summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--sample_notebooks/Haseen/Chapter3.ipynb285
-rw-r--r--sample_notebooks/MohdRizwan/Chapter2.ipynb364
2 files changed, 649 insertions, 0 deletions
diff --git a/sample_notebooks/Haseen/Chapter3.ipynb b/sample_notebooks/Haseen/Chapter3.ipynb
new file mode 100644
index 00000000..c683fff5
--- /dev/null
+++ b/sample_notebooks/Haseen/Chapter3.ipynb
@@ -0,0 +1,285 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3 Elementry Operations in Algebra"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3_5 pgno:33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "3x**4/6x**6\n"
+ ]
+ }
+ ],
+ "source": [
+ "#3x**4/6x**6\n",
+ "\n",
+ "x=('x')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convince poly(0,'a');poly(0,'x');\n",
+ "p1='3*x**4';\n",
+ "p2='6*x**6';\n",
+ "#p=p1/p2\n",
+ "print '3x**4/6x**6'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3_6 pgno:34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "val=8*x/15\n"
+ ]
+ }
+ ],
+ "source": [
+ "#x/3 + x/5\n",
+ "\n",
+ "x=('x')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convince poly(0,'a');poly(0,'x');poly(0,'x');\n",
+ "p1='x/3';\n",
+ "p2='x/5';\n",
+ "p=p1+p2;\n",
+ "q='8*x/15';\n",
+ "if(p==q):\n",
+ " print\"val=8*x/15 \\n\"\n",
+ "print\"val=8*x/15\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3_9 pgno:35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ans=\n",
+ "(a+b)/k 8 25 60\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2a/15 + 5b/12\n",
+ "\n",
+ "\n",
+ "d=60#\"L.C.M of denominators\"\n",
+ "k=d;\n",
+ "a_coeff=60/15*2;\n",
+ "b_coeff=60/12*5;\n",
+ "print'ans='\n",
+ "print\"(a+b)/k\",a_coeff,b_coeff,k"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3_10 pgno:35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ans=\n",
+ "(bx-ay)/a**2b**2 3 2 36\n"
+ ]
+ }
+ ],
+ "source": [
+ "#x/12a**2b - y/18ab**2\n",
+ "\n",
+ "k=36#lcm(d);#L.C.M of denominators\n",
+ "\n",
+ "#\"L.C.M of a**2*b and a*b**2 is a**2*b**2\"\n",
+ "x_coeff=36/12;\n",
+ "y_coeff=36/18;\n",
+ "print'ans='\n",
+ "print\"(bx-ay)/a**2b**2\",x_coeff,y_coeff,k"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3_11 pgno:36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "val=\n",
+ "/*x**2/y**2 2 3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#4*x**3*y/(6*x*y**3)\n",
+ "\n",
+ "gcd_d=1#GCD of 4 and 6 is 2\n",
+ "m=4/gcd_d\n",
+ "n=6/gcd_d\n",
+ "x=1#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'x');\n",
+ "y=1#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'y');\n",
+ "p1=x**3;p2=x;p=p1/p2;\n",
+ "q1=y;q2=y**3;q=q1/q2;\n",
+ "#val=m/n*p*q \n",
+ "print'val='\n",
+ "print\"/*x**2/y**2\",m/2,n/2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3_12 pgno:36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "val=\n",
+ "*x**2*y/a**3 0.285714285714\n"
+ ]
+ }
+ ],
+ "source": [
+ "#6*a*x**4*2*y**3/(14*x**2*y**2*3*a**4)\n",
+ "\n",
+ "\n",
+ "x=('x')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'x');poly(0,'x');\n",
+ "y=('y')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'x');poly(0,'y');\n",
+ "a=('a')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'x');poly(0,'a');\n",
+ "num=6.*2./(14.*3.);\n",
+ "p1='x**4';p2='x**2';p='p1/p2';\n",
+ "q1='y**3';q2='y**2';q='q1/q2';\n",
+ "r1='a';r2='a**4';r='r1/r2';\n",
+ "#val=num*p*q*r\n",
+ "print'val='\n",
+ "print\"*x**2*y/a**3\",num"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3_13 pgno:36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "val=\n",
+ "*x/(a*y) 1.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#(8x**3)/(5a**2y) *(3a)/(4x**2)\n",
+ "\n",
+ "\n",
+ "x=('x')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'x');poly(0,'x');\n",
+ "y=('y')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'x');poly(0,'y');\n",
+ "a=('a')#is polynomial function of degree zero poly(0,'x');#for this I assume it to be 1 for my convincepoly(0,'x');poly(0,'a');\n",
+ "p1='x**3';p2='x**2';p='p1/p2';\n",
+ "q='1/y';\n",
+ "r1='a';r2='a**2';r='r1/r2';\n",
+ "num=8.*3./(5.*4.);\n",
+ "#val=num*p*q*r\n",
+ "print('val=')\n",
+ "print\"*x/(a*y)\",num"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/MohdRizwan/Chapter2.ipynb b/sample_notebooks/MohdRizwan/Chapter2.ipynb
new file mode 100644
index 00000000..39ad283e
--- /dev/null
+++ b/sample_notebooks/MohdRizwan/Chapter2.ipynb
@@ -0,0 +1,364 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapater 2 - Ohm's Law "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3,Page number: 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage across resistor 1 is: 12 V.\n",
+ "The voltage across resistor 2 is: 12 V.\n",
+ "The voltage across resistor 3 is: 16 V.\n",
+ "The voltage across resistor 4 is: 8 V.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "#Variable Declaration:\n",
+ "Req=(8.0*12)/(8+12) #Equivalent Resistance of the circuit(in Ohms)\n",
+ "I=5 #Current in the circuit(in Amperes) \n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "V=I*Req\n",
+ "V1=(4.0*V)/(4+4)\n",
+ "V2=(4.0*V)/(4+4)\n",
+ "V3=(8.0*V)/(8+4)\n",
+ "V4=(4.0*V)/(8+4)\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The voltage across resistor 1 is: %d V.\" % (V1)\n",
+ "print \"The voltage across resistor 2 is: %d V.\" % (V2)\n",
+ "print \"The voltage across resistor 3 is: %d V.\" % (V3)\n",
+ "print \"The voltage across resistor 4 is: %d V.\" % (V4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4,Page number:20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current i1= 2.00 A.\n",
+ "The current i2= 1.20 A.\n",
+ "The current i3= 0.80 A.\n",
+ "The voltage v1= 4.00 V.\n",
+ "The voltage v2= 4.80 V.\n",
+ "The voltage v3= 4.80 V.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "#Variable Declaration:\n",
+ "I=2.0 #Current in Circuit(in Amperes)\n",
+ "R1=2.0 #Resistance of resistor 1(in Ohms) \n",
+ "R2=4.0 #Resistance of resistor 2(in Ohms)\n",
+ "R3=6.0 #Resistance of resistor 3(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "Rp=1/((1/R2)+(1/R3))\n",
+ "Req=R1+Rp\n",
+ "Vs=I*Req\n",
+ "v1=Vs*(R1/(R1+Rp))\n",
+ "v2=Vs*(Rp/(R1+Rp))\n",
+ "v3=v2\n",
+ "i1=I\n",
+ "i2=v2/R2\n",
+ "i3=v3/R3\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current i1= %.2f A.\\nThe current i2= %.2f A.\\nThe current i3= %.2f A.\" %(i1,i2,i3)\n",
+ "print \"The voltage v1= %.2f V.\\nThe voltage v2= %.2f V.\\nThe voltage v3= %.2f V.\\n\" %(v1,v2,v3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5,Page number: 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)The effective resistance between points A and B for the combination of resistances is R_AB = 20.00 Ohms.\n",
+ "(b)The effective resistance between points A and B for the combination of resistances is R_AB = 0.4545*R Ohms.\n",
+ "(c)The effective resistance between points A and B for the combination of resistances is R_AB = 15.00 Ohms.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sympy import symbols\n",
+ "from __future__ import division\n",
+ "#Calculations:\n",
+ "Rp=1.0/((1.0/20)+(1.0/10)+(1.0/20))\n",
+ "R_AB_1=15+Rp\n",
+ "R = symbols('R')\n",
+ "R1=1.0/((1.0/2.0)+1.0)+ 1.0\n",
+ "R2=R1\n",
+ "R_AB_2= 1.0/((1/R1)+(1/R2)+(1))\n",
+ "R_AB_b=round(R_AB_2,4)*R\n",
+ "R3=1.0/((1.0/3)+(1.0/6)) + 18\n",
+ "R_AB_3= 1.0/((1.0/20)+(1/R3)) + 5\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"(a)The effective resistance between points A and B for the combination of resistances is R_AB = %.2f Ohms.\" %(R_AB_1)\n",
+ "print \"(b)The effective resistance between points A and B for the combination of resistances is R_AB = %s Ohms.\" %(R_AB_b)\n",
+ "print \"(c)The effective resistance between points A and B for the combination of resistances is R_AB = %.2f Ohms.\" %(R_AB_3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6,Page number: 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current I1= 5.00 A.\n",
+ "The current I2= 3.00 A.\n",
+ "The current I3= 2.00 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "#Variable Declaration:\n",
+ "V=100 #Voltage of the DC source(in Volts) \n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "Reff= 2+ (1.0/((1.0/12)+(1.0/20)+(1.0/30)))+2\n",
+ "I=V/Reff\n",
+ "\n",
+ "#Applying Ohm's Law, we have 12*I1=20*I2=30*I3;\n",
+ " \n",
+ "#I2=0.6*I1; I3=0.4*I1 \"\"\"\n",
+ "\n",
+ "I1=I/(0.6+0.4+1)\n",
+ "I2=0.6*I1\n",
+ "I3=0.4*I1\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "\n",
+ "print \"The current I1= %.2f A.\\nThe current I2= %.2f A.\\nThe current I3= %.2f A.\" %(I1,I2,I3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7,Page number: 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The supply current( I ) is 3 A.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "from __future__ import division\n",
+ "#Variable Declaration:\n",
+ "P=20.0 #Power dissipated by resistor(in Watts)\n",
+ "RL=5.0 #Resistance of the load resistor(in Ohms)\n",
+ "R=10.0 #Resistance of resistor(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "I1=sqrt(P/RL)\n",
+ "I=(I1*(R+RL))/R\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "\n",
+ "print \"The supply current( I ) is %d A.\"%(I)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8,Page number:25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The voltage across bulb A is 80.00 V. \n",
+ "The voltage across bulb B is 40.00 V. \n",
+ "The voltage across bulb C is 40.00 V.\n",
+ "The total power dissipated in the three bulbs is 40.00 W.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "#Variable Declaration:\n",
+ "V=120.0 #Voltage of the power line(in Volts)\n",
+ "P_bulb=60.0 #Power rating of the bulb(in Watts)\n",
+ "V_bulb=120.0 #Voltage rating of the bulb(in Volts)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "R=(V_bulb*V_bulb)/P_bulb\n",
+ "R_A=R\n",
+ "R_B=R\n",
+ "R_C=R\n",
+ "R_BC=1.0/((1.0/R)+(1.0/R))\n",
+ "V_B=V*(R_BC/(R_BC+R_A)) \n",
+ "V_C=V*(R_BC/(R_BC+R_A))\n",
+ "V_A=V-V_B\n",
+ "P_A=(V_A*V_A)/R_A \n",
+ "P_B=(V_B*V_B)/R_B\n",
+ "P_C=(V_C*V_C)/R_C\n",
+ "P=P_A+P_B+P_C\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The voltage across bulb A is %.2f V. \\nThe voltage across bulb B is %.2f V. \\nThe voltage across bulb C is %.2f V.\" %(V_A,V_B,V_C)\n",
+ "print \"The total power dissipated in the three bulbs is %.2f W.\" %(P)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9,Page number: 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Minimum value of Req is obtained when R=0(i.e.,a short circuit,because the parallel combination of R2 and R is reduced to 0).\n",
+ " Maximum value of Req is obtained when R is an open ciruit.\n",
+ " Hence, R1 = 30.00 Ohms and R2 = 45.00 Ohms. \n",
+ " \n",
+ "(b)The resistance R to give Req=(30+75)/2 ohm is R = 45.00 Ohms.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "#Variable Declaration:\n",
+ "R1=30.0 #Resistance of the resistor(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "R2=75-R1\n",
+ "Req=(30+75)/2.0\n",
+ "Rp=Req-R1\n",
+ "R=1/((1/Rp)-(1/R2))\n",
+ "\n",
+ "#Result:\n",
+ "print \"(a)Minimum value of Req is obtained when R=0(i.e.,a short circuit,because the parallel combination of R2 and R is reduced to 0).\" \n",
+ "print \" Maximum value of Req is obtained when R is an open ciruit.\\n Hence, R1 = %.2f Ohms and R2 = %.2f Ohms. \\n \" %(R1,R2)\n",
+ "print \"(b)The resistance R to give Req=(30+75)/2 ohm is R = %.2f Ohms.\" %(R)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}