8QYNOmFpCxxvXpKay/PBhbtm0\niR+zs936/DxBCgIbBsTE8HK3blydn8+fAwcS7YX9Mzoa/vMfLdx0yxbrjWHRIutNQqfT9q/rrtN8\nAIMGNS+LNLVNKm+NeAvQwgJ3HtxJXlkeq/dv5L+VoUSUTWP4ki/oGt+V/Uf20zOpJ1f0uoIFYxY4\nLS0sGmzKRDdqBI6a15eWIkyKY0GgtxccIi4JnclB3Y7SUpTIMLv5nZWsRqfTQkjLyjTJ6icURctK\nHjxYyymZPVsrcX3nndDQoAUOWAr4Dh00LbHxcWYmhIa2pbb4MOMKC5mVleVRpEmflD58PPJjXhj2\nAh+v/pix349FCEGkPpIofRSRoebv5p+jQqOI0kfx2ajPyOmS45f3YkdtLbcVFvJtVhZpFkUKJYHn\n1W7dOG/9el7atYsJnTu7v8ANUhA44PZ27Vh+6BD/KC7m6969vQ4RS0jQTo6nneb490LA4cOajdhB\nhYdmo1N0dE3oSpf4LswWPblUVflq2NXUm96msKKQ1DaptI9p73YeRwllVFai6NSmWkOKomgvpLQU\noeBws3ZoGopNRHFk/y4tRYnS21U3ddi8vpFG85AfBYElkZFaxu+NN2qVQSMjPf/7vdWjB2evW8eb\nu3fzkBdxoslRyUw4ZwITzpnQzFX7hnpV5dqCAh7t1ImzTtJQ0daEXqdjelYWp61Zw+DYWIYlJLi/\nyAVSt3PCBxkZFBw9yoe+rkOAdsqMi/OtELBk4r59/Hn4MJ+Ys4cjQiPo37a/R0IAsC8TrddDXBxK\n1QGUUAVhNG/uhw+DXo/qZLN26CyOTXAqCHRtwu00Aqu6R7b4yU/gCfHx3v39wnU6ZmZl8equXSw9\neNB/C/MT/9yyhc7h4TyYnh7spUjMdAgP56vevbl506YW5xdIQeCEyJAQZmVl8dyOHaw6dCjYy/GY\ntdXVPL59O99mZdGmmZmeDs0xFn6Cps26tBSRmqaVlQ51Ej5qc8JX28SjNDjI1ygtRYmJsDclOTMN\nWazpeKFzRARf9OrF9QUF7A9EWVsfMWX/fhZVVTGpV6+AJFBJPOf8hATu79CB0QUFbkPfXSEFgQt6\nREXxaWYm1xUUUNHQEOzluKXKYOCa/Hw+zMhwmy/gCoeROu3awd691nb/vXsRbdNRQp2UlXbgUxAx\n8ejqHQTp792LLibKoY/AqUZgXtPxxIikJO5o147rCwowBqLhRQvJO3KEf23dyqysLGJlvkCr5LFO\nnUjS6x2WNfEUKQjccHlyMtenpnLTpk0BqQveXFQhGFNYyKikJK61aTTj9VyOOoh17AglJdYhpCUl\nqO07Oa8d5Mg0FJOAUntEK21tSUkJSmKMfZSRK9OQeU3HG0936UK4TseTNv2zWxuHjUauyc/nze7d\nT7hGMycSOkXhy169mFNZyYxmll2RgsADXujalXpV5fkdO4K9FKe8smsXBwwGXu3evcVzOTyFmzdd\nqxDSkhJE+47O+ws4aG2pEoISHmJfrKmkBF1irHemoeNUEIQoCl/37s20sjJ+8LKUdqAQQjCusJDz\nExK4xZN4ZklQaQx9v3fzZgqbkRYvBYEHhOp0fNOnD5/t28cvFrXmWwsLq6p4d88eZmRl+aQpiF34\nKBzTCCzNPSUliLbpTovI2ZWhbpw7Otx6AzeZYN8+lKQ470xDx6kgAEgOC2NGVhZ3FhWx1d8Fq5rB\nW7t3s7O+nrd7eNeuUhI8BsbE8GLXrlydn+/1tVIQeEjb8HCm9enDmMJCFreiqI8Vhw5xY0EBX/Xu\n7bDbWHNwZRqy0wjSOjg3DTlIKBMGgRITZZ2mW1oKiYkokaH2CWUnoGmokTNiY3mmSxcu2bDB741H\nvOGL/ft5ddcuZvbpQ7hMGjuuuKNdO05vRnMg+Vf2grPj45nWpw/X5ufzdSuIVplRVsYVGzfyRa9e\nLY4jtsSVacjOR5DS3nmjmTCdw0xhJS7KegMvKYH0dIclLFyahpKStPKvAWrw7Q/u7dCBB9LTOWvd\nOv44fDioaxFC8Oz27Ty3Ywe/9+9PFxc9KyStE0VR+Cgjw+vrpCDwkmEJCSw65RQmbNvGf3fs8GvX\nIGcIIXh11y4e2rqV3045hRFJSe4v8mZ+R5uvhUZgZRpKaeu8v0CY4jhTOC7aXhB07OiwhIVL05Ci\naGm9x7FWAJow+KRnTy7Ly+O7ZjbbaSkN5gq18w4cYOXAgR6XV5G0PiKaETYuBUEz6BsdzcqBA5ld\nUaLaa1kAABIiSURBVMEdRUUYAhgGaFRV7tm8ma9LS1k5YACn+CGaw6E5JjYWQkNRFFXbrI8ehdpa\nRHS8VxqBaBAoCY4FgSOfgkvTEBz35qFGLktO5pd+/Xhg82beKikJ6AGjymBgxIYNVJtM5PbvL8tH\nnIRIQdBM2oWHs7h/f8oMBi7Jy7PqUesvqo1GRm3cyPbaWpYOGEB6RMtqyjvD6Sm8Sxd0ap1mvtm2\nDTp3RjUK1z4C243doKIkxWvXN7JtG3Tp4rg2kSvTkHlNVnMdx5waE8OKgQOZuG8fD2zZEpBw5R21\ntZy5bh2nREczKyuLqJOs3aREQwqCFhAdGsr3ffuSGRnJmWvXsstPbeQA9tTXc/a6daSHh/NjdrZf\nk3uc9gDo2xel7qi2WeflQd++WhSQi6ghhxt7+1TYtOlYLoF5LodRRq5MQ+Y1kZfn1etrzXSKiGD5\nwIEU1tRw5caNDjuc+Yq/Dh9m6Lp13N2+PW/16GFVplxyciEFQQsJURTey8jg9nbtGLp2LWt93DAC\nYMORIwxZu5Yb0tL4uGdP9H6O5LBsXm9Fdja62sPaZp2XB9nZLjdqZz4CJTpCq7W9ZYtWuM48l9Mo\nI1eCIDv7hBIEoLW6nJedTbJez7nr1rHPD+Uofqio4NK8PP7Xsyf3y/pBJz3BFASvAZuAv4HvgLgg\nrqVFKIrCgx078m5GBhdt2MBcHyYJ/XrgABf8/Tevde/Oo506BaTWi9PNNzsb5cihYxpBdrbjUFMz\nDqOGGoVM4wa+b5/m9G3b1ul4l6ahxnlacdZ3c9DrdEzMzOSK5GSGrF1Lvg8jo97ZvZt7iouZl53N\nqORkn80rOX4JZvGQ+cCjgAq8DDwOPBbE9bSYq1JSaB8WxlX5+fTbs4dRycmMTEqio5e2/D319cyt\nrGRORQVrqqv5LisroKV/nZqG+vVDV52nndrz8qBfP8Q25zZ8JUQTEMIkjj1unLtxA4+J0Tq+KFpP\nA69NQ2lpEBqq1RwKUDnqQKEoCk926ULXyEjOXreOCxMSGJWczMWJiSR40YxHCEFhTQ1zKiv5vqKC\nw0YjywcMkOGhkiaCKQh+s3j8B3B1sBbiSwbHxVF0+un8euAAcyoreXr7djpFRDAqKYlRyckMiI62\nO9ULIdhw9ChzKiqYU1nJttpaLk5MZGzbtkzt04e4ABf7EgYnDuD0dBRhQKwv0Dqxd+uGKKpyuVE3\nnvJDIkOOza1XtDZuH32kneT79wccN7t3KwgU81zLl2tNh09AbkpLY1h8PHMrK/mmrIy7iosZFBPT\n9D/VzcGGblRVlh8+3PQ/VaeqjEpK4tkuXciJj5eJYhIrWks5wXHAtGAvwlfEhIZyTWoq16SmYlRV\nVpg/kNcVFFCnqoxMSmJUUhIhisIc88k/VFG4PDmZ17p148y4OL/7AZwhhEAYhcOy0igKSq8eqK+/\nBf+8G3Q6l6YhsPATmPeqJiEzciT8619aw+c//wRwmFDm1jQEcO+98MwzWq/QE3SDaxsezh3t23NH\n+/bUmEwsrKpiTmUlL69dS7Jez6jkZC5NSmJvfT1zKiuZV1lJ14gIRiUnM6NPH/o7OIBIJI34WxD8\nBjiqWPUE8KP58QSgAZjqaIJnn3226XFOTg45OTk+XaC/CdXpOCc+nnPi43mte3eKzCr6f3fuRAVG\nJSXxc79+9I6KahUfVGEQTstKA+gG9EXUZWjNfHF/Yre1+6sNqmYaCg/XGjyvWaP1c6SZGgHAqFHw\n2muwcaNmZjrBiQoJYWRyMiOTk1F79uSv6mrmVFRwb3Ex7cPDGZWUxEtdu/otvFjS+sjNzSU3N7fZ\n1wd757kVuBMYBjiKvRTByNw9mTEdNbE8ZTnn1Jzj8PfF9xUT1SuK9Pu0SJPSr0up/KmSPlP7OBy/\nosMKTv3zVMI7aHWQ8kfnk3JNCqmj7UtlV6+ppujOIgatHdT03GL9Ys6uOdtpiGoTqnrCagMSibeY\nD3Ie7+/BNA2NAB4GzsWxEJAEAdXgJHTUjG2svzvTkK1G4C7c1GqsKzOV3Y2kEJBImkswPz3vAdFo\n5qN1wIdBXIvEjKsEMcAu+9ed6cY2l0A1OLf52/oIGuduDSYzieREJpgagfcl8iR+xxObv+1m7cqZ\na6cROGqDacZWaHjkH5BIJC1G6tMSK9yZhuxO+G6Kwjkc76K1pZVj2YX2IJFIfIf8lEms8LVpyJFG\n4NI0ZKkRuNAeJBKJ75CCQGKFR6YhyxN+vYou3IXgcKAROBuvhFn3OJamIYkkMEhBILHClekGHGzW\nLk744EAjqHdettpOyLgQGhKJxHfIT5nECncnfEcagRLunY/ApUZg6SOody2UJBKJb5CCQGKFaBCu\nTT22PgIvNQJXm7sSooAJhKoJDlHvei0SicQ3yE+ZxAp3p3Db8FFvfQSuBIeiKFY9CTyqMySRSFqM\n/JRJrGiO89elT8E2JNQD01PjeHdmJ4lE4hukIJBY4c7UY2cacmO+cRgS6mGegru1SCQS3yA/ZRIr\n3J3CHUX2uI0ysq0+6qGgcac9SCQS3yA/ZRIr3DqLbcJHvYkyEkK41QgsfRDSNCSRBAYpCCRWqPWu\nT+yOTD1uBYf5hO9JETmr8dI0JJEEBPkpk1jhNi/AgfPX07LVnph6vB0vkUhajvyUSazwJC/Aqvqo\nNxqBG7MQWAsaT8ZLJJKWIwWBxAqvw0e9MCW5G+twvNQIJBK/Iz9lEivUBi9NQ+7GW2gE7sY2jrdy\nFkuNQCLxO1IQSKwQ9R6YhiydxV6M98T5a5lQ5s7sJJFIfIP8lEms8MQ0ZBU+6qZCqJVG4IGpR9Er\nXpmSJBJJy5GfMokV7hLEdGE6RL1N9VEP8wI8chZ7aUqSSCQtRwoCiRVuS0aEO+g45o1G4Imz2CCr\nj0okgUR+yiRWuDP16CJ0qLXNzCPw0FnsjeCQSCQtR37KJFa429gbo3qEycIB7GkegRvHMpidxXXS\nNCSRBBIpCCRWuDPHKIqiaQX1KkII7/IIPGg9qYs85oPwRHBIJJKWIz9lEivcOYtB26zVOlXTCnTm\nzmJOUMKUphO+J85iXYQOU62paS3SRyCR+B/5KZNY4VE9oAizIPDgxB4SGXLM1OOJszhSZzVeJpRJ\nJP5HCgKJFZ4kcTUKAk9NPY3OZY+0DQtntIwakkgCg/yUSazw5BTeJAg8GRtpYeqpU9FFeKFBeCA4\nJBJJy5GCQGKFx6ahWtWjjd1KI6hV0UV6Nrena5FIJC0n2J+yhwAVSAzyOiRm1DrPfQQeb+x1xwRB\nSGSI6/GWPgIPBI1EImk5wfyUdQSGAzuDuAaJDWqtii7Kc0HgbmMPiQw5dsL3RIOI8E6DkEgkLSeY\nn7I3gUeCeH+JA7w5tau1fjANRXqnQUgkkpYTLEFwOf/f3r3HyFXVARz/3p2Zbru03W1p2SKtnYIK\nJkTEJ0a0iwqpidGYmPgHMWL/McRnNAK10bT/SH0F/9F/NJriK6IxRIyokLiaGDUGCxQVpXaVVhFM\niXax7rY7O/5x7szOLLudO93dOafM95Ns9t7J2Z1f5nF+9zwvHAcejvT8WkQ33T21/9U6ls0qGfXZ\nOrMzxcrP70qyRSCtvPIK/u/7gC0LPL4X2APc0PKYU0MS0U1lna3KOieCLGu2Coq2CBqzjIrEImnp\nVjIRXL/I41cCO4CH8vOtwAPAq4Cn5hfet29f83hsbIyxsbHljFEtGvcZGKgsXyKAuXGCwmMEjRbB\nKVsEUhHj4+OMj4+f89+vZCJYzCPAaMv5BPBy4OmFCrcmAq2son3yjW0gskpWrPya7geX6/U6s1OO\nEUhFzL9I3r9/f1d/HyMRzFfvXES9ULRPvjlrqFKwfDddQ62L1SrZWfcxkrQ8UkgEl8YOQEHRPvnm\nYHG5YPm837+bBWgOFEu9k0IiUCIKtwjyrp6sVGyMoLE2oJuBaKeOSr3jJZeaZk8VHyPoprJuDhYX\nXUdgi0DqKb9pairaNVRaU2L2VPHKuq1yLzhryKmjUu/YNaSmohV7aV2J2mQNMhgcGuxYvtGVVHum\nRnnd2T9yjbufOXVU6h0TgZpWP381ozeOdixXWl9i5uQMZHSs2GFusLg2WaO07uxdSVmWMTA0wOl/\nnqZ0gWMEUi+YCNQ0dPkQQ5cPdSxXXlemdjK0CErrC4wRrC1RO1mjdqpGaW3n8uXhMtPHpikP+/GU\nesFvmrpWWl9iZnIGBuh4hQ9QHikz/fdpBtYMkA10XhdQHi4zdWyqUJKRtHR2wqpr5fWhRVA7WaO8\nvvO1RHkkv8Iv0I0EtgikXjMRqGuNweKZyZlCV+2NRFCk9QChxTF9fLpQkpG0dCYCda0xWFw72XkW\nEEBlQ4Wpx6cKJ4JGi8CuIak3TATqWumCcIP5MyfOUBou1iKYOjpF5cJKof/f7BqyRSD1hIlAXcuy\nLNxw5nSd8tpiYwQAlYuKJYLScIn6TJ3KaLHykpbGRKBzkpWL7wpa2RQq9FWjqwqVH7wkLFIbfF7n\nxWqSls5EoHPSzYZwg9tDhV40EazesTr83TYTgdQLdsLqnFxx5xXMnpotVHagPEB1f5XN79hcqPzI\n2AjbP7Gdwa0mAqkXUr/rR71e9741ktSNLMugi/rdriFJ6nMmAknqcyYCSepzJgJJ6nMmAknqcyYC\nSepzJgJJ6nMmAknqcyYCSepzJgJJ6nMmAknqcyYCSepzMRPBB4A/Ao8An44YhyT1tViJ4DrgrcBL\ngCuBz0WKo2vj4+OxQ1hQinEZUzHGVFyKcaUYU7diJYKbgduBM/n5vyLF0bVU3/QU4zKmYoypuBTj\nSjGmbsVKBC8EXg/8GhgHXhEpDknqeyt5h7L7gC0LPL43f94NwDXAK4G7gEtXMBZJ0iJi3aHsXuAA\n8PP8/AjwauDEvHJHgMt6GJckPRf8BXhB7CA6eS+wPz9+EfB4xFgkSRFUgK8Dh4EHgLGo0UiSJElK\nW6qLzz4KzAIbYwcCfJbwGj0EfB8YjhjLLuBR4DHg1ohxtNoG/Az4PeFz9MG44bQpAYeAe2IHkhsB\nvkf4PP2BMKkjtj2E9+4w8C1gMEIMXwWezGNo2EiYGPNn4KeE1y6FuFKqD5bFdYQXupKfb44YS6tt\nwI+BCdJIBNczNx34QP4TQ4kwyF8lvGcPAi+OFEurLcBL8+O1wJ9IIy6AjwDfBH4QO5DcQWB3flwm\nfiVSBY4yV/l/B3h3hDheB1xNe4X7GeCW/PhW4nzvFoorlfpg2dwFvCF2EAv4LmFldCqJoNXbgW9E\neu7XEBJkw235T2ruBt4YOwhgK3A/4YInhRbBMKHSTclGQuLeQEhM9wBvihRLlfYK91FgND/ekp/H\nUKU9rlYd64PzYdO5FBefvQ04DjwcO5BF7AZ+FOm5LwGOtZwfzx9LSZVwBfWbyHEA3AF8jNDFmIId\nhJX+XwN+B3wZGIoaETwNfJ4wu/AfwL8JyTMFo4RuGfLfo2cpG0vH+mAlF5R1I8XFZ2eLaQ9wQ8tj\nvVqPsVhMH2fuanIvcJrQjxpDPdLzFrWW0P/9IeCZyLG8BXiKMD4wFjeUpjLwMuD9wG+BLxBadJ+M\nGNNlwIcJCfw/hNb4jYTutJTUSe/zH7s+WDb3Ajtbzo8AF0aKBcImeU8SuoQmCPsl/RW4KGJMDTcB\nvwRWR4zhGtq7hvaQzoBxBfgJoVJJwacIracJ4Angv8CdUSMKFxoTLefXAj+MFEvDO4GvtJy/C/hi\npFiqPLtrqHFxdjFpdQ3dRPz6YNmkvvgslTGCXYRZFZsix1EmrGqsAqtIZ7A4I1Syd8QOZBE7SWOM\nAOAXhO8awD7iz9S7ijDTaw3hfTwIvC9SLFWePVjcuNC5jXiDslXa40qlPlg2qS8+O0oaieAx4G+E\nboZDwJcixvJmwuDeEUKLIAXXEvrhH2TuNdoVNaJ2O0ln1tBVhG6hlKYe3sLc9NGDzM0i7KVvE8Yo\nThNacu8hfPfvJ+700flx7Sat+kCSJEmSJEmSJEmSJEmSJEmSzkfDwM0t5zXm5mjfHSUiSVJPVWlf\nuTkZKQ5p2aWy6ZyUugOEzc8OETb/kyT1me20twjOELY8+RVhW3JJ0nNclfZEcHH+ewdh48FebI0u\nrYjz4cY0UoqeyH9PEG6YdHW8UKSlMRFIxUwC6/LjDczdP3cT8FrCzpjSecnBYqmYE4SbfBwmtAa2\nELa1HgBuJ94NSSRJkiRJkiRJkiRJkiRJkiRJkiRJkor5P6TnWiwPhNYTAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x105d91d90>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2 Page No : 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import cos,arange\n",
+ "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
+ "\n",
+ "#Example 7.2\")\n",
+ "\n",
+ "# Input\n",
+ "#Let wt = q\n",
+ "q = arange(-8,8+0.5,0.5)\n",
+ "\n",
+ "# Calculation\n",
+ "v = 5*cos (q)\n",
+ "\n",
+ "# Results\n",
+ "plot(q,v)\n",
+ "suptitle ('v vs wt')\n",
+ "xlabel('wt')\n",
+ "ylabel('v ');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEhCAYAAACXwKDgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVdWV9/FvMQgoiiKTCgSZFMEwCggIBTIYjJLYDh1f\niZlMR40apyTEJ5HESGJMTNLJm6S1O5ORjnNacQSkoJiRGQGZFbAZlDDLUNTtP1YdC4oa7r11ztln\n+H2eh8cqvPecRdW96+6zzt5rg4iIiIiIiIiIiIiIiIiIiIiIiIiIiEgq3Qyc4zoIEREJ1zSgt+sg\nRETS5ifAbcd9Px64N8vHnAPMABYDy4FBFZ53CfB82ddjgINAPaAhsB74F2AfsBpYVPb3IiISgh5A\n0XHfvwOcl+Vj7gW+V/Z3BUDjCs+rhyV5gJ8D84ABwBDgqbK/nwb0yjd4kaDUcx2ASMCWAC2wUXwL\n4J/A1iwfMx/4I1Af+AewtMLzSrDkfyF2FfAYMBioCxQf97gC3/41Ij6p4zoAkRA8C1wLXA/8PYfH\nFAOXYR8EfwbGVvK8GcBo4Cgwtezxgzgx+WdqFb2IiOTlImA28C7QMofHtMVG8QC3YyP7ioYA7wM/\nKvt+LuWlIICXgMI84xYRkVpaho3Mc3nMF7EbvYuA6cCnKnlOI+AQMLzs+//ASkSea9ANXxERERER\nEREREREREREREREREREREREREREREREREXHqTOA5YBWwEujvNhwREQnDX4CvlH1dD2jiMBYREQlB\nE2CD6yBERNLIZT//84GdwJ+wjodPAKc6jEdEJDVcJv962PZ2vyv77wHguw7jERFJDZfbOG4p+7Og\n7PvnqJD8O3TokFm/fn3F54mISPXWAx2re4DLkf82YDPQuez74djG2Z9Yv349mUwm8n8efPBB5zEo\nTsUZ1xgVp/9/gA41JWDXG7jfATwFnIJ9Un3ZbTgiIungOvkvBS5xHIOISOq4LPskRmFhoesQsqI4\n/RWHOOMQIyhOFwpcB1CDTFn9SkREslRQUAA15HeN/EVEUkjJX0QkhZT8RURSSMlfRCSFlPxFRFJI\nyV9EJIWU/EVEUkjJX0QkhZT8RURSSMlfRCSFlPxFRFJIyV8kD8uXQ2mp6yhE8qfkL5KjiROhe3f4\n1rdAfQclrpT8q7B/Pxw96joKiZrXXoO774biYpgxA378Y9cRSdSUlsKePa6jqJnrzVwi6cMP4cIL\nYd8+aNsWOneGTp3K/9upE7RpA3Xruo5UwjRnDtx8M/zP/8Cll8Lrr8OgQdCsGdx6q+voJEyZDOzY\nAWvWwNq19sf7ev16OHYM3ngDhgxxHWnV1M+/EuPGwa5d8O//Dhs2nPiL9b7+6CNo394+CG69FUaN\nCj1MCdGKFXD55fCXv8AVV5T//YYNMHgwPPYYXH+9u/gkeOvWwQ9+YO//NWvglFPKB4PHDww7dYIX\nXoA//hGKiqDAQZbNpp+/kn8FO3faqH/xYhv1V+XAAfuEnzULfvYze2HoSiCZNm2Cyy6DRx6BG288\n+f8vWwYjRsCTT8LIkaGHJyG58UZo2hTGjrUE37Rp1Y8tKYGLLoI//AGGDQsvRo+Sfx6+/W2r9//u\nd9k/Z+BAqwNfe21wcYkbO3ZYaeeOO+xPVWbOhGuugZdfhn79wotPwvH++9CjB2zcCE2aZPecv/3N\nkn9xcfijfyX/HO3YYaP+Zcugdevsn/f88/CLX8Ds2cHFJuHbuxcKC+Gqq+CHP6z58a+8Al/9Kkyb\nBl26BB6ehOi+++xG7mOPZf+cY8ega1f4zW/syjBMSv45uu8+OHzYflm5OHbMLgOfespuBEr8HTpk\ntf2uXeG3v81+5Pbkk/DAA3YlUF3ZUOJj7144/3xYtAg+9ancnvvf/235ZNascEf/2sM3B9u22Q2a\nceNyf27dujbnO5dRgURXSQl84QvQqpXd9M/lTTt2LNxzj9X+d+4MLkYJz3/9FwwfnnviB5sEsHu3\nzfyJGo38y9x9t13W/frX+T1//35o1w4WLLBRgsRTJgO33AKbN1v9/pRT8jvOAw/Am2/CW2/B6af7\nG6OEp6QEOnaEZ56Bvn3zO8bTT9vAcO7c8Eb/Gvln6YMPbArfd7+b/zEaN7Z6b74fHhIN48bZtM7n\nn88/8YMt/urVCz7/eSslSjy98IKt6ck38QNcd53NDnztNf/i8oNG/sCdd0K9erUv22zZAp/+tM39\nPvNMf2KT8Lz4oiX/WbPg7LNrf7xjx+yN36EDPPpo7Y8n4cpkoH9/GxR+/vO1O9Zzz9lU4fnzwxn9\na+Sfha1bbUrWd75T+2O1bg2jR8MTT9T+WBK+v/7V3uh+JH6we0E//am9vo4d8+eYEp7Zs20x59VX\n1/5Y11wDR47ApEm1P5ZfUj/y/+Y3oVEj/0ZmixbBmDE2+q9f359jSvD27bMP702b4Kyz/D12jx52\n43jwYH+PK8H6l3+BoUMtR/jhxRetHPj228GP/uMy8q8LLAZeDvvEmzfbVKz77/fvmL162Q2iZ5/1\n75gSvEmTbDGX34kfrPSj10O8rF8P06fDl7/s3zE/9zmbVPLSS/4dszaikPzvAlYCoTfxmTABvvY1\naNHC3+Pee68t+lK73/h45hlL0kG47jqr+ar0Ex+//rXN+jrtNP+OWVAA48fDgw9GYy8I18m/NTAa\n+E9CLkG995694f0c9XtGj7a7+zNm+H9s8d++fTYlc8yYYI7fuTO0bGk3kiX6/vlPu09TXTuPfF19\ntd0L+sc//D92rlwn/18C9wOhfw5OmAD/9m/WjtdvderYuoFf/ML/Y4v/giz5eK67zgYbEn2PPw6f\n/Syce67/xy4osFYh48e7H/27TP6fBXZg9f5QR/0bN9pl+L33BneOsWNtUceaNcGdQ/zxzDPBt2O+\n7jpbO6DST7QdOWLtGO65J7hzXHklNGxorweXXG7mMgC4Giv7NATOAP4KfPH4B40fP/6TrwsLCyks\nLKz1iR9+GG67zb8pfZU59VT4xjfgl7+E3/8+uPNI7Xglnz/9KdjzHF/60ayf6HrmGbjgApuhFRRv\n9H///TajqI4PQ/CioiKKiopyi6P2p/XFEOA+4KoKf+/7VM/1663l7tq1wV7mg/UL6tLFzhVEeUlq\nb+JEa8j3yivBn+vhh+F//9caxUn0ZDI2W+/hh+2+XdDnuvRSKw/fcIP/x4/LVE9PKHNjfvxjuP32\n4BM/WGOwa66xnt4STc8+G94OXCr9RNu0aeXdXIN2fO3f1eshKiP/qvg68l+3zpZrr1sXXvuFFSus\nl/emTdCgQTjnlOx4C7veey+810OPHjaNMMp7u6bVZz9rM75uuSWc82UyNtHg9tsr3yGuNuI28g/c\nU0/BF78Ybt+dbt2ge3crL0i0vPyyvfnCfD1owVc0rVplHXlvuim8cxYUWNnnz38O75zHS1Xyf/NN\n+Mxnwj/vPfdY0zgt+oqWMEs+Hi34iqZf/QpuvdVavYRpxAiYMwc+/jjc80KKkv/u3bB8uW3EHTZv\nC7fJk8M/t1Ru716YOjW4hV1V6dzZ7gXNnBnueaVqO3faLJ/bbgv/3E2aWGXAxYLQ1CT/qVNto/WG\nDcM/d0FB+ehfomHSJJty6aL19vXXq/QTJb//PVx7rf9tXrI1apSbnb5Sk/zfeMO21nPlxhutpvjB\nB+5ikHLPPhtcL5+aqPQTHZmMrfG4/XZ3MYwcaSXpsKUi+Wcy9sMdNcpdDA0aWHvYqVPdxSDGVcnH\n06mTSj9RsWGD7bTWvbu7GPr0sfUfW7aEe95UJP81a2yU1aWL2ziGD4cpU9zGIG5LPp7rr1evnyiY\nMsXel2HtrVuZunUthrBH/6lI/l7Jx+UvGODyy+3Fplk/brks+Xi04Csapkyx96VrI0eGX/dPRfJ3\nXfLxdOxoewW/+67rSNJr795g2zdnq1MnOOcclX5cKi21Vb1RSP6jRtkHUZiDgcQn/8OHbRrV8OGu\nI7ErD5V+3Jo0yab7uiz5eNTm2a0lS6B5c1vl7Vrr1nYfaOHC8M6Z+OQ/axZcdBE0beo6EqPk71aQ\nO3blSqUft7x6f1SEPeUz8cnf9RTPioYNg6IiKClxHUn67N1rl/muSz4er/RTXOw6knSKSr3fE/aU\nz8Qn/6jU+z0tW0LbtuFe3omJUsnHo14/bhw6ZG0VfNgexDeDB1spas+ecM6X6OS/fbt10+zXz3Uk\nJ1Lpx40wduzKlUo/bsyZA127RmsgcOqp1uP/rbfCOV+ik/+bb9rCqnou9yurhJJ/+LySz9VXu47k\nRCr9uBG1er8nzNJPopP/G29Eq+TjGTzYWj0cOOA6kvR4+eXolXw8Kv2EL2r1fo930zeMtUCJTf6l\npdZFM4rJv3Fj6NlTc7zD5KJ9c7ZU+gnX7t2wcqWVWKKmWzebnr5uXfDnSmzyX7rURnnt2rmOpHLD\nh6vPT1iiWvLxqPQTrqIiGDDATYffmhQUhLfaN7HJP2pTPCtS3T88US75eLTgKzxRrfd7wqr7Jzr5\nR7Hk4+nbF9avhw8/dB1J8kW55OO57jp44QWVfsIQ1Xq/Z8QImD4djhwJ9jyJTP7799sN1SjN4a2o\nfn0bjYY1rSutjh2zks/o0a4jqV6nTrar0/LlriNJti1bbMDVo4frSKrWrJnt+DZ7drDnSWTyLyqC\nSy6xG6tRprp/8JYutb4pzZq5jqRmgwer7h+0qVNtlX2diGe+MEo/Ef8R5CfqJR+P6v7BmzHDzb7N\n+bjsMjd7uaZJ1Ov9njD6/Cj5O9S1q83137DBdSTJVVwcr+RfXKz9HoKSycQn+V96qU333LEjuHMk\nLvlv3GjzeF1uy5atggK78aTSTzAyGUumgwe7jiQ77drZvaAw5nin0cqVNr2zfXvXkdSsfn27Zzl5\ncnDnSFzyf/NNq5dFvabnUd0/OO++a/1S2rRxHUl2CgpU+gnS1KnxGPV7Ro0Ktu4fkxSZvbiUfDze\nyL+01HUkyROnko/HK/2I/+JS8vF4yT+oMmCikn9JiU2dHDHCdSTZa9vWNppZtsx1JMkTp5KPRzN+\ngnH0qM2dHzbMdSTZ69ABTjstuNyQqOQ/b57VTVu1ch1JbryN3cVfcZrp4+nSxe5Zbd3qOpJkWbAA\nzj/ftm2MkyCnfLpO/m2AacA7wArgztocLG4lH4/q/v7bvBkOHoQLLnAdSW7q1IFBgzT691vc6v2e\nIKd8uk7+R4G7ga5Af+B2oEu+B4tr8h861PYaPnzYdSTJ4dX7CwpcR5I7lX78F7d6v2foUJg7N5j2\n766T/zZgSdnX+4FVwLn5HGjXLli1CgYO9Cu08Jx1Flx4of2SxR9xLPl4dNPXX/v327apcXw9nHEG\n9Opl9yv85jr5H68d0BOYl8+Tp0yxX26DBr7GFBrV/f0Vx5k+np49bb3Krl2uI0mG4mLo3dtunsZR\nUFM+o7LBYWPgOeAu7ArgE+PHj//k68LCQgqr6NYW15KPZ/hw+P734aGHXEcSfx9+aA284rDQrzL1\n60P//lYKvOoq19HEX1zr/Z5Ro2Ds2OofU1RURFFRUU7HjUJFtD4wCXgN+FWF/5fJZDHJNZOxhTxT\np8bvBp/n0CGbibBli3V3lPz94x/whz/A66+7jiR/P/qRlSt+9jPXkcRfjx7w+99Hc+eubJSWQsuW\nVrpq2za75xTYza5q87vrsk8B8F/ASk5O/FlbtQrq1rU2qHHVsKGN9oKo7aVNnEs+Hq309ceOHbBp\nk3X5jas6dezKxe/Sj+vkPxC4CRgKLC77c0WuB/FKPnGc2XE81f39EcfFXRX162e9/YOY5ZEmb71l\nr4V6USlw5ymIKZ+uk//Mshh6YDd7ewI5X6zHvd7vUYvn2tu/3xp4xXmkB9aTqHt3W7go+YvrFM+K\nRo60snZJiX/HdJ38a62kxHa8ifKuXdnq2RO2b4cPPnAdSXzNmWM/xyhuzp0rlX5qJ04tnGty7rnQ\nogWsWOHfMWOf/Jcvh/POg7PPdh1J7dWta4s6tNo3f0ko+Xi02Kt2NmywfXC75L1sNFoGDrQZYH6J\nffKfPTueC7uqorp/7cR5cVdFAwfC/PnBb+SdVN5G7XG/F+gZONDffX1jn/xnzYIBA1xH4R+v7q/d\nnHJ3+DC8/XZyXg9nnmkbjyxa5DqSeEpKycczYIBG/idI2si/Y0ebmfDuu64jiZ+FC22dxxlnuI7E\nPyr95Ke0FKZNs5F/UlxwAezb51/H11gn/61bbXZHnOf3V1RQoFk/+UpSycejPj/5WbIEmjWD1q1d\nR+KfggIb/ftV+ol18p89234YSanpeQYPhpkzXUcRP0lY3FXRZZfZa0E7veVm5kwYMsR1FP7zs+4f\n6+SftHq/x89P97Q4dsx+ZklL/uecYzPZ3nnHdSTx4g0Mk8bPun+sk3/S6v2ejh2t18/mza4jiY/l\ny63/SYsWriPxn0o/uZs1K5m54ZJLbCBw8GDtjxXb5H/woP0Q+vRxHYn//K7tpUESSz4eJf/cbN5s\nM786dHAdif8aNYJu3WxbytqKbfJfsAAuvth+GEmk5J+bJC3uqmjwYLuZrem/2UnqvUCPX4u9Ypv8\nk1rv9yj5Zy+TSeZMH0/79vZv3LjRdSTxkNR6v8ev3BDr5J/Emp6nTx9rUKaujjVbt842QPnUp1xH\nEoyCApV+cpH03OAl/9rOAItl8i8ttQZeSf50b9gQPv1pf2p7SeeVfJJ6mQ/lpR+p3oEDtr9H796u\nIwnOuefahk+1XQgay+S/erUtfT/nHNeRBEuln+wkueTj0cg/OwsW2KApCV1dq+NH3T+WyT/pNT2P\nkn92kjzTx9OtG+zcCdu2uY4k2pQbshfL5J/0mp7Hr9pekm3dCnv2JKdtb1Xq1IFBgzT6r0lackOq\nR/5p+AWfc46Vt9TkrWrFxZYU68TylZwblX6q590LjOtG7bno1s2uAj/8MP9jxO4t4136du3qOpJw\nqPRTvTSUfDxK/tV799103AsE2/ipX7/a5YbYJf85c6B/f/vHp4HfGzgkTZIXd1XUu7dNa92923Uk\n0ZSWer+ntrkhdsk/6Yu7KtLIv2q7dsGmTbZnbxqccor1dtHroXJpS/61bfIWu+Sflnq/p1s329D9\no49cRxI9s2bZpW+9eq4jCY9KP1VLy81eT79+tstbvtt8xir5Hz4MixfbPzot6taFvn2t3CUnSlPJ\nx6OdvSr34Yc2SOrWzXUk4TnjDOjUKf9tPmOV/Bcvtn/s6ae7jiRcqvtXLg2Luyrq39/eBx9/7DqS\naJk71waFabkX6KlNbohV8k9bvd+juv/JDhywHv5pugoEOO00G93On+86kmhJW73fU5u6f6ySf9rq\n/Z5+/eDtt+HoUdeRRMe8edC9e3JbeldHfX5OlrZ6v8cb+efT7js2yT+TSe/Iv0kTa+u7ZInrSKJj\n5kxb3JVGfvVzT4qjR2HhwvRdBYJ1si0oyK/dd2yS/8aNVs9Latvemqjuf6JZs9Kd/OfOtX2LxQZF\n7dvbICltCgryzw2uk/8VwGpgLfCd6h7ojfqT3La3Oqr7lzt2zJJfGq8CAZo3t/2Ktam7SWu935Nv\n3d9l8q8L/Bb7ALgI+AJQZXuutNb7Pd4vWFv5wYoVtoS/WTPXkbij0k+5tNb7PXEc+fcF1gGbgKPA\n34ExVT047b/g9u2ttrl5s+tI3Ev7awGU/D1pvhfo6dkT1q+37ra5yCb53wucl09QNTgPOD6Vbanq\nPHv2wIYN0KNHAFHERG1qe0mj5K/k79m8GUpKbHCUVvXrW9+nefNye142C+NPB94E/omNzp8Ftuca\nYCWyKmCMHz+edevsEn/WrEIKCwt9OHU8eXX/f/1X15G4NXMm/OAHrqNw64ILYN8+28/gvCCGZjHh\n1fvTei/Q07p1EQ8/XJTT4DCXH1l34HrgWmyUfnlO0Z2sPzAeq/kDjANKgUeOe0wmk8nw4INW8pgw\noZZnjLnZs+GOO2xaW1pt2WKXuTt26A1/9dVw001w/fWuI3HnjjtsBuB997mOxK1Jk+DXv4bJk+37\nAntzVPsOyaXmvwPYBnwENM8vxBO8DXQC2gGnADcAL1X2QF3mm169bP/i/ftdR+KO91pIe+IHm+qa\n9tJP2mf6eC691Mo+JSXZPyeb5H8bUARMBZoBXwM+nUd8FZUA3wTeAFYCTwOrTnpQiS1lT8PuPDVp\n2NDueyxY4DoSdzQQKJf2uv/+/TYY6tXLdSTunX22lf9WrMj+Odkk/zbAt7DpmA9iidovrwEXAB2B\nn1T2gOXLoXVraNrUx7PGWNrn+yv5l+vdO91XggsWWIuPhg1dRxINuQ4Gskn+4wBnjQV0WXeiNCf/\nfftsq77evV1HEg0NG1ryS2uTN+WGE+WaG1yv8K2RRnonGjDAevuXlrqOJHzz5lnZq0ED15FEx8CB\nNvspjZQbThTEyN8pfbqfqGVLK4GtXu06kvDpzX6ytNb9S0ttEKR7geU6d7YS4Nat2T0+8sl//377\nR0m5tJZ+lPxPNmBAOpu8rV5tg6BWrVxHEh0FBbnlhsgnfy3gOFkak/+xY1b20VXgiZo3tz5Huczy\nSAJVBCqXS5O3yCd/jfROVpvde+Jq+XI499x0N3OrShpLP7oKrFwuLWAin/z16X6yrl1h+3bbtDot\n9GavWhqTv0b+levTJ/tW35FP/n36uI4geurWtV2L5sxxHUl4Zs5U8q9K2mb8fPghbNtmgyA5UaNG\ncPHF2T028sk/jXu0ZiNtdX+N/KvWuTMcPGh9j9Jgzhwb/NSt6zqSaMr2fRL55C+VS1Pdf/NmOHQI\nOnVyHUk0ebM80vJ60ECgenfdld3jlPxjql8/WLQIjhxxHUnw0r6FZzbSVPdXvb96bdtm9zgl/5g6\n4wzo2NE2r066NG/Wnq20dPg8csQGPf36uY4k/pT8YywtdX9d5tesd2/re7Rvn+tIgrVkCXToYIMf\nqR0l/xhLw7aO+/bBmjVq21uTBg2s71GuW/nFzezZGgj4Rck/xrybfJmsNsSMp7lzbecuNXOrWRrq\n/rNmqZ+PX5T8Y6xdO6hTB9atcx1JcFTyyV7Sk38mA9Onw5AhriNJBiX/GCsogKFDYdo015EER8k/\newMGWNknqU3e3nkHTj89+9ksUj0l/5hLcvIvKVEzt1w0a2b9j5Yvdx1JMKZNs9e7+EPJP+a85J/E\nur+3hefZZ7uOJD6SXPpR8veXkn/MtWtnLTCSuLmLSj65S2ryLy21er+Sv3+U/BMgqaUfNXPLXVKb\nvC1bVl7WEn8o+SdAUpO/Rv6569TJ+iBt3uw6En+p5OM/Jf8EGDoUioqStan7++/D4cPWwkKyl9Qm\nb0r+/lPyT4DWreHMM7PfxCEOvFG/mrnlLml1/2PHoLgYCgtdR5IsSv4JkbTSj5q55S9pTd4WL7Za\nf8uWriNJFiX/hEhi8le9Pz+9elk/pKQ0eVPJJxhK/glRWAgzZiSj7r93L6xdq2Zu+WrQwPohzZ3r\nOhJ/KPkHQ8k/Ic45B1q0gKVLXUdSe3PnWuI/5RTXkcRXUur+R4/av0P9fPznMvk/CqwClgIvAE0c\nxpIISSn9qORTe0lJ/gsX2kLGZs1cR5I8LpP/m0BXoDuwBhjnMJZEUPIXj9fkraTEdSS1o5JPcFwm\n/8mAV6GeB7R2GEsiFBbalLg4v+FLSmD+fDVzq62zz4bzzot/kzcl/+BEpeb/FeBV10HEXfPm0KaN\nTY2Lq2XL7N/QtKnrSOIv7lM+jxyBOXNg8GDXkSRTvYCPPxloVcnffw94uezrB4AjwMTKDjB+/PhP\nvi4sLKRQKz2q5ZV+LrnEdST5UT8f/wwcCK+/Dt/8putI8jN/PnTuDGed5TqS6CsqKqKoqCin57he\nP/kl4BbgcuBQJf8/k0lir+IAvfgiPP44vPaa60jyc8MNMHo03Hyz60jib+1aGDbMWmXEcaX0Qw/B\nnj3w85+7jiR+CuwXXu1v3WXZ5wrgfmAMlSd+ycOQIbbJ9dGjriPJ3bFjMHWqarx+6djRkn5c232r\n3h8sl8n/N0BjrDS0GPidw1gSo2lTaN8e3n7bdSS5mzfPlvFrmz5/FBTYVdQrr7iOJHeHDlnZ57LL\nXEeSXC6TfyfgU0DPsj+3OYwlUYYOhbfech1F7l55Ba680nUUyXLllfFM/nPmQNeucMYZriNJrqjM\n9hEfxXW+v5K//4YNs6vAPXtcR5IblXyCp+SfQIMHWwnl8GHXkWRv61bbgKR/f9eRJMtpp9mUz8mT\nXUeSGyX/4Cn5J1CTJnDhhfYBEBevvgqjRkG9oCcfp1DcSj8HD9paFbX0DpaSf0LFrfTzyit2c1L8\nN3q0Tf2NS8fXWbOgRw+7apHgKPknVJyS/+HDFusVV7iOJJnat7eFUgsXuo4kOyr5hEPJP6EGDbIb\nfR9/7DqSmk2fbjM71LkxOHEq/Sj5h0PJP6FOPx0uvtimzEWdZvkELy7Jf98+a0Z36aWuI0k+Jf8E\ni0vp59VXlfyDNmiQtXvYvt11JNWbORP69IFGjVxHknxK/gkWh+S/Zo3N7uje3XUkyVa/PgwfHv2e\nTyr5hEfJP8EGDoQlS+DAAdeRVM2b5RPHxmNxE4fSj5J/eJT8E+zUU20j7yj3dFe9Pzyf+QxMmRLd\npn979lgTun79XEeSDkr+CRfl0s++fbYQbfhw15GkQ6tW1ulz5kzXkVRuxgxL/A0auI4kHZT8Ey7K\nyX/KFJvV0bix60jS48or7QZ7FKnkEy4l/4S79FJYscJG2VGjkk/4olz3V/IPl5J/wjVsaFs6Fhe7\njuREmYyNQNXSIVy9e8NHH8HGja4jOdGuXbB+fXy3H40jJf8UiGLpZ/FiK/d06uQ6knSpU8du/EZt\n9D99OgwYYFNSJRxK/ikQxeSvko87USz9qOQTPiX/FOjbF959F3bvdh1JOa3qdWfkSJvxc/Cg60jK\nKfmHT8k/BRo0sE1Spk93HYnZuRNWrtT+rK40aWItFKKy1eeOHbaRT69eriNJFyX/lBgzBv7+d9dR\nmNdft+0FNZ/bnSht7P700xaPNvIJl5J/Stx0k/V12bnTdSSq90eBV/fPZNzGkcnA44/D17/uNo40\nUvJPiTPGvULfAAAKfElEQVTPhM99Dv76V7dxlJTAm29qiqdrXbpA3bq2BsSluXNtM58hQ9zGkUZK\n/ilyyy02ynI52ps9G9q1g3PPdReDWCO9KMz6efxxe12qsV/4lPxTZMAAq6vOmOEuBs3yiQ7XrR52\n74YXX4Sbb3YXQ5op+adIQYHVVp94wl0MqvdHR2Ghtfz+5z/dnH/iRBg1Clq0cHP+tFPyT5mxY2HS\nJFviH7b334dt27SEPyoaNYLBg+GNN8I/dyYD//EfutHrkpJ/yjRtClddBU8+Gf65X3kFrrjCbjRK\nNLiq+y9YYJsMaWGXO0r+KfT1r7u58auST/RceaWtuzh2LNzzejd66ygDOeP6R38vUAo0dRxHqgwa\nZIk/zB2+Pv7YbjSPGhXeOaVmbdvaJi8LFoR3zr174fnn4UtfCu+ccjKXyb8NMAJ4z2EMqVRQUD7t\nMyxFRdCjB5x1VnjnlOyEXfqZOBEuvxxatgzvnHIyl8n/MeDbDs+fal/8Irz0UngzPbyN2iV6wm71\noBW90eAq+Y8BtgDLHJ0/9Zo1szf93/4W/LkyGdX7o2zAANi0CT74IPhzLVxoAw7t2+xekMl/MrC8\nkj9XA+OAB497rNb3ORDWjd9Fi+yGYrduwZ5H8lOvnt2Lee654M+lG73REWQfvRFV/H034Hxgadn3\nrYGFQF9gR8UHjx8//pOvCwsLKSws9DPGVBsyxPqqzJ1re/0GIZOBu++G735XS/ij7P777Urwppts\nOnAQ9u2DZ56xdt7ir6KiIoqKinJ6ThTejhuB3sCuSv5fJuO67WDC/fzn8M478Kc/BXP8iRPtHAsW\naH5/1N12m43If/vbYI7/xBPWWfaFF4I5vpQrsJFWtfk9Csl/A9AHJX8ndu60fXQ3bbLOn37au9e6\nRz77rNWVJdp27bLf1xtv2Mwsv11yCfzoR7aHsAQrm+QfhcpbeypP/BKC5s2t3vvUU/4f+6GHYMQI\nJf64aNoUfvxjuP12/+8DLVpkO3aNHOnvcSV/UUj+4lgQN35XroQ//xkeecS/Y0rwvvIVOHLE//Yf\nTzwBX/uaSn9REoWyT3VU9glBaSl07mz1+b59a3+8TMZG/FddBXfdVfvjSbjmz7eNf1atsv1+a+vA\nAWjTBpYvh/POq/3xpGZxKfuIY3Xq+Lvi9/nnYft2Kx9I/PTtazN/fvhDf4739NNw2WVK/FGjkb8A\nlqwvvBDeew/OOCP/4xw4YDcN//Y3axcs8bRzJ3TtCm+9Vfv1Gf37w/e/r0V+YdLIX7LWsqX1W5k4\nsXbHmTDBRnlK/PHWvDk8+CDccUft7gUtXQpbt1orb4kWJX/5xNe/bhts5PtmX7vWnv/oo/7GJW58\n4xu21eLTT+d/jCeegK9+VTd6o0hlH/lEaSl06GDz8vv0ye25mYzViS+/HO67L5j4JHyzZsENN8Dq\n1dC4cW7PPXgQWre2rSLbtg0mPqmcyj6SE+/G7x/+kPtzX3rJFordeafvYYlDAwfaB/pDD+X+3Kef\ntjUeSvzRpJG/nGDbNrtB16kTfO97tsl3TT15Pv4YLrrILvHVrTF5tm2Diy+G4mKbFFCT1avhpz+1\nAcELL9hrSMKlkb/krFUrWLMGbrzRar4DBtibuLS06uc88oiViZT4k6lVK3jgAbuqq24stnAhXHut\n3ezv2BHWr1fijzKN/KVKx47Biy/aDJ6jR2HcOLj+emsB7NmwweaFL15sC3kkmY4ehZ49rTfPNdeU\n/30mY1cEEybAihV2v+eWW+C009zFKvFp7FYdJf8IyGSs2deECTZt7zvfgZtvhgYNYMwYKxONG+c6\nSglaUZH93letgkaN4NVX7TWxfbu17B471l4T4p6Sv/iuuBh+8hObvz1mDEyZYsv29aZPhy98wa4C\n1q2zQcG4cVbqqRfkziCSMyV/CczixfDYYzaHW3Xd9Ni61fo1ffnLNrVXG/REk5K/iEgKabaPiIhU\nSslfRCSFlPxFRFJIyV9EJIWU/EVEUkjJX0QkhZT8RURSSMlfRCSFlPxFRFJIyV9EJIWU/EVEUkjJ\nX0QkhZT8RURSyGXyvwNYBawAHnEYh4hI6rhK/kOBq4FPA92AnzuKwxdFRUWuQ8iK4vRXHOKMQ4yg\nOF1wlfxvBX4CHC37fqejOHwRlxeE4vRXHOKMQ4ygOF1wlfw7AYOBuUAR0MdRHCIiqRTkzpuTgVaV\n/P0DZec9C+gPXAI8A7QPMBYRETmOq20cXwN+Ckwv+34d0A/4qMLj1gEdQoxLRCQJ1gMdXQdRmX8D\nflj2dWfgfYexiIhISOoDTwLLgYVAodNoRERERETEvb7AfGAxsAC7QRxVcVm4di9QCjR1HUgVHsV+\njkuBF4AmbsM5yRXAamAt8B3HsVSlDTANeAd7Pd7pNpwa1cXe4y+7DqQaZwLPYa/NldiElSgah/3e\nlwMTgQZuw8lfETCq7OvPYC/oKBqKzXCqX/Z9c4exVKcN8Dqwkegm/xGUT0P+admfqKiLTURoh/2u\nlwBdXAZUhVZAj7KvGwPvEs04PfcATwEvuQ6kGn8BvlL2dT2iNygBe11uoDzhPw3cXNkD49Db538p\n/yGfCWx1GEt14rJw7THg266DqMFk7MoEYB7Q2mEsFfXFkv8m7Hf9d2CMy4CqsA37YALYj41Wz3UX\nTrVaA6OB/8TdDMSaNAEuA/5Y9n0JsMddOFXai70uT8U+oE6lipwZh+T/XeAX2IygR7FLmiiKw8K1\nMcAWYJnrQHLwFeBV10Ec5zxg83Hfbyn7uyhrB/TEPkij6JfA/ZR/4EfR+diA7k/AIuAJLLFGzS7K\n8+UHwG5gSmUPDHKRVy6qWxB2Z9mfF4HrsE/eEeGFdoI4LFyrLsZxwMjj/s7lKKuqOL9Hed33AeAI\nVreMiozrAHLUGKtT34VdAUTNZ4EdWL2/0G0o1aoH9AK+id17/BU2MP2By6Aq0QH4FvaBvwd4Fvh/\nWEktdvYe93UB0bzUAlu4NuS479cBZzuKpTLdgO1YrX8jdmm4CWjhMKbqfAmYBTR0HEdF/bF7Jp5x\nRPemb33gDSwZRNUE7EpqI1biPQD81WlElWuFxegZBExyFEt1bsDKZ56xwP93FEutLaI8qV6OfepG\nUdwWrkX5hu8V2GyFZq4DqUQ9bPVkO+AUonvDtwBLor90HUgOhhDt2T4zsPc2wHiiOaOvOza7qxH2\nGvgLcLvTiGqhD1arXALMwWqXURS3hWsbiG7yXwu8h5UCFgO/cxvOST6DzZ5ZR3TvQQ3CauhLKP85\nXuE0opoNIdqzfbpjg8+oTkH2fJvyqZ5/oXwGooiIiIiIiIiIiIiIiIiIiIiIiIiIiEhafM91ACIi\nEr59rgMQERH/3Y9t1APWLmFq2dfDgOex9r6LsRXeIrEQh5bOIq7NwHq5g7UbOQ3r8TMIa5z2MdZ2\nZKyT6ETyoOQvUrNFQG/gdOAQ1mOqD/aBUOwwLpG8RaWfv0iUHcW6oH4JmI1thjMM652+yl1YIiIS\ntAexTqPDsD0Q3sfq/WC7J2kgJbGiso9IdoqxDT3mYDtPfUx5yedx7GpAN3xFRERERERERERERERE\nRERERERERERERERERESkZv8H2P2XItlbZAwAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x105dac210>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3 Page No : 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import cos,arange\n",
+ "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
+ "\n",
+ "#Example 7.3\")\n",
+ "\n",
+ "# Input\n",
+ "t1 = arange(-10,10+0.05,0.05)\n",
+ "\n",
+ "# Calculation\n",
+ "v = 5*cos (math.pi*t1/6+math.pi/6)\n",
+ "\n",
+ "# Results\n",
+ "plot(t1,v)\n",
+ "suptitle ('v vs math.pi*t/6')\n",
+ "xlabel('math.pi*t/6')\n",
+ "ylabel('v ');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEhCAYAAABycqfJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVPXZ//H3sjRFmpWmoIA+gg0RxcoiHakKYsHYY9Qf\n0ScmGk1+uporJprEGKLYwYKCCoKAsCwgq9gQpIsgsqA0RZEmgrDsPH/cs+6wbpnZnZnvKZ/Xde3F\nzOzMOTez55z7fDuIiIiIiIiIiIiIiIiIiIiIiIiIiIiISFR94OaY51nA5Cpsrz3wn+jjDKA5cHXM\n7zsBZ5f4TGNgevTxMUAusBz4NPp5kSqp5joAEY9rCNySxO19AtwWffwEcB52MX8WaAJ0Bs4p8Zme\nQE708YvAQ0AboAOwOYmxiYg48zcOvNhmA3fE+Z7GwLvAQmApdmEtaS3wYPQ984HTsbvqL4Cbou85\nBJiJXaiXAP2ir48Ffox+9mHsjn028DrwGTC6jP/T88CTwDxgJXBR9PUsiksUmcBbwBrgcKAFsAlY\nH93fuTEx/A928Z9Txv5ERHztNCAv5vmnQNM433MHcE/0tQzsgl7SGoov+I9gF/o62MX36+jrmUDd\n6OPDgVXRx82xBFMkC9iG3b1nAB9QfMGONQqYGn3cClgH1OLARDACuAL4/8DTWFK7D/hdzHYysaQA\nMCD62fHAAiwxqVQvVVbddQAiwCLgSOxCeCSwFdgQ53s+BkYCNYCJwOIy9jEp+u9SLAnsiv78BNQD\ndmOljvOBQuxCfyR2sS/pY2BjTFwtgPdLed9r0X+/APKxu/pYt2CJpgbwl5jXY/d5FvBR9HH1aHyn\nYYnlVeAa7P8vUmm6mxCveB0YBFyKVYXE+5452MVxA1Ydc1UZn/0p+m8hsDfm9ULsQnwlVhI4HWiH\n1b3XrmBbAPuJ/4aqsJTXvgReKOczvShuH1iHJZ610f1OjMYrUiVKBOIVrwKXYxf61xN4zzHAt1hj\n67PYRbw8pd3hg5UKNmMX2M4U98bZSXGVUSIygMHRf1sCx2FtBRUpub8LsbYLsPaNBljCAuiCVZGJ\nVIkSgXjFcqx+fz3wTQLvycLukhdgJYX/lPK5SInHpT1/GTgDaz+4CmsIBtiCVfssxXrrlPx87Pbv\nB/rEvPYVVo00FWuj2FvG52NNBgZG/z/nAXuwKiywJPV7YFY0zgjwTDnbEhERh0YBF1dxG1cCdyYh\nFpFyqbFYxLtedh2AiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISDI1AMZhw/mXAx3dhiMiIun2AnBd\n9HF1bFlAEREJifrYHO0iIuKQy9lHj8WmDx6FzbT4DHCww3hERELJZSKoji2qMSL67y7gjw7jEREJ\nJZezj66P/syLPh9HiUTQsmXLyOrVq9Mdl4iI363G1sqOi8sSwdfY0nvHR593pcRqS6tXryYSiegn\nEuG+++5zHoNXfvRd6LvQd1H+D7YqXtxcr0cwDJtzvSaWwa51G46ISPi4TgSLgQ6OYxARCTWtWewT\nWVlZrkPwDH0XxfRdFNN3UXkZrgOoQCRa3yUiInHKyMiABK7vKhGIiIScEoGISMgpEYiIhJwSgYhI\nyCkRiIiEnBKBiEjIKRGIiIScEoGISMgpEYiIhJwSgYhIyCkRiIiEnOvZRyWECgpg5UrYuBFq1YK2\nbeGww1xHJRJeSgSSNuvWwUMPwZgxcPjhcPTRsHs3LFsGJ50Ev/0tXHopZHh9KkSRgFHVkKRcJAL/\n+hecdhrUrQsLF1qJYOZMeP99+O47uPNO+Mc/4LzzYM0a1xGLhIvX7700DbXP7dkDV1wBGzbA2LFw\n7LFlv7ewEIYPhwcftFJDly7pi1MkSBKdhlqJQFJm1y7o2xeOOgpeeAFq1ozvc++8A4MHw3PP2edF\nJDFKBOIJBQUwcCA0bAijRkFmZmKfnzcPLroIJkyAc89NTYwiQaWFacQT/vAH2LvX7uoTTQIAHTrA\nSy/BJZfAl18mPz4RKaYSgSTdxIlw++3WKNywYdW29fDDtr133oEaNZITn0jQqWpInPrqK7ubnzgR\nzj676tsrLLQqolNOsa6nIlIxJQJxJhKBnj2hUye4557kbffbby0RTJwIZ52VvO2KBJXaCMSZV1+F\nTZusfSCZjjgC/vlP+PWvYd++5G5bRFQikCTZtg3atIHx45NTJVRSJALdu0OPHvD73yd/+yJBoqoh\nceL22226iKeeSt0+vvjCqoaWLYPGjVO3H/GfSERTk8RSIpC0W7PGGoiXL4cjj0ztvu64wxLOiBGp\n3Y/4y2OP2QDGu+5yHYk3KBFI2g0dCq1bw333pX5fW7bACSfABx/A8cenfn/ifT/8YMdfTg6ceqrr\naLzBj4kgE5gPrAdKTiigROBxixZBr17w+ec2oVw6PPigjVF4/fX07E+87a9/terCMWNcR+IdfkwE\nvwPaA3WBfiV+p0TgcQMHQufONoV0uuzaBa1aQW4unHxy+vYr3rNzJxx3nM1iqxJiMb91H20G9Aae\nxRtJSRKwbBl8+CHceGN691unjjVO//3v6d2veM+TT0LXrkoCVeX64vs68CBQD/g9qhrylaFDbUGZ\nP/4x/fvescPuBOfOhZYt079/cW/PHpvWfPp0G3AoxfxUIugDbAYW4j4hSYLy82HaNLj5Zjf7r1fP\n9v3ww272L+6NGgVnnKEkkAwul6o8B2sT6A3UxkoFLwK/in1Tdnb2z4+zsrLIyspKW4BStkcegZtu\ngvr13cVw223WW+SBB2zNAwmP/ftttPlLL7mOxBvy8vLIy8ur9Oe9cifeCVUN+cb27VYkX7oUmjZ1\nG8tNN1kM997rNg5Jr0mTrLfQ3LmuI/EmP1UNlaQrvk+MHGlTPbhOAgDDhlmD4d69riORdBo+PL09\n1YLOKyWCsqhE4DH791sPjdGjUzOnUGV06QLXX29rI0vwffopdOsGa9fGv/xp2Pi5RCA+MHUqHHYY\ndOzoOpJit90G//mP6ygkXYYPh9/8RkkgmVQikIRcdJEtLH/NNa4jKbZ/v3UlnTgR2rVzHY2k0s6d\ncPTRsGIFNGrkOhrvUolAUmb9ehtANniw60gOlJkJ111n6yNLsL36qo1kVxJILiUCidvzz8OQITay\n12uuvdbmmtm923UkkkrPPgs33OA6iuBRIpC4FBZab6Hrr3cdSemOOcamwn7jDdeRSKosWwbr1lmP\nNUkuJQKJy+zZNpq3fXvXkZTthhvsjlGC6bnnrORX3eUw2IBSY7HE5fLL4ZxzrN++V+3dC82a2VoF\nrVq5jkaS6aef7G87d651DJDyqbFYku77721eoSuvdB1J+WrWhKuusiosCZY337Q5hZQEUkOJQCr0\n2mtWL3vooa4jqdg119hgt8JC15FIMr34ore6LAeNEoFU6JVXvF8aKHLyydCgAbz3nutIJFm++w7m\nzIEBA1xHElxKBFKuL7+0Rel79nQdSfyuvBJeftl1FJIsr78OvXunbynUMFIikHKNGQOXXOKv4fyX\nXQbjx2siuqB4+WXNI5VqSgRSLj9VCxVp3hzatIGcHNeRSFWtXWvTSWjsQGopEUiZli6FbdvgvPNc\nR5K4K65Q9VAQjBkDgwb5q0TqR0oEUqaXX7bxA9V8eJQMHmwlgh07XEcilRWJ2DHotxKpH/nwFJd0\niERg7Fj/1s0edhhccIH1Pxd/WrbMEvm557qOJPiUCKRU8+dbcdzPC4MPHgzjxrmOQipr3DirFvJj\nidRv9BVLqcaPt5Mww+uTkJSjb1+bI2nnTteRSGWMH2891iT1lAjkFyKRYJyEDRtatcLUqa4jkUSt\nXGlTm3hlOdSgUyKQX1i6FAoK4PTTXUdSdZdcYklN/GX8eLj4YlULpYu+ZvmFcePsAurnaqEi/fvD\n9Onw44+uI5FEFB2Dkh5KBPILQagWKnLEEXDGGZYMxB/y821Z1PPPdx1JeCgRyAE++wy2b4ezznId\nSfKoeshf3njDJpjTAjTpo0QgBwhi3ezAgfDWW7a4iXifqoXSL0CnuyRDkKqFijRuDG3bwsyZriOR\niqxfD59/Dp07u44kXJQI5Gf5+bBxoz/nFqrIoEGqHvKDN96w8R+aWyi9lAjkZ2++Cf36QWam60iS\nb8AAmDIF9u93HYmU5803rSpP0kuJQH42ebIlgiBq0QIaNbLFz8Wbtm2DefOgWzfXkYSPEoEAsHWr\nzS/UpYvrSFKnXz+YNMl1FFKWnBybKLBOHdeRhI/rRHA0MBv4FFgG/NZtOOE1bRpkZcHBB7uOJHX6\n9rVSj3jTpEn2N5L0c50I9gH/C7QFOgK3Aic6jSikJk8O/knYoQNs2QKrV7uORErat89KBH36uI4k\nnFwngq+BRdHHPwCfAU3chRNOYTkJq1Wz/6NKBd7z3ntw3HHQtKnrSMLJdSKI1QJoB6g5L83mzIHW\nra2/fdCpncCbgtxRwQ+8Moj7EGAccBtWMvhZdnb2z4+zsrLIyspKZ1yhMGlSeE7Crl1h6FBrHG/Y\n0HU0Ajbt+aRJWkSoKvLy8sjLy6v0570wv2QNYAowDXi0xO8ikUgk/RGFSCQCLVvCxIn+Xo0sEX37\n2hKcl1/uOhIBWL4cevaEL78Mxoy3XpBhX2Tc36brqqEM4DlgOb9MApIGy5fbIKuTT3YdSfr066d2\nAi8p6qigJOCO60RwLjAU6AwsjP70dBpRyBRVC4XpJOzTxxrH9+1zHYlAuKomvcp1IngvGsNpWENx\nOyDHaUQhM20a9O7tOor0atzYeqh8+KHrSGTrVliyBDp1ch1JuLlOBOLQ9u2wcGE4T8JevbSWsRfM\nnGmjiWvXdh1JuCkRhNjbb9vi4EEeTVyWXr2sNCRu5eRAjx6uoxAlghDLybHeGmF01lk29/2GDa4j\nCa9IJNzHoJcoEYRUJGLr+Ib1JMzMhO7d7UIkbnz6KdSqZYMZxS0lgpBaudK6jZ4Y4pmd1E7gVlG1\nUJh6rHmVEkFIFZUGwnwS9ugBs2apG6krYS6Reo0SQUipbhaOOgpatYIPPnAdSfjs2gUffQQXXug6\nEgElglDavdtmewzyIjTx6t1b1UMu5OVB+/ZQt67rSASUCEJpzhw49VRo0MB1JO6pG6kbqhbyFiWC\nEFLf7WJnnmldSNevdx1JuOgY9BYlghDS3VgxdSNNv/x82LHDSqXiDUoEIbNuHWzebPWzYtROkF7T\np1tpoJquPp6hP0XITJ8O3brpJIzVo4dNt7F3r+tIwqEoEYh36HIQMuo2+ktHHmmjW9WNNPX27oXZ\ns+1mRLxDiSBECgpsAFX37q4j8R6NMk6PDz6A44+HI45wHYnEUiIIkblzoUULaNTIdSTeo26k6aGO\nCt6kRBAiqhYq25lnwsaNmo001XQMepMSQYioka5smZnQtat9R5IaX38Na9faFODiLUoEIfHttzbj\n6DnnuI7Eu3r2VCJIpdxcm9akenXXkUhJSgQhMWMGZGVBzZquI/GuHj3seyoocB1JMGk0sXcpEYSE\nGukq1qQJNGsG8+a5jiR49u+3JKtE4E1KBCFQWKj2gXj17KnpJlJhwQIbr3HMMa4jkdIoEYTAkiVQ\nrx4cd5zrSLxPiSA1dCPibUoEIaAue/E791xYsQK2bHEdSbDoGPQ2JYIQUCNd/GrVgk6drD5bkmPb\nNli8GM4/33UkUhYlgoDbuRM++cR6DEl8evRQ9VAyzZoF550HBx3kOhIpixJBwL39NnTsCHXquI7E\nP4raCQoLXUcSDKoW8j4lgoBTI13iWra0tXSXLHEdif9FIjoG/cB1IugJrABWAXc5jiVwIhGbSE13\nY4nTKOPk+OwzW/vihBNcRyLlcZkIMoHHsGTQBrgcONFhPIGzahXs2wdt27qOxH/UjTQ5iqqFMjJc\nRyLlcZkIzgS+ANYC+4CxQH+H8QROUZFcJ2HisrJg/nxrbJfKU7WQP8STCO4AmqZg302BdTHP16do\nP6GlRrrKq1PHZsl8+23XkfjXjz/aQjQXXug6EqlIPPMA1gVyga3YXfvrwDdJ2HcknjdlZ2f//Dgr\nK4ss9YOMy549MGcOjB7tOhL/Kmon6K9yaqW8+y60awf167uOJPjy8vLIy8ur9OcTqTQ4FbgUGITd\nvXep9F5NRyAbayMAuBsoBB6KeU9kw4YITZpUcU8hNHMm3Huv1uGtimXLoG9fyM9X9Vpl3H67zS90\nzz2uIwmfDDtg4z5qE2kj2Ax8DWwBkrHi6HygNdACqAkMASaVfFNubhL2FEKabbTq2ra1xvZVq1xH\n4k86Bv0jnkRwC5AHzAIOB24ATknCvguA/wdMB5YDrwKflXyTuvBVjqaVqLqMDI0yrqy1a+H77+G0\n01xHIvGIp43gaOB2YFEK9j8t+lOmGTNsLvPMzBTsPaDWr4dNm+CMM1xH4n89e8KoUfDb37qOxF+m\nT4fu3W0MgXhfPH+mu0lNEohLo0Y2V47ELzfX1t9V8qy6rl3hvfes8V3ip26j/uL5fN2jh6qHEqVu\no8nTsCGcfLL1wJL47Ntn3W67d3cdicTL84lAIzwTU1Bgsz3qbix51E6QmI8+glatrMeQ+IPnE8H5\n58PSpbB1q+tI/GHePFt3t3Fj15EEh25GEqOOCv7j+URQu7atGjVrlutI/EHVQsnXvj188w2sW1fx\ne0XHoB95PhGAZoJMhBrpki8z0+q7dQxWbPNmWL3a1sAQ//BFIihqMI7ENSlFeG3ZYtP+nnuu60iC\nR9VD8cnNtbmFatRwHYkkwheJ4IQTrD/yZ78YbiaxZs609XZr1XIdSfB0727Vk/v2uY7E2zSa2J98\nkQiKRniqaF4+NdKlTqNG0KIFzJ3rOhLvKixU1aRf+SIRgIrmFdGSgKmntqryLVwIhx4KzZu7jkQS\n5ZtEcOGFNpPm7t2uI/GmJUtsDv1WrVxHEly6GSlfTg706uU6CqkM3ySC+vVtAqt333UdiTdNm6aT\nMNXOPttmIt282XUk3qRj0L98kwhAd2Tl0SL1qVezpi1hOWOG60i8Z+tWK5VecIHrSKQyfJUI1GBc\nuu3bYcECu0hJaulmpHQzZtgsALVru45EKsNXieD00+G77+Crr1xH4i2zZtnYgYMPdh1J8PXoYX3l\nCwtdR+Itah/wN18lgmrVoFs3lQpKUt1s+hx7rM1IusjZxOzeE4koEfidrxIBqHqopEhE7QPppuqh\nAy1ebD3WWrZ0HYlUlu8SQdEIz4IC15F4w7Jl1oh5/PGuIwkPTUt9IJVI/c93iUAjPA9UVCTPyHAd\nSXh06mSDp7Zvdx2JN6hayP98lwhARfNYuhtLv4MPhnPOsVW4wk491oLBl4lA7QRm505biKZzZ9eR\nhI9uRszMmdZj7aCDXEciVeHLRHDOObByJXz7retI3Jo1y+Z9r1PHdSThU9ROEPap0VUiDQZfJoKa\nNaFLF92R6SR058QTLQmsWOE6EnfUbTQ4fJkIAC66CKZMcR2FO0UnobqNupGRodlIi3qstW7tOhKp\nKt8mgt69bYRnWBcKKVqk58QT3cYRZmFvJygqkarHmv/5NhE0bmwDWN5/33UkbugkdK9LFzv+wjo1\nuqomg8O3iQCgTx946y3XUbgxdapOQteKpkZ/5x3XkaTf9u3wySfqsRYUvk4EYW0n2L7duo127eo6\nEglr9dD06XDeeeqxFhQuE8E/gM+AxcAbQP1EN9C+vc2Dvnp1skPztunTbcpfnYTuhbXBeMoU6NvX\ndRSSLC4TQS7QFjgV+By4O9ENVKtmjcZhqx6aPNmqxcS9du1gyxZYu9Z1JOmzf7+1D1x0ketIJFlc\nJoIZQNGs7nOBZpXZSNjaCQoK7CRUIvCGatXCNwndhx9C06ZwzDGuI5Fk8UobwXXA1Mp8sFs3W9T+\nhx+SHJFHffQRHH20/Yg3XHSRldLCQtVCwVM9xdufATQq5fV7gKJT50/AXuCV0jaQnZ398+OsrCyy\nSsxuVbeuTbMwcyYMGFD1gL1O1ULe06sX/PrXdjNyyCGuo0m9yZNh5EjXUUisvLw88vLyKv15173Q\nrwFuBLoAe0r5fSQSx2Qujz5qoxyffTa5wXlRmzbw/PNw5pmuI5FY3brBzTfDxRe7jiS18vNtrq+N\nG61aTLwpwwYYxX19d/mn7An8AehP6Ukgbn36WL/6oK8ju3o1fP89nHGG60ikpP79YdIk11Gk3pQp\nVhWmJBAsLv+c/wUOwaqPFgIjKruhVq2gXj0b4BJkOgm9q29f67QQ9JXzVDUZTC4vKa2B5kC76M8t\nVdnYgAEwYUIywvKuyZPVSOdVzZtDs2bWoyaoduywlQG7dXMdiSRbYO4tBw6EiRNdR5E627bBxx9r\nNLGX9esHb77pOorUycmxRWjC0CAeNoFJBB062NQLK1e6jiQ13nrL5nXRSehd/ftbIgjqYjUTJgS/\nMTysApMIqlULdvXQG2/oJPS6du1gz55gLlazZ48NZOzf33UkkgqBSQQQ3ETw4482TkLtA96WkRHc\n6qFZs+DUU+HII11HIqkQqESQlQWrVsGGDa4jSa7p023cwKGHuo5EKlJUPRQ0KpEGW6ASQY0a1r0y\naCeiTkL/yMqCzz+HdetcR5I8BQU2RmLgQNeRSKoEKhGAHaxBqh7au9caisMwfUYQ1Kxp1UNvvOE6\nkuSZMwdatNAkc0EWuETQo4f1dd661XUkyTF7tq1L3Lix60gkXoMHw+uvu44ieVQiDb7AJYI6dayb\nZVBWLtNJ6D9du8Ly5cFoqyosVLfRMAhcIgAYNCgYd2T799sgOdXN+kvNmtbDKwjVQx9/bGszn3CC\n60gklQKZCPr3twXFt21zHUnVvP8+NGkCxx3nOhJJVFCqh1QiDYdAJoJ69eDCC/0/5cSrr1rpRvyn\nWzdYuhQ2bXIdSeVFIvDaazoGwyCQiQBgyBC7kPpVQYHdUV52metIpDJq1bJZOsePdx1J5X34IRx8\nMJxyiutIJNUCmwj69LElLL/7znUklTNrFhx7LLRs6ToSqazBg2HcONdRVN6YMXD55TZiWoItsIng\nkEOsK6lfG+zGjrWTUPyre3dYvNif1UMqkYZLYBMB+Ld6aM8eGx196aWuI5GqqF3bOi748RjMy7P1\nFVq3dh2JpEOgE0Hv3rZq2ddfu44kMdOm2QRfTZq4jkSqauhQeOkl11EkrqhaSMIh0IngoIPsjuyV\nV1xHkhhVCwVH587wzTc2wMwvfvrJetwNGeI6EkmXQCcCgKuvhhdecB1F/HbssNlGL7nEdSSSDJmZ\ncMUVMHq060jil5MDbdta1ZCEQ+ATQVaWDSxbtMh1JPF57TUbA3HYYa4jkWQZOhReftmma/CDUaPs\nBkrCI/CJoFo1uOoqePFF15HEZ9QouPZa11FIMp1yCjRoYLN4et3mzdZQrI4K4RL4RADwq19ZO8G+\nfa4jKd/KlZCfD716uY5Eks0vjcajR1u7Wt26riORdApFIjj+eBucNX2660jKN2qUXTCqV3cdiSTb\nlVfamJYffnAdSdkiEZVIwyoUiQC832hcUGDVVzoJg6lJEzj/fG+PKfjkE9i1Cy64wHUkkm6hSQSX\nXWYLwH/zjetISpebaytAtWnjOhJJlZtugqeech1F2YpKA9VCc1WQIqH5kzdoYF0yn3vOdSSlGzlS\npYGg69HDBjcuXOg6kl/avdtKK+otFE6hSQQAN99sd2T797uO5EAbNsDbb2sQWdBlZsINN8Azz7iO\n5JfGjoWzztK6xGEVqkTQvj00agRTp7qO5EBPP21JoF4915FIql13nV10vdRoHInA44/Drbe6jkRc\ncZ0I7gAKgUPTtcObb4YnnkjX3iq2d6/dId5yi+tIJB2aNbNG47FjXUdS7OOPYetW6NnTdSTiistE\ncDTQDfgynTsdMsQO/Pz8dO61bBMn2nqwbdu6jkTS5ZZbYPhwuxP3gscftxskNRKHl8s//SPAnene\n6UEHWYPYiBHp3nPphg9XaSBsune3dqpZs1xHYo3Xkyero0LYuUoE/YH1wBIXO7/tNusq53px+w8+\ngI0bYeBAt3FIemVkwO9+B//+t+tI4L//tUnxNLdVuKVyEboZQKNSXv8TcA/QHdgBrAHOALaU8t5I\nJEXl56FD4eST4a67UrL5uAwcCF27qpEujPbsgRYtYPZsOPFENzHs3Gkj7ufO1ZKoQZNh64vGfX13\nsRrpScAs4Mfo82bABuBMYHOJ90buu+++n59kZWWRlZWVlCAWL7aFa/LzbaHxdFu50hoN1661BcIl\nfB54AL780t3YlkcftVLpa6+52b8kT15eHnl5eT8/v//++8HjiaCkNUB74PtSfpeyEgFYL4lBg6xv\nd7rdeCM0bQrZ2enft3jD1q3QqhXMn2935um0d68tQzluHHTokN59S+r5oURQUj5WNZT2RPDeezZF\n9cqVULNmynbzC/n5dvJ9/rnqZsPuz3+2qZ+ffjq9+33ySZgwwfsTMUrl+DERlCeliQCsVDBgAPzm\nNyndzQGuucbqh1UakC1bbHbcBQugefP07HP3bisNTJig0kBQKREkaN48a7Rdtcq6lqbaihXWNvDF\nF1C/fur3J973pz9ZN850tRU8+qgtPjNxYnr2J+mnRFAJAwbYxfmOO1K+Ky69FNq1g7vvTv2+xB+2\nbbNBhbm5cOqpqd3Xjh22r+nTbeU0CSYlgkoouktftgyOOip1+8nLs2qh5cvVU0gONGIEjB9vU6Vn\npPCs/MMfrDpq5MjU7UPcUyKopFSfIAUFVhLIzrbpsEViFRTYHfpDD0HfvqnZR7pueMQ9JYJK2rHD\nBvaMHw8dOyZ/+8OHw6RJMGNGau/4xL9mzLBuxUuXJn/N4EjE1kPo3Rtuvz252xbvUSKogrFjbZDP\nJ58kt+F49WpLLu++624UqfjD9ddD7do2EVwyjRxpNyPz5kGNGsndtniPEkGVdmbrAjRqZD0rkqGg\nwNaAHTLE5jgSKc+2bXDSSTB6NCRpED35+bbozOzZtm0JvkQTgSaejZGRUdxol5ubnG3+7W/WMDxs\nWHK2J8HWoIGtTzF0KGzaVPXt7dtngybvuUdJQMqmEkEp8vJssfv336/aZFxTp9r0FfPm2XQSIvG6\n/35rM3hGErMdAAAHIklEQVT77aqNeh82zKomp0zRegNhoqqhJBkxAh57DN55B444IvHPL1hgo5bf\nfBPOPjv58UmwFRba+JbDDrOBZpW5iA8fbqvxffSRBi+GjaqGkuSWW+Dii6FbN/j228Q+u2iR9c54\n6iklAamcatXglVdsPqpbb7WFbBLxxBPwyCOQk6MkIBVTIijHX/5ifbo7doRPP43vM5MmWfJ4/HEt\nOCNVc8ghVr24fLmNPdmxo+LPFBTYGhv/+petgJau+YvE35QIypGRYcng3nuhUyf4619h167S37tx\no3X9GzbMkoEGjUky1K9vHRcaNbIBZxMnlr3W8ccfWwl0wQKrDtJiMxIvtRHEac0auPNOazPo189K\nCQ0aWM+Od96xRr1rrrGRw/XquY5Wgig31+72f/oJ+veHNm1sTMDq1VZyWL/eblquu06DFsNOjcUp\nlp9vd/xLllif7yOOsLuwPn3g8MNdRydBF4nYqmI5OXYs7tsHxxwDF15oVZIaLCagRCAiEnrqNSQi\nIglRIhARCTklAhGRkFMiEBEJOSUCEZGQUyIQEQk5JQIRkZBTIhARCTklAhGRkFMiEBEJOSUCEZGQ\nUyIQEQk5l4lgGPAZsAx4yGEcIiKh5ioRdAb6AacAJwH/dBSHb+Tl5bkOwTP0XRTTd1FM30XluUoE\nNwN/A/ZFnye4KnD46CAvpu+imL6LYvouKs9VImgNXAB8BOQBZziKQ0Qk9KqncNszgEalvP6n6H4b\nAh2BDsBrwHEpjEVERMrgaoWyacDfgXeiz78AzgK2lHjfF4CW4BYRScxqoJXrICpyE3B/9PHxwFcO\nYxEREQdqAC8BS4FPgCyn0YiIiIiIiLcMBj4F9gOnl/jd3cAqYAXQPc1xuZYNrAcWRn96Oo3GjZ7Y\n334VcJfjWFxbCyzBjoWP3YaSdiOBb7BahSKHYp1UPgdygQYO4nKhtO8imwBcK/4HazuYzYGJoA2w\nCKtaaoE1Jodpmoz7gN+5DsKhTOxv3gI7BhYBJ7oMyLE12MUvjM4H2nHgxe9h4M7o47uwDilhUNp3\nkdC1wqsX0RVYVi+pPzAGG4i2FrsonJm+sDzBVU8vLzgT+5uvxY6BsdgxEWZhPR7mAFtLvNYPeCH6\n+AVgQFojcqe07wISODa8mgjK0gQr7hRZDzR1FIsrw4DFwHOEp+hbpCmwLuZ5GP/+sSLATGA+cKPj\nWLzgKKyKhOi/RzmMxQvivla4TAQzsKJMyZ++CW4nkuS4XCvre+kHPAEcC5wGbAL+5ShGV4L2t66q\nc7EqgV7ArVgVgZgI4T5eErpWpHJkcUW6VeIzG4CjY543i74WJPF+L88Ck1MZiAeV/PsfzYElxLDZ\nFP33W2ACVnU2x104zn2DzWbwNdAY2Ow2HKdi/+8VXiv8UDUUW881CbgMqIllu9aEq7dE45jHAzmw\ncSgM5mN/8xbYMTAEOybC6GCgbvRxHawHXdiOh5ImAVdHH18NTHQYi2uBuFYMxOqCd2PZfVrM7+7B\nGgxXAD3SH5pTL2LdBRdjB3kY60B7ASuxY+Bux7G4dCzWa2oRtqZH2L6LMcBGYC92rbgW60E1k/B1\nHy35XVyHrhUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiFTkVG6NQJBu4owrbuwm4Kub51UDzEs8bc6DL\nsHEyYIs1LcTGCORVIQ6RCvlhZLFIOrQDesc8r+o8NU9hq/A1AZ7BpsM4H5sDBmwAVJMSn+mJDZ5s\nADyOzbt1EjCoirGIiIRGC2zE+Shs9PHL2NQL72OjTTtEfz4AFkRfPx6bruIrbH6WhcCl2Hzuz2Fr\nYqzGZnIszVrgIWwU51ygZfT1bIpLFEdhawdMwqZMGQTsjMa6AKgVfX1R9P23AA9U5gsQEQm7Ftg6\nBW2xC+t87GIONnvrBOAQbIEbgK7AuOjjq4HhMdvKxhJFDeAw4LuYz8VaQ/H0DldRPLnXfVgiaAw8\nDfwZGAqMiP6+5KJLpwPPRx//G3gs+p75HFjFJJJ0LmcfFUmFNdgyp0T/nRl9vAxLFA2wKptWWPVP\n0TmQwYETHEaAKVhi2YKVFo7C5nQpaUz037HYRTzWJuDXWKKZA4yO+V3s/oqqhcCSz+lAF2xyuQ+B\nj7DlOUWSTm0EEjQ/xTwuxCbiKnpcHfgLMAs4GauDP6icbe2Nebyf+G6cympbeAH4spz3dsMmSgOb\nOCwXm3RxC/Au1pgtkhJKBBImGUA9iu/qr4353Q6Kp3VO1JCYfz+I2Vd5dkZjAaiPJZmi5QbfBM7D\nqqIOBs4CllcyNpEKKRFI0JS8I499Xgj8A/gb1kibGfP72UAbihuLS9tWkbewBVCKNMSm+x0G/G/M\nZ8vrefQ88GR0f30prsICa0TOobgB+hmUCEREPGsNNg9+VTyDrS4mIiI+lE/VE4GIiIiIiIiIiIiI\niIiIiIiIiIiIiIhIuvwfVVxwOOdIS2MAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1056b2ed0>"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.5 Page No : 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 7.5\")\n",
+ "\n",
+ "# Given\n",
+ "#v(t) = math.cos5t+3math.sin(3t+45)\")\n",
+ "#Finding the periods of individual terms\n",
+ "#Period of math.cos5t = 2*math.pi/5\")\n",
+ "#Period of 3*math.sin(3t+45) = 2*math.pi/3\")\n",
+ "#If T = 2*math.pi\n",
+ "T = 2*math.pi;\n",
+ "#Now T = 5*T1 = 3*T2\")\n",
+ "#Now the relation for T is the smallest common integral multiple of T1 and T2\n",
+ "print \"Period = %3.2fs\"%(T)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Period = 6.28s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.13 Page No : 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from scipy.integrate import quad \n",
+ "#Example 7.13\")\n",
+ "\n",
+ "# Given\n",
+ "#capacitance is 1uF\")\n",
+ "C = 1*10**-6;\n",
+ "#a)\")\n",
+ "#Let k = 1 which results in t = 5ms\n",
+ "t = 5*10**-3;\n",
+ "\n",
+ "def f2(t): \n",
+ "\t return .004\n",
+ "\n",
+ "vac = quad(f2,0,0.003)[0]\n",
+ "\n",
+ "print \"vac = %dV\"%(vac);\n",
+ "\n",
+ "#In general\n",
+ "#At t = 5k voltage follows as v = 8k ms\")\n",
+ "\n",
+ "#b)\")\n",
+ "#As vdc = 1/C*integrate(Idc*dt)\n",
+ "#On solving for Idc\n",
+ "vdc = vac\n",
+ "\n",
+ "def f3(t): \n",
+ "\t return 1./vac\n",
+ "\n",
+ "Idc = (1/( quad(f3,0,0.005)[0]/C))\n",
+ "\n",
+ "print \"Idc = %3.2fmA\"%(Idc);\n",
+ "#Idc is equal to <i(t)> in the period of 5ms\")\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "vac = 0V\n",
+ "Idc = 0.00mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.17 Page No : 112"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 7.17\")\n",
+ "\n",
+ "# Given\n",
+ "#capacitance is 100nF\")\n",
+ "#The voltage across capacitor increases linearly from 0 to 10V\")\n",
+ "C = 100*10**-9;\n",
+ "#From figure 7.10(a)\n",
+ "#a)\")\n",
+ "#At t = T voltage across capacitor = 10V\n",
+ "vc = 10;\n",
+ "Q = C*vc;\n",
+ "print \"Charge across capacitor is %fC\"%(Q)\n",
+ "#b)\")\n",
+ "#The waveform shown in fig 7.10(a) can be written as\n",
+ "#0 t<0\")\n",
+ "#I0 = 10**-6/T 0<t<T\")\n",
+ "#0 t>T\")\n",
+ "\n",
+ "\n",
+ "#For T = 1s;\n",
+ "T = 1.;\n",
+ "I0 = 10**-6/T;\n",
+ "print \"I01s) = %fA\"%(I0);\n",
+ "\n",
+ "#For T = 1ms;\n",
+ "T = 1.*10**-3;\n",
+ "I0 = 10**-6/T;\n",
+ "print \"I01ms) = %0.3fA\"%(I0);\n",
+ "\n",
+ "#For T = 1us;\n",
+ "T = 1.*10**-6;\n",
+ "I0 = 10**-6/T;\n",
+ "print \"I01us) = %dA\"%(I0);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Charge across capacitor is 0.000001C\n",
+ "I01s) = 0.000001A\n",
+ "I01ms) = 0.001A\n",
+ "I01us) = 1A\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.22 Page No : 117"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import cos,arange,exp\n",
+ "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
+ "\n",
+ "#Example 7.22\")\n",
+ "\n",
+ "#The general equation of exponential decay function is given by\n",
+ "#v(t) = A*e(-t/T)+B\")\n",
+ "#We need to solve A and B\n",
+ "#At t = 0 we get v(0) = A+B (1)\n",
+ "#at t = inf we get B = 1 (2)\n",
+ "#Solving (1) and (2)\n",
+ "A = 4;\n",
+ "B = 1;\n",
+ "T = 3;\n",
+ "t = arange(0,10+0.05,0.05)\n",
+ "v = 4*exp(-t/T)+1;\n",
+ "\n",
+ "# Results\n",
+ "plot(t,v)\n",
+ "suptitle ('v vs t')\n",
+ "xlabel('t')\n",
+ "ylabel('v');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEhCAYAAAB/bNeOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHi1JREFUeJzt3XeUlOW9wPHvIiAkGEyQJiWgoIINYiOIMhYUCGBLvMaW\n6AmxXk00XtRYVuOxxBiCUaPBmGBiLhYsiESjxsGOUWlSVIQoiIKCeEUslL1/PLPusizL7jIzzzsz\n388575l3dt5953fmwP7meX5PAUmSJEmSJEmSJEmSJEmSJElSJD8DWsYOQpIU30KgTewgJEmbdw1w\nZrXn5cD59bymI/A0MA2YBQyo8XvnAF8AM4EnsxWwJCk3+gDpas9nA53qec35wMWZn5UBrWq5/0Lg\nW1mIU8qbprEDkCKZDrQjfNtvB3wEvFvPa14C7gCaAQ8CM/ITspRbW8UOQIqoHdAN2A94kfCHvj7X\nvAPcS0gUVwOrCd1D1f0M+CPwWfbDliRlW2/geeB1oH0DrulK1Zeps4Df1vJ7MwmJRJJUIOpT+K15\nzcmEYvKrwBTg27X8ztnAvHrcW5IkSZIkSZIkSZIkSZIkSZIkSZIkSZIk1ek/hKn/06h98TCAG4E3\nCatG9s1PWJKkfNvcuvBDgcmZ88oVJSVJedYkT+9TVsdrI4BxmfOpwLZseuVJSVKO5CMhVABPAC8D\nI2t5vROwqNrzxUDnPMQlSaomHzum7Q+8B7QFHicsCfxMjWtqtiAq8hCXJKmafCSE9zKPHwAPAPuy\nYUJ4F+hS7XlnamxlWFa2Y0VFxVu5jFGSitFbQI/6XpzrLqOvAdtkzr8OHEbYWKS6iYQNRwD6ASuB\npdUvqKh4i9GjK6io8Lj88sujx5CUw8/Cz8LPou4D2LEhf7BznRDaE1oD0wkF40nAP4HTMgeEEUYL\ngPnAbcCZtd3ot7+FNWtyHK0klbBcdxktBPrU8vPbajw/e3M36tED7r4bTjwxK3FJkmrI17DTLfY/\n/wO//jVUlHi5OZVKxQ4hMfwsqvhZVPGzaLy65gckScX69RX06QPXXgtDhsQOR5KSr6ysDBrwd75g\nWghlZVWtBElS9hVMQgA49lhYsABe2tSKSJKkRiuohNCsGZx3Hlx/fexIJKn4FEwNITOmllWroHt3\neOGFMPJIklS7oq0hVGrVCk4/3VqCJGVbwbUQAD78EHbaCWbOhM4ugydJtSr6FgLAdtvBqadaS5Ck\nbCrIFgLAe+/BrrvC3LnQ3t0TJGkjJdFCAOjYEY4/PqxxJEnacgXbQgB45x3o2xfeeAPatIkQlSQl\nWMm0EAC6doWjj4Ybb4wdiSQVvoJuIQC89Rbst194bN06z1FJUoKVVAsBYMcdw2J3N98cOxJJKmwF\n30KAMNIolQrrHH396/kLSpKSrORaCAC9esHAgXDrrbEjkaTCVRQtBIBZs+Cww2D+fFsJkgQl2kIA\n2H13OPBAuOmm2JFIUmHKRwthK+BlYDEwvMZrKeAhYEHm+QTgqlrusdkWAsCcOaGWMH8+fOMbjQ1X\nkopDElsI5wJzgE39RZ8C9M0ctSWDeuvdO3QbOS9Bkhou1wmhMzAUuJ1NZ6mstlIuuwzGjIGVK7N5\nV0kqfrlOCKOBC4D1m3i9AugPzAAmA7239A132gmGDYPRo7f0TpJUWnKZEIYBy4BpbLoV8CrQBdgT\n+D3wYDbe+NJLQ3F5+fJs3E2SSkPTHN67PzCC0GXUAvgGcCdwcrVrPql2/g/gFuBbwIqaNysvL//q\nPJVKkUqlNvnGO+wAxxwDN9wAV1/d6PglqaCk02nS6XSjfz9f8xAGAr9g41FG7QmtiApgX+AeoFst\nv1+vUUbVVa6EOm8etG3b4HglqeAlcZRRpcq/6KdlDoDvA7OA6cDvgOOy9WZdu8Jxx8G112brjpJU\n3IpmpnJtliyB3XaD6dNDgpCkUtLQFkJRJwSAX/4ybLd5xx1ZjkiSEs6EUMPHH0PPnpBOh4lrklQq\nklxDiKJ1axg1Ci6+OHYkkpRsRd9CAPj88zBhbfx46N8/i1FJUoLZQqhFixZw5ZWhpbAFeUWSilpJ\nJASAk06Cjz6CRx6JHYkkJVPJJISttgqzli+6CNatix2NJCVPySQEgOHDQ5H5rrtiRyJJyVMSReXq\nnn8+zGCeNw++9rWs3FKSEsmi8mb07w/9+sFvfxs7EklKlpJrIQAsXAj77AOzZkHHjlm7rSQlijOV\n62nUqLBfwu23Z/W2kpQYJoR6+vhj2HlnePRR6NMnq7eWpESwhlBPrVvD5ZfD+ec7WU2SoIQTAsDI\nkfD++zBpUuxIJCm+ku0yqvToo3DuufDaa9CsWU7eQpKisMuogQYPhu7d4Q9/iB2JJMVV8i0EgDlz\nYODA8Oj+y5KKhaOMGum88+CTT2Ds2Jy+jSTlTRITwlbAy8BiYHgtr98IDAFWAz8GptVyTc4Twscf\nQ69e8NBDYdKaJBW6JNYQzgXmALX9RR8K9AB6Aj8FovXkt24N11wDZ58N69fHikKS4sl1QuhM+KN/\nO7VnqRHAuMz5VGBboH2OY9qkk04Ky2T/5S+xIpCkeHKdEEYDFwCb+s7dCVhU7fliQhKJokkTuOkm\n+OUvYeXKWFFIUhxNc3jvYcAyQk0gVcd1NVsOtRYLysvLvzpPpVKkUnXdsvG+8x048sgwi3nMmJy8\nhSTlRDqdJp1ON/r3c1lUvho4CVgLtAC+AUwATq52za1AGhifeT4PGAgsrXGvnBeVq1u+HHr3hiee\ngN13z9vbSlJWJamofDHQBegOHAf8iw2TAcDEaj/rB6xk42SQd23awBVXwJlnWmCWVDryOVO58iv+\naZkDYDKwAJgP3Aacmcd46jRyJKxZY4FZUulwYlodZsyAww4LG+m0a5f3t5ekLZLEiWnZECUhAPzi\nF7BsGdx5Z5S3l6RGMyFk2apVsOuu8Oc/w8EHRwlBkholSUXlotCqVZibcPrp8PnnsaORpNwxIdTD\n8OFh+Om118aORJJyxy6jelq8GPr2hWefDXsxS1LS2WWUI507w6WXwk9/6twEScXJhNAAZ50FX34J\nt90WOxJJyj67jBpo7lw48EB45RXo2jV2NJK0aXYZ5VivXvDzn4euo4TkKEnKChNCI1xwASxdCuPG\nbf5aSSoUdhk10vTpYVmLGTOgY8fY0UjSxpypnEeXXAKvvQYPPABlhfJJSioZ1hDy6NJL4Y034J57\nYkciSVuuUL7XJrKFADB1KhxxROhC6tAhdjSSVMUuowguuSTUEiZOtOtIUnLYZRTBZZeFpS3uuCN2\nJJLUeIXyfTbRLQQIxeWDDoKXXoLu3WNHI0m2EKLZbTcYNQp+9CNYty52NJLUcCaELPr5z0MNYfTo\n2JFIUsPlusuoBTAF2BpoDjwEXFTjmlTm5wsyzycAV9W4JvFdRpUWLoR994WnngqtBkmKpaFdRk1z\nFwoAnwMHAasz7/UsMCDzWN0UYESOY8mL7t3DRjonnggvvggtWsSOSJLqJx9dRqszj82BrYAVtVxT\nKMXtejn1VOjRAy68MHYkklR/+UgITYDpwFLgKWBOjdcrgP7ADGAy0DsPMeVUWRmMHRuWtHjkkdjR\nSFL95LrLCGA90AdoDTxGqBmkq73+KtCF0JIYAjwI7FTzJuXl5V+dp1IpUqlUbqLNkm9+E/72Nzj2\nWHj1VRfAk5R76XSadDrd6N/Pd1fNpcBnwG/quGYhsBcbdi0VTFG5pvJyeO45eOwxaOKYLkl5lLR5\nCNsB22bOWwKDgGk1rmlPVcD7Zs5rqzMUpEsugc8+gxtuiB2JJNUt111GHYFxhMTTBPgr8CRwWub1\n24DvA2cAawndRsflOKa8atoU7roL9tknzGTee+/YEUlS7QpldE/BdhlVuu++MOrolVegdevY0Ugq\nBa52mmBnnw1LlsCECa6KKin3klZDUDU33ACLFsGYMbEjkaSNFcr31KJoIUBY2qJfP3jwQfjud2NH\nI6mY2UJIuO7d4fbb4b/+Cz78MHY0klTFFkIko0aFXdYmT3Z+gqTcsIVQIK66Cj79FK6+OnYkkhTY\nQohoyZIwP+H222HIkNjRSCo2DjstMM8+C0cfDc8/H1ZIlaRsscuowAwYAFdcAUceCZ98EjsaSaXM\nFkICVFTAyJGwciXce6+T1iRlhy2EAlRWBjffDIsXh93WJCmGQvkuWtQthErvvhv2Y7bILCkbLCoX\nuOeeC0XmKVNgl11iRyOpkNllVOD23x+uuw6GDYPly2NHI6mU2EJIqFGj4MUX4fHHoXnz2NFIKkR2\nGRWJ9etD11GbNqGm4MgjSQ1ll1GRaNIE/va3sKGO229Kyodcb6GpLdCqFTz8cFgue6edYMSI2BFJ\nKmaF0hFRcl1G1b30UigyT57snsyS6i9JXUYtgKnAdGAOcM0mrrsReBOYAfTNYTwFq3JuwogRsGBB\n7GgkFatcdhl9DhwErM68z7PAgMxjpaFAD6AnsB/wB6BfDmMqWCNGhIlrgweHhfC22y52RJKKTa6L\nyqszj82BrYAVNV4fAYzLnE8FtgXa5zimgnXGGXDMMTB8OKxevfnrJakh6pMQzgc6bcH9pwNLgacI\nXUfVdQIWVXu+GOjcyPcqCVdfHZbJPv54WLcudjSSikl9uoy2Af4JfASMB+4l/IGvj/VAH6A18BiQ\nAtI1rqlZ8Ki1elxeXv7VeSqVIpVK1TOE4lJWBn/6EwwdCv/932FRPOcoSAJIp9Ok0+lG/35D/pTs\nCRwLfJ/wTf6QBr7XpcBnwG+q/exWQoIYn3k+DxjIxgmnpEcZ1ebjjyGVCrWFK66IHY2kJMrlKKNl\nwPvAcqBtPa7fjlATAGgJDAKm1bhmInBy5rwfsJL6tz5KWuvW8NhjMH48jBkTOxpJxaA+XUZnEloG\n7QjdRT9h41pAbToSCsZNMsdfgSeB0zKv3wZMJow0mg98CpzSgNhLXrt28M9/wgEHwDe/CSefvPnf\nkaRNqU9T4hrgbkJxOBa7jOowdy4cdBD88Y/OZpZUxcXtStTLL4dC8z33hNqCJCVpprLyaO+94e67\n4dhj4YUXYkcjqRCZEIrIQQfBnXfCEUfAv/8dOxpJhcaEUGQGD4Y77giL4U2rOaZLkupgQihCw4bB\nrbfCkCEwc2bsaCQVCvdDKFJHHQVr1oQWwxNPQO/esSOSlHQmhCJ27LEhKQwaFOYr7Lpr7IgkJZkJ\nocidcEJ4PPRQePRR2HPPuPFISi4TQgk44QRo3hwOPxweeQT22it2RJKSyIRQIn7wg5AUhg6FiRNh\nv/1iRyQpaUwIJeSII6BZs7DBzv33w4ABsSOSlCQOOy0xQ4fCXXfB0UeHQrMkVTIhlKBBg+CBB+Ck\nk+Dee2NHIykp7DIqUfvvD48/HiavrVwJI0fGjkhSbCaEErbHHvD006HFsHw5jBrldpxSKSuU//4u\nf51DS5bAYYeF1sJ110ETOxKlouB+CGqUFSvC6KOuXeEvf4Gtt44dkaQt5X4IapRvfSusebR2bWgt\nrFgROyJJ+WZC0Fdatgyb7OyzTyg6L1wYOyJJ+ZTrhNAFeAqYDbwGnFPLNSngY2Ba5rgkxzGpDk2a\nwG9+A2eeGZLCyy/HjkhSvuS6htAhc0wHWgGvAEcCc6tdkwLOA+raHt4aQgQPPQQ/+UnYcGf48NjR\nSGqohtYQcj3s9P3MAbCKkAi2Z8OEAIVT3C4pRxwBHTvCkUfC22/DWWc5LFUqZvmsIXQD+gJTa/y8\nAugPzAAmA27lkiD77gvPPht2YDvtNPjyy9gRScqVfE1MawXcB5xLaClU9yqh1rAaGAI8COxU8wbl\n5eVfnadSKVKpVG4i1UZ22AFeeAFOPBEOOQQmTIB27WJHJammdDpNOp1u9O/nowOgGTAJ+Afwu3pc\nvxDYC6g+8NEaQgKsXw+XXw5//Ss8+CD06RM7Ikl1Sdo8hDLgT8AcNp0M2lMV8L6Zc0fBJ1CTJvCr\nX8H114flLlwYTyouuW4hDACeBmYSagUAFwNdM+e3AWcBZwBrCd1G5wEv1riPLYSEmTYNjjoqrJh6\nxRUudyElkUtXKG+WLYPvfx+22QbuvBPatIkdkaTqktZlpCLWrh08+ST06hX2aX7ppdgRSdoSJgRt\nkWbNwszm0aNh2DC4+WawMScVJruMlDXz58MPfgC77AJ//GPoSpIUj11GiqZHD3j+eWjVKiyQN3t2\n7IgkNYQJQVnVsiWMHQsXXgipVDi3cScVBruMlDNz58IPfxhmOo8d6ygkKd/sMlJi9OoFU6dCt25h\nVvO//hU7Ikl1sYWgvHjsMTj11LAe0q9+Bc2bx45IKn62EJRIhx8O06fDnDnQvz+88UbsiCTVZEJQ\n3rRtCxMnwimnhKQwZkxYME9SMthlpCjefDMkhiZNwo5sPXrEjkgqPnYZqSD07AlTpoTd2Pr1g9//\n3taCFJstBEX3+uuhtdC8eWgt7LBD7Iik4mALQQVn553hmWdg+HDYbz+48UZYty52VFLpsYWgRHn9\ndTj9dFi1KqyH1Ldv7IikwmULQQVt553DBLazzoLBg+H880NykJR7JgQlTlkZ/PjH8Npr8OGHsOuu\nMGlS7Kik4meXkRLvX/8K3Ui77x72XejadfO/I8kuIxWhgw+GmTNDQujbNyx98dlnsaOSik+uE0IX\n4ClgNvAacM4mrrsReBOYAVhG1EZatIDycnjlFZgxA3r3hgcecGltKZty3WXUIXNMB1oBrwBHAnOr\nXTMUODvzuB8wBuhX4z52GWkDTz4J554LHTuGJTB6944dkZQ8Sesyep+QDABWERLB9jWuGQGMy5xP\nBbYF2uc4LhW4Qw6BadPC3IWBA0NyWL48dlRSYctnDaEboTtoao2fdwIWVXu+GOicp5hUwJo1g3PO\nCSuorlkThqxed531BamxmubpfVoB9wHnEloKNdVs0mzUP1ReXv7VeSqVIpVKZS86FbS2beGWW0Ir\n4aKLQmK46qqw90ITh02ohKTTadLpdKN/Px/DTpsBk4B/AL+r5fVbgTQwPvN8HjAQWFrtGmsIqrfn\nnoMLLoDVq+H662HQoNgRSXEkrYZQBvwJmEPtyQBgInBy5rwfsJINk4HUIPvvH5LCZZeFGc+HHgov\nvBA7Kin5ct1CGAA8DcykqhvoYqByatFtmcebgMHAp8ApwKs17mMLQY2yZg2MGwdXXhnmMVx5Jey1\nV+yopPxoaAvBmcoqCV98AWPHwjXXhBVVr7giJAipmCWty0hKhK23hrPPhvnzYcCAUFc47jiYPTt2\nZFJymBBUUlq2hPPOC4mhT58wn+Hoo+Hll2NHJsVnQlBJatUKLrwQFiyAVAqOOgoOPzxs62nvpEqV\nNQQJ+PJLuPNOuPZa6NABLr4YhgwJS3FLhcqisrQF1q6Fe+8NiWHt2tC9dMIJYXE9qdCYEKQsqKgI\nC+jdcANMnw5nnglnnAHbbRc7Mqn+HGUkZUFZWZjQ9o9/wBNPwNtvQ8+eISnMmxc7Oik3TAjSZuy6\nK9x+e0gEbduG1VUPPTTsx7B2bezopOyxy0hqoC++gAkT4Oab4Z134LTTYORIaO+i7UoYu4ykHNt6\nazj++LBe0sMPh6Swyy7wwx/Cs886bFWFyxaClAUrV4Y1k265JSSMn/wkjE5q0yZ2ZCpljjKSIlq/\nHtJpuOMOmDQJDjsMTj01LJWx1Vaxo1OpMSFICbFyJYwfH5LDe+/Bj34Ep5wCO+4YOzKVChOClECz\nZoXEcNddYdTSySeHNZRat44dmYqZCUFKsC+/DIXou+4KE98OPTQUqL/3PWdDK/tMCFKBWLkS7r8/\nJIdp0+DII0NyOOgg6w3KDhOCVICWLIG774a//x0WL4Zjj4VjjgnbgZoc1FgmBKnAvfEG3HNPmPz2\n3nuh5XDMMWGZ7mbNYkenQmJCkIrIW2+FbqUJE8KmPsOHh+QwaFCY7yDVJWkJ4Q7ge8AyoLYdbFPA\nQ8CCzPMJwFW1XGdCUMlbtKgqOcyaFQrSw4bB0KFhjSWppqQlhAOAVcCdbDohnAeM2Mx9TAhSNUuX\nhpVYJ00Kq7H27h2Sw/DhsNtubuyjIGkJAaAb8DCbTgjnA8M3cw8TgrQJX3wBTz8dhrM+/HCYLV3Z\nchg4MGwXqtJUaAlhIHA/sBh4F/gFMKeW60wIUj1UVMDcuSExPPYY/PvfsNdeYQmNww6Dvn0dtVRK\nGpoQmuYulHp5FegCrAaGAA8CO9V2YXl5+VfnqVSKVCqV++ikAlNWFrqPeveGUaPg009hyhR4/PGw\ndMbSpXDIISE5DBoEXbvGjljZlE6nSafTjf792C2EmhYCewEravzcFoKUBYsXh+RQebRpAwcfHIa0\nHnggdOgQO0JlU6F1GbUnjECqAPYF7slcX5MJQcqy9evDftFPPRVaEc88Ezb5GTiw6ujUKXaU2hJJ\nSwj/S6gTbAcsBS4HKqfW3AacBZwBrCV0G50HvFjLfUwIUo6tWxeGs6bTVQli222rksMBB0C3bo5g\nKiRJSwjZYkKQ8mz9epg9OySHKVPCDnHr18N3v1t17L03tGwZO1JtiglBUk5UVITtQl94oeqYPTsU\nsKsniW9/21ZEUpgQJOXNZ5/Byy9vmCQqKkLLYe+9w5DXvfeG7bePHWlpMiFIiqaiIiyx8corIVFU\nPjZvXpUcKhOFI5pyz4QgKVEqKuDtt6uSQ2WiaNEC9tgD9twzPO6xB+yyiyu6ZpMJQVLiVdYjZs6E\nGTPC48yZIXHsvPOGSWLPPaFdu9gRFyYTgqSCtXp1KFRXJojKZNG8ediLulevUMTu1Ssc7dtbwK6L\nCUFSUamoCDOs58wJ6zTNnVt1vm7dhgmiMmF07QpNmsSOPD4TgqSS8cEHGyaKymTx0Uew447Qsyf0\n6BEeK8+33750WhUmBEkl75NPwg5zb74Zjurnq1aFxFCZKCrPu3cPS3U0jb3kZxaZECSpDv/3f1UJ\novrjf/4TWhydOoUlOrp3D4/Vz7ffvrC6okwIktRIX3wR5lEsXBgSROVj5flHH0GXLlUJoksX6Ny5\n6rFz52RtSGRCkKQc+eyzMFy2MlEsWhQK3pWPixfD1ltXJYfqiaLyvFMn2Gab/NQxTAiSFElFBaxY\nUZUcqieKRYvCsWRJWCSwY8dwdOiw4WP187Ztt2yHOxOCJCXcqlXw3nvheP/9DR+rn3/0EWy3XVWS\n6NAhJIl27cJRed62bThatNjwfUwIklQk1qyBZcuqksT774fC9wcfhJ9XPlaet2ixYaKYONGEIEkl\np6ICPv54w2Rx1FEmBEkSDe8yKqARtZKkXMp1QriDsJfyrDquuRF4E5gB9M1xPJKkTch1QvgzMLiO\n14cCPYCewE+BP+Q4noKXTqdjh5AYfhZV/Cyq+Fk0Xq4TwjPAR3W8PgIYlzmfCmwLtM9xTAXNf+xV\n/Cyq+FlU8bNovNg1hE7AomrPFwOdI8UiSSUtdkKAjSvgDieSpAjyMey0G/AwsHstr90KpIHxmefz\ngIGEQnR184EdcxOeJBWttwh12sToxqZHGQ0FJmfO+wEv5iMgSVL+/S+wBPiSUCs4FTgtc1S6idAC\nmAF8J98BSpIkSSowgwm1hTeBUZFjiakL8BQwG3gNOCduONFtBUwj1KdK2bbAfcBcYA6h67VUXUT4\n/zEL+Duwddxw8qq2ScDfAh4H3gD+Sfi3UtC2InQndQOaAdOBXjEDiqgD0Cdz3gp4ndL9LADOA+4C\nJsYOJLJxhK5YgKZA64ixxNQNWEBVErgb+FG0aPLvAMJKD9UTwq+B/8mcjwKuzXdQ2fZd4NFqzy/M\nHIIHgUNiBxFJZ+AJ4CBKu4XQmvBHUOHb8OvANwmJ8WHg0KgR5V83NkwI86ia6Nsh87xOSZiHUJfa\nJq51ihRLknQjfBuYGjmOWEYDFwDrYwcSWXfgA8ISMa8CY4GvRY0onhXADcA7hIEsKwlfGkpZe6qG\n8C+lHqtAJD0hOEltY60IfcbnAqsixxLDMGAZoX5QKMu350pTwsi8WzKPn1K6LegdgZ8RvixtT/h/\nckLMgBKmgnr8PU16QniXUEyt1IXQSihVzYAJwN8IXUalqD9hDayFhGHNBwN3Ro0onsWZ49+Z5/dR\nukO39waeB5YDa4H7Cf9WStlSQlcRQEfCF6mC1pQw064b0JzSLiqXEf7wjY4dSIIMpLRrCABPAztl\nzsuB6+KFEtWehNF3LQn/V8YBZ0WNKP+6sXFRuXJk5oUUQVEZYAihWDSfMKysVA0g9JlPJ3SXTKPu\npcVLwUAcZbQnoYUwg/CtuFRHGUEYUVM57HQcoUVdKmpOAj6FUGh/giIadipJkiRJkiRJkiRJkiRJ\nkiRJBa41cEbsICRJ8XVj09vDSpJKyHhgNWHWeKkuGSFJAr6NLQQVkaSvdiolWakvv60iY0KQJAEm\nBGlLfAJsEzsIKVtMCFLjLQeeI9QRLCpLkiRJkiRJkiRJkiRJkiRJkiRJkqTS8v8QO13f1r1VYwAA\nAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x105d11b90>"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.23 Page No : 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math \n",
+ "from numpy import cos,arange,exp\n",
+ "from matplotlib.pyplot import plot,suptitle,xlabel,ylabel\n",
+ "\n",
+ "#Example 7.23\")\n",
+ "\n",
+ "#Sketch voltage 'v'\n",
+ "t = arange(-.001,0.00005,0.00005)\n",
+ "t1 = arange(0,0.001+0.00005,0.00005)\n",
+ "T = 1.*10**-3;\n",
+ "V0 = 10.;\n",
+ "v = V0*exp(t/T)\n",
+ "v1 = V0*exp(-t1/T)\n",
+ "\n",
+ "# Results\n",
+ "plot(t,v)\n",
+ "plot(t1,v1)\n",
+ "suptitle ('v vs t')\n",
+ "xlabel('t (ms)')\n",
+ "ylabel('v ');\n",
+ "\n",
+ "#Sketch current 'i'\n",
+ "t = arange(-.001,0.00005,0.00005)\n",
+ "t1 = arange(0,0.001+0.00005,0.00005)\n",
+ "T = 1.*10**-3;\n",
+ "I0 = 10.*10**-3;\n",
+ "i = I0*exp(t/T)\n",
+ "i1 = -I0*exp(-t1/T)\n",
+ "\n",
+ "plot(t,i)\n",
+ "plot(t1,i1)\n",
+ "suptitle ('i vs wt')\n",
+ "xlabel('t (ms)')\n",
+ "ylabel('i (mA)');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmczWX/x/HXYcYuy61MonQrSpYR2QqnQmRLITFkylKZ\nu/y6b0XuQvfjLum+012WMrasxZSQJJVT7iyTLYTuEIUs2fdlnN8f15FjjJnvmHPOdc6Z9/PxOI/O\n8l0+8+2Y91zX9f1eXxARERERERERERERERERERERERERERER4XCI9zcaqB7ifYqISIQ6AHS2XYSI\niFwZbwbvLQbe93vtAWZjWggHgePASeDJdOs9CuzwPf+nb9v5gWLAGeB133unfNsoFogfQEREQiej\n0HgYEw7nnQRqYoJjvu89F1A63Xr5MeEA8B1wFOgJPA387Hv/ANApx1WLiIgVGYUGmNZAdaA9cMj3\nXm/gNPCV7/2M/A40x4TOm8A84HNgiu9zdU+JiESwy4WGB5gB/BeY7vd+VWACpnvpnQzWWwDMAvYB\nFYE9wF6gte9ztTRERCLY5UKjFebMqtPAbb736gKxvucfACsyWO9p4Czwte/1ES50WQHsAvrkoF4R\nEbHocqEBcALY7/f6Xcz4xnFM91P9DNYp4dtmX9/r9cBvfp+/hgbCRURERERERERERERERERERERE\nRERERERERERERERERCSqjAN2A2v93nsd2AB8D3yEplkQERGfBkANLg6NJkAe3/MhvoeIiIS5PFkv\nkmOLMNNE+1sAnPM9XwaUDUEdIiKSQ6EIjaw8BnxquwgREcma7dAYgLmPwVTLdYiIiAMxFvfdDbgf\nuPdyC1SoUMG7efPmkBUkIhIlNgM3BWPDtloazTA3r2mDudlNhjZv3ozX69UjQI+BAwdaryFaHjqW\nOp7h/AAqBOuXdyhCYxqwGKgE/IoZw3gbKIIZEF8FjAxBHSIikkOh6J56JIP3xoVgvyIiEmC2B8Il\nhNxut+0SooaOZWDpeEYOl+0CsuD19c+JiIhDLpcLgvT7XS0NERFxTKEhIiKOKTRERMQxhYaIiDim\n0BAREccUGiIi4phCQ0REHFNoiIiIYwoNERFxTKEhIiKOKTRERMQxhYaIiDim0BAREccUGiIi4phC\nQ0REHFNoiIiIYwoNERFxTKEhIiKOKTRERMQxhYaIiDim0BAREcdCERrjgN3AWr/3SgILgP8BnwPF\nQ1CHiIjkUChCYzzQLN17/TChURH40vdaRETCnCtE+ykPzAGq+l5vBBphWiBxgAe4JYP1vF6vNwTl\niYhED5fLBUH6/W5rTKM0JjDw/be0pTpEss3r9bJz3xHbZYhYEWO7AMDre2Ro0KBBfzx3u9243e7g\nVyRyGV4vdBnwLR+TyLrnFlC+eHnbJYng8XjweDwh2ZfN7ik3sAu4FliIuqckzKWlwVNPwapV8MCr\nbzFqzevMT5hP5asr2y5N5CLB7J6y1dKYDTwKvOb778eW6hBx5PRpSEiAffvgyy+haNGnKVeqBPe8\ndw9zHpnDHdfdYbtEkZAIRUtjGmbQuxRm/OIlYBYwHbge2Ap0AA5msK5aGmLdsWPw0ENQsCBMmwYF\nClz4bM6Pc3h89uO83+597rnxHntFivgJZksjVN1TV0qhIVYdOAAtWkClSpCcDDEZtM09Wz10mNGB\n0a1G88AtD4S+SJF0ovHsKZGw99tv0KgR1KkDY8dmHBgA7vJu5nWex5Nzn2TC6gkhrVEk1BQaIhn4\n+Wdo0AA6dIA33oA8WfxLqVmmJgsfXchAz0DeXPpmaIoUsUDdUyLp/PAD3Hcf9O8PvXtnb91fDv1C\nk0lN6FC5Ay/f/fL5bgKRkNKYhkiIfPMNtG9vWhedO1/ZNvYc20PzKc25Pe52RrUcRUyecLgcSnIT\nhYZICEyfDklJMHUqNG6cs20dOXWEDikdyOPKwwftPqBIviKBKVLEAQ2EiwTZG2/As8/CggU5DwyA\novmLMrvjbEoXLo17gpvdR3dnvZJIBFBoSK6WlgZ9+pizoxYvhurVA7ft2LyxjG09lpYVW1JvbD1+\n/P3HwG1cxBJ1T0mudeIEdOkCv/8OM2dCiRLB29fYlWMZ8NUAPnr4I+qXqx+8HYmg7imRgNu/H5o0\ngdhYmD8/uIEB8PjtjzO+zXgeeP8BZm6YGdydiQSRQkNyna1b4c47oX59mDIF8ucPzX6b39yceZ3n\nkTQvieGpw0OzU5EAU/eU5CqpqdC2LfTrB3/5i50afj7wM82nNKfFzS0Y2mQoefPktVOIRC2dcisS\nANOnm4v1xoyBNm3s1rL/xH7aTW9H4XyFmfrgVIrmL2q3IIkqGtMQyQGvF15+Gfr2NafU2g4MgJIF\nS/JZwmfEFY7jznF3su3gNtsliTii0JCoduKEubJ77lxYtgzi421XdEG+vPkY3Wo0ifGJ1Btbj6Xb\nl9ouSSRLCg2JWrt2wd13w7lz4PFAXJztii7lcrn4v3r/R3KrZFpPa83UtVNtlySSKYWGRKU1a6Bu\nXWjWzNw4qWBB2xVlrkXFFnzZ9Ute+PIFXlr4Eue852yXJJIhDYRL1JkzBx57DN5+Gzp2tF1N9uw+\nupu2H7SlXLFyjG8znkKxhWyXJBFIA+EiDni98Npr8MQT8MknkRcYAKWLlOarR78iNk8sjSY0Yvvh\n7bZLErmIQkOiwrFjJiRSUmDpUnO3vUhVIKYAk9pOon3l9tROrs2ibYtslyTyB4WGRLwtW6BePShU\nCBYtgnLlbFeUcy6Xi+fufI4JD0yg3Yx2jEgdgbpqJRxoTEMi2uefm0kHX3zRXLgXjTfK27x/M20/\naEutMrUY2WIkBWIK2C5JwpzGNETS8Xph6FDo1g1mzDA3T4rGwACoULICSx5fwrEzx2g4vqHGOcQq\nhYZEnPPjFzNmmAv2Gja0XVHwFc5XmPcfep92ldtpnEOssh0a/YEfgLXAVCBE841KpIrG8QunNM4h\n4cBmaJQHegC3A1WBvEAEniQpoTJ7tgmMnj1h3DgokEu79ptWaMrixxbz7op36fpxV46ePmq7JMlF\nbIbGYeAMUAiI8f13h8V6JEydOQPPPWemMv/44+gev3CqQskKLO2+lJg8MdROrs36vettlyS5hM3Q\n2A/8G/gF2AkcBL6wWI+EoR074J57YN06WLHCtDTEKBRbiPFtxtO3fl8aTWjE5DWTbZckuUCMxX1X\nAPpguqkOATOAzsAU/4UGDRr0x3O3243b7Q5VfWLZggXQtatpWfTvD3lsj8CFqcQaidQsU5N209ux\naNsi/tP8PzotN5fxeDx4PJ6Q7MtmI/9hoAnQ3fe6C1AX6O23jK7TyIXS0uAf/4DkZJg82cxUK1k7\nfOow3Wd356f9P5HSPoUKJSvYLkksidbrNDZiQqIg5odrDKhjNpfbs8fMTOvxwPLlCozsuCr/VXzQ\n7gMer/E49cbW46MNH9kuSaKQzdD4HpgILAfW+N4bba8csc3jgZo1oXZt+OILuPZa2xVFHpfLRVLt\nJD7p9AnPzn+WPp/14dTZU7bLkigS7uegqHsqFzhzBgYPNqfRjhtnWhqSc/tP7KfHnB5sObCFaQ9N\n45ZSt9guSUIkWrunRPj5Z3NF9/LlsGqVAiOQShYsSUr7FJ6o+QQNxjdgzMoxuhhQckwtDbFm2jR4\n5hno1w/69NHZUcG0fu96OqZ0pFKpSoxuOZoSBUvYLkmCSC0NiSpHj0JiIgwaBJ99Bs8+q8AItspX\nVya1RyrXFrmW+Hfj+e8v/7VdkkQo/VOVkFqxAm6/3VzRff65hEaBmAK81fwtRtw/gnbT2zHYM5iz\n587aLksijLqnJCTS0uDf/4Z//cvcu/vhh21XlLvtPLKTrjO7cirtFBMfmMiNJW60XZIEkLqnJKJt\n2QJuN8ydC6mpCoxwUKZoGT7v8jltKrWh9pjajF05VoPk4ohaGhI0Xi+MHWumAOnfX4Pd4WrdnnV0\nmdmFsleVJblVMnFF4myXJDmkloZEnF27oFUrGDnSXLSnwe7wVeWaKizrvozqpasT/048H67/0HZJ\nEsbU0pCAS0kxkwz27Al//zvky2e7InFq6faldJ3Zlbpl6/JW87coXqC47ZLkCqilIRHhwAFISIAX\nXoBZs+DllxUYkaZu2bqs6rWKq/JfRbVR1fhii+5WIBdTaEhAzJ0L1apBiRKwejXUqWO7IrlShfMV\nZvj9wxnTegyJsxLpPbc3R04dsV2WhAmFhuTIvn3QpQs8/TRMnGhOpy1UyHZVEghNKzRl7ZNrOXn2\nJFVGVWH+pvm2S5IwoNCQK5aSAlWrQqlSsGaNpjGPRsULFGdsm7Ekt0qm1ye9eGzWYxw4ccB2WWKR\nQkOybdcuaNcOXnzRBMewYVC4sO2qJJjOtzoKxRaiyqgqzNo4y3ZJYolCQxzzemHSJKheHSpWNLPS\n1q9vuyoJlaL5izL8/uFMe2gaf1vwNzqmdGTvsb22y5IQU2iII7/8Ai1bmmlAPv0UXnkFCug21LlS\nwxsa8v0T31PuqnJUHVWVqWun6mryXETXaUimzp6F//wHXn3VTGP+/PM6jVYuSN2RSo85PShduDSj\nWozSfcnDhK7TECtSU+GOO2DePFiyxIxhKDDEX+3rarO8x3Ka/LkJdcbU4Z/f/JPTaadtlyVBpJaG\nXOLQIRgwAD780HRHdepkpjIXycy2g9vo/WlvthzYwrst36XBDQ1sl5RrqaUhIeH1wowZULkynD4N\nP/wAnTsrMMSZG4rfwJxH5vCPu/9Bp4860X12d/Yd32e7LAkwhYYA5l7dLVrA4MEwfTqMHg0lS9qu\nSiKNy+XiocoP8cNTP1A4tjC3jbyNid9P1EB5FAn3vyHVPRVkJ07Aa6/B8OHwt7+Z2Wg1biGBsnzn\ncp745AkKxhbk7eZvEx8Xb7ukXEHdUxJwXi/MnGm6otavh5UroV8/BYYEVq0ytVjWfRldqnXhvsn3\n0Xtub/af2G+7LMkB26FRHEgBNgDrgbp2y8kdNm6EZs3MtOVjx5ruqOuvt12VRKu8efLSs2ZPNvTe\nAMCtI24leUUyaefSLFcmV8J299R7wNfAOCAGKAwc8vtc3VMBdOSIma58wgRzdlTv3hAba7sqyW1W\n71pN0qdJnDx7kuH3D6duWf2tGGjR2j1VDGiACQyAs1wcGBIgXi9MmQK33AJ798LatebWqwoMsSE+\nLp5FiYvoU7cPD37wIImzEtl1dJftssQhm6FxI7AXGA+sBJIBTaodYIsXQ716ZlLBlBTTyojTLaDF\nMpfLRUK1BDYmbaRUwVJUGVmFVxe9yokzJ2yXJlmw2T1VC1gC1Ae+A94EDgMv+S3jHThw4B8v3G43\nbrc7hCVGrq1bzZQfixebeaI6d9Y9uiV8bdq/iee/eJ7lO5cz5N4hdKzS8XwXizjg8XjweDx/vB48\neDAE6fe7zf8rcZjQuNH3+i6gH9DSbxmNaWTToUNmnqjkZDNX1F//qmnLJXJ8s+0bnp3/LLF5Y3mj\n6RvUK1fPdkkRKVrHNHYBvwIVfa8bAz/YKyeynT0L77wDlSrBnj1m3OKllxQYElka3tCQ1B6pPFnr\nSdrPaE/HlI5sPbjVdlnix0kSFQfqAeUBL7AV00IIxKB1dWAMkA/YDCSis6eyxes1Ewo+9xxcfTW8\n8QbUqGG7KpGcO3b6GP9a/C/eSn2L7jW60++ufpQoWMJ2WREhmC2NzDbaAOiLCYtVwE7f8tcCNTDh\nMRT4bzAK81FoZGLpUjNusWeP6ZJq00bzREn02XF4BwM9A5n942z61u9LUu0kCsYWtF1WWLMVGm8A\no4CfLvN5ReAJ4NlAF+VHoZGBjRvhhRfgu+/MXFFdu0JMjO2qRIJrw94NvPDVCyzfuZzB7sF0rd6V\nmDz64mfEVmhkpjSwO5CFXIZCw8+OHTBoEMyaBX37QlISFNQfXJLLLPl1Cf2+7MfeY3t55d5XaFOp\njc60SidcQqME8BDwCFAZ000VbAoN4MABGDIExoyBnj1Nl1Tx4rarErHH6/Uyb9M8+n/Zn8KxhRnS\neAgNb2hou6ywYTM0CgFtMEERD1wFPAAsAkIxcUyuDo3Dh82tVt96C9q2Na2MMmVsVyUSPs55zzF1\n7VReXPgilf5UiZfvfpna19W2XZZ1tk65nQasAxphLry7ETgAeAhNYORaR4+age2bboJNm8ytVkeP\nVmCIpJfHlYeEagn8mPQjbW9py0PTH6LVtFas+m2V7dKiVmahcSuwBzMD7QYUFEF3/Li5vepNN8Ga\nNfDNN/Dee+a1iFxevrz56FWrFz/95Sfuq3AfLae15MEPHmTN7jW2S4s6mYVGPOa6iT8BCzFdUkUx\nV3JLAJ08abqhbrrJnEb7xRcwbZqZYFBEnCsQU4Ck2kls+ssmGlzfgKaTmvJwysOs37vedmlRIzt9\nXrUwYxvtge2YOaOCLarHNI4fN4PbQ4dCzZrm9Nl43dhMJGCOnT7G8NTh/HvJv2n858YMaDCA2665\nzXZZQRcuZ0/5r9MA+CbAtWQkKkPjyBEYNcpcvV2vnrm3Ra1atqsSiV5HTh1h5HcjGbZ0GHdefycD\nGgzg9mtvt11W0NgOjT8Df8FcGX7+Shov0DoYBaUTVaFx8CC8/bZ53HuvuUCvalXbVYnkHsfPHGf0\nitG8vvh1asTVYECDAVE5KaLt0FiDmR9qHXDO954Xc8e9YIuK0Ni7F95800wo2Lq1uRd3pUq2qxLJ\nvU6ePcmE1RMY8t8h3FTyJv7e8O80uqFR1FwkaDs0UgFbJz5HdGj88osJi/fegw4dzKSCN96Y9Xoi\nEhpn0s4wZe0UXln0CtcUvobn73yeFhVbkMcV2TefsR0aXYAKwHzglN/7K4NRUDoRGRpr18Lrr8Pc\nufDYY+bWqtddZ7sqEbmctHNppKxPYejioZw4c4K+9fvSqWon8sfkt13aFbEdGkMwwbGJC91TAHcH\no6B0IiY0vF7weExYrF5tboDUq5em+xCJJF6vl4VbF/Lat6+xbs86+tTpQ8+aPSlWoJjt0rLFdmhs\nxlzodzoYBWQh7EMjLQ1mzjSnzR46ZCYSTEiAAgVsVyYiObF612peX/w6n236jO41uvNM3WcoUzQy\npmWwHRofA70Izay26YVtaBw5AuPHm3mhrr7aTCLYurXuwy0SbbYe3MqwJcOYtGYSrSu1pk/dPsTH\nhfcFVbZD42ugGvAdF8Y0cu0pt1u3mlNmJ0wwp80+8wzUr6+bH4lEu33H95G8MpnhqcO5+U8306dO\nH1pWbEnePHltl3YJ26HhzuC9XHXKrdcL335rzoRauNAMbiclwQ032K5MRELtTNoZUtanMGzpMPaf\n2M/TdZ4mMT6RovmL2i7tD7ZCw4UJh6zWD+Zvdauhcfo0zJhhwuLQIdOqePRRKFLEWkkiEia8Xi9L\nty9l2NJhfPnzl3Sr3o2k2kncWML+efW2QuNr4BNgFvC/dJ9VwtxXowUQzDufWAmNX381U5GPGQO3\n3WZOmb3/fo1XiEjGth3cxvDU4YxfPZ565erR+47eNK3Q1Nr1HrZCIz/QGTNJYRXgiG/5Ipirw6cA\nUwnuWVUhCw2vF776CkaMMKfOdu4MTz0Ft94akt2LSBQ4fuY409ZOY8R3Izh86jBP1nqSxBqJlCxY\nMqR12B7TAMgLlPI9/53Q3Vsj6KFx6BBMnAgjR0JMDPTubU6ZVReUiFwpr9fLsh3LGPHdCD753yc8\neMuD9K7dO2STJIZDaNgStNBYscJ0QU2fDk2bmrBo0EBnQYlIYO05toexK8fyzop3KFO0DL1q9qLD\nbR0oFFsoaPuM9tDICyzH3KOjVbrPAhoahw/D1KmQnAz79kGPHpCYqNuoikjwpZ1LY+5Pc0lemcy3\nv3zLI1UeoUfNHkG55iPaQ+NZoCbmroDpr/3IcWh4vZCaaloVH31krq3o2RMaN9bAtojYsf3wdsat\nGseYlWOIKxJHz5o96VilI0XyBaZfPJpDoywwAfgnJjwC1tLYv/9Cq+LYMejeHbp1gzjdrFZEwkTa\nuTTmb57P6BWj+Xrb13So3IHHb3+cO8rckaNp2m2FxrfAncBRLr0WwwtcFYD9zwBe8W3rb+QwNNLS\n4PPPzfQe8+dD8+amC+ruu9WqEJHwtvPITsavGs/41ePJH5OfxPhEEqolEFck+3/pRmtLoyXQHOiN\nuer8r2QQGgMHDvzjhdvtxu12X7KhH380QTFpEpQta1oUHTtCiRJBqlxEJEi8Xi+LflnEhNUTmLlx\nJnddfxeJ8Ym0rNiSfHnzZbiOx+PB4/H88Xrw4MEQhaHxCmbK9bNAAUxr40Ogq98yl21pHDpkznwa\nPx5+/tmcJtutm7kYT0QkGhw9fZSU9SlMWD2B9XvX80iVR+gW3434uPhMu6+itaXhrxEOuqdOn4Z5\n82DyZNMN1bixOfupWTNzjYWISLTavH8z733/HhO/n0iRfEVIqJZAp6qduL7Y9Zcsm1tC469kcPbU\nuXNeFi82QTFjhmlJJCRAu3bqfhKR3Oec9xyLf13M5DWTmbF+BlWvqUpCtQTaVW5H8QLmrm+5ITQu\nx1u+vJdChUxQdOqkmWVFRM47dfYU8zbNY/KaySzYsoAmf25CQrUE2t7aFnJraKxa5aV6dV2pLSKS\nmYMnD5KyPoWpa6eysNtCyK2hEQ730xARiSTB7J7S1QsiIuKYQkNERBxTaIiIiGMKDRERcUyhISIi\njik0RETEMYWGiIg4ptAQERHHFBoiIuKYQkNERBxTaIiIiGMKDRERcUyhISIijik0RETEMYWGiIg4\nptAQERHHFBoiIuKYQkNERBxTaIiIiGMKDRERcUyhISIijtkMjXLAQuAHYB3wtMVaRETEAZfFfcf5\nHquBIsAK4AFgg98yXq/Xa6E0EZHI5XK5IEi/3222NHZhAgPgKCYsytgrR0REshIuYxrlgRrAMst1\niIhIJmJsF4DpmkoBnsG0OC4yaNCgP5673W7cbneo6hIRiQgejwePxxOSfdkc0wCIBT4B5gFvZvC5\nxjRERLIpmGMaNkPDBbwH7AP+7zLLKDRERLIpWkPjLuAbYA1wPhn6A5/5LaPQEBHJpmgNDScUGiIi\n2RStp9yKiEiEUWiIiIhjCg0REXFMoSEiIo4pNERExDGFhoiIOKbQEBERxxQaIiLimEJDREQcU2iI\niIhjCg0REXFMoSEiIo4pNERExDGFhoiIOKbQEBERxxQaIiLimEJDREQcU2iIiIhjCg0REXFMoSEi\nIo4pNERExDGFhoiIOKbQEBERx2yHRjNgI/AT8LzlWkREJAsui/vOC/wINAZ2AN8BjwAb/Jbxer1e\nC6WJiEQul8sFQfr9brOlURvYBGwFzgDvA20s1iMiIlmIsbjv64Bf/V5vB+pcslSnTpffQk5bIU7W\nz2qZUGzjSvaR1Wsb+wjENpwsn919ZHOb24oVY1aTJtDmwt846ddI30K+5PNL9xCQbeR0m1mt72Sb\nTraRnc+d7PNKtpHtzwPQ6xGMYxFqNkPD0c8+6NSpP567b70Vd+XKFy/gymELzMn6WS0Tim1cyT6y\nem1jH4HYhpPls7uPbGzzOLApf344ceLij9Mvfsnqrkw/D9Q2crrNrNZ3ss1Llr+CfWRnny4H+3Cy\nn0w/d7kC0t8TjGOxZckStixdesU1ZYfNMY26wCDMYDhAf+Ac8JrfMhrTEBHJpmgd01gO3AyUB/IB\nDwOzLdYjIiJZsNk9dRZIAuZjzqQay8VnTomISJix2T3lhLqnRESyKVq7p0REJMIoNERExDGFhoiI\nOKbQEBERxxQaIiLimEJDREQcU2iIiIhjCg0REXFMoSEiIo4pNERExDGFhoiIOKbQEBERxxQaIiLi\nmEJDREQcU2iIiIhjCg0REXFMoSEiIo4pNERExDGFhoiIOKbQEBERxxQaIiLimEJDREQcsxUarwMb\ngO+Bj4BiluoQEZFssBUanwO3AdWB/wH9LdWRq3g8HtslRA0dy8DS8YwctkJjAXDO93wZUNZSHbmK\n/mEGjo5lYOl4Ro5wGNN4DPjUdhEiIpK1mCBuewEQl8H7LwBzfM8HAKeBqUGsQ0REAsRlcd/dgB7A\nvcDJyyyzCagQqoJERKLEZuAm20UEUjPgB6CU7UJERMQ5Wy2Nn4B8wH7f6yXAU5ZqERERERGRSFUS\nMzD+P8w1GsUvs1wzYCOmJfK8g/VLAguBI8Db6bZVE1jr29Z/cvwThJdgHU8w18z85Fuvqd/7Ht97\nq3yPSO9avNyx8feW7/PvgRoO1r2S4xotQnk8ywMnuPBdHBmIHyDMBON4tscMC6QBt6fbVth9P4cC\nz/mePw8MyWCZvJiB7/JALLAauDWL9QsBdwK9uDQ0UoHavuefYg5ktAjW8azsWy7Wt94mLnRhLuTS\nL1qkyuzYnHc/F04FrwMsdbBudo5rOJzuHiihPp7lMX8QRqtgHc9bgIpc+m85LL+fG4HSvudxvtfp\n1QM+83vdz/dwsn43Lg6NazHTlJzXEXgnu0WHsWAdz/5c/JfJZ0Bd3/OFmNZbNMjs2Jz3DvCw3+uN\nmGMV6OMaDUJ9PMsT3aERrON5XvrQyNb3M1RpUhrY7Xu+mwtfBH/XAb/6vd7ue8/J+t4MtrXd7/UO\nv21Fg2AdzzJcfNy2+9477z1Md8Dfr7TwMJHZsclqmTKZrJud4xpN38dQH0+AGzHfRQ9w15WXHpaC\ndTwvJ1vfz0Be3He5i/kGpHvt5dJf8mTwniuT5TJ6P9qE2/HsDOwEigAfAl2ASQ7WC0dOvz9Ozi68\n0uMaTd/hUB/PnUA54ADmL+aPMXPZHXFYR7gL5PEMeA2BDI0mmXy2G/MLcBem62hPBsvswHwRzivr\ne8/p+um35T+flf+2IoWN45nZOjt9/z2KuYK/NpEbGul/znJc/JdWRsuU9S0Tm8H7OTmu0SDUx/O0\n7wGwEnMh282+59EgkMczo3Wz2l9YfD+HcqHPrB8ZD9zGYP7nl8dcw5F+QCyz9btx6UD4MswAkYvo\nHAgPxvE8PyCWD9P834w5fnm5cLZULJAC9AzIT2JHZsfmPP+BxrpcGGgM5HGNFqE+nqUw30mAP2N+\nKV7uDMJLc/UiAAACC0lEQVRIFKzjeV768cmw/H6WBL7g0lPnygBz/ZZrDvyIGb3v72B9gK3APkzT\n9FfMGQJw4ZTbTZhT06JJMI/nC77lNwL3+d4rDCzHnNq3DhhGGHypciijY9PL9zhvuO/z77l44DBQ\nxzWahPJ4Poj5Hq4CVgAtAvhzhItgHM+2mN+RJzCtt3l+n0X791NERERERERERERERERERERERERE\nREREQqMY8GQmn+cHvibn16VUA8bmcBsiImJZeTKfMfUxoG+A9uUBrgnQtkRExIL3geOYq4tfy+Dz\nBZh7EAC4Ma2OjzFTLQzBTNyYCqzBTGkB5mY3azFTM3ztt63ngd4BrV5ERELqBi7f0sgL/Ob32o2Z\nWbU0Zp6eHcAg32dPY6ZXARMg1/qeX+W3/t3ABzktWMQm63dnErEss7GKUlw63fZ3mNlXT2Pm6pnv\ne38dpqsL4FvMvUe6c/FM0r/5LSMSkRQaIplLHyqn/J6f83t9jgsB8STmRlXlMBPqlfTbVjTdR0Ny\noUDeT0MkEh0Bil7ms98xN53KrgqYcY5UzIyjZYH9mC6rbVewPZGwoZaG5Hb7MN1Ja7l0IDwN0+1U\nyfc6s7vx+X82FDOusda37TW+92sD3wSkahERCUvduHAjoJzyoFNuRUSiWj5M6yAQF/eNyXk5IiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIhLG/h85Fy3n/7j3egAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x105d916d0>"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.25 Page No : 124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 7.25\")\n",
+ "\n",
+ "Xavg = (2+4+11+5+7+6+9+10+3+6+8+4+1+3+5+12)/16.;\n",
+ "#Let X = X**2eff\n",
+ "X = (2**2+4**2+11**2+5**2+7**2+6**2+9**2+10**2+3**2+6**2+8**2+4**2+1**2+3**2+5**2+12**2)/16.\n",
+ "Xeff = math.sqrt(X);\n",
+ "\n",
+ "# Results\n",
+ "print \"Xavg = %d Xeff = %3.2f\"%(Xavg,Xeff)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Xavg = 6 Xeff = 6.78\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.26 Page No : 126"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Given\n",
+ "#Period = 10s\")\n",
+ "#Interval is 1ms\")\n",
+ "#Voltage of binary signal is either 0.5 or -0.5\")\n",
+ "T = 10;\n",
+ "#During 10s period there are 10000 intervals of 1ms each\n",
+ "#For calculating average equal number of intervals are considered at 0.5V and -0.5V\n",
+ "vavg = (0.5*5000-0.5*5000)/10000.\n",
+ "#The effective value of v(t) is\n",
+ "#Let V = V**2eff\n",
+ "V = (0.5**2*5000+(-0.5)**2*5000)/10000.\n",
+ "\n",
+ "# Calculation\n",
+ "Veff = math.sqrt(V)\n",
+ "\n",
+ "# Results\n",
+ "print \"vavg = %dV Veff = %3.2fV\"%(vavg,Veff)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "vavg = 0V Veff = 0.50V\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch8.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch8.ipynb
new file mode 100644
index 00000000..bd902b0a
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch8.ipynb
@@ -0,0 +1,125 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2be08065faf70b8c9889fbaac9066fd5a40c67a58f214d2053087d37cdf109b8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8 : First order Circuits"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.1 Page No : 139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 8.1\")\n",
+ "\n",
+ "# Given\n",
+ "#capacitance is 1uF\")\n",
+ "#resistance is 1Mohm\")\n",
+ "#Voltage across capacitor is 10V\")\n",
+ "R = 1*10**6;\n",
+ "C = 1*10**-6;\n",
+ "V = 10\n",
+ "#Let T be time consmath.tant\n",
+ "T = R*C\n",
+ "#v(t) = V*exp(-t/T)\n",
+ "#v(t) = 10*exp(-t) (1)\")\n",
+ "#Substituting value of t = 5 in (1)\n",
+ "v5 = 10*math.exp(-5)\n",
+ "\n",
+ "# Results\n",
+ "print \"Time constant is %ds\"%(T)\n",
+ "print \"v5) = %0.3fV\"%(v5)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time constant is 1s\n",
+ "v5) = 0.067V\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.10 Page No : 142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 8.10\")\n",
+ "\n",
+ "# Given\n",
+ "#vs = 5V t<0\")\n",
+ "#vs = 5*math.sin(w*t) t>0\")\n",
+ "vs = 5;\n",
+ "R = 5;\n",
+ "L = 10*10**-3;\n",
+ "#At t<0\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#Inductor behaves as a short circuit\n",
+ "#Let i(0-) = i\n",
+ "i = vs/R;\n",
+ "print \"i0-) = %dA\"%(i)\n",
+ "#During the transition from t = 0- to t = 0+\n",
+ "#Let i(0+) = i1\n",
+ "i1 = i\n",
+ "print \"i0+) = %dA\"%(i1)\n",
+ "#Applying KVL equation to the loop\n",
+ "#vs = i*R+v\")\n",
+ "#Let v(0+) = v1 ; vs(0+) = vs1\n",
+ "#From given vs(0+) = 0\n",
+ "vs1 = 0;\n",
+ "v1 = vs1-i*R\n",
+ "print \"v0+) = %dV\"%(v1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i0-) = 1A\n",
+ "i0+) = 1A\n",
+ "v0+) = -5V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch9.ipynb b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch9.ipynb
new file mode 100644
index 00000000..ee2c3975
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/ch9.ipynb
@@ -0,0 +1,250 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b9d1caf08ce2c756df19d01d96849c688c97e2ec4dcb3d504ac57e0fbe14e7ea"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9 : Higher order circuits and Complex frequency"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.6 Page No : 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 9.6\")\n",
+ "\n",
+ "# Given\n",
+ "#resistance is 10ohm and inducmath.tance is 2H\")\n",
+ "#Applied voltage is 10*exp(-2*t)*math.cos(10*t+30)\")\n",
+ "#s = %s;\n",
+ "#For a RL circuit\n",
+ "#Applying KVL equation \n",
+ "#v = i*R+L*d/dt(i) (1)\n",
+ "#As v = 10(30 deg) (2)\n",
+ "#Equating (1) and (2) \n",
+ "# Let i = I*exp(s*t) (3)\n",
+ "# 10(30 deg)*exp(s*t) = 10*I*exp(s*t)+2*s*I*exp(s*t)\")\n",
+ "#Solving for I\n",
+ "#I = 10(30 deg)/10+2*s\")\n",
+ "s = -2+1j*10\n",
+ "a = 10+2*s\n",
+ "x = 10*math.cos((30*math.pi)/180);\n",
+ "y = 10*math.sin((30*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "I = z/a\n",
+ "b = I.real\n",
+ "c = I.imag\n",
+ "magn = math.sqrt(b**2+c**2)\n",
+ "ph = (math.atan(c/b)*180)/math.pi\n",
+ "#From (3)\n",
+ "print \"i = %0.2f*exp-2*t)*math.cos10t%3.1f deg) A)\"%(magn,ph);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i = 0.48*exp-2*t)*math.cos10t-43.3 deg) A)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.7 Page No : 156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 9.7\")\n",
+ "\n",
+ "# Given\n",
+ "#resistance is 10ohm and capacitance is 0.2F\")\n",
+ "#Applied voltage is 10*exp(-2*t)*math.cos(10*t+30)\")\n",
+ "#s = %s;\n",
+ "#For a RC circuit\n",
+ "#Applying KVL equation \n",
+ "#v = i*R+(1/C)*integrate(i*dt) (1)\n",
+ "#As v = 10(30 deg) (2)\n",
+ "#Equating (1) and (2) \n",
+ "# Let i = I*exp(s*t) (3)\n",
+ "# 10(30 deg)*exp(s*t) = 10*I*exp(s*t)+(5/s)*I*exp(s*t)\")\n",
+ "#Solving for I\n",
+ "#I = 10(30 deg)/10+(5/s)\")\n",
+ "s = -2+1j*10\n",
+ "a = 10+(5/s)\n",
+ "x = 10*math.cos((30*math.pi)/180);\n",
+ "y = 10*math.sin((30*math.pi)/180);\n",
+ "z = complex(x,y)\n",
+ "I = z/a\n",
+ "b = I.real\n",
+ "c = I.imag\n",
+ "magn = math.sqrt(b**2+c**2)\n",
+ "ph = (math.atan(c/b)*180)/math.pi\n",
+ "#From (3)\n",
+ "print \"i = %0.2f*exp-2*t)*math.cos10t+%3.1f deg) A)\"%(magn,ph);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i = 1.01*exp-2*t)*math.cos10t+32.8 deg) A)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.8 Page No : 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from numpy import roots\n",
+ "from numpy.linalg import solve\n",
+ "#Example 9.8\")\n",
+ "\n",
+ "#s = %s ;\n",
+ "\n",
+ "#From figure 9.13\n",
+ "#Z(s) = (2.5+((5*s/3)*(20/s))/(5*s/3+20/s))\")\n",
+ "#On solving\n",
+ "z1 = roots([12, 8, 1])\n",
+ "z2 = roots([12 ,0, 1])\n",
+ "\n",
+ "Z = 2.5*(z1/z2)\n",
+ "print \"Z(s)\",Z\n",
+ "#H(s) = I(s)/Z(s)\n",
+ "#Let I(s) = 1 the H(s) = 1/Z(s)\n",
+ "H = (1/2.5)*(z2/z1)\n",
+ "print \"H(s)\", H"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Z(s) [ 0.+4.33012702j 0.-1.44337567j]\n",
+ "H(s) [ 0.-0.23094011j -0.+0.69282032j]\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9 Page No : 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#Example 9.9\")\n",
+ "\n",
+ "# Calculation\n",
+ "#If s = 1Np/s\n",
+ "H1 = 0.4*(1.+12)/((1.+2)*(1+6))\n",
+ "\n",
+ "# Results\n",
+ "print \"H1) = %0.3f\"%(H1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "H1) = 0.248\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.11 Page No : 166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "from numpy import roots\n",
+ "\n",
+ "#From figure 9.16\n",
+ "#H(s) = V(s)/I(s) = Z(s)\n",
+ "#Let V(s) = 1 the H(s) = Z(s)\n",
+ "Z = [(1/2.5),(3/(5)),(s/20)]\n",
+ "#Dem = Z('den')\n",
+ "#The roots are\n",
+ "q = roots(Z)\n",
+ "print \"Poles are\", q\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Poles are [ 0.87314228-0.71580545j -0.87314228+0.71580545j]\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/VvsT7.png b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/VvsT7.png
new file mode 100644
index 00000000..a2cd4f71
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/VvsT7.png
Binary files differ
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wCvswt2.png b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wCvswt2.png
new file mode 100644
index 00000000..62b58f90
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wCvswt2.png
Binary files differ
diff --git a/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wVSt11.png b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wVSt11.png
new file mode 100644
index 00000000..f52a5530
--- /dev/null
+++ b/Electric_Circuits_by_M._Navhi_And_J._A._Edminister/screenshots/wVSt11.png
Binary files differ
diff --git a/sample_notebooks/Namratha Reddy/chapter3.ipynb b/sample_notebooks/Namratha Reddy/chapter3.ipynb
new file mode 100644
index 00000000..41fd06af
--- /dev/null
+++ b/sample_notebooks/Namratha Reddy/chapter3.ipynb
@@ -0,0 +1,907 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# #Chapter 3:Magnetic Circuits"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# #Example 3.1:Page number-158\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The reluctance of steel ring is= 1250000.0 AT/Wb\n",
+ "The magnetomotive force is= 625.0 AT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "pi=3.14\n",
+ "l=pi*0.2 #l=mean length of the ring=pi*mean diameter of the ring\n",
+ "A=400*10**-6 #A=cross sectional area of ring\n",
+ "u1=1000 #u1=relative permeability of steel\n",
+ "u2=4*pi*10**-7 #relative permeability of air\n",
+ "\n",
+ "R=l/(A*u1*u2) #reluctance of steel ring\n",
+ "\n",
+ "print \"The reluctance of steel ring is=\",round(R,0),\"AT/Wb\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "flux=500*10**-6\n",
+ "f=flux*R\n",
+ "\n",
+ "print \"The magnetomotive force is=\",round(f,0),\"AT\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# #Example 3.2:Page number-158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The flux density is= 0.625 Wb/m**2\n",
+ "The magnetomotive force is= 375.0 AT\n",
+ "The magnetic field strength is= 750.0 AT/m\n",
+ "The relative permeability is= 663.0\n",
+ "The flux density is= 1.5 Wb/m**2\n",
+ "The magnetomotive force is= 1250.0 AT\n",
+ "Magnetic field strength= 2500.0 AT/m\n",
+ "The relative permeability is= 477.7\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "l=0.5\n",
+ "A=4*10**-4\n",
+ "N=250\n",
+ "I=1.5\n",
+ "flux=0.25*10**-3\n",
+ "fluxdensity=flux/A \n",
+ "\n",
+ "f=N*I #magnetomotive force\n",
+ "\n",
+ "H=(N*I)/l #magnetic field strength\n",
+ "\n",
+ "pi=3.14\n",
+ "u1=4*pi*10**-7\n",
+ "u2=fluxdensity/(u1*H)\n",
+ "\n",
+ "print \"The flux density is=\",round(fluxdensity,3),\"Wb/m**2\"\n",
+ "print \"The magnetomotive force is=\",round(f,0),\"AT\"\n",
+ "print \"The magnetic field strength is=\",round(H,0),\"AT/m\"\n",
+ "print \"The relative permeability is=\",round(u2,0)\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "#given\n",
+ "I=5\n",
+ "flux=0.6*10**-3\n",
+ "A=4*10**-4\n",
+ "N=250\n",
+ "l=0.5\n",
+ "\n",
+ "fluxdensity=flux/A\n",
+ "\n",
+ "print \"The flux density is=\",round(fluxdensity,1),\"Wb/m**2\"\n",
+ "\n",
+ "f=N*I #magnetomotive force\n",
+ "\n",
+ "print \"The magnetomotive force is=\",round(f,0),\"AT\"\n",
+ "\n",
+ "H=(N*I)/l #magnetic field stength\n",
+ "\n",
+ "print \"Magnetic field strength=\",round(H,0),\"AT/m\"\n",
+ "pi=3.14\n",
+ "u1=4*pi*10**-7\n",
+ "u2=fluxdensity/(u1*H)\n",
+ "\n",
+ "print \"The relative permeability is=\",round(u2,1)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.3: Page number-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetomotive force= 1250.0 AT\n",
+ "The reluctance of air gap is= 162154.449 AT/Wb\n",
+ "The flux is= 0.006475308 Wb\n",
+ "The flux density is= 13.188 Wb/m**2\n",
+ "The reluctance of steel string is= 69494.763801 AT/Wb\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "pi=3.14\n",
+ "ls=0.627 #mean length of steel string\n",
+ "\n",
+ "la=0.0001 #length of air gap\n",
+ "\n",
+ "A=4.91*10**-4 #cross sectional area of magnetic circuit\n",
+ "\n",
+ "f=N*I #magnetomotive force\n",
+ "print \"Magnetomotive force=\",round(f,0),\"AT\"\n",
+ "\n",
+ "fa=1050 #fa=mmf of air gap=1050AT\n",
+ "\n",
+ "fs=450 #fs=mmf of steel ring=450\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "u1=4*pi*10**-7\n",
+ "ra=la/(u1*A) #reluctance of air gap\n",
+ "\n",
+ "print \"The reluctance of air gap is=\",round(ra,3),\"AT/Wb\"\n",
+ "\n",
+ "flux=fa/ra\n",
+ "\n",
+ "print \"The flux is= \",round(flux,20),\"Wb\"\n",
+ "\n",
+ "\n",
+ "#case c\n",
+ "\n",
+ "fluxdensity=flux/A\n",
+ "\n",
+ "print \"The flux density is=\",round(fluxdensity,5),\"Wb/m**2\"\n",
+ "\n",
+ "#case d\n",
+ "\n",
+ "rs=fs/flux #reluctance of steel string\n",
+ "\n",
+ "print \"The reluctance of steel string is=\",round(rs,6),\"AT/Wb\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.4: Page number-160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The air gap= 955414.01274 AT/m\n",
+ "The magnetomotive force is= 5.0 AT\n",
+ "hs= 1061.57 AT/m\n",
+ "The magnetomotive force for air gap is= 318.47 AT\n",
+ "Total mmf= 323.47 AT\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "la=2*10**-3 #length of the air gap\n",
+ "ls=0.3 #lentgh of the cast steel core\n",
+ "B=1.2\n",
+ "\n",
+ "ha=B/u1\n",
+ "\n",
+ "print \"The air gap=\",round(ha,5),\"AT/m\"\n",
+ "\n",
+ "fa=H*la #magnetomotive ofrce for air gap\n",
+ "\n",
+ "print \"The magnetomotive force is=\",round(fa,0),\"AT\"\n",
+ "\n",
+ "u2=900\n",
+ "hs=B/(u1*u2)\n",
+ "\n",
+ "print \"hs=\",round(hs,2),\"AT/m\"\n",
+ "\n",
+ "fs=hs*ls #magnetomotive force for air gap\n",
+ "\n",
+ "print \"The magnetomotive force for air gap is=\",round(fs,2),\"AT\"\n",
+ "\n",
+ "totmmf=fa+fs\n",
+ "\n",
+ "print \"Total mmf=\",round(totmmf,2),\"AT\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.5-Page number-161 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "flux density is= 2.15844 mWb/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "f=200 #total mmf\n",
+ "#ra=2*10**-3/(u1*a) #reluctance of air gap\n",
+ "#ri=10**-3/(u1*a) #reluctance of iron core\n",
+ "#r=3*10**-3/(u1*a) #reluctance of magnetic circuit\n",
+ "\n",
+ "#flux=f/r\n",
+ "\n",
+ "a=3*10**-3\n",
+ "fluxdensity=flux/a\n",
+ "\n",
+ "print \"flux density is=\",round(fluxdensity,5),\"mWb/m**2\"\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.6-Page number-161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The relucatance of air gap is= 497611.464968 AT/wb\n",
+ "The flux density in central limb is= 0.1125 Wb/m**2\n",
+ "The mmf drop in central limb is= 300.0 AT\n",
+ "fabh= 500.0 AT\n",
+ "The total mmf required is= 1695.0 AT\n",
+ "The required current is= 2.825 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "fluxa=0.00018 #flux in the air gap\n",
+ "la=0.1*10**-2 #length of the air gap\n",
+ "ac=16*10**-4 #area of cross section\n",
+ "u1=4*3.14*10**-7\n",
+ "\n",
+ "ra=la/(u1*ac) #reluctance of the air gap\n",
+ "\n",
+ "print \"The relucatance of air gap is=\",round(ra,10),\"AT/wb\"\n",
+ "\n",
+ "#fa=fluxa*ra #mmf required to set up flux in air gap\n",
+ "\n",
+ "#print \"The mmf required to set up flux in air gap is=\",round(fa,10),\"AT\" --> This rounds to 895\n",
+ "\n",
+ "fa=895\n",
+ "\n",
+ "B=fluxa/ac #flux density in central limb\n",
+ "\n",
+ "print \"The flux density in central limb is=\",round(B,10),\"Wb/m**2\"\n",
+ "\n",
+ "#given from B-H curve, when B=1.125 the field density required is hc=1000 AT/m\n",
+ "#given\n",
+ "\n",
+ "hc=1000 #as above\n",
+ "\n",
+ "lc=30*10**-2 #length of central limb\n",
+ "\n",
+ "fc=hc*lc #mmf drop in central limb\n",
+ "\n",
+ "print \"The mmf drop in central limb is=\",round(fc,0),\"AT\"\n",
+ "\n",
+ "#from the diagram the flux density in parallel path fabh is flux(a)/2 =0.5625 Wb/m**2 and field intensity H=625 AT/m\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "lp=80*10**-2 #length of parallel path\n",
+ "\n",
+ "H=625 #from above\n",
+ "\n",
+ "fabh=H*lp\n",
+ "\n",
+ "print \"fabh=\",round(fabh,0),\"AT\"\n",
+ "\n",
+ "F=fa+fc+fabh\n",
+ "\n",
+ "print \"The total mmf required is=\",round(F,0),\"AT\"\n",
+ "\n",
+ "#given\n",
+ "N=600 #number of turns\n",
+ "I=F/N\n",
+ "\n",
+ "print \"The required current is=\",round(I,5),\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.7:Page number-163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "B= 0.7 Wb/m**2\n",
+ "mmf= 111.4 AT\n",
+ "totmmf= 223.85 AT\n",
+ "h2= 298.46667 AT\n",
+ "flux2= 0.0014 Wb\n",
+ "total mmf in fabc= 2250.0 Wb/m**2\n",
+ "totmmfm= 2473.85 AT\n",
+ "The total current required to set up flux in air gap is= 4.9477 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "fluxa=1.4*10**-3\n",
+ "area=0.002\n",
+ "\n",
+ "B=fluxa/area #flux density in air gap \n",
+ "\n",
+ "print \"B=\",round(B,3),\"Wb/m**2\"\n",
+ "\n",
+ "#u1=4*3.14*10**-7\n",
+ "#ha=B/u1 in AT/m #magnetic field in air gap\n",
+ "ha=55.7\n",
+ "\n",
+ "la=2 #length of air gap in m\n",
+ "mmf=ha*la #mmf of air gap\n",
+ "print \"mmf=\",round(mmf,3),\"AT\"\n",
+ "\n",
+ "#since the flux density of central limb is 0.7 the corresponding field srength is h1=250AT/m\n",
+ "h1=250\n",
+ "mmfl=112.45 #mmf for magnetic central limb-->mmf=250*(450-0.2)*10**-3\n",
+ "\n",
+ "totmmf=mmf+mmfl\n",
+ "\n",
+ "print \"totmmf=\",round(totmmf,5),\"AT\"\n",
+ "\n",
+ "#mean length of core CGHF=0.75m\n",
+ "\n",
+ "ml=0.75 #as above\n",
+ "\n",
+ "#since the central limb and magnetic core are in parallel they have same mmf that is 223.86AT\n",
+ "\n",
+ "\n",
+ "h2=totmmf/ml #magnetic intensity in CGHF\n",
+ "\n",
+ "print \"h2=\",round(h2,5),\"AT\"\n",
+ "\n",
+ "flux2=B*area \n",
+ "print \"flux2=\",round(flux2,5),\"Wb\"\n",
+ "\n",
+ "totflux=fluxa+flux2 #Wb\n",
+ "Bfabc=totflux/area #flux density in magnetic core fabc in Wb/m**2\n",
+ "\n",
+ "H=3000 #AT/m\n",
+ "totmmffabc=H*ml #total mmf in fabc in AT\n",
+ "print \"total mmf in fabc=\",round(totmmffabc,5),\"Wb/m**2\"\n",
+ "\n",
+ "totmmfm=totmmffabc+totmmf #total mmf in magnetic core in AT\n",
+ "\n",
+ "print \"totmmfm=\",round(totmmfm,5),\"AT\"\n",
+ "\n",
+ "N=500\n",
+ "I=totmmfm/N #The required current to set up flux in air gap\n",
+ "\n",
+ "print \"The total current required to set up flux in air gap is=\",round(I,5),\"A\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example 3.8:Page number-171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "l1= 0.004 mH\n",
+ "m12= 0.003 mH\n",
+ "l2= 0.006 mH\n",
+ "m21= 0.003 mH\n",
+ "Work done= 7.7 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "r1=3.98*10**6 #reluctance of air gap in AT/Wb and the value is same for r2\n",
+ "r3=5.97*10**6 #reluctance of air gap in AT/Wb\n",
+ "\n",
+ "#assume that current of 1A flows through 150 turns coil,for assumed directions of fluxes application of mesh current leads to matrix equations that can be simplified to:\n",
+ "#[flux1 flux2]=[2.36 1.41]*10**-5 Wb\n",
+ "\n",
+ "#The self inductance and mutual inductance are obtained as follows:\n",
+ "\n",
+ "n1=150 #number of turns\n",
+ "i1=1 #A\n",
+ "flux1=2.36*10**-5 #Wb\n",
+ "l1=(n1*flux1)/i1 #self inductance\n",
+ "\n",
+ "print \"l1=\",round(l1,3),\"mH\"\n",
+ "\n",
+ "n2=200 #number of turns\n",
+ "flux2=1.41*10**-5\n",
+ "m12=(n2*flux2)/i1 #mutual inductance\n",
+ "\n",
+ "print \"m12=\",round(m12,3),\"mH\"\n",
+ "\n",
+ "#assume that 1A of current flows through 200 turns coil\n",
+ "#The self inductance of the coil is determined as above using the matrix and the result is as follows\n",
+ "#[flux1 flux2]=[1.89 3.14]*10**-5 Wb\n",
+ "#Hence self and mutual inductance are computed as follows\n",
+ "\n",
+ "n2=200 #number of turns\n",
+ "flux2=3.14*10**-5 #Wb\n",
+ "i2=1 #A\n",
+ "l2=(n2*flux2)/i2 #self inductance\n",
+ "\n",
+ "print \"l2=\",round(l2,3),\"mH\"\n",
+ "\n",
+ "flux1=1.89*10**-5\n",
+ "m21=(n1*flux1)/i2 #mutual inductance\n",
+ "print \"m21=\",round(m21,3),\"mH\"\n",
+ "\n",
+ "#case b\n",
+ "#When the air gap l3 is closed the reluctance of the limb is zero since the permeability of the magnetic material is infinity.Thus,the limb behaves like short circuit and the entire flux passes through it.Thus,the flux linking 200 turns coil is zero and mutual inductance is zero\n",
+ "\n",
+ "#case 3\n",
+ "\n",
+ "W=((3.5)/2)+((6.3)/2)+2.8 #work equation in joules\n",
+ "print \"Work done=\",round(W,5),\"J\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.9:Page number-174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "i= 7.85 A\n",
+ "l= 0.20382 H\n",
+ "rair= 3184713.3758 AT/Wb\n",
+ "fair= 6369.42675 AT\n",
+ "total mmf= 12602.60675 AT\n",
+ "L= 0.10157 H\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "B=0.8 #Wb/m**2\n",
+ "A=25*10**-4 #m**2\n",
+ "flux=20*10**-4 #Wb\n",
+ "l=3.14*40*10**-2 #m\n",
+ "f=2000*3.14 #AT\n",
+ "n=800 #number of turns\n",
+ "\n",
+ "#case a\n",
+ "i=f/n #A exciting current\n",
+ "\n",
+ "print \"i=\",round(i,3),\"A\"\n",
+ "\n",
+ "l=(n*flux)/i #self inductance in H\n",
+ "\n",
+ "print \"l=\",round(l,5),\"H\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "fluxa=20*10**-4 #Wb\n",
+ "\n",
+ "gap=1*10**-2\n",
+ "u1=4*3.14*10**-7\n",
+ "rair=gap/(u1*A) #reluctance of air in AT/Wb\n",
+ "\n",
+ "print \"rair=\",round(rair,5),\"AT/Wb\"\n",
+ "\n",
+ "fair=rair*flux #mmf for air gap in AT\n",
+ "\n",
+ "print \"fair=\",round(fair,5),\"AT\"\n",
+ "\n",
+ "fcore=6233.18 #AT--> 5000*((0.4*3.14)-0.01)=6233.18\n",
+ "\n",
+ "totmmf=fcore+fair\n",
+ "\n",
+ "print \"total mmf=\",round(totmmf,5),\"AT\"\n",
+ "\n",
+ "I=totmmf/n #A exciting current\n",
+ "\n",
+ "#self inductance\n",
+ "L=(n*flux)/I\n",
+ "print \"L=\",round(L,5),\"H\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.10:Page number-175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lx= 0.01 H\n",
+ "m= 0.015 H\n",
+ "The induced emf in coil Y= 30.0 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "n=2000 #number of turns\n",
+ "flux=0.05*10**-3 #Wb\n",
+ "i=10 #A\n",
+ "\n",
+ "lx=(n*flux)/i #self inductance in X\n",
+ "\n",
+ "print \"lx=\",round(lx,5),\"H\"\n",
+ "\n",
+ "#since coils are identical self inductance in Y=self inductance in x\n",
+ "\n",
+ "fluxlinkingX=0.75*0.05*10**-3 #Wb flux linking due to current in coil X\n",
+ "fluxlinkingY=2000*0.05*0.75*10**-3 #Wb flux linkages in coil Y\n",
+ "\n",
+ "m=fluxlinkingY/5 #mutual inductance\n",
+ "\n",
+ "print \"m=\",round(m,5),\"H\"\n",
+ "\n",
+ "#The rate of change in current di/dt=2000A/sec --> di/dt=(10-(-10))/0.01\n",
+ "\n",
+ "rate=2000\n",
+ "ey=m*rate\n",
+ "\n",
+ "print \"The induced emf in coil Y=\",round(ey,0),\"V\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.11:Page number-175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "k=0.72168\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "#when currents are in same direction the total induction is:\n",
+ "#lt=l1+l2+2m\n",
+ "#when currents are in opposite direction the total emf is:\n",
+ "#lt=l1+l2-2m\n",
+ "#According to this problem\n",
+ "#l1+l2+2m=1.2\n",
+ "#l1+l2-2m=0.2\n",
+ "#Solving the above equations we get l1=0.4H M=0.25H\n",
+ "#on substituting we get l2=0.3H\n",
+ "#k=m/squareroot(l1*l2)\n",
+ "print \"k=0.72168\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.12:Page number-176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "flux 0.0001 Wb\n",
+ "i 0.3125 A\n",
+ "l= 0.08 H\n",
+ "w= 0.00391 J\n",
+ "796.178343949\n",
+ "exciting current= 6.3 A\n",
+ "l= 0.00397 H\n",
+ "e= 0.07881 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "#case a\n",
+ "B=1 #Wb/m**2\n",
+ "A=10**-4 #cm**2\n",
+ "per=800 #permeability\n",
+ "n=250 #number of turns\n",
+ "\n",
+ "flux=B*A\n",
+ "\n",
+ "print \"flux\",round(flux,5),\"Wb\"\n",
+ "\n",
+ "r=781250 #AT/Wb calculated using formula for reluctance\n",
+ "\n",
+ "mmf=flux*r #AT\n",
+ "\n",
+ "i=mmf/n #exciting current required in A\n",
+ "\n",
+ "print \"i\",round(i,5),\"A\"\n",
+ "\n",
+ "l=(n*flux)/i #self inductance of the coil\n",
+ "\n",
+ "print \"l=\",round(l,5),\"H\"\n",
+ "\n",
+ "w=(l*i*i)/2 #energy stored\n",
+ "\n",
+ "print \"w=\",round(w,5),\"J\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "airgap=1*10**-3 #air gap is assumed \n",
+ "rair=airgap/(u1*A) #reluctance of air gap in AT/Wb\n",
+ "mmfa=flux*rair #mmf of air in AT\n",
+ "print mmfa\n",
+ "#rcore=((2.5*3.14)-0.1)/(32*3.14*10**-6) #reluctance of core \n",
+ "#mmfc=flux*rcore\n",
+ "mmfc=780 #AT\n",
+ "F=mmfc+mmfa\n",
+ "\n",
+ "I=F/n #A\n",
+ "\n",
+ "print \"exciting current=\",round(I,2),\"A\"\n",
+ "\n",
+ "n=250 #number of turns\n",
+ "L=(n*flux)/I #self inductanc eof coil with air gap \n",
+ "\n",
+ "print \"l=\",round(L,5),\"H\"\n",
+ "\n",
+ "e=(L*I*I)/2 #energy stored in coil\n",
+ "\n",
+ "print \"e=\",round(e,5),\"J\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example 3.13:Page number:178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "force= 39808.9172 N\n",
+ "W= 796.17834 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "A=10**-1 #area\n",
+ "flux=0.1 #Wb\n",
+ "\n",
+ "#case a\n",
+ "\n",
+ "B=flux/A #flux density Wb/m**2\n",
+ "\n",
+ "u1=4*3.14*10**-7 \n",
+ "F=(B*B*A)/(2*u1) #force in N\n",
+ "print \"force=\",round(F,5),\"N\"\n",
+ "\n",
+ "#case b\n",
+ "\n",
+ "l=10**-2 #length of the air gap\n",
+ "w=(B*B*A*l*2)/(2*u1) #energy stored in two airgaps, 2=air gaps\n",
+ "\n",
+ "print \"W=\",round(w,5),\"J\"\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}