diff options
-rw-r--r-- | hfgd_by_df/ajinkya_HykpzE0.ipynb | 339 | ||||
-rw-r--r-- | hfgd_by_df/screenshots/anshul_AsDoISP.png | bin | 0 -> 75019 bytes | |||
-rw-r--r-- | hfgd_by_df/screenshots/anshul_PV3oNIg.png | bin | 0 -> 75019 bytes | |||
-rw-r--r-- | hfgd_by_df/screenshots/anshul_btLWUZA.png | bin | 0 -> 75019 bytes |
4 files changed, 339 insertions, 0 deletions
diff --git a/hfgd_by_df/ajinkya_HykpzE0.ipynb b/hfgd_by_df/ajinkya_HykpzE0.ipynb new file mode 100644 index 00000000..2d3ace64 --- /dev/null +++ b/hfgd_by_df/ajinkya_HykpzE0.ipynb @@ -0,0 +1,339 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Bonding in Solids" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1,Page number 62" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The binding energy of KCl = 7.10982502818 eV\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", + "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", + "r = 3.147*10**-10; # Nearest neighbour distance for KCl, m\n", + "n = 9.1; # Repulsive exponent of KCl\n", + "A = 1.748; # Madelung constant for lattice binding energy\n", + "E = A*e**2/(4*math.pi*epsilon_0*r)*(n-1)/n/e; # Binding energy of KCl, eV\n", + "print\"The binding energy of KCl = \",round(E,4),\"eV\";\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2,Page number 62" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The binding energy of NaCl = 181.1005 kcal/mol\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "\n", + "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", + "N = 6.023*10**23; # Avogadro's number\n", + "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", + "a0 = 5.63*10**-10; # Lattice parameter of NaCl, m\n", + "r0 = a0/2; # Nearest neighbour distance for NaCl, m\n", + "n = 8.4; # Repulsive exponent of NaCl\n", + "A = 1.748; # Madelung constant for lattice binding energy\n", + "E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n/e; # Binding energy of NaCl, eV\n", + "print\"The binding energy of NaCl = \",round(E*N*e/(4.186*1000),4),\"kcal/mol\" ;\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3,Page number 62" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The nearest neighbour distance of KCl = 3.1376 angstorm\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "\n", + "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", + "N = 6.023*10**23; # Avogadro's number\n", + "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", + "E = 162.9*10**3; # Binding energy of KCl, cal/mol\n", + "n = 8.6; # Repulsive exponent of KCl\n", + "A = 1.747; # Madelung constant for lattice binding energy\n", + "# As lattice binding energy, E = A*e**2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0\n", + "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of KCl, m\n", + "print\"The nearest neighbour distance of KCl = \",round(r0*10**10,4),\"angstorm\";\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4,Page number 63" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The nearest neighbour distance of CsCl = 3.4776 angstrom\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "\n", + "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", + "N = 6.023*10**23; # Avogadro's number\n", + "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", + "E = 152*10**3; # Binding energy of CsCl, cal/mol\n", + "n = 10.6; # Repulsive exponent of CsCl\n", + "A = 1.763; # Madelung constant for lattice binding energy\n", + "\n", + "# As lattice binding energy, E = A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for r0\n", + "r0 = A*N*e**2/(4*pi*epsilon_0*E*4.186)*(n-1)/n; # Nearest neighbour distance of CsCl, m\n", + "print\"The nearest neighbour distance of CsCl = \",round(r0*10**10,4),\"angstrom\";\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5,Page number 63" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "The repulsive exponent of NaI = 0.363\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "\n", + "epsilon_0 = 8.854*10**-12; # Absolute electrical permittivity of free space, F/m\n", + "N = 6.023*10**23; # Avogadro's number\n", + "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", + "r0 = 6.46*10**-10; # Nearest neighbour distance of NaI\n", + "E = 157.1*10**3; # Binding energy of NaI, cal/mol\n", + "A = 1.747; # Madelung constant for lattice binding energy\n", + "\n", + "# As lattice binding energy, E = -A*e**2/(4*pi*epsilon_0*r0)*(n-1)/n, solving for n\n", + "n = 1/(1+(4.186*E*4*pi*epsilon_0*r0)/(N*A*e**2)); # Repulsive exponent of NaI\n", + "print\"\\nThe repulsive exponent of NaI = \",round(n,4);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6,Page number 63" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The compressibility of the solid = 3.329e-01 metre square per newton\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "\n", + "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", + "a0 = 2.8158*10**-10; # Nearest neighbour distance of solid\n", + "A = 1.747; # Madelung constant for lattice binding energy\n", + "n = 8.6; # The repulsive exponent of solid\n", + "c = 2; # Structural factor for rocksalt\n", + "# As n = 1 + (9*c*a0**4)/(K0*e**2*A), solving for K0\n", + "K0 = 9*c*a0**4/((n-1)*e**2*A); # Compressibility of solid, metre square per newton\n", + "print\"The compressibility of the solid = \", \"{0:.3e}\".format(K0),\"metre square per newton\";" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7,Page number 69" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The percentage ionic character present in solid = 22.12 percent \n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "\n", + "chi_diff = 1; # Electronegativity difference between the constituent of elements of solid\n", + "percent_ion = 100*(1-math.e**(-(0.25*chi_diff**2))); # Percentage ionic character present in solid given by Pauling\n", + "print\"The percentage ionic character present in solid = \",round(percent_ion,2),\"percent \";\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8,Page number 69" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The fractional ionicity of GaAs = 0.3126\n", + "The fractional ionicity of CdTe = 0.7168\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#Given Data\n", + "\n", + "Eh_GaAs = 4.3; # Homopolar gap of GaAs compound, eV\n", + "C_GaAs = 2.90; # Ionic gap of GaAs compound, eV\n", + "Eh_CdTe = 3.08; # Homopolar gap of CdTe compound, eV\n", + "C_CdTe = 4.90; # Ionic gap of CdTe compound, eV\n", + "\n", + "fi_GaAs = C_GaAs**2/(Eh_GaAs**2 + C_GaAs**2);\n", + "fi_CdTe = C_CdTe**2/(Eh_CdTe**2 + C_CdTe**2);\n", + "print\"The fractional ionicity of GaAs = \",round(fi_GaAs,4);\n", + "print\"The fractional ionicity of CdTe = \",round(fi_CdTe,4);\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/hfgd_by_df/screenshots/anshul_AsDoISP.png b/hfgd_by_df/screenshots/anshul_AsDoISP.png Binary files differnew file mode 100644 index 00000000..a8cec645 --- /dev/null +++ b/hfgd_by_df/screenshots/anshul_AsDoISP.png diff --git a/hfgd_by_df/screenshots/anshul_PV3oNIg.png b/hfgd_by_df/screenshots/anshul_PV3oNIg.png Binary files differnew file mode 100644 index 00000000..a8cec645 --- /dev/null +++ b/hfgd_by_df/screenshots/anshul_PV3oNIg.png diff --git a/hfgd_by_df/screenshots/anshul_btLWUZA.png b/hfgd_by_df/screenshots/anshul_btLWUZA.png Binary files differnew file mode 100644 index 00000000..a8cec645 --- /dev/null +++ b/hfgd_by_df/screenshots/anshul_btLWUZA.png |