summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Basic_Engineering_Thermodynamics_by_Rayner_Joel/README.txt10
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter1.ipynb164
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter10.ipynb788
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter11.ipynb417
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb364
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter13.ipynb721
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter14.ipynb226
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter2.ipynb1256
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter3.ipynb655
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter4.ipynb161
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter5.ipynb357
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter6.ipynb1649
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter8.ipynb518
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter9.ipynb242
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/1.pngbin0 -> 41350 bytes
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/2.pngbin0 -> 27039 bytes
-rw-r--r--Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/3.pngbin0 -> 28310 bytes
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter2_1.ipynb233
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter3_1.ipynb97
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter4_1.ipynb168
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter6_1.ipynb547
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter7_1.ipynb380
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter8_1.ipynb391
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter9_1.ipynb452
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter2_1.pngbin0 -> 54425 bytes
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter3_1.pngbin0 -> 44455 bytes
-rw-r--r--High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter4_1.pngbin0 -> 50443 bytes
-rw-r--r--Introduction_to_Electrical_Engineering_by_Er._J.P._Navani_&_Er._Sonal_Sapra/README.txt10
28 files changed, 9806 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_Rayner_Joel/README.txt b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/README.txt
new file mode 100644
index 00000000..5ff05007
--- /dev/null
+++ b/Basic_Engineering_Thermodynamics_by_Rayner_Joel/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Chaitanya Potti
+Course: btech
+College/Institute/Organization: IITB
+Department/Designation: Chemical engineering
+Book Title: Basic Engineering Thermodynamics
+Author: Rayner Joel
+Publisher: Pearson, India
+Year of publication: 2014
+Isbn: 978-81-317-1888-9
+Edition: 5 \ No newline at end of file
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter1.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter1.ipynb
new file mode 100644
index 00000000..a67214ab
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter1.ipynb
@@ -0,0 +1,164 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 1: Bonding in Solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 1.1, Page number 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "potential energy is -3.981 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "x=9*10**9; \n",
+ "r0=2.81*10**-10; #equilibrium distance(m)\n",
+ "A=1.748; #madelung constant\n",
+ "n=9; #repulsive exponent value\n",
+ "\n",
+ "#Calculations\n",
+ "U0=-(x*A*e/r0)*(1-1/n); #potential energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"potential energy is\",round(U0/2,3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 1.2, Page number 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ionic cohesive energy is -6.45 eV\n",
+ "atomic cohesive energy is -6.17 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "x=9*10**9; \n",
+ "r0=3.56*10**-10; #equilibrium distance(m)\n",
+ "A=1.763; #madelung constant\n",
+ "n=10.5; #repulsive exponent value\n",
+ "IE=3.89; #ionisation energy(eV)\n",
+ "EA=-3.61; #electron affinity(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "U0=-(x*A*e/r0)*(1-1/n); #ionic cohesive energy(eV)\n",
+ "U=U0+IE+EA; #atomic cohesive energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"ionic cohesive energy is\",round(U0,2),\"eV\"\n",
+ "print \"atomic cohesive energy is\",round(U,2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 1.3, Page number 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "binding energy is 669 *10**3 kJ/kmol\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "N=6.02*10**26; #Avagadro Number\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "x=9*10**9; \n",
+ "r0=0.324*10**-9; #equilibrium distance(m)\n",
+ "A=1.748; #madelung constant\n",
+ "n=9.5; #repulsive exponent value\n",
+ "\n",
+ "#Calculations\n",
+ "U0=(A*e*x/r0)*(1-1/n); \n",
+ "U=round(U0,2)*N*e*10**-3; #binding energy(kJ/kmol)\n",
+ "\n",
+ "#Result\n",
+ "print \"binding energy is\",int(U/10**3),\"*10**3 kJ/kmol\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter10.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter10.ipynb
new file mode 100644
index 00000000..f35b79e3
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter10.ipynb
@@ -0,0 +1,788 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 10: Dielectric Properties"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.1, Page number 276"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permittivity is 5.86\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "P=4.3*10**-8; #polarisation(per cm**2)\n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "E=1000; #electric field(V/m)\n",
+ "\n",
+ "#Calculations\n",
+ "epsilonr=1+(P/(epsilon0*E)); #relative permittivity\n",
+ "\n",
+ "#Result\n",
+ "print \"relative permittivity is\",round(epsilonr,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.2, Page number 276"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electric displacement is 36 *10**-6 C/m**2\n",
+ "polarisation is 27 *10**-6 C/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=4;\n",
+ "epsilon0=9*10**-12; #relative permeability(F/m)\n",
+ "E=10**6; #electric field(V/m)\n",
+ "\n",
+ "#Calculations\n",
+ "D=k*epsilon0*E; #electric displacement(C/m**2)\n",
+ "P=epsilon0*E*(k-1); #polarisation(C/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"electric displacement is\",int(D*10**6),\"*10**-6 C/m**2\"\n",
+ "print \"polarisation is\",int(P*10**6),\"*10**-6 C/m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.3, Page number 277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electric field is 0.113 N/C\n",
+ "polarisation is 4e-12 C/m**2\n",
+ "induced dipole moment is 2e-18 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=5;\n",
+ "epsilon0=8.86*10**-12; #relative permeability(F/m)\n",
+ "D=5*10**-12; #electric displacement(C/m**2)\n",
+ "V=0.5*10**-6;\n",
+ "\n",
+ "#Calculations\n",
+ "E=D/(k*epsilon0); #electric field(N/C)\n",
+ "P=D*(1-(1/k)); #polarisation(C/m**2)\n",
+ "dm=P*V; #induced dipole moment(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"electric field is\",round(E,3),\"N/C\"\n",
+ "print \"polarisation is\",P,\"C/m**2\"\n",
+ "print \"induced dipole moment is\",dm,\"cm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example number 10.4, Page number 277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dipole moment is 2.43 *10**-41 coul x metre\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=1.000074;\n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "E=1; #electric field(N/C)\n",
+ "n=2.69*10**25; #molecular density\n",
+ "\n",
+ "#Calculations\n",
+ "p=epsilon0*E*(k-1)/n; #dipole moment(coulx metre)\n",
+ "\n",
+ "#Result\n",
+ "print \"dipole moment is\",round(p*10**41,2),\"*10**-41 coul x metre\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.5, Page number 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dipole moment is 3.97 *10**-36 coul-metre\n",
+ "atomic polarizability is 4.4 *10**-41 coul-m**2/volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=1.000134;\n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "E=90000; #electric field(N/C)\n",
+ "N=6.023*10**26; #avagadro number\n",
+ "\n",
+ "#Calculations\n",
+ "n=N/22.4;\n",
+ "p=epsilon0*E*(k-1)/n; #dipole moment(coul-metre)\n",
+ "alpha=p/E; #atomic polarizability(coul-m**2/volt)\n",
+ "\n",
+ "#Result\n",
+ "print \"dipole moment is\",round(p*10**36,2),\"*10**-36 coul-metre\"\n",
+ "print \"atomic polarizability is\",round(alpha*10**41,1),\"*10**-41 coul-m**2/volt\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.6, Page number 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electric field is 1.43 *10**3 volt/m\n",
+ "electric displacement is 8.9e-08 C/m**2\n",
+ "dipole moment is 7.6 *10**-8 C/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "k=7;\n",
+ "epsilon0=8.9*10**-12; #relative permeability(F/m)\n",
+ "V0=100; #potential difference(V)\n",
+ "d=10**-2; #displacement(m)\n",
+ "\n",
+ "#Calculations\n",
+ "E0=V0/d; #electric field intensity(volt/m)\n",
+ "E=E0/k; #electric field(N/C)\n",
+ "D=k*E*epsilon0; #electric displacement(C/m**2)\n",
+ "p=epsilon0*E*(k-1); #dipole moment(coul-metre)\n",
+ "\n",
+ "#Result\n",
+ "print \"electric field is\",round(E/10**3,2),\"*10**3 volt/m\"\n",
+ "print \"electric displacement is\",D,\"C/m**2\"\n",
+ "print \"dipole moment is\",round(p*10**8,1),\"*10**-8 C/m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.7, Page number 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant is 5.0\n",
+ "permittivity is 44.25 *10**-12 coul**2/nt-m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "chi=35.4*10**-12; #electric susceptibility(coul**2/nt-m**2)\n",
+ "\n",
+ "#Calculations\n",
+ "k=1+(chi/epsilon0); #dielectric constant\n",
+ "epsilon=epsilon0*k; #permittivity(coul**2/nt-m**2) \n",
+ "\n",
+ "#Result\n",
+ "print \"dielectric constant is\",k\n",
+ "print \"permittivity is\",round(epsilon*10**12,2),\"*10**-12 coul**2/nt-m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.8, Page number 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dipole moment is 2.4437 *10**-41 C/m**2\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "E=100; #electric field(N/C)\n",
+ "epsilonr=1.000074; #dielectric constant\n",
+ "n=2.68*10**27; #density\n",
+ "\n",
+ "#Calculations\n",
+ "p=epsilon0*E*(epsilonr-1)/n; #dipole moment(coul-metre)\n",
+ "\n",
+ "#Result\n",
+ "print \"dipole moment is\",round(p*10**41,4),\"*10**-41 C/m**2\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.9, Page number 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electronic polarizability is 1.6557 *10**-41 Fm**2\n",
+ "relative permittivity is 1.0018\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "R=0.053*10**-9; #radius(nm)\n",
+ "N=9.8*10**26; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "alphae=4*math.pi*epsilon0*R**3; #electronic polarizability(Fm**2)\n",
+ "epsilonr=1+(4*math.pi*N*R**3); #relative permittivity\n",
+ "\n",
+ "#Result\n",
+ "print \"electronic polarizability is\",round(alphae*10**41,4),\"*10**-41 Fm**2\"\n",
+ "print \"relative permittivity is\",round(epsilonr,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.10, Page number 288"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electronic polarizability is 2.242e-41 Fm**2\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "epsilonr=1.0000684; #dielectric constant\n",
+ "N=2.7*10**25; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "alphae=epsilon0*(epsilonr-1)/N; #electronic polarizability(Fm**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"electronic polarizability is\",alphae,\"Fm**2\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.11, Page number 288"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant is 1.339\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.854*10**-12; #relative permeability(F/m)\n",
+ "alphae=10**-40; #dielectric polarizability(Fm**2)\n",
+ "N=3*10**28; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "epsilonr=1+(N*alphae/epsilon0); #dielectric constant\n",
+ "\n",
+ "#Result\n",
+ "print \"dielectric constant is\",round(epsilonr,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.12, Page number 288"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electronic polarizability is 7.9 *10**-40 Fm**2\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #relative permeability(F/m)\n",
+ "epsilonr=1.0024; #dielectric constant\n",
+ "N=2.7*10**25; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "alphae=epsilon0*(epsilonr-1)/N; #electronic polarizability(Fm**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"electronic polarizability is\",round(alphae*10**40,1),\"*10**-40 Fm**2\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.13, Page number 289"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of electron cloud is 5.86 *10**-11 m\n",
+ "displacement is 6.99987 *10**-17 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilonr=1.0000684; #dielectric constant\n",
+ "N=2.7*10**25; #number of atoms\n",
+ "X=1/(9*10**9);\n",
+ "E=10**6; #electric field(V/m)\n",
+ "Z=2; #atomic number\n",
+ "e=1.6*10**-19; #electron charge(coulomb)\n",
+ "\n",
+ "#Calculations\n",
+ "R=((epsilonr-1)/(4*math.pi*N))**(1/3); #radius of electron cloud(m)\n",
+ "x=X*E*R**3/(Z*e); #displacement(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of electron cloud is\",round(R*10**11,2),\"*10**-11 m\"\n",
+ "print \"displacement is\",round(x*10**17,5),\"*10**-17 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.14, Page number 293"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant is 1.38\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #dielectric constant\n",
+ "N=3*10**28; #number of atoms\n",
+ "alphae=10**-40; #dielectric polarizability(Fm**2)\n",
+ "\n",
+ "#Calculations\n",
+ "x=N*alphae/(3*epsilon0);\n",
+ "epsilonr=(1+(2*x))/(1-x); #dielectric constant\n",
+ "\n",
+ "#Result\n",
+ "print \"dielectric constant is\",round(epsilonr,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.15, Page number 294"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant is 3.8\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #dielectric constant\n",
+ "Na=6.023*10**26; #number of atoms\n",
+ "M=32; #atomic mass\n",
+ "alphae=3.28*10**-40; #dielectric polarizability(Fm**2)\n",
+ "rho=2.08*10**3; #density(kg/m**3)\n",
+ "\n",
+ "#Calculations\n",
+ "x=Na*rho*alphae/(M*3*epsilon0);\n",
+ "epsilonr=(1+(2*x))/(1-x); #dielectric constant\n",
+ "\n",
+ "#Result\n",
+ "print \"dielectric constant is\",round(epsilonr,1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.16, Page number 294"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electronic polarizability is 3.29 *10**-40 Fm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilon0=8.85*10**-12; #dielectric constant\n",
+ "Na=6.02*10**26; #number of atoms\n",
+ "epsilonr=3.75; #dielectric constant\n",
+ "M=32; #atomic mass\n",
+ "rho=2050; #density(kg/m**3)\n",
+ "gama=1/3; #internal field constant\n",
+ "\n",
+ "#Calculations\n",
+ "N=Na*rho/M; #number of atoms\n",
+ "alphae=((epsilonr-1)/(epsilonr+2))*(3*epsilon0/N); #electronic polarizability(Fm**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"electronic polarizability is\",round(alphae*10**40,2),\"*10**-40 Fm**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.17, Page number 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio between electronic and ionic polarizability is 1.738\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilonr=4.94; #dielectric constant\n",
+ "n2=2.69;\n",
+ "\n",
+ "#Calculations\n",
+ "x=(epsilonr-1)/(epsilonr+2);\n",
+ "y=(n2-1)/(n2+2);\n",
+ "alpha=1/((x/y)-1); #ratio between electronic and ionic polarizability\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio between electronic and ionic polarizability is\",round(alpha,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 10.18, Page number 296"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage of ionic polarizability is 51.4 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "epsilonr=5.6; #dielectric constant\n",
+ "n=1.5;\n",
+ "\n",
+ "#Calculations\n",
+ "x=(epsilonr+2)/(epsilonr-1);\n",
+ "y=(n**2-1)/(n**2+2);\n",
+ "alpha=(1-(x*y))*100; #percentage of ionic polarizability\n",
+ "\n",
+ "#Result\n",
+ "print \"percentage of ionic polarizability is\",round(alpha,1),\"%\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter11.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter11.ipynb
new file mode 100644
index 00000000..57b9883e
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter11.ipynb
@@ -0,0 +1,417 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 11: Magnetic Properties"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.1, Page number 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permeability is 318.3\n",
+ "susceptibility is 317.3\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "B=0.2; #magnetic induction(web/m**2)\n",
+ "H=500; #magnetic field intensity(amp/m)\n",
+ "\n",
+ "#Calculation\n",
+ "mewr=B/(mew0*H); #relative permeability\n",
+ "chi=mewr-1; #susceptibility\n",
+ "\n",
+ "#Result\n",
+ "print \"relative permeability is\",round(mewr,1)\n",
+ "print \"susceptibility is\",round(chi,1)\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.2, Page number 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permeability is 1.00000000948\n",
+ "absolute permeability is 1.257 *10**-6\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "chi=948*10**-11; #susceptibility\n",
+ "\n",
+ "#Calculation\n",
+ "mewr=1+chi; #relative permeability\n",
+ "mew=mewr*mew0; #absolute permeability\n",
+ "\n",
+ "#Result\n",
+ "print \"relative permeability is\",mewr\n",
+ "print \"absolute permeability is\",round(mew*10**6,3),\"*10**-6\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.3, Page number 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permeability is 2154\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H=6.5*10**-4; #magnetizing force(amp/m)\n",
+ "M=1.4; #magnetic field(T)\n",
+ "\n",
+ "#Calculation\n",
+ "chi=M/H; \n",
+ "mewr=1+chi; #relative permeability\n",
+ "\n",
+ "#Result\n",
+ "print \"relative permeability is\",int(mewr)\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.4, Page number 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative permeability is 16\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H=220; #magnetizing force(amp/m)\n",
+ "M=3300; #magnetic field(T)\n",
+ "\n",
+ "#Calculation\n",
+ "chi=(M/H)+1; #relative permeability\n",
+ "\n",
+ "#Result\n",
+ "print \"relative permeability is\",int(chi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.5, Page number 313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permeability of rod is 0.625 *10**-3 weber/amp.m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H=1600; #magnetizing force(amp/m)\n",
+ "phi=4*10**-4; #flux(weber)\n",
+ "A=4*10**-4; #area(m**2)\n",
+ "\n",
+ "#Calculation\n",
+ "B=phi/A;\n",
+ "mew=B/H; #permeability of rod(weber/amp.m)\n",
+ "\n",
+ "#Result\n",
+ "print \"permeability of rod is\",mew*10**3,\"*10**-3 weber/amp.m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.6, Page number 313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetisation of material is 1.5 *10**3 A/m\n",
+ "flux density is 1.259 T\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H=10**6; #magnetizing force(amp/m)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "chi=1.5*10**-3; #susceptibility\n",
+ "\n",
+ "#Calculation\n",
+ "M=chi*H; #magnetisation of material(A/m)\n",
+ "B=mew0*(M+H); #flux density(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetisation of material is\",M/10**3,\"*10**3 A/m\"\n",
+ "print \"flux density is\",round(B,3),\"T\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.7, Page number 313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "flux density is 2.0 *10**-2 weber/metre**2\n",
+ "magnetic intensity is 32 amp-turn/metre\n",
+ "permeability of ring is 6250.0 *10**-7 weber/amp-metre\n",
+ "relative permeability is 497.4\n",
+ "magnetic susceptibility is 496\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "phi=2*10**-6; #flux(weber)\n",
+ "A=10**-4; #area(m**2)\n",
+ "N=300; #number of turns\n",
+ "l=30*10**-2; #length(m)\n",
+ "i=0.032; #current(ampere)\n",
+ "\n",
+ "#Calculation\n",
+ "B=phi/A; #flux density(weber/metre**2)\n",
+ "n=N/l;\n",
+ "H=n*i; #magnetic intensity(amp-turn/metre)\n",
+ "mew=B/H; #permeability of ring(weber/amp-metre)\n",
+ "mewr=mew/mew0; #relative permeability\n",
+ "chi=mewr-1; #magnetic susceptibility\n",
+ "\n",
+ "#Result\n",
+ "print \"flux density is\",B*10**2,\"*10**-2 weber/metre**2\"\n",
+ "print \"magnetic intensity is\",int(H),\"amp-turn/metre\"\n",
+ "print \"permeability of ring is\",mew*10**7,\"*10**-7 weber/amp-metre\"\n",
+ "print \"relative permeability is\",round(mewr,1)\n",
+ "print \"magnetic susceptibility is\",int(chi)\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.8, Page number 316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic moment is 9.53 *10**-24 A-m**2\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "new=6.5*10**15; #frequency(Hz)\n",
+ "r=0.54*10**-10; #radius(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "\n",
+ "#Calculation\n",
+ "mew_m=e*new*math.pi*r**2; #magnetic moment(A-m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic moment is\",round(mew_m*10**24,2),\"*10**-24 A-m**2\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 11.9, Page number 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bohr's magneton is 9.29 *10**-24 J/T\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.64*10**-34; #plank's constant(Js)\n",
+ "\n",
+ "#Calculation\n",
+ "mewb=e*h/(4*math.pi*m); #bohr's magneton(J/T)\n",
+ "\n",
+ "#Result\n",
+ "print \"bohr's magneton is\",round(mewb*10**24,2),\"*10**-24 J/T\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb
new file mode 100644
index 00000000..cbd461c2
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb
@@ -0,0 +1,364 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 12: Lasers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.1, Page number 360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of photon is 1.96 eV\n",
+ "momentum of photon is 1.05 *10**-27 kg m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "c=3*10**8; #velocity of matter wave(m/s)\n",
+ "h=6.62*10**-34; #plank's constant(Js)\n",
+ "lamda=6328*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E=h*c/(lamda*e); #energy of photon(eV)\n",
+ "p=h/lamda; #momentum of photon(kg m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of photon is\",round(E,2),\"eV\"\n",
+ "print \"momentum of photon is\",round(p*10**27,2),\"*10**-27 kg m/s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.2, Page number 360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of laser pulse is 7.94 joule\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c=3*10**8; #velocity of matter wave(m/s)\n",
+ "h=6.62*10**-34; #plank's constant(Js)\n",
+ "lamda=7000*10**-10; #wavelength(m)\n",
+ "n=2.8*10**19; #number of ions\n",
+ "\n",
+ "#Calculation\n",
+ "E=n*h*c/lamda; #energy of laser pulse(joule)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of laser pulse is\",round(E,2),\"joule\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.3, Page number 361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of oscillations is 5 *10**4\n",
+ "coherence time is 9.82 *10**-11 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c=3*10**8; #velocity of matter wave(m/s)\n",
+ "l=2.945*10**-2;\n",
+ "lamda=5890*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "n=l/lamda; #number of oscillations\n",
+ "tow_c=l/c; #coherence time(s)\n",
+ "\n",
+ "#Result\n",
+ "print \"number of oscillations is\",int(n/10**4),\"*10**4\"\n",
+ "print \"coherence time is\",round(tow_c*10**11,2),\"*10**-11 s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.4, Page number 361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "intensity of beam is 7.5 kW/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "P=10*10**-3; #power(W)\n",
+ "d=1.3*10**-3; #diameter(m)\n",
+ "\n",
+ "#Calculation\n",
+ "I=4*P/(math.pi*d**2); #intensity of beam(W/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"intensity of beam is\",round(I/10**3,1),\"kW/m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.5, Page number 361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of ions is 3.49 *10**18\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c=3*10**8; #velocity of matter wave(m/s)\n",
+ "h=6.62*10**-34; #plank's constant(Js)\n",
+ "lamda=6940*10**-10; #wavelength(m)\n",
+ "P=1; #power(J)\n",
+ "\n",
+ "#Calculation\n",
+ "n=P*lamda/(h*c); #number of ions\n",
+ "\n",
+ "#Result\n",
+ "print \"number of ions is\",round(n/10**18,2),\"*10**18\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.6, Page number 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "population ratio is e** -80\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c=3*10**8; #velocity of matter wave(m/s)\n",
+ "h=6.62*10**-34; #plank's constant(Js)\n",
+ "lamda=6*10**-7; #wavelength(m)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "k=8.6*10**-5;\n",
+ "T=300; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "E=h*c/(lamda*e); #energy(eV)\n",
+ "N=-E/(k*T); #population ratio\n",
+ "\n",
+ "#Result\n",
+ "print \"population ratio is e**\",int(N)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.7, Page number 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "coherence length is 11.36 km\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=10.66*10**-6; #wavelength(m)\n",
+ "delta_lamda=10**-5*10**-9; #line width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "cl=lamda**2/delta_lamda; #coherence length(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"coherence length is\",round(cl/10**3,2),\"km\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 12.8, Page number 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "areal speed is 0.117 *10**-8 m**2\n",
+ "intensity of image is 428.48 *10**5 watt/m**2\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=7000*10**-10; #wavelength(m)\n",
+ "d=5*10**-3; #aperture(m)\n",
+ "f=0.2; #focal length(m)\n",
+ "P=50*10**-3; #power(W)\n",
+ "\n",
+ "#Calculation\n",
+ "d_theta=1.22*lamda/d; #angular speed(radian)\n",
+ "A=(d_theta*f)**2; #areal speed(m**2)\n",
+ "I=P/A; #intensity of image(watt/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"areal speed is\",round(A*10**8,3),\"*10**-8 m**2\"\n",
+ "print \"intensity of image is\",round(I/10**5,2),\"*10**5 watt/m**2\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter13.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter13.ipynb
new file mode 100644
index 00000000..12870058
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter13.ipynb
@@ -0,0 +1,721 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 13: Fibre Optics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.1, Page number 375"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.24413\n",
+ "maximum entrance angle is 14.13 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1.5; #core refractive index\n",
+ "n2=1.48; #cladding refractive index\n",
+ "n=1;\n",
+ "\n",
+ "#Calculations\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "i0=math.asin(NA/n); #maximum entrance angle(radian)\n",
+ "i0=i0*180/math.pi; #maximum entrance angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,5)\n",
+ "print \"maximum entrance angle is\",round(i0,2),\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example number 13.2, Page number 376"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "core refractive index is 1.6025\n",
+ "acceptance angle is 8.6 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n0=1.33; #water refractive index\n",
+ "n2=1.59; #cladding refractive index\n",
+ "NA=0.2; #numerical aperture\n",
+ "\n",
+ "#Calculations\n",
+ "n1=math.sqrt(NA**2+n2**2); #core refractive index \n",
+ "NA=math.sqrt(n1**2-n2**2)/n0; #numerical aperture\n",
+ "i0=math.asin(NA); #acceptance angle(radian)\n",
+ "i0=i0*180/math.pi; #acceptance angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"core refractive index is\",round(n1,4)\n",
+ "print \"acceptance angle is\",round(i0,1),\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.3, Page number 376"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.304\n",
+ "acceptance angle is 17.7 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1.36; #core refractive index\n",
+ "delta=0.025; #relative difference\n",
+ "\n",
+ "#Calculations\n",
+ "NA=n1*math.sqrt(2*delta); #numerical aperture\n",
+ "i0=math.asin(NA); #acceptance angle(radian)\n",
+ "i0=i0*180/math.pi; #acceptance angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,3)\n",
+ "print \"acceptance angle is\",round(i0,1),\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.4, Page number 376"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.3873\n",
+ "acceptance angle is 22.79 degrees\n",
+ "critical angle is 75.16 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1.5; #core refractive index\n",
+ "n2=1.45; #cladding refractive index\n",
+ "\n",
+ "#Calculations\n",
+ "delta=(n1-n2)/n1; #relative difference\n",
+ "NA=n1*math.sqrt(2*delta); #numerical aperture\n",
+ "i0=math.asin(NA); #acceptance angle(radian)\n",
+ "i0=i0*180/math.pi; #acceptance angle(degrees)\n",
+ "theta_c=math.asin(n2/n1); #critical angle(radian)\n",
+ "theta_c=theta_c*180/math.pi; #critical angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,4)\n",
+ "print \"acceptance angle is\",round(i0,2),\"degrees\"\n",
+ "print \"critical angle is\",round(theta_c,2),\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.5, Page number 377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "core refractive index is 1.42\n",
+ "cladding refractive index is 1.407\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "NA=0.22; #numerical aperture\n",
+ "delta=0.012; #relative difference\n",
+ "\n",
+ "#Calculations\n",
+ "N=1-delta;\n",
+ "n1=math.sqrt(NA**2/(1-N**2)); #core refractive index\n",
+ "n2=N*n1; #cladding refractive index\n",
+ "\n",
+ "#Result\n",
+ "print \"core refractive index is\",round(n1,2)\n",
+ "print \"cladding refractive index is\",round(n2,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.6, Page number 377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "acceptance angle is 23.6 degrees\n",
+ "critical angle is 81.9 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "NA=0.40; #numerical aperture\n",
+ "delta=1/100; #relative difference\n",
+ "\n",
+ "#Calculations\n",
+ "i0=math.asin(NA); #acceptance angle(radians)\n",
+ "i0=i0*180/math.pi; #acceptance angle(degrees)\n",
+ "N=1-delta;\n",
+ "thetac=math.asin(N); #critical angle(radians)\n",
+ "thetac=thetac*180/math.pi; #critical angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"acceptance angle is\",round(i0,1),\"degrees\"\n",
+ "print \"critical angle is\",round(thetac,1),\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.7, Page number 378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "core refractive index is 1.5\n",
+ "cladding refractive index is 1.3\n",
+ "numerical aperture is 0.75\n",
+ "answer for numerical aperture varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "vf=3*10**8; #velocity of light in free space(m/s)\n",
+ "vc=2*10**8; #velocity of light in core(m/s)\n",
+ "thetac=60*math.pi/180; #critical angle(radians)\n",
+ "\n",
+ "#Calculations\n",
+ "n1=vf/vc; #core refractive index\n",
+ "n2=n1*math.sin(thetac); #cladding refractive index\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "\n",
+ "#Result\n",
+ "print \"core refractive index is\",n1\n",
+ "print \"cladding refractive index is\",round(n2,1)\n",
+ "print \"numerical aperture is\",NA\n",
+ "print \"answer for numerical aperture varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.8, Page number 378"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.3905\n",
+ "acceptance angle is 23.0 degrees\n",
+ "critical angle is 75.4 degrees\n",
+ "number of reflections per metre is 5206\n",
+ "answer for number of reflections in the textbook is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "n1=1.55; #core refractive index\n",
+ "n2=1.50; #cladding refractive index\n",
+ "d=50*10**-6; #core diameter(micro m)\n",
+ "\n",
+ "#Calculations\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "i0=math.asin(NA); #acceptance angle(radians)\n",
+ "i0=i0*180/math.pi; #acceptance angle(degrees)\n",
+ "thetac=math.asin(n2/n1); #critical angle(radians)\n",
+ "theta_c=thetac*180/math.pi; #critical angle(degrees)\n",
+ "x=d*math.tan(thetac);\n",
+ "n=1/x; #number of reflections per metre \n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,4)\n",
+ "print \"acceptance angle is\",round(i0),\"degrees\"\n",
+ "print \"critical angle is\",round(theta_c,1),\"degrees\"\n",
+ "print \"number of reflections per metre is\",int(n)\n",
+ "print \"answer for number of reflections in the textbook is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.9, Page number 379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.375\n",
+ "critical angle is 75.93 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "delta=0.03; #relative difference\n",
+ "i0=22*math.pi/180; #acceptance angle(radians)\n",
+ "\n",
+ "#Calculations\n",
+ "NA=math.sin(i0); #numerical aperture\n",
+ "N=1-delta;\n",
+ "thetac=math.asin(N); #critical angle(radians)\n",
+ "theta_c=thetac*180/math.pi; #critical angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,3)\n",
+ "print \"critical angle is\",round(theta_c,2),\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.10, Page number 379"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of light in fibre core is 2.48 *10**8 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "delta=0.0045; #relative difference\n",
+ "i0=0.115; #acceptance angle(radians)\n",
+ "v=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "NA=math.sin(i0); #numerical aperture\n",
+ "n1=NA/math.sqrt(2*delta); #core refractive index\n",
+ "vcore=v/n1; #velocity of light in fibre core(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of light in fibre core is\",round(vcore/10**8,3),\"*10**8 m/s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.11, Page number 381"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "diameter of core is 3.79 *10**-6 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=2.405; #V-number\n",
+ "lamda=8500*10**-10; #wavelength(m)\n",
+ "n1=1.48; #core refractive index\n",
+ "n2=1.47; #cladding refractive index\n",
+ "\n",
+ "#Calculations\n",
+ "d=V*lamda/(math.pi*math.sqrt(n1**2-n2**2)); #diameter of core(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"diameter of core is\",round(d*10**6,2),\"*10**-6 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.12, Page number 381"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum radius for fibre is 3.76 micro m\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=2.405; #V-number\n",
+ "lamda=1300*10**-3; #wavelength(micro m)\n",
+ "n1=1.466; #core refractive index\n",
+ "n2=1.46; #cladding refractive index\n",
+ "\n",
+ "#Calculations\n",
+ "r=V*lamda/(2*math.pi*math.sqrt(n1**2-n2**2)); #maximum radius for fibre(micro m)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum radius for fibre is\",round(r,2),\"micro m\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.13, Page number 381"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "diameter of fibre core is 91.5 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=1.3; #wavelength(micro m)\n",
+ "n1=1.5; #core refractive index\n",
+ "Nm=1100; #number of modes\n",
+ "delta=0.01; #refractive index difference\n",
+ "\n",
+ "#Calculations\n",
+ "d=lamda*math.sqrt(Nm/delta)/(math.pi*n1); #diameter of fibre core(micro m)\n",
+ "\n",
+ "#Result\n",
+ "print \"diameter of fibre core is\",round(d,1),\"micro m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.14, Page number 382"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of guided modes is 459.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda=1.1*10**-6; #wavelength(m)\n",
+ "r=60/2*10**-6; #radius(m)\n",
+ "NA=0.25; #numerical aperture\n",
+ "\n",
+ "#Calculations\n",
+ "V=2*math.pi*r*NA/lamda; \n",
+ "Nm=V**2/4; #number of guided modes\n",
+ "\n",
+ "#Result\n",
+ "print \"number of guided modes is\",round(Nm)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.15, Page number 387"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fibre loss is 12.0412 dB/km\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "L=500/1000; #length(km)\n",
+ "P0byPi=25/100; #optical power\n",
+ "\n",
+ "#Calculations\n",
+ "dB=-10*math.log10(P0byPi)/L; #fibre loss(dB/km)\n",
+ "\n",
+ "#Result\n",
+ "print \"fibre loss is\",round(dB,4),\"dB/km\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 13.16, Page number 387"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output power is 2.005 micro W\n",
+ "answer given in the textbook is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "L=10; #length(km)\n",
+ "dB=2.3; #fibre loss(dB/km)\n",
+ "Pi=400; #input power(micro W)\n",
+ "\n",
+ "#Calculations\n",
+ "P0=10**(-dB*L/10)*Pi; #output power(micro W)\n",
+ "\n",
+ "#Result\n",
+ "print \"output power is\",round(P0,3),\"micro W\"\n",
+ "print \"answer given in the textbook is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter14.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter14.ipynb
new file mode 100644
index 00000000..e4dadc87
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter14.ipynb
@@ -0,0 +1,226 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 14: Acoustics of Buildings and Acoustic Quieting"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 14.1, Page number 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total absorption in hall is 825.0 OWU\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=7500; #volume(m**3)\n",
+ "T=1.5; #time(sec)\n",
+ "\n",
+ "#Calculations\n",
+ "aS=0.165*V/T; #total absorption in hall(OWU)\n",
+ "\n",
+ "#Result\n",
+ "print \"total absorption in hall is\",aS,\"OWU\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 14.2, Page number 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "reverberation time when hall is empty is 2.08 sec\n",
+ "reverberation time with full capacity of audience is 0.362 sec\n",
+ "reverberation time with audience in cushioned chairs is 0.42 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=1500; #volume(m**3)\n",
+ "A1=112; #area of plastered walls(m**2)\n",
+ "A2=130; #area of wooden floor(m**2)\n",
+ "A3=170; #area of plastered ceiling(m**2)\n",
+ "A4=20; #area of wooden door(m**2)\n",
+ "n=100; #number of cushioned chairs\n",
+ "A5=120; #area of audience(m**2)\n",
+ "C1=0.03; #coefficient of absorption in plastered walls\n",
+ "C2=0.06; #coefficient of absorption in wooden floor\n",
+ "C3=0.04; #coefficient of absorption in plastered ceiling\n",
+ "C4=0.06; #coefficient of absorption in wooden door\n",
+ "C5=1.0; #coefficient of absorption in cushioned chairs\n",
+ "C6=4.7; #coefficient of absorption in audience\n",
+ "\n",
+ "#Calculations\n",
+ "a1=A1*C1; #absorption due to plastered walls\n",
+ "a2=A2*C2; #absorption due to wooden floor\n",
+ "a3=A3*C3; #absorption due to plastered ceiling\n",
+ "a4=A4*C4; #absorption due to wooden door\n",
+ "a5=n*C5; #absorption due to cushioned chairs\n",
+ "a6=A5*C6; #absorption due to audience \n",
+ "aS=a1+a2+a3+a4+a5; #total absorption in hall\n",
+ "T1=0.165*V/aS; #reverberation time when hall is empty(sec)\n",
+ "T2=0.165*V/(aS+a6); #reverberation time with full capacity of audience(sec)\n",
+ "T3=0.165*V/((n*C6)+aS); #reverberation time with audience in cushioned chairs(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"reverberation time when hall is empty is\",round(T1,2),\"sec\"\n",
+ "print \"reverberation time with full capacity of audience is\",round(T2,3),\"sec\"\n",
+ "print \"reverberation time with audience in cushioned chairs is\",round(T3,2),\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 14.3, Page number 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average sound absorption coefficient is 0.24\n",
+ "reverberation time is 1.8 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "V=1200; #volume(m**3)\n",
+ "a1=220; #area of wall(m**2)\n",
+ "a2=120; #area of floor(m**2)\n",
+ "a3=120; #area of ceiling(m**2)\n",
+ "C1=0.03; #coefficient of absorption in wall\n",
+ "C2=0.80; #coefficient of absorption in floor\n",
+ "C3=0.06; #coefficient of absorption in ceiling\n",
+ "\n",
+ "#Calculations\n",
+ "A1=a1*C1; #absorption due to plastered walls\n",
+ "A2=a2*C2; #absorption due to wooden floor\n",
+ "A3=a3*C3; #absorption due to plastered ceiling\n",
+ "aS=a1+a2+a3; #total absorption in hall\n",
+ "abar=(A1+A2+A3)/aS; #average sound absorption coefficient\n",
+ "AS=abar*aS; #total absorption of room(metric sabines)\n",
+ "T=0.165*V/AS; #reverberation time(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"average sound absorption coefficient is\",round(abar,2)\n",
+ "print \"reverberation time is\",round(T,1),\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 14.4, Page number 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "acoustic power is 1.4e-06 watt\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "I0=10**-12; #standard intensity level(watt/m**2)\n",
+ "A=1.4; #area(m**2)\n",
+ "il=60; #intensity level(decibels)\n",
+ "\n",
+ "#Calculations\n",
+ "x=10**(il/10);\n",
+ "I=x*10**-12; #intensity level(watt/m**2)\n",
+ "Ap=I*A; #acoustic power(watt)\n",
+ "\n",
+ "#Result\n",
+ "print \"acoustic power is\",Ap,\"watt\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter2.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter2.ipynb
new file mode 100644
index 00000000..6819c543
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter2.ipynb
@@ -0,0 +1,1256 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 2: Crystal Structure "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.1, Page number 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "volume density is 1249.04 kg/m**3\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "M=28; #atomic weight of Si\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "a=5.3*10**-10; #lattice constant(m)\n",
+ "n=4;\n",
+ "\n",
+ "#Calculations\n",
+ "V=a**3; #volume(m**3)\n",
+ "m=M/(N*10**3); #mass(kg)\n",
+ "rho=n*m/V; #volume density(kg/m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"volume density is\",round(rho,2),\"kg/m**3\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.2, Page number 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of atoms per unit cell is 2\n",
+ "the lattice is BCC\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "M=55.85; #atomic weight\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "a=2.9*10**-8; #lattice constant(m)\n",
+ "rho=7.87; #volume density(gm/cc)\n",
+ "\n",
+ "#Calculations\n",
+ "n=rho*N*a**3/M; #number of atoms per unit cell\n",
+ "\n",
+ "#Result\n",
+ "print \"number of atoms per unit cell is\",int(n)\n",
+ "print \"the lattice is BCC\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.3, Page number 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of unit cells is 5.019 *10**22\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "M=120; #atomic mass\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "n=2;\n",
+ "g=20; #mass(gm)\n",
+ "\n",
+ "#Calculations\n",
+ "u=n*M/N; \n",
+ "nu=g/u; #number of unit cells\n",
+ "\n",
+ "#Result\n",
+ "print \"number of unit cells is\",round(nu/10**22,3),\"*10**22\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.4, Page number 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices are ( 2 1 0 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "from fractions import gcd\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=1;\n",
+ "b=2;\n",
+ "c=float(\"inf\"); #intercepts\n",
+ "\n",
+ "#Calculation\n",
+ "lcm=a*b/gcd(a,b);\n",
+ "h=int(lcm/a);\n",
+ "k=int(lcm/b);\n",
+ "l=int(lcm/c); #miller indices\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices are (\",h,k,l,\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.5, Page number 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices are ( 3 2 1 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "from fractions import gcd\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=2;\n",
+ "b=3;\n",
+ "c=6; #intercepts\n",
+ "\n",
+ "#Calculation\n",
+ "lcm_ab=a*b/gcd(a,b); #lcm of a and b\n",
+ "lcm=lcm_ab*c/gcd(lcm_ab,c); #lcm of a,b and c\n",
+ "h=int(lcm/a);\n",
+ "k=int(lcm/b);\n",
+ "l=int(lcm/c); #miller indices\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices are (\",h,k,l,\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.6, Page number 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices are ( 3 4 0 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "from fractions import gcd\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=4;\n",
+ "b=3;\n",
+ "c=float(\"inf\"); #intercepts\n",
+ "\n",
+ "#Calculation\n",
+ "lcm=a*b/gcd(a,b);\n",
+ "h=int(lcm/a);\n",
+ "k=int(lcm/b);\n",
+ "l=int(lcm/c); #miller indices\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices are (\",h,k,l,\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.7, Page number 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of intercepts is 6 -2 3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "from fractions import gcd\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=1;\n",
+ "k=-3;\n",
+ "l=2; #miller indices\n",
+ "\n",
+ "#Calculation\n",
+ "lcm_hk=h*k/gcd(h,k); #lcm of h and k\n",
+ "lcm=lcm_hk*l/gcd(lcm_hk,l); #lcm of h,k and l\n",
+ "l1=int(lcm/h);\n",
+ "l2=int(lcm/k);\n",
+ "l3=int(lcm/l); #intercepts\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of intercepts is\",l1,l2,l3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.8, Page number 34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "intercept on Y axis is 1.2 angstrom\n",
+ "intercept on Z axis is 4.0 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1.2;\n",
+ "b=1.8;\n",
+ "c=2.0; #crystal primitives\n",
+ "x=2;\n",
+ "y=3;\n",
+ "z=1; #intercepts \n",
+ "h=1.2; #intercept on X axis\n",
+ "\n",
+ "#Calculations\n",
+ "h1=a/x;\n",
+ "k1=b/y;\n",
+ "l1=c/z;\n",
+ "k=h*h1/k1; #intercept on Y axis\n",
+ "l=h*l1/h1; #intercept on Z-axis\n",
+ "\n",
+ "#Result\n",
+ "print \"intercept on Y axis is\",k,\"angstrom\"\n",
+ "print \"intercept on Z axis is\",l,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.9, Page number 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing in 1st plane is 1.762 angstrom\n",
+ "interplanar spacing in 2nd plane is 1.246 angstrom\n",
+ "interplanar spacing in 3rd plane is 2.0347 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r=1.246; #atomic radius(angstrom)\n",
+ "h1=2; #intercept on X axis\n",
+ "k1=0; #intercept on Y axis\n",
+ "l1=0; #intercept on Z-axis\n",
+ "h2=2; #intercept on X axis\n",
+ "k2=2; #intercept on Y axis\n",
+ "l2=0; #intercept on Z-axis\n",
+ "h3=1; #intercept on X axis\n",
+ "k3=1; #intercept on Y axis\n",
+ "l3=1; #intercept on Z-axis\n",
+ "\n",
+ "#Calculations\n",
+ "a=2*math.sqrt(2)*r; #lattice constant\n",
+ "d1=a/math.sqrt(h1**2+k1**2+l1**2); #interplanar spacing in 1st plane(angstrom)\n",
+ "d2=a/math.sqrt(h2**2+k2**2+l2**2); #interplanar spacing in 2nd plane(angstrom)\n",
+ "d3=a/math.sqrt(h3**2+k3**2+l3**2); #interplanar spacing in 3rd plane(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing in 1st plane is\",round(d1,3),\"angstrom\"\n",
+ "print \"interplanar spacing in 2nd plane is\",d2,\"angstrom\"\n",
+ "print \"interplanar spacing in 3rd plane is\",round(d3,4),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.10, Page number 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing in 1st plane is a/math.sqrt( 2 ) angstrom\n",
+ "interplanar spacing in 2nd plane is a/math.sqrt( 2 ) angstrom\n",
+ "interplanar spacing in 3rd plane is a/math.sqrt( 6 ) angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h1=0; #intercept on X axis\n",
+ "k1=1; #intercept on Y axis\n",
+ "l1=1; #intercept on Z-axis\n",
+ "h2=1; #intercept on X axis\n",
+ "k2=0; #intercept on Y axis\n",
+ "l2=1; #intercept on Z-axis\n",
+ "h3=1; #intercept on X axis\n",
+ "k3=1; #intercept on Y axis\n",
+ "l3=2; #intercept on Z-axis\n",
+ "\n",
+ "#Calculations\n",
+ "d1=h1**2+k1**2+l1**2; #interplanar spacing in 1st plane(angstrom)\n",
+ "d2=h2**2+k2**2+l2**2; #interplanar spacing in 2nd plane(angstrom)\n",
+ "d3=h3**2+k3**2+l3**2; #interplanar spacing in 3rd plane(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing in 1st plane is a/math.sqrt(\",d1,\") angstrom\"\n",
+ "print \"interplanar spacing in 2nd plane is a/math.sqrt(\",d2,\") angstrom\"\n",
+ "print \"interplanar spacing in 3rd plane is a/math.sqrt(\",d3,\") angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.11, Page number 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing is 1.12 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=4.2; #lattice constant(angstrom)\n",
+ "h=3; #intercept on X axis\n",
+ "k=2; #intercept on Y axis\n",
+ "l=1; #intercept on Z-axis\n",
+ "\n",
+ "#Calculations\n",
+ "d=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing is\",round(d,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.12, Page number 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "miller indices in 1st case are ( 1 1 1 )\n",
+ "miller indices in 2nd case are ( 3 2 1 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "from fractions import gcd\n",
+ "\n",
+ "#Variable declaration\n",
+ "a1=1;\n",
+ "b1=1;\n",
+ "c1=1; #intercepts in 1st case\n",
+ "a2=2;\n",
+ "b2=3;\n",
+ "c2=6; #intercepts in 2nd case\n",
+ "\n",
+ "#Calculation\n",
+ "lcm_a1b1=a1*b1/gcd(a1,b1); #lcm of a1 and b1\n",
+ "lcm1=lcm_ab*c1/gcd(lcm_a1b1,c1); #lcm of a1,b1 and c1\n",
+ "h1=int(lcm1/a1);\n",
+ "k1=int(lcm1/b1);\n",
+ "l1=int(lcm1/c1); #miller indices in 1st case\n",
+ "lcm_a2b2=a2*b2/gcd(a2,b2); #lcm of a2 and b2\n",
+ "lcm2=lcm_a2b2*c2/gcd(lcm_a2b2,c2); #lcm of a2,b2 and c2\n",
+ "h2=int(lcm2/a2);\n",
+ "k2=int(lcm2/b2);\n",
+ "l2=int(lcm2/c2); #miller indices in 2nd case\n",
+ "\n",
+ "#Result\n",
+ "print \"miller indices in 1st case are (\",h1,k1,l1,\")\"\n",
+ "print \"miller indices in 2nd case are (\",h2,k2,l2,\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.14, Page number 47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of crystal is 8.929 gm/cm**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "M=63.5; #atomic weight(gm/mol)\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "r=1.278*10**-8; #atomic radius(cm)\n",
+ "n=4;\n",
+ "\n",
+ "#Calculations\n",
+ "m=M/N; #mass(g)\n",
+ "a=4*r/math.sqrt(2); #lattice constant(cm)\n",
+ "V=a**3; #volume(m**3)\n",
+ "rho=n*m/V; #density of crystal(g/cm**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of crystal is\",round(rho,3),\"gm/cm**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.15, Page number 47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum radius is 0.155 r\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r=1; #assume\n",
+ "\n",
+ "#Calculations\n",
+ "a=4*r/math.sqrt(3); #lattice constant\n",
+ "R=(a-(2*r))/2; #minimum radius \n",
+ "\n",
+ "#Result\"\n",
+ "print \"minimum radius is\",round(R,3),\"r\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.16, Page number 48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum radius is 0.414 r\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r=1; #assume\n",
+ "\n",
+ "#Calculations\n",
+ "a=4*r/math.sqrt(2); #lattice constant\n",
+ "R=(a/2)-r; #maximum radius \n",
+ "\n",
+ "#Result\"\n",
+ "print \"maximum radius is\",round(R,3),\"r\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.17, Page number 48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percent volume change is 0.5 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "r1=1.258*10**-10; #atomic radius(m)\n",
+ "r2=1.292*10**-10; #atomic radius(m)\n",
+ "n1=2;\n",
+ "n2=4;\n",
+ "\n",
+ "#Calculations\n",
+ "a1=4*r1/math.sqrt(3); #lattice constant(m)\n",
+ "V1=a1**3/n1; #volume(m**3)\n",
+ "a2=2*math.sqrt(2)*r2; #lattice constant(m)\n",
+ "V2=a2**3/n2; #volume(m**3)\n",
+ "V=(V1-V2)*100/V1; #percent volume change\n",
+ "\n",
+ "#Result\"\n",
+ "print \"percent volume change is\",round(V,1),\"%\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.18, Page number 51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of atoms is 1.77 *10**29\n",
+ "density of diamond is 3535.7 kg/m**3\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=0.356*10**-9; #cube edge(m)\n",
+ "M=12.01; #atomic weight\n",
+ "N=6.023*10**26; #avagadro number\n",
+ "\n",
+ "#Calculations\n",
+ "n=8/a**3; #number of atoms\n",
+ "m=M/N; #mass(kg)\n",
+ "rho=m*n; #density of diamond(kg/m**3)\n",
+ "\n",
+ "#Result\"\n",
+ "print \"number of atoms is\",round(n/10**29,2),\"*10**29\"\n",
+ "print \"density of diamond is\",round(rho,1),\"kg/m**3\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.19, Page number 54 Theoritical"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.20, Page number 55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "volume of unit cell is 9.356 *10**-29 m**3\n",
+ "density of zinc is 6960 kg/m**3\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=0.27*10**-9; #lattice constant(m)\n",
+ "c=0.494*10**-9; #height of cell(m)\n",
+ "M=65.37; #atomic weight\n",
+ "N=6.023*10**26; #avagadro number\n",
+ "n=6; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "V=3*math.sqrt(3)*a**2*c/2; #volume of unit cell(m**3)\n",
+ "rho=n*M/(N*V); #density of zinc(kg/m**3)\n",
+ "\n",
+ "#Result\"\n",
+ "print \"volume of unit cell is\",round(V*10**29,3),\"*10**-29 m**3\"\n",
+ "print \"density of zinc is\",int(rho),\"kg/m**3\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.21, Page number 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of Si is 2.33 gm/cm**3\n",
+ "density of GaAs is 5.324 gm/cm**3\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "a1=5.43*10**-8; #lattice constant(cm)\n",
+ "M1=28.1; #atomic weight\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "n1=8; #number of atoms\n",
+ "a2=5.65*10**-8; #lattice constant(cm)\n",
+ "M2=144.6; #atomic weight\n",
+ "n2=4; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "rho1=n1*M1/(N*a1**3); #density of Si(gm/cm**3)\n",
+ "rho2=n2*M2/(N*a2**3); #density of GaAs(gm/cm**3)\n",
+ "\n",
+ "#Result\"\n",
+ "print \"density of Si is\",round(rho1,2),\"gm/cm**3\"\n",
+ "print \"density of GaAs is\",round(rho2,3),\"gm/cm**3\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.22, Page number 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant is 4 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "rho=6250; #density(kg/m**3)\n",
+ "M=60.2; #molecular weight\n",
+ "N=6.02*10**26; #avagadro number\n",
+ "n=4; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant is\",int(a*10**10),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.23, Page number 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of copper is 8938 kg/m**3\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.278*10**-8; #atomic radius(cm)\n",
+ "M=63.54; #molecular weight\n",
+ "N=6.02*10**23; #avagadro number\n",
+ "n=4; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=4*r/math.sqrt(2); #lattice constant(cm)\n",
+ "rho=n*M*10**3/(N*a**3); #density(kg/m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of copper is\",int(rho),\"kg/m**3\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.24, Page number 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant is 2.867 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=7870; #density(kg/m**3)\n",
+ "M=55.8; #molecular weight\n",
+ "N=6.02*10**26; #avagadro number\n",
+ "n=2; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant is\",round(a*10**10,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.25, Page number 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "radius of atom is 1.414 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=6.23; #density(gm/cc)\n",
+ "M=60; #molecular weight\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "n=4; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n",
+ "r=a*math.sqrt(2)*10**8/4; #radius of atom(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"radius of atom is\",round(r,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.26, Page number 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between ions is 3.8 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=2.48; #density(gm/cc)\n",
+ "M=58; #molecular weight\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "n=4; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n",
+ "r=a*math.sqrt(2)*10**8/4; #radius of atom(angstrom)\n",
+ "d=2*r; #distance between ions(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"distance between ions is\",round(d,1),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.27, Page number 59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between ions is 2.55 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=8.96; #density(gm/cc)\n",
+ "M=63.5; #molecular weight\n",
+ "N=6.02*10**23; #avagadro number\n",
+ "n=4; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n",
+ "d=a/math.sqrt(2)*10**8; #distance between ions(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"distance between ions is\",round(d,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.28, Page number 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "packing factor is 0.68\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=5.96; #density(gm/cc)\n",
+ "M=50; #molecular weight\n",
+ "N=6.023*10**23; #avagadro number\n",
+ "n=2; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n",
+ "r=a*math.sqrt(3)/4; #radius of atom(angstrom)\n",
+ "pf=n*(4/3)*math.pi*r**3/a**3; #packing factor\n",
+ "\n",
+ "#Result\n",
+ "print \"packing factor is\",round(pf,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.29, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "packing fraction is 68 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=1; #assume\n",
+ "n=2; #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "r=a*math.sqrt(3)/4; #radius of atom\n",
+ "V=4*math.pi*r**3/3; #volume\n",
+ "f=n*V*100/a**3; #packing fraction\n",
+ "\n",
+ "#Result\n",
+ "print \"packing fraction is\",int(f),\"%\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 2.30, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice constant is 3.22 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vd=3*10**22; #density(gm/cc)\n",
+ "n=8*(1/8); #number of atoms\n",
+ "\n",
+ "#Calculations\n",
+ "a=(n/Vd)**(1/3); #lattice constant(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant is\",round(a*10**8,2),\"angstrom\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter3.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter3.ipynb
new file mode 100644
index 00000000..8e4123db
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter3.ipynb
@@ -0,0 +1,655 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 3: X-ray Diffraction"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example number 3.1, Page number 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 0.97938 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2.82*10**-10; #lattice spacing(m)\n",
+ "theta=10; #glancing angle(degree)\n",
+ "n=1; #order\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "lamda=2*d*math.sin(theta)/n; #wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",round(lamda*10**10,5),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.2, Page number 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 1.262 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=3.035*10**-10; #lattice spacing(m)\n",
+ "theta=12; #glancing angle(degree)\n",
+ "n=1; #order\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "lamda=2*d*math.sin(theta)/n; #wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",round(lamda*10**10,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.3, Page number 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelengths are 1.464 angstrom and 1.6525 angstrom\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2.81; #lattice spacing(angstrom)\n",
+ "theta1=15.1; #glancing angle(degree)\n",
+ "theta2=17.1; #glancing angle(degree)\n",
+ "\n",
+ "#Calculation\n",
+ "theta1=theta1*math.pi/180; #angle(radian)\n",
+ "lamda1=2*d*math.sin(theta1); #wavelength(angstrom)\n",
+ "theta2=theta2*math.pi/180; #angle(radian)\n",
+ "lamda2=2*d*math.sin(theta2); #wavelength(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelengths are\",round(lamda1,3),\"angstrom and\",round(lamda2,4),\"angstrom\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.4, Page number 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "separation between lattice planes is 4.035 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=1.54; #wavelength(angstrom)\n",
+ "theta=11; #glancing angle(degree)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "d=lamda/(2*math.sin(theta)); #separation between lattice planes(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"separation between lattice planes is\",round(d,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.5, Page number 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 1.84 angstrom\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamdaB=0.92; #wavelength(angstrom)\n",
+ "theta1=30; #glancing angle(degree)\n",
+ "theta2=60; #glancing angle(degree)\n",
+ "\n",
+ "#Calculation\n",
+ "theta1=theta1*math.pi/180; #angle(radian)\n",
+ "theta2=theta2*math.pi/180; #angle(radian)\n",
+ "lamdaA=2*lamdaB*math.sin(theta1)/math.sin(theta1); #wavelength of line A(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",lamdaA,\"angstrom\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.6, Page number 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "debroglie wavelength is 0.7406 *10**-10 metre\n",
+ "velocity is 9.793 *10**6 m/sec\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=0.4086*10**-10; #lattice spacing(m)\n",
+ "theta=65; #glancing angle(degree)\n",
+ "h=6.6*10**-34; #plank's constant(Js)\n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "n=1;\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "lamda=2*d*math.sin(theta)/n; #debroglie wavelength(m)\n",
+ "v=h/(m*lamda); #velocity(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"debroglie wavelength is\",round(lamda*10**10,4),\"*10**-10 metre\"\n",
+ "print \"velocity is\",round(v/10**6,3),\"*10**6 m/sec\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.7, Page number 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "longest wavelength is 5.64 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2.82*10**-10; #lattice spacing(m)\n",
+ "sintheta=1; \n",
+ "n=1;\n",
+ "\n",
+ "#Calculation\n",
+ "lamda_max=2*d*sintheta/n; #longest wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"longest wavelength is\",lamda_max*10**10,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.8, Page number 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "glancing angle is 26.599 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=0.842*10**-10; #lattice spacing(m)\n",
+ "theta1=8+(35/60); #glancing angle(degree)\n",
+ "n1=1; #order\n",
+ "n2=3; #order\n",
+ "\n",
+ "#Calculation\n",
+ "theta1=theta1*math.pi/180; #angle(radian)\n",
+ "theta3=math.asin(n2*math.sin(theta1)); #glancing angle(radian)\n",
+ "theta3=theta3*180/math.pi; #glancing angle(degree)\n",
+ "\n",
+ "#Result\n",
+ "print \"glancing angle is\",round(theta3,3),\"degree\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.9, Page number 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing is 1.804 angstrom\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=0.58; #wavelength(angstrom)\n",
+ "theta1=6+(45/60); #glancing angle(degree)\n",
+ "theta2=9+(15/60); #glancing angle(degree)\n",
+ "theta3=13; #glancing angle(degree)\n",
+ "\n",
+ "#Calculation\n",
+ "theta1=theta1*math.pi/180; #angle(radian)\n",
+ "theta2=theta2*math.pi/180; #angle(radian)\n",
+ "theta3=theta3*math.pi/180; #angle(radian)\n",
+ "x1=lamda/(2*math.sin(theta1));\n",
+ "x2=lamda/(2*math.sin(theta2));\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing is\",round(x2,3),\"angstrom\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.10, Page number 83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice spacing is 2.7882 angstrom\n",
+ "avagadro number is 6.2337 *10**26 mol/k-mole\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=1.3922; #wavelength(angstrom)\n",
+ "n=1;\n",
+ "theta=14+(27/60)+(26/(60*60)); #glancing angle(degree)\n",
+ "M=58.454; #molecular weight\n",
+ "rho=2163; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "d=n*lamda/(2*math.sin(theta)); #lattice spacing(angstrom)\n",
+ "d_m=d*10**-10; #lattice spacing(m)\n",
+ "N=M/(2*rho*d_m**3); #avagadro number(mol/k-mole)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice spacing is\",round(d,4),\"angstrom\"\n",
+ "print \"avagadro number is\",round(N/10**26,4),\"*10**26 mol/k-mole\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.11, Page number 84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of angles of incidence are 0.104 : 0.2108 : 0.3123 which is nothing but 1.0 : 2.0 : 3.0\n",
+ "angles of incidence should be 1st, 2nd and 3rd orders\n",
+ "spacing is 2.804 *10**-10 m\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=0.586*10**-10; #wavelength(m)\n",
+ "theta1=5+(58/60); #glancing angle(degree)\n",
+ "theta2=12+(10/60); #glancing angle(degree)\n",
+ "theta3=18+(12/60); #glancing angle(degree)\n",
+ "\n",
+ "#Calculation\n",
+ "theta1=theta1*math.pi/180; #angle(radian)\n",
+ "theta2=theta2*math.pi/180; #angle(radian)\n",
+ "theta3=theta3*math.pi/180; #angle(radian)\n",
+ "x1=math.sin(theta1);\n",
+ "x2=math.sin(theta2);\n",
+ "x3=math.sin(theta3);\n",
+ "d1=lamda/(2*math.sin(theta1)); #spacing for 1st order(m)\n",
+ "d2=2*lamda/(2*math.sin(theta2)); #spacing for 2nd order(m)\n",
+ "d3=3*lamda/(2*math.sin(theta3)); #spacing for 3rd order(m)\n",
+ "d=(d1+d2+d3)/3; #spacing(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of angles of incidence are\",round(x1,3),\":\",round(x2,4),\":\",round(x3,4),\"which is nothing but\",round(x1,1)*10,\":\",round(x2,1)*10,\":\",round(x3,1)*10\n",
+ "print \"angles of incidence should be 1st, 2nd and 3rd orders\"\n",
+ "print \"spacing is\",round(d*10**10,3),\"*10**-10 m\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.12, Page number 84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of angles of incidence are 0 : 1.413 : 1.744\n",
+ "the crystal is a simple cubic crystal\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "theta1=5+(23/60); #glancing angle(degree)\n",
+ "theta2=7+(37/60); #glancing angle(degree)\n",
+ "theta3=9+(25/60); #glancing angle(degree)\n",
+ "\n",
+ "#Calculation\n",
+ "theta1=theta1*math.pi/180; #angle(radian)\n",
+ "theta2=theta2*math.pi/180; #angle(radian)\n",
+ "theta3=theta3*math.pi/180; #angle(radian)\n",
+ "x1=math.sin(theta1);\n",
+ "X1=1/(10*x1);\n",
+ "x2=math.sin(theta2)/x1;\n",
+ "x3=math.sin(theta3)/x1;\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of angles of incidence are\",int(x1),\":\",round(x2,3),\":\",round(x3,3)\n",
+ "print \"the crystal is a simple cubic crystal\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.13, Page number 85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "spacing of crystal is 0.38 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.62*10**-34; #planck's constant(J sec)\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9*10**-31; #mass(kg) \n",
+ "E=344; #energy(volts)\n",
+ "n=1;\n",
+ "theta=60; #angle(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/math.sqrt(2*m*e*E); #wavelength(m)\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "d=n*lamda*10**10/(2*math.sin(theta)); #spacing of crystal(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"spacing of crystal is\",round(d,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 3.14, Page number 85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "lattice parameter is 4.1 angstrom\n",
+ "radius of atom is 1.45 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=2;\n",
+ "k=2;\n",
+ "l=0;\n",
+ "n=1;\n",
+ "theta=32; #angle(degrees)\n",
+ "lamda=1.54*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "d=n*lamda*10**10/(2*math.sin(theta)); #spacing of crystal(angstrom)\n",
+ "a=d*math.sqrt(h**2+k**2+l**2); #lattice parameter(angstrom)\n",
+ "r=a/(2*math.sqrt(2)); #radius of atom(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"lattice parameter is\",round(a,1),\"angstrom\"\n",
+ "print \"radius of atom is\",round(r,2),\"angstrom\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter4.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter4.ipynb
new file mode 100644
index 00000000..8059dc45
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter4.ipynb
@@ -0,0 +1,161 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 4: Defects in Crystals"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Example number 4.1, Page number 97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fraction of vacancy sites at 1000 C is 8.4663 *10**-7\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T1=773; #temperature(K)\n",
+ "T2=1273; #temperature(K)\n",
+ "n=1*10**-10; #fraction of vacancy sites\n",
+ "\n",
+ "#Calculations\n",
+ "X=round(T1*math.log(n)/T2,3);\n",
+ "x=math.exp(X); #fraction of vacancy sites at 1000 C\n",
+ "\n",
+ "#Result\n",
+ "print \"fraction of vacancy sites at 1000 C is\",round(x*10**7,4),\"*10**-7\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 4.2, Page number 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy required is 1.971 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T=273+25; #temperature(K)\n",
+ "m=4; \n",
+ "n=5*10**11; #density(per m**3)\n",
+ "V=(2*2.82*10**-10)**3; #volume(m**3)\n",
+ "kB=8.625*10**-5;\n",
+ "\n",
+ "#Calculations\n",
+ "N=m/V;\n",
+ "Ep=2*kB*T*math.log(N/n);\n",
+ "\n",
+ "#Result\n",
+ "print \"energy required is\",round(Ep,3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 4.3, Page number 99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of frenkel defects is 2.802 *10**-3\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T1=273+20; #temperature(K)\n",
+ "T2=273+300; #temperature(K)\n",
+ "Ei=1.4; #energy(eV)\n",
+ "kB=8.625*10**-5;\n",
+ "\n",
+ "#Calculations\n",
+ "x=(1/(2*T1))-(1/(2*T2));\n",
+ "n=1/math.exp((Ei/(2.303*kB))*x); #ratio of frenkel defects\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of frenkel defects is\",round(n*10**3,3),\"*10**-3\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter5.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter5.ipynb
new file mode 100644
index 00000000..f109b167
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter5.ipynb
@@ -0,0 +1,357 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 5: Elements of Statistical Mechanics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.1, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature is 5959 K\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "b=2.92*10**-3; #value of b(mK)\n",
+ "lamda=4900*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "T=b/lamda; #temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature is\",int(T),\"K\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.2, Page number 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature is 5454 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T=1500; #temperature(K)\n",
+ "lamda=5500; #wavelength(m)\n",
+ "lamda_m=20000; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "T_dash=lamda_m*T/lamda; #temperature of sun(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature is\",int(T_dash),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.3, Page number 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 48283 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T=327+273; #temperature(K)\n",
+ "b=2.897*10**-3; #value of b(mK)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_m=b/T; #wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",int(lamda_m*10**10),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.4, Page number 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 2.92 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T=10**7; #temperature(K)\n",
+ "b=0.292; #value of b(cmK)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_m=b/T; #wavelength(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",lamda_m*10**8,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.5, Page number 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature of moon is 200 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T=1127+273; #temperature(K)\n",
+ "lamda_m=2*10**-6; #wavelength(m)\n",
+ "lamda=14*10**-6; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "Tm=lamda_m*T/lamda; #temperature of moon(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature of moon is\",int(Tm),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.6, Page number 131"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature of sun is 6097 K\n",
+ "temperature of moon is 207 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "lamda_m=4753*10**-10; #wavelength(m)\n",
+ "lamda=14*10**-6; #wavelength(m)\n",
+ "b=0.2898*10**-2; #value of constant(mK)\n",
+ "\n",
+ "#Calculations\n",
+ "Ts=b/lamda_m; #temperature of sun(K) \n",
+ "Tm=b/lamda; #temperature of moon(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature of sun is\",int(Ts),\"K\"\n",
+ "print \"temperature of moon is\",int(Tm),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.7, Page number 140"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum kinetic energy is 6.48 *10**4 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9*10**-31; #mass(kg)\n",
+ "h=6.624*10**-34; #plank's constant(Js)\n",
+ "n=5.86*10**28; #density(electrons/m**3)\n",
+ "k=8.6*10**-5;\n",
+ "\n",
+ "#Calculations\n",
+ "ef=(h**2/(8*m))*(3*n/math.pi)**(2/3); #energy(J)\n",
+ "ef=ef/e; #energy(eV)\n",
+ "theta_f=ef/k; #maximum kinetic energy(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum kinetic energy is\",round(theta_f/10**4,2),\"*10**4 K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 5.8, Page number 140"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "fermi energy is 3.187 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "m=9*10**-31; #mass(kg)\n",
+ "h=6.62*10**-34; #plank's constant(Js)\n",
+ "rho=970; #density(kg/m**3)\n",
+ "N0=6.02*10**26; #avagadro number\n",
+ "A=23; #atomic weight\n",
+ "\n",
+ "#Calculations\n",
+ "n=rho*N0/A; #concentration(electrons/m**3)\n",
+ "ef=(h**2/(8*m))*(3*n/math.pi)**(2/3); #fermi energy(J)\n",
+ "ef=ef/e; #fermi energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"fermi energy is\",round(ef,3),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter6.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter6.ipynb
new file mode 100644
index 00000000..c9abc449
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter6.ipynb
@@ -0,0 +1,1649 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 6: Principles of Quantum Mechanics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.1, Page number 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-broglie wavelength of ball is 6.625e-34 m\n",
+ "de-broglie wavelength of proton is 1.8 angstrom\n",
+ "de-broglie wavelength of electron is 2.27 *10**14 m\n",
+ "answer for de-broglie wavelength of electron in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.625*10**-34; #planck's constant(J-sec)\n",
+ "m=0.05; #mass(kg)\n",
+ "v=20; #velocity(m/sec)\n",
+ "mp=1.67*10**-27; #mass of proton(kg)\n",
+ "vp=2200; #velocity of proton(m/sec)\n",
+ "me=9.11*10**-31; #mass of electron(kg)\n",
+ "E=10*1.602*10**-19; #kinetic energy(J)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_ball=h/(m*v); #de-broglie wavelength of ball(m)\n",
+ "lamda_p=h*10**10/(mp*vp); #de-broglie wavelength of proton(angstrom)\n",
+ "lamda_e=h/(2*me*E); #de-broglie wavelength of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-broglie wavelength of ball is\",lamda_ball,\"m\"\n",
+ "print \"de-broglie wavelength of proton is\",round(lamda_p,2),\"angstrom\"\n",
+ "print \"de-broglie wavelength of electron is\",round(lamda_e/10**14,2),\"*10**14 m\"\n",
+ "print \"answer for de-broglie wavelength of electron in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.2, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-broglie wavelength in 1st case is 1.225 angstrom\n",
+ "de-broglie wavelength in 2nd case is 0.1225 angstrom\n",
+ "de-broglie wavelength in 3rd case is 0.153 angstrom\n",
+ "de-broglie wavelength in 4th case is 0.1225 angstrom\n",
+ "de-broglie wavelength in 5th case is 0.3963 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "m=1.673*10**-27; #mass of proton(kg)\n",
+ "v=10**4; #velocity of proton(m/sec)\n",
+ "V1=100; #potential difference in 1st case(V)\n",
+ "V2=10000; #potential difference in 2nd case(V)\n",
+ "V3=6400; #potential difference in 3rd case(V)\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "lamda1=12.25/math.sqrt(V1) #de-broglie wavelength in 1st case(angstrom)\n",
+ "lamda2=12.25/math.sqrt(V2) #de-broglie wavelength in 2nd case(angstrom)\n",
+ "lamda3=12.25/math.sqrt(V3) #de-broglie wavelength in 3rd case(angstrom)\n",
+ "lamda4=12.25/math.sqrt(V2) #de-broglie wavelength in 4th case(angstrom)\n",
+ "lamda5=h/(m*v); #de-broglie wavelength of proton(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-broglie wavelength in 1st case is\",lamda1,\"angstrom\"\n",
+ "print \"de-broglie wavelength in 2nd case is\",lamda2,\"angstrom\"\n",
+ "print \"de-broglie wavelength in 3rd case is\",round(lamda3,3),\"angstrom\"\n",
+ "print \"de-broglie wavelength in 4th case is\",lamda4,\"angstrom\"\n",
+ "print \"de-broglie wavelength of proton is\",round(lamda5*10**10,4),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.3, Page number 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-broglie wavelength of proton is 2.64 *10**-14 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant(J-sec)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "vc=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "v=vc/20; #velocity of proton(m/sec)\n",
+ "lamda=h/(m*v); #de-broglie wavelength of proton(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-14 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.4, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of neutron is 8.13 *10**-2 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.60*10**-34; #planck's constant(J-sec)\n",
+ "m=1.674*10**-27; #mass of proton(kg)\n",
+ "lamda=10**-10; #de-broglie wavelength(m)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(2*m*lamda**2); #energy of neutron(J)\n",
+ "E=E/e; #energy of neutron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of neutron is\",round(E*10**2,2),\"*10**-2 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.5, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy of electron is 167217.6 eV\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "lamda=3*10**-12; #de-broglie wavelength(m)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(2*m*lamda**2); #energy of electron(J)\n",
+ "E=E/e; #energy of electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of electron is\",round(E,1),\"eV\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.6, Page number 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "kinetic energy of electron is 4.34 *10**-6 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "lamda=5896*10**-10; #de-broglie wavelength(m)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculations\n",
+ "K=h**2/(2*m*lamda**2); #energy of electron(J)\n",
+ "K=K/e; #kinetic energy of electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"kinetic energy of electron is\",round(K*10**6,2),\"*10**-6 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.7, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage is 934.9 V\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "lamda=0.4*10**-10; #de-broglie wavelength(m)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculations\n",
+ "V=h**2/(2*m*e*lamda**2); #voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print \"voltage is\",round(V,1),\"V\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.8, Page number 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity of neutron is 3.97 *10**3 m/sec\n",
+ "kinetic energy of neutron is 0.08225 eV\n",
+ "answer for kinetic energy in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "m=1.67*10**-27; #mass of neutron(kg)\n",
+ "lamda=10**-10; #de-broglie wavelength(m)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculations\n",
+ "v=h/(m*lamda); #velocity of neutron(m/sec)\n",
+ "E=m*v**2/(2*e); #kinetic energy of neutron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of neutron is\",round(v/10**3,2),\"*10**3 m/sec\"\n",
+ "print \"kinetic energy of neutron is\",round(E,5),\"eV\"\n",
+ "print \"answer for kinetic energy in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.9, Page number 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of photon is 12.4 angstrom\n",
+ "wavelength of electron is 0.39 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "E=1000; #energy of electron(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda_p=h*c*10**10/(E*e); #wavelength of photon(angstrom)\n",
+ "lamda_e=h*10**10/math.sqrt(2*m*E*e); #wavelength of electron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of photon is\",round(lamda_p,1),\"angstrom\"\n",
+ "print \"wavelength of electron is\",round(lamda_e,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.10, Page number 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of photo-electron is 0.1 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "lamda=0.82*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculations\n",
+ "E=h*c/lamda; #energy(J)\n",
+ "lamda=h*10**10/math.sqrt(2*m*E); #wavelength of photo-electron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of photo-electron is\",round(lamda,1),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.11, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of electron is 0.0242 angstrom\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/(m*c); #wavelength of electron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of electron is\",round(lamda,4),\"angstrom\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.12, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-broglie wavelength of neutron is 2.86 *10**-18 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.625*10**-34; #planck's constant(J-sec)\n",
+ "m=1.675*10**-27; #mass of neutron(kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "E=10**14; #energy of neutron(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "v=math.sqrt(2*E*e/m); #velocity(m/sec)\n",
+ "lamda=h/(m*v); #de-broglie wavelength of neutron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-broglie wavelength of neutron is\",round(lamda*10**18,2),\"*10**-18 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.13, Page number 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-broglie wavelength of neutron is 7.998 *10**-15 m\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.625*10**-34; #planck's constant(J-sec)\n",
+ "m=1.675*10**-27; #mass of neutron(kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "E=12.8*10**6; #energy of neutron(eV)\n",
+ "\n",
+ "#Calculations\n",
+ "v=math.sqrt(2*E*e/m); #velocity(m/sec)\n",
+ "lamda=h/(m*v); #de-broglie wavelength of neutron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-broglie wavelength of neutron is\",round(lamda*10**15,3),\"*10**-15 m\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.14, Page number 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de-broglie wavelength of proton is 0.0004 angstrom\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "mp=1836*m; #mass of photon(kg)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculations\n",
+ "E=m*c**2; #energy(J)\n",
+ "v=math.sqrt(2*E/mp); #velocity(m/sec)\n",
+ "lamda=h*10**10/(mp*v); #de-broglie wavelength of proton(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"de-broglie wavelength of proton is\",round(lamda,4),\"angstrom\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.15, Page number 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of thermal neutron is 1.777 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.60*10**-34; #planck's constant(J-sec)\n",
+ "m=1.67*10**-27; #mass of neutron(kg)\n",
+ "k=8.6*10**-5; #boltzmann constant(eV/deg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "T=300; #temperature(K)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=h*10**10/math.sqrt(2*m*k*e*T); #wavelength of thermal neutron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of thermal neutron is\",round(lamda,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.16, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing is 1.78 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant(J-sec)\n",
+ "mn=1.67*10**-27; #mass of neutron(kg)\n",
+ "k=1.38*10**-23; #boltzmann constant(eV/deg)\n",
+ "T=300; #temperature(K)\n",
+ "\n",
+ "#Calculations\n",
+ "E=k*T; #energy(J)\n",
+ "p=math.sqrt(2*mn*E); #momentum\n",
+ "d=h*10**10/p; #interplanar spacing(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing is\",round(d,2),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.17, Page number 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing is 0.38 angstrom\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant(J-sec)\n",
+ "m=9*10**-31; #mass of neutron(kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "V=344; #potential difference(V)\n",
+ "theta=60*math.pi/180; #angle(radian)\n",
+ "\n",
+ "#Calculations\n",
+ "d=h*10**10/(2*math.sin(theta)*math.sqrt(2*m*e*V)); #interplanar spacing(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing is\",round(d,2),\"angstrom\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.18, Page number 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 1.65e-24 kg m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "deltax=4*10**-10; #uncertainity in position of electron(m)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_px=h/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",delta_px,\"kg m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.19, Page number 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position of electron is 0.02418 m\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "v=600; #speed(m/sec)\n",
+ "a=0.005/100; #accuracy(%)\n",
+ "\n",
+ "#Calculations\n",
+ "deltav=v*a; #uncertainity in speed(kg m/sec)\n",
+ "delta_px=m*deltav; #uncertainity in momentum(kg m/sec)\n",
+ "deltax=h/delta_px; #uncertainity in position of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position of electron is\",round(deltax,5),\"m\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.20, Page number 172 Theoritical "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.21, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in momentum is 6.63e-23 kg m/sec\n",
+ "uncertainity in velocity is 7.286 *10**7 m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "m0=9.1*10**-31; #mass of electron(kg)\n",
+ "deltax=0.1*10**-10; #uncertainity in position of electron(m)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_p=h/deltax; #uncertainity in momentum(kg m/sec)\n",
+ "delta_v=delta_p/m0; #uncertainity in velocity(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum is\",delta_p,\"kg m/sec\"\n",
+ "print \"uncertainity in velocity is\",round(delta_v/10**7,3),\"*10**7 m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.22, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in velocity is 1835\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "me=9.10*10**-31; #mass of electron(kg)\n",
+ "mp=1.67*10**-27; #mass of electron(kg)\n",
+ "\n",
+ "#Calculations\n",
+ "uv=mp/me; #uncertainity in velocity\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in velocity is\",int(uv)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.23, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "smallest possible uncertainity in position of electron is 0.019 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant(J-sec)\n",
+ "m0=9*10**-31; #mass of electron(kg)\n",
+ "v=3*10**7; #velocity of electron(m/sec)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "deltax_min=h*10**10*math.sqrt(1-(v**2/c**2))/(4*math.pi*m0*v); #smallest possible uncertainity in position of electron(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"smallest possible uncertainity in position of electron is\",round(deltax_min,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.24, Page number 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in velocity of electron is 7.3 *10**5 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "m=9*10**-31; #mass of electron(kg)\n",
+ "deltax_max=10*10**-10; #length of box(m)\n",
+ "\n",
+ "#Calculations\n",
+ "deltavx_min=h/(deltax_max*m); #minimum uncertainity in velocity of electron(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in velocity of electron is\",round(deltavx_min/10**5,1),\"*10**5 m/s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.25 Page number 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "time required is 1.9 *10**-8 second\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "dlamda=10**-4*10**-10; #width(m)\n",
+ "lamda=6000*10**-10; #wavelength(m)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_t=lamda**2/(2*math.pi*c*dlamda); #time required(second)\n",
+ "\n",
+ "#Result\n",
+ "print \"time required is\",round(delta_t*10**8,1),\"*10**-8 second\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.26 Page number 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position of electron is 1.6903 *10**-8 m\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "v=3.5*10**7; #speed(cm/sec)\n",
+ "a=0.0098/100; #accuracy(%)\n",
+ "\n",
+ "#Calculations\n",
+ "deltav=v*a; #uncertainity in speed(kg m/sec)\n",
+ "delta_p=m*deltav; #uncertainity in momentum(kg m/sec)\n",
+ "deltax=h/(4*math.pi*delta_p); #uncertainity in position of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position of electron is\",round(deltax*10**8,4),\"*10**-8 m\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.27 Page number 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in position of dust particle is 9.58 *10**-10 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.62*10**-34; #planck's constant(J-sec)\n",
+ "m=10**-6; #mass of electron(kg)\n",
+ "deltav=5.5*10**-20; #speed(m/sec)\n",
+ "\n",
+ "#Calculations\n",
+ "delta_p=m*deltav; #uncertainity in momentum(kg m/sec)\n",
+ "deltax=h/(4*math.pi*delta_p); #uncertainity in position of dust particle(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in position of dust particle is\",round(deltax*10**10,2),\"*10**-10 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.28 Page number 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "uncertainity in energy is 3.3 *10**-4 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "delta_t=10**-12; #life time(s)\n",
+ "hby2pi=1.054*10**-34; \n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculations\n",
+ "deltaE=hby2pi/(2*e*delta_t); #uncertainity in energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in energy is\",round(deltaE*10**4,1),\"*10**-4 eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.29 Page number 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum uncertainity in frequency is 8.0 *10**6 s-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "delta_t=10**-8; #life time(s)\n",
+ "\n",
+ "#Calculations\n",
+ "deltav=1/(4*math.pi*delta_t); #minimum uncertainity in frequency(s-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum uncertainity in frequency is\",round(deltav/10**6),\"*10**6 s-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.30 Page number 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum energy is 13.18997 keV\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "delta_t=2.5*10**-14*10**-6; #life time(s)\n",
+ "\n",
+ "#Calculations\n",
+ "deltaE=h*10**-3/(4*math.pi*delta_t*e); #minimum energy(keV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum energy is\",round(deltaE,5),\"keV\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.31 Page number 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "least energy is 37.649 eV\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "e=1.602*10**-19; #charge of electron(c)\n",
+ "L=10**-10; #width(m)\n",
+ "m=9.11*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "E1=h**2/(8*m*e*L**2); #least energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"least energy is\",round(E1,3),\"eV\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.32 Page number 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1st least energy is 6 eV\n",
+ "2nd least energy is 24 eV\n",
+ "3rd least energy is 54 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "L=2.5*10**-10; #width(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "n3=3;\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(8*m*e*L**2); #energy(eV)\n",
+ "E1=n1**2*h**2/(8*m*e*L**2); #1st least energy(eV)\n",
+ "E2=n2**2*h**2/(8*m*e*L**2); #2nd least energy(eV)\n",
+ "E3=n3**2*h**2/(8*m*e*L**2); #3rd least energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"1st least energy is\",int(E1),\"eV\"\n",
+ "print \"2nd least energy is\",int(E2),\"eV\"\n",
+ "print \"3rd least energy is\",int(E3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.33 Page number 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength in 1st energy state is 20 angstrom\n",
+ "wavelength in 2nd energy state is 10 angstrom\n",
+ "wavelength in 3rd energy state is 6.67 angstrom\n",
+ "1st least energy is 0.38 eV\n",
+ "2nd least energy is 1.5095 eV\n",
+ "3rd least energy is 3.396 eV\n",
+ "answers for 2nd and 3rd least energies varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "L=10**-9; #width(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "n3=3;\n",
+ "\n",
+ "#Calculations\n",
+ "lamda1=2*L*10**10/n1; #wavelength in 1st energy state(angstrom)\n",
+ "lamda2=2*L*10**10/n2; #wavelength in 2nd energy state(angstrom)\n",
+ "lamda3=2*L*10**10/n3; #wavelength in 3rd energy state(angstrom)\n",
+ "E=h**2/(8*m*e*L**2); #energy(eV)\n",
+ "E1=n1**2*h**2/(8*m*e*L**2); #1st least energy(eV)\n",
+ "E2=n2**2*h**2/(8*m*e*L**2); #2nd least energy(eV)\n",
+ "E3=n3**2*h**2/(8*m*e*L**2); #3rd least energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength in 1st energy state is\",int(lamda1),\"angstrom\"\n",
+ "print \"wavelength in 2nd energy state is\",int(lamda2),\"angstrom\"\n",
+ "print \"wavelength in 3rd energy state is\",round(lamda3,2),\"angstrom\"\n",
+ "print \"1st least energy is\",round(E1,2),\"eV\"\n",
+ "print \"2nd least energy is\",round(E2,4),\"eV\"\n",
+ "print \"3rd least energy is\",round(E3,3),\"eV\"\n",
+ "print \"answers for 2nd and 3rd least energies varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.34 Page number 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1st least energy is 37.69 eV\n",
+ "2nd least energy is 150 eV\n",
+ "energy difference between ground state and 1st excited state is 113.08 eV\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.626*10**-34; #planck's constant(J-sec)\n",
+ "e=1.60*10**-19; #charge of electron(c)\n",
+ "L=10**-10; #width(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(8*m*e*L**2); #energy(eV)\n",
+ "E1=n1**2*h**2/(8*m*e*L**2); #1st least energy(eV)\n",
+ "E2=n2**2*h**2/(8*m*e*L**2); #2nd least energy(eV)\n",
+ "Ed=E2-E1; #energy difference between ground state and 1st excited state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"1st least energy is\",round(E1,2),\"eV\"\n",
+ "print \"2nd least energy is\",int(E2),\"eV\"\n",
+ "print \"energy difference between ground state and 1st excited state is\",round(Ed,2),\"eV\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.35 Page number 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1st least energy is 3.4 *10**-45 eV\n",
+ "2nd least energy is 13.6 *10**-45 eV\n",
+ "3rd least energy is 30.6 *10**-45 eV\n",
+ "energy levels are so close to each other that the energy states cannot be observed\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.6*10**-34; #planck's constant(J-sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "L=10**-1; #width(m)\n",
+ "m=10**-2; #mass of electron(kg)\n",
+ "n1=1;\n",
+ "n2=2;\n",
+ "n3=3;\n",
+ "\n",
+ "#Calculations\n",
+ "E=h**2/(8*m*e*L**2); #energy(eV)\n",
+ "E1=n1**2*h**2/(8*m*e*L**2); #1st least energy(eV)\n",
+ "E2=n2**2*h**2/(8*m*e*L**2); #2nd least energy(eV)\n",
+ "E3=n3**2*h**2/(8*m*e*L**2); #3rd least energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"1st least energy is\",round(E1*10**45,1),\"*10**-45 eV\"\n",
+ "print \"2nd least energy is\",round(E2*10**45,1),\"*10**-45 eV\"\n",
+ "print \"3rd least energy is\",round(E3*10**45,1),\"*10**-45 eV\"\n",
+ "print \"energy levels are so close to each other that the energy states cannot be observed\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.36 Page number 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "mass of particle is 9.3 *10**-31 kg\n",
+ "quantum state is 10.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "h=6.63*10**-34; #planck's constant(J-sec)\n",
+ "e=1.602*10**-19; #charge of electron(c)\n",
+ "L=0.2*10**-9; #width(m)\n",
+ "n5=5;\n",
+ "En=10**3; #energy(eV)\n",
+ "E5=230; #energy of particle(eV)\n",
+ "\n",
+ "#Calculations2\n",
+ "E5=230*e; #energy(J)\n",
+ "E1=E5/n5**2; #energy in 1st state(J)\n",
+ "m=h**2/(8*E1*L**2); #mass of particle(kg)\n",
+ "n=math.sqrt(En*e/E1); #quantum state\n",
+ "\n",
+ "#Result\n",
+ "print \"mass of particle is\",round(m*10**31,1),\"*10**-31 kg\"\n",
+ "print \"quantum state is\",round(n,1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.37 Page number 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "probability of finding the particle is 0.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "L=25*10**-10; #width(m)\n",
+ "deltax=5*10**-10; #interval(m)\n",
+ "\n",
+ "#Calculations2\n",
+ "P=2*deltax/L; #probability of finding the particle\n",
+ "\n",
+ "#Result\n",
+ "print \"probability of finding the particle is\",P"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 6.38 Page number 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "probability of finding the particle is 0.0161 a**2\n",
+ "expectation value of position of particle is 0.25 a**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "from scipy.integrate import quad\n",
+ "\n",
+ "#Variable declaration \n",
+ "a=1; #assume\n",
+ "\n",
+ "#Calculations2\n",
+ "def zintg(x):\n",
+ " return (a*x)**2 \n",
+ "\n",
+ "P=quad(zintg,0.35,0.45)[0] #probability of finding the particle\n",
+ "\n",
+ "def zintg(x):\n",
+ " return x*(a*x)**2 \n",
+ "\n",
+ "X=quad(zintg,0,1)[0] #expectation value of position of particle\n",
+ "\n",
+ "#Result\n",
+ "print \"probability of finding the particle is\",round(P,4),\"a**2\"\n",
+ "print \"expectation value of position of particle is\",X,\"a**2\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter8.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter8.ipynb
new file mode 100644
index 00000000..a109c8d1
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter8.ipynb
@@ -0,0 +1,518 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 8: Semiconductor Physics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.1, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of density of electrons is 0.227\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=2.5*10**19; #concentration(per m**3)\n",
+ "d=4.4*10**28; #density(per m**3)\n",
+ "n=4*10**8; #number of Ge atoms\n",
+ "\n",
+ "#Calculation\n",
+ "Na=d/n; #density of acceptor atoms\n",
+ "np=ni**2/Na; \n",
+ "npbyni=np/ni; #ratio of density of electrons\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of density of electrons is\",round(npbyni,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.2, Page number 230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hole concentration is 1.44e+16 holes/m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=2.4*10**19; #concentration(per m**3)\n",
+ "d=4*10**28; #density(per m**3)\n",
+ "n=10**6; #number of Ge atoms\n",
+ "\n",
+ "#Calculation\n",
+ "Nd=d/n; #density of acceptor atoms\n",
+ "np=ni**2/Nd; #hole concentration(holes/m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"hole concentration is\",np,\"holes/m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.3, Page number 230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of holes and electrons is 3.352 *10**19 per m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "kb=1.38*10**-23; #boltzmann constant\n",
+ "T=300; #temperature(K)\n",
+ "h=6.62*10**-34; #planck's constant\n",
+ "Eg=0.7; #band gap(eV)\n",
+ "e=1.6*10**-19; #charge(c)\n",
+ "\n",
+ "#Calculation\n",
+ "x=2*math.pi*me*kb*T/(h**2); \n",
+ "n=2*(x**(3/2))*math.exp(-Eg*e/(2*kb*T)); #density of holes and electrons(per m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of holes and electrons is\",round(n/10**19,3),\"*10**19 per m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.4, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "position of Fermi level is 0.35 eV\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "kb=1.38*10**-23; #boltzmann constant\n",
+ "T=300; #temperature(K)\n",
+ "m=6;\n",
+ "Eg=0.7; #band gap(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "x=3*kb*T*math.log(m)/4;\n",
+ "EF=(Eg/2)+x; #position of Fermi level(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"position of Fermi level is\",EF,\"eV\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.5, Page number 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "position of Fermi level is 0.33 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T1=300; #temperature(K)\n",
+ "T2=330; #temperature(K)\n",
+ "E=0.3; #band gap(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "Ec_Ef=T2*E/T1; #position of Fermi level(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"position of Fermi level is\",Ec_Ef,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.6, Page number 239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall coefficient is 3.045 *10**-4 m**3/C\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=2.05*10**22; #charge carrier density\n",
+ "e=1.602*10**-19; #charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "RH=1/(n*e); #hall coefficient(m**3/C)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall coefficient is\",round(RH*10**4,3),\"*10**-4 m**3/C\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.7, Page number 239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall coefficient is -0.125 *10**-9 m**3/C\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=5*10**28; #charge carrier density\n",
+ "e=1.6*10**-19; #charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "RH=-1/(n*e); #hall coefficient(m**3/C)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall coefficient is\",round(RH*10**9,3),\"*10**-9 m**3/C\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.8, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall coefficient is -0.245 *10**-9 m**3/C\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=4.28*10**-10; #side(m)\n",
+ "e=1.6*10**-19; #charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "n=2/(a**3);\n",
+ "RH=-1/(n*e); #hall coefficient(m**3/C)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall coefficient is\",round(RH*10**9,3),\"*10**-9 m**3/C\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.9, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall coefficient is 2.7 *10**-4 m**3/C\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=9*10**-3; #resistivity(ohm m)\n",
+ "mew=0.03; #mobility(m**2/Vs)\n",
+ "\n",
+ "#Calculation\n",
+ "sigma=1/rho;\n",
+ "RH=mew/sigma; #hall coefficient(m**3/C)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall coefficient is\",RH*10**4,\"*10**-4 m**3/C\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.10, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of charge carrier is 1.73611 *10**22 per m**3\n",
+ "mobility is 0.04 m**2/Vs\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=9*10**-3; #resistivity(ohm m)\n",
+ "RH=3.6*10**-4; #hall coefficient(m**3/C)\n",
+ "e=1.6*10**-19; #charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "sigma=1/rho;\n",
+ "rho=1/RH; \n",
+ "n=rho/e; #density of charge carrier(per m**3)\n",
+ "mew=sigma*RH; #mobility(m**2/Vs)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of charge carrier is\",round(n/10**22,5),\"*10**22 per m**3\"\n",
+ "print \"mobility is\",mew,\"m**2/Vs\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.11, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "charge carrier concentration is 6.25e+22 m**-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge of electron\n",
+ "z=0.3*10**-3; #thickness(m)\n",
+ "VH=1*10**-3; #hall voltage(V)\n",
+ "Ix=10*10**-3; #current(A)\n",
+ "Bz=0.3; #magnetic field(T)\n",
+ "\n",
+ "#Calculation\n",
+ "n=Ix*Bz/(VH*z*e); #charge carrier concentration(m**-3)\n",
+ "\n",
+ "#Result\n",
+ "print \"charge carrier concentration is\",n,\"m**-3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 8.12, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall angle is 1.0704 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=0.00912; #resistivity(ohm m)\n",
+ "RH=3.55*10**-4; #hall coefficient(m**3/C)\n",
+ "B=0.48; #flux density(Wb/m**2)\n",
+ "\n",
+ "#Calculation\n",
+ "sigma=1/rho;\n",
+ "theta_H=math.atan(sigma*B*RH); #hall angle(radian)\n",
+ "theta_H=theta_H*180/math.pi; #hall angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall angle is\",round(theta_H,4),\"degrees\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter9.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter9.ipynb
new file mode 100644
index 00000000..8f38e89c
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter9.ipynb
@@ -0,0 +1,242 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 9: Physics of Semiconductor Devices"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 9.1, Page number 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "value of current is 120.73 micro A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "I0=0.3; #current(micro A)\n",
+ "V=0.15; #voltage(V)\n",
+ "\n",
+ "#Calculations\n",
+ "I=I0*(math.exp(40*V)-1); #value of current(micro A)\n",
+ "\n",
+ "#Result\n",
+ "print \"value of current is\",round(I,2),\"micro A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 9.2, Page number 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "reverse saturation current is 5.043 nA\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "I=10*10**-3; #current(A)\n",
+ "V=0.75; #voltage(V)\n",
+ "T=300; #temperature(K)\n",
+ "eta=2;\n",
+ "\n",
+ "#Calculations\n",
+ "VT=T/11600;\n",
+ "I0=I*10**9/(math.exp(V/(eta*VT))-1); #reverse saturation current(nA)\n",
+ "\n",
+ "#Result\n",
+ "print \"reverse saturation current is\",round(I0,3),\"nA\"\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 9.3, Page number 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage applied is 0.3336 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "J=10**5; #current density(amp/m**2)\n",
+ "T=300; #temperature(K)\n",
+ "eta=1;\n",
+ "J0=250*10**-3; #saturation current density(A/m**2)\n",
+ "\n",
+ "#Calculations\n",
+ "VT=T/11600;\n",
+ "x=(J/J0)+1;\n",
+ "V=math.log(x)*VT; #voltage applied(V)\n",
+ "\n",
+ "#Result\n",
+ "print \"voltage applied is\",round(V,4),\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 9.4, Page number 257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "rectification ratio is 343\n",
+ "answer in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "I0=4*10**-6; #current(A)\n",
+ "T=273+25; #temperature(K)\n",
+ "V=0.15; #voltage(V)\n",
+ "eta=1;\n",
+ "\n",
+ "#Calculations\n",
+ "VT=T/11600;\n",
+ "IF=I0*(math.exp(V/VT)-1); #forward current(A)\n",
+ "IR=I0*(math.exp(-V/VT)-1); #reverse current(A)\n",
+ "r=-IF/IR; #rectification ratio\n",
+ "\n",
+ "#Result\n",
+ "print \"rectification ratio is\",int(r)\n",
+ "print \"answer in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example number 9.5, Page number 257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage applied is -0.06 Volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration \n",
+ "T=300; #temperature(K)\n",
+ "eta=1;\n",
+ "I0=1;\n",
+ "I=-0.9*I0; #saturation current density(A/m**2)\n",
+ "\n",
+ "#Calculations\n",
+ "VT=T/11600;\n",
+ "x=(I/I0)+1;\n",
+ "V=math.log(x)*VT; #voltage applied(V)\n",
+ "\n",
+ "#Result\n",
+ "print \"voltage applied is\",round(V,2),\"Volt\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/1.png b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/1.png
new file mode 100644
index 00000000..fe58b5e3
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/1.png
Binary files differ
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/2.png b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/2.png
new file mode 100644
index 00000000..2b071bb5
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/2.png
Binary files differ
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/3.png b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/3.png
new file mode 100644
index 00000000..186feee5
--- /dev/null
+++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/screenshots/3.png
Binary files differ
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter2_1.ipynb b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter2_1.ipynb
new file mode 100644
index 00000000..2bd26cb3
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter2_1.ipynb
@@ -0,0 +1,233 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Conduction and Breakdown in Gases"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1: pg 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the breakdown strength of air for 0.1mm air gap is (kV/cm.) = 43.45\n",
+ "\n",
+ "the breakdown strength of air for 20 cm air gap is (kV/cm.) = 25.58\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 2.1\n",
+ "#calculation of breakdown strength of air\n",
+ "\n",
+ "#given data\n",
+ "d1=0.1#length(in cm) of the gap\n",
+ "d2=20#length(in cm) of the gap\n",
+ "\n",
+ "#calculation\n",
+ "#from equation of breakdown strength\n",
+ "E1=24.22+(6.08/(d1**(1./2)))#for gap d1\n",
+ "E2=24.22+(6.08/(d2**(1./2)))#for gap d2\n",
+ "#results\n",
+ "print 'the breakdown strength of air for 0.1mm air gap is (kV/cm.) = ',round(E1,2)\n",
+ "print '\\nthe breakdown strength of air for 20 cm air gap is (kV/cm.) = ',round(E2,3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2: pg 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Townsend primary ioniztion coefficient is (/cm torr) = 7.675\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 2.2\n",
+ "#calculation of Townsend primary ionization coefficient\n",
+ "from math import log\n",
+ "#given data\n",
+ "d1=0.4#gap distance(in cm)\n",
+ "d2=0.1#gap distance(in cm)\n",
+ "I1=5.5*10**-8#value of current(in A)\n",
+ "I2=5.5*10**-9#value of current(in A)\n",
+ "\n",
+ "#calculation\n",
+ "#from equation of current at anode I=I0*exp(alpha*d)\n",
+ "alpha=(log(I1/I2))*(1/(d1-d2))\n",
+ "#results\n",
+ "print 'Townsend primary ioniztion coefficient is (/cm torr) = ',round(alpha,3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3: pg 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the value of Townsend secondary ionization coefficient is 9.994e-04\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 2.3\n",
+ "#calculation of Townsend secondary ionization coefficient\n",
+ "from math import exp\n",
+ "#given data\n",
+ "d=0.9#gap distance(in cm)\n",
+ "alpha=7.676#value of alpha\n",
+ "\n",
+ "#calculation\n",
+ "#from condition of breakdown.....gama*exp(alpha*d)=1\n",
+ "gama=1/(exp(d*alpha))\n",
+ "#results\n",
+ "print '%s %.3e' %('the value of Townsend secondary ionization coefficient is ',gama)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4: pg 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the value of breakdown voltage of the spark gap is (V) = 5626.0\n",
+ "The answer is a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 2.4\n",
+ "#calculation of breakdown voltage of a spark gap\n",
+ "from math import log\n",
+ "#given data\n",
+ "A=15.#value of A(in per cm)\n",
+ "B=360.#value of B(in per cm)\n",
+ "d=0.1#spark gap(in cm)\n",
+ "gama=1.5*10**-4#value of gama\n",
+ "p=760.#value of pressure of gas(in torr)\n",
+ "\n",
+ "#calculation\n",
+ "#from equation of breakdown voltage\n",
+ "V=(B*p*d)/(log((A*p*d)/(log(1+(1/gama)))))\n",
+ "\n",
+ "#results\n",
+ "print 'the value of breakdown voltage of the spark gap is (V) = ',round(V)\n",
+ "print 'The answer is a bit different due error in textbook'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5: pg 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the value of minimum spark over voltage is (V) = 481.0\n",
+ "The answer is a bit different due error in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 2.5\n",
+ "#calculation of minimum spark over voltage\n",
+ "from math import log\n",
+ "#given data\n",
+ "A=15.#value of A(in per cm)\n",
+ "B=360.#value of B(in per cm)\n",
+ "gama=10**-4#value of gama\n",
+ "e=2.178#value of constant\n",
+ "\n",
+ "#calculation\n",
+ "Vbmin=(B*e/A)*(log(1+(1/gama)))\n",
+ "\n",
+ "#results\n",
+ "print 'the value of minimum spark over voltage is (V) = ',round(Vbmin)\n",
+ "print 'The answer is a bit different due error in textbook'"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter3_1.ipynb b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter3_1.ipynb
new file mode 100644
index 00000000..c7746ecf
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter3_1.ipynb
@@ -0,0 +1,97 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Conduction and Breakdown in Liquid Dielectrics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1: pg 85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcnfP5//HXG19KEaG2itiX2Km1wXfUT2qrWNrYai8q\ndqoSqhmqllRtlWi/qNoltIRWI1KGJkiQhGwiSCwhkUYtQfbr98fnHo6YMzmznG3m/Xw8ziP3uc99\n7nPNGHPNZ7s+igjMzMwaslS5AzAzs8rlJGFmZnk5SZiZWV5OEmZmlpeThJmZ5eUkYWZmeZUkSUha\nStJoSY9kz/tIelfSqOyxb861vSVNljRRUrdSxGdmZg1bpkSfczYwHlg559y1EXFt7kWSugA9gC5A\nJ2CopE3CiznMzMqi6C0JSZ2A/YFbF3+pgcu7A/dHxIKImApMBnYuboRmZpZPKbqbrgMuABZvDZwh\naYykWyV1yM6tA7yTc8207JyZmZVBUZOEpAOAGRExhq+3HPoDG0bEdsB04PfFjMPMzJqn2GMSXYGD\nJO0PLA+sJOnOiDg255pbgEez42nAujmvdcrOfY0kj1GYmTVDRDTU1Z9XUVsSEXFRRHSOiA2BI4An\nI+JYSWvlXHYoMC47fgQ4QtKykjYANgZG5rm3H6306NOnT9ljaEsPfz/9vazUR3OUanbT4vpK2g5Y\nBEwFTgWIiAmSBgITgPlAz2juV2ZmZi1WsiQREU8DT2fHxzZy3ZXAlaWKy8zM8vOKa6OmpqbcIbQp\n/n62Hn8vy0/V2Jsjyb1QZmZNJImopIFrMzOrbk4SZmaWl5OEmZnl5SRhZmZ5OUmYmVleThJmZpaX\nk4SZmeXlJGFmZnk5SZiZWV5OEmZmlpeThJmZ5eUkYWbWxr3xBhx8cPPe6yRhZtZGzZ4NvXvDLrvA\nrrs27x5OEmZmbcyiRXDXXbD55jBtGrzyCvTq1bx7lWTTIUlLAS8C70bEQZI6AgOA9Ug70/WIiI+z\na3sDJwILgLMjYkgpYjQzawteeAHOOgsWLIAHHoDddmvZ/UrVkjibtCVpvV7A0IjYDHgS6A0gaQug\nB9AF2A/oL6lJtc/NzNqj6dPhxBOhe3c45RQYMaLlCQJKkCQkdQL2B27NOd0duCM7vgOoH1I5CLg/\nIhZExFRgMrBzsWM0M6tW8+bBNdfAVlvBaqvBq6/CCSfAUq30270U3U3XARcAHXLOrRkRMwAiYrqk\nNbLz6wDP5Vw3LTtnZmaLeewxOPdc2HhjePZZ2HTT1v+MoiYJSQcAMyJijKSaRi5t8l6ktbW1Xx7X\n1NR4L1wzazdeey0lh8mT4frrYf/9G76urq6Ourq6Fn1WUfe4lnQF8FPSIPTywErAQ8COQE1EzJC0\nFvBURHSR1AuIiLg6e/9goE9EjFjsvt7j2szanU8+gd/8Bm6/Pc1WOussWHbZwt9fcXtcR8RFEdE5\nIjYEjgCejIhjgEeB47PLjgMGZcePAEdIWlbSBsDGwMhixmhmVukWLUqJYfPNYdYsGDcOfvGLpiWI\n5irJFNgGXAUMlHQi8BZpRhMRMUHSQNJMqPlATzcZzKw9GzECzjwTll4aBg2CnXYq7ecXtbupWNzd\nZGZt3fvvpy6loUPhqqvg6KNbPmOp4rqbzMysaebOhb59YeutYe2105TWY45pvSmtTVWu7iYzM1vM\nP/4B55yTxh6eew422aTcETlJmJmV3aRJaUrrG2/AjTfCfvuVO6KvuLvJzKxMPvkELrgAunaFvfeG\nsWMrK0GAk4SZWcktWgR/+cvXp7Sef35pprQ2lbubzMxKaMSItAhOgocfhp0rvDqdWxJmZiUwfToc\nfzwccgicfnqqtVTpCQKcJMzMiiq3Suuaa6ZB6mOPLd+U1qZyd5OZWZH8859pSmsxq7QWm5OEmVkr\ne/31NKV10iS47jo44IByR9R8VdLgMTOrfJ9+mkpp7Lor7LlnmrVUzQkCnCTMzFosAu6+O01pff/9\ntN7hggsqc0prU7m7ycysBV56KU1pnTsXHnywdfaVriRuSZiZNcMHH8DJJ8OBB8JJJ8HIkW0vQYCT\nhJlZk8yfDzfcAFtuCSutBBMnwoknVs+U1qZyd5OZWYGGDoWzz4Z11oGnn4Yttih3RMVX1NwnaTlJ\nIySNljRWUp/sfB9J70oalT32zXlPb0mTJU2U1K2Y8ZmZFWLKFDj0UDjlFLjiCnj88faRIKDILYmI\nmCtpr4j4XNLSwHBJ/8xevjYirs29XlIX0lamXYBOwFBJm3gbOjMrh88/T7vC9esH550H994L3/pW\nuaMqraL3okXE59nhcqSkVP8Lv6Et9LoD90fEgoiYCkwGqqC6iZm1JRHwwAPQpQtMngxjxsDFF7e/\nBAElSBKSlpI0GpgOPBERL2QvnSFpjKRbJXXIzq0DvJPz9mnZOTOzkhg7Fn7wA7j8crjrLrjvPlh3\n3XJHVT5FH7iOiEXA9pJWBh6StAXQH7gsIkLS5cDvgZ815b61tbVfHtfU1FBTU9NqMZtZ+/Phh9Cn\nDwwYALW1afxhmSqf2lNXV0ddXV2L7qFSdvdLugT4LHcsQtJ6wKMRsY2kXkBExNXZa4OBPhExYrH7\neJjCzFrFwoVw221wySVpcPryy2G11codVXFIIiIa6urPq9izm75T35UkaXlgH+BVSWvlXHYoMC47\nfgQ4QtKykjYANgZGFjNGM2u/hg+HnXZK3UqDB8PNN7fdBNFcxW5MrQ3cIWkpUkIaEBGPSbpT0nbA\nImAqcCpAREyQNBCYAMwHerrJYGat7b334MIL4amn4He/gyOOSDvF2TeVtLuptbi7ycyaY+5cuP76\nlBhOOQUuughWXLHcUZVOc7qbGm1JSNoN+CmwB6lV8AWpa+gfwN0R8XEzYzUzK6nHHksbAG22GTz/\nfNoIyJYsb0siW/T2HjAIeBH4APgWsCmwF/Aj0oK4R0oT6tdic0vCzAry+uspObz2WmpF7L9/uSMq\nn+a0JBpLEt+JiP8s4QOXeE0xOEmY2ZLMng2//S3ccgv88pcpUbSF/R1aorVnN10qqWtjby5HgjAz\na0xEKp+x+ebw7rvwyispSbT3BNFcjY1JvAZcI2ltYCBwX0SMLk1YZmZN9/LLcOaZaRvRAQOga6N/\n5loh8rYkIuKGiNgN+F9gFvBnSa9mFVw3LVmEZmZL8OGHcPrp0K0bHH00vPiiE0RrWeJiuoh4KyKu\njojtgSOBg4GJRY/MzGwJFi6EP/4xFeKDtAHQqafC0kuXN662ZImL6SQtA+wHHAHsDdQBtUWNysxs\nCYYPT11LK64IQ4bAttuWO6K2qbHZTfuQWg4HACOA+4FBEfFZ6cJrmGc3mbVfXi3dfK09u6k38Cyw\neUQcFBH3VkKCMLP2ad486NsXttkGOnWCV1+FI490gii2xgaufxARt5IK8H2NpKuKGpWZWY7Bg2Hr\nrdO+0s89B1de2b7KaZRTIQX+DpM0JyLuAZDUj7Ty2sysqN54I20bOmFCWi19wAHljqj9KaRU+GHA\n8ZKOlHQHsCAiTipyXGbWjn3+edrfYeedYdddYdw4J4hyyduSkLRqztOfAQ8Dw0krsVeNiA+LHZyZ\ntS8R8OCD8ItfwPe/nxbHdepU7qjat8ZmN00BAlDOv/UiIjYsfngN8+wms7Zn/Hg46yyYORNuvBG8\nI3Hra9UCf5XMScKs7fj447Sn9N13w69/DaedVv17S1eqVp0CK2n3JXzYypK2WsI1y0kaIWm0pLGS\n+mTnO0oaImmSpMfrtzjNXustabKkiZK6NeWLMbPqsWgR3H57KsQ3e3YanD7zTCeIStNYd9N1wC7A\nYOAlYCZpVtPGpP0k1gPOj4gXGv0AaYWI+FzS0qQxjbNIg+GzIqKvpAuBjhHRS9IWwD3ATkAnYCiw\nyeLNBrckzKrbiy/CGWekMYibbkr7TFvxterOdBFxbjZ4fRjwE77amW4i8KeIGFbIB0TE59nhctnn\nBdCdVDgQ4A5SqY9ewEHA/RGxAJgqaTKwM2nFt5lVuZkz05ahf/87XHEFHHccLFXIHEsrm0YbdtkM\npluyR7NIWorUEtkI6BcRL0haMyJmZJ8xXdIa2eXrAM/lvH1ads7MqtiCBakQ32WXpSqtEyfCKquU\nOyorRNF7/yJiEbC9pJWBhyRtSWpNfO2ypt63trb2y+OamhpqPBXCrCI980waa1htNXjySdiq0ZFM\na011dXXU1dW16B4lnd0k6RLgc9K6i5qImCFpLeCpiOgiqRdpeu3V2fWDgT4RMWKx+3hMwqzCTZsG\nF1wAw4bBNdfAT37iOkvl1toF/lpM0nfqZy5JWh7YhzSm8QhwfHbZccCg7PgR4AhJy0ragDRIPrKY\nMZpZ65o3D66+OhXi23DD1LXUo4cTRLUqZD+JFYDzgc4RcbKkTYDNIuLvBdx/beCObFxiKWBARDwm\n6XlgoKQTgbeAHgARMUHSQGACMB/o6SaDWfV4/PG0IG7TTWHECNh443JHZC21xO4mSQNIA8/HRsRW\nWdJ4NiK2K0WAeWJy7jCrIFOmpEJ8Y8emQnwHHljuiKwhxepu2igi+pL+sq+f0uqGo5nxxRdw6aVp\nncNOO6VCfE4QbUshs5vmZeMJASBpI2BuUaMys4oWAYMGwbnnpuQwahR07lzuqKwYCkkSfUirrteV\ndA/Qla8Gnc2snZk0Cc4+G95+G269Ffbeu9wRWTEVNAVW0mrArqRupucj4j/FDmwJ8XhMwqzEZs+G\nyy9PieGii9Lah//5n3JHZU3RqmU5cm66Q3b4fvZv52xa61tZ+Qwza8MiYMCAtObhBz9Ig9Nrr13u\nqKxUCulu6g/sALxCaklsBYwHOkg6LSKGFDE+MyujsWNTi+Hjj+H++6Fr13JHZKVWyOym94DtI2LH\niPgesD3wJmlhXN9iBmdm5fHRR3DOOWm84fDDU9VWJ4j2qZAksWlEjK9/EhETgM0j4s3ihWVm5VC/\nx0OXLmmf6QkT0iZASy9d7sisXArpbhov6Wbg/uz54cAEScuRrZ0ws+o3ahScfnoag3j0Udhxx3JH\nZJWgkBXXywM9gfqd6oaTxinmACtExOyiRthwTJ7dZNZKPvwQLr4YHnoo7fFw/PHe46Gt8h7XZlaw\nhQvhttvgkktSAb7LLoOOHcsdlRVTsabAbgJcCWxB2r4UgIjYsMkRmllFGDEibR+63HKpKN92ZavE\nZpWukEbl7cDNwALS3tZ3AncXMygzK46ZM+Gkk+CQQ1K11n//2wnCGldIklg+Iv5F6pp6KyJqgQOK\nG5aZtaYFC6BfP9hyS+jQAV59FY45xns82JIVMrtpbrYfxGRJZ5D2nV6xuGGZWWsZPjzNWurYEZ56\nKiUKs0IV0pI4G1gBOAv4HvBT4NhCbi6pk6QnJY2XNFbSmdn5PpLelTQqe+yb857ekiZLmiipW9O/\nJDMDeP99OPZYOOII6N077S/tBGFNVUiSWD8iZkfEuxFxQkQcBhRaFHgBcF5EbAnsBpwhafPstWsj\nYofsMRhAUhfSLnVdgP2A/pIbxGZNMX8+XHcdbL11qrE0cWJaNe3/k6w5CkkSvQs89w0RMT0ixmTH\ns0n7W6+TvdzQj2x34P6IWBARU4HJwM6FfJaZwdNPw/bbwz//CcOGpb2mV3TnsLVA3jEJSfsB+wPr\nSLox56WVSS2EJpG0PrAdMIK0MO8MSccALwLnR8THpATyXM7bpvFVUjGzPN57D37xizT+cO21cOih\nbjlY62isJfEeaW/rOdm/9Y9HgB825UMkrQg8CJydtSj6Axtm+2RPB37f9NDNbP58uOYa2GYb2GCD\nVGvpsMOcIKz15G1JRMTLwMuS7m7JvhGSliEliLsiYlB275k5l9wCPJodTwPWzXmtU3buG2pra788\nrqmpoaamprkhmlWlJ59MC+I6d4Znn4VNNy13RFZp6urqqKura9E98pblkDSWbF/rhkTENgV9gHQn\n8J+IOC/n3FoRMT07PhfYKSKOkrQFcA+wC6mb6Qlgk8VrcLgsh7Vn776bupaefz4NUB98sFsOVpjW\nLstxYAvjQVJX4GhgrKTRpKRzEXCUpO2ARcBU4FRIZcglDQQmkCrM9nQ2MEvmzYPrr4e+fVP57j//\nGVZYodxRWVtX6B7XawI7ZU9HRsQHRY1qyfE4d1i7MnRo2iFuww3hhhtg443LHZFVo6JUgZXUA/gd\nUEeatroHcEFEPNjMOFvMScLai3fegfPOSzvD3XAD/OhH7lqy5mtOkihkncTFpDGD4yLiWNK6hUua\nE6CZFWbuXLjyylR8b4st0qylgw5ygrDSK6R201KLdS/NorDkYmbNMGRI6lradFMYORI22qjcEVl7\nVkiSGCzpceC+7PnhwGPFC8msfXr77dS1NHp06lo6sMVTR8xaboktgoi4APgTsE32+L+IuLDYgZm1\nF/PmwVVXwQ47pEVx48c7QVjlKGRnuvOAARHxtxLEY9auPPHE17uWNvR+j1ZhCuluWgkYIulDYADw\nQETMKG5YZm1b/ayll176ataSWSUqpLvp0qzU9+nA2sDTkoYWPTKzNmjevFSZdfvt094O48c7QVhl\nK6QlUe8DUjG+WcAaxQnHrO3617/SDnEbbQQjRnjWklWHQsYkepI2AlodeAA4OSImFDsws7bi3Xfh\n/PPTmIMXxFm1KWS9w7rAORGxZUTUOkGYFWbePPjd79KCuM0394I4q05LbElEREG70JnZV+rLeK+/\nfqrW6lpLVq2aMiZhZkswbVoq4/3cc6lryS0Hq3Yur2HWCubPh9//HrbdNrUaJkyA7t2dIKz6uSVh\n1kJPP51mLXXqlFoQm2xS7ojMWk8hs5sOBa4mTXtV9oiIWLnIsZlVtOnT4YILUpK47jo49FC3HKzt\nKaS7qS9wUER0iIiVI2KlQhOEpE6SnpQ0XtJYSWdl5ztKGiJpkqTHJXXIeU9vSZMlTZTUrXlfllnx\nLFgAN94IW28N66wDEyfCYYc5QVjbVMimQ8Mjomuzbi6tBawVEWMkrQi8BHQHTgBmRURfSRcCHSOi\nV84e1zsBnYCheI9rqyDPPgs9e8Kqq0K/ftClS7kjMitca+9xXe9FSQOAh4G59ScLKfgXEdNJq7SJ\niNmSJpJ++XcH/je77A7Srne9gIOA+yNiATBV0mTSJkcjCv2CzIrhgw+gV6+018M118Dhh7vlYO1D\nId1NKwOfA92AH2WPJhcylrQ+sB3wPLBmfZHALJHUl/lYB3gn523TsnNmZbFwIdx8M2y1FXTsmGYt\nHXGEE4S1H4W0JE6LiDkt+ZCsq+lB4OysRbF4X5H7jqzivPBC6lpafvlUd2nrrcsdkVnpFZIkxkma\nAfw7ewyLiI8L/QBJy5ASxF0RMSg7PUPSmhExIxu3qN8edRqpDEi9Ttm5b6itrf3yuKamhpqamkJD\nMmvUrFlw0UXwyCPQty/89KduOVh1qquro66urkX3WOLANYCkzsAeQFdgf+CjiNiuoA+Q7gT+ExHn\n5Zy7GvgwIq7OM3C9C6mb6Qk8cG0lsmgR/PnPcPHF0KMH/OY3sMoq5Y7KrPUUZeBaUidSctgD2BYY\nDwwrMKCuwNHAWEmjSd1KF5HWXQyUdCLwFqnKLBExQdJAYAIwH+jpbGClMHp06loCGDw47fdgZoVN\ngV0EvABckdNdVFZuSVhr+fhjuOQSGDAArrgCTjgBlnKxGmujmtOSKOR/h+2BO4GjJD0n6U5JJzUr\nQrMKEQH33JPWOcyZk2YtnXSSE4TZ4godk1gR2J3U5fRTgIhYr7ihNRqPWxLWbBMnpq6ljz+G/v1h\n113LHZFZaRSlJSHpReA54BBgIrBnOROEWXN99llaELfnnqnO0siRThBmS1LIFNj9ImJm0SMxK5II\nePhhOOcc2GMPGDsW1lqr3FGZVYdCksQ8SdcCe2bPnwYua8paCbNyefNNOPNMmDIF/vIX2Guvckdk\nVl0KGab7M/ApaZpqD+AT4PZiBmXWUnPmwGWXwc47p+6lMWOcIMyao5CWxEYRcVjO80sljSlWQGYt\nNXhwaj1svTWMGgWdO5c7IrPqVUiS+ELS7hExDL5cIPdFccMya7p33oFzz00L4/7wB9h//3JHZFb9\nCuluOg3oJ2mqpLeAm4CfFzcss8LNn5/Kd2+/PWy5JYwb5wRh1lqW2JKIiDHAtpJWzp5/UvSozAo0\nbBicdhp897veX9qsGPImCUnn5TkPQERcW6SYzJZo5ky48MK0CdB118GPf+xKrWbF0Fh300rZY0dS\nl9M62ePnwA7FD83smxYtgltuSd1KHTqkcho/+YkThFmxFFLg7xnggIj4NHu+EvCPiNiz0TcWkcty\ntE9jxqSuJSmV09iuoGL1ZlavWAX+1gTm5Tyfl50zK4lPPkmrpbt1S0X4hg1zgjArlUKmwN4JjJT0\nUPb8YOCO4oVklkTAAw/AeefBD38I48fD6quXOyqz9qXQKrA7kCrAAjwTEaOLGtWS43F3Uxs3eTKc\ncQa89x7cfDPsvnu5IzKrfsWqAntSRIyKiBuyx2hJVxUY0G2SZkh6JedcH0nvShqVPfbNea23pMmS\nJkrq1pQvxNqGOXOgthZ22y11L40a5QRhVk6FdDcdJmlORNwDIKkf8K0C73878AdSl1WuaxefQiup\nC6k2VBegEzBU0jf2t7a26/HH4fTTYdtt06rpddctd0RmVlCSAB7JtjHdF/goIgramS4ihklqaO+J\nhpo73YH7I2IBMFXSZGBnYEQhn2XVa9q0VE7jpZdcTsOs0uTtbpK0qqRVgeWBnwG/JFWDvTQ73xJn\nSBoj6VZJHbJz6wDv5FwzLTtnbdSCBXDDDanlsNlmLqdhVokaa0m8BATpr/76fw/IHgFs2MzP7E/a\njyIkXQ78npSEmqS2tvbL45qaGmpqapoZjpXDyJHw85/DKqukKa2bb17uiMzanrq6Ourq6lp0j4Jm\nN7XoA1J306MRsU1jr0nqBUREXJ29NhjoExHf6G7y7Kbq9dFHcNFF8NBDqSjfUUd5tbRZqRRrMR2S\ntpLUQ9Kx9Y+mxEXOGISk3I0jDwXGZcePAEdIWlbSBsDGwMgmfI5VsAi45x7YYot0PGECHH20E4RZ\npVviwLWkPkANsAXwGLAfMIxvzlhq6L33Zu9dTdLbQB9gL0nbAYuAqcCpABExQdJAYAIwH+jp5kLb\nMGkS9OwJs2bB3/4Gu+5a7ojMrFCF1G4aC2wLjI6IbSWtCdwdEfuUIsA8MTl/VIE5c+DKK6FfP/jV\nr9LiuGUKmU9nZkXRnO6mgnami4hFkhZke0p8AHgGuzVqyJDUethuu1SYr1OnckdkZs1RSJJ4UdIq\nwC2kGU+zgeeKGpVVrfffT2seRo6Em27ylFazatek2U2S1gdWjohXlnBpUbm7qfIsXJhqLF16KZxy\nClx8MaywQrmjMrNcReluUtqK7mhgw4i4TFJnSTtHhGceGQAvvpjWPHz72/D002kGk5m1DYVMge0P\n7AYcmT3/FOhXtIisanzyCZx1Fhx4YBqUrqtzgjBrawpJErtExOnAHICI+C+wbFGjsooWAQ8+mBLC\nZ5+lfR6OP95rHszaokIGrudLWppUigNJq5PWOFg7NHVqqtQ6ZQrcdx/ssccS32JmVayQlsSNwEPA\nGpJ+S1pId0VRo7KKM38+9O0LO+4IXbumaa1OEGZt3xJbEhFxj6SXgL1J5TUOjoiJRY/MKsazz6aB\n6e9+F0aMgI02KndEZlYqjU6BzbqZxkdERdXo9BTY0vjvf6FXL/j73+Haa6FHD487mFWzVi/wFxEL\ngUmSOrcoMqsqEXDvvWlgepll0sD04Yc7QZi1R4UMXHcExksaCXxWfzIiDipaVFY2r78Op50GM2fC\nww/DLruUOyIzK6dCksQlRY/Cym7u3DQwfcMN0Ls3nH22i/GZWWED10/XH0v6DjDLAwJty9NPw6mn\npi1ER42Czu5cNLNMY3tc7yqpTtLfJG0vaRxpg6AZkvYtXYhWLLNmwQknwDHHwFVXwaBBThBm9nWN\nDVzfRFoPcR/wJPCziFgL2BO4sgSxWZFEwF13wZZbQocOaWD64IPLHZWZVaLGksQyETEkIh4ApkfE\n8wAR8WqhN5d0m6QZkl7JOddR0hBJkyQ9LqlDzmu9JU2WNFFSt+Z8Qda4yZNhn33guuvS1Nbrr4eV\nVip3VGZWqRpLErmlN75Y7LVCxyRuB3642LlewNCI2IzUQukNIGkLoAfQhbRFav+sAq21gnnz4Le/\nhd12S3s8jByZVk+bmTWmsYHrbSV9QlplvXx2TPb8W4XcPCKGSVpvsdPdgf/Nju8A6kiJ4yDg/ohY\nAEyVNBnYGRhRyGdZfsOHp4Hp9deHl16C9Rb/L2JmlkfeJBERSxfpM9eIiBnZZ0yXtEZ2fh2+vuPd\ntOycNdNHH8GFF37VrfTjH3tBnJk1TSXMhG/WdNra2tovj2tqaqipqWmlcKpfBAwcmLYRPfhgmDAh\nDVCbWftSV1dHXV1di+7RpO1Lm/UBqbvp0YjYJns+EaiJiBmS1gKeioguknoBERFXZ9cNBvpExDe6\nm1y7Kb/6Ut5vvw3/939pDMLMDIpQu6mVKHvUewQ4Pjs+DhiUc/4ISctK2gDYGPAWqQVasACuuSYN\nRu++e1oU5wRhZi1V1O4mSfcCNcBqkt4G+gBXAQ9IOhF4izSjiYiYIGkgMAGYD/R0c6EwL7wAp5wC\nq6/uUt5m1rqK3t1UDO5uSj79FH71qzT+cM01cNRRHpg2s/wqtbvJiuDRR9OK6U8/hXHj4OijnSDM\nrPVVwuwma4Lp0+Gss2D0aLjjDthrr3JHZGZtmVsSVSICbr0VttkGNt4YXnnFCcLMis8tiSrw2mtp\nYPrzz2Ho0JQozMxKwS2JClZfb+n734dDDoHnnnOCMLPSckuiQj3/PJx8ctrfwfWWzKxcnCQqzKef\nwkUXwV//msp59+jhWUtmVj7ubqog9dNaP/88TWs9/HAnCDMrL7ckKoCntZpZpXJLoow8rdXMKp1b\nEmUyeXIamPa0VjOrZG5JlNiCBdC3b6rQ2r27p7WaWWVzS6KEXn4ZTjwRVl01VW7dYINyR2Rm1ji3\nJEpgzpzpep/vAAAJnklEQVRUrXWffeCMM2DIECcIM6sObkkU2fDh8LOfwRZbpJbE2muXOyIzs8I5\nSRTJ7NlpUdyDD8If/gCHHVbuiMzMmq5s3U2Spkp6WdJoSSOzcx0lDZE0SdLjkjqUK76WePxx2Gqr\nlCjGjXOCMLPqVbad6SS9CXwvIv6bc+5qYFZE9JV0IdAxIno18N6K3Jlu1iw47zx45hn405+gW7dy\nR2Rm9pVq25lODXx+d+CO7PgO4OCSRtRMEfDAA7D11tCxI4wd6wRhZm1DOcckAnhC0kLgTxFxK7Bm\nRMwAiIjpktYoY3wFee896Nkz7fnw17+m9Q9mZm1FOZNE14h4X9LqwBBJk0iJI1fePqXa2tovj2tq\naqipqSlGjHlFwG23Qe/ecNppMGAALLdcSUMwM2tUXV0ddXV1LbpH2cYkvhaE1AeYDfwMqImIGZLW\nAp6KiC4NXF/WMYmpU9O01o8/TonCK6bNrBpUzZiEpBUkrZgdfxvoBowFHgGOzy47DhhUjvjyWbQI\nbr4ZdtopjTm4pIaZtXXl6m5aE3hIUmQx3BMRQyS9CAyUdCLwFtCjTPF9w5QpqfUwe3aavdTlG+0b\nM7O2pyK6m5qqlN1Nixal6ay//jX88pdw7rmwjJcgmlkVak53k3/dNWLKFDjppFTO260HM2uPXOCv\nAYsWQf/+aexhv/1S/SUnCDNrj9ySWEx96+GLL2DYMNh883JHZGZWPm5JZBYtgn79Uuth//2dIMzM\nwC0JAN58M7Ue5sxxcjAzy9WuWxL1rYedd4YDDnCCMDNbXLttSbz5ZtpKdN48Jwczs3zaZUti0KDU\nevjRj+Df/3aCMDPLp10upnvrrTT+sNlmrRiUmVmFa85iunaZJMzM2qOqKfBnZmbVwUnCzMzycpIw\nM7O8nCTMzCwvJwkzM8urIpOEpH0lvSrpNUkXljseM7P2quKShKSlgJuAHwJbAkdK8nK3ImrpRun2\ndf5+th5/L8uv4pIEsDMwOSLeioj5wP1A9zLH1Kb5f8TW5e9n6/H3svwqMUmsA7yT8/zd7JyZmZVY\nJSYJMzOrEBVXlkPSrkBtROybPe8FRERcnXNNZQVtZlYlqr52k6SlgUnA3sD7wEjgyIiYWNbAzMza\noYrbTyIiFko6AxhC6g67zQnCzKw8Kq4lYWZmlaPqBq690K51SZoq6WVJoyWNLHc81UTSbZJmSHol\n51xHSUMkTZL0uKQO5YyxmuT5fvaR9K6kUdlj33LGWE0kdZL0pKTxksZKOis736Sf0apKEl5oVxSL\ngJqI2D4idi53MFXmdtLPYq5ewNCI2Ax4Euhd8qiqV0PfT4BrI2KH7DG41EFVsQXAeRGxJbAbcHr2\n+7JJP6NVlSTwQrtiENX3c1ARImIY8N/FTncH7siO7wAOLmlQVSzP9xPSz6g1UURMj4gx2fFsYCLQ\niSb+jFbbLwcvtGt9ATwh6QVJJ5c7mDZgjYiYAel/UmCNMsfTFpwhaYykW9191zyS1ge2A54H1mzK\nz2i1JQlrfV0jYgdgf1JzdPdyB9TGeGZIy/QHNoyI7YDpwLVljqfqSFoReBA4O2tRLP4z2ejPaLUl\niWlA55znnbJz1kwR8X7270zgIVKXnjXfDElrAkhaC/igzPFUtYiYmbOh/S3ATuWMp9pIWoaUIO6K\niEHZ6Sb9jFZbkngB2FjSepKWBY4AHilzTFVL0grZXxlI+jbQDRhX3qiqjvh6n/kjwPHZ8XHAoMXf\nYI362vcz+yVW71D889lUfwYmRMQNOeea9DNadesksilwN/DVQruryhxS1ZK0Aan1EKSFlff4+1k4\nSfcCNcBqwAygD/Aw8ACwLvAW0CMiPipXjNUkz/dzL1Jf+iJgKnBqfX+6NU5SV+AZYCzp//EALiJV\nsRhIgT+jVZckzMysdKqtu8nMzErIScLMzPJykjAzs7ycJMzMLC8nCTMzy8tJwszM8nKSsIomaQ1J\n90h6PasvNVxSRRd1lHSppB+04v3+Vb/osTVJuk/SRq19X2tbnCSs0j0M1EXExhGxE2mVfacyx9So\niOgTEU+2xr0k7Q+MyWrutLabAe/JYo1ykrCKlf01Pjcibqk/FxHvRES/7PX1JD0j6cXssWt2fi1J\nT2eb1LySrTxd/N5XSRqXVRftm527XdLNWYvlVUkHNPY52WsXZp8xWtIVOfc5NDueIqlW0kvZ5k6b\nZue/k238MlbSLdnmT6s28G04mqxsQhbHxOz+kyTdLWlvScOy5ztm1/WR9Jcs5imSDpF0dRbnY0r7\nyAP8G/h/2T4tZg3yD4dVsi2BUY28PgP4fxGxI6mF8Yfs/FHA4Ky67bbAmNw3Zb+MD46IrbLqopfn\nvLxe1mI5EPhjViOswc+RtB/wI2CniNge6Jsnzg8i4nvAH4FfZOf6AP+KiK1JBdjWzfPersBLOc83\nAn6XbRizOXBkROwOXABcnHPdhqQSF92Bu7PP2gaYAxwAkBXOm5x9j8watEy5AzArlKSbgN1JrYtd\ngGWBmyRtBywENskufQG4TdL/AIMi4uXFbvUx8IWkW4F/AH/PeW0gQES8LukN0i/iqXk+Z2/g9oiY\nm70nX/2bh7J/XwIOyY53J9vsJSIel9TQZjsAHSPis5znUyJiQnY8HvhXdjwWWC/nun9GxCJJY4Gl\nImJIznXr51w3E/guMDrP51s755aEVbLxwPfqn0TEGaRfzKtnp84Fpmd/Ie9IShpExL+BPUll5P8i\n6ae5N42IhaSS6A+SWgy5W2LmFjNT9rzBz2mCudm/C8n/h1m+3dcW5LkXpKJ3c3OOl1n8uqy1MH+x\n9+Re9y3gizyfbeYkYZUrG/xdTtKpOae/nXPcAXg/Oz4WWBpAUmdSF89twK3ADrn3zcqir5Ltl3we\nsE3Oyz9RshGwATAp3+cATwAnSFo+u2/HJnx5w4HDs/d1A1bJc90kSRvmht+EzyjkPZvi8tvWCCcJ\nq3QHAzWS3pD0PHA78Mvstf7A8ZJGk37Z1c8AqgFeljQK6EEqLZ9rJeDvkl4mlVI+N+e1t0mllP9B\nKks9r4HP+QxSNxGpNv+L2Wedn90jtzWSr8zypcA+kl4BDiPtuvZpA9f9g1Quu6H7FVrCucHrJK0B\nfB4R3hjJ8nKpcLOMpNuBRyPibyX4rGWBhRGxMJst1T8baF/8urWAOyLih0WI4Rzg44i4vbXvbW2H\nB67NvlLKv5g6AwOz6adzgZMbDChiejZFdsUirJX4L3BXK9/T2hi3JMzMLC+PSZiZWV5OEmZmlpeT\nhJmZ5eUkYWZmeTlJmJlZXk4SZmaW1/8HWhuHb2+QBFgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x35e6898>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The power law dependence between the gap spacing and the applied voltage of the oil is 24.2 *d^ 0.948\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 3.1\n",
+ "#determination of power law dependence between the gap spacing and the applied voltage of the oil\n",
+ "%matplotlib inline\n",
+ "from math import log, exp\n",
+ "from matplotlib import pyplot\n",
+ "import numpy as np\n",
+ "#given data\n",
+ "d1=4.#gap spacing(in mm)\n",
+ "d2=6.#gap spacing(in mm)\n",
+ "d3=10.#gap spacing(in mm)\n",
+ "d4=12.#gap spacing(in mm)\n",
+ "V1=90.#voltage(in kV) at breakdown\n",
+ "V2=140.#voltage(in kV) at breakdown\n",
+ "V3=210.#voltage(in kV) at breakdown\n",
+ "V4=255.#voltage(in kV) at breakdown\n",
+ "\n",
+ "#calculation\n",
+ "#from the relationship between breakdown voltage and the gap spacing.....V = K*d^n\n",
+ "#we get n = (log(V)-log(K))/log(d) = slope of line from given data\n",
+ "n=(log(V4)-log(V1))/(log(d4)-log(d1))\n",
+ "K=exp(log(V1)-n*log(d1))#Y intercept on the power law dependence graph\n",
+ "#plotting of graph\n",
+ "dn=np.linspace(1,20,num=20)\n",
+ "Vn=K*dn**n\n",
+ "#results\n",
+ "pyplot.plot(dn,Vn)\n",
+ "pyplot.xlabel(\"Gas spacing (mm)\")\n",
+ "pyplot.ylabel(\"Breakdown voltage (kV)\")\n",
+ "pyplot.show()\n",
+ "print 'The power law dependence between the gap spacing and the applied voltage of the oil is ',round(K,1),'*d^',round(n,3)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter4_1.ipynb b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter4_1.ipynb
new file mode 100644
index 00000000..f74d0ff9
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter4_1.ipynb
@@ -0,0 +1,168 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Breakdown in Soild Dielectrics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1: pg 123"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The heat generated in specimen due to dielectric loss is (mW/cm^3) = 0.292\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 4.1\n",
+ "#calculation of heat generated in specimen due to dielectric loss\n",
+ "\n",
+ "#given data\n",
+ "epsilonr=4.2#value of the dielectric constant\n",
+ "tandelta=0.001#value of tandelta\n",
+ "f=50#value of frequency(in Hz)\n",
+ "E=50*10**3#value of electric field(in V/cm)\n",
+ "\n",
+ "#calculation\n",
+ "#from equation of dielectric heat loss......H=(E*E*f*epsilonr*tandelta)/(1.8*10^12)\n",
+ "H=(E*E*f*epsilonr*tandelta)/(1.8*10**12)\n",
+ "#results\n",
+ "print 'The heat generated in specimen due to dielectric loss is (mW/cm^3) = ',round(H*10**3,3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2: pg 123"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the voltage at which an internal discharge can occur is (kV.) = 9.75\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 4.2\n",
+ "#calculation of voltage at which an internal discharge can occur\n",
+ "\n",
+ "#given data\n",
+ "d1=1#thickness(in mm) of the internal void\n",
+ "dt=10#thickness(in mm) of the specimen\n",
+ "epsilon0=8.89*10**-12#electrical permittivity(in F/m) of free space\n",
+ "epsilonr=4#relative permittivity of the dielectric\n",
+ "Vb=3#breakdown strength(in kV/mm) of air\n",
+ "\n",
+ "#calculation\n",
+ "d2=dt-d1\n",
+ "epsilon1=epsilon0*epsilonr#electrical permittivity(in F/m) of the dielectric\n",
+ "V1=Vb*d1#voltage at which air void of d1 thickness breaks\n",
+ "V=(V1*(d1+(epsilon0*d2/epsilon1))/d1)\n",
+ "#results\n",
+ "print 'the voltage at which an internal discharge can occur is (kV.) = ',round(V,2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3: pg 124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the value of inner diameter of electrodes in coaxial cylindrical capacitor is (cm) = 11.74\n",
+ "\n",
+ "the value of outer diameter of electrodes in coaxial cylindrical capacitor is (cm) = 12.04\n",
+ "\n",
+ "the thickness of the insulation is (mm) = 3.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 4.3\n",
+ "#calculation of the dimensions of electrodes in coaxial cylindrical capacitor\n",
+ "from math import pi,exp\n",
+ "#given data\n",
+ "epsilon0=(36*pi*10**9)**-1#electrical permittivity(in F/m) of free space\n",
+ "#consider high density polyethylene as the dielectric material\n",
+ "epsilonr=2.3#relative permittivity of high density polyethylene\n",
+ "l=0.2#effective length(in m)\n",
+ "C=1000*10**-12#capacitance(in F) of the capacitor\n",
+ "V=15#operating voltage(in kV)\n",
+ "Emax=50#maximum stress(in kV/cm) for breakdown stress 200 kV/cm and factor of safety of 4\n",
+ "\n",
+ "#calculation\n",
+ "#from equation of capacitance of coaxial cylindrical capacitor\n",
+ "#C=(2*%pi*epsilon0*epsilonr*l)/(lod(d2/d1)).............(1)\n",
+ "#from equation of Emax occuring near electrodes\n",
+ "#Emax=V/(r1*(log(r2/r1)))...............................(2)\n",
+ "#from equation (1) and equation (2),we get\n",
+ "logr2byr1=(2*pi*epsilon0*epsilonr*l)/C#logd2/d1 = logr2/r1\n",
+ "r1=V/(Emax*logr2byr1)#from equation (1)\n",
+ "r2=r1*exp(logr2byr1)\n",
+ "#results\n",
+ "print 'the value of inner diameter of electrodes in coaxial cylindrical capacitor is (cm) = ',round(r1,2)\n",
+ "print '\\nthe value of outer diameter of electrodes in coaxial cylindrical capacitor is (cm) = ',round(r2,2)\n",
+ "print '\\nthe thickness of the insulation is (mm) = ',round((r2-r1)*10,1)\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter6_1.ipynb b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter6_1.ipynb
new file mode 100644
index 00000000..f68c1627
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter6_1.ipynb
@@ -0,0 +1,547 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Generation of High voltages and Currents"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1: pg 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the value of percentage ripple is (percentage) = 4.53\n",
+ "\n",
+ "the value of the regulation is (percentage) = 12.4\n",
+ "\n",
+ "the optimum number of stages for minimum regulation is 14.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.1\n",
+ "#calculation of percentage ripple,the regulation and the optimum number of stages for minimum regulation in Cockcroft-Walton type voltage multiplier\n",
+ "from math import sqrt\n",
+ "#given data\n",
+ "C=0.05*10**-6#value of capacitance(in F)\n",
+ "Vmax=125.*10**3#value of supply transformer secondary voltage(in V)\n",
+ "f=150.#frequency(in Hz)\n",
+ "I=5.*10**-3#load current(in A)\n",
+ "nst=8.#number of stages\n",
+ "\n",
+ "#calculation\n",
+ "n=nst*2#number of capacitors\n",
+ "#from equation of ripple voltage\n",
+ "deltaV=(I/(f*C))*(n*(n+1)/2)\n",
+ "perripple=(deltaV*100)/(16*Vmax)\n",
+ "deltaVn=(I/(f*C))*(((2*nst**3)/3)+(nst*nst/2)-(nst/6))#voltage drop...here n = nst = number of stages\n",
+ "reg=deltaVn/(2*nst*Vmax)#regulation\n",
+ "nopt=round(sqrt(Vmax*f*C/I))#optimum number of stages\n",
+ "#results\n",
+ "print 'the value of percentage ripple is (percentage) = ',round(perripple,2)\n",
+ "print '\\nthe value of the regulation is (percentage) = ',round(reg*100,1)\n",
+ "print '\\nthe optimum number of stages for minimum regulation is ',round(nopt)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2: pg 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of series inductance is (H) = 3820.0\n",
+ "\n",
+ "The value of input voltage to the transformer is (V) = 4.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.2\n",
+ "#calculation of series inductance and input voltage to transformer\n",
+ "from math import pi\n",
+ "#given data\n",
+ "kva=100.*10**3#value of volt-ampere of transformer(in VA)\n",
+ "V=250.*10**3#value of transformer secondary voltage(in V)\n",
+ "Vi=400.#value of transformer primary voltage(in V)\n",
+ "Vc=500.*10**3#voltage(in V)\n",
+ "Ic=0.4#charging current(in A)\n",
+ "perX=8.#percentage leakage reactance\n",
+ "f=50.#value of frequency(in Hz)\n",
+ "perR1=2.#percentage resistance\n",
+ "perR2=2.#percentage resistance of inductor\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "I=kva/V#maximum value of current that can be supplied\n",
+ "Xc=Vc/Ic#reactance of cable\n",
+ "Xl=(perX*V)/(100*I)#leakage reactance\n",
+ "adrec=Xc-Xl#additional reactance\n",
+ "Xadrec=adrec/(2*pi*f)\n",
+ "perR=perR1+perR2#total resistance\n",
+ "R=(perR*V)/(100*I)\n",
+ "VE2=I*R#excitation at secondary\n",
+ "VE1=VE2*Vi/V#primary voltage\n",
+ "IkW=(VE1/Vi)*100#input kW\n",
+ "#results\n",
+ "print 'The value of series inductance is (H) = ',round(Xadrec)\n",
+ "print '\\nThe value of input voltage to the transformer is (V) = ',round(IkW)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3: pg 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of series resistance is (ohm) = 420.0\n",
+ "\n",
+ "The value of damping resistance is (ohm) = 2981.0\n",
+ "\n",
+ "The value of maximum output voltage of the generator is (kV) = 892.02\n",
+ "The answer is a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.3\n",
+ "#calculation of series resistance ,damping resistance and maximum output voltage of the generator\n",
+ "from math import exp\n",
+ "#given data\n",
+ "n=8.#number of stages\n",
+ "C=0.16*10**-6#value of condenser(in farad)\n",
+ "Cl=1000.*10**-12#value of load capacitor (in farad)\n",
+ "t1=1.2*10**-6#time to front(in second)\n",
+ "t2=50.*10**-6#time to tail(in second)\n",
+ "Vc=120.*10**3#charging voltage(in V)\n",
+ "\n",
+ "#calculation\n",
+ "C1=C/n#generator capacitance\n",
+ "C2=Cl#load capacitance\n",
+ "R1=(t1*(C1+C2))/(3*C1*C2)\n",
+ "R2=(t2/(0.7*(C1+C2)))-R1\n",
+ "V=n*Vc#dc charging voltage for n stages\n",
+ "alpha=1/(R1*C2)\n",
+ "betaa=1/(R2*C1)\n",
+ "Vmax=(V*(exp(-alpha*t1)-exp(-betaa*t1)))/(R1*C2*(alpha-betaa))\n",
+ "#results\n",
+ "print 'The value of series resistance is (ohm) = ',round(R1)\n",
+ "print '\\nThe value of damping resistance is (ohm) = ',round(R2)\n",
+ "print '\\nThe value of maximum output voltage of the generator is (kV) = ',round(-Vmax*10**-3,2)\n",
+ "print 'The answer is a bit different due to rounding off error in textbook'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4: pg 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of circuit inductance is (microhenry) = 8.125\n",
+ "\n",
+ "The value of dynamic resistance is (ohm) = 0.8694\n",
+ "\n",
+ "The value of charging voltage is (kV) = 17.5\n",
+ "The answer for Charging Voltage is wrong in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.4\n",
+ "#calculation of circuit inductance and dynamic resistance\n",
+ "\n",
+ "#given data\n",
+ "alpha=0.0535*10**6#from table\n",
+ "LC=65.#value of product\n",
+ "C=8.#value of capacitor (in microfarad)\n",
+ "Ip=10.#output peak current(in kA)\n",
+ "t1=8.#time to front(in microsecond)\n",
+ "\n",
+ "#calculation\n",
+ "L=LC/C#inductance(in microhenry)\n",
+ "Rd=2*(LC*10**-6)*alpha/t1#dynamic resistance\n",
+ "V=Ip*14./C#charging voltage\n",
+ "\n",
+ "#results\n",
+ "print 'The value of circuit inductance is (microhenry) = ',round(L,3)\n",
+ "print '\\nThe value of dynamic resistance is (ohm) = ',round(Rd,4)\n",
+ "print '\\nThe value of charging voltage is (kV) = ',round(V,1)\n",
+ "print 'The answer for Charging Voltage is wrong in textbook'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5: pg 199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of circuit inductance is (microhenry) = 4.09\n",
+ "\n",
+ "The value of dynamic resistance is (ohm) = 1.4302\n",
+ "\n",
+ "The value of charging voltage is (kV) = 1.59\n",
+ "The answers are a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.5\n",
+ "#calculation circuit inductance and dynamic resistance\n",
+ "from math import pi,exp,atan\n",
+ "#given data\n",
+ "C=8.*10**-6#value of capacitor (in farad)\n",
+ "Ip=10.#output peak current(in kA)\n",
+ "t1=8.*10**-6#time to front(in second)\n",
+ "t2=20.*10**-6#time to first half cycle(in second)\n",
+ "V=25.*10**3#charging voltage\n",
+ "im=10.*10**3#output currennt(in A)\n",
+ "\n",
+ "#calculation\n",
+ "omega=pi/t2\n",
+ "omegat1=omega*t1\n",
+ "alpha=omega*(1/atan(omegat1))\n",
+ "LC=1/((t1**2)+(alpha**2))\n",
+ "L=LC/C\n",
+ "R=2*L*alpha \n",
+ "V=omega*L*10*exp(-alpha*t1)\n",
+ "#results\n",
+ "print 'The value of circuit inductance is (microhenry) = ',round(L*10**6,2)\n",
+ "print '\\nThe value of dynamic resistance is (ohm) = ',round(R,4)\n",
+ "print '\\nThe value of charging voltage is (kV) = ',round(V,2)\n",
+ "print 'The answers are a bit different due to rounding off error in textbook'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6: pg 199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The time to front is (microsecond) = 2.19\n",
+ "\n",
+ "The time to tail is (microsecond) = 46.7\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.6\n",
+ "#calculation of front and tail time\n",
+ "\n",
+ "#given data\n",
+ "n=12#number of stages\n",
+ "C=0.126*10**-6#capacitance(in Farad)\n",
+ "R1=800#wavefront resistance(in ohm)\n",
+ "R2=5000#xavetail resistance(in ohm)\n",
+ "C2=1000*10**-12#load capacitance(in Farad)\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "C1=C/n\n",
+ "t1=3*R1*(C1*C2)/(C1+C2)\n",
+ "t2=0.7*(R1+R2)*(C1+C2)\n",
+ "#results\n",
+ "print 'The time to front is (microsecond) = ',round(t1*10**6,2)\n",
+ "print '\\nThe time to tail is (microsecond) = ',round(t2*10**6,1)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7: pg 200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of highest resonant frequency produced is (kHz) = 8.04714659485\n",
+ "\n",
+ "The peak value of output voltage is (kV) - 209.631374545\n",
+ "The answers are a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.7\n",
+ "#calculation of peak value of output voltage and highest resonant frequency produced\n",
+ "from cmath import sqrt,pi\n",
+ "#given data\n",
+ "V=10.*10**3#voltage(in V) at primary winding\n",
+ "L1=10.*10**-3#inductance(in H)\n",
+ "L2=200.*10**-3#inductance(in H)\n",
+ "K=0.6#coefficient of coupling\n",
+ "C1=2.*10**-6#capacitance(in Farad) on primary side\n",
+ "C2=1.*10**-9#capacitance(in Farad) on secondary side\n",
+ "\n",
+ "#calculation\n",
+ "M=K*sqrt(L1*L2)\n",
+ "omega1=1/sqrt(L1*C1)\n",
+ "sigma=sqrt(1-(K**2))\n",
+ "omega2=1/sqrt(L2*C2)\n",
+ "gama2=sqrt(((omega1**2+omega2**2)/2)+sqrt(((omega1**2+omega2**2)/2)-(sigma**2*omega1**2*omega2**2)))\n",
+ "gama1=sqrt(((omega1**2+omega2**2)/2)-sqrt(((omega1**2+omega2**2)/2)-(sigma**2*omega1**2*omega2**2)))\n",
+ "fh=gama2/(2*pi)#highest frequency\n",
+ "V2p=(V*M)/(sigma*L1*L2*C2*(gama2**2-gama1**2))\n",
+ "#results\n",
+ "print 'The value of highest resonant frequency produced is (kHz) = ',abs(fh)*10**-3\n",
+ "print '\\nThe peak value of output voltage is (kV) - ',abs(V2p)*10**-3\n",
+ "\n",
+ "#gama1 and gama2 are imaginary numbers....Moreover their magnitudes will also be same....so peak value of output voltage from equation is zero\n",
+ "print 'The answers are a bit different due to rounding off error in textbook'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8: pg 201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of output voltage is (kV) = 100.0\n",
+ "correct answer is 100 kV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.8\n",
+ "#calculation of output voltage\n",
+ "from math import sqrt\n",
+ "#given data\n",
+ "V1=10.#voltage(in kV) at primary winding \n",
+ "C1=2.*10**-6#capacitance(in Farad) on primary side\n",
+ "C2=1.*10**-9#capacitance(in Farad) on secondary side\n",
+ "pern=5.#energy efficiency(in percentage)\n",
+ "\n",
+ "#calculation\n",
+ "n=pern/100.\n",
+ "V2=V1*sqrt(n*C1/C2)\n",
+ "#results\n",
+ "print 'The value of output voltage is (kV) = ',round(V2,1)\n",
+ "print 'correct answer is 100 kV'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9: pg 201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of self capacitance is (nF) = 1.126\n",
+ "\n",
+ "The value of leakage reactance is (kohm) = 28.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.9\n",
+ "#calculation of self capacitance and leakage reactance\n",
+ "from math import pi\n",
+ "#given data\n",
+ "Vi=350.*10**3#rating(in VA)\n",
+ "V=350.*10**3#secondary voltage(in V)\n",
+ "V1=6.6*10**3#primary voltage(in V)\n",
+ "perV=8.#percentage ratedd voltage\n",
+ "perR=1.#percentage rise\n",
+ "f=50.#frequency(in Hz)\n",
+ "\n",
+ "#calculation\n",
+ "I=Vi/V\n",
+ "Xl=(perV*V)/(100*I)\n",
+ "I0=perR*V/(100*Xl)\n",
+ "Xc=((1+(perR/100))*V)/I0\n",
+ "C=1/(Xc*2*pi*f)\n",
+ "#results\n",
+ "print 'The value of self capacitance is (nF) = ',round(C*10**9,3)\n",
+ "print '\\nThe value of leakage reactance is (kohm) = ',round(Xl*10**-3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10: pg 202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of resistance for 1/50 microsecond voltage is (ohm) = 70.6\n",
+ "\n",
+ "The value of inductance for 1/50 microsecond voltage is (microhenry) = 11.6\n",
+ "\n",
+ "The value of output voltage is (kV) = 9.88\n",
+ "\n",
+ "The value of inductance for 8/20 microsecond voltage is (microhenry) = 65.0\n",
+ "\n",
+ "The value of resistance for 8/20 microsecond voltage is (ohm) = 6.955\n",
+ "\n",
+ "The peak value of current is (A) = 714.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 6.10\n",
+ "#calculation of resistance and inductance\n",
+ "\n",
+ "#given data\n",
+ "CR=70.6#value from table\n",
+ "LC=11.6#value from table\n",
+ "C=1#capacitance(in microfarad)\n",
+ "pern=98.8#percentage voltage efficiency\n",
+ "V=10.#rating(in kV)\n",
+ "LC2=65.#value from table\n",
+ "alpha=0.0535#value from table\n",
+ "\n",
+ "#calculation\n",
+ "R=CR/C\n",
+ "L=LC/C\n",
+ "Vo=pern*V/100\n",
+ "L2=LC2/C\n",
+ "R2=2*L2*alpha\n",
+ "Ip=V*C/14.\n",
+ "\n",
+ "print 'The value of resistance for 1/50 microsecond voltage is (ohm) = ',round(R,1)\n",
+ "print '\\nThe value of inductance for 1/50 microsecond voltage is (microhenry) = ',round(L,1)\n",
+ "print '\\nThe value of output voltage is (kV) = ',round(Vo,2)\n",
+ "print '\\nThe value of inductance for 8/20 microsecond voltage is (microhenry) = ',round(L2)\n",
+ "print '\\nThe value of resistance for 8/20 microsecond voltage is (ohm) = ',round(R2,3)\n",
+ "print '\\nThe peak value of current is (A) = ',round(Ip*10**3)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter7_1.ipynb b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter7_1.ipynb
new file mode 100644
index 00000000..9e1c3bce
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter7_1.ipynb
@@ -0,0 +1,380 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Measurement of High Voltages and Currents"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1: pg 277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The capacitance of the generating voltmeter is (pF) = 0.9\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.1\n",
+ "#calculation of capacitance of generating voltmeter\n",
+ "from math import pi,sqrt\n",
+ "#given data\n",
+ "Irms=2.*10**-6#current(in A)\n",
+ "V1=20.*10**3#applied voltage(in V)\n",
+ "V2=200.*10**3#applied voltage(in V)\n",
+ "rpm=1500.#assume synchronous speed(in rpm) of motor\n",
+ "\n",
+ "#calculation\n",
+ "Cm=Irms*sqrt(2)/(V1*(rpm/60)*2*pi)\n",
+ "Irmsn=V2*Cm*2*pi*(rpm/60)/sqrt(2)\n",
+ "#results\n",
+ "print 'The capacitance of the generating voltmeter is (pF) = ',round(Cm*10**12,1)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2: pg 277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of Cs is (microfarad) = 1.0\n",
+ "\n",
+ "The value of R is 1.0e+07 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.2\n",
+ "#Design of a peak reading voltmeter\n",
+ "\n",
+ "#given data\n",
+ "r=1000.#ratio is 1000:1\n",
+ "V=100.*10**3#read voltage(in V)\n",
+ "R=10**7#value of resistance(in ohm)\n",
+ "\n",
+ "#calculation\n",
+ "#take range as 0-10 microampere\n",
+ "Vc2=V/r#voltage at C2 arm\n",
+ "#Cs * R = 1 to 10 s\n",
+ "Cs=10./R\n",
+ "#results\n",
+ "print 'The value of Cs is (microfarad) = ',round(Cs*10**6)\n",
+ "print '%s %.1e %s' %('\\nThe value of R is ',R,'ohm')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3: pg 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The air density factor is 0.9327\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.3\n",
+ "#calculation of correction factors for atmospheric conditions\n",
+ "\n",
+ "#given data\n",
+ "t=37#temperature(in degree celsius)\n",
+ "p=750.#atmospheric pressure(in mmHg)\n",
+ "\n",
+ "#calculation\n",
+ "d=p*293./(760*(273+t))\n",
+ "\t\n",
+ "#results\n",
+ "print 'The air density factor is ',round(d,4)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4: pg 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The divider ratio is 1238.3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.4\n",
+ "#calculation of divider ratio\n",
+ "\n",
+ "#given data\n",
+ "R1=16.*10**3#high voltage arm resistance(in ohm)\n",
+ "n=16.#number of members\n",
+ "R=250.#resistance(in ohm) of each member in low voltage arm\n",
+ "R2dash=75.#terminating resistance(in ohm)\n",
+ "\n",
+ "#calculation\n",
+ "R2=R/n\n",
+ "a=1+(R1/R2)+(R1/R2dash)\n",
+ "#results\n",
+ "print 'The divider ratio is ',round(a,1)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5: pg 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of capacitance needed for correct compensation is 1.8e-08 F or 17 nf\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.5\n",
+ "#calculation of capacitance needed for correct compensation\n",
+ "\n",
+ "#given data\n",
+ "Cgdash=20*10**-12#ground capacitance(in farad)\n",
+ "n=15.#number of capacitors\n",
+ "r=120.#resistance(in ohm)\n",
+ "R2=5.#resistance(in ohm) of LV arm\n",
+ "\n",
+ "#calculation\n",
+ "Ce=(2./3)*n*Cgdash\n",
+ "R1=n*r/2\n",
+ "T=R1*Ce/2\n",
+ "C2=T/R2\n",
+ "#results\n",
+ "print '%s %.1e %s %d %s' %('The value of capacitance needed for correct compensation is ',C2,' F or ',C2*10**9,' nf')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6: pg 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of resistance is (milliohm) = 1.0\n",
+ "\n",
+ "The length of shunt is (cm) = 10.0\n",
+ "\n",
+ "The radius of shunt is (mm) = 25.6\n",
+ "\n",
+ "The thickness of shunt is (mm) = 0.187\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.6\n",
+ "#calculation of ohmic value of shunt an its dimensions\n",
+ "from math import sqrt,pi\n",
+ "#given data\n",
+ "I=50.*10**3#impulse current (in A)\n",
+ "Vm=50.#voltage(in V) drop across shunt\n",
+ "B=10.*10**6#bandwidth(in Hz) of the shunt\n",
+ "mu0=4.*pi*10**-7#magnetic permeability(in H/m) of free space\n",
+ "\n",
+ "#calculation\n",
+ "R=Vm/I#resistance of shunt\n",
+ "L0=1.46*R/B\n",
+ "mu=mu0#in this case ...mu = mu0 * mur ~mu0\n",
+ "rho=30*10**-8#resistivity(in ohm m) of the tube material\n",
+ "d=sqrt((1.46*rho)/(mu*B))#thickness of the tube(in m)\n",
+ "l=10**-1#length(in m) (assume)\n",
+ "r=(rho*l)/(2*pi*R*d)\n",
+ "#results\n",
+ "print 'The value of resistance is (milliohm) = ',round(R*10**3)\n",
+ "print '\\nThe length of shunt is (cm) = ',round(l*100)\n",
+ "print '\\nThe radius of shunt is (mm) = ',round(r*10**3,1)\n",
+ "print '\\nThe thickness of shunt is (mm) = ',round(d*10**3,3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7: pg 280"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of mutual inductance is (nH) = 2.0\n",
+ "\n",
+ "The value of resistance is 2.0e+03 ohm\n",
+ "\n",
+ "The value of capacitance is (pF) = 1000.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.7\n",
+ "#Estimation of values of mutual inductance,resistance and capacitance\n",
+ "from math import pi\n",
+ "#given data\n",
+ "It=10.*10**3#impulse current(in A)\n",
+ "Vmt=10.#meter reading(in V) for full scale deflection\n",
+ "dibydt=10.**11#rate of change of current(in A/s)\n",
+ "\n",
+ "#calculation\n",
+ "MbyCR=Vmt/It\n",
+ "t=It/dibydt\n",
+ "f=1/(4.*t)\n",
+ "omega=2*pi*f\n",
+ "CR=10*pi/omega\n",
+ "M=10**-3*CR\n",
+ "R=2*10**3#assume resistance(in ohm)\n",
+ "C=CR/R\n",
+ "#results\n",
+ "print 'The value of mutual inductance is (nH) = ',round(M*10**9)\n",
+ "print '%s %.1e %s' %('\\nThe value of resistance is',R,'ohm')\n",
+ "print '\\nThe value of capacitance is (pF) = ',round(C*10**12)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8: pg 281"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of resistance is 2.0e+03 ohm\n",
+ "\n",
+ "The value of capacitance is (microfarad) = 0.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 7.8\n",
+ "#calculation of resistance and capacitance\n",
+ "from math import pi\n",
+ "#given data\n",
+ "t1=8.*10**-6#fronttime(in s)\n",
+ "t2=20.*10**-6#tailtime(in s)\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "f2=1/t2#frequency corresponding to tail time\n",
+ "fl=f2/5\n",
+ "omega=2*pi*fl\n",
+ "CR=10*pi/omega\n",
+ "M=10**-3*(1/CR)\n",
+ "R=2*10**3#assume resistance(in ohm)\n",
+ "C=CR/R\n",
+ "\n",
+ "print '%s %.1e %s' %('The value of resistance is ',R,'ohm')\n",
+ "print '\\nThe value of capacitance is (microfarad) = ',round(C*10**6,2)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter8_1.ipynb b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter8_1.ipynb
new file mode 100644
index 00000000..10109095
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter8_1.ipynb
@@ -0,0 +1,391 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Overvoltage phenomenon and Insulation coordination in electric power systems"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1: pg 350 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of surge impedance is (ohm) = 374.2\n",
+ "\n",
+ "The value of velocity is 3.0e+05 km/s\n",
+ "\n",
+ "The time taken by the surge to travel to the other end is (ms) = 1.35\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 8.1\n",
+ "#calculation of surge impedance,velocity and time taken by the surge to travel to the other end\n",
+ "from math import sqrt\n",
+ "#given data\n",
+ "L=1.26*10**-3#inductance(in H/km)\n",
+ "C=0.009*10**-6#capacitance(in F/km)\n",
+ "l=400.#length(in km) of the transmission line\n",
+ "\n",
+ "#calculation\n",
+ "v=1/sqrt(L*C)\n",
+ "Xs=sqrt(L/C)\n",
+ "t=l/v\n",
+ "#results\n",
+ "print 'The value of surge impedance is (ohm) = ',round(Xs,1)\n",
+ "print '%s %.1e %s' %('\\nThe value of velocity is ',v,' km/s')\n",
+ "print '\\nThe time taken by the surge to travel to the other end is (ms) = ',round(t*10**3,2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2: pg 350"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of the voltage build up at the junction is (kV) = 893.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 8.2\n",
+ "#calculation of the voltage build up at the junction\n",
+ "\n",
+ "#given data\n",
+ "Z1=500.#surge impedance(in ohm) of transmission line\n",
+ "Z2=60.#surge impedance(in ohm) of cable\n",
+ "e=500.#value of surge(in kV)\n",
+ "\n",
+ "#calculation\n",
+ "tau=(Z1-Z2)/(Z2+Z1)#coefficient of reflection\n",
+ "Vj=(1+tau)*e\n",
+ "#results\n",
+ "print 'The value of the voltage build up at the junction is (kV) = ',round(Vj)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5: pg 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When wave travels along the cable,the transmitted voltage is (kV) = 374.85\n",
+ "\n",
+ "When wave travels along the cable,the reflected voltage is (kV) = 174.85\n",
+ "\n",
+ "When wave travels along the cable,the transmitted current is (kA) = 1.002\n",
+ "\n",
+ "When wave travels along the cable,the reflected current is (kA) = 6.97\n",
+ "\n",
+ "When wave travels along the line,the transmitted voltage is (kV) = 25.15\n",
+ "\n",
+ "When wave travels along the line,the reflected voltage is (kV) = -174.85\n",
+ "\n",
+ "When wave travels along the line,the transmitted current is (kA) = 1.002\n",
+ "\n",
+ "When wave travels along the line,the reflected current is 0.467 kA or 467.0 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 8.5\n",
+ "#calculation of the transmitted,reflected voltage and current waves\n",
+ "from math import sqrt\n",
+ "#given data\n",
+ "L1=0.189*10**-3#inductance(in H/km) of the cable\n",
+ "C1=0.3*10**-6#capacitance(in Farad/km) of the cable\n",
+ "L2=1.26*10**-3#inductance(in H/km) of the overhead line\n",
+ "C2=0.009*10**-6#capacitance(in Farad/km) of the overhead line\n",
+ "e=200.*10**3#surge volatge(in kV)\n",
+ "\n",
+ "#calculation\n",
+ "Z1=sqrt(L1/C1)#surge impedance of the cable\n",
+ "Z2=sqrt(L2/C2)#surge impedance of the line\n",
+ "tau=(Z2-Z1)/(Z2+Z1)#when wave travels along the cable\n",
+ "edash=tau*e#reflected wave\n",
+ "edashdash=(1+tau)*e#transmitted wave\n",
+ "Idash=edash/Z1#reflected current wave\n",
+ "Idashdash=edashdash/Z2#transmitted current wave\n",
+ "Z2n=Z1\n",
+ "Z1n=Z2\n",
+ "taun=(Z2n-Z1n)/(Z2n+Z1n)#when wave travels along the line\n",
+ "edashn=taun*e#reflected wave\n",
+ "edashdashn=(1+taun)*e#transmitted wave\n",
+ "Idashdashn=edashdashn/Z2n#transmitted current wave\n",
+ "Idashn=edashn/Z1n#reflected current wave\n",
+ "#results\n",
+ "print 'When wave travels along the cable,the transmitted voltage is (kV) = ',round(edashdash*10**-3,2)\n",
+ "print '\\nWhen wave travels along the cable,the reflected voltage is (kV) = ',round(edash*10**-3,2)\n",
+ "print '\\nWhen wave travels along the cable,the transmitted current is (kA) = ',round(Idashdash*10**-3,3)\n",
+ "print '\\nWhen wave travels along the cable,the reflected current is (kA) = ',round(Idash*10**-3,2) \n",
+ "print '\\nWhen wave travels along the line,the transmitted voltage is (kV) = ',round(edashdashn*10**-3,2)\n",
+ "print '\\nWhen wave travels along the line,the reflected voltage is (kV) = ',round(edashn*10**-3,2)\n",
+ "print '\\nWhen wave travels along the line,the transmitted current is (kA) = ',round(Idashdashn*10**-3,3)\n",
+ "print '\\nWhen wave travels along the line,the reflected current is ',round(abs(Idashn*10**-3),3),' kA or ',round(abs(Idashn)),'A' \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6: pg 353"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of voltage at the receiving end in Bewley lattice diagram is 0.9756 u(t) V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 8.6\n",
+ "#calculation of value of voltage at the receiving end in Bewley lattice diagram\n",
+ "\n",
+ "#given data\n",
+ "alpha=0.8\n",
+ "\n",
+ "#calculation\n",
+ "Vut=2*alpha/(1+alpha**2)\n",
+ "#results\n",
+ "print 'The value of voltage at the receiving end in Bewley lattice diagram is ',round(Vut,4),'u(t) V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7: pg 355"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The sparkover voltage for terminated line is (kV) = 347.0\n",
+ "\n",
+ "The arrester current for terminated line is (kA) = 5.0\n",
+ "\n",
+ "The sparkover voltage for continuous line is (kV) = 294.0\n",
+ "\n",
+ "The arrester current for continuous line is (kA) = 2.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 8.7\n",
+ "#calculation of sparkover voltage and the arrester current\n",
+ "\n",
+ "#given data\n",
+ "Xs=400.#surge impedance(in ohm)\n",
+ "Xv=1000.#surge voltage(in kV)\n",
+ "\n",
+ "#calculation\n",
+ "#for line terminated\n",
+ "Iam=2*Xv/Xs#maximum arrester current\n",
+ "#as Iam = 5 kA from graph Vd = 330 kV\n",
+ "Vd=330.#sparkover voltage(in kV)\n",
+ "Vso=Vd+(Vd*5./100)\n",
+ "#for continuous line\n",
+ "Iamn=Xv/Xs#maximum arrester current\n",
+ "#as Iamn = 2.5 kA from graph Vdn = 280 kV\n",
+ "Vdn=280#sparkover voltage(in kV)\n",
+ "Vson=Vdn+(Vdn*5./100)\n",
+ "#results\n",
+ "print 'The sparkover voltage for terminated line is (kV) = ',round(Vso)\n",
+ "print '\\nThe arrester current for terminated line is (kA) = ',round(Iam)\n",
+ "print '\\nThe sparkover voltage for continuous line is (kV) = ',round(Vson)\n",
+ "print '\\nThe arrester current for continuous line is (kA) = ',round(Iamn,1)\n",
+ "#values of sparover voltages are\n",
+ "#for terminated line = 346 kV\n",
+ "#for continuous line = 294 kV\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8: pg 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Neglecting resistance of line,the rise in voltage at the other end is (kV) = 11.89\n",
+ "\n",
+ "Considering all the parameters,the rise in voltage at the other end is (kV) = 94.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 8.8\n",
+ "#calculation of rise in voltage at the other end\n",
+ "from cmath import pi,sqrt,cos\n",
+ "#given data\n",
+ "R=0.1#resistance(in ohm/km)\n",
+ "L=1.26*10**-3#inductance(in H/km)\n",
+ "C=0.009*10**-6#capacitance(in F/km)\n",
+ "l=400#length(in km) of the line\n",
+ "V1=230#line voltage(in kV)\n",
+ "f=50#frequency(in Hz)\n",
+ "G=0\n",
+ "\n",
+ "#calculation\n",
+ "#Neglecting resistance of line\n",
+ "V1p=V1/sqrt(3)\n",
+ "omega=2*pi*f\n",
+ "Xl=complex(0,omega*L*l)\n",
+ "Xc=complex(0,-1/(omega*C*l))\n",
+ "V2=V1p*((1-(Xl/(2*Xc)))-1)\n",
+ "\n",
+ "#Considering all the parameters\n",
+ "omegaL=complex(0,omega*L)\n",
+ "omegaC=complex(0,omega*C)\n",
+ "i=l*sqrt((R+omegaL)*(G+omegaC))\n",
+ "betal=i.imag*l\n",
+ "V2n=V1p/cos(betal)\n",
+ "\n",
+ "print 'Neglecting resistance of line,the rise in voltage at the other end is (kV) = ',round(V2.real,2)\n",
+ "print '\\nConsidering all the parameters,the rise in voltage at the other end is (kV) = ',round(V2n.real-V1p.real,2)\n",
+ "\n",
+ "#By considering all the parameters the rise in voltage at the other end is 94.50 kV\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9: pg 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The protective margin for lightning impulses is (percentage) = 34.3\n",
+ "\n",
+ "The protective margin for switching gears is (percentage) = 27.6\n",
+ "\n",
+ "The margin when lightning arrester just sparks is (percentage) = 27.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 8.9\n",
+ "#working out of insulation coordination\n",
+ "from math import sqrt\n",
+ "#given data\n",
+ "V=220.#voltage(in kV) of substation\n",
+ "BIL=1050.#value of BIL(in kV)\n",
+ "BtoS=1.24#ratio of BIL to SIL\n",
+ "\n",
+ "#calculation\n",
+ "Vh=245.#highest voltage(in kV)\n",
+ "Vg=Vh*sqrt(2.)/sqrt(3)#highest system voltage\n",
+ "Vs=3*Vg#expected switching voltage(in kV)\n",
+ "Vfw=760.#impulse sparkover voltage(in kV)\n",
+ "Vd1=690.#discharge voltage(in kV) for 5 kA\n",
+ "Vd2=615.#discharge voltage(in kV) for 2 kA\n",
+ "#SIL = BIL/BtoS = 846 ~ 850 kV\n",
+ "SIL=850.#value of SIL(in kV)\n",
+ "Pmlig=(BIL-Vd1)/BIL#protective margin for lightning impulses\n",
+ "Pmswi=(SIL-Vd2)/SIL#protective margin for switching gears\n",
+ "Pmspr=(BIL-Vfw)/BIL#margin when lightning arrester just sparks\n",
+ "#results\n",
+ "print 'The protective margin for lightning impulses is (percentage) = ',round(Pmlig*100,1)\n",
+ "print '\\nThe protective margin for switching gears is (percentage) = ',round(Pmswi*100,1)\n",
+ "print '\\nThe margin when lightning arrester just sparks is (percentage) = ',round(Pmspr*100,1)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter9_1.ipynb b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter9_1.ipynb
new file mode 100644
index 00000000..13f9024c
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/Chapter9_1.ipynb
@@ -0,0 +1,452 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Non Destructive testing of materials and electrical apparatus"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1: pg 395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The volume resistivity is (ohmcm) = 1.226e+14\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.1\n",
+ "#calculation of the volume resistivity\n",
+ "from math import pi\n",
+ "#given data\n",
+ "V=1000.#applied voltage(in V)\n",
+ "Rs=10**7#standard resistance(in ohm)\n",
+ "n=3000.#universal shunt ratio\n",
+ "Ds=33.3#deflection(in cm) for Rs\n",
+ "D=3.2#deflection(in cm)\n",
+ "d=10.#diameter(in cm) of the electrodes\n",
+ "t=2*10**-1#thickness(in cm) of the specimen\n",
+ "\n",
+ "#calculation\n",
+ "G=V/(Rs*n*Ds)#galvanometer sensitivity\n",
+ "R=V/(D*G)#resistance of the specimen\n",
+ "r=d/2#radius of the electrodes\n",
+ "rho=(pi*r**2*R)/t#volume resistivity\n",
+ "#results\n",
+ "print '%s %.3e' %('The volume resistivity is (ohmcm) = ',rho)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2: pg 395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity of the specimen is (ohmcm) = 1.031e+13\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.2\n",
+ "#calculation of resistivity of the specimen\n",
+ "import math\n",
+ "from math import log\n",
+ "#given data\n",
+ "tm=30.#time (in minute)\n",
+ "ts=20.#time(in second)\n",
+ "Vn=1000.#voltage(in V) to which the condenser was charged\n",
+ "V=500.#voltage(in V) fall to\n",
+ "C=0.1*10**-6#capacitance(in Farad)\n",
+ "d=10.#diameter(in cm) of the electrodes\n",
+ "th=2*10**-1#thickness(in cm) of the specimen\n",
+ "\n",
+ "#calculation\n",
+ "t=(tm*60)+ts\n",
+ "R=t/(C*log(Vn/V))#resistance\n",
+ "r=d/2#radius of the electrodes\n",
+ "rho=(math.pi*r**2*R)/th#volume resistivity\n",
+ "#results\n",
+ "print '%s %.3e' %('The resistivity of the specimen is (ohmcm) = ',rho)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3: pg 396"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The dielectric constant is 4.2\n",
+ "The complex permittivity(in F/m)is 3.714e-11 -4.456e-14 j\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.3\n",
+ "#calculation of dielectric constant and complex permittivity of bakelite\n",
+ "from cmath import pi\n",
+ "#given data\n",
+ "C=147*10**-12#capacitance(in Farad)\n",
+ "Ca=35*10**-12#air capacitance(in Farad)\n",
+ "tandelta=0.0012\n",
+ "epsilon0=(36*pi*10**9)**-1#electrical permittivity(in F/m) of free space\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "epsilonr=C/Ca#dielectric constant\n",
+ "Kdash=epsilonr\n",
+ "Kdashdash=tandelta*Kdash\n",
+ "Kim=complex(Kdash,-Kdashdash)\n",
+ "epsilonast=epsilon0*Kim\n",
+ "\n",
+ "print 'The dielectric constant is ',epsilonr\n",
+ "print '%s %.3e %.3e %s' %('The complex permittivity(in F/m)is ',epsilonast.real,epsilonast.imag,'j')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4: pg 396"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The capacitance is (pF) = 500.0\n",
+ "\n",
+ "The value of tandelta of bushing is 0.00125\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.4\n",
+ "#calculation of capacitance and tandelta of bushing\n",
+ "from math import pi\n",
+ "#given data\n",
+ "R3=3180.#resistance(in ohm)\n",
+ "R4=636.#resistance(in ohm)\n",
+ "Cs=100.#standard condenser(in pF)\n",
+ "f=50.#frequency(in Hz)\n",
+ "C3=0.00125*10**-6#capacitance(in farad)\n",
+ "\n",
+ "#calculation\n",
+ "omega=2*pi*f\n",
+ "Cx=R3*Cs/R4#unknown capacitance\n",
+ "tandelta=omega*C3*R3\n",
+ "#results\n",
+ "print 'The capacitance is (pF) = ',Cx\n",
+ "print '\\nThe value of tandelta of bushing is ',round(tandelta,5)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5: pg 396"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The dielectric constant is 2.19\n",
+ "\n",
+ "The value of tandelta of the transformer oil is 0.00044\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.5\n",
+ "#calculation of dielectric constant and tandelta of the transformer oil\n",
+ "\n",
+ "#given data\n",
+ "f=1*10**3#frequency(in Hz)\n",
+ "C1=504.#capacitance(in pF) for standard condenser and leads\n",
+ "D1=0.0003#dissipation factor for standard condenser and leads\n",
+ "C2=525.#capacitance(in pF) for standard condenser in parallel with the empty test cell\n",
+ "D2=0.00031#dissipation factor for standard condenser in parallel with the empty test cell\n",
+ "C3=550.#capacitance(in pF) for standard condenser in parallel with the test cell and oil\n",
+ "D3=0.00075#dissipation factor for standard condenser in parallel with the test cell and oil\n",
+ "\n",
+ "#calculation\n",
+ "Ctc=C2-C1#capacitance of the test cell\n",
+ "Ctcoil=C3-C1#capacitance of the test cell + oil\n",
+ "epsilonr=Ctcoil/Ctc#dielectric constant of oil\n",
+ "deltaDoil=D3-D2#deltaD of oil\n",
+ "#results\n",
+ "print 'The dielectric constant is ',round(epsilonr,2)\n",
+ "print '\\nThe value of tandelta of the transformer oil is ',round(deltaDoil,5)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6: pg 397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The charge transferred from the cavity is (pC) = 0.92\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.6\n",
+ "#calculation of magnitude of the charge transferred from the cavity\n",
+ "from math import pi\n",
+ "#given data\n",
+ "Vd=0.2#discharge voltage(in V)\n",
+ "s=1#sensitivity(in pC/V)\n",
+ "epsilonr=2.5#relative permittivity\n",
+ "epsilon0=(36*pi*10**9)**-1#electrical permittivity(in F/m) of free space\n",
+ "d1=1*10**-2#diameter(in m) of the cylindrical disc\n",
+ "t1=1*10**-2#thickness(in m) of the cylindrical disc\n",
+ "d2=1*10**-3#diameter(in m) of the cylindrical cavity\n",
+ "t2=1*10**-3#thickness(in m) of the cylindrical cavity\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Dm=Vd*s#discharge magnitude\n",
+ "Ca=epsilon0*(pi*(d2/2)**2)/t2#capacitance of the cavity\n",
+ "Cb=epsilon0*epsilonr*(pi*(d2/2)**2)/(t1-t2)#capacitance\n",
+ "qc=((Ca+Cb)/Cb)*Dm\n",
+ "#results\n",
+ "print 'The charge transferred from the cavity is (pC) = ',round(qc,2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7: pg 397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The dielectric constant is 5.8\n",
+ "\n",
+ "The loss factor tandelta is 5e-06\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.7\n",
+ "#calculation of dielectric constant and loss factor tandelta\n",
+ "from math import pi\n",
+ "#given data\n",
+ "R3=1000./pi#resistance(in ohm) in CD branch\n",
+ "R4=62.#variable resistance(in ohm)\n",
+ "Cs=100.*10**-12#standard capacitance(in F)\n",
+ "epsilon0=8.854*10**-12#electrical permittivity(in F/m) of free space\n",
+ "f=50.#frequency(in Hz)\n",
+ "C3=50.*10**-9#variable capacitor(in F)\n",
+ "d=1.*10**-3#thickness(in m) of sheet\n",
+ "a=100.*10**-4#electrode effective area(in m**2)\n",
+ "\n",
+ "#calculation\n",
+ "Cx=R3*Cs/R4\n",
+ "epsilonr=Cx*d/(epsilon0*a)\n",
+ "omega=2*pi*f\n",
+ "tandelta=omega*C3*R3*d\n",
+ "#results\n",
+ "print 'The dielectric constant is ',round(epsilonr,2)\n",
+ "print '\\nThe loss factor tandelta is ',round(tandelta,7)\n",
+ "#In equation of tandelta d is multiplied\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8: pg 398"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage across AD branch at balance is (V) = 0.1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.8\n",
+ "#calculation of voltage at balance\n",
+ "from math import pi,sqrt\n",
+ "#given data\n",
+ "V=10000#applied voltage(in V)\n",
+ "R3=1000/pi#resistance(in ohm) in CD branch\n",
+ "R4=62#variable resistance(in ohm)\n",
+ "Cs=100*10**-12#standard capacitance(in F)\n",
+ "f=50#frequency(in Hz)\n",
+ "C3=50*10**-9#variable capacitor(in F)\n",
+ "\n",
+ "#calculation\n",
+ "Rx=C3*R4/Cs\n",
+ "Cx=R3*Cs/R4\n",
+ "omega=2*pi*f\n",
+ "zx=complex(Rx,-1/(omega*Cx))\n",
+ "VR4=R4*V/(R4+zx)\n",
+ "MVR4=sqrt((VR4.real)**2+VR4.imag**2)#magnitude\n",
+ "#results\n",
+ "print 'The voltage across AD branch at balance is (V) = ',round(MVR4,1)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9: pg 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The maximum value of capacitance is (nF) = 11.1\n",
+ "\n",
+ "The minimum value of capacitance is (pF) = 10.0\n",
+ "\n",
+ "The maximum value of tandelta is 3.87\n",
+ "\n",
+ "The minimum value of tandelta is 3.14e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "#example 9.9\n",
+ "#calculation of maximum and minimum value of capacitance and tandelta\n",
+ "from math import pi\n",
+ "#given data\n",
+ "R3min=100.#minimum value of R3 resistance(in ohm)\n",
+ "R3max=11100.#maximum value of R3 resistance(in ohm)\n",
+ "R4min=100.#minimum value of R4 resistance(in ohm)\n",
+ "R4max=1000.#maximum value of R4 resistance(in ohm)\n",
+ "Cs=100.*10**-12#standard capacitance(in farad)\n",
+ "C3min=1.*10**-9#minimum value of C3 capacitance(in farad)\n",
+ "C3max=1.11*10**-6#maximum value of C3 capacitance(in farad)\n",
+ "f=50.#frequency(in Hz)\n",
+ "\n",
+ "#calculation\n",
+ "Cxmax=R3max*Cs/R4min\n",
+ "Cxmin=R3min*Cs/R4max\n",
+ "omega=2*pi*f\n",
+ "tandeltamax=omega*R3max*C3max\n",
+ "tandeltamin=omega*R3min*C3min\n",
+ "#results\n",
+ "print 'The maximum value of capacitance is (nF) = ',round(Cxmax*10**9,1)\n",
+ "print '\\nThe minimum value of capacitance is (pF) = ',round(Cxmin*10**12)\n",
+ "print '\\nThe maximum value of tandelta is ',round(tandeltamax,2)\n",
+ "print '%s %.2e' %('\\nThe minimum value of tandelta is ',tandeltamin)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter2_1.png b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter2_1.png
new file mode 100644
index 00000000..78f269d9
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter2_1.png
Binary files differ
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter3_1.png b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter3_1.png
new file mode 100644
index 00000000..ecdd0b3d
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter3_1.png
Binary files differ
diff --git a/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter4_1.png b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter4_1.png
new file mode 100644
index 00000000..6b19b460
--- /dev/null
+++ b/High_Voltage_Engineering_by_V_Kamaraju_,_M_S_Naidu/screenshots/chapter4_1.png
Binary files differ
diff --git a/Introduction_to_Electrical_Engineering_by_Er._J.P._Navani_&_Er._Sonal_Sapra/README.txt b/Introduction_to_Electrical_Engineering_by_Er._J.P._Navani_&_Er._Sonal_Sapra/README.txt
new file mode 100644
index 00000000..6f37eadb
--- /dev/null
+++ b/Introduction_to_Electrical_Engineering_by_Er._J.P._Navani_&_Er._Sonal_Sapra/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Devika Raj
+Course: be
+College/Institute/Organization: RVR college of Engineering
+Department/Designation: Electronics and Communication En
+Book Title: Introduction to Electrical Engineering
+Author: Er. J.P. Navani & Er. Sonal Sapra
+Publisher: S chand, new delhi
+Year of publication: 2013
+Isbn: 9788121997591
+Edition: 1 \ No newline at end of file