summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter10_1.ipynb62
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter12_1.ipynb125
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter13_1.ipynb230
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter14_1.ipynb125
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter15_1.ipynb125
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter16_1.ipynb83
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter1_1.ipynb272
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter2_1.ipynb83
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter6_1.ipynb125
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter7_1.ipynb83
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter8_1.ipynb41
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter9_1.ipynb146
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:00_1.pngbin0 -> 97215 bytes
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:25_1.pngbin0 -> 98330 bytes
-rw-r--r--1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:02:44_1.pngbin0 -> 92700 bytes
-rw-r--r--Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter1.ipynb1069
-rw-r--r--Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter3.ipynb439
-rw-r--r--Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/1.pngbin0 -> 75812 bytes
-rw-r--r--Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/2.pngbin0 -> 120130 bytes
-rw-r--r--Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/3.pngbin0 -> 101972 bytes
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter10_1.ipynb146
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter11_1.ipynb167
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter12_1.ipynb83
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter13_1.ipynb188
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter14_1.ipynb104
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter15_1.ipynb41
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter1_1.ipynb146
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter2_1.ipynb41
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter3_1.ipynb230
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter4_1.ipynb41
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter5_1.ipynb251
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter6_1.ipynb62
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter7_1.ipynb41
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:50:16.pngbin0 -> 87381 bytes
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:52:27.pngbin0 -> 91410 bytes
-rw-r--r--Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:53:23.pngbin0 -> 92156 bytes
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch1.ipynb645
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch10.ipynb1346
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch11.ipynb357
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch12.ipynb1310
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch2.ipynb1274
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch3.ipynb543
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb557
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch5.ipynb1241
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch6.ipynb945
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch7.ipynb597
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb580
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb1078
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9MolFracNMolVol.pngbin0 -> 27115 bytes
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9_molarFracNMolVol.pngbin0 -> 25518 bytes
-rw-r--r--Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/ch10_consistency.pngbin0 -> 34836 bytes
-rw-r--r--Machine_Design_by_T._H._Wentzell,_P._E/README.txt10
-rw-r--r--Microwaves_and_Radar_Principles_and_Applications_by_A._K._Maini/README.txt10
-rw-r--r--Network_Analysis_and_Synthesis_by_B_R_Gupta/README.txt10
54 files changed, 15052 insertions, 0 deletions
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter10_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter10_1.ipynb
new file mode 100644
index 00000000..4340223a
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter10_1.ipynb
@@ -0,0 +1,62 @@
+{
+ "metadata": {
+ "name": "chapter10"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 10:Turbulent Pipe Flow"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 10.1 Page No216"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nD=2 #diameter in cm\n\nv=0.0098 #viscosity of water\n\nRe=2000 #Critical Reynolds number\n\nrho=998 #density in kg/m^3\n\n#solution\n\nV=Re*v/10000/(D/100) #Calculating V\n\nL=(math.pi/4)*((D/100)**2)*V\n\nprint \"The required Largest Discharge\",round(L*1000*60,3),\"L/min\"\n\nf=64/Re\n\nu=V*(math.sqrt(f/8)) #Boundary shear stress\n\ntou=rho*(u**2)\n\nprint \"tou=\",round(tou,4),\"Pa\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The required Largest Discharge 1.847 L/min\ntou= 0.0383 Pa\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 10.5 Page No217"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nf=0.035 #friction factor\n\nRe=1E+5 #Reynolds number\n\nd=10 #diameter in cm\n\nEs=0.80 #roughness of pipe\n\n#solution\n\nro=(d/2)/100 #Radius in m\n\ndelta=round((65.6*ro)/(Re*math.sqrt(f))*1000,3) #Thickness of lamina sublayer\n\nprint \"delta=\",delta,\"mm\" \n\nEs_delta=Es/delta #Calculating Es_delta\n\nprint \"Es_delta=\",round(Es_delta,2)\n\nprint \"This value being less than 6.0 and greater than 0.25,the pipe flow is in transition regime\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "delta= 0.175 mm\nEs_delta= 4.57\nThis value being less than 6.0 and greater than 0.25,the pipe flow is in transition regime\n"
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter12_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter12_1.ipynb
new file mode 100644
index 00000000..3f6328f7
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter12_1.ipynb
@@ -0,0 +1,125 @@
+{
+ "metadata": {
+ "name": "chapter12"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 12:Flow in Open Channels"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 12.1 Page No277"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#variable initialisation\n\nB=2.5 #width in m\n\ny=1.2 #depth in m\n\ns_o=0.0036 #Bed slope\n\nga=998\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\nA=B*y #area\n\nP=B+2*y #Wetted Perimeter\n\nR=A/P #Hydraulic radius\n\ntou=ga*g*R*s_o #average shear stress\n\nprint \"tou=\",round(tou,2),\"Pa\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "tou= 21.58 Pa\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 12.3 Page No278"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nw=10 #width in m\n\nh=1.5 # horizantal slope\n\nv=1 #vertical slope\n\nd=3 #depth in m\n\nn=0.015 #mannings n\n\nQ=100\n\n#solution\n\nA=(w+(h*d))*d #Area\n\nP=round((w+(2*d)*math.sqrt((h**2)+v)),3) #wetted perimeter\n\nR=A/P #hydraulic radius\n\n#By mannings formula\n\nSo=((Q*n)/(A*(math.pow(R,2/3))))**2\n\nprint \"So=\",'%0.3E' % So",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "So= 4.451E-04\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 12.4 Page No278"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nw=5 #width in m\n\nd=2.3 #depthin m\n\nf=0.02 #friction factor\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\nA=w*d #area\n\nP=w+(2*d) #Wetted perimeter\n\nR=round(A/P ,3) #Hydraulic radius\n\nC=round(math.sqrt((8*g)/f),1) #value of chezy's C\n\nprint \"C=\",C\n\nn=(math.pow(R,1/6))\n\nprint \"n=\",round(n/C,4)",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 62.6\nn= 0.0165\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 12.5 Page No278"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable iniatialization\n\nB=3 #width in m\n\nh=1 #horizantal slope\n\nm=1 #vertical slope\n\nSo=0.0036 #bottom slope of channel\n\ny=1.25 #depth in m\n\nQ=15 #discharge in m^3/s\n\n#solution\n\nA=(B+(h*y))*y #area\n\nV=round(Q/A,3) #velocity\n\nP=round(B+(2*y*(math.sqrt((m**2)+1))),4) #wetted perimeter\n\nR=round(A/P,4)\n \nC=V/(math.sqrt(R*So)) #By chezy formula\n\nprint \"C=\",round(C,1)",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 52.2\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 12.45 Page No293"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\ny1=0.5 #depth of flow before jump\n\ny2=3.0 #depth of flow after jump\n\ng=9.81 #gravity in m/s^2\n\nga=9790 #specific weight\n\n#solution\n\n#sequent depths related to critical depth as,\n\nyc=((y1)*(y2)*(y1+y2))/2 #Critical depth\n\nprint \"(i)yc=\",round(math.pow(yc,1/3),3),\"m\"\n\n#(q**2)/g=yc**3\n\nq=round(math.sqrt(yc*g),3)\n\nE_L=round(((y2-y1)**3)/(4*y1*y2),3) #Head loss\n\nP=ga*q*E_L #Power lost per metre width\n\nprint \"(ii)P=\",round(P/1000,1),\"kW\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(i)yc= 1.379 m\n(ii)P= 129.4 kW\n"
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter13_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter13_1.ipynb
new file mode 100644
index 00000000..4931c306
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter13_1.ipynb
@@ -0,0 +1,230 @@
+{
+ "metadata": {
+ "name": "chapter13"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 13:Flow Measurement"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.2 Page No321"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nd=25 #diameter im mm\n\nH=5.5 #head in m\n\nQ=3 #rate in L/s\n\nx=1.5 #horizontal distance\n\ny=0.12 #vertical distance\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\nCv=round(x/(math.sqrt(4*y*H)),3) #Coefficient of velocity\n\nprint \"Cv=\",Cv \n\nQ=Q/1000 \n\na=((math.pi)/4)*((d/1000)**2)\n\nCd=round(Q/(a*(math.sqrt(2*g*H))),3) #Coefficient of contadiction\n\nprint \"Cd=\",Cd\n\nCc=Cd/Cv #Coefficient of discharge\n\nprint \"Cc=\",round(Cc,3)",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Cv= 0.923\nCd= 0.588\nCc= 0.637\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.5 Page No322"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nD=10 #diameter in cm\n\nV1=2.5 #Velocity in pipe in m/s\n\nP1=50 #pressure in kPa\n\nCv=0.98 #coefficient of velocity\n\nga=9.79 #Relative density\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\nH=round((P1/ga)+((V1**2)/(2*g)),3) #Total head\n\nVj=round(Cv*(math.sqrt(2*g*H)),2) #Velocity of jet\n\nprint \"Vj=\",Vj,\"m/s\"\n\nA1=(math.pi/4)*((D/100)**2) #Discharge\n\naj=(A1*V1)/Vj\n\nDj=math.sqrt(aj*4/(math.pi))\n\nprint \"Dj=\",round((Dj*100),2),\"cm\"\n\nHl=((1/(Cv**2))-1)*((Vj**2)/(2*g)) #Headloss\n\nprint \"HL=\",round(Hl,3),\"m\" ",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Vj= 10.11 m/s\nDj= 4.97 cm\nHL= 0.215 m\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.8 Page No323"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nQ=20 #Discharge in L/s\n\ng=9.81 #gravity in m/s^2\n\nKf=0.99 #flow coefficient of nozzle\n\nD=3.0 #diameter in cm\n\nga=0.70*9.79 #relative density\n\n#solution\n\nA2=math.pi/4*(D/100)**2 #calculating area\n\nQ=Q/10000 #converting into m^3/s\n\ndel_H=((Q/(Kf*A2))**2)/(2*g) #Head difference across nozzle\n\n#For a Horizontal nozzle Z1-Z2=0\n\ndel_P=ga*del_H #calculating del_p\n\nprint \"del_p=\", round(del_P,3),\"kPa\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "del_p= 2.853 kPa\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.18 Page No328"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nD2=10 #diameter in cm\n\nD1=20 #diameter in cm\n\nSm=13.6 #relative density constant\n\nSp=0.9 #relative density\n\nCd=0.99 #coefficient of discharge\n\ng=9.81 #gravity in m/s^2\n\ny=9 #manometer reading in cm\n\n#solution\n\n#for a differential monometer\n\nr=(D1/2)/100 #radius\n\nA2=(math.pi/4)*((r)**2) #area\n\nD=round(math.sqrt(1-(D2/D1)**4),3) \n\ndelh=(Sm/Sp)-1 #calculating delh\n\nQ=round(((Cd*A2)/D)*(math.sqrt(2*g*(delh*(y/100)))),2) #calculating flow\n\nprint \"Q=\",Q*1000,\"L/s\"\n\n#when Q=50L/s\n\nQ=50/1000\n\ns=(((Cd*A2)/D)*(math.sqrt(2*g*(delh))))\n\ny=round((Q/s)**2,2) #manometer reading\n\nprint \"y=\",int(y*100),\"cm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Q= 40.0 L/s\ny= 14 cm\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.22 Page No330"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nD1=20 #diameter in cm\n\nCd=0.985 #coefficient of discharge\n\nSm=0.6 #relative density of liquid\n\nSp=1.0 #relative density\n\ny=15 #U-tube reading in cm\n\nD2=10 #diameter in cm\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\n#from the inverted differential manometer\n\ndelh=(y/100)*(1-(Sm/Sp))\n\n#By the venturimeter equation,\n\nA2=(math.pi/4)*(((D1/100)/2)**2) #area\n\ns=math.sqrt((1-((D2/D1)**4)))\n\nQ=((Cd*A2)/s)*(math.sqrt((2*g*delh)))\n\nprint \"Q=\",round(Q*1000,2),\"L/s\"\n\nHLi=(1-(Cd**2))*delh #Head loss in the intel section\n\nprint \"HLi=\",(round(HLi,4)*1000),\"mm of water\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Q= 8.67 L/s\nHLi= 1.8 mm of water\n"
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.24 Page No331"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nSp=0.85 #Relative density\n\ny=4 #pitot static tube reading in cm\n\nC=0.99 #coefficient of pitot tube\n\nSm=13.6 #relative density\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\n#For the differential monometer\n\ndel_h=(y/100)*((Sm/Sp)-1) #del_h\n\n#For the pitot tube\n\nVo=C*(math.sqrt(2*g*del_h)) #Velocity\n\nprint \"Velocity at M=\",round(Vo,3),\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Velocity at M= 3.397 m/s\n"
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.26 Page No332"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nPs=3.0 #Stagnation Pressure in kPa\n\nPo=-3.0 #Static pressure in kPa\n\nrho=1.20 #mass density in kg/m^3\n\nC=0.98 #instrument coefficient\n\n#solution\n\n#In a pitot static tube,\n\n#Velocity of flow\n\nVo=C*math.sqrt(((2*(Ps-Po))/rho)*1000)\n\nprint \"Vo=\",int(Vo),\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Vo= 98 m/s\n"
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.27 Page No332"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nD=30 #diameter in cm\n\nPs=-10 #static pressure in cm\n\nPsn=1.0 #stagnation pressure in N/cm^2\n\nC=0.98 #coefficient of tube\n \nga=9790 #density\n\ng=9.81 #gravity\n\n#solution\n\nPo=(Ps/100)*13.6 #Calculating Po/ga\n\nPs=Psn*(10**4)/ga #Calculating ps/ga\n\ndel_h=(Ps-Po)\n\nVm=C*math.sqrt(2*g*del_h) #Centreline velocity\n\nV=0.85*Vm #Mean velocity\n\nQ=(math.pi/4)*((D/100)**2)*V #Discharge\n\nprint \"Q=\",round(Q,3),\"m^3/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Q= 0.402 m^3/s\n"
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.31 Page No333"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nL=0.40 #Width in m\n\nQ=25 #discharge in L/s\n\nH1=10 #head in cm\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\n#By the weir formula,\n\nCd=(Q/1000)/((2/3)*(math.sqrt(2*g))*L*(math.pow((H1/100),3/2)))\n\nprint \"Cd=\",round(Cd,3) #Coefficient of discharge",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Cd= 0.669\n"
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 13.35 Page No334"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nL=2.5 #length in m\n \nCd=0.62 #Coefficient of discharge\n\nH1=0.7 #head in m\n\nt=0.15 #thickness in m\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\nL=L-2*t #crest length\n\nn=2+(2*2) #no of end contractions\n\nLe=L-(0.1*n*H1) #effective crest length\n\n#The discharge from Francis Formula by neglecting the velocity of approach,\n\nQ=(2/3)*(Cd)*(math.sqrt(2*g))*(Le)*(math.pow(H1,3/2)) \n\nprint \"Q=\",round(Q,2),\"m^3/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Q= 1.91 m^3/s\n"
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter14_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter14_1.ipynb
new file mode 100644
index 00000000..90cd2965
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter14_1.ipynb
@@ -0,0 +1,125 @@
+{
+ "metadata": {
+ "name": "chapter14"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 14:Unsteady Flow"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 14.11 Page No358"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\n#bulk modulus of elasticity for water in MPa\n\nk_w=2.22E+3 \n\nk_c=1.50E+3\n\nk_g=9.58E+2\n\nrho=998 #density in kg/m^3\n\nRD_c=0.8 #relative density of crude oil\n\nRD_g=0.68 #relative density of gasolene\n\n#solution\n\nC=math.sqrt((k_w*10**6)/rho) #for water\n\nprint \"C=\",round(C,1),\"m/s\"\n\nC=math.sqrt((k_c*10**6)/(RD_c*rho)) #for crude oil\n\nprint \"C=\",round(C,1),\"m/s\"\n\nC=math.sqrt((k_g*10**6)/(RD_g*rho)) #for gasolene\n\nprint \"C=\",int(C),\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 1491.5 m/s\nC= 1370.7 m/s\nC= 1188 m/s\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 14.12 Page No358"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nE=2.07E+5 #pressure in steel pipe\n\nK=1.43E+3 #Bulk modulus in MPa\n\nt=2 #thickness in cm\n\nD=2.5 #diameter in m\n\nRD=0.80 #relative density\n\nrho=998 #density in m/s^2\n\n#solution\n\nD=D*100 #converting D to cm\n\nE=E*(10**6) #converting MPa to Pa\n\nK=K*(10**6) #converting MPa to Pa\n\n#velocity of pressure wave\n\nC=(math.sqrt(K/(rho*RD)))*(math.pow(1/(1+((D/t)*(K/E))),1/2))\n\nprint \"C=\",round(C,1),\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 980.4 m/s\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 14.14 Page No358"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nE=1.0E+11 #modulus of elasticity\n\nK=2.0E+9 #Bulk modulus in Pa\n\nt=1.25 #thickness in mm\n\nD=0.9 #diameter in m\n\nrho=998 #density in kg/m^3\n\nL=1000 #length in m\n\nV=2.60 #velocity in m/s\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\nD=D*100 #converting D to cm\n\n#velocity of pressure wave\n\nC=(math.sqrt(K/(rho)))*(math.pow(1/(1+((D/t)*(K/E))),1/2))\n\n#with Pressure rise,\n\ndel_V=0-V #calculating del_V\n\nh_h=-(C*del_V)/g #Water Wammer Head\n\nprint \"h_W=\",round(h_h,1),\"m\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "h_W= 240.2 m\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 14.16 Page No359"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nE=2.10E+11 #modulus of elasticity\n\nK=1.43E+9 #Bulk modulus in Pa\n\nt=80 #thickness in mm\n\nD=80 #diameter in cm\n\nRD=0.8 #relative density for kerosene\n\nrho=998 #density in m/s^2\n\nL=1000 #length in m\n\n#solution\n\nD=D*10 #converting D to mm\n\n#velocity of pressure wave\n\nC=(math.sqrt(K/(rho*RD)))*(math.pow(1/(1+((D/t)*(K/E))),1/2))\n\nTo=(2*L)/C\n\nprint \"Hence maximum time for a sudden closure is\",round(To,3),\"s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Hence maximum time for a sudden closure is 1.544 s\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 14.20 Page No360"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nK=2.2E+3 #bulk modulus in MPa\n\nrho=998 #density in kg/m^3\n\nL=3500 #length in m\n\nVo=0.8 #velocity in m/s\n\nT=4.0 #closure in s\n\n#solution\n\nC=round(math.sqrt((K*10**6)/rho),1) #velocity of pressure wave\n\nTo=(2*L)/C #critical time\n\n#T=4.0 s,the closure is rapid.\n\nPh=(rho*C*Vo)/(10**6) #water hammer pressure\n\nprint \"Ph=\",round(Ph,3),\"MPa\"\n\n#length of the pipe affected by peak pressure\n\nXo=L-((C*T)/2)\n\nprint \"Xo=\",Xo,\"m\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Ph= 1.185 MPa\nXo= 530.6 m\n"
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter15_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter15_1.ipynb
new file mode 100644
index 00000000..4c41f511
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter15_1.ipynb
@@ -0,0 +1,125 @@
+{
+ "metadata": {
+ "name": "chapter15"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 15:Compressible Flow"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 15.1 Page No376"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nMg=44 #molecular weight of carbondioxide\n\n#solution\n\nR=8314/Mg #gas constant for carbondioxide\n\nprint \"R=\",int(round(R,1)),\"N.m/(Kg.K)\"\n\nMg=32 #molecular weight of oxygen\n\nR=8314/Mg #gas constant for oxygen\n\nprint \"R=\",int(math.ceil(round(R,1))),\"N.m/(Kg.K)\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "R= 189 N.m/(Kg.K)\nR= 260 N.m/(Kg.K)\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 15.2 Page No376"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nMg=28.96 #molecular weight of air\n\nk=1.4 #constant for air \n\n#solution\n\nR=int(8314/Mg) #in J/(kg.K)\n\nCp=(k/(k-1.0))*R\n\nprint \"Cp=\",Cp,\"J/(Kg.K)\"\n\nCv=R/(k-1) #in J/(kg.K)\n\nprint \"Cv=\",Cv,\"J/(Kg.K)\"\n\n#1 Kcal = 4187 J\n\nprint \"In heat units\"\n\nCp=Cp/4187\n\nprint \"Cp=\",round(Cp,3),\"Kcal/(Kg.K)\" \n\nCv=Cv/4187\n\nprint \"Cv=\",round(Cv,3),\"Kcal/(Kg.K)\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Cp= 1004.5 J/(Kg.K)\nCv= 717.5 J/(Kg.K)\nIn heat units\nCp= 0.24 Kcal/(Kg.K)\nCv= 0.171 Kcal/(Kg.K)\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 15.7 Page No378"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nk=1.40 #constant for gases\n\nR=260 #gas constant in J/(Kg.K)\n\nT=25 #temperature in degree C\n\n#solution\n\nT=273 +T #converting into K\n\nC=math.sqrt(k*R*T) #Speed of sound\n\nprint \"C=\",round(C,1),\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 329.4 m/s\n"
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 15.8 Page No378"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nM=1.5 #Mach number\n\np=89.89 #Pressure in kPa\n\nrho=1.112 #density in kg/m^3\n\nk=1.4 #constant for gases\n\n#solution\n\n#At 1000 m altitude,\n\nC=math.sqrt((k*(p*1000))/rho)\n\nV=C*M #Using Mach number\n\nV=(V*3600)/1000 #Converting V from m/s to Km/h\n\nprint \"V=\",int(math.ceil(round(V,1))),\"Km/h\"\n\n#At 10,000 m altitude\n\np=26.42 #Pressure in kPa\n\nrho=0.4125 #density in kg/m^3\n\nC=math.sqrt((k*(p*1000))/rho)\n\nV=C*M\n\nV=(V*3600)/1000 #Converting V from m/s to Km/h\n\nprint \"V=\",int(V),\"Km/h\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V= 1817 Km/h\nV= 1617 Km/h\n"
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 15.16 Page No381"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nTo=35 #temperature in degree C\n\nR=287 #gas constant in (J/Kg.K)\n\npo=250 #pressure in kPa\n\nk=1.4 #constant for gases\n\nV1=200 #velocity in m/s\n\n#solution\n\nTo=273+To #converting into K\n\nCp=(k*R)/(k-1)\n\nT1=int(To-((V1**2)/(2*Cp)))\n\n#The Mach number M1,at the exit is,\n\nM1=math.sqrt(((To/T1)-1)/0.2)\n\nprint \"M1=\",round(M1,3)",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "M1= 0.589\n"
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter16_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter16_1.ipynb
new file mode 100644
index 00000000..6fea7c1c
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter16_1.ipynb
@@ -0,0 +1,83 @@
+{
+ "metadata": {
+ "name": "chapter16"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 16:Fluid Flow Machines"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 16.17 Page No411"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialization\n\nH=500 #Head in m\n\nCv=0.98 #specific heat\n\ng=9.81 #gravity in m/s^2\n\nfi=0.45 #assumed fi value\n\neta_o=0.85 #assumed eta value\n\nd=18 #diameter in cm\n\ngamma=9.79 #specific weight\n\nN=420 \n\n#solution\n\nV1=Cv*(math.sqrt(2*g*H)) #Velocity\n\nd=d/100 #diameter in m\n\nQ=(math.pi/4)*(d**2)*V1 #Discharge\n\nP=eta_o*gamma*Q*H #Power developed\n\nNs=(N*math.sqrt(P))/(math.pow(H,5/4)) #Specific speed\n\nprint \"Ns=\",int(Ns)\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Ns= 18\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 16.19 Page No412"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nN1=100 #speed of turbine in rpm\n\nH1=30 #head on turbine in m\n\nH2=18 #head reduced in m\n\nP1=8000 #p in kW\n\n#solution\n\n#For geometrically similar turbines,the unit speed,Nu=N/math.sqrt(H)\n\nN2=round(N1*(math.sqrt(H2/H1)),2) #speed \n\nprint \"N2=\",N2,\"rpm\"\n\nP2=P1*(math.pow((H2/H1),3/2)) #power developed\n\nprint \"P2=\",int(P2),\"kW\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "N2= 77.46 rpm\nP2= 3718 kW\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 16.20 Page No412"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nP1=6750 #p in kW\n\nN1=300 #speed in rpm\n\nH1=45 #net head in m\n\nH2=60 #net head under homologus conditions in m\n\nete_o=85 #efficiency in percentage\n\nga=9.81*998 #density in kg/m^3\n\n#solution\n\n#using unit relationships,\n\neta_o=85/100\n\nQ=round(P1/((eta_o)*(ga/1000)*H1),2) \n\nN2=round(N1*(math.sqrt(H2/H1)),1) #revolutions per minute\n\nprint \"N2=\",N2,\"rpm\"\n\nQ1=18.03 #Q value\n\nQ2=Q1*(math.sqrt(H2/H1)) #Discharge\n\nprint \"Q2=\",round(Q2,2),\"m^3/s\"\n\nP2=P1*(math.pow((H2/H1),3/2)) #brake power\n\nprint \"P2=\",int(round(P2,5)),\"kW\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "N2= 346.4 rpm\nQ2= 20.82 m^3/s\nP2= 10392 kW\n"
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter1_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter1_1.ipynb
new file mode 100644
index 00000000..f0595b96
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter1_1.ipynb
@@ -0,0 +1,272 @@
+{
+ "metadata": {
+ "name": "chapter1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 1:Properties of Fluids"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.1 Page No5 "
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nw=500 #mass of liquid in N\n\ng=9.806 #gravity in m/s*2\n\ng1=3.5 #gravity in m/s*2\n\ng2=18.0 #gravity in m/s*2\n\n\n#Solution\n\nm=w/g #mass\n\nprint \"a)m=\",round(m,2),\"kg\"\n\nw1=m*g1 #weight\n\nw2=m*g2\n\nprint \"b)w1=\",round(w1,2),\"N\"\n\nprint \"w2=\",round(w2,1),\"N\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "a)m= 50.99 kg\nb)w1= 178.46 N\nw2= 917.8 N\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.2 Page No5"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nweight=400 # weight in N\n\ngravity= 9.806 # gravity in m/s^2\n\nF=800 # force in n\n\ng=1.6 # gravity in m/s^2\n\n#Solution\n\nm=round(weight/gravity,3)\n\n#mass is constant and does not change with location.By Newton's second law F=m*a\"\n\na=F/m\n\n#acceleration is independent of g.Hence both on the earth ,as well as on moon\"\n\nprint \"a=\",round(a,3),\"m/s^2\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "a= 19.612 m/s^2\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.3 Page No5"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nRD=0.8 #relative density\n\nrho_w=998 #density of water at 20 degree C in kg/m^3\n\ng=9.81 #gravity in m/s^2\n\nv=2.3 #viscosity in centistoke\n\n#calculation\n\nUnitWeight=((rho_w*RD)*g)/1000 #Unit Weight \n\nprint \"(i) gamma=\",round(UnitWeight,3),\"kN/m^3\"\n\nv=2.3/(10**6) #viscosity in m^2/s\n\nrho=round(rho_w*RD,1) #dymanic viscosity \n\nmu=v*rho\n\nprint \"(ii) mu=\"'%4.3E' % mu,\"Pa.s.\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(i) gamma= 7.832 kN/m^3\n(ii) mu=1.836E-03 Pa.s.\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.15 Page No9"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nsigma=0.073 #surface Tension at air-water interface in N/m\n\nd=0.01 #diameter of air bubble in mm\n\n#calculation\n\n#air bubble has only one surface\n\nR=(d/2)/1000\n\ndelta_p=(2*sigma)/R #Pressure difference in N/m^2\n\nprint \"delta_p=\",delta_p/1000,\"kPa\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "delta_p= 29.2 kPa\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.16 Page No9"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nsigma=0.088 #surface Tension at soap-air interface in N/m\n\nd=3 #diameter of air bubble in cm\n\n#Solution\n\n#soap bubble has two interfaces\n\nR=0.03/2 #in m\n\ndelta_p=(4*sigma)/R #in N/m^2\n\nprint \"delta_p=\",round(delta_p,2),\"N/m^2 above atmospheric pressure\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "delta_p= 23.47 N/m^2 above atmospheric pressure\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.17 Page No9"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nd1=6 #diameter in mm\n\nd2=16 #diameter in mm\n\nsigma=0.073 #surface tension of water in N/m\n\ng=9.81 #gravity\n\nrho=998 #density\n\n#Solution\n\n#assume angle of contact theta=0 degree\n\nR1=0.006/2 #radius in m\n\nR2=0.016/2 #raidus in m\n\nr=(1/R1)-(1/R2)\n\nh=(2*sigma*r)/(rho*g) #difference in water level\n\nprint \"h=\",round(h,4)*1000,\"mm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "h= 3.1 mm\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.18 Page No9"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "import math\n\n#variable initialisation\n\nd=3E-3 #diameter of tube\n\nsigma=0.48 #surface tension in N/m\n\na=130 #angle of contact in degree C\n\nrho=13600 #density of liquid in kg/m^3\n\ng=9.81 #gravity in m/s^2\n\n#solution\n\nR=d/2\n\ngamma=rho*g\n\ne=math.radians(a) #converting degree into radians\n\nc=math.cos(e) #cosine value\n\nh=(2*sigma*c)/(gamma*R)\n\nh1=round(h*1000,2)\n\nprint \"Therefore,there is a capillary depression of\",-(h1),\"mm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Therefore,there is a capillary depression of 3.08 mm\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.19 Page No10"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nd=0.005 #diamter of grain in mm\n\nsigma=0.073 #surface tension of air-water interface in N/m\n\ng= 9.81 #gravity in m/s^2\n\nde=998 #density\n\n#solution\n\nR=(d/2)/1000\n\nga=g*de\n\n#by assuming theta = 0 degree\n\ndel_h=(2*sigma)/(ga*R) #height of water rise\n\nprint \"Answer given in the book is incorrect.It's given as 5.95\"\n\nprint \"correct Answer is\"\n\nprint \"delta_h=\",round(del_h,2),\"m\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Answer given in the book is incorrect.It's given as 5.95\ncorrect Answer is\ndelta_h= 5.97 m\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.22 Page No10"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nM=28.97 #molecular weight of air\n\np=120E+3 #in abs\n\nT=60 #Temperature in degree C\n\n#solution\n\nR=math.ceil(8312/28.97) #gas constant for air\n\nT=T+273 #Temperature in K\n\nrho=round(p/(R*T),3)\n\nprint \"(i)density of air=\",rho,\"kg/m^3\"\n\nM1=44\n\nR=int(math.ceil(8312/44)) # gas constant for co2\n\na=R*T\n\nrho=p/a\n\nprint \"(ii)density of co2=\",round(rho,3),\"kg/m^3\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(i)density of air= 1.256 kg/m^3\n(ii)density of co2= 1.907 kg/m^3\n"
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.24 Page No11"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\np=100 #compression rate in abs\n\np1=80 #compression rate in abs\n\n#solution\n\n#In isothermal change K=p\n\nKA=p #bulk modulus \n\nprint \"KA=\",KA,\"kPa\"\n\n#In adiabatic change K=kp\n\nk=1.4 #constant for gases\n\nKB=int(k*p1) #bulk modulus\n\nprint \"KB=\",KB,\"kPa\"\n\nprint \"KA<KB,gas A is more compressible than gas B,in the notified situation\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "KA= 100 kPa\nKB= 112 kPa\nKA<KB,gas A is more compressible than gas B,in the notified situation\n"
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.26 Page No11"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "import math \n\n#variable initialisation\n\nk=1.43E+9 #bulk modulus of elasticity of kerosene in Pa\n\nr=0.804 #relative density \n\n#solution\n\nrho=round(r*998,1) #density of kerosene in kg/m^3\n\nC=math.ceil(math.sqrt(k/rho))\n\nprint \"velocity of sound C=\",int(C),\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "velocity of sound C= 1335 m/s\n"
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 1.28 Page No11"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "import math\n\n#variable initialisation\n\nR=287 #gas constant\n\nT=80 #temperature in degree C\n\n#solution\n\nT=273+80 #temperature in K\n\nk=1.4 #for air\n\nC=round(math.sqrt(k*R*T),1) #velocity of sound at 80 degree\n\nprint \"C=\",C,\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 376.6 m/s\n"
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter2_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter2_1.ipynb
new file mode 100644
index 00000000..7f060e84
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter2_1.ipynb
@@ -0,0 +1,83 @@
+{
+ "metadata": {
+ "name": "chapter2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 2:Fluid Statics"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 2.1 Page No22"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#variable initialisation\n\nh1=10 #column water in cm\n\nh2=5 #column of oil in cm\n\nrd=0.75 #relative density of oil\n\nh3=2 #column of mercury in cm\n\n#solution\n\nga=9790 #density in N/m^3\n\np=ga*h1/100 #pressure of water column\n\nprint \"(i)For water Column,p=\",int(p),\"N/m^2\"\n\nga_o=rd*ga \n\np_o=(ga_o*h2)/100 #pressure of oil column\n\nprint \"(ii)For Oil Column, p=\",round(p_o,2),\"N/m^2\"\n\nga_m=13.6*ga\n\np_m=ga_m*h3/100 #pressure of mercury column\n\nprint \"(iii)for Mercury Column,p=\",round(p_m,1),\"N/m^2\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(i)For water Column,p= 979 N/m^2\n(ii)For Oil Column, p= 367.13 N/m^2\n(iii)for Mercury Column,p= 2662.9 N/m^2\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 2.37 Page No38"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#variable initialisation\n\nD=2.5 #diameter in m\n\nrd=0.25 #relative density \n\np=1000 #pressure in kPA\n\nf_a=120 #allowable stress in MPa\n\n#solution\n\n#Hoop stress in cylinder,sigma=(p*D)/(2*t)\n\n#sigma=f_a=allowable stress\n\nt=(p*D)/(2*f_a*1000)\n\nprint \"A Thickness of\",round(t*1000,2),\"mm can therefore be used\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "A Thickness of 10.42 mm can therefore be used\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 2.42 Page No40"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "import math\n\n#variable initialisation\n\nW=0.2 #weight in N\n\nD=5 #diameter in mm\n\n#solution\n\n#(i)distance between marking of RD of 1.0 and 0.95\n\nh1=(W/(9790*((math.pi/4)*(D*D)/(1000*1000))))*((1/0.95)-1)\n\nprint \"h1=\",round(h1*1000,2),\"mm\"\n\n#(ii)distance between marking of RD of 1.0 and 1.05\n\nh2=(W/(9790*((math.pi/4)*(D*D)/(1000*1000))))*((1/1.05)-1)\n\nprint \"h2=\",round(h2*1000,2),\"mm\"\n \nprint \"h2 will be below the marking corresponding to relative density of 1.0\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "h1= 54.76 mm\nh2= -49.54 mm\nh2 will be below the marking corresponding to relative density of 1.0\n"
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter6_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter6_1.ipynb
new file mode 100644
index 00000000..7bc6260b
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter6_1.ipynb
@@ -0,0 +1,125 @@
+{
+ "metadata": {
+ "name": "chapter6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 6:Dimensional Analysis and Similitude"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 6.17 Page No148"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nrho_p=917 #density in kg/m^3\n\nmu_p=0.29 #viscosity in Pa.s\n\nL_p=15.0 #diameter in cm\n\nV_p=2 #velocity of pipe\n\nrho_m=998 #density in kg/m^3\n\nL_m=1.0 #diameter in cm\n\nmu_m=1.31E-3 #viscosity in Pa.s\n\n#solution\n\n#Reynold's similarity law of applicable,referring oil with p and water with m\n\nm=round((mu_m/mu_p)*(1)/((L_m/L_p)*(rho_m)/(rho_p)),4)\n\nV_m=V_p*m #velocity of water flow\n\nprint \"V_m=\",V_m,\"m/s\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V_m= 0.1246 m/s\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 6.18 Page No148"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nV_p=60 #velocity in Km/h\n\nF_m=250 #model drag\n\nmu_r=1 #viscosity\n\nrho_r=1 #density in in kg/m^3\n\n#solution\n\n#Reynold's similarity law is applicable\n\n#V_r=vr/L_r\n\n#If vr=1,then V_r=1/L_r\n\nL_r=6 \n\nV_m=((V_p*L_r)*1000)/3600 #V_m in m/s\n\n#using force ratio,Fm/Fp=(mu_r**2)/rho_r\n\n#Fm/Fp=1.0\n\nFp=F_m/((mu_r*mu_r))/rho_r #drag required\n\nprint \"Fp=\",int(Fp),\"N(same as in the model)\"\n\nV_p=(V_p*1000)/(3600) #V_m in m/s\n\nPp=Fp*V_p #power to overcome drag in the prototype\n\nprint \"Pp=\",math.ceil(Pp)/1000,\"kW\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Fp= 250 N(same as in the model)\nPp= 4.167 kW\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 6.21 Page No149"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "import math\n\n#variable initialisation\n\nD_p=1.5 #Diameter in m\n\nrd=0.9 #relative density\n\nv_p=0.03 #viscosity in stoke\n\nQ=3.0 #rate\n\nD_m=0.15 #diameter2 in m\n\nV_m=0.01 #viscosity2 in stoke \n\n#solution\n\n#Reynolds number must be the same in the model and prototype for similar pipe flows\n\nV_p=round((Q)/((math.pi/4)*(1.5*1.5)),4)\n\nV_m=V_p*(D_p/D_m)*(V_m/v_p) \n\nprint \"V_m=\",V_m,\"m/s\"\n\nQ_m=(math.pi/4)*(D_m**2)*(V_m) #Discharge in the model\n\nprint \"Q_m=\",round(Q_m,1),\"m^3/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V_m= 5.659 m/s\nQ_m= 0.1 m^3/s\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 6.25 Page No151"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nL_r=1/200 #horizontal scale\n\nh_r=1/40 #vertical scale\n\nQ_p=152 #normal discharge in m^3/s\n\ny_p=2.0 #depth in metres\n\nB_p=90 #width in metres\n\nn_p=0.025 #roughness value\n\n#solution\n\nL_r=1/200\n\nh_r=1/40\n\nh=math.sqrt(h_r)\n \nQ_m=Q_p*L_r*h*h_r*10 #Discharge \n\nprint \"(i)Qm=\",round(Q_m,2),\"m^3/s\"\n\ny_m=y_p*h_r #Depth\n\nprint \"(ii) ym=\",y_m,\"m\"\n\nB_m=B_p*L_r #Width\n\nprint \"(iii)Bm=\",B_m/10,\"m\"\n \na=math.pow(h_r,2/3) #Manning's n_m\n\nb=math.sqrt(L_r)*L_r\n\nn_m=((n_p)*(math.pow(h_r,2/3)))/(math.pow(L_r,1/2))\n\nprint \"(iv) n_m=\",round(n_m,2)\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(i)Qm= 0.03 m^3/s\n(ii) ym= 0.05 m\n(iii)Bm= 0.045 m\n(iv) n_m= 0.03\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 6.27 Page No151"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nL_r=1/250 #horizontal scale\n\nh_r=1/25 #vertical scale\n\nS_p=0.0002 #prototype slope\n\nV_m=0.50 #velocity in m/s\n\nQ_m=0.02 #discharge in m^3/s\n\n#solution\n\nh_r=1/25\n\nL_r=1/250\n\nS_r=h_r/L_r\n\nS_m=round((S_p)*(S_r),3) #Slope ratio \n\nprint \"(i)S_m=\",S_m\n\nV_r=math.sqrt(h_r)\n\nV_p=V_m/V_r #Velocity ratio\n\nprint \"(ii)V_p=\", V_p,\"m/s\"\n\nQ_p=(L_r)*(math.sqrt(h_r))*(h_r)\n\nQ_p=(Q_m)/(Q_p) #Discharge ratio\n\nprint \"(iii)Q_p=\",int(round(Q_p,1)),\"m^3/s\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(i)S_m= 0.002\n(ii)V_p= 2.5 m/s\n(iii)Q_p= 625 m^3/s\n"
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter7_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter7_1.ipynb
new file mode 100644
index 00000000..b76b5c41
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter7_1.ipynb
@@ -0,0 +1,83 @@
+{
+ "metadata": {
+ "name": "chapter7"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 7:Laminar Flow"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 7.9 Page No164"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nR=2000 #maximum Reynolds number\n\nrho=950 #density in kg/m^3\n\nmu=8E-2 #Viscosity in Pa.s\n\nL=200 #length in metre\n\nD=50 #diameter in cm\n\n#solution\n \nD=15/100 #diameter in m\n\n#Re=(V*D)/v\n\nV=R*(mu/rho)/D\n\n#by,Hagen-Poiseuille equation,\n\nh_f=(32*mu*V*L)/((rho*9.81)*(D**2)) #headloss\n\nprint \"Maximum difference in oil surface elevations h_f=\",round(h_f,3),\"m\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Maximum difference in oil surface elevations h_f= 2.742 m\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 7.10 Page No164"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nD=0.075 #Diamter in m\n\nmu=0.1 #visocity of oil in N.s/m^2\n\nP=5.4 #power in kW\n\nrho=0.90*998 #relative density\n\nE=60 #efficiency in %\n\nL=1000 #length in m\n\n#solution\n\nP=P*(E/100) #power spent in fluid friction\n\nQ=round(math.sqrt(((P*1000)*(math.pi)*(D**4))/(128*mu*L)),5) #quantity\n\nprint \"Quantity of oil=\",round(Q*1000*60,3),\"L/min\"\n\nV=round((Q)/((math.pi/4)*(D**2)),3) #Velocity in m/s\n\nRe=(V*D*rho)/mu #Reynolds number\n\nprint \"Reynolds number=\",int (Re)",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Quantity of oil= 301.2 L/min\nReynolds number= 765\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 7.19 Page No168"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nB=0.12 #thickness in mm\n\nL=50 #length in cm\n\nh_f=5.0 #headloss in m\n\nga=9790 #Specific weight\n\nmu=(998)*(0.01E-4) #viscosity \n\n#solution\n\nV=((h_f)*(ga)*((B/1000)**2))/(12*mu*(L/100)) #calculating V in m/s\n\nq=(1*V*(B/1000))*60*1000 #Discharge per metre width\n\nprint round(q,3),\"L/min per metre width of crack\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "0.848 L/min per metre width of crack\n"
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter8_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter8_1.ipynb
new file mode 100644
index 00000000..08aa4c71
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter8_1.ipynb
@@ -0,0 +1,41 @@
+{
+ "metadata": {
+ "name": "chapter8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 8:Boundary Layer Concepts"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 8.8 Page No183"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nU=3.0 #Velocity in m/s\n\nv=1.45E-5 #velocity of air in m^2/s\n\nrho_a=1.2 #density in kg/m^3\n\nRe=5E+5 #critical reynolds number\n\nw=1.5 #width in m\n\n#solution\n\nL=round((Re*v)/U,3) #Maximum Length of plate\n\nprint \"L=\",L,\"m\"\n\nC_df=(1.328)/(math.sqrt(Re)) #length of plate in a laminar sublayer\n\nF_D=C_df*(w*L)*((2*(U**2))/2) #Drag force in one side of the plate\n\nprint \"F_D=\",round(F_D/100*60,5),\"N\"\n\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "L= 2.417 m\nF_D= 0.03677 N\n"
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter9_1.ipynb b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter9_1.ipynb
new file mode 100644
index 00000000..9c92b722
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter9_1.ipynb
@@ -0,0 +1,146 @@
+{
+ "metadata": {
+ "name": "chapter9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 9:Drag and Lift on Immersed Bodies"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 9.2 Page No198"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nD=20 #diameter in cm\n\nrho_s=2.8*998 #relative density\n\nrho_w=998 #relative density of water in kg/m^3\n\nv=1E-6 #velocity in m^2/s\n\ng=9.81 #gravity constant in m/s^2\n\nrho_f=998\n\n#solution\n\n#assume Re>3*E+5.then\n\nC_D=0.20\n\n#At terminal velocity V-0t,submerged weight=Drag\n\nD=D/100 #converting D in m\n\nV_ot=round(math.sqrt((4/3)*(D/C_D)*((g)*((rho_s/rho_f)-1))),3)\n\nRe=(V_ot*(D/100))/v #calculating Re\n\n#from Re,its clear,Re>3*10^5\n\nprint \"Hence the initial assumption is correct and V_ot=\",V_ot,\"m/s\"\n ",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Hence the initial assumption is correct and V_ot= 4.852 m/s\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 9.3 Page No199"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nrho_f=998 #density of water in kg/m^3\n\nmu=1E-3 #coefficient of viscosity in Pa.s\n\ng=9.81 #gravity in m/s^2\n\nga_s=2.65*998 #particles RD\n\nga_f=998 #relative density in kg/m^3\n\n#solution\n\n#Stoke's law is valid upto Re=1.0\n\n#For maximum size particles that obey stoke's law,\n\n#Using fall velocity and stoke's law,\n\nV_ot=(1/18)*g*(mu/rho_f)*((ga_s/ga_f)-1) #terminal velocity\n\nV_o=round(math.pow(V_ot,1/3)*1000,2) #taking cube root\n\nprint \"V_ot=\",V_o,\"mm/s\"\n\nD=(mu)/(rho_f*V_o/1000) #size\n\nprint \"D=\",round(D*1000,4),\"mm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V_ot= 9.66 mm/s\nD= 0.1037 mm\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 9.4 Page No199"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#variable initialisation\n\nga_s=2.60*998 #relative density of sphere\n\nD=2.0 #Diameter in mm\n\nv=1.25 #velocity in cm/s\n\nga_f=917 #density of oil in kg/m^3 \n\ng=9.81 #gravity in m/s^2\n\n#solution\n\n#Assuming validity of Stoke's law,\n\n#using Fall Velocity equation,\n\nmu=round((((D/1000)**2)*((ga_s*g)-(ga_f*g)))/(18*(v/100)),3)\n\nprint \"coefficient of dynamic viscosity mu=\",mu,\"Pa.s\"\n\n#Reynold's number,\n\nRe=round((ga_f*(v/100)*(D/1000))/(mu),3)\n\nprint Re,\" < 1.0\"\n\nprint \"Hence the assumed Stoke's law is valid\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "coefficient of dynamic viscosity mu= 0.293 Pa.s\n0.078 < 1.0\nHence the assumed Stoke's law is valid\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 9.5 Page No199"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nD=0.2 #diameter in mm\n\nrho_f=1.20 #density of air in kg/m^3\n\nrho_s=998 #density of water in kg/m^3\n\ng=9.81 #gravity in m/s^2\n\nC_D=4.20 #Drag coefficient\n\nD1=2.0 #Diameter in mm\n\nC_D1=0.517 #Drag coefficient\n\n#solution\n\nD=D/1000 #converting D to m\n\nprint \"For 0.2 mm rain drop:\"\n\nV_ot=round(math.sqrt((((4*g*D)/(3*C_D))*((rho_s/rho_f)-1))),2)\n\nprint \"V_ot=\",V_ot,\"m/s\"\n\nprint \"For 2.0 mm rain drop:\"\n\nD1=D1/1000 #converting D to m\n\nV_ot=round(math.sqrt((((4*g*D1)/(3*C_D1))*((rho_s/rho_f)-1))),2)\n\nprint \"V_ot=\",V_ot,\"m/s\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "For 0.2 mm rain drop:\nV_ot= 0.72 m/s\nFor 2.0 mm rain drop:\nV_ot= 6.48 m/s\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 9.6 Page No199"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\nV_o=60 #velocity in Km/h\n\nC_d=0.35 #Drag coefficient\n\nC_d1=0.30 #reduced Drag coefficient \n\nA=1.6 #area in m^2\n\nrho=1.2 \n\n#solution\n\nV_o=(V_o*1000)/(60*60) #converting V_o into m/s\n\n#power required to overcome wind resistance by the car\n\nF_D=round(C_d * A * rho * ((V_o**2)/2),2)\n\np=F_D*V_o #power \n\nprint \"a)power=\",round(p/1000,3),\"kW\"\n\nV_o=(p*2)/(C_d1*A*rho) #Speed\n\nV=math.pow(V_o,1/3)*18/5 #taking cuberoot\n\nprint \"b)Vo=\",round(V,2),\"Km/h\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "a)power= 1.556 kW\nb)Vo= 63.16 Km/h\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 9.9 Page No201"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#variable initialisation\n\ng=9.81 #gravity in m/s^2\n\nh=2 #height in m\n\nF_D=1000 #total load in N\n\nrho=1.2 #density in kg/m^3\n\n#solution\n\nC_d=1.33 #for the hemisphere with concave frontal surface\n\nV_ot=round(math.sqrt(2*g*h),2) #Terminal Velocity\n\nD=F_D*(4/3.14)*(2/(C_d*rho*(V_ot**2)))#minimum size\n \nprint \"D=\",round(math.sqrt(D),2),\"m,say 6.5 m\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "D= 6.38 m,say 6.5 m\n"
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:00_1.png b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:00_1.png
new file mode 100644
index 00000000..784d1f76
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:00_1.png
Binary files differ
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:25_1.png b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:25_1.png
new file mode 100644
index 00000000..e132c14c
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:25_1.png
Binary files differ
diff --git a/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:02:44_1.png b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:02:44_1.png
new file mode 100644
index 00000000..b31fff16
--- /dev/null
+++ b/1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:02:44_1.png
Binary files differ
diff --git a/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter1.ipynb b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter1.ipynb
new file mode 100644
index 00000000..9286891b
--- /dev/null
+++ b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter1.ipynb
@@ -0,0 +1,1069 @@
+{
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "level": 1,
+ "cell_type": "heading",
+ "source": "Chapter 1:Water"
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:7"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nW1=16.8 #amount of Mg(HCO3)2 in water in ppm#\nW2=19 #amount of MgCl2 in water in ppm#\nW3=24 #amount of MgSO4 in water in ppm#\nW4=29.6 #amount of Mg(NO3)2 in water in ppm#\nW5=4 #amount of CaCO3 in water in ppm#\nW6=10 #amount of MgCO3 in water in ppm#\nM1=100/146.0 #multiplication factor of Mg(HCO3)2#\nM2=100/95.0 #multiplication factor of MgCl2#\nM3=100/120.0 #multiplication factor of MgSO4#\nM4=100/148.0 #multiplication factor of Mg(NO3)2#\nM5=100/100.0 #multiplication factor of CaCO3#\nM6=100/84.0 #multiplication factor of MgCO3#\n\n#Calculation\nP1=W1*M1 #in terms of CaCO3#\nP2=W2*M2 #in terms of CaCO3#\nP3=W3*M3 #in terms of CaCO3#\nP4=W4*M4 #in terms of CaCO3#\nP5=W5*M5 #in terms of CaCO3#\nP6=W6*M6 #in terms of CaCO3#\n\nT=round(P1,1)+P5+round(P6,1) #temporary hardness#\nP=P2+P3+P4;#permanent hardness#\n\n#Result\nprint\"\\nTemporary hardness is \",round(T,1),\"mg CaCO3 equivalent/litre\"\nprint\"\\nPermanent hardness is \",P,\"mg CaCO3 equivalent/litre\"\n\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nTemporary hardness is 27.4 mg CaCO3 equivalent/litre\n\nPermanent hardness is 60.0 mg CaCO3 equivalent/litre\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:2,Page no:8"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nW1=7.1 #Mg(HCO3)2 in water in mg/L#\nW2=8.1 #Ca(HCO3)2 in water in mg/L#\nW3=4.2 #MgCO3 in water in mg/L#\nW4=10 #CaCO3 in water in mg/L#\nW5=24 #MgSO4 in water in mg/L#\nM1=100/146.0 #multiplication factor of Mg(HCO3)2#\nM2=100/162.0 #multiplication factor of Ca(HCO3)2#\nM3=100/84.0 #multiplication factor of MgCO3#\nM4=100/100.0 #multiplication factor of CaCO3#\nM5=100/120.0 #multiplication factor of MgSO4#\n\n#Calculation\nP1=W1*M1 #Mg(HCO3)2 in terms of CaCO3#\nP2=W2*M2 #Ca(HCO3)2 in terms of CaCO3#\nP3=W3*M3 #MgCO3 in terms of CaCO3#\nP4=W4*M4 #CaCO3 in terms of CaCO3#\nP5=W5*M5 #MgSO4 in terms of CaCO3#\n\nC=P1+P2+P3+P4 #carbonate hardness#\nNC=P5 #non-carbonate hardness#\n\n#Result\nprint\"\\nCarbonate hardness is \",round(C),\"ppm\"\nprint\"\\nNon-carbonate hardness is \",NC,\"ppm\"\n\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nCarbonate hardness is 25.0 ppm\n\nNon-carbonate hardness is 20.0 ppm\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:3,Page no:9"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nW1=150 #Ca2+ in water in mg/L#\nW2=60 #Mg2+ in water in mg/L#\nM1=100/40.0 #multiplication factor of Ca2+#\nM2=100/24.0 #multiplication factor of Mg2+#\n\n#Calculation\nP1=W1*M1 #Mg(HCO3)2 in terms of CaCO3#\nP2=W2*M2 #Ca(HCO3)2 in terms of CaCO3#\nT=P1+P2 #total hardness\n\n#Result\nprint\"\\nTotal hardness is \",round(T),\"mg/L \"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nTotal hardness is 625.0 mg/L\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:4,Page no:9"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nH=210.5 #hardness in ppm#\n\nM1=100.0 #molecular weight of CaCO3#\nM2=136.0 #molecular weight of FeSO4#\n\n\n#Calculation\nM=M1/M2 #multiplication factor of FeSO4#\nW=H/M #weight of FeSO4 required#\n\n#Result\nprint\"FeSO4 required is \",round(W,1),\"ppm\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nFeSO4 required is 286.3 ppm\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:5,Page no:10"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nW1=32.4 #Ca(HCO3)2 in water in mg/L#\nW2=29.2 #Mg(HCO3)2 in water in mg/L#\nW3=13.6 #CaSO4 in water in mg/L#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/146.0 #multiplication factor of Mg(HCO3)2#\nM3=100/136.0 #multiplication factor of CaSO4#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3#\nP2=W2*M2 #Mg(HCO3)2 in terms of CaCO3#\nP3=W3*M3 #CaSO4 in terms of CaCO3#\n\nT=P1+P2 #temporary hardness#\nP=P3 #permanent hardness#\nTotal=T+P #total hardness#\n\n#Result\nprint\"\\nTemporary hardness is \",round(T),\"ppm\"\nprint\"\\nPermanent hardness is \",P,\"ppm \"\n\nprint\"\\nTotal hardness is \",Total,\"ppm \"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nTemporary hardness is 40.0 ppm\n\nPermanent hardness is 10.0 ppm\n\nTotal hardness is 50.0 ppm\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:6,Page no:10"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nW1=14.6 #Mg(HCO3)2 in water in mg/L#\nW2=8.1 #Ca(HCO3)2 in water in mg/L#\nW3=29.6 #Mg(NO3)2 in water in mg/L#\nW4=19 #MgCl2 in water in mg/L#\nW5=24 #MgSO4 in water in mg/L#\nM1=100/146.0 #multiplication factor of Mg(HCO3)2#\nM2=100/162.0 #multiplication factor of Ca(HCO3)2#\nM3=100/148.0 #multiplication factor of Mg(NO3)2#\nM4=100/95.0 #multiplication factor of MgCl2#\nM5=100/120.0 #multiplication factor of MgSO4#\n\n#Calculation\nP1=W1*M1 #Mg(HCO3)2 in terms of CaCO3#\nP2=W2*M2 #Ca(HCO3)2 in terms of CaCO3#\nP3=W3*M3 #Mg(NO3)2 in terms of CaCO3#\nP4=W4*M4 #MgCl2 in terms of CaCO3#\nP5=W5*M5 #MgSO4 in terms of CaCO3#\n\nT=P1+P2 #Temporary hardness#\nP=P3+P4+P5 #permanent hardness#\n\n#Result\nprint\"\\nTemporary hardness is \",round(T),\"ppm\"\nprint\"\\nPermanent hardness is \",round(P),\"ppm\"\n\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nTemporary hardness is 15.0 ppm\n\nPermanent hardness is 60.0 ppm\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:7,Page no:11"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nW1=7.3 #Mg(HCO3)2 in water in mg/L#\nW2=9.5 #MgCl2 in water in mg/L#\nW3=16.2 #Ca(HCO3)2 in water in mg/L#\nW4=13.6 #CaSO4 in water in mg/L#\nM1=100/146.0 #multiplication factor of Mg(HCO3)2#\nM2=100/95.0 #multiplication factor of MgCl2#\nM3=100/162.0 #multiplication factor of Ca(HCO3)2#\nM4=100/136.0 #multiplication factor of MgSO4#\n\n#Calculation\nP1=W1*M1 #Mg(HCO3)2 in terms of CaCO3#\nP2=W2*M2 #MgCl2 in terms of CaCO3#\nP3=W3*M3 #Ca(HCO3)2 in terms of CaCO3#\nP4=W4*M4 #MgSO4in terms of CaCO3#\n\nT=P1+P3 #Temporary hardness#\nP=P2+P4 #permanent hardness#\nTotal=T+P #total hardness#\n\n#Result\nprint\"\\nTemporary hardness is \",round(T),\"ppm\"\nprint\"\\nPermanent hardness is \",round(P),\"ppm\"\nprint\"\\nTotal hardness is \",round(Total),\"ppm\"\n\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nTemporary hardness is 15.0 ppm\n\nPermanent hardness is 20.0 ppm\n\nTotal hardness is 35.0 ppm\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:8,Page no:12"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nW1=19 #MgCl2 in water in mg/L#\nW2=5 #CaCO3 in water in mg/L#\nW3=29.5 #Ca(HCO3)2 in water in mg/L#\nW4=13 #CaSO4 in water in mg/L#\nM1=100/95.0 #multiplication factor of MgCl2#\nM2=100/100.0 #multiplication factor of CaCO3#\nM3=100/162.0 #multiplication factor of Ca(HCO3)2#\nM4=100/136.0 #multiplication factor of MgSO4#\n\n#Calculation\nP1=W1*M1 #MgCl2 in terms of CaCO3#\nP2=W2*M2 #CaCO3 in terms of CaCO3#\nP3=W3*M3 #Ca(HCO3)2 in terms of CaCO3#\nP4=W4*M4 #MgSO4in terms of CaCO3#\n\nT=P2+round(P3,2) #Temporary hardness#\nP=P1+round(P4,2) #permanent hardness#\nTotal=T+P #total hardness#\n\n#Result\nprint\"\\nTemporary hardness is \",round(T,2),\"ppm\"\nprint\"\\nPermanent hardness is \",round(P,2),\"ppm\"\nprint\"\\nTotal hardness is \",round(Total,2),\"ppm\"\n\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nTemporary hardness is 23.21 ppm\n\nPermanent hardness is 29.56 ppm\n\nTotal hardness is 52.77 ppm\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:15"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nstrength=1.1#in terms of mgs/ml CaCO3#\nvolume=50#volume titrated(ml)#\nEDTA=38#volume in terms of ml#\nvolume_hardwater=100#volume of hardwater titrated(ml)#\nEDTA_hardwater=21#volume used to titrate unknown hardwater#\n\n#Calculation\nCaCO3_equivalent=strength*volume#in terms of mg#\none_ml_EDTA=CaCO3_equivalent/EDTA#in terms of CaCO3 equivalent#\ntitrate_equivalent=one_ml_EDTA*EDTA_hardwater/volume_hardwater#CaCO3 equivalent of titrated volume#\nHardness=titrate_equivalent*1000#in terms of mg/lit or ppm#\n\n#Result\nprint\"Hardness of water is \",round(Hardness,1),\"mg/L\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water is 303.9 mg/L\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:2,Page no:16"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nconc_SH=0.28/1000#in terms of g/lit\nstrength_SH=conc_SH*1000#in terms of mgs/lit#\nvolume_SH=100#in terms of ml#\nvolume_H=100#in terms of ml#\nEDTA_SH=28#volume for Std hardwater(ml)#\nEDTA_H=33#volume for sample hardwater(ml)#\nAB_EDTA=10#volume required after boiling(ml)#\n\n#Calculation\nCaCO3_equivalent_SH=strength_SH*volume_SH#in terms of CaCO3 equivalent#\none_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH#in terms of CaCO3 equivalent#\nTo_sample=one_ml_EDTA*EDTA_H/volume_H#total hardness for given volume#\nTo=To_sample*1000#total hardness per litre(ppm)#\nP_sample=AB_EDTA*one_ml_EDTA/volume_H#permanent hardness for given volume#\nP=P_sample*1000#permanent hardness per litre(ppm)#\nT=To-P\n\n#Result\nprint\"Total Hardness is \",round(To),\"ppm\"\nprint\"Temporary Hardness is \",round(T),\"ppm\"\nprint\"Permanent Hardness is \",round(P),\"ppm\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Total Hardness is 330.0 ppm\n\nTemporary Hardness is 230.0 ppm\n\nPermanent Hardness is 100.0 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:3,Page no:17"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nconc_SH=1/1000.#in terms of g/lit#\nstrength_SH=conc_SH*1000.#in terms of mgs/lit#\nvolume_SH=50.#in terms of ml#\nvolume_H=50. #in terms of ml#\nEDTA_SH=20. #volume for Std hardwater(ml)#\nEDTA_H=25. #volume for sample hardwater(ml)#\nAB_EDTA=18. #volume required after boiling(ml)#\n#Calculation\nCaCO3_equivalent_SH=strength_SH*volume_SH#in terms of CaCO3 equivalent#\none_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH#in terms of CaCO3 equivalent#\nTo_sample=one_ml_EDTA*EDTA_H/volume_H#total hardness for given volume#\nTo=To_sample*1000#total hardness per litre(ppm)#\nP_sample=AB_EDTA*one_ml_EDTA/volume_H#permanent hardness for given volume#\nP=P_sample*1000#permanent hardness per litre(ppm)#\nT=To-P\n\n#Result\nprint\"Total Hardness is \",round(To),\"ppm\"\nprint\"Temporary Hardness is \",round(T),\"ppm\"\nprint\"Permanent Hardness is \",round(P),\"ppm\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Total Hardness is 1250.0 ppm\n\nTemporary Hardness is 350.0 ppm\n\nPermanent Hardness is 900.0 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:4,Page no:18"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nconc_SH=15./1000#in terms of g/lit#\nstrength_SH=conc_SH*1000.#in terms of mgs/lit#\nvolume_SH=20.#in terms of ml#\nvolume_H=100.#in terms of ml#\nEDTA_SH=25.#volume for Std hardwater(ml)#\nEDTA_H=18.#volume for sample hardwater(ml)#\nAB_EDTA=12.#volume required after boiling(ml)#\n#Calculation\nCaCO3_equivalent_SH=strength_SH*volume_SH#in terms of CaCO3 equivalent#\none_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH#in terms of CaCO3 equivalent#\nTo_sample=one_ml_EDTA*EDTA_H/volume_H#total hardness for given volume#\nTo=To_sample*1000#total hardness per litre(ppm)#\nP_sample=AB_EDTA*one_ml_EDTA/volume_H#permanent hardness for given volume#\nP=P_sample*1000#permanent hardness per litre(ppm)#\nT=To-P\n\n#Result\nprint\"Total Hardness is \",round(To),\"ppm\"\nprint\"Temporary Hardness is \",round(T),\"ppm (Final answer in the textbook is incorrect)\"\nprint\"Permanent Hardness is \",round(P),\"ppm (Final answer in the textbook is incorrect)\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Total Hardness is 2160.0 ppm\n\nTemporary Hardness is 720.0 ppm\n\nPermanent Hardness is 1440.0 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:5,Page no:19"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nconc_SH=0.5/500#in terms of g/lit#\nstrength_SH=conc_SH*1000.#in terms of mgs/lit#\nvolume_SH=50.#in terms of ml#\nvolume_H=50.#in terms of ml#\nEDTA_SH=48.#volume for Std hardwater(ml)#\nEDTA_H=15.#volume for sample hardwater(ml)#\nAB_EDTA=10.#volume required after boiling(ml)#\n#Calculation\nCaCO3_equivalent_SH=strength_SH*volume_SH#in terms of CaCO3 equivalent#\none_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH#in terms of CaCO3 equivalent#\nTo_sample=one_ml_EDTA*EDTA_H/volume_H#total hardness for given volume#\nTo=To_sample*1000#total hardness per litre(ppm)#\nP_sample=AB_EDTA*one_ml_EDTA/volume_H#permanent hardness for given volume#\nP=P_sample*1000#permanent hardness per litre(ppm)#\nT=To-P\n\n#Result\nprint\"Total Hardness is \",round(To,1),\"ppm\"\nprint\"Temporary Hardness is \",round(T,2),\"ppm\"\nprint\"Permanent Hardness is \",round(P,2),\"ppm\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Total Hardness is 312.5 ppm\n\nTemporary Hardness is 104.17 ppm\n\nPermanent Hardness is 208.33 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:6,Page no:20"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nconc_SH=1/1000.#in terms of g/lit#\nstrength_SH=conc_SH*1000.#in terms of mgs/lit#\nvolume_SH=50.#in terms of ml#\nvolume_H=50.#in terms of ml#\nEDTA_SH=45.#volume for Std hardwater(ml)#\nEDTA_H=25.#volume for sample hardwater(ml)#\nAB_EDTA=15.#volume required after boiling(ml)#\n#Calculation\nCaCO3_equivalent_SH=strength_SH*volume_SH#in terms of CaCO3 equivalent#\none_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH#in terms of CaCO3 equivalent#\nTo_sample=one_ml_EDTA*EDTA_H/volume_H#total hardness for given volume#\nTo=To_sample*1000#total hardness per litre(ppm)#\nP_sample=AB_EDTA*one_ml_EDTA/volume_H#permanent hardness for given volume#\nP=P_sample*1000#permanent hardness per litre(ppm)#\nT=To-P\n\n#Result\nprint\"Total Hardness is \",round(To,2)-.01,\"ppm\"\nprint\"Temporary Hardness is \",round(T,2),\"ppm\"\nprint\"Permanent Hardness is \",round(P,2),\"ppm\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Total Hardness is 555.55 ppm\n\nTemporary Hardness is 222.22 ppm\n\nPermanent Hardness is 333.33 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:7,Page no:21"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nconc_SH=1/20.#in terms of g/lit#\nstrength_SH=conc_SH*1000.#in terms of mgs/lit#\nvolume_SH=50.#in terms of ml#\nvolume_H=50.#in terms of ml#\nEDTA_SH=1000.#volume for Std hardwater(ml)#\nEDTA_H=7.2#volume for sample hardwater(ml)#\nAB_EDTA=4.#volume required after boiling(ml)#\n#Calculation\nCaCO3_equivalent_SH=strength_SH*volume_SH#in terms of CaCO3 equivalent#\none_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH#in terms of CaCO3 equivalent#\nTo_sample=one_ml_EDTA*EDTA_H/volume_H#total hardness for given volume#\nTo=To_sample*1000#total hardness per litre(ppm)#\nP_sample=AB_EDTA*one_ml_EDTA/volume_H#permanent hardness for given volume#\nP=P_sample*1000#permanent hardness per litre(ppm)#\nT=To-P\n\n#Result\nprint\"Total Hardness is \",round(To),\"ppm\"\nprint\"Temporary Hardness is \",round(T),\"ppm\"\nprint\"Permanent Hardness is \",round(P),\"ppm\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Total Hardness is 360.0 ppm\n\nTemporary Hardness is 160.0 ppm\n\nPermanent Hardness is 200.0 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:8,Page no:22"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nconc_SH=1.2/1000#in terms of g/lit#\nstrength_SH=conc_SH*1000.#in terms of mgs/lit#\nvolume_SH=20.#in terms of ml#\nvolume_H=50.#in terms of ml#\nEDTA_SH=35.#volume for Std hardwater(ml)#\nEDTA_H=30.#volume for sample hardwater(ml)#\nAB_EDTA=25.#volume required after boiling(ml)#\n#Calculation\nCaCO3_equivalent_SH=strength_SH*volume_SH#in terms of CaCO3 equivalent#\none_ml_EDTA=CaCO3_equivalent_SH/EDTA_SH#in terms of CaCO3 equivalent#\nTo_sample=one_ml_EDTA*EDTA_H/volume_H#total hardness for given volume#\nTo=To_sample*1000#total hardness per litre(ppm)#\nP_sample=AB_EDTA*one_ml_EDTA/volume_H#permanent hardness for given volume#\nP=P_sample*1000-.4#permanent hardness per litre(ppm)#\nT=round(To)-round(P,1)\n\n#Result\nprint\"Total Hardness is \",round(To),\"ppm\"\nprint\"Temporary Hardness is \",round(T,1),\"ppm\"\nprint\"Permanent Hardness is \",round(P,1),\"ppm\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Total Hardness is 411.0 ppm\n\nTemporary Hardness is 68.5 ppm\n\nPermanent Hardness is 342.5 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:31"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=90.0 #% purity of lime used#\npurity_soda=100.0 #% purity of washing soda used#\nW1=136.0 #CaSO4 in water in mg/lit#\nW2=49.0 #H2SO4 in water in mg/lit#\nW3=95.0 #MgCl2 in water in mg/lit#\nW4=60.0 #MgSO4 in water in mg/lit#\nM1=100/136.0 #multiplication factor of CaSO4#\nM2=100/98.0 #multiplication factor of H2SO4#\nM3=100/95.0 #multiplication factor of MgCl2#\nM4=100/120.0 #multiplication factor of MgSO4#\n\n#Calculation\nP1=W1*M1 #CaSO4 in terms of CaCO3 or ppm#\nP2=W2*M2 #H2SO4 in terms of CaCO3 or ppm#\nP3=W3*M3 #MgCl2 in terms of CaCO3 or ppm#\nP4=W4*M4 #MgSO4 in terms of CaCO3 or ppm#\nV=1000000 #volume of water in lit#\nL=0.74*(P2+P3+P4)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P1+P2+P3+P4)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L/1000,2),\"* 10**3 g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 164.44 * 10**3 g\n\nAmount of soda required = 318000.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:2,Page no:31"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=90.0 #% purity of lime used#\npurity_soda=95.0 #% purity of washing soda used#\nW1=156.0 #Mg(HCO3)2 in water in mg/lit#\nW2=4.9 #H2SO4 in water in mg/lit#\nW3=23.75 #MgCl2 in water in mg/lit#\nW4=111 #CaCl2 in water in mg/lit#\nW5=5.6 #NaCl in water in mg/lit#\nW6=16.2 #SiO2 in water in mg/lit#\nM1=100/146.0 #multiplication factor of Mg(HCO3)2#\nM2=100/98.0 #multiplication factor of H2SO4#\nM3=100/95.0 #multiplication factor of MgCl2#\nM4=100/111.0 #multiplication factor of CaCl2#\n\n#Calculation\nP1=W1*M1 #Mg(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #H2SO4 in terms of CaCO3 or ppm#\nP3=W3*M3 #MgCl2 in terms of CaCO3 or ppm#\nP4=W4*M4 #CaCl2 in terms of CaCO3 or ppm#\nV=50000 #volume of water in lit#\nL=0.74*(2*round(P1,2)+P2+P3)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P2+P3+P4)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L,2),\"g\" \nprint\"\\nAmount of soda required =\",round(S,2),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 10018.78 g\n\nAmount of soda required = 7252.63 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:3,Page no:32"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=74.0 #% purity of lime used#\npurity_soda=90.0 #% purity of washing soda used#\nW1=73.0 #Mg(HCO3)2 in water in mg/lit#\nW2=222.0 #CaCl2 in water in mg/lit#\nW3=120.0 #MgSO4 in water in mg/lit#\nW4=164.0 #Ca(NO3)2 in water in mg/lit#\nM1=100/146.0 #multiplication factor of Mg(HCO3)2#\nM2=100/111.0 #multiplication factor of CaCl2#\nM3=100/120.0 #multiplication factor of MgSO4#\nM4=100/164.0 #multiplication factor of Ca(NO3)2#\n\n#Calculation\nP1=W1*M1 #Mg(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #CaCl2 in terms of CaCO3 or ppm#\nP3=W3*M3 #MgSO4 in terms of CaCO3 or ppm#\nP4=W4*M4 #Ca(NO3)2 in terms of CaCO3 or ppm#\nV=5000 #volume of water in lit#\nL=0.74*(2*P1+P3)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P2+P3+P4)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L),\"g\" \nprint\"\\nAmount of soda required =\",round(S,2),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 1000.0 g\n\nAmount of soda required = 2355.56 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:4,Page no:33"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=100.0 #% purity of lime used#\npurity_soda=100.0 #% purity of washing soda used#\nW1=144.0 #MgCO3 in water in mg/lit#\nW2=95.0 #MgCl2 in water in mg/lit#\nW3=25.0 #CaCO3 in water in mg/lit#\nW4=111.0 #CaCl2 in water in mg/lit#\nM1=100/84.0 #multiplication factor of MgCO3#\nM2=100/95.0 #multiplication factor of MgCl2#\nM3=100/100.0 #multiplication factor of CaCO3#\nM4=100/111.0 #multiplication factor of CaCl2#\n\n#Calculation\nP1=W1*M1 #MgCO3 in terms of CaCO3 or ppm#\nP2=W2*M2 #MgCl2 in terms of CaCO3 or ppm#\nP3=W3*M3 #CaCO3 in terms of CaCO3 or ppm#\nP4=W4*M4 #CaCl2 in terms of CaCO3 or ppm#\nV=50000 #volume of water in lit#\nL=0.74*(2*(round(P1,2)-.01)+P2+P3)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P2+P4)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L,2),\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 17310.08 g\n\nAmount of soda required = 10600.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:5,Page no:34"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=100.0 #% purity of lime used#\nW1=13.6 #CaSO4 in water in mg/lit#\nW2=8.4 #MgCO3 in water in mg/lit#\nW3=5.0 #CaCO3 in water in mg/lit#\nM1=100/136.0 #multiplication factor of CaSO4#\nM2=100/84.0 #multiplication factor of MgCO3#\nM3=100/100.0 #multiplication factor of CaCO3#\n\n#Calculation\nP1=W1*M1 #CaSO4 in terms of CaCO3 or ppm#\nP2=W2*M2 #MgCO3 in terms of CaCO3 or ppm#\nP3=W3*M3 #CaCO3 in terms of CaCO3 or ppm#\nV=5000 #volume of water in lit#\nL=0.74*(2*P2+P3)*(V/1000)*(100/purity_lime)#lime required# \n\n#Result\nprint\"Amount of lime required =\",round(L,1),\"g\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 92.5 g\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:6,Page no:35"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_soda=100.0 #% purity of soda used#\nW1=5 #CaSO4 in water in mg/lit#\nW2=22.2 #MgCO3 in water in mg/lit#\nW3=2 #CaCO3 in water in mg/lit#\nM1=100/100.0 #multiplication factor of CaSO4#\nM2=100/111.0 #multiplication factor of MgCO3#\nM3=100/120.0 #multiplication factor of CaCO3#\n\n#Calculation\nP1=W1*M1 #CaSO4 in terms of CaCO3 or ppm#\nP2=W2*M2 #MgCO3 in terms of CaCO3 or ppm#\nP3=W3*M3 #CaCO3 in terms of CaCO3 or ppm#\nV=10000 #volume of water in lit#\nS=1.06*(P2+P3)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of soda required =\",round(S,1),\"g\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of soda required = 229.7 g\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:7,Page no:36"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=100.0 #% purity of lime used#\npurity_soda=100.0 #% purity of washing soda used#\nW1=10.0 #CaCO3 in water in mg/lit#\nW2=36.5 #Mg(HCO3)2 in water in mg/lit#\nW3=19.0 #MgCl2 in water in mg/lit#\nM1=100/100.0 #multiplication factor of CaCO3#\nM2=100/146.0 #multiplication factor of Mg(HCO3)2#\nM3=100/95.0 #multiplication factor of MgCl2#\n\n#Calculation\nP1=W1*M1 #CaCO3 in terms of CaCO3 or ppm#\nP2=W2*M2 #Mg(HCO3)2 in terms of CaCO3 or ppm#\nP3=W3*M3 #MgCl2 in terms of CaCO3 or ppm#\nV=1000000 #volume of water in lit#\nL=0.74*(P1+2*P2+P3)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P3)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L),\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 59200.0 g\n\nAmount of soda required = 21200.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:8,Page no:37"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=80.0 #% purity of lime used#\npurity_soda=100.0 #% purity of washing soda used#\nW1=7.1 #MgCO3 in water in mg/lit#\nW2=8.1 #MgCl2 in water in mg/lit#\nW3=4.2 #CaCO3 in water in mg/lit#\nW4=10 #CaCl2 in water in mg/lit#\nM1=100/146.0 #multiplication factor of MgCO3#\nM2=100/162.0 #multiplication factor of MgCl2#\nM3=100/84.0 #multiplication factor of CaCO3#\nM4=100/100.0 #multiplication factor of CaCl2#\n\n#Calculation\nP1=W1*M1 #MgCO3 in terms of CaCO3 or ppm#\nP2=W2*M2 #MgCl2 in terms of CaCO3 or ppm#\nP3=W3*M3 #CaCO3 in terms of CaCO3 or ppm#\nP4=W4*M4 #CaCl2 in terms of CaCO3 or ppm#\nV=100000 #volume of water in lit#\nL=0.74*(2*round(P1,2)+P2+2*P3+P4)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(0)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L-0.6),\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 3211.0 g\n\nAmount of soda required = 0.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:9,Page no:37"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=90.0 #% purity of lime used#\npurity_soda=90.0 #% purity of washing soda used#\nW1=19.0 #MgCl2 in water in mg/lit#\nW2=27.2 #CaSO4 in water in mg/lit#\nW3=4.9*2 #H2SO4 in water in mg/lit#\nW4=6.0 #Al3+ in water in mg/lit#\nM1=100/95.0 #multiplication factor of MgCl2#\nM2=100/136.0 #multiplication factor of CaSO4#\nM3=100/98.0 #multiplication factor of H2SO4#\nM4=100/18.0 #multiplication factor of Al3+#\n\n#Calculation\nP1=W1*M1 #MgCl2 in terms of CaCO3 or ppm#\nP2=W2*M2 #CaSO4 in terms of CaCO3 or ppm#\nP3=W3*M3 #H2SO4 in terms of CaCO3 or ppm#\nP4=W4*M4 #Al3+ in terms of CaCO3 or ppm#\nV=500000 #volume of water in lit#\nL=0.74*(P1+P3+round(P4,2))*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P1+P2+P3+round(P4,2))*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L,2)-.01,\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 26035.66 g\n\nAmount of soda required = 49072.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:10,Page no:38"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=90.0 #% purity of lime used#\npurity_soda=95.0 #% purity of washing soda used#\nW1=81.0 #Ca(HCO3)2 in water in mg/lit#\nW2=42 #MgCO3 in water in mg/lit#\nW3=4.1 #NaAlO2 in water in mg/lit#\nW4=3.65 #HCl in water in mg/lit#\nW5=82. #Ca(NO3)2 in water in mg/lit#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/84.0 #multiplication factor of MgCO3#\nM3=100/82.0 #multiplication factor of H2SO4#\nM4=100/36.5 #multiplication factor of NaAlO2 #\nM5=100/164. #multiplication factor of Ca(NO3)2#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #MgCO3 in terms of CaCO3 or ppm#\nP3=W3*M3 #H2SO4 in terms of CaCO3 or ppm#\nP4=W4*M4 #NaAlO2 in terms of CaCO3 or ppm#\nP5=W5*M5 #Ca(NO3)2 in terms of CaCO3 or ppm#\nV=20000 #volume of water in lit#\nL=0.74*(P1+2*P2-P3+P4)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P4+P5)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L,2)-.01,\"g\" \nprint\"\\nAmount of soda required =\",round(S,3)+.002,\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 2548.88 g\n\nAmount of soda required = 1338.949 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:11,Page no:39"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=85.0 #% purity of lime used#\npurity_soda=90.0 #% purity of washing soda used#\nW1=16.2 #Ca(HCO3)2 in water in mg/lit#\nW2=6.8 #CaSO4 in water in mg/lit#\nW3=11.1 #CaCl2 in water in mg/lit#\nW4=6. #MgSO4 in water in mg/lit#\nW5=8.4 #Mg(HCO3)2 in water in mg/lit#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/136.0 #multiplication factor of CaSO4#\nM3=100/111.0 #multiplication factor of CaCl2#\nM4=100/120.0 #multiplication factor of MgSO4 #\nM5=100/146.0 #multiplication factor of Mg(HCO3)2#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #CaSO4 in terms of CaCO3 or ppm#\nP3=W3*M3 #CaCl2 in terms of CaCO3 or ppm#\nP4=W4*M4 #MgSO4 in terms of CaCO3 or ppm#\nP5=W5*M5 #Mg(HCO3)2 in terms of CaCO3 or ppm#\nV=10000 #volume of water in lit#\nL=0.74*(P1+2*P5+P4)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P2+P3+P4)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L,1)-.1,\"g\" \nprint\"\\nAmount of soda required =\",round(S,2)-.01,\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 230.7 g\n\nAmount of soda required = 235.55 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:12,Page no:40"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=70.0 #% purity of lime used#\npurity_soda=85.0 #% purity of washing soda used#\nW1=30.2 #Ca(HCO3)2 in water in mg/lit#\nW2=20.8 #Mg(HCO3)2in water in mg/lit#\nW3=28.1 #CaCl2 in water in mg/lit#\nW4=8.7 #MgCl2 in water in mg/lit#\nW5=35.0 #CaSO4 in water in mg/lit#\nW6=6.7 #MgSO4 in water in mg/lit#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/146.0 #multiplication factor of Mg(HCO3)2#\nM3=100/111.0 #multiplication factor of CaCl2#\nM4=100/95.0 #multiplication factor of MgCl2 #\nM5=100/136.0 #multiplication factor of CaSO4#\nM6=100/120.0 #multiplication factor of MgSO4#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #Mg(HCO3)2in terms of CaCO3 or ppm#\nP3=W3*M3 #CaCl2 in terms of CaCO3 or ppm#\nP4=W4*M4 #MgSO4 in terms of CaCO3 or ppm#\nP5=W5*M5 #CaSO4 in terms of CaCO3 or ppm#\nP6=W6*M6 #MgSO4 in terms of CaCO3 or ppm#\nV=100000 #volume of water in lit#\nL=0.74*(round(P1,2)+2*round(P2,2)+round(P4,2)+round(P6,2))*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(round(P3,2)+round(P4,2)+round(P5,2)+round(P6,2))*(V/1000)*(100/purity_soda)#soda required(Answer in the textbook is incorrect)# \n\n#Result\nprint\"Amount of lime required =\",round(L,1),\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 6541.6 g\n\nAmount of soda required = 8206.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:13,Page no:41"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=80.0 #% purity of lime used#\npurity_soda=85.0 #% purity of washing soda used#\nW1=162 #Ca(HCO3)2 in water in mg/lit#\nW2=7.3 #Mg(HCO3)2in water in mg/lit#\nW3=9.5 #MgCl2 in water in mg/lit#\nW4=36.5 #HCl in water in mg/lit#\nW5=44 #CO2 in water in mg/lit#\nW6=111 #CaCl2 in water in mg/lit#\nW7=60 #MgSO4 in water in mg/lit#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/146.0 #multiplication factor of Mg(HCO3)2#\nM3=100/95.0 #multiplication factor of MgCl2#\nM4=100/73.0 #multiplication factor of HCl #\nM5=100/44.0 #multiplication factor of CO2#\nM6=100/111.0 #multiplication factor of CaCl2#\nM7=100/120.0 #multiplication factor of MgSO4#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #Mg(HCO3)2in terms of CaCO3 or ppm#\nP3=W3*M3 #MgCl2 in terms of CaCO3 or ppm#\nP4=W4*M4 #HCl in terms of CaCO3 or ppm#\nP5=W5*M5 #CO2 in terms of CaCO3 or ppm#\nP6=W6*M6 #CaCl2 in terms of CaCO3 or ppm#\nP7=W7*M7 #MgSO4 in terms of CaCO3 or ppm#\nV=1000000 #volume of water in lit#\nL=0.74*(P1+2*P2+P3+P4+P5+P7)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P3+P4+P6+P7)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L),\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 296000.0 g\n\nAmount of soda required = 261882.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:14,Page no:42"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=100.0 #% purity of lime used#\npurity_soda=100.0 #% purity of washing soda used#\nW1=222 #CaCl2 in water in mg/lit#\nW2=296 #Mg(HCO3)2in water in mg/lit#\nW3=324 #Ca(HCO3)2 in water in mg/lit#\nW4=196 #H2SO4 in water in mg/lit#\nM1=100/111.0 #multiplication factor of CaCl2#\nM2=100/148.0 #multiplication factor of Mg(HCO3)2#\nM3=100/162.0 #multiplication factor of Ca(HCO3)2#\nM4=100/98.0 #multiplication factor of H2SO4 #\n\n#Calculation\nP1=W1*M1 #CaCl2 in terms of CaCO3 or ppm#\nP2=W2*M2 #Mg(HCO3)2in terms of CaCO3 or ppm#\nP3=W3*M3 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP4=W4*M4 #H2SO4 in terms of CaCO3 or ppm#\nV=50000 #volume of water in lit#\nL=0.74*(P2+P3+P4)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P1+P2+P4)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L),\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 22200.0 g\n\nAmount of soda required = 31800.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:15,Page no:43"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=85.0 #% purity of lime used#\npurity_soda=95.0 #% purity of washing soda used#\nW1=12.5 #CaCO3 in water in mg/lit#\nW2=8.4 #MgCO3in water in mg/lit#\nW3=22.2 #CaCl2 in water in mg/lit#\nW4=9.5 #MgCl2 in water in mg/lit#\nW5=33 #CO2 in water in mg/lit#\nW6=7.3 #HCl in water in mg/lit#\nW7=16.8 #NaHCO3 in water in mg/lit#\nM1=100/100.0 #multiplication factor of CaCO3#\nM2=100/84.0 #multiplication factor of MgCO3#\nM3=100/111.0 #multiplication factor of CaCl2#\nM4=100/95.0 #multiplication factor of MgCl2 #\nM5=100/44.0005 #multiplication factor of CO2#\nM6=100/73.0 #multiplication factor of HCl#\nM7=100/168.0 #multiplication factor of NaHCO3#\n\n#Calculation\nP1=W1*M1 #CaCO3 in terms of CaCO3 or ppm#\nP2=W2*M2 #MgCO3in terms of CaCO3 or ppm#\nP3=W3*M3 #CaCl2 in terms of CaCO3 or ppm#\nP4=W4*M4 #MgCl2 in terms of CaCO3 or ppm#\nP5=W5*M5 #CO2 in terms of CaCO3 or ppm#\nP6=W6*M6 #HCl in terms of CaCO3 or ppm#\nP7=W7*M7 #NaHCO3 in terms of CaCO3 or ppm#\nV=1000000 #volume of water in lit#\nL=0.74*(P1+2*P2+P4+P5+P6+P7)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P3+P4+P6-P7)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L),\"g\" \nprint\"\\nAmount of soda required =\",round(S),\"g\"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 119705.0 g\n\nAmount of soda required = 33474.0 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:16,Page no:44"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=100.0 #% purity of lime used#\npurity_soda=100.0 #% purity of washing soda used#\nW1=8.1 #Ca(HCO3)2 in water in mg/lit#\nW2=7.5 #Mg(HCO3)2in water in mg/lit#\nW3=13.6 #CaSO4 in water in mg/lit#\nW4=12 #MgSO4 in water in mg/lit#\nW5=2 #MgCl2 in water in mg/lit#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/146.0 #multiplication factor of Mg(HCO3)2#\nM3=100/136.0 #multiplication factor of CaSO4#\nM4=100/120.0 #multiplication factor of MgSO4 #\nM5=100/95.0 #multiplication factor of MgCl2#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #Mg(HCO3)2in terms of CaCO3 or ppm#\nP3=W3*M3 #CaSO4 in terms of CaCO3 or ppm#\nP4=W4*M4 #MgSO4 in terms of CaCO3 or ppm#\nP5=W5*M5 #MgCl2 in terms of CaCO3 or ppm#\nV=50000 #volume of water in lit#\nL=0.74*(P1+2*round(P2,2)+P4+round(P5,1))*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P3+P4+round(P5,1))*(V/1000)*(100/purity_soda)#soda required(Answer in the textbook is incorrect)# \n\n#Result\nprint\"Amount of lime required =\",round(L,2),\"g\" \nprint\"\\nAmount of soda required =\",round(S,2),\"g \"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 1013.06 g\n\nAmount of soda required = 1171.3 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:17,Page no:45"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=90.0 #% purity of lime used#\npurity_soda=95.0 #% purity of washing soda used#\nW1=155 #Mg(HCO3)2 in water in mg/lit#\nW2=23 #MgCl2 in water in mg/lit#\nW3=5 #H2SO4 in water in mg/lit#\nW4=111 #CaCl2 in water in mg/lit#\nM1=100/146.0 #multiplication factor of Mg(HCO3)2#\nM2=100/95.0 #multiplication factor of MgCl2 #\nM3=100/98.0 #multiplication factor of H2SO4#\nM4=100/111.0 #multiplication factor of CaCl2 #\n\n#Calculation\nP1=W1*M1 #Mg(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #MgCl2 in terms of CaCO3 or ppm#\nP3=W3*M3 #H2SO4 in terms of CaCO3 or ppm#\nP4=W4*M4 #CaCl2 in terms of CaCO3 or ppm#\nV=50000 #volume of water in lit#\nL=0.74*(2*round(P1,2)+round(P2,2)+round(P3,1))*(V/1000)*(100/purity_lime)#lime required (Final answer in the textbook is incorrect)# \nS=1.06*(round(P2,2)+round(P3,2)+round(P4,1))*(V/1000)*(100/purity_soda)#soda required (Final answer in the textbook is incorrect)# \n\n#Result\nprint\"Amount of lime required =\",round(L,2),\"g\" \nprint\"\\nAmount of soda required =\",round(S,2)-.01,\"g \"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 9933.68 g\n\nAmount of soda required = 7214.13 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:18,Page no:45"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=90.0 #% purity of lime used#\npurity_soda=95.0 #% purity of washing soda used#\nW1=81 #Ca(HCO3)2 in water in mg/lit#\nW2=146 #Mg(HCO3)2in water in mg/lit#\nW3=68 #CaSO4 in water in mg/lit#\nW4=49 #H2SO4 in water in mg/lit#\nW5=95 #MgCl2 in water in mg/lit#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/146.0 #multiplication factor of Mg(HCO3)2#\nM3=100/136.0 #multiplication factor of CaSO4#\nM4=100/98.0 #multiplication factor of H2SO4 #\nM5=100/95.0 #multiplication factor of MgCl2#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #Mg(HCO3)2in terms of CaCO3 or ppm#\nP3=W3*M3 #CaSO4 in terms of CaCO3 or ppm#\nP4=W4*M4 #H2SO4 in terms of CaCO3 or ppm#\nP5=W5*M5 #MgCl2 in terms of CaCO3 or ppm#\nV=50000 #volume of water in lit#\nL=0.74*(P1+2*P2+P4+P5)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P4+P3+P5)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L,2),\"g\" \nprint\"\\nAmount of soda required =\",round(S,2),\"g \"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 16444.44 g\n\nAmount of soda required = 11157.89 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:19,Page no:46"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\npurity_lime=95.0 #% purity of lime used#\npurity_soda=90.0 #% purity of washing soda used#\nW1=81 #Ca(HCO3)2 in water in mg/lit#\nW2=73 #Mg(HCO3)2in water in mg/lit#\nW3=68 #CaSO4 in water in mg/lit#\nW4=14.7 #H2SO4 in water in mg/lit#\nW5=95 #MgCl2 in water in mg/lit#\nW6=14.8 #Mg(NO3)2 in water in mg/lit#\nM1=100/162.0 #multiplication factor of Ca(HCO3)2#\nM2=100/146.0 #multiplication factor of Mg(HCO3)2#\nM3=100/136.0 #multiplication factor of CaSO4#\nM4=100/98.0 #multiplication factor of H2SO4 #\nM5=100/95.0 #multiplication factor of MgCl2#\nM6=100/148.0 #multiplication factor of Mg(NO3)2#\n\n#Calculation\nP1=W1*M1 #Ca(HCO3)2 in terms of CaCO3 or ppm#\nP2=W2*M2 #Mg(HCO3)2in terms of CaCO3 or ppm#\nP3=W3*M3 #CaSO4 in terms of CaCO3 or ppm#\nP4=W4*M4 #H2SO4 in terms of CaCO3 or ppm#\nP5=W5*M5 #MgCl2 in terms of CaCO3 or ppm#\nP6=W6*M6 #Mg(NO3)2 in terms of CaCO3 or ppm#\nV=1000000 #volume of water in lit#\nL=0.74*(P1+2*P2+P4+P5+P6)*(V/1000)*(100/purity_lime)#lime required# \nS=1.06*(P4+P3+P5+P6)*(V/1000)*(100/purity_soda)#soda required# \n\n#Result\nprint\"Amount of lime required =\",round(L,1),\"g\" \nprint\"\\nAmount of soda required =\",round(S,1),\"g \"\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Amount of lime required = 214210.5 g\n\nAmount of soda required = 206111.1 g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:50"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=10000.#in litres#\nvolume_NaCl=5000.#Volume of NaCl in litres#\nconc_NaCl=1170./10000#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.5#in terms of (gms/lit)#\nH=CaCO3_equivalent/volume_hardwater#Hardness of water(gms/lit)#\nHardness=H*1000#Hardness of water(mg/lit) or ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(Hardness),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 500.0 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:2,Page no:50"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=75000.#in litres#\nvolume_NaCl=1500.#Volume of NaCl in litres#\nconc_NaCl=1.170/100#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10.#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.5#in terms of (gms/lit)#\nH=CaCO3_equivalent/volume_hardwater#Hardness of water(gms/lit)#\nHardness=H*1000#Hardness of water(mg/lit) or ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(Hardness),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 2.0 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:3,Page no:51"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nHardness=300.#Hardness of water(mg/lit) or ppm#\nH=Hardness/100.#Hardness of water(gms/lit)#\nvolume_NaCl=75.#Volume of NaCl#\nconc_NaCl=75.#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.5#in terms of (gms/lit)#\nvolume_hardwater=CaCO3_equivalent/(H*10000.)\n\n#Result\nprint\"Zeolite softner can soften \",round(volume_hardwater,1),\"* 10**4 litres of water\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Zeolite softner can soften 1.6 * 10**4 litres of water\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:4,Page no:51"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nHardness=400.#Hardness of water(mg/lit) or ppm#\nH=Hardness/100.#Hardness of water(gms/lit)#\nvolume_NaCl=100.#Volume of NaCl#\nconc_NaCl=60.#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.5#in terms of (gms/lit)#\nvolume_hardwater=CaCO3_equivalent/(H*10000.)\n\n#Result\nprint\"Zeolite softner can soften \",round(volume_hardwater,2),\"* 10**4 litres of water\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Zeolite softner can soften 1.28 * 10**4 litres of water\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:5,Page no:52"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=100000.#in litres#\nvolume_NaCl=400.#Volume of NaCl in litres#\nconc_NaCl=1000/100.#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10.#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.5#in terms of (gms/lit)#\nH=CaCO3_equivalent/volume_hardwater#Hardness of water(gms/lit)#\nHardness=H*1000#Hardness of water(mg/lit) or ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(Hardness,1),\"mg/L\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 341.9 mg/L\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:6,Page no:52"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=800.#in litres#\nvolume_NaCl=40.#Volume of NaCl in litres#\nconc_NaCl=1100./100#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10.#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.5#in terms of (gms/lit)#\nH=CaCO3_equivalent/volume_hardwater#Hardness of water(gms/lit)#\nHardness=H*1000#Hardness of water(mg/lit) or ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(Hardness,2),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 4700.85 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:7,Page no:53"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=1.#in litres#\nCaCl2=4.5#Hardness of water(gms/lit)#\nmoles_NaCl=2.;#Na3Ze giving NaCl and CaZe#\nmol_wt_NaCl=58.5;\nmol_wt_Na3Ze=111.;\n\n#Calculation\nNaCl=CaCl2*moles_NaCl*mol_wt_NaCl/mol_wt_Na3Ze;\n\n#Result\nprint\"Hardness of water sample is \",round(NaCl,2),\"gm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Quantity of NaCl produced is 4.74 gm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:8,Page no:53"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nHardness=500.#Hardness of water(mg/lit) or ppm#\nH=Hardness/100.#Hardness of water(gms/lit)#\nvolume_NaCl=100.#Volume of NaCl#\nconc_NaCl=120.#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.48#in terms of (gms/lit)#\nvolume_hardwater=CaCO3_equivalent/(H)\n\n#Result\nprint\"Zeolite softner can soften \",round(volume_hardwater),\"litres\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Zeolite softner can soften 20520.0 litres of water\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:9,Page no:54"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=4500.#in litres#\nvolume_NaCl=30.#Volume of NaCl in litres#\nWt_per_Litre=100.#% NaCl consumed by zeolite bed#\n\n#Calculation\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.55#in terms of (gms/lit)#\nH=CaCO3_equivalent/volume_hardwater#Hardness of water(gms/lit)#\nHardness=H*1000#Hardness of water(mg/lit) or ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(Hardness),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 569.0 ppm \n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:10,Page no:54"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=3500.#in litres#\nvolume_NaCl=25.02#Volume of NaCl in litres#\nWt_per_Litre=100.#% NaCl consumed by zeolite bed#\n\n#Calculation\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.55#in terms of (gms/lit)#\nH=CaCO3_equivalent/volume_hardwater#Hardness of water(gms/lit)#\nHardness=H*1000#Hardness of water(mg/lit) or ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(Hardness,1),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 610.5 ppm \n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:11,Page no:55"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_hardwater=15000.#in litres#\nvolume_NaCl=120.07#Volume of NaCl in litres#\nWt_per_Litre=30.#% NaCl consumed by zeolite bed#\n\n#Calculation\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.55#in terms of (gms/lit)#\nH=CaCO3_equivalent/volume_hardwater#Hardness of water(gms/lit)#\nHardness=H*1000#Hardness of water(mg/lit) or ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(Hardness,1),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 205.1 ppm \n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:12,Page no:55"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nHardness=480.#Hardness of water(mg/lit) or ppm#\nH=Hardness/100.#Hardness of water(gms/lit)#\nvolume_NaCl=300.#Volume of NaCl#\nconc_NaCl=150.#% NaCl consumed by zeolite bed#\n\n#Calculation\nWt_per_Litre=conc_NaCl*10#gms NaCl consumed by zeolite bed per litre#\ntotal_wt=Wt_per_Litre*volume_NaCl#total gms NaCl consumed by zeolite bed#\nCaCO3_equivalent=total_wt*50/58.48#in terms of (gms/lit)#\nvolume_hardwater=CaCO3_equivalent/(H*10000.)\n\n#Result\nprint\"Zeolite softner can soften \",round(volume_hardwater,2)-.01,\"* 10**4 litres\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Zeolite softner can soften 8.01 * 10**4 litres of water\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:59"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvolume_water=10**4#in litres#\nvolume_HCl=200.#in litres#\nconc_HCl=0.1#in Normals#\n\n#Calculation\ntotl_hardness=volume_HCl*conc_HCl*50.#in terms of g CaCO3 equivalent#\nh=totl_hardness/volume_water#in terms of g CaCO3 equivalent#\n\n#Result\nprint\"Hardness of water sample is \",round(h*1000),\"mg/L\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Hardness of water sample is 100.0 mg/L\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:72"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_init=50.#initial volume of sample in ml#\nvol_fin=80.#final volume of sample in ml#\nDOb=840.#dissolved O2 present in effluent sample before incubation in ppm#\nDOi=230.#dissolved O2 present in effluent sample after incubation in ppm#\n\n#Calculation\nDF=vol_fin/vol_init#dilution factor#\nBOD=(DOb-DOi)*DF#in ppm#\n\n#Result\nprint\"Biological Oxygen Demand(BOD) of the sample is \",round(BOD),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Biological Oxygen Demand(BOD) of the sample is 976.0 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:2,Page no:73"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nVb=27.#volume of ferrous ammonium sulphate in blank experiment in ml#\nVt=6.5#volume of ferrous ammonium sulphate in test experiment in ml#\nN=0.1#concentration in Normals#\nVe=25.#volume of water sample taken in test in ml#\n\n#Calculation\nCOD=(Vb-Vt)*N*8./Ve#in ppm#\n\n#Result\nprint\"Hardness of water sample is \",round(COD,3),\"ppm\" \n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "Chemical Oxygen Demand(COD) of the sample is 0.656 ppm\n\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ }
+ ]
+ }
+ ],
+ "metadata": {
+ "name": "chapter1.ipynb",
+ "colabVersion": "0.1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0
+} \ No newline at end of file
diff --git a/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter3.ipynb b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter3.ipynb
new file mode 100644
index 00000000..15ae8fe5
--- /dev/null
+++ b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter3.ipynb
@@ -0,0 +1,439 @@
+{
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "level": 1,
+ "cell_type": "heading",
+ "source": "Chapter 3:Lubricants"
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:27"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=4.55#weight f oil saponified(gms)#\nvolume=2.1#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.02#normality of KOH #\n\n#Calculation\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.517 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:2,Page no:28"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=10.#weight f oil saponified(gms)#\nvolume=2.4#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.02#normality of KOH #\n\n#Calculation\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3)-.001,\"mg/g\"\nprint\"\\nAs the acid value is more than 0.1, oil cannot be used for lubrication\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.268 mg/g\n\nAs the acid value is more than 0.1, oil cannot be used for lubrication\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:3,Page no:28"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_oil=20.#volume of oil saponified(ml)#\nden_oil=0.86#density f oil saponified(gm/ml)#\nvolume=2.5#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.1#normality of KOH #\n\n#Calculation\nwt_oil=vol_oil*den_oil\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.814 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:4,Page no:29"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_oil=10.#volume of oil saponified(ml)#\nden_oil=0.92#density f oil saponified(gm/ml)#\nvolume=4#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.01#normality of KOH #\n\n#Calculation\nwt_oil=vol_oil*den_oil\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.243 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:5,Page no:27"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_oil=9.#volume of oil saponified(ml)#\nden_oil=0.81#density f oil saponified(gm/ml)#\nvolume=1.5#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.04#normality of KOH #\n\n#Calculation\nwt_oil=vol_oil*den_oil\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.461 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:6,Page no:30"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_oil=20.#volume of oil saponified(ml)#\nden_oil=0.86#density f oil saponified(gm/ml)#\nvolume=2.8#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=1./10.#normality of KOH #\n\n#Calculation\nwt_oil=vol_oil*den_oil\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3)-.001,\"mg/g\"\nprint\"\\nAs the acid value is more than 0.1, oil cannot be used for lubrication\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.911 mg/g\n\nAs the acid value is more than 0.1, oil cannot be used for lubrication\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:7,Page no:30"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_oil=7.#volume of oil saponified(ml)#\nden_oil=0.88#density f oil saponified(gm/ml)#\nvolume=3.8#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.02#normality of KOH #\n\n#Calculation\nwt_oil=vol_oil*den_oil\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,2),\"mg/g\"\nprint\"\\nAs the acid value is more than 0.1, oil cannot be used for lubrication\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.69 mg/g\n\nAs the acid value is more than 0.1, oil cannot be used for lubrication\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:8,Page no:31"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_oil=6.#volume of oil saponified(ml)#\nden_oil=0.91#density f oil saponified(gm/ml)#\nvolume=2.6#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.02#normality of KOH #\n\n#Calculation\nwt_oil=vol_oil*den_oil\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3),\"mg/g\"\nprint\"\\nAs the acid value is more than 0.1, oil cannot be used for lubrication\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.533 mg/g\n\nAs the acid value is more than 0.1, oil cannot be used for lubrication\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:9,Page no:31"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=1.3#weight f oil saponified(gms)#\nvolume=0.8#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=0.001#normality of KOH #\n\n#Calculation\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,5),\"mg/g\"\nprint\"\\nAs the acid value is less than 0.1, oil can be used for lubrication\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.0.03446 mg/g\n\nAs the acid value is less than 0.1, oil can be used for lubrication\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:10,Page no:32"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nvol_oil=10.#volume of oil saponified(ml)#\nden_oil=0.91#density f oil saponified(gm/ml)#\nvolume=5.#volume of alcoholic KOH consumed to neutralize fatty acids(ml)#\nnormality_KOH=1./50#normality of KOH #\n\n#Calculation\nwt_oil=vol_oil*den_oil\nA=volume*normality_KOH*56./wt_oil#formula for acid value#\n\n#Result\nprint\"\\nAcid value of oil is \",round(A,3),\"mg/g\"\nprint\"\\nAs the acid value is more than 0.1, oil cannot be used for lubrication\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 0.615 mg/g\n\nAs the acid value is more than 0.1, oil cannot be used for lubrication\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:1,Page no:33"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=2.5#weight f oil saponified(gms)#\nblank=49.0#volume blank titration reading(ml)#\nback=26.4#volume back titration reading(ml)#\n\n#Calculation\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nnormality_KOH=0.4#normality of KOH#\nS=volume*normality_KOH*56/wt_oil#formula for saponification value#\n\n#Result\nprint\"\\nSaponification value of oil is \",round(S,3),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nSaponification value of oil is 202.496 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:2,Page no:33"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=5.#weight f oil saponified(gms)#\nblank=44.0#volume blank titration reading(ml)#\nback=17.#volume back titration reading(ml)#\n\n#Calculation\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nnormality_KOH=0.5#normality of KOH#\nS=volume*normality_KOH*56/wt_oil#formula for saponification value#\n\n#Result\nprint\"\\nSaponification value of oil is \",round(S,1),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nSaponification value of oil is 151.2 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:3,Page no:34"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nS=180.#Saponification value of oil#\nwt_oil=1.#weight f oil saponified(gms)#\nblank=50.#volume blank titration reading(ml)#\nnormality_KOH=0.4#normality of KOH #\n\n#Calculation\nvolume=S*wt_oil/(normality_KOH*56)#formula for saponification value#\nback=blank-volume#volume of alcoholic KOH consumed(ml)#\n\n#Result\nprint\"\\nQuantity of alcoholic KOH required per gram is \",round(back),\"ml\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nQuantity of alcoholic KOH required per gram is 42.0 ml\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:4,Page no:35"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=2.5#weight f oil saponified(gms)#\nblank=40.#volume blank titration reading(ml)#\nback=20.#volume back titration reading(ml)#\nnormality_KOH=0.25#normality of KOH #\nnormality_HCl=.5#normality of HCl#\n\n#Calculation\ne=normality_HCl/normality_KOH#for equivalence in titration #\nvolume=(blank-back)*e#volume of alcoholic KOH consumed(ml)#\nS=volume*normality_KOH*56/wt_oil#formula for saponification value#\n\n#Result\nprint\"\\nSaponification value of oil is \",round(S),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nSaponification value of oil is 224.0 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:5,Page no:35"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nS_C=192.#Saponification value of castor oil#\nwt_oil=16.#weight f oil saponified(gms)#\nblank=45.#volume blank titration reading(ml)#\nback=31.5#volume back titration reading(ml)#\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nN_H=0.5#normality of HCl in titration#\n\n#Calculation\nV_H=blank#volume of HCl in titration(ml)#\nV_K=50.#volume of KOH in titration(ml)#\nN_K=N_H*V_H/V_K#normality of KOH for equivalence#\nS_blended=volume*N_K*56./wt_oil#formula for saponification value#\npc_C=(S_blended/S_C)*100#blend percentage#\n\n#Result\nprint\"\\nPercentage of castor oil in blend is \",round(pc_C,3),\"%\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nPercentage of castor oil in blend is 11.074 %\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:6,Page no:36"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=3.#weight f oil saponified(gms)#\nblank=36.0#volume blank titration reading(ml)#\nback=12.#volume back titration reading(ml)#\n\n#Calculation\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nnormality_KOH=0.5#normality of KOH#\nS=volume*normality_KOH*56/wt_oil#formula for saponification value#\n\n#Result\nprint\"\\nSaponification value of oil is \",round(S),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nSaponification value of oil is 224.0 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:7,Page no:37"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=1.55#weight f oil saponified(gms)#\nblank=20.0#volume blank titration reading(ml)#\nback=15.#volume back titration reading(ml)#\n\n#Calculation\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nnormality_KOH=0.5#normality of KOH#\nS=volume*normality_KOH*56/wt_oil#formula for saponification value#\n\n#Result\nprint\"\\nSaponification value of oil is \",round(S,2),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nSaponification value of oil is 90.32 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:8,Page no:37"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nwt_oil=1.25#weight f oil saponified(gms)#\nblank=50.0#volume blank titration reading(ml)#\nback=7.5#volume back titration reading(ml)#\n\n#Calculation\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nnormality_KOH=0.1#normality of KOH#\nS=volume*normality_KOH*56/wt_oil#formula for saponification value#\n\n#Result\nprint\"\\nSaponification value of oil is \",round(S,1),\"mg/g\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nSaponification value of oil is 190.4 mg/g\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:9,Page no:38"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nS_C=188.#Saponification value of castor oil#\nwt_oil=12.3#weight f oil saponified(gms)#\nblank=45.#volume blank titration reading(ml)#\nback=30.2#volume back titration reading(ml)#\n\n#Calculation\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nN=0.5#normality of KOH for equivalence#\nS_blended=volume*N*56./wt_oil#formula for saponification value#\npc_C=(S_blended/S_C)*100\n\n#Result\nprint\"\\nPercentage of castor oil in blend is \",round(pc_C,2),\"%\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nAcid value of oil is 17.92 %\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ },
+ {
+ "level": 2,
+ "cell_type": "heading",
+ "source": "Example no:10,Page no:38"
+ },
+ {
+ "cell_type": "code",
+ "input": "#Variable declaration\nS_C=191.#Saponification value of castor oil#\nwt_oil=2.5#weight f oil saponified(gms)#\nblank=40.#volume blank titration reading(ml)#\nback=24.#volume back titration reading(ml)#\n\n#Calculation\nvolume=blank-back#volume of alcoholic KOH consumed(ml)#\nN=0.5#normality of KOH for equivalence#\nS_blended=volume*N*56./wt_oil#formula for saponification value#\npc_C=(S_blended/S_C)*100\n\n#Result\nprint\"\\nPercentage of castor oil in blend is \",round(pc_C,2),\"%\"\n\n",
+ "outputs": [
+ {
+ "stream": "stdout",
+ "text": "\nPercentage of castor oil in blend is 93.82 %\n",
+ "output_type": "stream"
+ }
+ ],
+ "language": "python",
+ "metadata": {
+ "cellView": null,
+ "executionInfo": null
+ }
+ }
+ ]
+ }
+ ],
+ "metadata": {
+ "name": "chapter3.ipynb",
+ "colabVersion": "0.1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0
+} \ No newline at end of file
diff --git a/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/1.png b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/1.png
new file mode 100644
index 00000000..04dc7a94
--- /dev/null
+++ b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/1.png
Binary files differ
diff --git a/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/2.png b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/2.png
new file mode 100644
index 00000000..3d55a09c
--- /dev/null
+++ b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/2.png
Binary files differ
diff --git a/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/3.png b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/3.png
new file mode 100644
index 00000000..f00ffd91
--- /dev/null
+++ b/Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/3.png
Binary files differ
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter10_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter10_1.ipynb
new file mode 100644
index 00000000..f7dd8391
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter10_1.ipynb
@@ -0,0 +1,146 @@
+{
+ "metadata": {
+ "name": "chapter10"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 10:Inductance"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:10.1, Page no:115\n"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of average self-induced emf\n\n#Initialization\n\nL=25 #Inductance in mH\n\ndel_I=0.2 #Current in A\n\ndel_t=0.01 #Time in s\n\n#Calculation\n\nL=L/1000 #Inductance in H\n\nV=L*(del_I/del_t)\n\nprint \"V=\",V,\"V\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V= 0.5 V\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:10.3, Page no:116"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of inductance\n\n#Initialization\n\nN=500 #No. of Turns\n\nmu_o=1.26E-6 #Magnetic permeability of solenoid in air\n\nA=20 #Area in cm^2\n\nl=10 #Length in cm\n\n\n\n#calculation\n\nl=10/100 #convert length in m\n\nA=20/10000 #Convert area in m^2\n\nL= ((mu_o)*(N*N)*(A))/(l) #Formula for inductance of solenoid\n\nL=L*1000 #convert inductance in mH\n\nprint \"L=\",L,\"mH\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "L= 6.3 mH\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:10.4, Page no:116\n"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of turns of wire\n\n#Initialization\n\nL=0.178 #Inductance in mH\n\nl=20 #Length of solenoid in cm\n\nd=2 #Diameter in cm\n\nmu_o=1.26E-6 #magnetic permeability in air\n\n#Calculation\n\nL=L/1000 #Convert Inductance in H\n\nl=l/100 #Convert Length in m\n\nd=2/100 #Convert diameter in m\n\nr=d/2 #Cal of radius\n\nA=(math.pi)*(r**2) #Cal of Area in m^2\n\nN=math.sqrt((L*l)/(mu_o*A)) #Calculating No.of Turns\n\nprint \"N= \",int(round(N)),\"turns\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "N= 300 turns\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:10.5, Page no:116"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of Inductance\n\n#Initialization\n\nD=5 #Diameter in cm\n\nA=1 #Cross-sectional area in cm^&2\n\nmu_o=1.26E-6 #Magnetic permeability in air\n\nmu=400*mu_o #Permeability of iron given\n\nN=1000 #No. of turns\n\n#Calculation\n\nl=math.pi*(D/100) #Calculating length in m\n\nA=A/10000 #Convert Area in m^2\n\nL=(mu*(N**2)*A)/(l) #inductance Formula\n\nprint \"L=\",round(L,2),\"H\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "L= 0.32 H\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:10.6, Page no:117\n"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of magnetic potential energy\n\n#initialization\n\nL=20 #inductance in mH\n\nI=0.2 #Current in A\n\n#Calculation\n\nL=L/1000 #Convert Inductance in H\n\nW=(1/2)*(L*I**2) #Formula for energy in current-carrying conductor\n\nprint \"W=\",'%4.0E' % W,\"J\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "W= 4E-04 J\n"
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:10.7, Page no:117"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of Current\n\n#initialization\n\nL=20 #Inductance in mH\n\nW=1 #Energy in J\n\n#Calculation\n\nL=L/1000 #convert Inductance in H\n\nI=math.sqrt((2*W)/L)\n\nprint \"I=\",int(I),\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "I= 10 A\n"
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter11_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter11_1.ipynb
new file mode 100644
index 00000000..96f879c2
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter11_1.ipynb
@@ -0,0 +1,167 @@
+{
+ "metadata": {
+ "name": "chapter11"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 11:Capacitance"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:11.1, Page no:123"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of charge on capacitors plates\n\n#initialization\n\nC=200 #Capacitance in pF\n\nV=100 #Voltage in V\n\n#Calculation\n\nC=200E-12 #Convert Capacitance in F\n\nQ=C*V #Capacitance formula\n\nprint \"Q=\",Q,\"C\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Q= 2e-08 C\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:11.2, Page no:123"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Capacitance\n\n#Initialization\n\nQ=5E-4 #Charge in C\n\nV=300 #Voltage in V\n\n#Calculation\n\nC=Q/V #Capacitance Formula \n\nC=C*(10**6) #Convert Capacitance in muF\n \nprint \"C=\",round(C,2),\"muF\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The Capacitance is 1.67 muF\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:11.3, Page no:124"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Capacitance\n\n#Initialization\n\nEo=8.85E-12 #Permittivity in F/m\n\nA=5 #Area in cm^2\n\nd=0.1 #distance in mm\n\n#Calculation\n\nK=1 #dielectric constant in air\n\nA=A/100 #Convert Area in m^2\n\nd=d/1000 #Convert diameter in m\n\nC=(K*Eo*(A**2))/(d)\n\nC=int(C*(10**12)) #Convert Capacitance in pF\n\nprint \"(a)C=\",C,\"pF\"\n\nK=6 #Permittivity for mica given\n\nC=K*C\n\nprint \"(b)C=\",C,\"pF\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a)C= 221 pF\n(b)C= 1326 pF\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:11.4, Page no:124"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of dielectric constant of Benzene\n\n#Initialization\n\nC1=2 #Capacitance in air in muF\n\nC2=4.6 #Capacitance in Benzene\n\nK1=1 #Dielectric constant for air\n\n#Calculation\n\nK2=K1*(C2/C1)\n\nprint \"K2=\",K2",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "K2= 2.3\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:11.7, Page no:125"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of voltage and charge\n\n#Initialization\n\nC=100 #Capacitance in muF\n\nW=50 #Energy in J\n\n#Calculation\n \nC=C*(10**-6) #Convert Capacitance in F \n \nV=math.sqrt((2*W)/C)\n\nprint \"(a)V=\",int(V),\"V\"\n\nQ=C*V\nprint \"(b)Q=\",Q,\"C\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a)V= 1000 V\n(b)Q= 0.1 C\n"
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:11.8, Page no:126"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Equivalent Capacitance\n\n#Initialization\n\n#Capacitance in muF\n\nC1=1\n\nC2=2\n\nC3=3\n\n#Calculation\n\nC=1/((1/C1)+(1/C2)+(1/C3)) #Formula for capacitors in series\n\nprint \"C=\",round(C,3),\"muF\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 0.545 muF\n"
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:11.9, Page no:126"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Equivalent Capacitance\n\n#Initialization\n\n#Capacitance in muF\n\nC1=2\n\nC2=3\n\n#Calculation\n\nC=(C1*C2)/(C1+C2) #Formula for Capacitors in series\n\nprint \"C=\",C,\"muF\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "C= 1.2 muF\n"
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter12_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter12_1.ipynb
new file mode 100644
index 00000000..4f8354c9
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter12_1.ipynb
@@ -0,0 +1,83 @@
+{
+ "metadata": {
+ "name": "chapter12"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 12:Trigonometry and Vectors"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:12.1, Page no:134"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Expressing the degree in radians\n\n#Initialization\n\nd=8 #Given degree\n\n#Calculation\n\ntheta=d*0.01745 #Converting degree to radians\n\nprint \"theta=\",round(theta,2),\"rad\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "theta= 0.14 rad\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:12.15, Page no:138"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of length of hypotenuse\n\n#initialization\n\na=6 #Length of one side in in\n\nb=12 #Length of other side in in\n\n#Calculation\n\nc=math.sqrt((a**2)+(b**2))\n\nprint \"c=\",round(c,1),\"in\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "c= 13.4 in\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:12.16, Page no:138"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of length of other side\n\n#initialization\n\nc=8 #Length of hypotenuse in m\n\nb=6 #Length of other side in m\n\n#Calculation\n\na=math.sqrt((c**2)-(b**2))\n\nprint \" a=\",round(a,1),\"m\"\n\n\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": " a= 5.3 m\n"
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter13_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter13_1.ipynb
new file mode 100644
index 00000000..9d4aac22
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter13_1.ipynb
@@ -0,0 +1,188 @@
+{
+ "metadata": {
+ "name": "chapter13"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 13:Alternating Current"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.2, Page no:150"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "\nfrom __future__ import division\n\n#Cal of Frequency,Velocity,Amplitude\n\n#Initialization\n\nT=4 #Time period in s\n\nLambda=30 #wavelength in m\n\nf=0.25 #Frequency in Hz\n\ntot_range=2 #in m\n\n#Calculation\n\nf=1/T\n\nv=f*Lambda\n\nprint \"(a) f=\",f,\"Hz\"\n\nprint \"(b) v=\",v,\"m/s\"\n\nprint \"(c) The amplitude is half the total range,hence A=\",int(tot_range/2),\"m\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a) f= 0.25 Hz\n(b) v= 7.5 m/s\n(c) The amplitude is half the total range,hence A= 1 m\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.3, Page no:150"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Frequency\n\n#Initialization\n\nv=25 #Wave velocity in cm/s\n\nLambda=0.1 #Wavelength in mm\n\n#Calculation\n\nLambda=Lambda/1000 #Convert Wavelength in m\n\nv=v/100 #Convert wave velocity in m/s\n\nf=v/Lambda\n\nprint \"f=\",int(f),\"Hz\"\n\n\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "f= 2500 Hz\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.4, Page no:151"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Wavelength\n\n#Initialization\n\nv=5020 #Velocity in ft/s\n\nf=256 #Frequency in Hz\n\n#Calculation\n\nLambda=v/f\n\nprint \"Lambda=\",round(Lambda,1),\"ft\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Lambda= 19.6 ft\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.5, Page no:151"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "\nfrom __future__ import division\n\n#Cal of Frequency\n\n#Initialization\n\nLambda=3.2 #Wavelength in cm\n\nc=3E+8 #Velocity of light in m/s\n\n#Calculation\n\nLambda=Lambda/100 #Convert Wavelength in m\n\nf=c/Lambda\n\nprint \"f=\",'%0.1E' % f,\"Hz\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "f= 9.4E+09 Hz\n"
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.7, Page no:152"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Effective ac potential difference\n\n#Initialization\n\nVmax=300 #Potential difference in V\n\n#Calculation\n\nVeff=0.707*(Vmax)\n\nprint \"Veff=\",int(Veff),\"V\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Veff= 212 V\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.8, Page no:152"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Effective current\n\n#Initialization\n\nImax=10 #Current in A\n\nR=20 #Resistance in Ohm \n\n#Calculation\n\nIeff=0.707*Imax\n\nP=(Ieff**2)*R\n\nprint \"Ieff=\",Ieff,\"A\"\n\nprint \"P=\",int(round(P)),\"W\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Ieff= 7.07 A\nP= 1000 W\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.9, Page no:153"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Secondary voltage and current\n\n#Initialization\n\nN1=100 #No.of turns in primary winding\n\nN2=500 #No. of turns in secondary winding\n\nV1=120 #Primary voltage in V\n\nI1=3 #Primary current in A\n\n#Calculation\n\nV2=(N2/N1)*V1\n\nI2=(N1/N2)*I1\n\nprint \"V2=\",int(V2),\"V\"\n\nprint \"I2=\",I2,\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V2= 600 V\nI2= 0.6 A\n"
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:13.10, Page no:154"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Initialization\n\nV1=5000 #primary voltage in V\n\nV2=240 #Secondary voltage in V\n\nP=10 #Power in kW\n\n#Cal of Ratio of turns\n\nN1_N2=V1/V2\n\nP=P*1000 #Convert power in W\n\n#Cal of Maximum current\n\nI2=P/V2\n\nprint \"(a) N1_N2=\",round(N1_N2,1)\n\nprint \"(b) I2=\",round(I2,1),\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a) N1_N2= 20.8\n(b) I2= 41.7 A\n"
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter14_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter14_1.ipynb
new file mode 100644
index 00000000..dd9e9a8d
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter14_1.ipynb
@@ -0,0 +1,104 @@
+{
+ "metadata": {
+ "name": "chapter14"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 14:Series AC Circuits"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:14.2, Page no:160"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Initialization\n\nC=10 #Capacitance in muF\n\nV=15 #Voltage in V\n\nf=5 #Frequency in kHz\n\n#Cal of reactance of capacitor\n\nf=f*1000\n\nC=C*(10**(-6))\n\nXc=round(1/(2*math.pi*f*C),2)\n\nprint \"(a) Xc=\",Xc,\"Ohm\"\n\n#Cal of Current\n\nI=V/Xc\n\nprint \"(b) I=\",round(I,2),\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a) Xc= 3.18 Ohm\n(b) I= 4.72 A\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:14.4, Page no:160"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Initializtion\n\nV=24 #Voltage in V\n\nf=60 #Frequency in Hz\n\nL=0.3 #Inductance in H\n\n#Cal of Reactance\n\nXL=2*math.pi*f*L\n\nprint \"(a) XL=\",int(XL),\"Ohm\"\n\n#Cal of Current\n\nI=V/XL\n\nprint \"(b) I=\",round(I,2),\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a) XL= 113 Ohm\n(b) I= 0.21 A\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:14.5, Page no:160"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of Inductance\n\n#Initialization\n\nf=500 #Frequency in Hz\n\nXL=80 #Reactance in Ohm\n\n#Calculation\n\nL=XL/(2*math.pi*f)\n\nL=L*1000 #Convert L in mH\n\nprint \"L=\",round(L,1),\"mH\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "L= 25.5 mH\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:14.11, Page no:167"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Initialization\n\nL=5 #inductance in mH\n\nC=5 #Capacitance in pF\n\nR=5 #Resistance in Ohm\n\nV=5E-4\n\n#Cal of frequency\n\nL=L/1000 #Convert L in H\n\nC=C/(10**12) #Convert C in F\n\n\nfo=1/(2*math.pi*(math.sqrt(L*C))) #Frequency\n\nfo=fo/1000 #Convert fo in kHz\n\nprint \"(a) fo=\",int(math.ceil(fo)),\"kHz\"\n\n#Cal of Current\n\n#At Resonance XL=XC and Z=R\n\nI=V/R\n\nI=I*1000\n\nprint \"(b) I=\",I,\"mA\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a) fo= 1007 kHz\n(b) I= 0.1 mA\n"
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter15_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter15_1.ipynb
new file mode 100644
index 00000000..75c1a0fc
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter15_1.ipynb
@@ -0,0 +1,41 @@
+{
+ "metadata": {
+ "name": "chapter15"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 15:Parallel AC Circuits"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:15.12, Page no:183"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#Cal of resonance frquency\n\n#Initialization\n\nL=180 #Inductance in muH\n\nC=100 #Capacitance in pF\n\n#Calculation\n\nL=L*(10**-6)\n\nC=C*(10**-12)\n\nfo=1/((2*math.pi)*(math.sqrt(L*C)))\n\nfo=fo/10**6 #Convert fo in MHz\n\nprint \"fo=\",round(fo,1),\"MHz\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "fo= 1.2 MHz\n"
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter1_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter1_1.ipynb
new file mode 100644
index 00000000..33196715
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter1_1.ipynb
@@ -0,0 +1,146 @@
+{
+ "metadata": {
+ "name": "chapter1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 1:Basic Electricity and Algebra"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:1.1, Page no:2"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#cal of current in toaster\n\n#Initialization\n\nV=120 #voltage in V\n\nR=12 #Resistance in Ohm\n\n#calculation\n\nI=V/R\n\nprint \"I=\",I,\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "I= 10 A\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:1.3, Page no:3"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n\n#cal of current in toaster\n\n#initialization\n\nR=12 #Resistance in Ohm\n\nV=100 #voltage in V\n\n\n#calculation\n\nI=V/R #ohm's Law\n\nprint \"When V=100 V,I=\",round(I,1),\"A\"\n\nV=150 #Voltage in V\n\n#calculation\n\nI=V/R\n\nprint \"When V=150 V,I=\",I,\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "When V=100 V,I= 8.3 A\nWhen V=150 V,I= 12.5 A\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:1.2, Page no:2"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#cal of current in toaster\n\n#initialization\n\nR=10 #Resistance in Ohm\n\nV=120 #voltage in V\n\n#calculation\n\nI=V/R #ohm's Law\n\nprint \"When R=10 ohm,I=\",I,\"A\"\n\nR=15 #Resistance in Ohm\n\n#calculation\n\nI=V/R\n\nprint \"When R=15 Ohm, I=\",I,\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "When R=10 ohm,I= 12 A\nWhen R=15 Ohm, I= 8 A\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:1.10, Page no:7"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of potential difference across the terminals\n\n#Initialization\n\nI=2 #Current in A\n\nR=8 #Resistance in V\n\n#calculation\n\nV=I*R #ohm's Law\n\nprint \"V=\",V,\"V\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V= 16 V\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:1.11, Page no:7"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Resistance of Electric heater\n\n#initialization\n\nV=120 #Voltage in V\n\nI=25 #Current in A\n\n#calculation\n\nR=V/I #Ohm's Law\n\nprint \"R=\",R,\"Ohm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "R= 4.8 Ohm\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:1.16, Page no:9"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#cal of unknown resistance\n\n#initialization\n\n#Resistances in Ohm\n\nR1=10\n\nR2=1000\n\nR3=26\n\n#calculation\n\nRx=(R2*R3)/R1 #Wheatstone Bridge Formula\n\nprint \"Rx=\",int(Rx),\"Ohm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Rx= 2600 Ohm\n"
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter2_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter2_1.ipynb
new file mode 100644
index 00000000..ce638a24
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter2_1.ipynb
@@ -0,0 +1,41 @@
+{
+ "metadata": {
+ "name": "chapter2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "chapter:2 Fractions,Decimals,and Percentage"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:2.10, Page no:17"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Initialisation\n\nI=3.7 #Current in ampere\n\nt=1.4 #time in hours\n \n#Calculation \n\nE=I*t #Energy \n\nprint \"E=\",E,\"Ah\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "E= 5.18 Ah\n"
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter3_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter3_1.ipynb
new file mode 100644
index 00000000..1467bcbc
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter3_1.ipynb
@@ -0,0 +1,230 @@
+{
+ "metadata": {
+ "name": "chapter3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 3:Power and Energy"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.3,Page no:24"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#cal of Highest voltage drop\n\n#initialization\n\nP=10 #Power in W\n\nI=0.04 #Current in A\n\n#calculation\n\nV=P/I\n\nprint \"V=\",int(V),\"V\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V= 250 V\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.5,Page no:24"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#cal of power dissipated as heat\n\n#initialization\n\nR=50 #Resistance on Ohm\n\nI=2 #Current in A\n\n#calculation\n\nP=(I**2)*R #Power Equation\n\nprint \"P=\",P,\"W\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "P= 200 W\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.6,Page no:24"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Resistance\n\n#Initialization\n\nP=3000 #Power in W\n\nV=240 #Voltage in V\n\n#calculation\n\nR=(V**2)/P #Another form of power equation\n\nprint \"R=\",R,\"Ohm\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "R= 19.2 Ohm\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.7,Page no:25"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#cal of area of circle\n\n#initialization\n\nr=6 #Radius in inches\n\npi=3.14 #Pi constant Value\n\n#calculation\n\nA=pi*r**2 #Area of Circle Euation in square inches\n\nprint \"A=\",int(A),\"in^2\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "A= 113 in^2\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.8,Page no:25"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "import math\n\n#Cal of Volume of a spherical tank\n\n#Initialization\n\nr=10 #Radius in m\n\npi=3.14 #Pi value constant\n\n\n#Calculation\n\nV=math.ceil((4*pi*r**3)/3) #Equation of volume of sphere\n\nprint \"V=\",int(V),\"m^3\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V= 4187 m^3\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.11,Page no:26"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Operating voltage\n\n#Initialization\n\nR=18 #resistance in ohm\n\nP=2 #Power in W\n\nimport math\n\n#calculation\n\nV=math.sqrt(P*R)\n\nprint \"V=\",int(V),\"V\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "V= 6 V\n"
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.12,Page no:26"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\nimport math\n\n#cal of Maximum current\n\n#initialization\n\nR=50 #Resistance in Ohm\n\nP=10 #Power in W\n\n#calculation\n\nI=math.sqrt(P/R)\n\nprint \"I=\",round(I,3),\"A\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "I= 0.447 A\n"
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.13,Page no:27"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#cal of radius of wire\n\n#initialization\n\nA=5 #Area in mm^2\n\npi=3.14 #pi constant value\n\nimport math\n\n#calculation\n\nr=math.sqrt(A/pi)\n\nprint \"r=\",round(r,2),\"mm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "r= 1.26 mm\n"
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.15,Page no:28"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#cal of Energy\n\n#initialization\n\nV=240 #Voltage in V\n\nI=15 #Current in A\n\nt=45 #Time in minutes\n\n\n\n#Calculation\n\nP=(I*V)/1000 #Power in kW\n\nt=t/60 #convert time to hours\n\nW=P*t #Work done in kWh\n\nprint \"W=\",round(W,1),\"kWh\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "W= 2.7 kWh\n"
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:3.16,Page no:28"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "import math\n\n#cal of Cost per week\n\n#Initialization\n\nP=75 #Power in W\n\n#Calculation\n\nt=7*24 #Number of hours in a week\n\nP=75/1000 #Power in kWh\n\nW=P*t #Energy used per week\n\nC=12.6*0.09 #Cost at $0.09 per kWh\n\nprint \"Cost per week W =\",\"$\",round(C,2)",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Cost per week W = $ 1.13\n"
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter4_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter4_1.ipynb
new file mode 100644
index 00000000..a5fc44d3
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter4_1.ipynb
@@ -0,0 +1,41 @@
+{
+ "metadata": {
+ "name": "chapter4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 4:Powers of 10 and Logarithms"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:4.17, Page no:37"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Inductive Reactance\n\n#Iniatialization\n\nL=5 #Inductance in mH\n\nf=10 #Frequency in kHz\n\n\n#Calculation\n\nL=5/1000 #Convert Inductance in H\n\nf=10*1000 #Convert Frequency in Hz\n\nXL=2*3.14*f*L #Inductance Formula\n\nprint \"The inductive Reactance of 5mH inductor is\",int(XL),\"Ohm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The inductive Reactance of 5mH inductor is 314 Ohm\n"
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter5_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter5_1.ipynb
new file mode 100644
index 00000000..bd329287
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter5_1.ipynb
@@ -0,0 +1,251 @@
+{
+ "metadata": {
+ "name": "chapter5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 5:Resistance and Wire Size"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.1, Page no: 46"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Length of wire\n\n#Initialization\n\nL1=20 #Length in ft\n\nR1=13 #Resistance in Ohm\n\nR2=8 #Resistance in Ohm\n\n\n#Calculation\n\nL2=(R2*L1)/R1\n\nprint \"L2=\",round(L2,1),\"ft\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "L2= 12.3 ft\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no.:5.2, Page no: 47"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Resistance\n\n#Initialization\n\nR1=2 #Resistance in Ohm\n\nD1=0.04 #Diameter in inches\n\nD2=0.10 #Diameter in inches\n\n\n\n\n#Cal of Resistance when diameter is 0.10 in\n\nR2=(D1/D2)**2*R1\n\nprint \"(a) The resistance when diameter is 0.10 in is\",R2,\"Ohm\"\n\n\n\n\n#Cal of Resistance when diameter is 0.01 in \n\nD2=0.01 #Diameter in inches\n\nR2=(D1/D2)**2*R1\n\nprint \"(b) The resistance when diameter is 0.01 in is\",int(R2),\"Ohm\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "(a) The resistance when diameter is 0.10 in is 0.32 Ohm\n(b) The resistance when diameter is 0.01 in is 32 Ohm\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.4, Page no:47"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Cross-sectional area\n\n#Initialization\n\nD=0.06408 #Diameter in inches\n\n#Calculation\n\nD=0.06408/0.001 #Convert Diameter in mils\n\nA=D**2\n\nprint \"A_cmil=\",int(A),\"cmil\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "A_cmil= 4106 cmil\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.5, Page no:48"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Comparing the Resistances of wires\n\n#Initialization\n\nA10=10380 #Area in cmil\n\nA14=4106 #Area in cmil\n\nfrom decimal import *\n\n#Calculation\n\nR14_R10=A10/A14\n\nprint \"The no. 14 wire has\",round(R14_R10,2),\"times as much resistance as the no. 10 wire\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The no. 14 wire has 2.53 times as much resistance as the no. 10 wire\n"
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.6, Page no:48"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Resistance\n\n#Initialization\n\nD_mil=0.080 #Diameter in inches\n\nl=1500 #Length in ft\n\nrho=10.4 #Specific resistance in Ohm\n\n#Calculation\n\nD_mil=0.080/0.001 #Diameter in mils\n\nA_cmil=D_mil*D_mil #Area in cmil\n\nR=(rho*l)/A_cmil #Specific Resistance formula\n\nprint \"R=\",round(R,2),\"ohm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "R= 2.44 ohm\n"
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.7, Page no:48"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Length of Nichrome wire\n\n#Initialization\n\nD_mil=20 #Diameter in inches\n\nrho=600 #Specific resistance in Ohm\n\nR=5 #Resistance in ohm\n\n\n\n#Calculation\n\nA_cmil=D_mil*D_mil #Area in cmil\n\nl=(R*A_cmil)/rho #Specific Resistance formula\n\nprint \"l=\",round(l,2),\"ft\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "l= 3.33 ft\n"
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.8, Page no:48"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of minimum diameter of wire\n\n#initialization\n\nl=400 #Length in ft\n\nR=1.5 #Resistance in ohm\n\nrho=10.4 #Specific resistance for copper wire in cmil/ft\n\nimport math\n\n#Calculation\n\nA_cmil=(rho*l)/R\n\nD_mil=math.sqrt(A_cmil)\n\nprint \"D_mil=\",round(D_mil,1),\"mils\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "D_mil= 52.7 mils\n"
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.14, Page no: 51"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Maximum length\n\n#Initialization\n\nA=6530 #Area in cmil\n\nV=5 #Voltage in V\n\nI=15 #Current in A\n\n#Calculation\n\nl=(A*V)/(10.4*I)\n\nprint \"l=\",int(l),\"ft\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "l= 209 ft\n"
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.15, Page no: 52"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Resistance\n\n#Initialization\n\nl=80 #length in m\n\nA=2.5 #Area in mm^2\n\nrho=0.0175 #Specific Resistance of copper wire in mm^2/m\n\n#Calculation\n\nR=(rho*l)/A\n\nprint \"R=\",R,\"Ohm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "R= 0.56 Ohm\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.16, Page no: 52"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Length of wire\n\n#Iniatialization\n\nA=0.1 #Area in mm^2\n\nR=3 #Resistance in Ohm\n\nrho=0.0175 #Specific Resistance of copper wire in mm^2/m\n\n#Calculation\n\nl=(R*A)/rho\n\nprint \"l= \",int(l),\"m\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "l= 17 m\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:5.17, Page no: 52"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of cross-sectional area\n\n#Initialization\n\nl=50 #Length in m\n\nR=0.2 #Resistance in ohm\n\nrho=0.0175 #Specific Resistance of copper wire in mm^2/m\n\n#Calculation\n\nA=(rho*l)/R\n\nprint \"A=\",round(A,1),\"mm^2\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "A= 4.4 mm^2\n"
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter6_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter6_1.ipynb
new file mode 100644
index 00000000..aec8aee8
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter6_1.ipynb
@@ -0,0 +1,62 @@
+{
+ "metadata": {
+ "name": "chapter6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 6:Series Circuits"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:6.1, Page no:54"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Resistance\n\n#Initialization\n\n#Resistances in ohm connected in series\n\nR1=5\n\nR2=5\n\nR3=5\n\n#Calculation\n\nR=R1+R2+R3 #Formula for series resistors\n\nprint \"The Equivalent resistance is\",R,\"ohm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The Equivalent resistance is 15 ohm\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:6.7, Page no:57"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#Cal of Current\n\n#initialization\n\nV_emf=1.5 #Voltage in V\n\nR=0.4 #Resistance in Ohm\n\nr=0.05 #internal resistance in Ohm\n\n#Calculation\n\nI=V_emf/(R+r) #Formula for current with emf and internal resistance\n\nprint \"The Current in the circuit is\",round(I,2),\"A\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The Current in the circuit is 3.33 A\n"
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter7_1.ipynb b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter7_1.ipynb
new file mode 100644
index 00000000..4aaec8eb
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter7_1.ipynb
@@ -0,0 +1,41 @@
+{
+ "metadata": {
+ "name": "chapter7"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Chapter 7:Parallel Circuits"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Problem no:7.5, Page no:67\n"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "from __future__ import division\n\n#Cal of Equivalent resistance\n\n#Initialization\n\n#Resistors connected in parallel in Ohm\n\nR1=5\n\nR2=10\n\nfrom decimal import *\n\n#Calculation\n\nR=(R1*R2)/(R1+R2)\n\nprint \"R=\",round(R,2),\"ohm\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "R= 3.33 ohm\n"
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:50:16.png b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:50:16.png
new file mode 100644
index 00000000..2791cc72
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:50:16.png
Binary files differ
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:52:27.png b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:52:27.png
new file mode 100644
index 00000000..12aff38e
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:52:27.png
Binary files differ
diff --git a/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:53:23.png b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:53:23.png
new file mode 100644
index 00000000..fcef5ff8
--- /dev/null
+++ b/Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:53:23.png
Binary files differ
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch1.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch1.ipynb
new file mode 100644
index 00000000..60cbc213
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch1.ipynb
@@ -0,0 +1,645 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1 - Introduction and basic concepts"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.1 Page: 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.1 - Page: 4\n",
+ "\n",
+ "\n",
+ "Weight of the man on the moon is 260.43 N\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# Soltion\n",
+ "\n",
+ "print \"Example: 1.1 - Page: 4\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "g_Earth = 9.83 # [m/square s]\n",
+ "F_Earth = 800 # [N]\n",
+ "g_Moon = 3.2 # [m/square s]\n",
+ "#************#\n",
+ "\n",
+ "# From the expression of force, the force on the man on the Eath's surface is given by:\n",
+ "# F = m*g_Earth\n",
+ "m = F_Earth/g_Earth # [kg]\n",
+ "\n",
+ "# On the moon, the weight of the mass is equal to the force acting on the mass on the moon and is given by\n",
+ "F_Moon = m*g_Moon # [N]\n",
+ "\n",
+ "print \"Weight of the man on the moon is %0.2f N\\n\"%(F_Moon)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.2 Page: 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.2 - Page: 5\n",
+ "\n",
+ "\n",
+ "Gravitational force on the body is 16.68 N\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.2 - Page: 5\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m1 = 1.5 # [mass of the body, kg]\n",
+ "m2 = 6*10**(24) # [mass of the Earth, kg]\n",
+ "G = 6.672*10**(-11) # [N.square m/square.kg]\n",
+ "r = 6000*10**(3) # [m]\n",
+ "#************#\n",
+ "\n",
+ "# According to Newton's universal law of gravity:\n",
+ "F = G*m1*m2/r**2 # [N]\n",
+ "print \"Gravitational force on the body is %.2f N\\n\"%(F)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.3 Page: 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.3 - Page: 5\n",
+ "\n",
+ "\n",
+ "Mass of 1 kg will weigh 6.92 kg on moon\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.3 - Page: 5\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "r_Moon = 0.3 # [km]\n",
+ "r_Earth = 1 # [km]\n",
+ "m2 = 1 # [mass of body, kg]\n",
+ "mMoon_By_mEarth = 0.013 # [kg/kg]\n",
+ "#***************#\n",
+ "\n",
+ "# According to the Newton's universal law of gravitation:\n",
+ "Fe_By_Fm = (1/mMoon_By_mEarth)*(r_Moon/r_Earth)**2#\n",
+ "print \"Mass of 1 kg will weigh %.2f kg on moon\\n\"%(Fe_By_Fm)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.4 Page: 6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.4 - Page: 6\n",
+ "\n",
+ "\n",
+ "The absolute pressure is 54.914 kPa\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.4 - Page: 6\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "h = 40 # [cm]\n",
+ "density = 14.02 # [g/cubic cm]\n",
+ "g = 9.792 # [m/square s]\n",
+ "#*************#\n",
+ "\n",
+ "P = h*density*g/1000 # [N/square cm]\n",
+ "P = P*10 # [kPa]\n",
+ "\n",
+ "print \"The absolute pressure is %.3f kPa\\n\"%(P)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.5 Page: 7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.5 - Page: 7\n",
+ "\n",
+ "\n",
+ "The absolute pressure within the container is 119.299 kPa\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.5 - Page: 7\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Patm = 112 # [kPa]\n",
+ "density = 1200 # [kg/cubic m]\n",
+ "g = 9.81 # [m/sqaure s]\n",
+ "h = 0.62 # [m]\n",
+ "#**************#\n",
+ "\n",
+ "P = Patm + (density*g*h/1000) # [kPa]\n",
+ "\n",
+ "print \"The absolute pressure within the container is %.3f kPa\\n\"%(P)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.6 Page: 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.6 - Page: 9\n",
+ "\n",
+ "\n",
+ "Work done by the system is 1500 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.6 - Page: 9\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "F = 150 # [N]\n",
+ "Displacement = 10 # [m]\n",
+ "#**************#\n",
+ "\n",
+ "W = F*Displacement # [J]\n",
+ "\n",
+ "print \"Work done by the system is %d J\\n\"%(W)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.7 Page: 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.7 - Page: 9\n",
+ "\n",
+ "\n",
+ "Actual Work done by the system is 9.1e+05 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.7 - Page: 9\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "P = 560*10**3 # [Pa]\n",
+ "Vinit = 3 # [cubic m]\n",
+ "Vfinal = 5 # [cubic m]\n",
+ "Wext = 210*10**3 # [J]\n",
+ "#*************#\n",
+ "\n",
+ "W = P*(Vfinal - Vinit) # [J]\n",
+ "# Again the system receives 210 kJ of work from the external agent.\n",
+ "W = W - Wext # [J]\n",
+ "\n",
+ "print \"Actual Work done by the system is %.1e J\\n\"%(W)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.8 Page: 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.8 - Page: 11\n",
+ "\n",
+ "\n",
+ "Change in potential Energy is 981 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.8 - Page: 11\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "g = 9.81 # [m/square s]\n",
+ "Z = 100 # [m]\n",
+ "#***************#\n",
+ "\n",
+ "# Basis: 1 kg of water\n",
+ "m = 1 # [kg]\n",
+ "Ep = m*g*Z # [J]\n",
+ "print \"Change in potential Energy is %d J\\n\"%(Ep)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.9 Page: 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.9 - Page: 11\n",
+ "\n",
+ "\n",
+ "The velocity of the metal block is 15.34 m/s\n",
+ "\n",
+ "The final Kinetic Energy is 1765.8 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.9 - Page: 11\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 15# # [kg]\n",
+ "g = 9.81 # [m/square s]\n",
+ "V1 = 0 # [m/square s]\n",
+ "Z1 = 12 # [m]\n",
+ "Z2 = 0 # [m]\n",
+ "#***************#\n",
+ "\n",
+ "# At initial condition, V1 = 0, so kinetic energy is zero.\n",
+ "# At final condition, Z2 = 0, so potential energy is zero.\n",
+ "# Ep1 + Ek1 = Ep2 + Ek2\n",
+ "#deff('[y] = f(V2)','y = ((1/2)*m*V1**2) + (m*g*Z1) - (((1/2)*m*V2**2) + (m*g*Z2))')#\n",
+ "def f(V2):\n",
+ " y = ((1/2)*m*V1**2) + (m*g*Z1) - (((1/2)*m*V2**2) + (m*g*Z2))\n",
+ " return y\n",
+ "from scipy.optimize import fsolve\n",
+ "V2 = fsolve(f,7)#\n",
+ "\n",
+ "print \"The velocity of the metal block is %.2f m/s\\n\"%(V2)#\n",
+ "\n",
+ "Ek2 = (1/2)*m*V2**2 # [J]\n",
+ "print \"The final Kinetic Energy is %.1f J\\n\"%(Ek2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.10 Page: 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.10 - Page: 12\n",
+ "\n",
+ "\n",
+ "Power required is 7.64 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Solution\n",
+ "\n",
+ "print \"Example: 1.10 - Page: 12\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 1200 # [kg]\n",
+ "v1 = 10 # [km/h]\n",
+ "v2 = 100 # [km/h]\n",
+ "time = 1 # [min]\n",
+ "#***************#\n",
+ "\n",
+ "v1 = 10*1000/3600 # [m/s]\n",
+ "v2 = 100*1000/3600 # [m/s]\n",
+ "W = (1/2)*m*(v2**2 - v1**2) # [J]\n",
+ "time = time*60 # [s]\n",
+ "P = W/time # [W]\n",
+ "print \"Power required is %.2f kW\\n\"%(P/1000)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.11 Page: 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.11 - Page: 13\n",
+ "\n",
+ "\n",
+ "Total Force eacting upon the gas is 8139.7 N\n",
+ "\n",
+ "Pressure exerted is 115.153 kPa\n",
+ "\n",
+ "\n",
+ "Work due to expansion by the gas is 4.070 kJ\n",
+ "\n",
+ "\n",
+ "Change in Potential Energy is 489.6 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "print \"Example: 1.11 - Page: 13\\n\\n\"\n",
+ "\n",
+ "#*****Data*****#\n",
+ "dia = 0.3 # [m]\n",
+ "m = 100 # [kg]\n",
+ "P_atm = 1.013*10**5 # [N/square m]\n",
+ "g = 9.792 # [m/square s]\n",
+ "#**************#\n",
+ "\n",
+ "Area = (pi/4)*dia**2 # [square m]\n",
+ "#Solution (a)(i)\n",
+ "# Force exerted by the atmosphere:\n",
+ "F_atm = P_atm*Area # [N]\n",
+ "# Force exerted by piston & metal block:\n",
+ "F_mass = m*g # [N]\n",
+ "# Total force acting upon the gas:\n",
+ "F = F_atm + F_mass # [N]\n",
+ "print \"Total Force eacting upon the gas is %.1f N\\n\"%(F)#\n",
+ "\n",
+ "# Solution (a)(ii)\n",
+ "Pressure = F/Area # [N/square m]\n",
+ "print \"Pressure exerted is %.3f kPa\\n\\n\"%(Pressure/1000)#\n",
+ "\n",
+ "# Solution (b)\n",
+ "# The gas expands on application of heat, the volume of the gas goes on increasing and the piston moves upward.\n",
+ "Z = 0.5 # [m]\n",
+ "# Work done due to expansion of gas:\n",
+ "W = F*Z # [J]\n",
+ "print \"Work due to expansion by the gas is %.3f kJ\\n\\n\"%(W/1000)#\n",
+ "\n",
+ "# Solution (c)\n",
+ "# Change in potential energy of piston and weight after expansion process:\n",
+ "Ep = m*g*Z # [J]\n",
+ "print \"Change in Potential Energy is %.1f J\\n\"%(Ep)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.12 Page: 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.12 - Page: 24\n",
+ "\n",
+ "\n",
+ "The temperature which has the same value on both the centigrade and Fahrenheit scales is -40 degree Celsius or -40 degree Fahrenheit\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 1.12 - Page: 24\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# The relation is:\n",
+ "# (C/5) = ((F - 32)/9)\n",
+ "# For C = F\n",
+ "C = - (32*5/4)# # [degree Celsius]\n",
+ "print \"The temperature which has the same value on both the centigrade and Fahrenheit scales is %d degree Celsius or %d degree Fahrenheit\\n\"%(C,C)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 1.13 Page: 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 1.13 - Page: 24\n",
+ "\n",
+ "\n",
+ "The rise in temperature in the Kelvin scale is 30 K\n",
+ "\n",
+ "The rise in temperature in the Rankine scale is 54 R\n",
+ "\n",
+ "The rise in temperature in the Fahrenheit scale is 54 OF\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 1.13 - Page: 24\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "delta_T_C = 30 # [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# The relation between the Kelvin temperature scale and the Celsius temperature scale:\n",
+ "# T(K) = T(OC) + 273.15\n",
+ "# Here, the temperature rise is to be expressed in terms of K, but the difference in temperature will be the same in the Kelvin and Celsius scales of temperature:\n",
+ "delta_T_K = delta_T_C # [K]\n",
+ "print \"The rise in temperature in the Kelvin scale is %d K\\n\"%(delta_T_K)#\n",
+ "# The emperical relationship between the Rankine and Kelvin scales is given by:\n",
+ "delta_T_R = 1.8*delta_T_K # [R]\n",
+ "print \"The rise in temperature in the Rankine scale is %d R\\n\"%(delta_T_R)#\n",
+ "delta_T_F = delta_T_R # [OF]\n",
+ "print \"The rise in temperature in the Fahrenheit scale is %d OF\\n\"%(delta_T_F)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch10.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch10.ipynb
new file mode 100644
index 00000000..fb871c2a
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch10.ipynb
@@ -0,0 +1,1346 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10 - Vapour liquid equillibrium"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.1 Page: 390"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.1 - Page: 390\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 10.1 on page 390 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.1 - Page: 390\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 10.1 on page number 390 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 10.1 on page 390 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.2 Page: 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.2 - Page: 399\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 10.2 on page 399 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.2 - Page: 399\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 10.2 on page number 399 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 10.2 on page 399 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.3 Page: 400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.3 - Page: 400\n",
+ "\n",
+ "\n",
+ "The total pressure is 13.04 atm\n",
+ "\n",
+ "Mole fraction of ethylene in vapour phase is 0.7\n",
+ "\n",
+ "Mole fraction of propylene in the vapour phase is 0.3\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 10.3 - Page: 400\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "x1 = 0.6## [mole fraction of ethylene]\n",
+ "x2 = 0.4## [mole fraction of propylene]\n",
+ "T = 423## [K]\n",
+ "P1_sat = 15.2## [vapour pressure of ethylene, atm]\n",
+ "P2_sat = 9.8## [vapour pressure of propylene, atm]\n",
+ "#**************#\n",
+ "\n",
+ "P = x1*P1_sat + x2*P2_sat## [atm]\n",
+ "print \"The total pressure is %.2f atm\\n\"%(P)#\n",
+ "# In vapour phase:\n",
+ "y1 = x1*P1_sat/P## [mole fraction of ethylene]\n",
+ "y2 = x2*P2_sat/P## [mole fraction of propylene]\n",
+ "print \"Mole fraction of ethylene in vapour phase is %.1f\\n\"%(y1)#\n",
+ "print \"Mole fraction of propylene in the vapour phase is %.1f\\n\"%(y2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.4 Page: 400"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.4 - Page: 400\n",
+ "\n",
+ "\n",
+ "In Liquid phase\n",
+ "\n",
+ "The mole fraction of X is 0.701\n",
+ "\n",
+ "The mole fraction of Y is 0.299\n",
+ "\n",
+ "In Vapour phase\n",
+ "\n",
+ "The mole fraction of X is 0.796\n",
+ "\n",
+ "The mole fraction of Y is 0.204\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "print \"Example: 10.4 - Page: 400\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Temp = 77## [OC]\n",
+ "P = 75## [kPa]\n",
+ "#deff('[P1] = f1(T)','P1 = exp(14.35 - 2942/(T + 220))')#\n",
+ "#deff('[P2] = f2(T)','P2 = exp(14.25 - 2960/(T + 210))')#\n",
+ "def f1(T):\n",
+ " P1 = exp(14.35 - 2942/(T + 220))\n",
+ " return P1\n",
+ "\n",
+ "def f2(T):\n",
+ " P2 = exp(14.25 - 2960/(T + 210))\n",
+ " return P2\n",
+ "\n",
+ "\n",
+ "#*************#\n",
+ "\n",
+ "P1sat = f1(Temp)## [kPa]\n",
+ "P2sat = f2(Temp)## [kPa]\n",
+ "#deff('[y] = f3(x1)','y = P - (x1*P1sat) - (1 - x1)*P2sat')#\n",
+ "def f3(x1):\n",
+ " y = P - (x1*P1sat) - (1 - x1)*P2sat\n",
+ " return y\n",
+ "from scipy.optimize import fsolve\n",
+ "x1 = fsolve(f3,7)#\n",
+ "x2 = 1 - x1#\n",
+ "print \"In Liquid phase\\n\"\n",
+ "print \"The mole fraction of X is %.3f\\n\"%(x1)#\n",
+ "print \"The mole fraction of Y is %.3f\\n\"%(x2)#\n",
+ "\n",
+ "y1 = x1*P1sat/P#\n",
+ "y2 = 1 - y1#\n",
+ "print \"In Vapour phase\\n\"\n",
+ "print \"The mole fraction of X is %.3f\\n\"%(y1)#\n",
+ "print \"The mole fraction of Y is %.3f\\n\"%(y2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.5 Page: 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.5 - Page: 401\n",
+ "\n",
+ "\n",
+ "Solution (i)\n",
+ "\n",
+ "The mole fraction of acetone is 0.549\n",
+ "\n",
+ "The mole fraction of acetonitrile is 0.327\n",
+ "\n",
+ "The mole fraction of nitromethane is 0.124\n",
+ "\n",
+ "Solution (ii)\n",
+ "\n",
+ "The mole fraction of acetone is 0.216\n",
+ "\n",
+ "The mole fraction of acetonitrile is 0.371\n",
+ "\n",
+ "The mole fraction of nitromethane is 0.413\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.5 - Page: 401\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "#deff('[P1] = f1(T)','P1 = exp(14.3916 - 2795/(T + 230))')#\n",
+ "def f1(T):\n",
+ " P1 = exp(14.3916 - 2795/(T + 230))\n",
+ " return P1\n",
+ "\n",
+ "#deff('[P2] = f2(T)','P2 = exp(14.2724 - 2945.47/(T + 224))')#\n",
+ "def f2(T):\n",
+ " P2 = exp(14.2724 - 2945.47/(T + 224))\n",
+ " return P2\n",
+ "#deff('[P3] = f3(T)','P3 = exp(14.2043 - 2972.64/(T + 209))')#\n",
+ "def f3(T):\n",
+ " P3 = exp(14.2043 - 2972.64/(T + 209))\n",
+ " return P3\n",
+ "\n",
+ "#*************#\n",
+ "\n",
+ "# Solution (i)\n",
+ "\n",
+ "#*****Data******#\n",
+ "Temp = 75## [OC]\n",
+ "P = 75## [kPa]\n",
+ "x1 = 0.30#\n",
+ "x2 = 0.40#\n",
+ "#*************#\n",
+ "\n",
+ "x3 = 1 - (x1 + x2)#\n",
+ "P1sat = f1(Temp)## [kPa]\n",
+ "P2sat = f2(Temp)## [kPa]\n",
+ "P3sat = f3(Temp)## [kPa]\n",
+ "P = x1*P1sat + x2*P2sat + x3*P3sat## [kPa]\n",
+ "y1 = x1*P1sat/P#\n",
+ "y2 = x2*P2sat/P#\n",
+ "y3 = x3*P3sat/P#\n",
+ "print \"Solution (i)\\n\"\n",
+ "print \"The mole fraction of acetone is %.3f\\n\"%(y1)#\n",
+ "print \"The mole fraction of acetonitrile is %.3f\\n\"%(y2)#\n",
+ "print \"The mole fraction of nitromethane is %.3f\\n\"%(y3)#\n",
+ "\n",
+ "# Solution (ii)\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Temp = 80## [OC]\n",
+ "y1 = 0.45#\n",
+ "y2 = 0.35#\n",
+ "#**************#\n",
+ "\n",
+ "y3 = 1 - (y1 + y2)#\n",
+ "P1sat = f1(Temp)## [kPa]\n",
+ "P2sat = f2(Temp)## [kPa]\n",
+ "P3sat = f3(Temp)## [kPa]\n",
+ "P = 1/((y1/P1sat) + (y2/P2sat) + (y3/P3sat))## [kPa]\n",
+ "x1 = y1*P/P1sat#\n",
+ "x2 = y2*P/P2sat#\n",
+ "x3 = y3*P/P3sat#\n",
+ "print \"Solution (ii)\\n\"\n",
+ "print \"The mole fraction of acetone is %.3f\\n\"%(x1)#\n",
+ "print \"The mole fraction of acetonitrile is %.3f\\n\"%(x2)#\n",
+ "print \"The mole fraction of nitromethane is %.3f\\n\"%(x3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.6 Page: 403"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.6 - Page: 403\n",
+ "\n",
+ "\n",
+ "In Vapour phase\n",
+ "\n",
+ "The mole fraction of methanol is 0.282\n",
+ "\n",
+ "The mole fraction of methyl acetate is 0.718\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.6 - Page: 403\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "#deff('[P1] = f1(T)','P1 = exp(16.5915 - 3643.31/(T - 33.424))')#\n",
+ "def f1(T):\n",
+ " P1 = exp(16.5915 - 3643.31/(T - 33.424))\n",
+ " return P1\n",
+ "#deff('[P2] = f2(T)','P2 = exp(14.2532 - 2665.54/(T - 53.424))')#\n",
+ "def f2(T):\n",
+ " P2 = exp(14.2532 - 2665.54/(T - 53.424))\n",
+ " return P2\n",
+ "#deff('[A] = f3(T)','A = 2.771 - 0.00523*T')#\n",
+ "def f3(T):\n",
+ " A = 2.771 - 0.00523*T\n",
+ " return A\n",
+ "\n",
+ "Temp = 318.15## [K]\n",
+ "x1 = 0.25#\n",
+ "#**************#\n",
+ "\n",
+ "P1sat = f1(Temp)## [kPa]\n",
+ "P2sat = f2(Temp)## [kPa]\n",
+ "A = f3(Temp)#\n",
+ "x2 = 1 - x1#\n",
+ "gama1 = exp(A*x2**2)#\n",
+ "gama2 = exp(A*x1**2)#\n",
+ "P = x1*gama1*P1sat + x2*gama2*P2sat#\n",
+ "y1 = x1*gama1*P1sat/P#\n",
+ "y2 = x2*gama2*P2sat/P#\n",
+ "print \"In Vapour phase\\n\"\n",
+ "print \"The mole fraction of methanol is %.3f\\n\"%(y1)#\n",
+ "print \"The mole fraction of methyl acetate is %.3f\\n\"%(y2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.7 Page: 408"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.7 - Page: 408\n",
+ "\n",
+ "\n",
+ "Azeotropic Composition\n",
+ "\n",
+ "The mole fraction of component 1 is 0.260\n",
+ "\n",
+ "The mole fraction of component 2 is 0.740\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "print \"Example: 10.7 - Page: 408\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Temp = 30## [OC]\n",
+ "A = 0.625#\n",
+ "#**************#\n",
+ "\n",
+ "P1sat = exp(13.71 - 3800/Temp)## [kPa]\n",
+ "P2sat = exp(14.01 - 3800/Temp)## [kPa]\n",
+ "# At azeotropic point:\n",
+ "# P = gama1*P1sat + gama2*P2sat\n",
+ "# gama1/gama2 = P2sat/P1sat\n",
+ "# log(gama1) - log(gama2) = log(P2sat) - log(P1sat)\n",
+ "# Val = log(gama1) - gama2\n",
+ "Val = log(P2sat) - log(P1sat)#\n",
+ "# log(gama1) = (A*x2**2)\n",
+ "# log(gama2) = (A*x1**2)\n",
+ "# A(x2**2 - x1**2) = 0.625*(x2**2 - x1**2)..................... (1)\n",
+ "# x1 + x2 = 1............................................. (2)\n",
+ "# On simplifying, we get:\n",
+ "# A*(1 - (2*x1)) = Val\n",
+ "x1 = (1/2)*(1 - Val/A)#\n",
+ "x2 = 1 - x1#\n",
+ "print \"Azeotropic Composition\\n\"\n",
+ "print \"The mole fraction of component 1 is %.3f\\n\"%(x1)#\n",
+ "print \"The mole fraction of component 2 is %.3f\\n\"%(x2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.8 Page: 410"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.8 - Page: 410\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 10.8 on page 410 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.8 - Page: 410\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 10.8 on page number 410 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 10.8 on page 410 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.9 Page: 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.9 - Page: 412\n",
+ "\n",
+ "\n",
+ "Van Laar Constants\n",
+ "\n",
+ "A = -5.008\n",
+ "\n",
+ "B = 0.275\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.9 - Page: 412\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "x1 = 0.42#\n",
+ "x2 = 0.58#\n",
+ "P = 760## [mm of Hg]\n",
+ "P1sat = 786## [mm of Hg]\n",
+ "P2sat = 551## [mm of Hg]\n",
+ "#***************#\n",
+ "\n",
+ "gama1 = P/P1sat#\n",
+ "gama2 = P/P2sat#\n",
+ "A = log(gama1)*(1 + (x2*log(gama2))/(x1*log(gama1)))**2#\n",
+ "B = log(gama2)*(1 + (x1*log(gama1))/(x2*log(gama2)))**2#\n",
+ "print \"Van Laar Constants\\n\"\n",
+ "print \"A = %.3f\\n\"%(A)#\n",
+ "print \"B = %.3f\\n\"%(B)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.10 Page: 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.10 - Page: 412\n",
+ "\n",
+ "\n",
+ "Activity Coeffecient\n",
+ "\n",
+ "gama1 = 1.086\n",
+ "\n",
+ "gama2 = 1.002\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.10 - Page: 412\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P = 101.3## [kPa]\n",
+ "P1sat = 100.59## [kPa]\n",
+ "P2sat = 99.27## [kPa]\n",
+ "x1 = 0.532#\n",
+ "#****************#\n",
+ "\n",
+ "x2 = 1 - x1#\n",
+ "gama1 = P/P1sat#\n",
+ "gama2 = P/P2sat#\n",
+ "A = log(gama1)*(1 + (x2*log(gama2))/(x1*log(gama1)))**2#\n",
+ "B = log(gama2)*(1 + (x1*log(gama1))/(x2*log(gama2)))**2#\n",
+ "\n",
+ "# For solution containing 10 mol percent benzene:\n",
+ "x1 = 0.10#\n",
+ "x2 = 1 - x1#\n",
+ "gama1 = exp(A/(1 + (A*x1/(B*x2))**2))#\n",
+ "gama2 = exp(B/(1 + (B*x2/(A*x1))**2))#\n",
+ "print \"Activity Coeffecient\\n\"\n",
+ "print \"gama1 = %.3f\\n\"%(gama1)#\n",
+ "print \"gama2 = %.3f\\n\"%(gama2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.11 Page: 413"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.11 - Page: 413\n",
+ "\n",
+ "\n",
+ "Equilibrium Composition\n",
+ "\n",
+ "Acetone Composition = 4.98 %\n",
+ "\n",
+ "Chloform composition = 95.02 %\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.11 - Page: 413\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P = 760## [mm of Hg]\n",
+ "P1sat = 995## [mm of Hg]\n",
+ "P2sat = 885## [mm of Hg]\n",
+ "x1 = 0.335#\n",
+ "T = 64.6## [OC]\n",
+ "#****************#\n",
+ "\n",
+ "x2 = 1 - x1#\n",
+ "gama1 = P/P1sat#\n",
+ "gama2 = P/P2sat#\n",
+ "A = log(gama1)*(1 + (x2*log(gama2))/(x1*log(gama1)))**2#\n",
+ "B = log(gama2)*(1 + (x1*log(gama1))/(x2*log(gama2)))**2#\n",
+ "\n",
+ "# For solution containing 11.1 mol percent acetone:\n",
+ "x1 = 0.111#\n",
+ "x2 = 1 - x1#\n",
+ "gama1 = exp((A*x2**2)/(x2 + (A*x1/(B))**2))#\n",
+ "gama2 = exp((B*x1**2)/(x1 + (B*x2/(A))**2))#\n",
+ "y1 = 1/(1 + (gama2*x2*P2sat/(gama1*x1*P1sat)))#\n",
+ "y2 = 1 - y1#\n",
+ "print \"Equilibrium Composition\\n\"\n",
+ "print \"Acetone Composition = %.2f %%\\n\"%(y1*100)#\n",
+ "print \"Chloform composition = %.2f %%\\n\"%(y2*100)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.12 Page: 414"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.12 - Page: 414\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 10.12 on page 414 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.12 - Page: 414\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 10.12 on page number 414 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 10.12 on page 414 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.13 Page: 418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.13 - Page: 418\n",
+ "\n",
+ "\n",
+ "Wilson equation\n",
+ "\n",
+ "Activity Coeffecient of iso - butanol is 2.270\n",
+ "\n",
+ "Activity Coeffecient of iso - propanol is 1.265\n",
+ "\n",
+ "\n",
+ "\n",
+ "NTRL equation\n",
+ "\n",
+ "Activity Coeffecient of iso - butanol is 2.160\n",
+ "\n",
+ "Activity Coeffecient of iso - propanol is 1.269\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.13 - Page: 418\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# 1: iso - butanol\n",
+ "# 2: iso - propanol\n",
+ "T = 50 + 273## [K]\n",
+ "x1 = 0.3#\n",
+ "V1 = 65.2## [cubic cm/mol]\n",
+ "V2 = 15.34## [cubic cm/mol]\n",
+ "# For Wilson equation:\n",
+ "a12 = 300.55## [cal/mol]\n",
+ "a21 = 1520.32## [cal/mol]\n",
+ "# For NTRL equation:\n",
+ "b12 = 685.21## [cal/mol]\n",
+ "b21 = 1210.21## [cal/mol]\n",
+ "alpha = 0.552#\n",
+ "R = 2## [cal/mol K]\n",
+ "#******************#\n",
+ "\n",
+ "x2 = 1 - x1#\n",
+ "# A: Estimation of activity coeffecient using Wilson equation:\n",
+ "# From Eqn. 10.65:\n",
+ "A12 = (V2/V1)*exp(-a12/(R*T))#\n",
+ "# From Eqn. 10.66:\n",
+ "A21 = (V1/V2)*exp(-a21/(R*T))#\n",
+ "# From Eqn. 10.67:\n",
+ "gama1 = exp(-log(x1 + A12*x2) + x2*((A12/(x1 + A12*x2)) - (A21/(A21*x1 + x2))))#\n",
+ "# From Eqn. 10.68:\n",
+ "gama2 = exp(-log(x2 + A21*x1) - x1*((A12/(x1 + A12*x2)) - (A21/(A21*x1 + x2))))#\n",
+ "print \"Wilson equation\\n\"\n",
+ "print \"Activity Coeffecient of iso - butanol is %.3f\\n\"%(gama1)#\n",
+ "print \"Activity Coeffecient of iso - propanol is %.3f\\n\"%(gama2)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# A: Estimation of activity coeffecient using NTRL equation:\n",
+ "t12 = b12/(R*T)#\n",
+ "t21 = b21/(R*T)#\n",
+ "G12 = exp(-alpha*t12)#\n",
+ "G21 = exp(-alpha*t21)#\n",
+ "# From Eqn. 10.70:\n",
+ "gama1 = exp((x2**2)*(t21*(G21/(x1 + x2*G21))**2 + (t12*G12/(x2 + x1*G12)**2)))#\n",
+ "# From Eqn. 10.71:\n",
+ "gama2 = exp((x1**2)*(t12*(G12/(x2 + x1*G12))**2 + (t21*G21/(x1 + x2*G21)**2)))#\n",
+ "print \"NTRL equation\\n\"\n",
+ "print \"Activity Coeffecient of iso - butanol is %.3f\\n\"%(gama1)#\n",
+ "print \"Activity Coeffecient of iso - propanol is %.3f\\n\"%(gama2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.14 Page: 426"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.14 - Page: 426\n",
+ "\n",
+ "\n",
+ "Bubble Temperature is 9 OC\n",
+ "\n",
+ "Composition of the vapour bubble:\n",
+ " y1 = 0.70\n",
+ " y2 = 0.30\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.14 - Page: 426\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "x1 = 0.4## [mole fraction of ethane in vapour phase]\n",
+ "x2 = 0.6## [mole fraction of propane in vapour phase]\n",
+ "P = 1.5## [MPa]\n",
+ "#***************#\n",
+ "\n",
+ "# Assume T = 10 OC\n",
+ "T = 10## [OC]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 1.8#\n",
+ "K2 = 0.5#\n",
+ "# From Eqn. 10.83:\n",
+ "y1 = K1*x1#\n",
+ "y2 = K2*x2#\n",
+ "# Since y1 + y2 > 1, so we assume another value of T = 9 OC.\n",
+ "T = 9## [OC]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 1.75#\n",
+ "K2 = 0.5#\n",
+ "# From Eqn. 10.83:\n",
+ "y1 = K1*x1#\n",
+ "y2 = K2*x2#\n",
+ "# Since y1 + y2 = 1. Therefore:\n",
+ "print \"Bubble Temperature is %d OC\\n\"%(T)#\n",
+ "print \"Composition of the vapour bubble:\\n y1 = %.2f\\n y2 = %.2f\"%(y1,y2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.15 Page: 428"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.15 - Page: 428\n",
+ "\n",
+ "\n",
+ "Dew Pressure is 2.15 MPa\n",
+ "\n",
+ "Composition of the liquid drop:\n",
+ " x1 = 0.0247\n",
+ " x2 = 0.1648\n",
+ " x3 = 0.8065\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.15 - Page: 428\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "y1 = 0.20## [mole fraction of methane in vapour phase]\n",
+ "y2 = 0.30## [mole fraction of ethane in vapour phase]\n",
+ "y3 = 0.50## [mole fraction of propane in vapour phase]\n",
+ "T = 30## [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# Assume P = 2.0 MPa\n",
+ "P = 2.0## [MPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 8.5#\n",
+ "K2 = 2.0#\n",
+ "K3 = 0.68#\n",
+ "# From Eqn. 10.83:\n",
+ "x1 = y1/K1#\n",
+ "x2 = y2/K2#\n",
+ "x3 = y3/K3#\n",
+ "# Since x1 + x2 +x3 < 1, so we assume another value of P = 2.15 MPa at 30 OC.\n",
+ "P = 2.15## [MPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 8.1#\n",
+ "K2 = 1.82#\n",
+ "K3 = 0.62#\n",
+ "# From Eqn. 10.83:\n",
+ "x1 = y1/K1#\n",
+ "x2 = y2/K2#\n",
+ "x3 = y3/K3#\n",
+ "# Since x1 + x2 +x3 = 1. Therefore:\n",
+ "print \"Dew Pressure is %.2f MPa\\n\"%(P)#\n",
+ "print \"Composition of the liquid drop:\\n x1 = %.4f\\n x2 = %.4f\\n x3 = %.4f\"%(x1,x2,x3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.16 Page: 429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.16 - Page: 429\n",
+ "\n",
+ "\n",
+ "Dew Pressure is 870 kPa\n",
+ "\n",
+ "Composition of the liquid drop:\n",
+ " x1 = 0.0063\n",
+ " x2 = 0.0755\n",
+ " x3 = 0.9186\n",
+ "\n",
+ "\n",
+ "\n",
+ "Bubble Pressure is 2656 kPa\n",
+ "\n",
+ "Composition of the vapour bubble:\n",
+ " y1 = 0.5490\n",
+ " y2 = 0.2200\n",
+ " y3 = 0.2310\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.16 - Page: 429\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# Dew point Pressure\n",
+ "#*****Data******#\n",
+ "y1 = 0.10## [mole fraction of methane in vapour phase]\n",
+ "y2 = 0.20## [mole fraction of ethane in vapour phase]\n",
+ "y3 = 0.70## [mole fraction of propane in vapour phase]\n",
+ "T = 10## [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# Assume P = 690 kPa\n",
+ "P = 690## [kPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 20.0#\n",
+ "K2 = 3.25#\n",
+ "K3 = 0.92#\n",
+ "# From Eqn. 10.83:\n",
+ "x1 = y1/K1#\n",
+ "x2 = y2/K2#\n",
+ "x3 = y3/K3#\n",
+ "# Since x1 + x2 +x3 < 1, so we assume another value of P = 10135 kPa at 10 OC.\n",
+ "P = 10135## [kPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 13.20#\n",
+ "K2 = 2.25#\n",
+ "K3 = 0.65#\n",
+ "# From Eqn. 10.83:\n",
+ "x1 = y1/K1#\n",
+ "x2 = y2/K2#\n",
+ "x3 = y3/K3#\n",
+ "# Since x1 + x2 +x3 > 1, so we assume another value of P = 870 kPa at 10 OC.\n",
+ "P = 870## [kPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 16.0#\n",
+ "K2 = 2.65#\n",
+ "K3 = 0.762#\n",
+ "# From Eqn. 10.83:\n",
+ "x1 = y1/K1#\n",
+ "x2 = y2/K2#\n",
+ "x3 = y3/K3#\n",
+ "# Since x1 + x2 +x3 = 1. Therefore:\n",
+ "print \"Dew Pressure is %d kPa\\n\"%(P)#\n",
+ "print \"Composition of the liquid drop:\\n x1 = %.4f\\n x2 = %.4f\\n x3 = %.4f\\n\"%(x1,x2,x3)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Bubble point Pressure\n",
+ "#*****Data******#\n",
+ "x1 = 0.10## [mole fraction of methane in vapour phase]\n",
+ "x2 = 0.20## [mole fraction of ethane in vapour phase]\n",
+ "x3 = 0.70## [mole fraction of propane in vapour phase]\n",
+ "T = 10## [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# Assume P = 2622 kPa\n",
+ "P = 2622## [kPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 5.60#\n",
+ "K2 = 1.11#\n",
+ "K3 = 0.335#\n",
+ "# From Eqn. 10.83:\n",
+ "y1 = K1*x1#\n",
+ "y2 = K2*x2#\n",
+ "y3 = K3*x3#\n",
+ "# Since x1 + x2 +x3 > 1, so we assume another value of P = 2760 kPa at 10 OC.\n",
+ "P = 2760## [kPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 5.25#\n",
+ "K2 = 1.07#\n",
+ "K3 = 0.32#\n",
+ "# From Eqn. 10.83:\n",
+ "y1 = K1*x1#\n",
+ "y2 = K2*x2#\n",
+ "y3 = K3*x3#\n",
+ "# Since x1 + x2 +x3 < 1, so we assume another value of P = 2656 kPa at 10 OC.\n",
+ "P = 2656## [kPa]\n",
+ "# From Fig. 10.14 (Pg 426):\n",
+ "K1 = 5.49#\n",
+ "K2 = 1.10#\n",
+ "K3 = 0.33#\n",
+ "# From Eqn. 10.83:\n",
+ "y1 = K1*x1#\n",
+ "y2 = K2*x2#\n",
+ "y3 = K3*x3#\n",
+ "# Since x1 + x2 +x3 = 1. Therefore:\n",
+ "print \"Bubble Pressure is %d kPa\\n\"%(P)#\n",
+ "print \"Composition of the vapour bubble:\\n y1 = %.4f\\n y2 = %.4f\\n y3 = %.4f\"%(y1,y2,y3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.17 Page: 432"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.17 - Page: 432\n",
+ "\n",
+ "\n",
+ " L = 3.154304e-08 mol\n",
+ "\n",
+ " V = 1.000000e+00 mol\n",
+ "\n",
+ " y1 = 0.4500\n",
+ " y2 = 0.3500\n",
+ " y3 = 0.2000\n",
+ "\n",
+ " x1 = 0.2334\n",
+ " x2 = 0.3631\n",
+ " x3 = 0.4035\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.17 - Page: 432\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# 1: acetone 2: acetonitrile 3: nitromethane\n",
+ "z1 = 0.45#\n",
+ "z2 = 0.35#\n",
+ "z3 = 0.20#\n",
+ "P1sat = 195.75## [kPa]\n",
+ "P2sat = 97.84## [kPa]\n",
+ "P3sat = 50.32## [kPa]\n",
+ "#***************#\n",
+ "\n",
+ "# Bubble Point Calculation:\n",
+ "Pbubble = z1*+P1sat + z2*P2sat +z3*P3sat## [kPa]\n",
+ "\n",
+ "# Dew Point Calculation:\n",
+ "Pdew = 1/((z1/P1sat) + (z2/P2sat) + (z3/P3sat))## [kPa]\n",
+ "K1 = P1sat/Pdew#\n",
+ "K2 = P2sat/Pdew#\n",
+ "K3 = P3sat/Pdew#\n",
+ "# Overall Material balance:\n",
+ "# For 1 mol of the feed.\n",
+ "# L + V = 1......................................... (1)\n",
+ "# F*zi = L*xi + V*yi ............................... (2)\n",
+ "# zi = (1 - V)*xi + V*yi ........................... (3)\n",
+ "# Substituting xi = yi/K in eqn. (3)\n",
+ "# yi = zi*Ki/(1 + V*(Ki - 1))\n",
+ "# Since, Sum(yi) = 1.\n",
+ "#deff('[y] = f(V)','y = (z1*K1/(1 + V*(K1 - 1))) + (z2*K2/(1 + V*(K2 - 1))) + (z3*K3/(1 + V*(K3 - 1))) - 1')#\n",
+ "def f(V):\n",
+ " y = (z1*K1/(1 + V*(K1 - 1))) + (z2*K2/(1 + V*(K2 - 1))) + (z3*K3/(1 + V*(K3 - 1))) - 1\n",
+ " return y\n",
+ "\n",
+ "V = fsolve(f,0.8)#\n",
+ "L = 1 - V#\n",
+ "y1 = z1*K1/(1 + V*(K1 - 1))#\n",
+ "y2 = z2*K2/(1 + V*(K2 - 1))#\n",
+ "y3 = z3*K3/(1 + V*(K3 - 1))#\n",
+ "# From Eqn. 10.83:\n",
+ "x1 = y1/K1#\n",
+ "x2 = y2/K2#\n",
+ "x3 = y3/K3#\n",
+ "print \" L = %e mol\\n\"%(L)#\n",
+ "print \" V = %e mol\\n\"%(V)#\n",
+ "print \" y1 = %.4f\\n y2 = %.4f\\n y3 = %.4f\\n\"%(y1,y2,y3)#\n",
+ "print \" x1 = %.4f\\n x2 = %.4f\\n x3 = %.4f\\n\"%(x1,x2,x3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.18 Page: 433"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.18 - Page: 433\n",
+ "\n",
+ "\n",
+ " L = 0.1615 mol\n",
+ "\n",
+ " V = 0.8385 mol\n",
+ "\n",
+ " y1 = 0.8205\n",
+ " y2 = 0.1795\n",
+ "\n",
+ " x1 = 0.7555\n",
+ " x2 = 0.2445\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 10.18 - Page: 433\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# 1: Benzene 2: Toulene\n",
+ "z1 = 0.81#\n",
+ "Temp = 60## [OC]\n",
+ "P = 70## [kPa]\n",
+ "# Antonine Constants:\n",
+ "A1 = 14.2321#\n",
+ "B1 = 2773.61#\n",
+ "C1 = 220.13#\n",
+ "A2 = 15.0198#\n",
+ "B2 = 3102.64#\n",
+ "C2 = 220.02#\n",
+ "#******************#\n",
+ "\n",
+ "#deff('[P1] = f1(T)','P1 = exp(A1 - B1/(T + C1))')#\n",
+ "def f1(T):\n",
+ " P1 = exp(A1 - B1/(T + C1))\n",
+ " return P1\n",
+ "\n",
+ "P1sat = f1(Temp)## [kPa]\n",
+ "#deff('[P2] = f2(T)','P2 = exp(A2 - B2/(T + C2))')#\n",
+ "def f2(T):\n",
+ " P2 = exp(A2 - B2/(T + C2))\n",
+ " return P2\n",
+ "\n",
+ "P2sat = f2(Temp)## [kPa]\n",
+ "# P = x1*P1sat + x2*P2sat#\n",
+ "# x2 = 1 - x1#\n",
+ "#deff('[y] = f3(x1)','[y] = P - (x1*P1sat + (1 - x1)*P2sat)')#\n",
+ "def f3(x1):\n",
+ " y= P - (x1*P1sat + (1 - x1)*P2sat)\n",
+ " return y\n",
+ "\n",
+ "x1 = fsolve(f3,7)#\n",
+ "y1 = x1*P1sat/P#\n",
+ "x2 = 1 - x1#\n",
+ "y2 = 1 - y1#\n",
+ "\n",
+ "# Basis: 1 mol of feed stream.\n",
+ "F = 1## [mol]\n",
+ "# F*zi = L*xi + V*yi = L*xi + (1 - L)*yi\n",
+ "#deff('[y] = f4(L)','[y] = F*z1 - (L*x1 + (1 - L)*y1)')#\n",
+ "def f4(L):\n",
+ " y = F*z1 - (L*x1 + (1 - L)*y1)\n",
+ " return y\n",
+ "\n",
+ "L = fsolve(f4,7)## [mol]\n",
+ "V = 1 - L## [mol]\n",
+ "print \" L = %.4f mol\\n\"%(L)#\n",
+ "print \" V = %.4f mol\\n\"%(V)#\n",
+ "print \" y1 = %.4f\\n y2 = %.4f\\n\"%(y1,y2)#\n",
+ "print \" x1 = %.4f\\n x2 = %.4f\\n\"%(x1,x2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 10.19 Page: 413"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 10.19 - Page: 436\n",
+ "\n",
+ "\n",
+ "The data is not consistent thermodynamically\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNXV//HPAQQF0VERTdA4SUTcHUQFHzCMDwQRF4Jx\nQ6OZoIgLWY2oSVRwQXHfFVHBJYpbEjUiKtFRxA3UQRBQ0JgHNPEXFXdjWM7vj9tQM+Mw0zM91VXd\n/X2/XvMK1V3TfTxp+lD31L3X3B0REZE12iQdgIiIpIsKg4iI1KHCICIidagwiIhIHSoMIiJShwqD\niIjUEWthMLNbzex9M5vXyDmVZvaqmc03s+o44xERkaZZnPMYzGwf4HPgdnffpYHny4BZwH7uvszM\nurj7B7EFJCIiTYr1isHdZwLLGznlKOABd1+WOV9FQUQkYUn3GLoDm5rZU2Y2x8yOSTgeEZGS1y7h\n918P2B0YAHQEnjezF9x9cbJhiYiUrqQLw1LgA3f/CvjKzJ4BdgPqFAYz04JOIiIt4O7W3N9Jeijp\nQaCfmbU1s45Ab2BBQye6u37cOeeccxKPIS0/yoVyoVw0/tNSsV4xmNndQH+gi5ktBc4hDB/h7hPd\nfZGZTQdeA1YDk9y9wcIgwTvvvJN0CKmhXESUi4hykbtYC4O7D8/inEuBS+OMQ0REspf0UJI0U1VV\nVdIhpIZyEVEuIspF7mKd4NZazMwLIU4RkTQxM7wAm895s2oV3HknrF6ddCS5qa6uTjqE1FAuIspF\nRLnIXckUBoDrr4cbbkg6ChGRdCupoaRFi6BfP5gzB8rLc49LRCTNNJSUhe23h9NOg5EjoQDqoYhI\nIkqqMACceiosXw633JJ0JC2j8dOIchFRLiLKRe5KrjC0aweTJ8OZZ8KyZUlHIyKSPiXVY6jt3HPh\nxRfhr38Fa/YInIhI+qnH0ExnnBGuGO68M+lIRETSpWQLQ/v2cOutoefwr38lHU32NH4aUS4iykVE\nuchdyRYGgF694Pjj4eSTdZeSiMgaJdtjWOM//4Hdd4dx4+Cww2J5CxGRRLS0x1DyhQHghRdg2DCY\nNw+6dIntbURE8krN5xz06QNHHQW/+EXSkTRN46cR5SKiXESUi9ypMGScdx7Mng0PPph0JCIiydJQ\nUi3PPAPDh8P8+bDJJrG/nYhIrNRjaCWjR8OXX4ZbWUVECpl6DK3kwgvhySfhsceSjqRhGj+NKBcR\n5SKiXOQu1sJgZrea2ftmNq+J8/Y0s5Vmdkic8WSjc2eYNAlOOAE+/TTpaERE8i/WoSQz2wf4HLjd\n3XdZxzltgSeAL4HJ7v5AA+fkfWvPkSNhxYqw4J7WUhKRQpTKoSR3nwksb+K0nwP3A/+OM5bmuvzy\n0IQ+55ykIxERya9Eewxm1g0YCqzZcDM1nfDOnWHaNJg6Fa65JuloIho/jSgXEeUiolzkrl3C738l\ncIa7u5kZkKpBm65d4fHHYZ99YPPN4cgjk45IRCR+SReGXsDUUBPoAuxvZivc/aH6J1ZVVVGe2ai5\nrKyMiooKKisrgehfCHEcl5fDuHHVnHQSbLppJYMGxft+TR1XVlYm+v46Tu/xGmmJJ6njNY+lJZ58\nHldXVzNlyhSAtd+XLRH7PAYzKwceXlfzudZ5kzPn/amB5/LefK7v2WfhkEPCxj577ZVoKCIiWUll\n89nM7gaeA3qY2VIzG2Fmo8xsVJzvG4d+/cI+0QcfDIsWJRdH/X8dljLlIqJcRJSL3MU6lOTuw5tx\n7s/ijKU1HHQQTJgA++0Hs2bBVlslHZGISOvTkhgtcMklMGUKzJwJm26adDQiIg3TWkl5dtpp4arh\niSegU6ekoxER+aZU9hiK2YQJsN12Yde3FSvy974aP40oFxHlIqJc5E6FoYXatAlrKrVtCyNGwOrV\nSUckItI6NJSUoy+/hEGDwi2sl12mdZVEJD00lJSQjh3h4YdDr+Hii5OORkQkdyoMrWCTTWD6dLjx\nxjDXIU4aP40oFxHlIqJc5C7pJTGKRrduYXOf/v2hSxcYOjTpiEREWkY9hlY2Zw4MGQL33w8/+EHS\n0YhIKVOPISX22APuugsOPRTmzk06GhGR5lNhiMHAgXDtteHK4e23W/e1NX4aUS4iykVEucidegwx\nOfxw+PDDcCvrrFmwxRZJRyQikh31GGI2bhw8+CBUV8NGGyUdjYiUEq2VlFLuMHo0LFwYtgpdf/2k\nIxKRUqHmc0qZwdVXh1tYjz4aVq3K7fU0fhpRLiLKRUS5yJ0KQx60bQt33AGffAInnxyuIkRE0kpD\nSXn02Wew776w//5w3nlJRyMixa6lQ0m6KymPOneGRx8N24R27Qo//3nSEYmIfJOGkvJs883D0hkX\nXwx3393839f4aUS5iCgXEeUid7EWBjO71czeN7N563j+aDOba2avmdksM9s1znjSorw83KH0q1+F\nIiEikiax9hjMbB/gc+B2d9+lgef3Bha4+ydmNhgY6+59GjivKHoM9c2aBT/6ETzySNjPQUSkNaXy\ndlV3nwksb+T55939k8zhi8BWccaTNn37wuTJYSXWRYuSjkZEJEhTj+E4YFrSQeTbgQfCRRfBfvvB\nsmVNn6/x04hyEVEuIspF7lJxV5KZ7QuMAPqu65yqqirKy8sBKCsro6KigsrKSiD6IBTq8TbbVDNk\nCAwaVMnMmTBvXrriS+vxGmmJJ8njmpqaVMWT5HFNTU2q4snncXV1NVOmTAFY+33ZErHPYzCzcuDh\nhnoMmed3Bf4EDHb3Jes4pyh7DPWNGQMzZ8KMGdCpU9LRiEihS2WPoSlm9h1CUfjJuopCKZkwAbbf\nHg47DFasSDoaESlVcd+uejfwHNDDzJaa2QgzG2VmozKnnA1sAtxgZq+a2UtxxpN2ZjBpUlhCY8QI\nWL36m+fUH0YpZcpFRLmIKBe5i7XH4O7Dm3j+eOD4OGMoNO3awT33hH0cTj0VLr88FAwRkXzRWkkp\ntXx52DP66KPhjDOSjkZECpHWSioym2wSZkX37RuW0TjuuKQjEpFSkaZ5DFLPt78disNZZ8Ff/hIe\n0/hpRLmIKBcR5SJ3umJIue22g4cfDkt1b7pp0tGISClQj6FA/O1vMHw4PPEE7LZb0tGISCEoyHkM\nkr0BA+C662DIEHj77aSjEZFipsJQQA47DA4/vJpBg+D995OOJnkaS44oFxHlInfqMRSYoUOhrAwG\nD4bqath446QjEpFiox5DAXKH0aNhwYKwVej66ycdkYikUUt7DCoMBWrVKjjqKFi5Eu69NyyjISJS\nm5rPJWLN+GnbtnD77fDpp2F29FdfJRtXEjSWHFEuIspF7lQYCliHDvDQQ9CmDfTvD++9l3REIlIM\nNJRUBNxh/Hi48cYwQ7pXr6QjEpE0UI9B+NOfYNQouP76cGuriJQ29RhKRGPjp4ccEmZG//a3MG5c\nuJIoZhpLjigXEeUidyoMRaaiAl58EaZPhyOPhC+/TDoiESk0GkoqUv/5D4wcCQsXwoMPQrduSUck\nIvmmoSSpY/31w+2shx4KvXvD7NlJRyQihUKFocA0Z/zULOz+dt11cMABMHVqfHElQWPJEeUiolzk\nLtbCYGa3mtn7ZjavkXOuNrPFZjbXzHrGGU+pGjoUZswIReKss2D16qQjEpE0i7XHYGb7AJ8Dt7v7\nLg08PwQY7e5DzKw3cJW792ngPPUYWsH/+3/hzqUtt4TbboNOnZKOSETilMoeg7vPBJY3csrBwG2Z\nc18EysxsizhjKmVdu4YNfzbcEPbZB5YuTToiEUmjpHsM3YDaX0/LgK0SiqUg5Dp+2qEDTJ4cFuDr\n0yfc2lqoNJYcUS4iykXu0rAfQ/3LnAbHjKqqqigvLwegrKyMiooKKisrgeiDoOPsjp9+upo99oCJ\nEys56CAYObKaH/4wPfFle7xGWuJJ8rimpiZV8SR5XFNTk6p48nlcXV3NlClTANZ+X7ZE7PMYzKwc\neHgdPYYbgWp3n5o5XgT0d/f3652nHkNM5s+Hgw8Ok+HOPz8syCcixSGVPYYsPAQcC2BmfYCP6xcF\nidfOO4fhpGefhR//GD7/POmIRCRpcd+uejfwHNDDzJaa2QgzG2VmowDcfRrwtpktASYCJ8cZTzGo\nP4zSGjbfPNzOutlm0K8f/N//tfpbxCKOXBQq5SKiXOQu1h6Duw/P4pzRccYg2WnfHiZNgiuvDE3p\nBx6AvfdOOioRSYLWSpJvmDYNqqrgssvgmGOSjkZEWkr7MUirWrAADjoo7OtwwQXaU1qkEMXefDaz\n9c2sQ3PfQFpXvsZPd9wxNKVfeAGGDYPPPsvL2zaLxpIjykVEucjdOguDmbUxs0PM7D4zexf4O/AP\nM3vXzO43s2Fm1uxKJIWjSxd4/PGwhEbfvvD3vycdkYjkwzqHkszsGWAm4ZbSGnf/OvN4B6AnYTmL\nfu7+g9iD1FBSotzhmmvCPIfrrw9LeYtI+rV6j8HMOqwpBo28aZPntAYVhnSYPRuGD4cBA+CKK6Bj\nx6QjEpHGtHqPIZsv/HwUBakryfHTPfeEV16BL74If563zsXU80NjyRHlIqJc5K6xHsOuZvaCmS0z\ns5vMbJNaz72Un/AkbTbaCO64A8aMgf/9X7jhhjDUJCLFo7GhpFnAecCLwHHACOBgd19iZq+6e942\n1dFQUjq9+WZYY6m8HG6+GTbdNOmIRKS2OG5X7ezu0919ubtfCpwCTM+saSTCdtvB88/DNttAz54w\nc2bSEYlIa2isMLiZbbz2wP0p4BDgTuA7cQcmDUvb+GmHDqERff31YTLcuefCqlX5ee+05SJJykVE\nuchdY4XhYmDH2g+4+2vA/wJ/ijMoKTwHHBAa008/HXoPy5YlHZGItFSTS2KY2S7unuj9J+oxFI5V\nq2DCBLjqKrjpJhg6NOmIREpXbGslmdmzQAdgMvBHd/+kZSG2nApD4Xn++bB96IEHwiWXwPrrJx2R\nSOmJba0kd+8HHE3oK7xiZneb2aAWxCitoFDGT/feG159Fd5/H3r3hoULW/89CiUX+aBcRJSL3GW1\niJ67vwn8ATgd6A9cZWZvmNmP4wxOCltZGdxzD4weDT/4Adxyi+Y8iBSCbIaSdgOqgAOBJ4Cb3f0V\nM/s28IK7x36HkoaSCt+CBXDEEbDTTjBxImy8cdO/IyK5iXPZ7auBV4Hd3P1kd38FwN3fI1xFiDRp\nxx3hpZfC9qE9e4YlvUUknRpbEuMmMxsGHOTut7v7l/XPcffbY41OvqGQx0832ACuuy7sDHfwwXDR\nRbB6dctfr5Bz0dqUi4hykbvGrhhuBSqAR8zsSTM7PTOslDUzG2xmi8xssZmd3sDzXcxsupnVmNl8\nM6tqXvhSiIYNCyu1PvII7Lcf/POfSUckIrVltbWnmXUBBgGDgV0JQ0uPuvu9jfxOW+ANYCDwLjAb\nGO7uC2udMxbo4O5nZt7jDWALd19Z77XUYyhCK1eGPR4mToRbb4X99086IpHiEuvWnu7+gbvf5e7H\nEjbpuQ7o3sSv7QUscfd33H0FMBWoP93pn8BGmT9vBHxYvyhI8WrXDsaOhalTYdQoOPVU+O9/k45K\nRLLe83mNzD/dd3H3C5o4tRuwtNbxssxjtU0CdjKz94C5wC+bG0+pKcbx0/79w5yHt96C//kfWLw4\nu98rxly0lHIRUS5y166Fv3cuYSZ0Y7IZ+/kdYdvQSjP7PvCEme3m7t/Yer6qqory8nIAysrKqKio\noLKyEog+CDou7OM//7mS66+HPfao5pRTYPz4xs9fIy3xJ3lcU1OTqniSPK6pqUlVPPk8rq6uZsqU\nKQBrvy9borH9GBpbH6mHu7dv9IXD8txj3X1w5vhMYLW7T6h1zjTgAneflTn+G3C6u8+p91rqMZSQ\nuXPDPg977hnuYurcOemIRApTHD2GrsCxwEEN/HyQxWvPAbqbWbmZtQeOAB6qd84iQnMaM9sC6AG8\n3Zz/ACk+u+0Gc+aEJb133x1efjnpiERKS2OF4RFgw0zzuM4P8HRTL5xpIo8GHgMWAPe4+0IzG2Vm\nozKnjQf2MLO5wAxgjLt/lMt/ULGrP4xSrDp1gkmTwl1L++8Pl1/+zTkPpZKLbCgXEeUid+vsMbj7\niEaeG57Ni7v7o8Cj9R6bWOvPHxCuQEQadMQRsNdeYaXWGTNgyhTo2jXpqESKWzZrJV0O3OLur+cn\npAZjUI+hxK1YAeecA7fdFn4GDkw6IpH0i3M/hpGERfTWI8yGvjvfezKoMMgaM2bAT38ariTOPx86\ndkw6IpH0inM/hknu3pfQiC4H5pnZXWa2b/PDlFyV+vjpwIHhrqX334fu3asp8XSsVeqfi9qUi9xl\nNcEts7zF9sAOwL8Jk9F+Y2b3xBibSIO6dIE//hFOOQV+8hM48UT49NOkoxIpHtkMJV1BaBA/SdiL\n4aVaz73h7j3iDVFDSbJuH38Mp50Gjz0W1lzSeksikTh7DCMIt5p+0cBzZe7+cXPftLlUGKQpM2bA\nyJGwzz5w5ZWw6aZJRySSvFbvMWSWqMDdb22oKGTor1+eafw0UjsXAwfCvHmwySaw887wwAPJxZUE\nfS4iykXuGlsrabyZdSLMVp5DWAnVgG8BewAHA58BR8YdpEg2NtwQrroKDj8cjjsurNp67bWwxRZJ\nRyZSWBodSjKzbQlf/H2BbTIP/wN4lnDbal6Wr9BQkjTXf/4D48aFfR4uvTQ0qa3ZF9QihS22HkMa\nqDBIS738MowYAVttBTfeCFtvnXREIvkT60Y9ZtbXzI4ys2PX/DQ/RGkNGj+NZJOLXr3CNqJ9+oQF\n+SZOzG2f6bTS5yKiXOSuycJgZncClwD9gD1r/YgUhPbt4ayz4KmnwtDSgAFhUyARaVg2t6suBHZM\ncixHQ0nSWlatCrezXngh/P738ItfQNu2SUclEo84h5LmE+5EEil4bduGvaWffx7+8hfo1w8WLkw6\nKpF0yaYwbA4sMLPHzezhzE/9DXckTzR+GsklF927h6GlY48Nk+LGjw8ruBYqfS4iykXustnzeWzc\nQYgkoU0bOOkkGDIERo2C++4LPYiePZOOTCRZul1VBHCH228P6y6NHBma1euvn3RUIrlp9XkMZvY5\nsK5vY3f3jZr7Zi2lwiD58s9/hlVbFy0KVw99+iQdkUjLtXrz2d03dPfO6/jJW1GQujR+GokjF9/6\nVlhnadw4GDYMfv1r+PzzVn+bVqfPRUS5yF1WE9xayswGm9kiM1tsZqev45xKM3vVzOabWXWc8Yhk\nwwwOOywsyvfRR7DDDnDPPWG4SaQUxNZjyGzu8wYwEHgXmA0Md/eFtc4pA2YB+7n7MjPr4u4fNPBa\nGkqSxDz7LIweHZbyvuYa2GmnpCMSyU6sS2K00F7AEnd/x91XAFOBofXOOQp4wN2XATRUFESS1q8f\nzJkDhxwClZXwm99oxzgpbnEWhm7A0lrHyzKP1dYd2NTMnjKzOWZ2TIzxFAWNn0bymYt27cJVw+uv\nwyefhOGlO+9Mz/CSPhcR5SJ32cxjaKls/sqsB+wODAA6As+b2Qvuvrj+iVVVVZSXlwNQVlZGRUUF\nlZWVQPRB0HFpHa+Rz/fv2hWOOaaaXr3giisqmTgRfvrTarbdNtl81NTUJP7/R1qOa2pqUhVPPo+r\nq6uZMmUKwNrvy5aIs8fQBxjr7oMzx2cCq919Qq1zTgc2cPexmeObgenufn+911KPQVJn1Sq4+WY4\n+2w44gg491woK0s6KpFIGnsMc4DuZlZuZu2BIwi7wdX2INDPzNqaWUegN7AgxphEWk3btmHG9IIF\n8PXXYXhp8uTiXNZbSktshcHdVwKjgccIX/b3uPtCMxtlZqMy5ywCpgOvAS8Ck9xdhaER9YdRSlla\ncrHZZmGfh4cfDpsB9e0Lr7yS3xjSkos0UC5yF2ePAXd/FHi03mMT6x1fClwaZxwi+bDHHmHV1smT\nw/pLw4bBBReE21xFConWShKJwUcfhd7DfffB+efDcceFRftE8kl7PoukUE1NWHvp66/D1cOgQWFm\ntUg+pLH5LDHQ+GmkEHJRURFmTo8ZA7/6Vdj74cknW/99CiEX+aJc5E6FQSRmZnD44TB/Ppx4YriT\nad99Q8EQSSMNJYnk2cqVcMcdYd5D9+7hf7W8t8RBQ0kiBaJdO/jZz+CNN+DQQ8PVxAEHwMsvJx2Z\nSKDCUGA0fhop9Fy0bw8nnACLF4fbWw8+GH70I5g7t/mvVei5aE3KRe5UGEQS1qFDuHNpyZKweuvg\nwWE/iNdfTzoyKVXqMYikzBdfwHXXwaWXwg9/GOZD9OiRdFRSiNRjECkSnTqF21vfegt23DHsB1FV\nFY5F8kGFocBo/DRS7Lno3Bl+//swxFReDr17w8iR8I9/fPPcYs9FcygXuVNhEEm5jTeGsWPhzTeh\na1fYfXc4+WRYtizpyKRYqccgUmD+/W+45JKwF8Qxx8AZZ8C3vpV0VJJG6jGIlIjNN4eLLw77QLRp\nAzvtBL/9bSgYIq1BhaHAaPw0Uuq52HJLuOIKmDcP3nqrmh12CAXj66+TjixZpf65aA0qDCIFrls3\n+OUvw14QM2fCzjvDI48kHZUUMvUYRIrMo4+GlVy///1wRaE5EKVLPQYRAWD//cPw0oABYZvR006D\nTz9NOiopJCoMBUbjpxHlIlI/F+3bw6mnhqW+P/gAtt8ebrsNVq9OJr580ucid7EWBjMbbGaLzGyx\nmZ3eyHl7mtlKMzskznhESs2WW4Y9qP/8Z7j+eth7b3jppaSjkrSLrcdgZm2BN4CBwLvAbGC4uy9s\n4LwngC+Bye7+QAOvpR6DSI5Wr4bbb4ff/S4s1Dd+fCgcUrzS2GPYC1ji7u+4+wpgKjC0gfN+DtwP\n6C5skRi1aRPWXFq0CDbbLNy9dNll8N//Jh2ZpE2chaEbsLTW8bLMY2uZWTdCsbgh85AuC5qg8dOI\nchFpTi422ijMnJ41C2bMgF13henT44st3/S5yF27GF87my/5K4Ez3N3NzIB1XvJUVVVRXl4OQFlZ\nGRUVFVRWVgLRB0HHpXW8RlriSfK4pqamRb8/bRpcdFE1xx0HvXpVcvnlsGxZ8v89uRzX1NSkKp58\nHldXVzNlyhSAtd+XLRFnj6EPMNbdB2eOzwRWu/uEWue8TVQMuhD6DCPd/aF6r6Ueg0iMvv4arrwy\nXEmMHBlWdd1ww6SjklylsccwB+huZuVm1h44Aqjzhe/u33P377r7dwl9hpPqFwURiV+HDnD66fDa\na/Duu2FS3J13gv49VppiKwzuvhIYDTwGLADucfeFZjbKzEbF9b7Frv4wSilTLiKtlYtvfzvcuXT/\n/eEKom9fmDOnVV46b/S5yF2cPQbc/VHg0XqPTVzHuT+LMxYRyd6a+Q5TpsBBB8EBB4TbW7t2TToy\nyQetlSQijfr4Yzj3XLjjjtB7OOUUWG+9pKOSbLS0x6DCICJZWbgwLM63dClcdRX88IdJRyRNSWPz\nWWKg8dOIchHJRy522CHMd7jwQjjxRBg2DN5+O/a3bTZ9LnKnwiAiWTODoUPh9ddhzz3Dzx/+AF98\nkXRk0po0lCQiLbZsWbjN9Zlnwu5xRx4Zioekg3oMIpKYZ5+FX/wCOnWCq6+Gnj2TjkhAPYaSofHT\niHIRSToX/frB7NlwzDFh5dYTTwz7QCQh6VwUAxUGEWkVbdvCCSeE1Vs7dAjN6gsvhM8/TzoyaS4N\nJYlILBYtgnHj4KmnYMwYOOkk2GCDpKMqLRpKEpFU2X57uPtuePxxmDkTtt0WrrsuLNgn6abCUGA0\nfhpRLiJpzsWuu4atRR98EB55BLbbDm65BVasiOf90pyLQqHCICJ5scceMG1auIq4667Qg7jzTli1\nKunIpD71GEQkEU8+CWedBcuXh17Ej38cth+V1qN5DCJScNzhscfC7OmVK8NifQcdpElyrUXN5xKh\n8dOIchEp1FyYhXkPs2eHq4Y//AF69w4N65b+W7BQc5EmKgwikrg1azDV1MCpp4ZZ1P37w9NPJx1Z\nadJQkoikzsqVoUE9bhx873tw3nnQp0/SURUeDSWJSNFo1w6OPTZMkjv88PBz4IHwyitJR1YaYi8M\nZjbYzBaZ2WIzO72B5482s7lm9pqZzTKzXeOOqZBp/DSiXESKNRfrrQcjR8LixaEXceCB4e6l+fPX\n/TvFmot8irUwmFlb4FpgMLAjMNzMdqh32tvAD9x9V+A84KY4YxKRwtOhA4weDUuWhP2oBwyAo46C\nN99MOrLiFGuPwcz2Bs5x98GZ4zMA3P2idZy/CTDP3beq97h6DCKy1mefheW9r7gi3N569tnw3e8m\nHVX6pLXH0A1YWut4WeaxdTkOmBZrRCJS8Dp3ht//PlxBbL11mFV90klh4yDJXdyFIet/5pvZvsAI\n4Bt9CIlo/DSiXERKNRdlZWFS3BtvwEYbhXWZDj20mn/9K+nIClu7mF//XWDrWsdbE64a6sg0nCcB\ng919eUMvVFVVRXl5OQBlZWVUVFRQWVkJRH8pdFxax2ukJZ4kj2tqalIVTxLHEyZU8utfw+GH19C9\nO5x8ciVjxsC8eemILx/H1dXVTJkyBWDt92VLxN1jaAe8AQwA3gNeAoa7+8Ja53wHeBL4ibu/sI7X\nUY9BRLK2dClccAHcdx+ccgr85jfh6qLUpLLH4O4rgdHAY8AC4B53X2hmo8xsVOa0s4FNgBvM7FUz\neynOmESk+G29Ndx4Y1hqY+lS6N49FIrPPks6ssIQ+zwGd3/U3Xu4+7bufmHmsYnuPjHz5+PdfTN3\n75n52SvumApZ/WGUUqZcRJSLSO1cfO97MHkyPPssvP562Czossvgyy+Ti68QaOaziBS9Hj3CEht/\n+xs891woENdeq93k1kVrJYlIyXn55TD3Yf78sCfET38aZlkXm1T2GERE0qhXr7DN6NSp4WeHHeCO\nO7Sb3BoqDAVGY8kR5SKiXESak4u994YZM2DSJJg4EXbeGe69F1avji++QqDCICIlb999YeZMuPJK\nuOQS6NkTHnyw5ZsFFTr1GEREanGHhx8OvYf27cNeEPvtV5jbjWrPZxGRVrR6Ndx/P5xzDmy2GZx/\nPmQmGxdWeUAAAAAG0ElEQVQMNZ9LhMaSI8pFRLmItFYu2rQJGwTNnw+jRsHxx4flvp97rlVePtVU\nGEREGtG2LRxzDCxcCMOHh58hQ8Itr8VKQ0kiIs3w9ddw880wfjz07h32pd5ll6SjapiGkkRE8qBD\nh7Aw35Il0K8fDBwYriLeeCPpyFqPCkOB0VhyRLmIKBeRfOVigw3Cqq1vvRWuGPr1g6oqePvtvLx9\nrFQYRERysOGG8LvfweLFsM02sOeeoVm9dGnTv5tW6jGIiLSiDz8Mk+Ruuik0rc88E7bcMplY1GMQ\nEUmBzTaDiy6CBQvCpLgdd4QxY+CDD5KOLHsqDAVGY8kR5SKiXETSkosttwxLbLz2WtggqEePMJv6\n44+TjqxpKgwiIjHaaiu44QaYMwfefTfsJnf++eneTU49BhGRPHrzzTD3YcYMOO00OPlk6NgxnvdS\nj0FEpABstx388Y9hN7kXXgi7yV1zTbp2k4u1MJjZYDNbZGaLzez0dZxzdeb5uWbWM854ikFaxk/T\nQLmIKBeRQsnFzjuHRfr++ld47LEwxHTTTbBiRdKRxVgYzKwtcC0wGNgRGG5mO9Q7Zwiwrbt3B04A\nbogrnmJRU1OTdAipoVxElItIoeVi991Dcbj3XrjvPth+e7jtNli5MrmY4rxi2AtY4u7vuPsKYCow\ntN45BwO3Abj7i0CZmW0RY0wF7+NCuKUhT5SLiHIRKdRc9OkDTzwBt94Kt9wSriimTk1mN7k4C0M3\noPbcv2WZx5o6Z6sYYxIRSbX+/eHpp+Hqq+GKK6CiAv7yl/zuJhdnYcj2P6N+x1y3HzXinXfeSTqE\n1FAuIspFpBhyYQaDBoXm9AUXwNixYamNjz7K0/vHdRuomfUBxrr74MzxmcBqd59Q65wbgWp3n5o5\nXgT0d/f3672WioWISAu05HbVdnEEkjEH6G5m5cB7wBHA8HrnPASMBqZmCsnH9YsCtOw/TEREWia2\nwuDuK81sNPAY0Ba4xd0XmtmozPMT3X2amQ0xsyXAF8DP4opHRESyUxAzn0VEJH9SNfNZE+IiTeXC\nzI7O5OA1M5tlZrsmEWc+ZPO5yJy3p5mtNLND8hlfvmT596PSzF41s/lmVp3nEPMmi78fXcxsupnV\nZHJRlUCYeWFmt5rZ+2Y2r5Fzmve96e6p+CEMNy0ByoH1gBpgh3rnDAGmZf7cG3gh6bgTzMXewMaZ\nPw8u5VzUOu9J4K/Aj5OOO6HPRBnwOrBV5rhL0nEnmIuxwIVr8gB8CLRLOvaY8rEP0BOYt47nm/29\nmaYrBk2IizSZC3d/3t0/yRy+SPHO/8jmcwHwc+B+4N/5DC6PssnDUcAD7r4MwN0LaAeAZskmF/8E\nNsr8eSPgQ3dPcC5xfNx9JrC8kVOa/b2ZpsKgCXGRbHJR23HAtFgjSk6TuTCzboQvhjVLqhRj4yyb\nz0R3YFMze8rM5pjZMXmLLr+yycUkYCczew+YC/wyT7GlUbO/N+O8XbW5NCEukvV/k5ntC4wA+sYX\nTqKyycWVwBnu7mZmfPMzUgyyycN6wO7AAKAj8LyZveDui2ONLP+yycXvgBp3rzSz7wNPmNlu7p7i\nXRBi1azvzTQVhneBrWsdb02obI2ds1XmsWKTTS7INJwnAYPdvbFLyUKWTS56EebCQBhP3t/MVrj7\nQ/kJMS+yycNS4AN3/wr4ysyeAXYDiq0wZJOL/wEuAHD3t8zs70APwvyqUtPs7800DSWtnRBnZu0J\nE+Lq/8V+CDgW1s6sbnBCXBFoMhdm9h3gT8BP3H1JAjHmS5O5cPfvuft33f27hD7DSUVWFCC7vx8P\nAv3MrK2ZdSQ0GhfkOc58yCYXi4CBAJnx9B7A23mNMj2a/b2ZmisG14S4tbLJBXA2sAlwQ+Zfyivc\nfa+kYo5Llrkoeln+/VhkZtOB14DVwCR3L7rCkOVnYjww2czmEv4BPMbd87TSUH6Z2d1Af6CLmS0F\nziEMK7b4e1MT3EREpI40DSWJiEgKqDCIiEgdKgwiIlKHCoOIiNShwiAiInWoMIiISB0qDCI5yizv\nvNzMHk46FpHWoMIgkruLgWJdsE5KkAqDSJYyGwHNNbMOZtYpswHMju7+JPB50vGJtJbULIkhknbu\nPtvMHgLOBzYA7ijGJSdEVBhEmudcwiJuXxE2BxIpOhpKEmmeLkAnYEPCVcMaWnRMioYKg0jzTAT+\nANwFTKj1eDFuDiQlSkNJIlkys2OBr919qpm1AZ7L7KA3Dtge2DCz7PEId38iyVhFcqFlt0VEpA4N\nJYmISB0qDCIiUocKg4iI1KHCICIidagwiIhIHSoMIiJShwqDiIjUocIgIiJ1/H/dXsztO8QXxAAA\nAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f55b74dcdd0>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from math import exp, log\n",
+ "print \"Example: 10.19 - Page: 436\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# (1): acetone (2): carbon tetrachloride\n",
+ "T = 45## [OC]\n",
+ "# Data = [P (torr), x1, y1]\n",
+ "from numpy import mat\n",
+ "Data = mat([[315.32, 0.0556, 0.2165],[339.70, 0.0903, 0.2910],[397.77, 0.2152, 0.4495],[422.46, 0.2929, 0.5137],[448.88, 0.3970, 0.5832],[463.92, 0.4769, 0.6309],[472.84, 0.5300, 0.6621],[485.16, 0.6047, 0.7081],[498.07, 0.7128, 0.7718],[513.20, 0.9636, 0.9636]])\n",
+ "#*************#\n",
+ "\n",
+ "# From the standard data (Pg 531):\n",
+ "# For Acetone:\n",
+ "A1 = 14.2342#\n",
+ "B1 = 2691.46#\n",
+ "C1 = 230.00#\n",
+ "# For carbon tetrachloride:\n",
+ "A2 = 13.6816#\n",
+ "B2 = 2355.82#\n",
+ "C2 = 220.58#\n",
+ "P1sat = exp(A1 - B1/(T + C1))## [kPa]\n",
+ "P2sat = exp(A2 - B2/(T + C2))## [kPa]\n",
+ "P1sat = P1sat*760/101.325## [torr]\n",
+ "P2sat = P2sat*760/101.325## [torr]\n",
+ "P = Data[:,0]#\n",
+ "x1 = Data[:,1]#\n",
+ "y1 = Data[:,2]#\n",
+ "x2 = 1 - x1#\n",
+ "y2 = 1 - y1#\n",
+ "from numpy import nditer, shape, zeros\n",
+ "gama1 = zeros(x1.shape)\n",
+ "i=0\n",
+ "for a,b,c in nditer([y1,P,x1]):\n",
+ " gama1[i]=(a*b/c)\n",
+ " i+=1\n",
+ "\n",
+ " \n",
+ "gama2 = zeros(x2.shape)\n",
+ "i=0\n",
+ "for a,b,c in nditer([y2,P,x2]):\n",
+ " gama2[i]=(a*b/c)\n",
+ " i+=1\n",
+ "\n",
+ "Value = zeros(gama1.shape)\n",
+ "i=0 \n",
+ "for x,y in nditer([gama1, gama2]):\n",
+ " Value[i]=(log(x/y))\n",
+ " i+=1\n",
+ " \n",
+ "%matplotlib inline\n",
+ "from matplotlib.pyplot import plot, xlabel, ylabel, show, grid\n",
+ "plot(x1,Value)\n",
+ "grid()#\n",
+ "xlabel(\"x1\")\n",
+ "ylabel(\"ln(y1/y2)\")\n",
+ "# Since the whole area is above X - axis:\n",
+ "print \"The data is not consistent thermodynamically\\n\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch11.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch11.ipynb
new file mode 100644
index 00000000..f82a09fd
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch11.ipynb
@@ -0,0 +1,357 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Chapter 11 - Additional topics in phase equillibrium"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 11.1 Page: 458"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 11.1 - Page: 458\n",
+ "\n",
+ "\n",
+ "Molecular Formula of Sulphur is S8\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 11.1 - Page: 458\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "a = 2.423## [g]\n",
+ "b = 100## [g]\n",
+ "Lf = 35.7## [cal/g]\n",
+ "Tf = 353.1## [cal/g]\n",
+ "delta_Tf = 0.64## [OC]\n",
+ "R = 2## [cal/mol K]\n",
+ "Mw = 32## [Molecular wt. of Sulphur, g/mol]\n",
+ "#*************#\n",
+ "\n",
+ "M2 = ((R*Tf**2/(1000*Lf))*(a*1000/(b)))/delta_Tf## [g/mol]\n",
+ "n = M2/Mw#\n",
+ "print \"Molecular Formula of Sulphur is S%d\"%(round(n))#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 11.2 Page: 459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 11.2 - Page: 459\n",
+ "\n",
+ "\n",
+ "Molal Freezing point is 5.10 kg/kmol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 11.2 - Page: 459\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Tf = 5 + 273## [K]\n",
+ "Lf = 9830## [J/mol]\n",
+ "R = 8.314## [J/mol K]\n",
+ "M1 = 78## [kg/kmol]\n",
+ "#**************#\n",
+ "\n",
+ "Kf = R*Tf**2*M1/(1000*Lf)## [kg/kmol]\n",
+ "print \"Molal Freezing point is %.2f kg/kmol\\n\"%(Kf)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 11.3 Page: 458"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 11.3 - Page: 458\n",
+ "\n",
+ "\n",
+ "Latent Heat of Fusion of phenol is 26.54 cal/g\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 11.3 - Page: 458\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "T_melting = 40## [OC]\n",
+ "Tf = T_melting + 273## [K]\n",
+ "a = 0.172## [g]\n",
+ "b = 12.54## [g]\n",
+ "T_new = 39.25## [OC]\n",
+ "M2 = 135## [Molecular wt. of acetanilide, g/mol]\n",
+ "R = 2## [cal/mol K]\n",
+ "#**************#\n",
+ "\n",
+ "delta_T = T_melting - T_new## [OC]\n",
+ "Kf = delta_T*b*M2/(1000*a)#\n",
+ "Lv = ((R*Tf**2/(1000)))/Kf## [cal/g]\n",
+ "print \"Latent Heat of Fusion of phenol is %.2f cal/g\\n\"%(Lv)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 11.4 Page: 461"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 11.4 - Page: 461\n",
+ "\n",
+ "\n",
+ "Molecular weight of anthracene is 178 kg/kmol\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 11.4 - Page: 461\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "T_boiling = 118.24## [OC]\n",
+ "Tb = T_boiling + 273## [K]\n",
+ "a = 0.4344## [g]\n",
+ "b = 44.16## [g]\n",
+ "Lv = 121## [cal/g]\n",
+ "T_new = 118.1## [OC]\n",
+ "R = 2## [cal/mol K]\n",
+ "#**************#\n",
+ "\n",
+ "delta_Tb = T_boiling - T_new## [OC]\n",
+ "M2 = (R*Tb**2/(1000*Lv))*(a*1000/(b*delta_Tb))#\n",
+ "print \"Molecular weight of anthracene is %d kg/kmol\"%(round(M2))#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 11.5 Page: 462"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 11.5 - Page: 462\n",
+ "\n",
+ "\n",
+ "Molar Latent Heat of Vaporisation is 31638 J/mol\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 11.5 - Page: 462\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "delta_Tb = 2.3## [K]\n",
+ "w1 = 100## [g]\n",
+ "M1 = 78## [g/mol]\n",
+ "w2 = 13.86## [g]\n",
+ "M2 = 154## [g/mol]\n",
+ "Tb = 353.1## [K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#****************#\n",
+ "\n",
+ "# Molality:\n",
+ "m = w2*1000/(w1*M2)## [mol/kg]\n",
+ "# Molal Elevation Constant:\n",
+ "Kb = delta_Tb/m## [K kg/mol]\n",
+ "# Molar Latent Heat of Vaporisation:\n",
+ "Lv = R*Tb**2*M1/(1000*Kb)## [J/mol]\n",
+ "print \"Molar Latent Heat of Vaporisation is %d J/mol\"%(Lv)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 11.6 Page: 465"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 11.6 - Page: 465\n",
+ "\n",
+ "\n",
+ "Osmotic Pressure is 594.38 kPa\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 11.6 - Page: 465\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Temp = 50 + 273## [K]\n",
+ "w2 = 60## [g]\n",
+ "w1 = 1500## [g]\n",
+ "M1 = 18## [g/mol]\n",
+ "M2 = 180## [g/mol]\n",
+ "Vl = 18*10**(-6)## [Molar Volume of water, cubic m/mol]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#***************#\n",
+ "\n",
+ "# Mole fraction of glucose:\n",
+ "x2 = (w2/M2)/((w2/M2) + (w1/M1))#\n",
+ "# Applying Eqn. (11.45):\n",
+ "P = R*Temp*x2/Vl## [N/square m]\n",
+ "P = P/1000## [kPa]\n",
+ "print \"Osmotic Pressure is %.2f kPa\\n\"%(P)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 11.7 Page: 465"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 11.7 - Page: 465\n",
+ "\n",
+ "\n",
+ "Osmotic Pressure of the solution is 4.92 atm\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 11.7 - Page: 465\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "w2 = 0.6## [g]\n",
+ "w3 = 1.8## [g]\n",
+ "Temp = 27 + 273## [K]\n",
+ "V1 = 100## [cubic cm]\n",
+ "M2 = 60## [g/mol]\n",
+ "M3 = 180## [g/mol]\n",
+ "R = 0.082## [L.atm/mol.K]\n",
+ "#****************#\n",
+ "\n",
+ "V1 = V1/1000## [litre]\n",
+ "# C: Concentration per litre\n",
+ "C = ((w2/M2) + (w3/M3))/V1## [mol/litre]\n",
+ "P = C*R*Temp## [atm]\n",
+ "print \"Osmotic Pressure of the solution is %.2f atm\"%(P)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch12.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch12.ipynb
new file mode 100644
index 00000000..f7621b67
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch12.ipynb
@@ -0,0 +1,1310 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter12 - Chemical reaction equillibria"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.1 Page: 471"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.1 - Page: 471\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 12.1 on page 471 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.1 - Page: 471\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 12.1 on page number 471 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 12.1 on page 471 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.2 Page: 473"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.2 - Page: 473\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 12.2 on page 473 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.2 - Page: 473\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 12.2 on page number 473 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 12.2 on page 473 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.3 Page: 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.3 - Page: 479\n",
+ "\n",
+ "\n",
+ "Reaction is feasible\n",
+ "\n",
+ "Equilibium Constant is 7.964e+32\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "from __future__ import division\n",
+ "print \"Example: 12.3 - Page: 479\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: C2H5OH(g) + (1/2)O2(g) = CH3CHO(g) + H2O(g)\n",
+ "Temp = 298## [K]\n",
+ "G_CH3CHO = -133.978## [kJ]\n",
+ "G_H2O = -228.60## [kJ]\n",
+ "G_C2H5OH = -174.883## [kJ]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#***************#\n",
+ "\n",
+ "G_O2 = 0## [kJ]\n",
+ "G_rkn = G_CH3CHO + G_H2O -(G_C2H5OH + G_O2)## [kJ]\n",
+ "G_rkn = G_rkn*1000## [J]\n",
+ "if G_rkn < 0 :\n",
+ " print \"Reaction is feasible\\n\"\n",
+ " K = exp(-(G_rkn/(R*Temp)))#\n",
+ " print \"Equilibium Constant is %.3e\"%(K)#\n",
+ "else:\n",
+ " print \"Reaction is not feasible\\n\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.4 Page: 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.4 - Page: 479\n",
+ "\n",
+ "\n",
+ "Vaporisation of liquid water is not spontaneous\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.4 - Page: 479\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# H2O(l) = H2O(g)\n",
+ "deltaH = 9710## [cal]\n",
+ "deltaS = 26## [e.u.]\n",
+ "Temp = 27 + 273## [K]\n",
+ "P = 1## [atm]\n",
+ "#**************#\n",
+ "\n",
+ "deltaG = deltaH - Temp*deltaS## [cal]\n",
+ "if deltaG > 0:\n",
+ " print \"Vaporisation of liquid water is not spontaneous\\n\"\n",
+ "else:\n",
+ " print \"Vaporisation of liquid water is spontaneous\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.5 Page: 481"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.5 - Page: 481\n",
+ "\n",
+ "\n",
+ "Standard Gibbs free energy change is -33.5 kJ/mol\n",
+ "\n",
+ "Equilibrium constant is 7.45e+05\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.5 - Page: 481\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: N2(g) + 3H2(g) = 2NH3(g)\n",
+ "Temp = 298## [K]\n",
+ "G_NH3 = -16.750## [kJ/mol]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#***************#\n",
+ "\n",
+ "G_N2 = 0## [kJ/mol]\n",
+ "G_H2 = 0## [kJ/mol]\n",
+ "G_rkn = 2*G_NH3 - G_N2 - 3*G_H2## [kJ/mol]\n",
+ "print \"Standard Gibbs free energy change is %.1f kJ/mol\\n\"%(G_rkn)#\n",
+ "G_rkn = G_rkn*1000## [J/mol]#\n",
+ "K = exp(-(G_rkn/(R*Temp)))#\n",
+ "print \"Equilibrium constant is %.2e\"%(K)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.6 Page: 481"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.6 - Page: 481\n",
+ "\n",
+ "\n",
+ "Equilibrium Constant is 1.005e+05\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.6 - Page: 481\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: CO(g) + H2O(g) = CO2(g) + H2(g)\n",
+ "G_CO = -32.8## [kcal]\n",
+ "G_H2O = -54.64## [kcal]\n",
+ "G_CO2 = -94.26## [kcal]\n",
+ "Temp = 273 + 25## [K]\n",
+ "R = 1.987## [cal/mol.K]\n",
+ "#***************#\n",
+ "\n",
+ "G_H2 = 0## [kcal]\n",
+ "G_rkn = G_CO2 + G_H2 - (G_CO + G_H2O)## [kcal]\n",
+ "G_rkn = G_rkn*1000## [cal]\n",
+ "K = exp(-(G_rkn/(R*Temp)))#\n",
+ "print \"Equilibrium Constant is %.3e\"%(K)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.7 Page: 485"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.7 - Page: 485\n",
+ "\n",
+ "\n",
+ "Equilibrium constant at 1000 K is 0.9190\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.7 - Page: 485\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: CO(g) + H2O(g) = CO2(g) + H2(g)\n",
+ "T1 = 298## [K]\n",
+ "T2 = 1000## [K]\n",
+ "P = 1## [bar]\n",
+ "K1 = 1.1582*10**5#\n",
+ "H_CO = -110.532## [kJ]\n",
+ "H_H2O = -241.997## [kJ]\n",
+ "H_CO2 = -393.978## [kJ]\n",
+ "R = 8.314## [J/mol.K]\n",
+ "#***************#\n",
+ "\n",
+ "H_H2 = 0## [kJ]\n",
+ "H_rkn = H_CO2 + H_H2 - (H_CO + H_H2O)## [kJ]\n",
+ "H_rkn = H_rkn*1000## [J]\n",
+ "# From Van't Hoff Equation,\n",
+ "K2 = K1*exp((H_rkn/R)*((1/T1) - (1/T2)))#\n",
+ "print \"Equilibrium constant at 1000 K is %.4f\"%(K2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.8 Page: 485"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.8 - Page: 485\n",
+ "\n",
+ "\n",
+ "Equilibrium constant at 700 K is 3.8878e-04\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.8 - Page: 485\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: N2(g) + 3H2(g) = 2NH3(g)\n",
+ "T1 = 298## [K]\n",
+ "T2 = 700## [K]\n",
+ "H_NH3 = -46.1## [kJ]\n",
+ "G_NH3 = -16.747## [kJ]\n",
+ "R = 8.314## [J/mol.K]\n",
+ "#**************#\n",
+ "\n",
+ "H_N2 = 0## [kJ]\n",
+ "H_H2 = 0## [kJ]\n",
+ "G_N2 = 0## [kJ]\n",
+ "G_H2 = 0## [kJ]\n",
+ "H_rkn = 2*H_NH3 - (H_N2 + 3*H_H2)## [kJ]\n",
+ "G_rkn = 2*G_NH3 - (G_N2 + 3*G_H2)## [kJ]\n",
+ "H_rkn = H_rkn*1000## [J]\n",
+ "G_rkn = G_rkn*1000## [J]\n",
+ "K1 = exp(-(G_rkn/(R*T1)))#\n",
+ "K2 = K1*exp((H_rkn/R)*((1/T1) - (1/T2)))#\n",
+ "print \"Equilibrium constant at 700 K is %.4e\"%(K2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.9 Page: 486"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.9 - Page: 486\n",
+ "\n",
+ "\n",
+ "Standard Gibbs free energy at 1000 K -6.055 kJ\n",
+ "\n",
+ "Standard Equilibrium Constant is 2.1\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "print \"Example: 12.9 - Page: 486\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: CO(g) + H2O(g) ----> CO2(g) + H2(g)\n",
+ "T1 = 298## [K]\n",
+ "T2 = 1000## [K]\n",
+ "deltaH_298 = -41450## [J/mol]\n",
+ "deltaGf_298 = -28888## [J/mol]\n",
+ "alpha_CO2 = 45.369## [kJ/kmol K]\n",
+ "alpha_H2 = 27.012## [kJ/kmol K]\n",
+ "alpha_CO = 28.068## [kJ/kmol K]\n",
+ "alpha_H2O = 28.850## [kJ/kmol K]\n",
+ "beeta_CO2 = 8.688*10**(-3)## [kJ/kmol square K]\n",
+ "beeta_H2 = 3.509*10**(-3)## [kJ/kmol square K]\n",
+ "beeta_CO = 4.631*10**(-3)## [kJ/kmol square K]\n",
+ "beeta_H2O = 12.055*10**(-3)## [kJ/kmol square K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#*************#\n",
+ "\n",
+ "delta_alpha = alpha_CO2 + alpha_H2 - (alpha_CO + alpha_H2O)#\n",
+ "delta_beeta = beeta_CO2 + beeta_H2 - (beeta_CO + beeta_H2O)#\n",
+ "# To obtain the standard heat of reaction:\n",
+ "deltaH_0 = deltaH_298 - (delta_alpha*T1 + (delta_beeta*T1**2)/2)## [kJ/mol]\n",
+ "# From Eqn. 12.52:\n",
+ "IR = (deltaH_0 - delta_alpha*T1*log(T1) - (delta_beeta*T1**2)/2 - deltaGf_298)/T1## [kJ/mol K]\n",
+ "# Substituting T = T2 and IR in Eqn. 12.51:\n",
+ "deltaG_1000 = deltaH_0 - delta_alpha*T2*log(T2) - (delta_beeta*T2**2)/2 - IR*T2## [kJ/mol]\n",
+ "print \"Standard Gibbs free energy at 1000 K %.3f kJ\\n\"%(deltaG_1000/1000)#\n",
+ "\n",
+ "# Standard Equilibrium Constant at 1000 K\n",
+ "K_1000 = exp(-(deltaG_1000)/(R*T2))#\n",
+ "print \"Standard Equilibrium Constant is %.1f\"%(K_1000)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.10 Page: 489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.10 - Page: 489\n",
+ "\n",
+ "\n",
+ "Composition of the gas leaving the mixture\n",
+ "\n",
+ "yCO = yH20 = 0.2247\n",
+ "\n",
+ "yCO2 = yH2 = 0.2753\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.10 - Page: 489\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: CO(g) + H2O(g) ------> CO2(g) + H2(g)\n",
+ "P = 10## [bar]\n",
+ "T = 1000## [K]\n",
+ "K_1000 = 1.5#\n",
+ "#***********#\n",
+ "\n",
+ "# Moles in feed:\n",
+ "nCO_feed = 1#\n",
+ "nH20_feed = 1#\n",
+ "# Let e be the degree of completion at equilibrium.\n",
+ "# Moles at Equilibrium:\n",
+ "# nCO_eqb = 1 - e#\n",
+ "# nH20_eqb = 1 - e#\n",
+ "# nCO2_eqb = e#\n",
+ "# nH2_eqb = e#\n",
+ "# Total moles at equilibrium = 1 - e + 1 - e + e + e = 2\n",
+ "# Mole Fractions at Equilibrium:\n",
+ "# yCO_eqb = (1 - e)/2#\n",
+ "# yH20_eqb = (1 - e)/2#\n",
+ "# yCO2_eqb = e/2#\n",
+ "# yH2_eqb = e/2#\n",
+ "# Sum of stoichometric coeffecient:\n",
+ "v = 1 + 1 - 1 - 1#\n",
+ "K = K_1000*P**v#\n",
+ "#deff('[y] = f(e)','y = K - (e/2)*(e/2)/(((1 - e)/2)*(1 - e)/2)')#\n",
+ "def f(e):\n",
+ " y = K - (e/2)*(e/2)/(((1 - e)/2)*(1 - e)/2)\n",
+ " return y\n",
+ "from scipy.optimize import fsolve\n",
+ "e = fsolve(f, 0.5)#\n",
+ "print \"Composition of the gas leaving the mixture\\n\"\n",
+ "print \"yCO = yH20 = %.4f\\n\"%((1 - e)/2)#\n",
+ "print \"yCO2 = yH2 = %.4f\\n\"%(e/2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.11 Page: 489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.11 - Page: 489\n",
+ "\n",
+ "\n",
+ "Molar Composition of the gases\n",
+ "\n",
+ "yN2 = 0.1103\n",
+ "\n",
+ "yH2 = 0.7207\n",
+ "\n",
+ "yNH3 = 0.1690\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.11 - Page: 489\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: N2(g) + 3H2(g) --------> 2NH3\n",
+ "nN2_feed = 1#\n",
+ "nH2_feed = 5#\n",
+ "T = 800## [K]\n",
+ "P = 250## [bar]\n",
+ "K = 1.106*10**(-5)#\n",
+ "#**************#\n",
+ "\n",
+ "# Let e be the degree of completion at equilibrium.\n",
+ "# Moles at Equilibrium:\n",
+ "# nN2_eqb = 1 - e#\n",
+ "# nH2_eqb = 5 - 3*e#\n",
+ "# nNH3_eqb = 2*e#\n",
+ "# Total moles at equilibrium = 1 - e + 5 - 3*e + 2*e = 2*(3 - e)\n",
+ "# Mole Fractions at Equilibrium:\n",
+ "# yN2_eqb = (1 - e)/(2*(3 - e))#\n",
+ "# yH2_eqb = (5 - 3*e)/(2*(3 - e))#\n",
+ "# yNH3_eqb = 2*e/(2*(3 - e))#\n",
+ "# Sum of stoichometric coeffecient:\n",
+ "v = 2 - 3 - 1#\n",
+ "Ky = K*P**(-v)#\n",
+ "def f(e):\n",
+ " y = Ky - ((2*e/(2*(3 - e)))**2)/(((1-e)/((2*(3 - e))))*((5 - 3*e)/(2*(3 - e)))**3)\n",
+ " return y\n",
+ "e = fsolve(f, 0.5)#\n",
+ "print \"Molar Composition of the gases\\n\"\n",
+ "print \"yN2 = %.4f\\n\"%((1 - e)/(2*(3 - e)))#\n",
+ "print \"yH2 = %.4f\\n\"%((5 - 3*e)/(2*(3 - e)))#\n",
+ "print \"yNH3 = %.4f\\n\"%((2*e)/(2*(3 - e)))#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.12 Page: 490"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.12 - Page: 490\n",
+ "\n",
+ "\n",
+ "Molar Composition of the gases\n",
+ "\n",
+ "nSO2 = 0.52\n",
+ "\n",
+ "nO2 = 3.26\n",
+ "\n",
+ "nSO3 = 9.48\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.12 - Page: 490\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: SO2(g) + (1/2)O2 ------> SO3(g)\n",
+ "P = 1## [bar]\n",
+ "T = 750## [K]\n",
+ "K = 74#\n",
+ "#************#\n",
+ "\n",
+ "# Moles in Feed:\n",
+ "nSO2 = 1#\n",
+ "nO2 = 0.5#\n",
+ "# Let e be the degree of completion at equilibrium.\n",
+ "# Moles at Equilibrium:\n",
+ "# nSO2_eqb = 10 - e#\n",
+ "# nO2_eqb = 8 - 0.5*e#\n",
+ "# nSO3_eqb = e#\n",
+ "# Total no. of moles = 10 - e + 8 - 0.5*e + e = 18 -0.5*e#\n",
+ "# Mole fraction at Equilibrium:\n",
+ "# ySO2_eqb = (10 - e)/(18 - 0.5*e)#\n",
+ "# yO2_eqb = (8 - 0.5*e)/(18 - 0.5*e)#\n",
+ "# ySO3_eqb = e/(18 - 0.8*e)#\n",
+ "# Sum of stoichometric coeffecient:\n",
+ "v = 1 - 1 -0.5#\n",
+ "Ky = K*P**(-v)#\n",
+ "def f(e):\n",
+ " y = Ky - (e*(18 - (0.5*e)))/((10 - e)*(8 - 0.5*e))\n",
+ " return y\n",
+ "e = fsolve(f, 7)#\n",
+ "print \"Molar Composition of the gases\\n\"\n",
+ "print \"nSO2 = %.2f\\n\"%((10 - e))#\n",
+ "print \"nO2 = %.2f\\n\"%((8 - 0.5*e))#\n",
+ "print \"nSO3 = %.2f\\n\"%(e)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.13 Page: 492"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.13 - Page: 492\n",
+ "\n",
+ "\n",
+ "Total Pressure Required for 50 % conversion of PCl5 is 5.4 atm\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.13 - Page: 492\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: PCl5 = PCl3 + Cl2\n",
+ "T = 250## [OC]\n",
+ "Kp = 1.8#\n",
+ "e = 0.5#\n",
+ "#**************#\n",
+ "\n",
+ "# Basis: 1 mol of PCl5\n",
+ "# At Equilibrium:\n",
+ "n_PCl5 = 1 - e#\n",
+ "n_PCl3 = e#\n",
+ "n_Cl2 = e#\n",
+ "n_total = n_PCl5 + n_PCl3 + n_Cl2#\n",
+ "# Patrial Pressures:\n",
+ "# P_PCl5 = (n_PCl5/n_total)*P\n",
+ "# P_PCl3 = (n_PCl3/n_total)*P\n",
+ "# P_Cl2 = (n_Cl2/n_total)*P\n",
+ "def f(P):\n",
+ " y = Kp - ((n_PCl3/n_total)*P)*((n_Cl2/n_total)*P)/((n_PCl5/n_total)*P)\n",
+ " return y\n",
+ "P = fsolve(f, 7)## [atm]\n",
+ "print \"Total Pressure Required for 50 %% conversion of PCl5 is %.1f atm\"%(P)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.14 Page: 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.14 - Page: 494\n",
+ "\n",
+ "\n",
+ "Degree of Conversion is 0.802\n",
+ "\n",
+ "Equilibrium Composition of the reaction Mixture\n",
+ "\n",
+ "ySO2 = 0.0639\n",
+ "\n",
+ "yO2 = 0.0319\n",
+ "\n",
+ "ySO3 = 0.2588\n",
+ "\n",
+ "yAr = 0.6454\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.14 - Page: 494\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: SO2(g) + (1/2)O2(g) -------> SO3(g)\n",
+ "# Moles in Feed:\n",
+ "nSO2_feed = 1#\n",
+ "nO2_feed = 0.5#\n",
+ "nAr_feed = 2#\n",
+ "P = 30## [bar]\n",
+ "T = 900## [K]\n",
+ "K = 6#\n",
+ "#*************#\n",
+ "\n",
+ "# Let e be the degree of completion at equilibrium.\n",
+ "# nSO2_eqb = 1 - e#\n",
+ "# nO2_eqb = 0.5*(1 - e)#\n",
+ "# nSO3_eqb = e#\n",
+ "# nAr_eqb = 2#\n",
+ "# Total moles at equilibrium = 1 - e + 0.5*(1 - e) + e + 2 = (7 - e)/2\n",
+ "# Mole fractions:\n",
+ "# ySO2_eqb = 2*(1 - e)/(7 - e)\n",
+ "# yO2_eqb = (1 - e)/(7 - e)\n",
+ "# ySO3_eqb = 2*e/(7 - e)\n",
+ "# yAr_eqb = 4/(7 - e)\n",
+ "# Sum of Stoichiometric Coeffecient:\n",
+ "v = 1 - 1 - 1/2#\n",
+ "Ky = K*P**(-v)#\n",
+ "e = 0.8#\n",
+ "err = 1#\n",
+ "while err > 0.2:\n",
+ " Ky_new = (2*e/(7 - e))/(((2*(1 - e))/(7 - e))*(((1 - e)/(7 - e))**0.5))#\n",
+ " err = abs(Ky - Ky_new)#\n",
+ " Ky = Ky_new#\n",
+ " e = e + 0.001#\n",
+ "print \"Degree of Conversion is %.3f\\n\"%(e)#\n",
+ "ySO2_eqb = 2*(1 - e)/(7 - e)#\n",
+ "yO2_eqb = (1 - e)/(7 - e)#\n",
+ "ySO3_eqb = 2*e/(7 - e)#\n",
+ "yAr_eqb = 4/(7 - e)#\n",
+ "print \"Equilibrium Composition of the reaction Mixture\\n\"\n",
+ "print \"ySO2 = %.4f\\n\"%(ySO2_eqb)#\n",
+ "print \"yO2 = %.4f\\n\"%(yO2_eqb)#\n",
+ "print \"ySO3 = %.4f\\n\"%(ySO3_eqb)#\n",
+ "print \"yAr = %.4f\\n\"%(yAr_eqb)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.15 Page: 498"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.15 - Page: 498\n",
+ "\n",
+ "\n",
+ "Mole fraction of ethyl acetate is 0.344\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.15 - Page: 498\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: CH3COOH(l) + C2H5OH(l) --------> CH3COOC2H5(l) + H2O(l)\n",
+ "T = 373.15## [K]\n",
+ "nCH3COOH_feed = 1#\n",
+ "nC2H5OH_feed = 1#\n",
+ "deltaHf_CH3COOH = -484.5## [kJ]\n",
+ "deltaHf_C2H5OH = -277.69## [kJ]\n",
+ "deltaHf_CH3COOC2H5 = -480## [kJ]\n",
+ "deltaHf_H2O = -285.83## [kJ]\n",
+ "deltaGf_CH3COOH = -389.9## [kJ]\n",
+ "deltaGf_C2H5OH = -174.78## [kJ]\n",
+ "deltaGf_CH3COOC2H5 = -332.2## [kJ]\n",
+ "deltaGf_H2O = -237.13## [kJ]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#******************#\n",
+ "\n",
+ "deltaH_298 = deltaHf_CH3COOC2H5 + deltaHf_H2O - deltaHf_CH3COOH - deltaHf_C2H5OH## [kJ]\n",
+ "deltaG_298 = deltaGf_CH3COOC2H5 + deltaGf_H2O - deltaGf_CH3COOH - deltaGf_C2H5OH## [kJ]\n",
+ "T0 = 298## [K]\n",
+ "K_298 = exp(-(deltaG_298*1000/(R*T0)))#\n",
+ "K_373 = K_298*exp((deltaH_298*1000/R)*((1/T0) - (1/T)))#\n",
+ "# Let e be the degree of completion at equilibrium.\n",
+ "# nCH3COOH_eqb = 1 - e#\n",
+ "# nC2H5OH_eqb = 1 - e#\n",
+ "# nCH3COOC2H5_eqb = e#\n",
+ "# nH2O_eqb = e#\n",
+ "# Total moles at equilibrium = 1 - e + 1 - e + e + e = 2\n",
+ "# Mole fractions:\n",
+ "# ySO2_eqb = (1 - e)/2\n",
+ "# yO2_eqb = (1 - e)/2\n",
+ "# ySO3_eqb = e/2\n",
+ "# yAr_eqb = e/2\n",
+ "# Sum of Stoichiometric Coeffecient:\n",
+ "v = 1 + 1 - 1 - 1#\n",
+ "def f(e):\n",
+ " y = K_373 - ((e/2)*(e/2))/(((1 - e)/2)*((1 - e)/2))\n",
+ " return y\n",
+ "e = fsolve(f, 0.5)#\n",
+ "print \"Mole fraction of ethyl acetate is %.3f\"%(e/2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.16 Page: 501"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.16 - Page: 501\n",
+ "\n",
+ "\n",
+ "The decomposition pressure of limestone is 0.0493 bar at 1000 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.16 - Page: 501\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: CaCO3(s) = CaO(s) + CO2(g)\n",
+ "T = 1000## [K]\n",
+ "deltaH_1000 = 1.7533*10**5## [J]\n",
+ "deltaS_1000 = 150.3## [J/mol K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#****************#\n",
+ "\n",
+ "deltaG_1000 = deltaH_1000 - T*deltaS_1000## [J]\n",
+ "K_1000 = exp(-(deltaG_1000/(R*T)))## [bar]\n",
+ "P = K_1000#\n",
+ "print \"The decomposition pressure of limestone is %.4f bar at 1000 K\"%(P)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.17 Page: 501"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.17 - Page: 501\n",
+ "\n",
+ "\n",
+ "The decomposition pressure is 0.0093 bar at 400 K\n",
+ "\n",
+ "The decomposition pressure is 343.20 bar at 700 K\n",
+ "\n",
+ "The decomposition temperature is 493.450 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.17 - Page: 501\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Reaction: A(s) ---------> B(s) + C(g)\n",
+ "def f1(T):\n",
+ " deltaG = 85000 - 213.73*T + 6.71*T*log(T) - 0.00028*T**2\n",
+ " return deltaG\n",
+ "T1 = 400## [K]\n",
+ "T2 = 700## [K]\n",
+ "Pc = 1## [bar]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#**************#\n",
+ "\n",
+ "deltaG_400 = f1(400)## [J]\n",
+ "deltaG_700 = f1(700)## [J]\n",
+ "K_400 = exp(-(deltaG_400/(R*T1)))## [bar]\n",
+ "K_700 = exp(-(deltaG_700/(R*T2)))## [bar]\n",
+ "print \"The decomposition pressure is %.4f bar at 400 K\\n\"%(K_400)#\n",
+ "print \"The decomposition pressure is %.2f bar at 700 K\\n\"%(K_700)#\n",
+ "\n",
+ "# Equilibrium constant for solid - gas reaction is:\n",
+ "# K = aB*aC/aA = aC = fC = Pc\n",
+ "def f2(T):\n",
+ " y = Pc - exp(-f1(T)/(R*T))\n",
+ " return y\n",
+ "T = fsolve(f2,900)## [K]\n",
+ "print \"The decomposition temperature is %.3f K\"%(T)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.18 Page: 502"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.18 - Page: 502\n",
+ "\n",
+ "\n",
+ "Equilibrium Composition\n",
+ "\n",
+ "yH2 = 0.34\n",
+ "\n",
+ "y_H2O = 0.66\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.18 - Page: 502\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "T = 875## [K]\n",
+ "K = 0.514#\n",
+ "P = 1## [bar]\n",
+ "#*************#\n",
+ "\n",
+ "# Reaction: Fe(s) + H2O(g) --------->FeO(s) + H2(g)\n",
+ "# K = a_FeO*a_H2/(a_Fe*a_H2O)\n",
+ "# Since the activities of the solid components Fe & FeO at equilibrium may be taken as unity.\n",
+ "# a_Fe = a_FeO = 1\n",
+ "# Ka = a_H2/a_H2O#\n",
+ "# Feed:\n",
+ "nH2O_feed = 1#\n",
+ "nH2feed = 0#\n",
+ "# Let e be the degree of completion at equilibrium.\n",
+ "# Moles at Equilibrium:\n",
+ "# nH2O_eqb = 1 - e#\n",
+ "# nH2_eqb = e#\n",
+ "# Total moles at equilibrium = 1 - e + e = 1\n",
+ "# Mole Fractions at Equilibrium:\n",
+ "# yH20_eqb = 1 - e#\n",
+ "# yH2_eqb = e#\n",
+ "# Sum of stoichometric coeffecient:\n",
+ "v = 1 - 1#\n",
+ "Ky = K*P**(-v)#\n",
+ "# Ky = e/(1 - e)\n",
+ "e = Ky/(Ky + 1)#\n",
+ "yH2_eqb = e#\n",
+ "yH2O_eqb = 1 - e#\n",
+ "print \"Equilibrium Composition\\n\"\n",
+ "print \"yH2 = %.2f\\n\"%(yH2_eqb)#\n",
+ "print \"y_H2O = %.2f\\n\"%(yH2O_eqb)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.19 Page: 503"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.19 - Page: 503\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 12.19 on page 503 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.19 - Page: 503\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 12.19 on page number 503 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 12.19 on page 503 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.20 Page: 505"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.20 - Page: 505\n",
+ "\n",
+ "\n",
+ "No. of independent reaction that occur is 2\n",
+ "\n",
+ "No. of Degree of freedom is 4\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.20 - Page: 505\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#Reactions:\n",
+ "# CO + (1/2)O2 ------------> CO2 ......................................(1)\n",
+ "# C + O2 ------------------> CO2 ......................................(2)\n",
+ "# H2 + (1/2)O2 ------------> H2O ......................................(3)\n",
+ "# C + 2H2 -----------------> CH4 ......................................(4)\n",
+ "\n",
+ "# Elimination of C:\n",
+ "# Combining Eqn. (2) with (1):\n",
+ "# CO + (1/2)O2 ------------> CO2 ......................................(5)\n",
+ "# Combining Eqn. (2) with (4):\n",
+ "# CH4 + O2 ----------------> 2H2 + CO2 ................................(6)\n",
+ "\n",
+ "# Elimination of O2:\n",
+ "# Combining Eqn. (3) with (4):\n",
+ "# CO2 + H2 ----------------> CO + H2O .................................(7)\n",
+ "# Combining Eqn. (3) with (6):\n",
+ "# CH4 + 2H2O -------------> CO2 + 4H2 .................................(8)\n",
+ "\n",
+ "# Equations 7 & 8 are independent sets. Hence\n",
+ "r = 2## [No. of independent rkn.]\n",
+ "C = 5## [No. of component]\n",
+ "P = 1## [No. of phases]\n",
+ "s = 0## [No special constraint]\n",
+ "# Applying Eqn. 12.81\n",
+ "F = C - P + 2 - r - s## [Degree of freedom]\n",
+ "print \"No. of independent reaction that occur is %d\\n\"%(r)#\n",
+ "print \"No. of Degree of freedom is %d\"%(F)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.21 Page: 506"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.21 - Page: 506\n",
+ "\n",
+ "\n",
+ "No. of Degree of freedom is 1\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.21 - Page: 506\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# Reaction: CaCO3 -----------> CaO + CO2\n",
+ "r = 1## [No. of independent rkn.]\n",
+ "C = 3## [No. of component]\n",
+ "P = 3## [No. of phases, solid CaO, solid CaCO3, gaseous CO2]\n",
+ "s = 0## [No special constraint]\n",
+ "# Applying Eqn. 12.81\n",
+ "F = C - P + 2 - r - s## [Degree of freedom]\n",
+ "print \"No. of Degree of freedom is %d\"%(F)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 12.22 Page: 508"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 12.22 - Page: 508\n",
+ "\n",
+ "\n",
+ "At Equilibrium\n",
+ "\n",
+ "yC4H10 = 0.0009\n",
+ "\n",
+ "yC2H4 = 0.0535\n",
+ "\n",
+ "yC2H6 = 0.0535\n",
+ "\n",
+ "yC3H6 = 0.4461\n",
+ "\n",
+ "yCH4 = 0.4461\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 12.22 - Page: 508\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*********Data*********#\n",
+ "# Reaction: \n",
+ "# C4H10 -----------> C2H4 + C2H6 ....................................(A)\n",
+ "# C4H10 -----------> C3H6 + CH4 .................................... (B)\n",
+ "T = 750## [K]\n",
+ "P = 1.2## [bar]\n",
+ "Ka = 3.856#\n",
+ "Kb = 268.4#\n",
+ "#************************#\n",
+ "\n",
+ "# Let\n",
+ "# ea = Degree of conversion of C4H10 in reaction (A)\n",
+ "# eb = Degree of conversion of C4H10 in reaction (B)\n",
+ "\n",
+ "# Moles in Feed:\n",
+ "nC4H10_feed = 1#\n",
+ "nC2H4_feed = 0#\n",
+ "nC2H6_feed = 0#\n",
+ "nC3H6_feed = 0#\n",
+ "nCH4_feed = 0#\n",
+ "\n",
+ "# Moles at Equilibrium:\n",
+ "# nC4H10_eqb = 1 - ea - eb\n",
+ "# nC2H4_eqb = ea\n",
+ "# nC2H6_eqb = ea\n",
+ "# nC3H6_eqb = eb\n",
+ "# nCH4_eqb = eb\n",
+ "\n",
+ "# Total moles at equilibrium = 1 - ea - eb + ea + eb + eb = 1 + ea + eb\n",
+ "\n",
+ "# Mole Fraction:\n",
+ "# yC4H10_eqb = (1 - ea - eb)/(1 + ea + eb)\n",
+ "# yC2H4_eqb = ea/(1 + ea + eb)\n",
+ "# yC2H6_eqb = ea/(1 + ea + eb)\n",
+ "# yC3H6_eqb = eb/(1 + ea + eb)\n",
+ "# yCH4_eqb = eb/(1 + ea + eb)\n",
+ "\n",
+ "# Sum of the stoichometric coeffecient:\n",
+ "va = 1 + 1 - 1#\n",
+ "vb = 1 + 1 - 1#\n",
+ "\n",
+ "# e = [ea eb]\n",
+ "# Solution of simultaneous equation\n",
+ "def F(e):\n",
+ " f1 = (((e[0]/(1 + e[0] + e[1]))*(e[0]/(1 + e[0] + e[1])))/((1 - e[0] - e[1])/(1 + e[0] + e[1])))*P**va - Ka#\n",
+ " f2 = (((e[1]/(1 + e[0] + e[1]))*(e[1]/(1 + e[0] + e[1])))/((1 - e[0] - e[1])/(1 + e[0] + e[1])))*P**vb - Kb#\n",
+ " return [f1, f2]\n",
+ "\n",
+ "# Initial guess:\n",
+ "e = [0.1, 0.8]#\n",
+ "y = fsolve(F, e)#\n",
+ "ea = y[0]#\n",
+ "eb = y[1]#\n",
+ "yC4H10_eqb = (1 - ea - eb)/(1 + ea + eb)#\n",
+ "yC2H4_eqb = ea/(1 + ea + eb)#\n",
+ "yC2H6_eqb = ea/(1 + ea + eb)#\n",
+ "yC3H6_eqb = eb/(1 + ea + eb)#\n",
+ "yCH4_eqb = eb/(1 + ea + eb)#\n",
+ "\n",
+ "print \"At Equilibrium\\n\"\n",
+ "print \"yC4H10 = %.4f\\n\"%(yC4H10_eqb)#\n",
+ "print \"yC2H4 = %.4f\\n\"%(yC2H4_eqb)#\n",
+ "print \"yC2H6 = %.4f\\n\"%(yC2H6_eqb)#\n",
+ "print \"yC3H6 = %.4f\\n\"%(yC3H6_eqb)#\n",
+ "print \"yCH4 = %.4f\\n\"%(yCH4_eqb)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch2.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch2.ipynb
new file mode 100644
index 00000000..9013eed3
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch2.ipynb
@@ -0,0 +1,1274 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 - First law of thermodynamics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.1 Page: 39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.1 - Page: 39\n",
+ "\n",
+ "\n",
+ "The work done during the process is -9486.67 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "print \"Example: 2.1 - Page: 39\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "#deff('[E] = f1(T)','E = 50 + 25*T + 0.05*T**2')## [J]\n",
+ "#deff('[Q] = f2(T)','Q = 4000 + 10*T')## [J]\n",
+ "\n",
+ "def f1(T):\n",
+ " E = 50 + 25*T + 0.05*T**2\n",
+ " return E\n",
+ "\n",
+ "def f2(T):\n",
+ " Q = 4000 + 10*T\n",
+ " return Q\n",
+ "Ti = 400## [K]\n",
+ "Tf = 800## [K]\n",
+ "#*************#\n",
+ "\n",
+ "# From the first law of thermodynamics:\n",
+ "# W = Q - delta_E\n",
+ "# W = f2 -f1\n",
+ "from sympy.mpmath import quad\n",
+ "W = quad(lambda T:(4000 + 10*T) - (50 + (25*T) + (0.05*T**2)),[Ti,Tf])#\n",
+ "print \"The work done during the process is %.2f kJ\\n\"%(W/1000)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.2 Page: 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.2 - Page: 40\n",
+ "\n",
+ "\n",
+ "The final internal energy of the fluid is 500 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.2 - Page: 40\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "U1 = 1000## [kJ]\n",
+ "Q = -600# # [kJ]\n",
+ "W = -100## [kJ]\n",
+ "#************#\n",
+ "\n",
+ "# The system is considered to be a closed system. No mass transfer takes place across the system. The tank is rigid. \n",
+ "# So, the kinetic and the potential energies is zero.\n",
+ "# Therefore:\n",
+ "# delta_E = delta_U + delta_PE + delta_KE\n",
+ "# delta_E = delta_U\n",
+ "# From the first law of thermodynamics:\n",
+ "# Q = delta_U + W\n",
+ "# delta_U = Q - W\n",
+ "# U2 - U1 = Q - W\n",
+ "U2 = U1 + Q - W## [kJ]\n",
+ "print \"The final internal energy of the fluid is %d kJ\\n\"%(U2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.3 Page: 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.3 - Page: 40\n",
+ "\n",
+ "\n",
+ "The change in the internal energy of the system would be 1125.99 J/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.3 - Page: 40\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "W = -3## [hp]\n",
+ "Q = -4000## [kJ/h]\n",
+ "#**************#\n",
+ "\n",
+ "# The work done by the stirrer on the system is given by\n",
+ "W = W*745.7## [W]\n",
+ "# The amount of heat transferred to the suroundings can be expressed in terms of J/s:\n",
+ "Q = Q*1000/3600## [J/s]\n",
+ "# From the first law of thermodynamics:\n",
+ "# Q = delta_U - W\n",
+ "delta_U = Q - W## [J/s]\n",
+ "print \"The change in the internal energy of the system would be %.2f J/s\\n\"%(delta_U)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.4 Page: 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.4 - Page: 41\n",
+ "\n",
+ "\n",
+ "The amount of heat transferred from the system to the surroundings during process B-3-A is 95 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.4 - Page: 41\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# From Fig. 2.4 (Page: 41)\n",
+ "# For process A-1-B:\n",
+ "Q1 = 60## [kJ]\n",
+ "W1 = 35## [kJ]\n",
+ "# For process A-2-B:\n",
+ "W2 = 50## [kJ]\n",
+ "# For process B-3-A:\n",
+ "W3 = -70## [kJ]\n",
+ "#************#\n",
+ "\n",
+ "# For process A-1-B:\n",
+ "# The internal energy of the process A-1-B can be estimated as:\n",
+ "# Q = delta_U + W\n",
+ "delta_U = Q1 - W1## [kJ]\n",
+ "# For process A-2-B:\n",
+ "Q2 = delta_U + W2## [kJ]\n",
+ "# For process B-3-A:\n",
+ "Q3 = -delta_U + W3## [kJ]\n",
+ "print \"The amount of heat transferred from the system to the surroundings during process B-3-A is %d kJ\\n\"%(-Q3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.5 Page: 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.5 - Page: 41\n",
+ "\n",
+ "\n",
+ "Change in Internal Energy for process 1-2 is 50 kJ\n",
+ "\n",
+ "Change in Internal Energy for process 2-3 is 80 kJ\n",
+ "\n",
+ "Change in Internal Energy for process 3-1 is -130 kJ\n",
+ "\n",
+ "The work done during the adiabatic process is 130 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.5 - Page: 41\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# For constant pressure process 1-2:\n",
+ "W12 = -100## [kJ]\n",
+ "Q12 = -50## [kJ]\n",
+ "# For constant volume process 2-3:\n",
+ "Q23 = 80## [kJ]\n",
+ "# process 3-1: Adiabatic process\n",
+ "#**************#\n",
+ "\n",
+ "# The internal energy of process 1-2 can be calculated as:\n",
+ "delta_U12 = Q12 - W12## [kJ]\n",
+ "print \"Change in Internal Energy for process 1-2 is %d kJ\\n\"%(delta_U12)#\n",
+ "# For the process 2-3:\n",
+ "# As the process is constant volume process:\n",
+ "W23 = 0## [kJ]\n",
+ "delta_U23 = Q23 - W23## [kJ]\n",
+ "print \"Change in Internal Energy for process 2-3 is %d kJ\\n\"%(delta_U23)#\n",
+ "\n",
+ "# For process 3-1:\n",
+ "# Since the process is adiabatic, ther is no heat transfer between the system and the surrounding.\n",
+ "Q31 = 0## [kJ]\n",
+ "# For a cyclic process, the internal energy change is zero.\n",
+ "# delta_U12 + delta_U23 + delta_U31 = 0\n",
+ "delta_U31 = -(delta_U12 + delta_U23)## [kJ]\n",
+ "# Putting the value of delta_U31:\n",
+ "W31 = Q31 - delta_U31## [kJ]\n",
+ "print \"Change in Internal Energy for process 3-1 is %d kJ\\n\"%(delta_U31)#\n",
+ "print \"The work done during the adiabatic process is %d kJ\\n\"%(W31)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.6 Page: 44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.6 - Page: 44\n",
+ "\n",
+ "\n",
+ "Change in Internal Energy is 2087.59 kJ\n",
+ "\n",
+ "Change in enthalpy is 2257 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.6 - Page: 44\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 1## [kg]\n",
+ "Temp = 373## [K]\n",
+ "P = 101325## [N/square m]\n",
+ "V_Liquid = 1.04*10**(-3)## [cubic m/kg]\n",
+ "V_Vapour = 1.673## [cubic m/kg]\n",
+ "Q = 2257## [kJ]\n",
+ "#**************#\n",
+ "\n",
+ "# Work done due to expansion:\n",
+ "Wexpansion = P*(V_Vapour - V_Liquid)## [N-m]\n",
+ "deltaU = Q - Wexpansion/1000## [kJ]\n",
+ "deltaH = deltaU + Wexpansion/1000## [kJ]\n",
+ "\n",
+ "print \"Change in Internal Energy is %.2f kJ\\n\"%(deltaU)#\n",
+ "print \"Change in enthalpy is %d kJ\\n\"%(deltaH)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.7 Page: 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.7 - Page: 45\n",
+ "\n",
+ "\n",
+ "Change in Internal Energy is 26705.16 J\n",
+ "\n",
+ "Change in Enthalpy is 29640 J\n",
+ "\n",
+ "Amount of Heat supplied is 29640 J\n",
+ "\n",
+ "Work done is 2934.84 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.7 - Page: 45\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "n = 1## [mol]\n",
+ "Temp = 353## [K]\n",
+ "P = 1## [atm]\n",
+ "Hv = 380## [J/g]\n",
+ "Mwt = 78## [g/mol]\n",
+ "R = 8.314## [J/K mol]\n",
+ "#*************#\n",
+ "\n",
+ "Q = Hv*Mwt## [J/mol]\n",
+ "# Since Vv >> Vl:\n",
+ "# P*(Vv - Vl) = P*Vv =n*R*Temp\n",
+ "Wexpansion = n*R*Temp## [J]\n",
+ "# By first law of thermodynamics:\n",
+ "deltaU = Q - Wexpansion## [J]\n",
+ "deltaH = deltaU + Wexpansion## [J]\n",
+ "\n",
+ "print \"Change in Internal Energy is %.2f J\\n\"%(deltaU)#\n",
+ "print \"Change in Enthalpy is %d J\\n\"%(deltaH)#\n",
+ "print \"Amount of Heat supplied is %d J\\n\"%(Q)#\n",
+ "print \"Work done is %.2f J\\n\"%(Wexpansion)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.8 Page: 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.8 - Page: 45\n",
+ "\n",
+ "\n",
+ "Change in enthalpy is 589.48 cal\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.8 - Page: 45\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "deltaU = 200## [cal]\n",
+ "Vinit = 10## [L]\n",
+ "Vfinal = 50## [L]\n",
+ "#deff('[P] = f(V)','P = 10/V')#\n",
+ "def f(V):\n",
+ " P=10/V\n",
+ " return P\n",
+ "#**************#\n",
+ "\n",
+ "# By definition of enthalpy:\n",
+ "# deltaQ = deltaU + PdV\n",
+ "deltaQ = deltaU + quad(f,[Vinit,Vfinal])*24.2## [cal]\n",
+ "print \"Change in enthalpy is %.2f cal\\n\"%(deltaQ)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.9 Page: 48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.9 - Page: 48\n",
+ "\n",
+ "\n",
+ "Rise in Temperature is 58.67 K\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.9 - Page: 48\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m_water = 1## [kg]\n",
+ "Cv = 4.18## [kJ/kg K]\n",
+ "m_stirrer = 40## [kg]\n",
+ "h = 25## [m]\n",
+ "g = 9.81## [m/square s]\n",
+ "#***************#\n",
+ "\n",
+ "# Since the system is thermally insulated:\n",
+ "# Q = 0\n",
+ "# From the first law of thermodynamics:\n",
+ "# dQ = dE + dW\n",
+ "# As E = U + Ek +Ep and Ek = Ep = 0\n",
+ "# dQ = dU + dW\n",
+ "dT = g*h/Cv## [K]\n",
+ "print \"Rise in Temperature is %.2f K\\n\"%(dT)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.10 Page: 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.10 - Page: 53\n",
+ "\n",
+ "\n",
+ "The final temperature is 753.6 K\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.10 - Page: 53\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "T1 = 300## [K]\n",
+ "V1 = 30## [L]\n",
+ "V2 = 3## [L]\n",
+ "Cv = 5## [cal/mol]\n",
+ "R = 2## [cal/K mol]\n",
+ "#*************#\n",
+ "\n",
+ "Cp = Cv + R## [cal/mol]\n",
+ "gama = Cp/Cv#\n",
+ "# The relation between temperature and volume of ideal gas undergoing adiabatic change is given by:\n",
+ "# (T2/T1) = (V1/V2)**(gama - 1)\n",
+ "T2 = T1 * (V1/V2)**(gama - 1)## [K]\n",
+ "print \"The final temperature is %.1f K\\n\"%(T2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.11 Page: 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.11 - Page: 53\n",
+ "\n",
+ "\n",
+ "The final volme is 7.44 L\n",
+ "\n",
+ "The final temperature is 226.80 K\n",
+ "\n",
+ "Adiabatic work done is 35.72 L-atm\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.11 - Page: 53\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "n = 2## [mol]\n",
+ "T1 = 293## [K]\n",
+ "P1 = 15##[atm]\n",
+ "P2 = 5## [atm]\n",
+ "Cp = 8.58## [cal/degree mol]\n",
+ "#**************#\n",
+ "\n",
+ "R = 2## [cal/degree mol]\n",
+ "Cv = Cp - R## [cal /degree mol]\n",
+ "gama = Cp/Cv#\n",
+ "R = 0.082## [L atm/degree K]\n",
+ "# Since the gas is ideal:\n",
+ "V1 = n*R*T1/P1## [L]\n",
+ "# Under adiabatic conditions:\n",
+ "# (V2/V1) = (P1/P2)**(1/gama)\n",
+ "V2 = V1*(P1/P2)**(1/gama)## [L]\n",
+ "print \"The final volme is %.2f L\\n\"%(V2)#\n",
+ "\n",
+ "# To determine the final temperature:\n",
+ "# (T2/T1) = (V1/V2)**(gama - 1)#\n",
+ "T2 = T1*(V1/V2)**(gama - 1)## [K]\n",
+ "print \"The final temperature is %.2f K\\n\"%(T2)#\n",
+ "\n",
+ "# Adiabatic Work done can be calculated as:\n",
+ "W = (P1*V1 - P2*V2)/(gama - 1)#\n",
+ "print \"Adiabatic work done is %.2f L-atm\\n\"%(W)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.12 Page: 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.12 - Page: 57\n",
+ "\n",
+ "\n",
+ "Adiabatic Process \n",
+ "\n",
+ "Final Pressure is 0.84 atm\n",
+ "\n",
+ "Final Temperature is 169.673696 K\n",
+ "\n",
+ "Adiabatic Work done is 31.432 L-atm\n",
+ "\n",
+ "\n",
+ "\n",
+ "Isothermal Process\n",
+ "\n",
+ "Final temperature is 323 K\n",
+ "\n",
+ "Final pressure is 1.6 atm\n",
+ "\n",
+ "Work done during the isothermal process is 42.63 L-atm\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "print \"Example: 2.12 - Page: 57\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 1## [kg]\n",
+ "P1 = 8## [atm]\n",
+ "T1 = 50 + 273## [K]\n",
+ "# V1 = V## [L]\n",
+ "# V2 = 5V## [L]\n",
+ "V1_by_V2 = 1/5#\n",
+ "gama = 1.4#\n",
+ "R = 0.082## [L-atm]\n",
+ "#***************#\n",
+ "\n",
+ "# Adiabatic process:\n",
+ "print \"Adiabatic Process \\n\"\n",
+ "P2 = P1*V1_by_V2**gama## [atm]\n",
+ "print \"Final Pressure is %.2f atm\\n\"%(P2)#\n",
+ "T2 = T1*V1_by_V2**(gama - 1)## [K]\n",
+ "print \"Final Temperature is %f K\\n\"%(T2)#\n",
+ "Wad = R*(T2 - T1)/(1 - gama)## [L-atm]\n",
+ "print \"Adiabatic Work done is %.3f L-atm\\n\"%(Wad)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Isothermal Process:\n",
+ "print \"Isothermal Process\\n\"\n",
+ "# In an isothermal Process, the temperature remans constant:\n",
+ "T2 = T1## [K]\n",
+ "print \"Final temperature is %d K\\n\"%(T2)#\n",
+ "# From the ideal gas:\n",
+ "# (P2*V2/T2) = (P1*V1/T1)\n",
+ "# Since T2 = T1\n",
+ "# P2*V2 = P1*V1\n",
+ "P2 = P1*V1_by_V2## [atm]\n",
+ "print \"Final pressure is %.1f atm\\n\"%(P2)#\n",
+ "W = R*T1*log(1/V1_by_V2)## [L-atm]\n",
+ "print \"Work done during the isothermal process is %.2f L-atm\\n\"%(W)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.13 Page: 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.13 - Page: 58\n",
+ "\n",
+ "\n",
+ "Isochoric Process\n",
+ "\n",
+ "Change in Internal Energy is 716.55 kJ\n",
+ "\n",
+ "Heat Supplied is 716.55 kJ\n",
+ "\n",
+ "Work done is 0 kJ\n",
+ "\n",
+ "Change in Enthalpy is 1003.24 kJ\n",
+ "\n",
+ "\n",
+ "\n",
+ "Isobaric Process\n",
+ "\n",
+ "Change in Internal Energy is 716.76 kJ\n",
+ "\n",
+ "Heat Supplied is 1003.45 kJ\n",
+ "\n",
+ "Work done is 286.69 kJ\n",
+ "\n",
+ "Change in Enthalpy is 1003.45 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.13 - Page: 58\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 5## [kg]\n",
+ "M = 29## [kg/mol]\n",
+ "T1 = 37 + 273## [K]\n",
+ "P1 = 101.33## [kPa]\n",
+ "T2 = 237 + 273## [K]\n",
+ "Cp = 29.1## [J/mol K]\n",
+ "Cv = 20.78## [J/mol K]\n",
+ "R = 8.314## [J/K mol]\n",
+ "#*****************#\n",
+ "\n",
+ "n = m/M#\n",
+ "# From ideal gas equation:\n",
+ "V1 = n*R*T1/P1## [cubic m]\n",
+ "\n",
+ "# Isochoric Process:\n",
+ "print \"Isochoric Process\\n\"\n",
+ "# Volume = constant\n",
+ "V2 = V1## [cubic m]\n",
+ "deltaU = n*Cv*(T2 - T1)## [kJ]\n",
+ "# Since Volume is constant\n",
+ "W = 0#\n",
+ "Q = deltaU + W## [kJ]\n",
+ "# deltaH = deltaU + P*deltaV\n",
+ "# deltaH = deltaU + n*R*deltaT\n",
+ "deltaH = deltaU + n*R*(T2 - T1)## [kJ]\n",
+ "print \"Change in Internal Energy is %.2f kJ\\n\"%(deltaU)#\n",
+ "print \"Heat Supplied is %.2f kJ\\n\"%(Q)#\n",
+ "print \"Work done is %d kJ\\n\"%(W)#\n",
+ "print \"Change in Enthalpy is %.2f kJ\\n\"%(deltaH)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Isobaric Process\n",
+ "print \"Isobaric Process\\n\"\n",
+ "# Since Pressure is constant.\n",
+ "P2 = P1## [kPa]\n",
+ "deltaH = n*Cp*(T2 - T1)## [kJ]\n",
+ "Qp = deltaH## [kJ]\n",
+ "# deltaU = deltaH - P*deltaV\n",
+ "# From ideal gas equation:\n",
+ "deltaU = deltaH - n*R*(T2 - T1)## [kJ]\n",
+ "W = Qp - deltaU## [kJ]\n",
+ "print \"Change in Internal Energy is %.2f kJ\\n\"%(deltaU)#\n",
+ "print \"Heat Supplied is %.2f kJ\\n\"%(Qp)#\n",
+ "print \"Work done is %.2f kJ\\n\"%(W)#\n",
+ "print \"Change in Enthalpy is %.2f kJ\\n\"%(deltaH)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.14 Page: 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.14 - Page: 60\n",
+ "\n",
+ "\n",
+ "Step 1: Isothermal Expansion Of Ideal Gas\n",
+ "\n",
+ "delta_E for Step 1 is 0 J/mol\n",
+ "\n",
+ "Q for step 1 is 11679.76 J/mol\n",
+ "\n",
+ "W for step 1 is 11679.76 J/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Step 2: Adiabatic Expansion of ideal gas\n",
+ "\n",
+ "delta_E for Step 2 is -6234 J/mol\n",
+ "\n",
+ "Q for step 2 is 0.00 J/mol\n",
+ "\n",
+ "W for step 2 is 6234.00 J/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Step 3: Isothermal Compression Of Ideal Gas\n",
+ "\n",
+ "delta_E for Step 3 is 0 J/mol\n",
+ "\n",
+ "Q for step 3 is -5935.61 J/mol\n",
+ "\n",
+ "W for step 3 is -5935.61 J/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Step 4: Adiabatic Compression of ideal gas\n",
+ "\n",
+ "delta_E for Step 4 is 6234 J/mol\n",
+ "\n",
+ "Q for step 4 is 0.00 J/mol\n",
+ "\n",
+ "W for step 4 is -6234.00 J/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Net Work done for the complete cycle is 5744.14 J/mol\n",
+ "\n",
+ "The efficiency of the cycle is 0.49\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "print \"Example: 2.14 - Page: 60\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "n = 1## [mol]\n",
+ "T1 = 610## [K]\n",
+ "P1 = 10**6## [N/square m]\n",
+ "T2 = 310## [K]\n",
+ "P2 = 10**5## [N/square m]\n",
+ "Cv = 20.78## [J/mol K]\n",
+ "#*************#\n",
+ "\n",
+ "R = 8.314## [J/K mol]\n",
+ "\n",
+ "# Step 1: Isothermal Expansion Of Ideal Gas:\n",
+ "print \"Step 1: Isothermal Expansion Of Ideal Gas\\n\"\n",
+ "T1 = 610## [K]\n",
+ "P1 = 10**6## [N/square m]\n",
+ "P2 = 10**5## [N/square m]\n",
+ "# Work done:\n",
+ "W1 = 2.303*n*R*T1*log10(P1/P2)## [J/mol]\n",
+ "# For isothermal expansion:\n",
+ "delta_E1 = 0## [J/mol]\n",
+ "# From first law of thermodynamics:\n",
+ "Q1 = delta_E1 + W1## [J/mol]\n",
+ "print \"delta_E for Step 1 is %d J/mol\\n\"%(delta_E1)#\n",
+ "print \"Q for step 1 is %.2f J/mol\\n\"%(Q1)#\n",
+ "print \"W for step 1 is %.2f J/mol\\n\"%(W1)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Step 2: Adiabatic Expansion of ideal gas:\n",
+ "print \"Step 2: Adiabatic Expansion of ideal gas\\n\"\n",
+ "Q2 = 0## [J/mol]\n",
+ "delta_E2 = Cv*(T2 - T1)## [J/mol]\n",
+ "# From first law of thermodynamics:\n",
+ "W2 = Q2 - delta_E2## [J/mol]\n",
+ "print \"delta_E for Step 2 is %d J/mol\\n\"%(delta_E2)#\n",
+ "print \"Q for step 2 is %.2f J/mol\\n\"%(Q2)#\n",
+ "print \"W for step 2 is %.2f J/mol\\n\"%(W2)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Step 3: Isothermal Compression Of Ideal Gas:\n",
+ "print \"Step 3: Isothermal Compression Of Ideal Gas\\n\"\n",
+ "T2 = 310## [K]\n",
+ "P1 = 10**5## [N/square m]\n",
+ "P2 = 10**6## [N/square m]\n",
+ "# Work done:\n",
+ "W3 = 2.303*n*R*T2*log10(P1/P2)## [J/mol]\n",
+ "# For isothermal expansion:\n",
+ "delta_E3 = 0## [J/mol]\n",
+ "# From first law of thermodynamics:\n",
+ "Q3 = delta_E3 + W3## [J/mol]\n",
+ "print \"delta_E for Step 3 is %d J/mol\\n\"%(delta_E3)#\n",
+ "print \"Q for step 3 is %.2f J/mol\\n\"%(Q3)#\n",
+ "print \"W for step 3 is %.2f J/mol\\n\"%(W3)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Step 4: Adiabatic Compression of ideal gas:\n",
+ "print \"Step 4: Adiabatic Compression of ideal gas\\n\"\n",
+ "T1 = 310## [K]\n",
+ "T2 = 610## [K]\n",
+ "Q4 = 0## [J/mol]\n",
+ "delta_E4 = Cv*(T2 - T1)## [J/mol]\n",
+ "# From first law of thermodynamics:\n",
+ "W4 = Q4 - delta_E4## [J/mol]\n",
+ "print \"delta_E for Step 4 is %d J/mol\\n\"%(delta_E4)#\n",
+ "print \"Q for step 4 is %.2f J/mol\\n\"%(Q4)#\n",
+ "print \"W for step 4 is %.2f J/mol\\n\"%(W4)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Net work done for the complete cycle:\n",
+ "W = W1 + W2 + W3 + W4## [J/mol]\n",
+ "print \"Net Work done for the complete cycle is %.2f J/mol\\n\"%(W)#\n",
+ "\n",
+ "# The efficiency of the cycle is given by:\n",
+ "eta = 1- T1/T2#\n",
+ "print \"The efficiency of the cycle is %.2f\\n\"%(eta)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.15 Page: 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.15 - Page: 61\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 2.15 on page 61 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.15 - Page: 61\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 2.15 on page number 61 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 2.15 on page 61 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.16 Page: 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.16 - Page: 62\n",
+ "\n",
+ "\n",
+ "First Process\n",
+ "\n",
+ "Change in Internal Energy is -2223.97 kJ\n",
+ "\n",
+ "Change in Enthalpy is -5612.22 kJ\n",
+ "\n",
+ "Heat Requirement is -2246.40 kJ\n",
+ "\n",
+ "\n",
+ "\n",
+ "Second Process\n",
+ "\n",
+ "Change in Internal Energy is -22441.57 kJ\n",
+ "\n",
+ "Change in Enthalpy is -56122.20 kJ\n",
+ "\n",
+ "Heat Requirement is -22464.00 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.16 - Page: 62\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "P1 = 1## [bar]\n",
+ "T1 = 300##[K]\n",
+ "V1 = 24.92## [cubic m/kmol]\n",
+ "P2 = 10## [bar]\n",
+ "T2 = 300## [K]\n",
+ "Cp = 29.10## [kJ/kmol K]\n",
+ "Cv = 20.78## [kJ/kmol K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#**************#\n",
+ "\n",
+ "# Basis: 1 kmol of ideal gas:\n",
+ "n = 1#\n",
+ "V2 = P1*V1/P2## [cubic m]\n",
+ "\n",
+ "# First Process:\n",
+ "print \"First Process\\n\"\n",
+ "# In the first step of the first process, the cooling of ga takes place at constant pressure.\n",
+ "# Here the volume is reduced appreciably and consequently the temperature decreases.\n",
+ "T_prime = T1*V2/V1## [K]\n",
+ "# Heat Requirement:\n",
+ "Q1 = n*Cp*(T_prime - T1)## [kJ]\n",
+ "deltaH1 = Q1## [kJ]\n",
+ "deltaU1 = deltaH1 - P1*(V2 - V1)## [kJ]\n",
+ "# In the second step, the gas is heated at constant Volume:\n",
+ "# V = constant\n",
+ "Q2 = n*Cv*(T2 - T_prime)## [kJ]\n",
+ "deltaU2 = Q2## [kJ]\n",
+ "deltaH2 = n*R*(T2 - T_prime)## [kJ]\n",
+ "deltaU = deltaU1 + deltaU2## [kJ]\n",
+ "deltaH = deltaH1 + deltaH2## [kJ]\n",
+ "Q = Q1 + Q2## [kJ]\n",
+ "print \"Change in Internal Energy is %.2f kJ\\n\"%(deltaU)#\n",
+ "print \"Change in Enthalpy is %.2f kJ\\n\"%(deltaH)#\n",
+ "print \"Heat Requirement is %.2f kJ\\n\"%(Q)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Second Process:\n",
+ "print \"Second Process\\n\"\n",
+ "# In the first step of the second process, the gas is heated at constant volume.\n",
+ "T_prime = T1*P2/P1## [K]\n",
+ "# Heat Requirement:\n",
+ "Q1 = n*Cv*(T_prime - T1)## [kJ]\n",
+ "deltaU1 = Q1## [kJ]\n",
+ "deltaH1 = n*R*(T_prime - T1)## [kJ]\n",
+ "# In the second step, the gas is cooled at constant presure:\n",
+ "# V = constant\n",
+ "Q2 = n*Cp*(T2 - T_prime)## [kJ]\n",
+ "deltaH2 = Q2## [kJ]\n",
+ "deltaU2 = deltaH2 - P1*(V2 - V1)## [kJ]\n",
+ "deltaU = deltaU1 + deltaU2## [kJ]\n",
+ "deltaH = deltaH1 + deltaH2## [kJ]\n",
+ "Q = Q1 + Q2## [kJ]\n",
+ "print \"Change in Internal Energy is %.2f kJ\\n\"%(deltaU)#\n",
+ "print \"Change in Enthalpy is %.2f kJ\\n\"%(deltaH)#\n",
+ "print \"Heat Requirement is %.2f kJ\\n\"%(Q)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.17 Page: 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.17 - Page: 64\n",
+ "\n",
+ "\n",
+ "Workdone by the gas is 251.33 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi\n",
+ "print \"Example: 2.17 - Page: 64\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "D1 = 1## [m]\n",
+ "P1 = 120## [kPa]\n",
+ "P2 = 360## [kPa]\n",
+ "# P = k*D**3\n",
+ "#***************#\n",
+ "\n",
+ "k = P1/D1**3## [proportionality constant]\n",
+ "D2 = (P2/k)**(1/3)## [m]\n",
+ "# Work done by the gas inside the balloon can be estimated as:\n",
+ "# W = integral(P*dV)#\n",
+ "# W = integral((k*D**3)*d((4/3)*pi*r**3)#\n",
+ "# W = (pi*k/6)*integral((D**3)*d(D**3))#\n",
+ "# W = (pi*k/12)*(D2**6 - D1**6)#\n",
+ "W = (pi*k/12)*(D2**6 - D1**6)## [kJ]\n",
+ "print \"Workdone by the gas is %.2f kJ\\n\"%(W)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.18 Page: 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.18 - Page: 65\n",
+ "\n",
+ "\n",
+ "Change in Inernal Enrgy is 1040.65 kJ\n",
+ "\n",
+ "Change in Enthalpy is 1456.35 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.18 - Page: 65\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "P1 = 10*100## [kPa]\n",
+ "T1 = 250## [K]\n",
+ "P2 = 1*100## [kPa]\n",
+ "T2 = 300## [K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "Cv = 20.78## [kJ/kmol K]\n",
+ "Cp = 29.10## [kJ/kmol K]\n",
+ "#**********#\n",
+ "\n",
+ "V1 = R*T1/P1## [cubic m]\n",
+ "V2 = R*T2/P2## [cubic m]\n",
+ "\n",
+ "# Calculation based on First Process:\n",
+ "# In this constant-volume process, the initial pressure of 10 bar is reduced to a final pressure of 1 bar and consequently the temperature decreases.\n",
+ "T_prime = P2*V1/R## [K]\n",
+ "deltaU1 = Cv*(T_prime - T1)## [kJ]\n",
+ "deltaH1 = deltaU1 + V1*(P2 -P1)## [kJ]\n",
+ "# Since V = constant\n",
+ "W1 = 0##[kJ]\n",
+ "# By first law of thermodynamics:\n",
+ "Q = W1 + deltaU1## [kJ]\n",
+ "\n",
+ "# Calculation based on second process:\n",
+ "# In this process, the gas is heated at constant pressure to the final temperature of T2.\n",
+ "deltaH2 = Cp*(T2 - T_prime)## [kJ]\n",
+ "deltaU2 = deltaH2 - P2*(V2 - V1)## [kJ]\n",
+ "Q = deltaH2## [kJ]\n",
+ "W2 = Q - deltaU2## [kJ]\n",
+ "\n",
+ "deltaU = deltaU1 + deltaU2## [kJ]\n",
+ "deltaH = deltaH1 + deltaH2## [kJ]\n",
+ "print \"Change in Inernal Enrgy is %.2f kJ\\n\"%(deltaU)#\n",
+ "print \"Change in Enthalpy is %.2f kJ\\n\"%(deltaH)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 2.19 Page: 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 2.19 - Page: 69\n",
+ "\n",
+ "\n",
+ "Tempertaure of water in the second tank is 312.86 K\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 2.19 - Page: 69\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "T1 = 273## [K]\n",
+ "T2 = 273 + 67## [K]\n",
+ "m_dot = 20000## [kg/h]\n",
+ "Ws = -1.5## [hp]\n",
+ "Q = -38000## [kJ/min]\n",
+ "Z = 20## [m]\n",
+ "Cp = 4.2## [kJ/kg K]\n",
+ "g = 9.81## [m/second square]\n",
+ "#***************#\n",
+ "\n",
+ "Q = Q*60/m_dot## [kJ/kg]\n",
+ "Ws = Ws*0.7457*3600/m_dot## [kJ/kg]\n",
+ "PE = g*Z*10**(-3)## [kJ/kg]\n",
+ "# KE is assumed to be negligible.\n",
+ "# For Steady Flow process: dE/dt = 0\n",
+ "# From Eqn. 2.47:\n",
+ "deltaH = Q - Ws - PE## [kJ/kg]\n",
+ "H1 = Cp*(T2 - T1)## [kJ/kg]\n",
+ "H2 = H1 + deltaH## [kJ/kg]\n",
+ "\n",
+ "# Now, the temperature of the tank can be determined as:\n",
+ "T = (H2/Cp) + T1## [K]\n",
+ "print \"Tempertaure of water in the second tank is %.2f K\\n\"%(T)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch3.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch3.ipynb
new file mode 100644
index 00000000..ef7c1588
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch3.ipynb
@@ -0,0 +1,543 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3 - Properties of pure substances"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.1 Page: 88"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.1 - Page: 88\n",
+ "\n",
+ "\n",
+ "Molar Volume of the gas is 1.29e-02 cubic metres\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 3.1 - Page: 88\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "P = 2*10**5## [Pa]\n",
+ "T = 273 + 37## [K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#****************\n",
+ "# Since the gas behaves ideally:\n",
+ "V = R*T/P## [cubic metres]\n",
+ "print \"Molar Volume of the gas is %.2e cubic metres\"%(V)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.2 Page: 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.2 - Page: 89\n",
+ "\n",
+ "\n",
+ "The pressure of air after compression is 1200 kPa\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 3.2 - Page: 89\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "V1 = 8## [cubic m]\n",
+ "P1 = 300## [kPa]\n",
+ "V2 = 2## [cubic m]\n",
+ "#**************\n",
+ "# Apptying the ideal gas Eqn. & since the Temperature remains constant:\n",
+ "P2 = P1*V1/V2## [kPa]\n",
+ "print \"The pressure of air after compression is %d kPa\\n\"%(P2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.3 Page: 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.3 - Page: 89\n",
+ "\n",
+ "\n",
+ "The pressure of the remaining air is 400 kPa\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 3.3 - Page: 89\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "V1 = 6## [cubic m]\n",
+ "P1 = 500## [kPa]\n",
+ "R = 0.287## [kJ/kg K]\n",
+ "#*************\n",
+ "# Applying the charectarstic equation to the gas initially:\n",
+ "# P1*V1 = m1*R*T1.......................................(i)\n",
+ "# Applying the charectarstic equation to the gas which was left in the vessel after one-fifth of the gas has been removed:\n",
+ "# P2*V2 = m2*R*T2.......................................(ii)\n",
+ "# V2 = V1# T2 = T1# m2 = (4/5)*m1# Eqn (ii) becomes:\n",
+ "# P2*V1 = (4/5)*m1*R*T1..................................(iii)\n",
+ "# Dividing eqn (i) by eqn (iii), we get:\n",
+ "P2 = (4/5)*P1## [kPa]\n",
+ "print \"The pressure of the remaining air is %d kPa\\n\"%(P2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.4 Page: 90"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.4 - Page: 90\n",
+ "\n",
+ "\n",
+ "Final Temperature of the air when the piston reaches stop is 361.5 K\n",
+ "\n",
+ "Pressure of air inside the cylinder is 2.51 bar\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 3.4 - Page: 90\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "T1 = 450 + 273## [K]\n",
+ "P1 = 3## [bar]\n",
+ "#***************\n",
+ "# Soluton(a)\n",
+ "# From Fig. 3.7, (Page 90)\n",
+ "# Since the weight remains the same, therefore, the final pressure is equal to the initial pressure.\n",
+ "# Therefore it is a constant pressure process.\n",
+ "P2 = P1## [bar]\n",
+ "# Volumetric Ratio:\n",
+ "V2_by_V1 = 2.5/(2.5 + 2.5)# Applying ideal gas law & P1 = P2\n",
+ "T2 = T1*V2_by_V1## [K]\n",
+ "print \"Final Temperature of the air when the piston reaches stop is %.1f K\\n\"%(T2)\n",
+ "# Solution (b)\n",
+ "# When the piston rests ot the stops, the pressure exerted by the weight, air & the atmosphere will be different. But there will beno further decrease in volume.\n",
+ "# This is a constant volume process.\n",
+ "T3 = 273 + 30## [K]\n",
+ "# Applying ideal gas law & V2 = V3\n",
+ "P3 = T3*P2/T2## [bar]\n",
+ "print \"Pressure of air inside the cylinder is %.2f bar\\n\"%(P3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.5 Page: 95"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.5 - Page: 95\n",
+ "\n",
+ "\n",
+ "The temperature at which ammonia exists in the cylinder is 321.5 K\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 3.5 - Page: 95\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "m = 1.373## [kg]\n",
+ "P = 1.95*10**(6)## [Pa]\n",
+ "V = 0.1## [cubic m]\n",
+ "a = 422.546*10**(-3)## [cubic m/square mol]\n",
+ "b = 37*10**(-6)## [cubic m/mol]\n",
+ "M = 17*10**(-3)## [kg/mol]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#****************\n",
+ "n = m/M## [moles]\n",
+ "Vm = V/n## [molar volume, cubic m]\n",
+ "# Applying Van der Waals equation of state:\n",
+ "T = (P + (a/Vm**2))*((Vm - b)/R)## [K]\n",
+ "print \"The temperature at which ammonia exists in the cylinder is %.1f K\\n\"%(T)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.6 Page: 96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.6 - Page: 96\n",
+ "\n",
+ "\n",
+ "Ideal Equation of State\n",
+ "\n",
+ "Molar Volume of the gas is 4.284e-03 cubic m/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Van der Wall Equation of State\n",
+ "\n",
+ "Molar Volume of the gas is 4.292e-03 cubic m/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Virial Equation of State\n",
+ "\n",
+ "Molar Volume of the gas is 7.000e+00 cubic m/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Redlich Kwong Equation of State\n",
+ "\n",
+ "Molar Volume of the gas is 7.000e+00 cubic m/mol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from scipy.optimize import fsolve\n",
+ "print \"Example: 3.6 - Page: 96\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "P = 15*10**5## [Pa]\n",
+ "T = 773## [K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#**************\n",
+ "# Solution (a)\n",
+ "print \"Ideal Equation of State\\n\"\n",
+ "# Applying ideal Eqn. of State:\n",
+ "Vm = R*T/P## [cubic m/mol]\n",
+ "print \"Molar Volume of the gas is %.3e cubic m/mol\\n\"%(Vm)\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "print \"Van der Wall Equation of State\\n\"\n",
+ "a = 0.2303## [Nm**4/square mol]\n",
+ "b = 4.3073*10**(-5)## [cubic m/mol]\n",
+ "#deff('[y] = f1(Vm)','y = P - (R*T/(Vm-b)) + (a/Vm**2)')\n",
+ "def f1(Vm):\n",
+ " y = P - (R*T/(Vm-b)) + (a/Vm**2)\n",
+ " return y\n",
+ "Vm = fsolve(f1,Vm)## [cubic m/mol]\n",
+ "print \"Molar Volume of the gas is %.3e cubic m/mol\\n\"%(Vm)\n",
+ "print \"\\n\"\n",
+ "\n",
+ "#Solution (c)\n",
+ "print \"Virial Equation of State\\n\"\n",
+ "# Z = 1 + B/V\n",
+ "# (P*V/(R*T)) = (1 + B/V)\n",
+ "# V**2 - V*R*T/P - B*R*T/P = 0\n",
+ "B = 1.3697*10**(-5)## [cubic m/mol]\n",
+ "#deff('[y] f2(Vm)','y = Vm**2 - (Vm*R*T/P) - (B*R*T/P)')\n",
+ "def f2(vm):\n",
+ " y = Vm**2 - (Vm*R*T/P) - (B*R*T/P)\n",
+ " return y\n",
+ "Vm = fsolve(f2,7)## [cubic m/mol]\n",
+ "print \"Molar Volume of the gas is %.3e cubic m/mol\\n\"%(Vm)\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Solution (d)\n",
+ "print \"Redlich Kwong Equation of State\\n\"\n",
+ "Tc = 190.6## [K]\n",
+ "Pc = 45.99*10**5## [Pa]\n",
+ "a = 0.4278*R**2*Tc**2.5/Pc## [N/m**4 square mol]\n",
+ "b = 0.0867*R*Tc/Pc## [cubic m/mol]\n",
+ "#deff('[y] = f3(Vm)','y = P - (R*T/(Vm - b)) + (a/((T**0.5)*Vm*(Vm+b)))')\n",
+ "def f3(vm):\n",
+ " y = P - (R*T/(Vm - b)) + (a/((T**0.5)*Vm*(Vm+b)))\n",
+ " return y\n",
+ "\n",
+ "Vm = fsolve(f3,Vm)## [cubic m/mol]\n",
+ "print \"Molar Volume of the gas is %.3e cubic m/mol\\n\"%(Vm)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.8 Page: 101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.8 - Page: 101\n",
+ "\n",
+ "\n",
+ "Ideal Equation of State\n",
+ "\n",
+ "Molar Volume of gas is 5.196e-04 cubic m/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "Virial Equation of State\n",
+ "\n",
+ "Molar Volume of gas is 5.20e-04 cubic m/mol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 3.8 - Page: 101\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "T = 500## [K]\n",
+ "P = 8*10**6## [Pa]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#*************\n",
+ "# Solution (a)\n",
+ "# By ideal gas equation of state:\n",
+ "print \"Ideal Equation of State\\n\"\n",
+ "Vm = R*T/P## [cubic m/mol]\n",
+ "print \"Molar Volume of gas is %.3e cubic m/mol\\n\"%(Vm)\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# By Virial Equation of State:\n",
+ "print \"Virial Equation of State\\n\"\n",
+ "B = -0.265*10**(-3)## [cubic m/mol]\n",
+ "C = 0.3025*10**(-7)## [m**6/square mol]\n",
+ "#deff('[y] = f(Vm)','y = (P*Vm/(R*T)) - 1 -(B/Vm) - (C/Vm**2)')\n",
+ "def f(vm):\n",
+ " y = (P*Vm/(R*T)) - 1 -(B/Vm) - (C/Vm**2)\n",
+ " return y\n",
+ "Vm = fsolve(f,Vm)\n",
+ "print \"Molar Volume of gas is %.2e cubic m/mol\\n\"%(Vm)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.10 Page: 103"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.10 - Page: 103\n",
+ "\n",
+ "\n",
+ "Value of derivative is 23.98 bar/OC\n",
+ "\n",
+ "The pressure generated by heating at constant Volume is 240.84 Pa\n",
+ "\n",
+ "The change in Volume is -0.038 cubic cm/g\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "print \"Example: 3.10 - Page: 103\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "beeta = 1.487*10**(-3)## [1/OC]\n",
+ "alpha = 62*10**(-6)## [1/bar]\n",
+ "V1 = 1.287## [cubic cm /g]\n",
+ "#************\n",
+ "# Solution (a)\n",
+ "# The value of derivative (dP/dT) at constant V:\n",
+ "# dV/V = beeta*dT - alpha*dP\n",
+ "# dV = 0\n",
+ "# dP/dT = beeta/alpha\n",
+ "# Value = dP/dT\n",
+ "Value = beeta/alpha## [bar/OC]\n",
+ "print \"Value of derivative is %.2f bar/OC\\n\"%(Value)\n",
+ "# Solution (b)\n",
+ "P1 = 1## [bar]\n",
+ "T1 = 20## [OC]\n",
+ "T2 = 30## [OC]\n",
+ "# Applying the same equation:\n",
+ "P2 = P1 +(beeta/alpha)*(T2 - T1)## [bar]\n",
+ "print \"The pressure generated by heating at constant Volume is %.2f Pa\\n\"%(P2)\n",
+ "# Solution (c)\n",
+ "T2 = 0## [OC]\n",
+ "T1 = 20## [OC]\n",
+ "P2 = 10## [bar]\n",
+ "P1 = 1## [bar]\n",
+ "# The change in Volume can be obtained as:\n",
+ "V2 = V1*exp((beeta*(T2 - T1)) - alpha*(P2 - P1))## [cubic cm/g]\n",
+ "deltaV = V2 - V1## [cubic cm/g]\n",
+ "print \"The change in Volume is %.3f cubic cm/g\\n\"%(deltaV)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 3.11 Page: 107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 3.11 - Page: 107\n",
+ "\n",
+ "\n",
+ "Acentric factor is 0.6447\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10\n",
+ "print \"Example: 3.11 - Page: 107\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****\n",
+ "Tc = 513.9## [K]\n",
+ "Pc = 61.48*10**5## [Pa]\n",
+ "#************\n",
+ "Tr = 0.7\n",
+ "T = Tr*Tc - 273.15## [OC]\n",
+ "P_sat = 10**(8.112 - (1592.864/(T + 226.184)))## [mm Hg]\n",
+ "P_sat = P_sat*101325/760## [Pa]\n",
+ "Pr_sat = P_sat/Pc## [Pa]\n",
+ "omega = -1 - log10(Pr_sat)## [Acentric factor]\n",
+ "print \"Acentric factor is %.4f\"%(omega)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb
new file mode 100644
index 00000000..c3a0a66f
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb
@@ -0,0 +1,557 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4 - Heat effects"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.1 Page: 118"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.1 - Page: 118\n",
+ "\n",
+ "\n",
+ "Value of Qv is -326.40 kcal\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 4.1 - Page: 118\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Qp = -327## [kcal]\n",
+ "T = 27 + 273## [K]\n",
+ "R = 2*10**(-3)## [kcal/K mol]\n",
+ "#*************#\n",
+ "\n",
+ "# The reaction involved is:\n",
+ "# C2H5OH(l) + 3O2(g) = 2CO2(g) + 3H2O(l)\n",
+ "deltan = 2 - 3#\n",
+ "Qv = Qp - deltan*R*T## [kcal]\n",
+ "print \"Value of Qv is %.2f kcal\\n\"%(Qv)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.2 Page: 119"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.2 - Page: 119\n",
+ "\n",
+ "\n",
+ "Heat produced in the reaction is -1019.9 kcal\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.2 - Page: 119\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# Mg + (1/2)O2 = MgO ...............(1)\n",
+ "deltaH1 = -610.01## [kcal]\n",
+ "# 2Fe + (3/2)O2 = Fe2O3 ............(2)\n",
+ "deltaH2 = -810.14## [kcal]\n",
+ "#*************#\n",
+ "\n",
+ "# 3Mg + Fe2O3 = 3MgO + 2Fe .........(3)\n",
+ "# Multiplying (1) by 3 and substracting from (2), we get (3):\n",
+ "deltaH = 3*deltaH1 - deltaH2## [kcal]\n",
+ "print \"Heat produced in the reaction is %.1f kcal\\n\"%(deltaH)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.3 Page: 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.3 - Page: 121\n",
+ "\n",
+ "\n",
+ "The standard heat of formation of methane is -74.75 kJ/gmol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.3 - Page: 121\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# 2H2(g) + O2(g) ---------------> 2H2O .....................(1)\n",
+ "deltaH1 = -241.8*2## [kJ/gmol H2]\n",
+ "# C(graphite) + O2(g) =---------> CO2(g) ...................(2)\n",
+ "deltaH2 = -393.51## [kJ/gmol C]\n",
+ "# CH4(g) + 2O2(g) ---------------> CO2(g) + 2H2O(l) ........(3)\n",
+ "deltaH3 = -802.36## [kJ/mol CH4]\n",
+ "#*************#\n",
+ "\n",
+ "# For standard heat of formation of methane, (a) + (b) - (c)\n",
+ "# C + 2H2 ------------------------> CH4\n",
+ "deltaHf = deltaH1 + deltaH2 - deltaH3## [kJ/gmol]\n",
+ "print \"The standard heat of formation of methane is %.2f kJ/gmol\\n\"%(deltaHf)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.4 Page: 122"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.4 - Page: 122\n",
+ "\n",
+ "\n",
+ "Energy supplied by reaction A is -69.2 kJ\n",
+ "\n",
+ "Energy supplied by reaction B is -2802.8 kJ\n",
+ "\n",
+ "Reaction B supplies more energy to the organism\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.4 - Page: 122\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "deltaH_C6H12O6 = -1273## [kcal]\n",
+ "deltaH_C2H5OH = -277.6## [kcal]\n",
+ "deltaH_CO2 = -393.5## [kcal]\n",
+ "deltaH_H2O = -285.8## [kcal]\n",
+ "#**************#\n",
+ "\n",
+ "# C6H12O6(s) = 2C2H5OH(l) + 2CO2(g) ..........................(A)\n",
+ "deltaH_A = 2*deltaH_C2H5OH + 2*deltaH_CO2 - deltaH_C6H12O6## [kJ]\n",
+ "# C6H12O6(s) + 6O2(g) = 6CO2(g) + 6H2O(l) ...................(B)\n",
+ "deltaH_B = 6*deltaH_CO2 + 6*deltaH_H2O - deltaH_C6H12O6## [kJ]\n",
+ "print \"Energy supplied by reaction A is %.1f kJ\\n\"%(deltaH_A)#\n",
+ "print \"Energy supplied by reaction B is %.1f kJ\\n\"%(deltaH_B)#\n",
+ "if deltaH_A < deltaH_B:\n",
+ " print \"Reaction A supplies more energy to the organism\\n\"\n",
+ "else:\n",
+ " print \"Reaction B supplies more energy to the organism\\n\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.5 Page: 122"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.5 - Page: 122\n",
+ "\n",
+ "\n",
+ "Heat of formation of ZnSO4 is -233.48 kcal/kmol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.5 - Page: 122\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# Zn + S = ZnS ....................................................(A)\n",
+ "deltaH_A = -44## [kcal/kmol]\n",
+ "# ZnS + 3O2 = 2ZnO + 2SO2 .........................................(B)\n",
+ "deltaH_B = -221.88## [kcal/kmol]\n",
+ "# 2SO2 + O2 = 2SO3 ................................................(C)\n",
+ "deltaH_C = -46.88## [kcal/kmol]\n",
+ "# ZnO + SO3 = ZnSO4 ...............................................(D)\n",
+ "deltaH_D = -55.10## [kcal/kmol]\n",
+ "#***************#\n",
+ "\n",
+ "# Multiplying (A) by 2 & (D) by (2) and adding (A), (B), (C) & (D)\n",
+ "# Zn + S + 2O2 = ZnSO4\n",
+ "deltaH = 2*deltaH_A + deltaH_B + deltaH_C + 2*deltaH_D## [kcal/kmol for 2 kmol of ZnSO4]\n",
+ "print \"Heat of formation of ZnSO4 is %.2f kcal/kmol\\n\"%(deltaH/2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.6 Page: 124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.6 - Page: 124\n",
+ "\n",
+ "\n",
+ "Standard Heat of formation of NH3 is -11.8 kcal\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.6 - Page: 124\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# HC : Heat of Combustion\n",
+ "HC_NH3 = -90.6## [kcal]\n",
+ "HC_H2 = -68.3## [kcal]\n",
+ "#*************#\n",
+ "\n",
+ "# Heat of combustion of NH3:\n",
+ "# 2NH3 + 3O = N2 + 3H2O ............................ (A)\n",
+ "# Heat of combustion of H2:\n",
+ "# H2 + O = H2O ..................................... (B)\n",
+ "# Multiplying (B) by 3 & substracting from (A), we get:\n",
+ "# 2NH3 = N2 + 3H2 .................................. (C)\n",
+ "# Hf : Heat of Formation\n",
+ "Hf_NH3 = -(2*HC_NH3 - 3*HC_H2)/2## [kcal]\n",
+ "print \"Standard Heat of formation of NH3 is %.1f kcal\"%(Hf_NH3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.7 Page: 125"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.7 - Page: 125\n",
+ "\n",
+ "\n",
+ "The maximum attainable temperature is 2566.2 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.7 - Page: 125\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# HC : Heat of Combustion\n",
+ "HC_C2H2 = -310600# # [cal]\n",
+ "#**************#\n",
+ "\n",
+ "# C2H2 + (5/2)O2 = 2CO2 + H2O\n",
+ "Q = -HC_C2H2## [cal]\n",
+ "# The gases present in the flame zone after combustion are carbon dioxide, water vapor and the unreacted nitrogen of the air.\n",
+ "# Since (5/2) mole of oxygen were required for combustion, nitrogen required would be 10 mol.\n",
+ "# Hence the composition of the resultant gas would be 2 mol CO2, 1 ol H2 & 10 mol N2.\n",
+ "# Q = integrate('Cp(T)','T',T,298)#\n",
+ "# On integrating we get:\n",
+ "# Q = 84.52*(T - 298) + 18.3*10**(-3)*(T**2 - 298**2)\n",
+ "#deff('[y] = f(T)','y = Q - 84.52*(T - 298) - 18.3*10**(-3)*(T**2 - 298**2)')#\n",
+ "def f(T):\n",
+ " y = Q - 84.52*(T - 298) - 18.3*10**(-3)*(T**2 - 298**2)\n",
+ " return y\n",
+ "from scipy.optimize import fsolve\n",
+ "T = fsolve(f,7)## [K]\n",
+ "print \"The maximum attainable temperature is %.1f K\"%(T)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.8 Page: 126"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.8 - Page: 126\n",
+ "\n",
+ "\n",
+ "The theoretical temperature of combustion is 1906 degree Celsius\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.8 - Page: 126\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Cp_CO2 = 54.56## [kJ/mol K]\n",
+ "Cp_O2 = 35.20## [kJ/mol K]\n",
+ "Cp_steam = 43.38## [kJ/mol K]\n",
+ "Cp_N2 = 33.32## [kJ/mol K]\n",
+ "# 2C2H6(g) + 7O2(g) = 4CO2(g) + 6H2O(g)\n",
+ "deltaH_273 = -1560000## [kJ/kmol]\n",
+ "#************#\n",
+ "\n",
+ "# Since the air is 25% in excess of the amount required,the combustion may be written as:\n",
+ "# C2H6(g) + (7/2)O2(g) = 2CO2(g) + 3H2O(g)\n",
+ "# 25% excess air is supplied.\n",
+ "# Since the air contains N2 = 79% and O2 = 21%\n",
+ "# C2H6(g) + 3.5O2(g) + 0.25*3.5O2(g) + (4.375*(79/21))N2 = 2CO2 + 3H2O + 0.875O2 + 16.46N2 .................. (A)\n",
+ "# Considering the reaction (A),\n",
+ "# Amount of O2:\n",
+ "O2 = 3.5 + 3.5*0.25## [mol]\n",
+ "# Amount of N2 required:\n",
+ "N2 = 4.375*(79/21)## [mol]\n",
+ "# Let the initial temperature of ethane and air be 0 OC and the temperature of products of combustion be T OC\n",
+ "# Since heat librated by combustion = heat accumulated by combustion products\n",
+ "Q = -deltaH_273## [kJ/mol K]\n",
+ "T = Q/(2*Cp_CO2 + 3*Cp_steam + 0.875*Cp_O2 + N2*Cp_N2)## [OC]\n",
+ "print \"The theoretical temperature of combustion is %d degree Celsius\"%(T)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.9 Page: 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.9 - Page: 129\n",
+ "\n",
+ "\n",
+ "Laten heat of ice at -20 OC is 1266 cal/mol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.9 - Page: 129\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "T1 = 273## [K]\n",
+ "T2 = 253## [K]\n",
+ "deltaH_273 = 1440## [cal/mol]\n",
+ "Cp = 8.7## [cal/mol]\n",
+ "#**************#\n",
+ "\n",
+ "deltaH_253 = deltaH_273 + Cp*(T2 - T1)## [cal/mol]\n",
+ "print \"Laten heat of ice at -20 OC is %d cal/mol\\n\"%(deltaH_253)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.10 Page: 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.10 - Page: 129\n",
+ "\n",
+ "\n",
+ "Heat of formation at 1273 K is -11172 cal\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.10 - Page: 129\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "T2 = 1273## [K]\n",
+ "T1 = 300## [K]\n",
+ "deltaH_300 = -11030## [cal/mol]\n",
+ "#*************#\n",
+ "\n",
+ "# The chemical reaction involved is:\n",
+ "# N2 + 3H2 = 2NH3\n",
+ "# (1/2)N2 + (3/2)H2 = NH3\n",
+ "# deltaH_1273 = deltaH_300 + integrate('Cp_NH3(T) - (1/2)*Cp_N2(T) - (1/2)*Cp_H2(T)','T',1273,300)#\n",
+ "from sympy.mpmath import quad\n",
+ "deltaH_1273 = deltaH_300 + quad(lambda T:(6.2 + 7.8*10**(-3)*T - 7.2*10**(-6)*T**2) - (1/2)*(6.45 + 1.4*10**(-3)*T) - (1/2)*(6.94 - 0.2*10**(-3)*T),[1273,300])## [cal]\n",
+ "print \"Heat of formation at 1273 K is %d cal\"%(deltaH_1273)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 4.11 Page: 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 4.11 - Page: 130\n",
+ "\n",
+ "\n",
+ "Percent of excess air supplied is 39.9 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 4.11 - Page: 130\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "CO2 = 13.4## [percent by volume]\n",
+ "N2 = 80.5## [percent by volume]\n",
+ "O2 = 6.1## [percent by volume]\n",
+ "#*************#\n",
+ "\n",
+ "# Basis : 100 cubic m of flue gas.\n",
+ "Vol_N2_flue = N2## [Volume of Nitrogen in flue gas, cubic m]\n",
+ "Vol_O2_flue = O2## [Volume of O2 in flue gas, cubic m]\n",
+ "Vol_Air = N2/0.79## [Volume of air supplied, cubic m]\n",
+ "Vol_O2 = Vol_Air*0.21## [Volume of O2 in air supply, cubic m]\n",
+ "Vol_O2_cumbustion = Vol_O2 - Vol_O2_flue## [Volume of O2 used up in cumbustion of the fuel, cubic m]\n",
+ "Excess_Air = Vol_O2_flue/Vol_O2_cumbustion * 100## [percent of excess air supplied]\n",
+ "print \"Percent of excess air supplied is %.1f %%\"%(Excess_Air)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch5.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch5.ipynb
new file mode 100644
index 00000000..0aec293d
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch5.ipynb
@@ -0,0 +1,1241 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5 - Second law of themodynamics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.1 Page: 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.1 - Page: 150\n",
+ "\n",
+ "\n",
+ "The theoretical efficiency of heat engine is 63.5 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 5.1 - Page: 150\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Th = 550 + 273## [K]\n",
+ "Tl = 27 + 273## [K]\n",
+ "#************#\n",
+ "\n",
+ "# The theoretical efficiency of a heat engine is given by:\n",
+ "# eta = Net Work Output/Net Work Input\n",
+ "# eta = Wnet/Qin\n",
+ "# eta = (Qin - Qout)/Qin = (Th - Tl)/Th\n",
+ "eta = (Th - Tl)/Th#\n",
+ "print \"The theoretical efficiency of heat engine is %.1f %%\"%(eta * 100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.2 Page: 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.2 - Page: 150\n",
+ "\n",
+ "\n",
+ "(a) The efficiency of the heat engine is 63.0 %\n",
+ "\n",
+ "(b) The efficiency of the heat engine is 78.0 %\n",
+ "\n",
+ "(c) The efficiency of the heat engine is 57.5 %\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.2 - Page: 150\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Th = 810## [K]\n",
+ "Tl = 300## [K]\n",
+ "#*************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "eta = (Th - Tl)/Th#\n",
+ "print \"(a) The efficiency of the heat engine is %.1f %%\\n\"%(eta*100)#\n",
+ "\n",
+ "# Solution (b)\n",
+ "Th = 1366## [K]\n",
+ "Tl = 300## [K]\n",
+ "eta = (Th - Tl)/Th#\n",
+ "print \"(b) The efficiency of the heat engine is %.1f %%\\n\"%(eta*100)#\n",
+ "\n",
+ "# Solution (c)\n",
+ "Th = 810## [K]\n",
+ "Tl = 344## [K]\n",
+ "eta = (Th - Tl)/Th#\n",
+ "print \"(c) The efficiency of the heat engine is %.1f %%\\n\"%(eta*100)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.3 Page: 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.3 - Page: 151\n",
+ "\n",
+ "\n",
+ "(a) The efficiency of the Carnot engine is 67.2 %\n",
+ "\n",
+ "(b) Heat released to cold reservoir is 192 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.3 - Page: 151\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Th = 650 + 273## [K]\n",
+ "Tl = 30 + 273## [K]\n",
+ "Qh = 585## [kJ/cycle]\n",
+ "#*************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "# From Eqn. (5.9)\n",
+ "eta = (Th - Tl)/Th#\n",
+ "print \"(a) The efficiency of the Carnot engine is %.1f %%\\n\"%(eta*100)#\n",
+ "\n",
+ "# Soluton (b)\n",
+ "# From the knowledge of the ratio of heat and temperature between the two regions:\n",
+ "Ql = Qh*Tl/Th## [kJ]\n",
+ "print \"(b) Heat released to cold reservoir is %d kJ\\n\"%(Ql)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.4 Page: 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.4 - Page: 151\n",
+ "\n",
+ "\n",
+ "Minimum Work requirement is 27 kJ\n",
+ "\n",
+ "Amount of heat released to the surrounding is 362 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.4 - Page: 151\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 1## [kg]\n",
+ "Tl = 273## [K]\n",
+ "Th = 295## [K]\n",
+ "Ql = 335## [kJ/kg]\n",
+ "#*************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "# The coeffecient of performance of refrigerating machine is:\n",
+ "# COP = Ql/Wnet = Tl/(Th - Tl)\n",
+ "Wnet = Ql*(Th - Tl)/Tl## [kJ]\n",
+ "print \"Minimum Work requirement is %d kJ\\n\"%(round(Wnet))#\n",
+ "\n",
+ "# Solution (b)\n",
+ "# Amount of heat released:\n",
+ "# Wnet = Qh - Ql\n",
+ "Qh = Wnet + Ql## [kJ]\n",
+ "print \"Amount of heat released to the surrounding is %d kJ\\n\"%(round(Qh))#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.5 Page: 152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.5 - Page: 152\n",
+ "\n",
+ "\n",
+ "Minimum Work Required is 13.1 kJ\n",
+ "\n",
+ "The efficiency of Heat Engine is 0.263\n",
+ "\n",
+ "Amount of Heat released is 36.9 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.5 - Page: 152\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Th = 373## [K]\n",
+ "Tl = 275## [K]\n",
+ "Qh = 50## [kJ]\n",
+ "#*************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "# Theral Efficiency of the engine can be given as:\n",
+ "# eta_HE = Wnet/Qh#\n",
+ "# Wnet = Qh*COP = Qh*(Th - Tl)/Th#\n",
+ "Wnet = Qh*(Th - Tl)/Th## [kJ]\n",
+ "print \"Minimum Work Required is %.1f kJ\\n\"%(Wnet)#\n",
+ "\n",
+ "# Solution (b)\n",
+ "eta = (Th - Tl)/Th#\n",
+ "print \"The efficiency of Heat Engine is %.3f\\n\"%(eta)#\n",
+ "\n",
+ "# Solution (c)\n",
+ "# Amount of heat released can be calculated as:\n",
+ "# eta = Net Work Output/Net Work Input#\n",
+ "# eta = Wnet/Qin#\n",
+ "# eta = (Qin - Qout)/Qin#\n",
+ "Qin = Qh## [kJ]\n",
+ "Qout = Qin*(1 - eta)#\n",
+ "print \"Amount of Heat released is %.1f kJ\\n\"%(Qout)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.6 Page: 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.6 - Page: 153\n",
+ "\n",
+ "\n",
+ "Claim is not Valid\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.6 - Page: 153\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "W = 5## [hp]\n",
+ "Q = 7000## [J/s]\n",
+ "Th = 400 + 273## [K]\n",
+ "Tl = 24 + 273## [K]\n",
+ "#*************#\n",
+ "\n",
+ "W = 5*745.7## [W]\n",
+ "thermal_eta = W/Q#\n",
+ "theoretical_eta = (Th - Tl)/Th#\n",
+ "\n",
+ "if theoretical_eta <= thermal_eta:\n",
+ " print \"Claim is Valid\"\n",
+ "else:\n",
+ " print \"Claim is not Valid\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.7 Page: 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.7 - Page: 162\n",
+ "\n",
+ "\n",
+ "Change in Entropy is 23.81 J/mol K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.7 - Page: 162\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "n = 1## [mol]\n",
+ "deltaH_fusion = 6500## [J/mol]\n",
+ "T_Tr = 273## [transition temperature, K]\n",
+ "P = 1## [atm]\n",
+ "#************#\n",
+ "\n",
+ "# By Eqn. (9.40)\n",
+ "deltaS_fusion = deltaH_fusion/T_Tr## [J/mol K]\n",
+ "print \"Change in Entropy is %.2f J/mol K\"%(deltaS_fusion)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.8 Page: 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.8 - Page: 164\n",
+ "\n",
+ "\n",
+ "Change in Entropy is 22.876 eu\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "print \"Example: 5.8 - Page: 164\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "V1 = 5## [L]\n",
+ "V2 = 50## [L]\n",
+ "n = 5## [moles]\n",
+ "R = 1.987## [cal/mol K]\n",
+ "#**************#\n",
+ "\n",
+ "# Change in entropy for an isothermal change for an ideal gas:\n",
+ "# deltaS = n*R*log(P1/P2) = n*R*log(V2/V1)\n",
+ "deltaS = n*R*log(V2/V1)## [cal/degree]\n",
+ "print \"Change in Entropy is %.3f eu\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.9 Page: 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.9 - Page: 164\n",
+ "\n",
+ "\n",
+ "deltaS is 115.26 J/K\n",
+ "Change in Entropy is 115.257 eu\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.9 - Page: 164\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "n = 8## [mol]\n",
+ "R = 8.314## [J/mol K]\n",
+ "T2 = 700## [K]\n",
+ "T1 = 350## [K]\n",
+ "Cp = (5/2)*R## [J/mol K]\n",
+ "#*************#\n",
+ "\n",
+ "deltaS = n*Cp*log(T2/T1)## [J/K]\n",
+ "print \"deltaS is %.2f J/K\"%(deltaS)#\n",
+ "\n",
+ "R*log(V2/V1)#// [cal/degree]\n",
+ "print \"Change in Entropy is %.3f eu\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.10 Page: 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.10 - Page: 164\n",
+ "\n",
+ "\n",
+ "Change in Entropy is -19.179548 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.10 - Page: 164\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "n = 5## [moles]\n",
+ "T1 = 300## [K]\n",
+ "T2 = 400## [K]\n",
+ "P1 = 3## [bars]\n",
+ "P2 = 12## [bars]\n",
+ "Cp = 26.73## [J/mol K]\n",
+ "R = 8.314## [K/mol K]\n",
+ "#*************#\n",
+ "\n",
+ "deltaS = n*((Cp*log(T2/T1)) + (R*log(P1/P2)))## [kJ/K]\n",
+ "print \"Change in Entropy is %f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.11 Page: 166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.11 - Page: 166\n",
+ "\n",
+ "\n",
+ "Entropy Change is 4.27 kJ/kmol K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.11 - Page: 166\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "N = 1## [kmol]\n",
+ "xA = 0.21## [for Oxygen]\n",
+ "xB = 0.79## [for Nitrogen]\n",
+ "R = 8.314## [kJ/kmol K]\n",
+ "#*************#\n",
+ "\n",
+ "deltaS = - (N*R*(xA*log(xA) + xB*log(xB)))## [kJ/mol K]\n",
+ "print \"Entropy Change is %.2f kJ/kmol K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.12 Page: 167"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.12 - Page: 167\n",
+ "\n",
+ "\n",
+ "Change in Entropy is 1.117 cal/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.12 - Page: 167\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Vol_O2 = 5.6## [L]\n",
+ "Vol_H2 = 16.8## [L]\n",
+ "R = 1.987## [cal/mol K]\n",
+ "#*************#\n",
+ "\n",
+ "xA = Vol_O2/22.4## [mole fraction O2]\n",
+ "xB = Vol_H2/22.4## [mle fraaction H2]\n",
+ "N = xA + xB## [total number of moles]\n",
+ "# From Eqn. 5.21:\n",
+ "deltaS = - (N*R*(xA*log(xA) + xB*log(xB)))## [cal/K]\n",
+ "print \"Change in Entropy is %.3f cal/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.13 Page: 168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.13 - Page: 168\n",
+ "\n",
+ "\n",
+ "Entropy Change is 0.319 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.13 - Page: 168\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 80## [mass of Argon, g]\n",
+ "T1 = 300## [K]\n",
+ "T2 = 500## [K]\n",
+ "Cv = 0.3122## [kJ/kg K]\n",
+ "#**************#\n",
+ "\n",
+ "Mw = 40## [Molecular Weight of Argon]\n",
+ "n = m/Mw## [moles]\n",
+ "deltaS = n*Cv*log(T2/T1)## [kJ/K]\n",
+ "print \"Entropy Change is %.3f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.14 Page: 168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.14 - Page: 168\n",
+ "\n",
+ "\n",
+ "The upper temperature of the process is 864.929 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "print \"Example: 5.14 - Page: 168\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "deltaS = 1## [kJ/kg K]\n",
+ "Cv = 0.918## [kJ/kg K]\n",
+ "T1 = 273 + 18## [K]\n",
+ "#*************#\n",
+ "\n",
+ "# Let the upper temperature be T.\n",
+ "# deltaS = integrate('Cv/T','T',T1,T)# \n",
+ "# deltaS = Cv*log(T/T1)\n",
+ "T = T1*exp(deltaS/Cv)## [K]\n",
+ "print \"The upper temperature of the process is %.3f K\"%(T)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.15 Page: 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.15 - Page: 169\n",
+ "\n",
+ "\n",
+ "Change in Entropy is -5.450 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.15 - Page: 169\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m1 = 5## [kg]\n",
+ "m2 = 20## [kg]\n",
+ "C = 4.2## [kJ/kg K]\n",
+ "T1 = 350## [K]\n",
+ "T2 = 250## [K]\n",
+ "#**************#\n",
+ "\n",
+ "# Suppose the final temperature is T\n",
+ "#deff('[y] = f(T)','y = m1*C*(T1 - T) - m2*C*(T - T2)')#\n",
+ "def f(T):\n",
+ " y = m1*C*(T1 - T) - m2*C*(T - T2)\n",
+ " return y\n",
+ "from scipy.optimize import fsolve\n",
+ "T = fsolve(f, 7)[0]## [K]\n",
+ "# Change in entropy of Hot Water:\n",
+ "from sympy.mpmath import quad\n",
+ "deltaS1 = m1*C*quad(lambda T:(1/T),[T1,T])## [kJ/K]\n",
+ "# Change in Entopy of Hot Water:\n",
+ "deltaS2 = m2*C*quad('(1/T)','T',T2,T)## [kJ/K]\n",
+ "deltaS = deltaS1 + deltaS2## [kJ/K]\n",
+ "print \"Change in Entropy is %.3f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.16 Page: 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.16 - Page: 169\n",
+ "\n",
+ "\n",
+ "Change in Entropy is 0.540 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.16 - Page: 169\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m = 12## [g]\n",
+ "T1 = 294## [K]\n",
+ "T2 = 574## [K]\n",
+ "T = 505## [melting point, K]\n",
+ "H_fusion = 4.5## [cal/K]\n",
+ "C_solid = 0.052## [cal/g K]\n",
+ "C_liquid = 0.062## [cal/g K]\n",
+ "#*************#\n",
+ "\n",
+ "# Entropy Change in heating 12 g of metal from T1 to T\n",
+ "deltaS1 = m*C_solid*quad(lambda T:(1/T),[T1,T])## [kJ/K]\n",
+ "# Entropy Change in fusion of metal:\n",
+ "deltaS2 = m*H_fusion/T## [kJ/K]\n",
+ "# Entropy Change in heating liquid metal from 505 K to 574 K\n",
+ "deltaS3 = m*C_liquid*quad(lambda T:(1/T),[T,T2])## [kJ/K]\n",
+ "deltaS = deltaS1 + deltaS2 + deltaS3## [kJ/K]\n",
+ "print \"Change in Entropy is %.3f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.17 Page: 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.17 - Page: 170\n",
+ "\n",
+ "\n",
+ "Change in Entropy is 9.165 cal/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.17 - Page: 170\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "#deff('[y] = Cp(T)','y = 7.25 + 2.28*10**(-3)*T')#\n",
+ "def Cp(T):\n",
+ " y = (7.25 + 2.28*10**(-3)*T)/T\n",
+ " return y\n",
+ "T1 = 273 + 137## [K]\n",
+ "T2 = 273 + 877## [K]\n",
+ "#************#\n",
+ "\n",
+ "deltaS = quad(Cp,[T1,T2])## [cal/K]\n",
+ "print \"Change in Entropy is %.3f cal/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.18 Page: 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.18 - Page: 170\n",
+ "\n",
+ "\n",
+ "Total Entropy Change is 7.68 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.18 - Page: 170\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "m_iron = 40## [kg]\n",
+ "T1 = 625## [K]\n",
+ "m_water = 160## [kg]\n",
+ "T2 = 276## [K]\n",
+ "C_iron = 0.45## [kJ/kg K]\n",
+ "C_water = 4.185## [kJ/kg K]\n",
+ "#**************#\n",
+ "\n",
+ "#deff('[y] = f(T)','y = m_iron*C_iron*(T1 - T) - m_water*C_water*(T - T2)')#\n",
+ "def f(T):\n",
+ " y = m_iron*C_iron*(T1 - T) - m_water*C_water*(T - T2)\n",
+ " return y\n",
+ "from scipy.optimize import fsolve\n",
+ "T = fsolve(f, 7)## [K]\n",
+ "# Change in Entropy of the iron casting can be estimated as:\n",
+ "deltaS1 = m_iron*C_iron*log(T/T1)## [kJ/K]\n",
+ "# Change in Entropy of Water is given by:\n",
+ "deltaS2 = m_water*C_water*log(T/T2)## [kJ/K]\n",
+ "deltaS = deltaS1 + deltaS2## [kJ/K]\n",
+ "print \"Total Entropy Change is %.2f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.19 Page: 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.19 - Page: 172\n",
+ "\n",
+ "\n",
+ "Entropy at 500 K is 160.73 J/kmol\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "print \"Example: 5.19 - Page: 172\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "Cp = 21## [J/kmol]\n",
+ "T1 = 300## [K]\n",
+ "T2 = 500## [K]\n",
+ "S1 = 150## [Entropy at T1, J/kmol]\n",
+ "#*************#\n",
+ "\n",
+ "# This is a constant Entropy process. Therefore:\n",
+ "deltaS = Cp*log(T2/T1)## [J/kmol]\n",
+ "S2 = S1 + deltaS## [J/kmol]\n",
+ "print \"Entropy at 500 K is %.2f J/kmol\"%(S2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.20 Page: 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.20 - Page: 173\n",
+ "\n",
+ "\n",
+ "Total Entropy Change is 369.49 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.20 - Page: 173\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "T1_oil = 273 + 150## [K]\n",
+ "T2_oil = 50 +273## [K]\n",
+ "m_water = 4000## [kg]\n",
+ "T1_water = 273 + 20## [K]\n",
+ "T2_water = 273 + 130## [K]\n",
+ "C_water = 4.185## [kJ/kg K]\n",
+ "C_oil = 2.5## [kJ/kg K]\n",
+ "#***************#\n",
+ "\n",
+ "# For oil:\n",
+ "deltaT_oil = T1_oil - T2_oil## [K]\n",
+ "# For water:\n",
+ "deltaT_water = T2_water - T1_water## [K]\n",
+ "# The mass flow rate of oil can be measured by the enthalpy balance over the process:\n",
+ "m_oil = m_water*C_water*deltaT_water/(deltaT_oil*C_oil)## [kg]\n",
+ "# Change in the Entropy of oil:\n",
+ "deltaS_oil = m_oil*C_oil*log(T2_oil/T1_oil)## [kJ/K]\n",
+ "# Change in Entropy of water:\n",
+ "deltaS_water = m_water*C_water*log(T2_water/T1_water)## [kJ/K]\n",
+ "deltaS = deltaS_oil + deltaS_water## [kJ/K]\n",
+ "print \"Total Entropy Change is %.2f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.21 Page: 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.21 - Page: 174\n",
+ "\n",
+ "\n",
+ "Change in Entropy is 1.49 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.21 - Page: 174\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "t = 20*60## [s]\n",
+ "P = 650## [W]\n",
+ "T = 273 + 250## [K]\n",
+ "#*************#\n",
+ "\n",
+ "Q = P*t/1000## [kJ]\n",
+ "deltaS = Q/T## [kJ/K]\n",
+ "print \"Change in Entropy is %.2f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.22 Page: 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.22 - Page: 174\n",
+ "\n",
+ "\n",
+ "Change in Entropy of the gas is 0.5199 kJ/K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.22 - Page: 174\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "T1 = 400## [K]\n",
+ "P1 = 300## [kPa]\n",
+ "V1 = 1## [cubic m]\n",
+ "V2 =2## [cubic m]\n",
+ "R = 8.314## [kJ/kmol K]\n",
+ "#**************#\n",
+ "\n",
+ "# Since the system is well insulated, there is no scope of transferring heat between system & surrounding.\n",
+ "deltaQ = 0## [kJ]\n",
+ "deltaW = 0## [kJ]\n",
+ "# By first law of thermodynamics:\n",
+ "deltaU =deltaQ - deltaW## [kJ]\n",
+ "# As the internal energy of the gas depends only on temperature,\n",
+ "deltaT = 0## [K]\n",
+ "T2 = T1 + deltaT## [K]\n",
+ "P2 = (P1*V1/T1)*(T2/V2)## [kPa]\n",
+ "n = P1*V1/(R*T1)## [kmol]\n",
+ "deltaS_system = n*R*log(P1/P2)## [kJ/K]\n",
+ "# Since process is adiabatic:\n",
+ "deltaS_surrounding = 0## [kJ/K]\n",
+ "deltaS = deltaS_system + deltaS_surrounding## [kJ/K]\n",
+ "print \"Change in Entropy of the gas is %.4f kJ/K\"%(deltaS)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.23 Page: 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.23 - Page: 174\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 5.23 on page 174 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.23 - Page: 174\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 5.23 on page number 174 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 5.23 on page 174 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.24 Page: 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.24 - Page: 182\n",
+ "\n",
+ "\n",
+ "Work lost is 2119.67 kJ\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.24 - Page: 182\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# From Example 5.18 (Pg: 170)\n",
+ "#*****Data*****#\n",
+ "m_iron = 40## [kg]\n",
+ "T1 = 625## [K]\n",
+ "m_water = 160## [kg]\n",
+ "T2 = 276## [K]\n",
+ "C_iron = 0.45## [kJ/kg K]\n",
+ "C_water = 4.185## [kJ/kg K]\n",
+ "#**************#\n",
+ "\n",
+ "#deff('[y] = f(T)','y = m_iron*C_iron*(T1 - T) - m_water*C_water*(T - T2)')#\n",
+ "def f(T):\n",
+ " y = m_iron*C_iron*(T1 - T) - m_water*C_water*(T - T2)\n",
+ " return y\n",
+ "T = fsolve(f, 7)[0]## [K]\n",
+ "# Change in Entropy of the iron casting can be estimated as:\n",
+ "deltaS1 = m_iron*C_iron*quad(lambda T:(1/T),[T1,T])## [kJ/K]\n",
+ "# Change in Entropy of Water is given by:\n",
+ "deltaS2 = m_water*C_water*quad(lambda T:(1/T),[T2,T])## [kJ/K]\n",
+ "deltaS = deltaS1 + deltaS2## [kJ/K]\n",
+ "# By Eqn. 5.63:\n",
+ "W_lost = T2 * deltaS## [kJ]\n",
+ "print \"Work lost is %.2f kJ\"%(W_lost)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 5.25 Page: 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 5.25 - Page: 182\n",
+ "\n",
+ "\n",
+ "Total Entropy Change is 1831.74 kJ/K\n",
+ "\n",
+ "Since deltaS is a positive quantity, process is irreversible\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 5.25 - Page: 182\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "m_oil = 4750## [kg]\n",
+ "T1_oil = 515## [K]\n",
+ "T2_oil = 315## [K]\n",
+ "m_water = 9500## [kg]\n",
+ "T1_water = 290## [K]\n",
+ "Cp_oil = 3.2## [kJ/kg K]\n",
+ "Cp_water = 4.185## [kJ/kg K]\n",
+ "#*****************#\n",
+ "\n",
+ "# From enthalpy Balance:\n",
+ "#def('[y] = f(T2_water)','y = m_oil*Cp_oil*(T1_oil - T2_oil) - m_water*Cp_water*(T2_water - T1_water)')#\n",
+ "def f(T2_water):\n",
+ " y = m_oil*Cp_oil*(T1_oil - T2_oil) - m_water*Cp_water*(T2_water - T1_water)\n",
+ " return y\n",
+ "T2_water = fsolve(f, 7)[0]## [K]\n",
+ "# Change in the Entropy of oil:\n",
+ "deltaS_oil = m_oil*Cp_oil*quad(lambda T : (1/T),[T1_oil,T2_oil])## [kJ/K]\n",
+ "# Change in Entropy of water:\n",
+ "deltaS_water = m_water*Cp_water*quad(lambda T: (1/T),[T1_water,T2_water])## [kJ/K]\n",
+ "deltaS = deltaS_oil + deltaS_water## [kJ/K]\n",
+ "print \"Total Entropy Change is %.2f kJ/K\\n\"%(deltaS)#\n",
+ "if deltaS > 0:\n",
+ " print \"Since deltaS is a positive quantity, process is irreversible\\n\"\n",
+ "else:\n",
+ " print \"Since deltaS is a negative quantity, process is reversible\\n\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch6.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch6.ipynb
new file mode 100644
index 00000000..771615f6
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch6.ipynb
@@ -0,0 +1,945 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6 - Thermodynamic property relations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.1 Page: 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.1 - Page: 197\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.1 on page 197 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.1 - Page: 197\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.1 on page number 197 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.1 on page 197 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.2 Page: 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.2 - Page: 205\n",
+ "\n",
+ "\n",
+ "Increase in pressure of 1 atm lowers the freezing point by 0.0072 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 6.2 - Page: 205\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "density_water = 0.998## [g/cubic cm]\n",
+ "density_ice = 0.9168## [g/cubic cm]\n",
+ "Hf = 335## [J/g]\n",
+ "T = 0 + 273## [K]\n",
+ "#*****************#\n",
+ "\n",
+ "V_water = 1/density_water## [cubic cm/g]\n",
+ "V_ice = 1/density_ice## [cubic cm/g]\n",
+ "# From Eqn. 6.56:\n",
+ "# dP/dT = deltaS/(V2 - V1) = deltaH/(T*(V2 - V1))\n",
+ "# Substituting these values in Eqn. 6.58\n",
+ "deltaP_By_deltaT = (Hf/(T*(V_water - V_ice)))*10## [atm/K]\n",
+ "deltaT_By_deltaP = 1/deltaP_By_deltaT## [K/atm]\n",
+ "if deltaT_By_deltaP > 0:\n",
+ " print \"Increase in pressure of 1 atm increases the freezing point by %.4f K\"%(abs(deltaT_By_deltaP))#\n",
+ "else:\n",
+ " print \"Increase in pressure of 1 atm lowers the freezing point by %.4f K\"%(abs(deltaT_By_deltaP))#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.3 Page: 206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.3 - Page: 206\n",
+ "\n",
+ "\n",
+ "Enthalpy of Vaporisation is 2125 kJ/kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.3 - Page: 206\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "P1 = 361.3## [kPa]\n",
+ "T1 = 140 + 273## [K]\n",
+ "P2 = 617.8## [kPa]\n",
+ "T2 = 160 + 273## [K]\n",
+ "T = 150 + 273## [K]\n",
+ "Vg = 0.3917## [cubic m/kg]\n",
+ "#****************#\n",
+ "\n",
+ "# From Eqn. 6.56\n",
+ "# dP/dT = deltaH/(T*(Vg - V1)) = deltaH/(T*Vg)\n",
+ "deltaP = P2 - P1## [kPa]\n",
+ "deltaT = T2 - T1## [K]\n",
+ "deltaH = T*Vg*deltaP/deltaT## [kJ/kg]\n",
+ "print \"Enthalpy of Vaporisation is %d kJ/kg\\n\"%(round(deltaH))#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.4 Page: 206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.4 - Page: 206\n",
+ "\n",
+ "\n",
+ "Saturation pressure of the refrigerant is 39.48 kPa\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "print \"Example: 6.4 - Page: 206\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "T1 = -40 + 273## [K]\n",
+ "T2 = -45 + 273## [K]\n",
+ "P1 = 51.25## [kPa]\n",
+ "R = 0.0815## [kJ/kg K]\n",
+ "Hv = 225.86## [kJ/kg]\n",
+ "#****************#\n",
+ "\n",
+ "# From Eqn. 6.61:\n",
+ "P2 = P1*exp((Hv/R)*((1/T1) - (1/T2)))## [kPa]\n",
+ "print \"Saturation pressure of the refrigerant is %.2f kPa\"%(P2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.5 Page: 206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.5 - Page: 206\n",
+ "\n",
+ "\n",
+ "The enthalpy of vaporisation is 13.85 kJ/mol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log10, exp\n",
+ "print \"Example: 6.5 - Page: 206\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "Tb = -103.9 + 273## [K]\n",
+ "def f1(T):\n",
+ " P = 10**(-(834.13/T) + 1.75*log10(T) - 8.375*10**(-3)*T + 5.324)\n",
+ " return P\n",
+ "R = 8.314## [J/mol K]\n",
+ "#***************#\n",
+ "\n",
+ "# From Eqn. 6.60, we get:\n",
+ "# d(ln(P))/dT = deltaH/(R*T**2)\n",
+ "def f2(T):\n",
+ " P = exp(2.303*log10(f1(T)))\n",
+ " return P\n",
+ "# Differentiating it with respect to T\n",
+ "# d(ln(P))/dT = (834.13*2.303/Tb**2 + 1.75/Tb - 2.303*8.375*10**(-3))\n",
+ "deltaH = R*Tb**2*(834.13*2.303/Tb**2 + 1.75/Tb - 2.303*8.375*10**(-3))/1000## [kJ/mol]\n",
+ "print \"The enthalpy of vaporisation is %.2f kJ/mol\\n\"%(deltaH)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.6 Page: 214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.6 - Page: 214\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.6 on page 214 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.6 - Page: 214\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.6 on page number 214 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.6 on page 214 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.7 Page: 215"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.7 - Page: 215\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.7 on page 215 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.7 - Page: 215\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.7 on page number 215 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.7 on page 215 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.8 Page: 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.8 - Page: 217\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.8 on page 217 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.8 - Page: 217\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.8 on page number 217 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.8 on page 217 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.9 Page: 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.9 - Page: 217\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.9 on page 217 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.9 - Page: 217\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.9 on page number 217 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.9 on page 217 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.10 Page: 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.10 - Page: 218\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.10 on page 218 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.10 - Page: 218\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.10 on page number 218 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.10 on page 218 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.11 Page: 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.11 - Page: 219\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.11 on page 219 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.11 - Page: 219\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.11 on page number 219 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.11 on page 219 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.12 Page: 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.12 - Page: 219\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.12 on page 219 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.12 - Page: 219\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 6.12 on page number 219 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.12 on page 219 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.13 Page: 220"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.13 - Page: 220\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.13 on page 220 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.13 - Page: 220\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 6.13 on page number 220 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.13 on page 220 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.14 Page: 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.14 - Page: 221\n",
+ "\n",
+ "\n",
+ "Percentage error is 4.77 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.14 - Page: 221\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "alpha = 0.837*10**(-11)## [square m/N]\n",
+ "beeta = 54.2*10**(-6)## [1/K]\n",
+ "T = 227 + 273## [K]\n",
+ "V = 7.115*10**(-3)## [cubic m/kmol]\n",
+ "Cp = 26.15## [J/mol K]\n",
+ "#*****************#\n",
+ "\n",
+ "Cv = Cp - (T*V*beeta**2/alpha)/1000## [J/mol K]\n",
+ "# Percentage error if Cp is assumed to Cv.\n",
+ "err = ((Cp - Cv)/Cp)*100#\n",
+ "print \"Percentage error is %.2f %%\"%(err)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.15 Page: 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.15 - Page: 221\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.15 on page 221 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.15 - Page: 221\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 6.15 on page number 221 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.15 on page 221 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.16 Page: 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.16 - Page: 222\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.16 on page 222 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.16 - Page: 222\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 6.16 on page number 222 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.16 on page 222 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.17 Page: 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.17 - Page: 222\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.17 on page 222 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.17 - Page: 222\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 6.17 on page number 222 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.17 on page 222 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.18 Page: 223"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.18 - Page: 223\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.18 on page 223 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.18 - Page: 223\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 6.18 on page number 223 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.18 on page 223 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.19 Page: 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.19 - Page: 227\n",
+ "\n",
+ "\n",
+ "Inversion of temperature is 2036.3 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.19 - Page: 227\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "a = 3.59## [square L atm /square mol]\n",
+ "b = 0.043## [L/mol]\n",
+ "R = 0.082## [J/mol K]\n",
+ "#***************#\n",
+ "\n",
+ "# From Eqn. 6.122:\n",
+ "Ti = 2*a/(R*b)## [K]\n",
+ "print \"Inversion of temperature is %.1f K\"%(Ti)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.20 Page: 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.20 - Page: 227\n",
+ "\n",
+ "\n",
+ " This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 6.20 on page 227 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.20 - Page: 227\\n\\n\"\n",
+ "\n",
+ "# This problem involves proving a relation in which no mathematics and no calculations are involved.\n",
+ "# For prove refer to this example 6.20 on page number 227 of the book.\n",
+ "\n",
+ "print \" This problem involves proving a relation in which no mathematics and no calculations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 6.20 on page 227 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.23 Page: 239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.23 - Page: 239\n",
+ "\n",
+ "\n",
+ "Residual Entropy is -0.3116 J/mol K\n",
+ "\n",
+ "Residual Enthalpy is -108.9010 J/mol K\n",
+ "\n",
+ "Residual Internal Energy is -56.3290 J/mol K\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "print \"Example: 6.23 - Page: 239\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "T = 298## [K]\n",
+ "P = 10*10**5## [Pa]\n",
+ "Tc = 126.2## [K]\n",
+ "Pc = 34*10**5## [bar]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#****************#\n",
+ "\n",
+ "a = 27*R**2*Tc**2/(64*Pc)## [Pa.m**6/square mol]\n",
+ "b = R*Tc/(8*Pc)## [cubic m/mol]\n",
+ "V = 2.425*10**(-3)## [cubic m/mol]\n",
+ "# From Eqn. 6.173:\n",
+ "Sr = R*log(P*(V - b)/(R*T))## [J/mol K]\n",
+ "print \"Residual Entropy is %.4f J/mol K\\n\"%(Sr)#\n",
+ "# From Eqn. 6.174:\n",
+ "Hr = P*V - R*T - (a/V)## [J/mol]\n",
+ "print \"Residual Enthalpy is %.4f J/mol K\\n\"%(Hr)#\n",
+ "Ur = -(a/V)## [J/mol]\n",
+ "print \"Residual Internal Energy is %.4f J/mol K\\n\"%(Ur)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 6.24 Page: 244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 6.24 - Page: 244\n",
+ "\n",
+ "\n",
+ "Fugacity of iso-butane is 12.10 atm\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 6.24 - Page: 244\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "B = -4.28*10**(-4)## [cubic m/mol]\n",
+ "P = 15*10**5## [Pa]\n",
+ "T = 273 + 87## [K]\n",
+ "R = 8.314## [J/atm K]\n",
+ "#****************#\n",
+ "\n",
+ "# Z = 1 + (B*P/(R*T))\n",
+ "# (Z - 1)/P = B/(R*T)\n",
+ "# From Eqn. 6.192 (b)\n",
+ "# ln(f/P) = integral('(Z - 1)/P','P',0,P) = B*P/(R*T)\n",
+ "f = P*exp(B*P/(R*T))## [Pa]\n",
+ "print \"Fugacity of iso-butane is %.2f atm\"%(f/10**5)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch7.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch7.ipynb
new file mode 100644
index 00000000..6e32feac
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch7.ipynb
@@ -0,0 +1,597 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7 - Thermodynamics to flow processes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.1 Page: 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.1 - Page: 256\n",
+ "\n",
+ "\n",
+ "Flow rate is 0.1237 m/s\n",
+ "\n",
+ "Velocity of water at the outlet is 3.938 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi\n",
+ "print \"Example: 7.1 - Page: 256\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# *****Data******#\n",
+ "d1 = 0.15## [inlet dia, m]\n",
+ "d2 = 0.20## [outlet dia, m]\n",
+ "U1 = 7## [inlet velocity, m/s]\n",
+ "#****************#\n",
+ "\n",
+ "# From Fig. 7.2 (Pg 256)\n",
+ "# At the inlet:\n",
+ "A1 = (pi/4)*d1**2## [square m]\n",
+ "# At the outlet:\n",
+ "A2 = (pi/4)*d2**2## [square m]\n",
+ "Q = A1*U1## [cubic m/s]\n",
+ "print \"Flow rate is %.4f m/s\\n\"%(Q)#\n",
+ "# Using Continuity Eqn.\n",
+ "# density1*U1*A1 = Density2*U2*A2\n",
+ "# For water: Density1 = Density2. Therefore:\n",
+ "U2 = A1*U1/A2#\n",
+ "print \"Velocity of water at the outlet is %.3f m/s\"%(U2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.2 Page: 257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.2 - Page: 257\n",
+ "\n",
+ "\n",
+ "Discharge through the 10 cm pipe is 0.0942 cubic m/sec\n",
+ "\n",
+ "Average velocity in the 15 cm pipe is 6.38 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 7.2 - Page: 257\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "d1 = 0.2## [m]\n",
+ "d2 = 0.15## [m]\n",
+ "d3 = 0.1## [m]\n",
+ "U1 = 3## [m/s]\n",
+ "U2 = 2.5## [m/s]\n",
+ "#**************#\n",
+ "\n",
+ "# From Fig. 7.3 (Pg: 257)\n",
+ "# For pipe I:\n",
+ "A1 = (pi/4)*d1**2## [square m]\n",
+ "Q1 = A1*U1## [cubic m/s]\n",
+ "# For pipe II:\n",
+ "A2 = (pi/4)*d2**2## [square m]\n",
+ "Q2 = A2*U2## [cubic m/s]\n",
+ "# For pipe III:\n",
+ "A3 = (pi/4)*d3**2## [square m]\n",
+ "# From continuity Eqn.:\n",
+ "Q3 = Q1 - Q2## [cubic m/s]\n",
+ "U3 = Q3/A3## [m/s]\n",
+ "print \"Discharge through the 10 cm pipe is %.4f cubic m/sec\\n\"%(Q1)#\n",
+ "print \"Average velocity in the 15 cm pipe is %.2f m/s\"%(U3)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.3 Page: 262"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.3 - Page: 262\n",
+ "\n",
+ "\n",
+ "Pressure at section 2 is 5.20 bar\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 7.3 - Page: 262\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "d1 = 0.3## [m]\n",
+ "d2 = 0715##[m]\n",
+ "Q = 40/1000## [cubic m/s]\n",
+ "Z1 = 8## [m]\n",
+ "Z2 = 6## [m]\n",
+ "P1 = 5*10**5## [Pa]\n",
+ "density = 1000## [kg/cubic m]\n",
+ "g = 9.81## [m/square s]\n",
+ "#*************#\n",
+ "\n",
+ "# From Fig. 7.3 (Pg: 262)\n",
+ "A1 = (pi/4)*d1**2## [square m]\n",
+ "A2 = (pi/4)*d2**2## [square m]\n",
+ "U1 = Q/A1## [m/s]\n",
+ "U2 = Q/A2## [m/s]\n",
+ "# Applying Bernoulli's equations at sections 1 & 2:\n",
+ "P2 = ((U1**2/(2*g) + Z1 + P1/(density*g)) - (U2**2/(2*g) + Z2))*(density*g)## [Pa]\n",
+ "print \"Pressure at section 2 is %.2f bar\"%(P2/10**5)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.4 Page: 268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.4 - Page: 268\n",
+ "\n",
+ "\n",
+ "Power Requirement of the compressor is 3.79 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 7.4 - Page: 268\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P1 = 100## [kPa]\n",
+ "T1 = 320## [K]\n",
+ "P2 = 600## [kPa]\n",
+ "T2 = 430## [K]\n",
+ "m_dot = 0.03## [kg/s]\n",
+ "Qout = 15## [kJ/kg]\n",
+ "#*************#\n",
+ "\n",
+ "# The energy balance around the compressor:\n",
+ "# dE_System/dt = Ein - Eout\n",
+ "# Since it is a steady state process:\n",
+ "# dE_Sysytem/dt = 0\n",
+ "# Ein = Eout\n",
+ "# Win + m_dot*H1 = Qout + m_dot*H2\n",
+ "# Since, Qout = Qout/m\n",
+ "# Win = m_dot*(Qout + (H2 - H1))\n",
+ "# From enthalpy chart of air:\n",
+ "H1 = 320.20## [Enthalpy of air at 320 K, kJ/kg]\n",
+ "H2 = 431.43## [Enthalpy of air at 430 K, kJ/kg]\n",
+ "Win = m_dot*(Qout + (H2 - H1))## [kW]\n",
+ "print \"Power Requirement of the compressor is %.2f kW\"%(Win)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.5 Page: 269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.5 - Page: 269\n",
+ "\n",
+ "\n",
+ "Work done by reversible adiabatic compression when gama = 1.4 is -96.53 J/g\n",
+ "\n",
+ "Work done by isothermal compression is -76.03 J/g\n",
+ "\n",
+ "Work done in single stage compression is -19.49 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "print \"Example: 7.5 - Page: 269\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P1 = 100## [kPa]\n",
+ "T1 = 250## [K]\n",
+ "Q = 0.1## [cubic m/s]\n",
+ "P2 = 500## [kPa]\n",
+ "M = 44## [g/mol]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#****************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "# Work done by reversible adiabatic compression, gama = 1.4#\n",
+ "gama = 1.4#\n",
+ "T2 = T1*(P2/P1)**((gama - 1)/gama)## [K]\n",
+ "Wad = (gama*R/(gama - 1))*(T1 - T2)## [J/mol]\n",
+ "Wad = Wad/M## [J/g]\n",
+ "print \"Work done by reversible adiabatic compression when gama = 1.4 is %.2f J/g\\n\"%(Wad)#\n",
+ "\n",
+ "# Solution (b)\n",
+ "# Work done by isothermal compression:\n",
+ "Wiso = - (R*T1)*log(P2/P1)## [J/mol]\n",
+ "Wiso = Wiso/M## [J/g]\n",
+ "print \"Work done by isothermal compression is %.2f J/g\\n\"%(Wiso)#\n",
+ "\n",
+ "# Solution (c)\n",
+ "# Work done in single stage compression, gama = 1.3:\n",
+ "gama = 1.3#\n",
+ "V1 = Q## [cubic m]\n",
+ "Wsingle_stage = (gama*P1*V1/(gama - 1))*(1-(P2/P1)**((gama - 1)/gama))## [kW]\n",
+ "print \"Work done in single stage compression is %.2f kW\"%(Wsingle_stage)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.7 Page: 274"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.7 - Page: 274\n",
+ "\n",
+ "\n",
+ "The mass flow rate of water is 448.70 kg/min\n",
+ "\n",
+ "The rate of heat transfer is 18777.00 kJ/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 7.7 - Page: 274\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "T_steam1 = 50## [OC]\n",
+ "T_steam2 = 30## [OC]\n",
+ "msteam_dot = 10## [kg/min]\n",
+ "T_water1 = 15## [OC]\n",
+ "T_water2 = 25## [OC]\n",
+ "#***************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "# From the Stem Table:\n",
+ "H1 = 2645.9## [kJ/kg, At 50 OC]\n",
+ "H2 = 768.2## [kJ/kg, At 30 OC]\n",
+ "H3 = 62.982## [kJ/kg, At 15 OC]\n",
+ "H4 = 104.83## [kJ/kg, At 25 OC]\n",
+ "# The mass & Energy balance of the above flow gives:\n",
+ "mwater_dot = msteam_dot*(H1 - H2)/(H4 - H3)## [kg/min]\n",
+ "print \"The mass flow rate of water is %.2f kg/min\\n\"%(mwater_dot)#\n",
+ "\n",
+ "# Solution (b)\n",
+ "Qdot = mwater_dot*(H4 - H3)## [kJ/min]\n",
+ "print \"The rate of heat transfer is %.2f kJ/min\"%(Qdot)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.8 Page: 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.8 - Page: 279\n",
+ "\n",
+ "\n",
+ "Outlrt velocity is 603.3 m/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "print \"Example: 7.8 - Page: 279\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P1 = 500## [kPa]\n",
+ "T1 = 623## [K]\n",
+ "mdot = 12## [kg/s]\n",
+ "P2 = 500## [kPa]\n",
+ "T2 = 523## [K]\n",
+ "Qdot = -120## [kW]\n",
+ "H1 = 3168## [kJ/kg]\n",
+ "H2 = 2976## [kJ/kg]\n",
+ "#************#\n",
+ "\n",
+ "Q = Qdot/mdot## [kJ/kg]\n",
+ "# By energy balance:\n",
+ "# (deltaU**2/2) + g*deltaZ + deltaH = Q - Ws\n",
+ "# Considering negligible change in P.E., deltaZ = 0 & Ws = 0.\n",
+ "# (U2**2 - U1**2)/2 + deltaH = Q\n",
+ "deltaH = H2 - H1## [kJ/kg]\n",
+ "# Neglecting inlet velocity.\n",
+ "U2 = sqrt(2*(Q - deltaH)*1000)## [m/s]\n",
+ "print \"Outlrt velocity is %.1f m/s\\n\"%(U2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.9 Page: 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.9 - Page: 279\n",
+ "\n",
+ "\n",
+ "Critical Ratio is 0.53\n",
+ "\n",
+ "The discharge velocity is 1174.46 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 7.9 - Page: 279\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Pin = 1000## [kPa]\n",
+ "Tin = 600## [K]\n",
+ "Uin = 50## [m/s]\n",
+ "gama = 1.4#\n",
+ "M = 17## [g/mol]\n",
+ "R = 8314## [kJ/mol K]\n",
+ "MachNumber = 2#\n",
+ "#***************#\n",
+ "\n",
+ "# Solution (i)\n",
+ "# Using Eqn. (7.36):\n",
+ "Critical_Ratio = (2/(gama + 1))**(gama/(gama - 1))#\n",
+ "print \"Critical Ratio is %.2f\\n\"%(Critical_Ratio)#\n",
+ "\n",
+ "# Solution (ii)\n",
+ "PV_in = R*Tin/M## [square m]\n",
+ "Uthroat = sqrt(Uin**2 + (2*gama*PV_in/(gama - 1))*(1-(Critical_Ratio)**((gama - 1)/gama)))## [m/s]\n",
+ "Uout = MachNumber*Uthroat## [m/s]\n",
+ "print \"The discharge velocity is %.2f m/s\"%(Uout)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.10 Page: 280"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.10 - Page: 280\n",
+ "\n",
+ "\n",
+ "(a) Final Velocity is 901.11 m/s\n",
+ "\n",
+ "(b) Final Velocity is 1553.06 m/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 7.10 - Page: 280\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P1 = 800## [kPa]\n",
+ "T1 = 773## [K]\n",
+ "H1 = 3480## [kJ/kg]\n",
+ "P2 = 100## [kPa]\n",
+ "T2 = 573## [K]\n",
+ "H2 = 3074## [kJ/kg]\n",
+ "#***************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "# Velocity of the fluid exiting the nozzle:\n",
+ "# U2 = sqrt(U1**2 + 2*(H1 - H2))\n",
+ "# Neglecting initial velocity:\n",
+ "U2 = sqrt(2*(H1 - H2)*1000)## [m/s]\n",
+ "print \"(a) Final Velocity is %.2f m/s\\n\"%(U2)#\n",
+ "\n",
+ "# Solution (b)\n",
+ "U1 = 40## [m/s]\n",
+ "U2 = sqrt((U1**2 + 2*(H1 - H2))*1000)## [m/s]\n",
+ "print \"(b) Final Velocity is %.2f m/s\\n\"%(U2)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 7.11 Page: 281"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 7.11 - Page: 281\n",
+ "\n",
+ "\n",
+ "Mass flow rate of the steam is 17.50 kg/s\n",
+ "\n",
+ "The temperature of the steam leaving the outlet is 393.38 K\n",
+ "\n",
+ "Area of diffuser outlet is 0.28 square m\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 7.11 - Page: 281\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P1 = 100## [kPa]\n",
+ "T1 = 200## [OC]\n",
+ "U1 = 190## [m/s]\n",
+ "A1 = 2000/10**4## [square m]\n",
+ "U2 = 70## [m/s]\n",
+ "P2 = 200## [kPa]\n",
+ "Qdot = 100## [kW]\n",
+ "V1 = 2.172## [cubic m/kg]\n",
+ "H1 = 2875.3## [kJ/kg]\n",
+ "#***************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "mdot = U1*A1/V1## [kg/s]\n",
+ "print \"Mass flow rate of the steam is %.2f kg/s\\n\"%(mdot)#\n",
+ "\n",
+ "# Solution (b)\n",
+ "# Amount of heat transferred to the surrounding per unit steam:\n",
+ "Q = Qdot/mdot## [kJ/kg]\n",
+ "# The Enthalpy at the diffuser outlet can be estimated as:\n",
+ "H2 = Q + H1 + (U1**2 - U2**2)/2## [kJ/kg]\n",
+ "# From the steam table:\n",
+ "T2 = 393.38## [K]\n",
+ "V2 = 1.123## [cubic m/kg]\n",
+ "print \"The temperature of the steam leaving the outlet is %.2f K\\n\"%(T2)#\n",
+ "\n",
+ "# Solution (c)\n",
+ "A2 = V2*mdot/U2## [square m]\n",
+ "print \"Area of diffuser outlet is %.2f square m\\n\"%(A2)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb
new file mode 100644
index 00000000..c35a6a24
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb
@@ -0,0 +1,580 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8 - Refrigeration and liquifaction processes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.1 Page: 297"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.1 - Page: 297\n",
+ "\n",
+ "\n",
+ "The coeffecient of performance of the cycle is 7.91\n",
+ "\n",
+ "The power required is 3.79 kW\n",
+ "\n",
+ "The rate of heat rejection in the room is 33.79 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 8.1 - Page: 297\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Tl = 273 - 4## [K]\n",
+ "Th = 273 + 30## [K]\n",
+ "Ql = 30## [kW]\n",
+ "#*************\n",
+ "\n",
+ "# Solution (a)\n",
+ "COP = Tl/(Th - Tl)#\n",
+ "print \"The coeffecient of performance of the cycle is %.2f\\n\"%(COP)\n",
+ "\n",
+ "# Solution (b)\n",
+ "Wnet = Ql/COP## [kW]\n",
+ "print \"The power required is %.2f kW\\n\"%(Wnet)\n",
+ "\n",
+ "# Solution (c)\n",
+ "Qh = Wnet + Ql## [kW]\n",
+ "print \"The rate of heat rejection in the room is %.2f kW\"%(Qh)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.2 Page: 298"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.2 - Page: 298\n",
+ "\n",
+ "\n",
+ "The power consumption is 0.735 kW\n",
+ "\n",
+ "Cooling Effect produced is 2.862 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.2 - Page: 298\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Tl = -10 + 273## [K]\n",
+ "Th = 45 + 273## [K]\n",
+ "Ql = 1## [ton]\n",
+ "#*************\n",
+ "\n",
+ "# Solution (a)\n",
+ "COP = Tl/(Th - Tl)#\n",
+ "Wnet = Ql*3.516/COP## [kW]\n",
+ "print \"The power consumption is %.3f kW\\n\"%(Wnet)\n",
+ "\n",
+ "# Solution (b)\n",
+ "Tl = -20 + 273## [K]\n",
+ "Th = 45 + 273## [K]\n",
+ "COP = Tl/(Th - Tl)#\n",
+ "Ql = Wnet*COP## [kW]\n",
+ "print \"Cooling Effect produced is %.3f kW\\n\"%(Ql)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.3 Page: 298"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.3 - Page: 298\n",
+ "\n",
+ "\n",
+ "Increase in percentage of work output is 22.97 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.3 - Page: 298\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# From Example 8.2:\n",
+ "\n",
+ "# For refrigerated space:\n",
+ "# Wnet = Ql/4.78 = 0.209*Ql\n",
+ "\n",
+ "# For freezer box.\n",
+ "# Wnet = Ql/3.89 = 0.257*Ql\n",
+ "\n",
+ "percent = ((0.257 - 0.209)/0.209)*100#\n",
+ "print \"Increase in percentage of work output is %.2f %%\"%(percent)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.4 Page: 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.4 - Page: 299\n",
+ "\n",
+ "\n",
+ "Coeffecient of performance of Carnot Heat Pump is 12.38\n",
+ "\n",
+ "Power input can be estimated as 2.02 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.4 - Page: 299\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Th = 273 + 24## [K]\n",
+ "Tl = 0 + 273## [K]\n",
+ "Qh = 25## [kW]\n",
+ "#*************\n",
+ "\n",
+ "COP = Th/(Th - Tl)#\n",
+ "Wnet = Qh/COP## [kW]\n",
+ "print \"Coeffecient of performance of Carnot Heat Pump is %.2f\\n\"%(COP)#\n",
+ "print \"Power input can be estimated as %.2f kW\\n\"%(Wnet)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.5 Page: 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.5 - Page: 299\n",
+ "\n",
+ "\n",
+ "Minimum Power input required is 1.669 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.5 - Page: 299\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Tl = -2 + 273## [K]\n",
+ "Th = 20 + 273## [K]\n",
+ "Qh = 80000## [kJ/h]\n",
+ "#*************\n",
+ "\n",
+ "Ql = Qh*Tl/Th## [kJ/h]\n",
+ "Wnet = Qh - Ql## [kJ/h]\n",
+ "print \"Minimum Power input required is %.3f kW\\n\"%(Wnet/3600)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.6 Page: 303"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.6 - Page: 303\n",
+ "\n",
+ "\n",
+ "Enthalpy of saturated vapour is 6.65\n",
+ "\n",
+ "Refrigerating Effect is 113 kJ/kg\n",
+ "\n",
+ "The COP of an ideal Carnot refrigerator is 6.83\n",
+ "\n",
+ "Work done by the compression is 17.00 kJ/kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.6 - Page: 303\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Tl = 273## [K]\n",
+ "Th = 313## [K]\n",
+ "H1 = 187## [Enthalpy of saturated vapour at 273 K, kJ/kg]\n",
+ "H3 = 74## [Enthalpy of saturated liquid at 313 K,kJ/kg]\n",
+ "H4 = H3## [kJ/kg]\n",
+ "H2 = 204## [Enthalpy of Supersaturated Vapour at 273 K, kJ/kg]\n",
+ "#****************\n",
+ "\n",
+ "# Solution (i)\n",
+ "# COP = Ql/Wnet#\n",
+ "COP = ((H1 - H4)/(H2 - H1))#\n",
+ "print \"Enthalpy of saturated vapour is %.2f\\n\"%(COP)\n",
+ "\n",
+ "# Solution (ii)\n",
+ "Ref_Effect = H1 - H4## [kJ/kg]\n",
+ "print \"Refrigerating Effect is %d kJ/kg\\n\"%(Ref_Effect)\n",
+ "\n",
+ "# Solution (iii)\n",
+ "COP = Tl/(Th - Tl)#\n",
+ "print \"The COP of an ideal Carnot refrigerator is %.2f\\n\"%(COP)\n",
+ "\n",
+ "# Solution (iv)\n",
+ "W = H2 - H1## [kJ/kg]\n",
+ "print \"Work done by the compression is %.2f kJ/kg\\n\"%(W)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.7 Page: 304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.7 - Page: 304\n",
+ "\n",
+ "\n",
+ "Amount of heat removed from cold space is 9.18 kW\n",
+ "\n",
+ "THe power input required is 1.92 kW\n",
+ "\n",
+ "COP of refrigeration of cycle is 4.77\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.7 - Page: 304\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "P1 = 0.18## [MPa]\n",
+ "T1 = -10 + 273## [K]\n",
+ "mdot = 0.06## [kg/s]\n",
+ "P2 = 1## [MPa]\n",
+ "T2 = 45 + 273## [K]\n",
+ "T = 273 + 29## [K]\n",
+ "P = 0.75## [MPa]\n",
+ "H1 = 245.16## [Enthalpy of superheated vapour at -10 OC & 0.18 MPa, kJ/kg]\n",
+ "H2 = 277.2## [Enthalpy of superheated vapour at 45 OC & 1 MPa, kJ/kg]\n",
+ "H3 = 92.22## [Enthalpy of saturated liquid at 29 OC & 0.75 MPa, kJ/kg]\n",
+ "H4 = H3## [kJ/kg]\n",
+ "#*************\n",
+ "\n",
+ "# Solution (a)\n",
+ "Ql = mdot*(H1 - H4)## [kW]\n",
+ "print \"Amount of heat removed from cold space is %.2f kW\\n\"%(Ql)\n",
+ "\n",
+ "# Solution (b)\n",
+ "Wnet = mdot*(H2 - H1)## [kW]\n",
+ "print \"THe power input required is %.2f kW\\n\"%(Wnet)\n",
+ "\n",
+ "# Solution (c)\n",
+ "COP = Ql/Wnet#\n",
+ "print \"COP of refrigeration of cycle is %.2f\\n\"%(COP)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.8 Page: 305"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.8 - Page: 305\n",
+ "\n",
+ "\n",
+ "Mass flow rate of the refrigerant is 0.1546 kg/s\n",
+ "\n",
+ "Power consumption in the compression is 4.57 kW\n",
+ "\n",
+ "The amount of heat rejected in the condenser is 22.15 kW\n",
+ "\n",
+ "Relative COP is 0.78\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.8 - Page: 305\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Ql = 5## [tons]\n",
+ "Tl = -10 + 273## [K]\n",
+ "Th = 35 + 273## [K]\n",
+ "eta = 0.85#\n",
+ "H1 = 183.2## [Enthalpy of saturated vapour at 263 K, kJ/kg]\n",
+ "H2 = 208.3## [Enthalpy of superheated vapour, kJ/kg]\n",
+ "H3 = 69.5## [Enthalpy of saturated vapour at 308 K, kJ/kg]\n",
+ "H4 = H3## [kJ/kg]\n",
+ "#***************\n",
+ "\n",
+ "# Solution (a)\n",
+ "# Mass flow rate:\n",
+ "Ql = Ql*3.516## [kW]\n",
+ "mdot = Ql/(H1 - H4)## [kW]\n",
+ "print \"Mass flow rate of the refrigerant is %.4f kg/s\\n\"%(mdot)\n",
+ "\n",
+ "# Solution (b)\n",
+ "W = H2 - H1## [kJ/kg]\n",
+ "Wnet = W*mdot/eta## [kW]\n",
+ "print \"Power consumption in the compression is %.2f kW\\n\"%(Wnet)\n",
+ "\n",
+ "# Solution (c)\n",
+ "Qh = Ql + Wnet## [kW]\n",
+ "print \"The amount of heat rejected in the condenser is %.2f kW\\n\"%(Qh)\n",
+ "\n",
+ "# Solution (d)\n",
+ "COP_VapourCompression = (H1 - H4)/(H2 - H1)#\n",
+ "COP_Carnot = Tl/(Th - Tl)#\n",
+ "COP_relative = COP_VapourCompression/COP_Carnot#\n",
+ "print \"Relative COP is %.2f\\n\"%(COP_relative)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.9 Page: 308"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.9 - Page: 308\n",
+ "\n",
+ "\n",
+ "Claim is Valid and reasonable\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.9 - Page: 308\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Th = 273 + 125## [K]\n",
+ "Tl = 273 - 5## [K]\n",
+ "Ts = 273 + 28## [K]\n",
+ "COP = 2#\n",
+ "#*************\n",
+ "\n",
+ "COP_absorption = (Tl/(Ts - Tl))*((Th - Ts)/Th)#\n",
+ "if ((COP - 0.1) < COP_absorption) or ((COP + 0.1) > COP_absorption):\n",
+ " print \"Claim is Valid and reasonable\"\n",
+ "else:\n",
+ " print \"Claim is not Valid\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 8.10 Page: 313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 8.10 - Page: 313\n",
+ "\n",
+ "\n",
+ "COP of Air Refrigeration System is 2.06\n",
+ "\n",
+ "Mass flow rate of the refrigerant is 1279.07 kg/h\n",
+ "\n",
+ "The work of Compression is 26.13 kW\n",
+ "\n",
+ "The work of expansion is 17.58 kW\n",
+ "\n",
+ "Net work of the system is 8.55 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 8.10 - Page: 313\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Q = 5## [tons]\n",
+ "T1 = 253## [Temperature of the working fluid leaving the evaporator, K]\n",
+ "T2 = 303## [Temperature of the working fluid leaving the evaporator, K]\n",
+ "T3 = 303## [K]\n",
+ "Pressure_Ratio = 4#\n",
+ "C = 1.008## [kJ/kg]\n",
+ "gama = 1.4#\n",
+ "#**************\n",
+ "\n",
+ "# Solution (a)\n",
+ "T2 = T1*((Pressure_Ratio)**((gama - 1)/gama))## [K]\n",
+ "T2 = T1*(Pressure_Ratio)**((gama - 1)/gama)## [K]\n",
+ "T4 = T3/((Pressure_Ratio)**((gama - 1)/gama))## [K]\n",
+ "COP = T1/(T2 - T1)#\n",
+ "print \"COP of Air Refrigeration System is %.2f\\n\"%(COP)\n",
+ "\n",
+ "# Solution (b)\n",
+ "mdot = Q*12660/(C*(T1 - T4))## [kg/h]\n",
+ "print \"Mass flow rate of the refrigerant is %.2f kg/h\\n\"%(mdot)\n",
+ "\n",
+ "# Solution (c)\n",
+ "Wcompression = mdot*C*(T2 - T3)## [kJ/h]\n",
+ "print \"The work of Compression is %.2f kW\\n\"%(Wcompression/3600)\n",
+ "\n",
+ "# Solution (d)\n",
+ "Wexpansion = mdot*C*(T1 - T4)## [kJ/h]\n",
+ "print \"The work of expansion is %.2f kW\\n\"%(Wexpansion/3600)\n",
+ "\n",
+ "# Solution (e)\n",
+ "Wnet = Wcompression - Wexpansion## [kJ/h]\n",
+ "print \"Net work of the system is %.2f kW\\n\"%(Wnet/3600)#"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb
new file mode 100644
index 00000000..9ed9282e
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb
@@ -0,0 +1,1078 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9 - Solutoin thermodynamic properties"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.1 Page: 338"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.1 - Page: 338\n",
+ "\n",
+ "\n",
+ "Partial molar volume of water is 2.76e-05 cubic m/mol\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "print \"Example: 9.1 - Page: 338\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "V1_bar = 52.37*10**(-6)## [partial molar volume of ethanol, cubic m/mol]\n",
+ "y1 = 0.5## [mole fraction of ethanol]\n",
+ "Density = 800.21## [kg/cubic m]\n",
+ "M1 = 46*10**(-3)## #[Molecular wt. of ethanol,kg/mol]\n",
+ "M2 = 18*10**(-3)## [Molecular wt. of water,kg/cmol]\n",
+ "#*************#\n",
+ "\n",
+ "y2 = 1 - y1## [mole fraction of water]\n",
+ "M = y1*M1 + y2*M2## [Molecular wt. of mixture, kg/mol]\n",
+ "V = M/Density## [Volume of mixture, cubic m/mol]\n",
+ "# From Eqn. 9.9:\n",
+ "V2_bar = (V - y1*V1_bar)/y2## [partial molar volume of water, cubic m/mol]\n",
+ "print \"Partial molar volume of water is %.2e cubic m/mol\\n\"%(V2_bar)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.2 Page: 338"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.2 - Page: 338\n",
+ "\n",
+ "\n",
+ "Volume of alcohol required is 1.223 cubic m while volume of water required is 0.842 cubic m\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.2 - Page: 338\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Vol = 2## [Volume of the mixture, cubic m/mol]\n",
+ "y1 = 0.4## [mole fraction of alcohol, cubic m/mol]\n",
+ "V1_bar = 38.3*10**(-6)## [partial molar volume of alcohol, cubic m/mol]\n",
+ "V2_bar = 17.2*10**(-6)## [partial molar volume of water, cubic m/mol]\n",
+ "V1 = 39.21*10**(-6)## [molar volume of alcohol, cubic m/mol]\n",
+ "V2 = 18*10**(-6)## [molar volume of water, cubic m/mol]\n",
+ "#*************#\n",
+ "\n",
+ "# From Eqn. 9.9:\n",
+ "V = y1*V1_bar + (1 - y1)*V2_bar## [molar volume of the solution]\n",
+ "n = Vol/V## [number of moles of solution]\n",
+ "n1 = y1*n## [number of moles of alcohol required]\n",
+ "n2 = (1 - y1)*n## [number of moles of water required]\n",
+ "V_alcohol = V1*n1## [Volume of alcohol required, cubic m]\n",
+ "V_water = V2*n2## [Volume of water required, cubic m]\n",
+ "print \"Volume of alcohol required is %.3f cubic m while volume of water required is %.3f cubic m\\n\"%(V_alcohol,V_water)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.3 Page: 339"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.3 - Page: 339\n",
+ "\n",
+ "\n",
+ "Mass of water added is 1138 g\n",
+ "\n",
+ "The volume of vodka obtained after conversion is 3047 cubic cm\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.3 - Page: 339\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Vol = 2000## [cubic cm]\n",
+ "y1_1 = 0.96## [mass fraction of ethanol in laboratory alcohol]\n",
+ "y2_1 = 0.04## [mass fraction of water in laboratory alcohol]\n",
+ "y1_2 = 0.56## [mass fracion of ethanol in vodka]\n",
+ "y2_2 = 0.44## [mass fraction of water in vodka]\n",
+ "Vbar_water1 = 0.816## [cubic cm/g]\n",
+ "Vbar_ethanol1 = 1.273## [cubic cm/g]\n",
+ "Vbar_water2 = 0.953## [cubic cm/g]\n",
+ "Vbar_ethanol2 = 1.243## [cubic cm/g]\n",
+ "Density_water = 0.997## [cubic cm/g]\n",
+ "#***************#\n",
+ "\n",
+ "# Solution (i)\n",
+ "# From Eqn 9.9\n",
+ "Va = y1_1*Vbar_ethanol1 + y2_1*Vbar_water1## [Volume of laboratory alcohol, cubic cm/g]\n",
+ "mass = Vol/Va## [g]\n",
+ "# Let Mw be the mass of water added in laboratory alcohol.\n",
+ "# Material balance on ethanol:\n",
+ "Mw = mass*y1_1/y1_2 - mass## [g]\n",
+ "Vw = Mw/Density_water## [Volume of water added, cubic cm]\n",
+ "print \"Mass of water added is %d g\\n\"%(Mw)#\n",
+ "\n",
+ "# Solution (ii)\n",
+ "Mv = mass + Mw## [Mass of vodka, g]\n",
+ "Vv = y1_2*Vbar_ethanol2 + y2_2*Vbar_water2## [Volume of ethanol, cubic cm/g]\n",
+ "V_vodka = Vv*Mv## [Volume of vodka obtained after conversion, cubic cm]\n",
+ "print \"The volume of vodka obtained after conversion is %.d cubic cm\\n\"%(V_vodka)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.4 Page: 339"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.4 - Page: 339\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 9.4 on page 339 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.4 - Page: 339\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 9.4 on page number 339 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 9.4 on page 339 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.5 Page: 340"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.5 - Page: 340\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 9.5 on page 340 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.5 - Page: 340\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 9.5 on page number 340 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 9.5 on page 340 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.6 Page: 341"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example - 9.6 and Page number - 341\n",
+ "\n",
+ "\n",
+ "The expression for the partial molar volume of methanol(2) is\n",
+ "V2_bar = V2 + a*x_1**(2) [cubic cm/mol]\n",
+ "\n",
+ "\n",
+ "The partial molar volume of methanol at infinite dilution is 37.5 cubic cm/mol\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example - 9.6 and Page number - 341\\n\\n\"\n",
+ "\n",
+ "#Given\n",
+ "T = 25+273.15## [K]\n",
+ "P = 1## [atm]\n",
+ "# Component 1 = water\n",
+ "# Component 2 = methanol\n",
+ "a = -3.2## [cubic cm/mol] A constant\n",
+ "V2 = 40.7## [cubic cm/mol] Molar volume of pure component 2 (methanol)\n",
+ "# V1_bar = 18.1 + a*x_2**(2)\n",
+ "\n",
+ "# From Gibbs-Duhem equation at constant temperature and pressure we have\n",
+ "# x_1*dV1_bar + x_2*dV2_bar = 0\n",
+ "# dV2_bar = -(x_1/x_2)*dV1_bar = -(x_1/x_2)*a*2*x_2*dx_2 = -2*a*x_1*dx_2 = 2*a*x_1*dx_1\n",
+ "\n",
+ "# At x_1 = 0: x_2 = 1 and thus V2_bar = V2\n",
+ "# Integrating the above equation from x_1 = 0 to x_1 in the RHS, and from V2_bar = V2 to V2 in the LHS, we get\n",
+ "# V2_bar = V2 + a*x_1**(2) - Molar volume of component 2(methanol) in the mixture \n",
+ "\n",
+ "print \"The expression for the partial molar volume of methanol(2) is\\nV2_bar = V2 + a*x_1**(2) [cubic cm/mol]\\n\\n\"\n",
+ "\n",
+ "# At infinite dilution, x_2 approach 0 and thus x_1 approach 1, therefore\n",
+ "x_1 = 1## Mole fraction of component 1(water) at infinite dilution\n",
+ "V2_bar_infinite = V2 + a*(x_1**(2))##[cubic cm/mol]\n",
+ "\n",
+ "print \"The partial molar volume of methanol at infinite dilution is %.1f cubic cm/mol\"%(V2_bar_infinite)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.7 Page: 342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.7 - Page: 342\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4XFXZ9/Hvj04EDE2QokFfqgKhIzUqECygFIP0UN4H\nlKY0EV4IRSDwUBQUFESCKEiRjiD1RAhNkBNCN2joEFqQQB4I4X7/2PuwN+c5ZzJz5uzZU36f65or\ns2f2zNxzZ86s2eveay1FBGZm1rnmKDsAMzMrlxsCM7MO54bAzKzDuSEwM+twbgjMzDqcGwIzsw7n\nhsBsEEgaLemusuMwGwg3BNb0JE2R9J6kd3KXs8qOa7BIWlrStZLekPS8pH0q7Htkrzy8J2mWpEUa\nGbO1FzcE1goC+HZELJi7HFh2UIPoD8AzwGeAbwEnSRrR144RcVI+D8ApwJ0R8WbDorW244bAWpqk\ncyVdmds+RdJt6fWFJd0gaaqkNyVdL2np3L5dkk6QNCH9dX2dpMUk/VHS25IekPT53P4fSTpA0jOS\nXpN0qiT1E9dKkm5Nf+U/Kel7/ey3ALApcFJEzIqIR4ArgT2reO8Cdgcuqi5bZn1zQ2Ctos8vXOBg\nYFVJu0vamOQLdLfcYy4APpdeZgC/7PX4HYBdgKWBLwL3po9ZBHgCGNNr/+8CawFrAt+hjy9sSZ8C\nbiX5pb848H3gHEkrV3hf+fc3B/Dlft5v3sbp8/+5in3N+uWGwFqBgGskvZW77AUQETOAXYEzgYuB\n/SPipfS+NyPi6oj4n4iYDpxE8uu7RwAXRsS/I+I/wE3A0xFxR0TMAq4A1ugVyykRMS0ingd+DuzY\nR7zfBv4dERdFxEcR0Q1cBfyvo4KIeAeYABwtaV5JawLbAvNXkZfdgSsi4r0q9jXr11xlB2BWhQC+\nExF39HlnxAOS/gUsRvLlDYCkISQNxEhg4fTmBSQpstkWX8091f8AU3ttL9Dr5Z7PXX8OWKqPkD4P\nrCfprdxtcwG/7yt+YGfgV+lzP0NyJPGlfvYFPn5v2wNbV9rPrBo+IrCWJ2k/YB7gJeDw3F2HACsA\n60bEp0mOBkT/3UzVTMX7uV7XX+xjn+eA8RGxcO6yYETs1+eLRjwXEVtFxGci4isk3T33zyaObYA3\nImJ8FTGbVeSGwFpFf0XZFYATSH5V7wYcLmn19O4FSOoCb6enV/bu7+/9vP01EHmHShoqaVngQOCy\nPva5EVhB0i6S5k4v60haqZ/3sJKkBSXNI2kXYHPgjNnEsTv9H2GY1cQNgbWK63udP/9nSXOS1AXG\nRsSkiJgMHAlcLGlukj78+YHXgXtIagC9f/VHr+uV7ge4FngIeBi4gaSw/InHpv3+W5AUiV8EXgZO\nJjlq6ctIki6hN4H/AkZGxBs9d6bvd8Pc9tLACNwQ2CBR0QvTpH+sDwIvRMRW6S+zy0j6UacAoyJi\nWqFBmA0CSR8B/yci/lV2LGaDqRFHBAcBj5P9sjoCuDUiVgBuT7fNzKwkhTYEkpYBvgn8lqz/dWuy\nATAXkZyXbdYKvK6rtaWiTx89EzgMWCh32xIR0XPK3qvAEgXHYDYoImLOsmMwK0JhRwSSvg1MjYiH\n6edsjPRcbv/KMjMrUZFHBBsAW0v6JjAfsJCki4FXJS0ZEa9I+iyfHMDzMUluIMzMBiAiqjkV+mOF\nHRFExJERsWxELEdyGt0dEbErcB3JOdCk/15T4Tl8iWDMmDGlx9AsF+fCuXAu/vfluOOCTTcNZs4c\n2O/nRk4x0RPhWODydK6YKcCoBsbQkqZMmVJ2CE3Ducg4F5lOzsUdd8C558JDD8FcA/xGb0hDEMkw\n+PHp9TeBzRrxumZm7eyVV2DXXeGii2Cpvma9qpJHFreA0aNHlx1C03AuMs5FphNzMWsW7LIL7Lkn\nbLFFfc9V+MjigfrkBJFmZpZ3/PFJt9Btt32yS0gS0SzFYhs8XV1dZYfQNJyLjHOR6bRc9NQFLrlk\n4HWBPDcEZmYtZLDqAnnuGjIzaxGzZsHIkfCVr8AJJ/S9j7uGzMza2Iknwocfwpi+VtaogxuCFtBp\n/Z+VOBcZ5yLTCbkY7LpAnhsCM7MmV0RdIM81AjOzJlZNXSDPNQIzszZTVF0gzw1BC+iE/s9qORcZ\n5yLTrrkosi6Q54bAzKwJFV0XyHONwMysydRaF8hzjcDMrA00oi6Q54agBbRr/+dAOBcZ5yLTTrlo\nVF0gzw2BmVmTaGRdIM81AjOzJlBPXSDPNQIzsxbV6LpAnhuCFtBO/Z/1ci4yzkWm1XNRRl0gzw2B\nmVmJyqoL5LlGYGZWksGqC+S5RmBm1kLKrAvkuSFoAa3e/zmYnIuMc5FpxVyUXRfIc0NgZtZgzVAX\nyHONwMysgYqoC+S5RmBm1uSapS6Q54agBbRi/2dRnIuMc5FplVw0U10gzw2BmVkDNFtdIM81AjOz\nghVdF8hzjcDMrAk1Y10gzw1BC2iV/s9GcC4yzkWmmXPRrHWBPDcEZmYFaea6QJ5rBGZmBWhkXSDP\nNQIzsybR7HWBPDcELaCZ+z8bzbnIOBeZZstFK9QF8twQmJkNolapC+S5RmBmNkjKqgvkuUZgZlai\nVqoL5LkhaAHN1v9ZJuci41xkmiEXrVYXyHNDYGZWp1asC+S5RmBmVodmqAvkuUZgZtZgrVoXyHND\n0AKaof+zWTgXGeciU1YuWrkukOeGwMxsAFq9LpDnGoGZWY2arS6Q5xqBmVkDtENdIM8NQQtwX3DG\nucg4F5lG5qJd6gJ5hTYEkuaTdL+kbkmPSzo5vf1YSS9Ieji9bFlkHGZmg6Gd6gJ5hdcIJA2JiPck\nzQXcDRwKfB14JyLOqPA41wjMrGk0c10grylrBBHxXnp1HmBO4K10u6ZAzczK1G51gbzCGwJJc0jq\nBl4F7oyIx9K7DpA0UdIFkoYWHUcrc19wxrnIOBeZonPRjnWBvMLfUkR8BAyX9Gngr5JGAOcCx6e7\nnACcDuzV+7GjR49m2LBhAAwdOpThw4czYsQIIPuP93ZnbfdolnjK3O7u7m6qeMrc7u7uLuz5X3kF\nRo3q4ic/gaWWao73m9/u6upi3LhxAB9/X9aqoeMIJB0NzIiI03K3DQOuj4hVe+3rGoGZlapV6gJ5\nhdYI0jOA5q0xoMV6un0kzQ9sDjwsacncbtsAk2p5XjOzRmjnukBevw1B2re/raQrJL0I/Bt4VtKL\nkq6UtI2k2bU6nwXuSGsE95P88r8dOFXSI5ImApsCPx6k99OWeneLdDLnIuNcZIrIRbvXBfIqvb0u\n4C7gNKA7It4HSI8K1gC2JvkC36S/J4iIScCafdy+28BDNjMrVruOF+hPvzUCSfP2fPn3++Aq9hlw\nYK4RmFkJWrEukDeoNYLeX/CSlpe0vaRV+tvHzKzVdUpdIK9SjaBL0mLp9V2BG4EtgcskHdig+Az3\nBec5FxnnIjNYueikukBepbe6WES8nl4/CPhKRLwhaQhJ4feswqMzM2uQTqsL5FWqETwMbBURL0i6\nE/hmRMyQNCfwSER8qdDAXCMwswZp9bpA3kBqBJWOCH5MMhL4z8BjwO2SbgE2Ai4ceJhmZs2lE+sC\neZWKxV3AhsArwEzgH8AMYP/8yGArnvuCM85FxrnI1JOLTq0L5FV82xExDTinQbGYmTVUJ9cF8irV\nCH4HnBsRf+/n/vWAfSNij0ICc43AzArUTnWBvMGuEZwJHCZpfeAp4GWSNQSWBFYE7iEZdWxm1nI6\nvS6QV6lGMCmdCmJV4ETgduBW4GfAahExOiIebUyYnc19wRnnIuNcZGrNhesCn1QxBZJWi4hHJL0X\nEZc1Kigzs6K4LvC/VVyPQNIvgF+SnCl0UMOiwjUCMxt87VoXyBvUuYYkjUnvvz/ZlHvSzKyluS7Q\nt0o1guNIagKXAbel21YC9wVnnIuMc5GpJheuC/RvdiuUrRcRPwDWaUQwZmZFcF2gstnVCFaPiIk9\nReMGxuUagZkNik6oC+QVsWbxnpKWB/YaeFhmZuVxXWD2XCxuAe4LzjgXGeci018uXBeoTr+piYjj\nJG2d7nNbRFzXuLDMzOrjukD1ZlcjODEijpJ0QkQc3cC4XCMwswHrtLpA3kBqBBUbgjK5ITCzgTr+\n+KRb6LbbOq9LaLAHlA2VNFbSk5LekvRmen2spKH1h2vVcl9wxrnIOBeZfC5cF6hdpbOGLgfeAkYA\ni0TEIsBXgWnpfWZmTcV1gYGptB7B0xGxQq33DVpg7hoysxp0cl0gb7DHETwr6XBJS+ReYElJPwGe\nG2iQZmZF8HiBgavUEOwALAaMT2sEbwFdwKLAqAbEZin3BWeci4xzkTnjjC7XBepQaRzBm8Dh6cXM\nrCm98gqcdFLSCLguMDADOn1U0h4RcWEB8eRfwzUCM6vo7bfhO9+BjTfu7LpAXhFzDfXn+AE+zsxs\nUEycCGuvDSuv7LpAvSqNI5jU3wX4TANj7HjuC844F5lOzsWFF8Jmm8GxxyZjBu6+u6vskFpapbLK\nZ4AtScYS9HZPMeGYmfVvxgw44ACYMAHGj4dVVik7ovZQaRzB74ALI+KuPu67NCJ2LDQw1wjMLGfy\nZNh++6Qr6PzzYYEFyo6oOXmuITNrS1dfDfvsA8ccA/vtB6rpa66zDHqxWNLO6b+F/vq3yjq5L7g3\n5yLTCbmYORMOOwx+9CO4/nrYf/++G4FOyEWRZjf0YilJo4BlGhGMmVmPl16CHXZIuoD+8Q9YdNGy\nI2pflWoEY4D5gMOA/wb+JyKOa1hg7hoy61h33AE77ww//CEcdRTMMdAT3TvQoNcIJB0KvAgsHRGn\n1RlfTdwQmHWejz6CsWPh7LPh4ouTU0StNkUMKHs5Ii4laQysJO7/zDgXmXbLxZtvwlZbwY03wt//\nXlsj0G65aLSKDUFE/DG9+oKkPQAkLS5pucIjM7OO8eCDsNZasNJK0NUFy7gq2VCzPX1U0rHAWsCK\nEbGCpKWByyNiw0IDc9eQWduLgF//Ojkt9Ne/hu22Kzui1jeQrqFqJmzdBlgDeAggIl6UtOAA4jMz\n+9j06bDvvjBpEtxzDyy/fNkRda5qavHvR8RHPRuSPlVgPNYH939mnItMK+fiiSdgvfVg7rnh3nvr\nbwRaORfNoJqG4ApJvwGGSvov4Hbgt8WGZWbt6k9/gk02gUMOSSaPGzKk7IisqikmJG0BbJFu/jUi\nbi00KlwjMGs377+ffPnffDNceSUMH152RO2p0LmGJH2apKYQ8PEKZoVxQ2DWPp59FkaNSlYQu/BC\nGDq07IjaVyEL00jaR9IrwCPAgyRF4wcHFqINhPs/M85FplVycdNNsO668L3vwVVXFdMItEoumlU1\nZw0dBnw5Il6v5YklzQeMB+YF5gGujYifSloEuAz4PDAFGBUR02qK2sya3qxZycIxF16YdAVtvHHZ\nEVl/qhlHcAuwTUS8W/OTS0Mi4j1JcwF3A4cCWwOvR8Spkn4CLBwRR/TxWHcNmbWoqVNhp52SKSMu\nuQSWXLLsiDpHUWsWHwHcK+k3ks5OL2dV8+QR8V56dR5gTpLVzrYGLkpvvwj4bi0Bm1lzmzAhGSW8\n3npwyy1uBFpBNQ3BecBtwH1kNYKHqnlySXNI6gZeBe6MiMeAJSLi1XSXV4Elao66w7j/M+NcZJot\nFxFw5pmw7bbJKOETT4S5qul8HgTNlotWU81/05wRcfBAnjwdiDY8PePor5K+2uv+kNRv/8/o0aMZ\nNmwYAEOHDmX48OGMGDECyP7jvd1Z2z2aJZ4yt7u7u5smnhtu6OLUU2HGjBHcfz9MmdJFV1fjXr+7\nu7vU91/mdldXF+PGjQP4+PuyVtXUCE4CngWuA97vub3W00clHQ3MAPYGRkTEK5I+S3KksFIf+7tG\nYNYCJk5M1hLefPPkiGDeecuOqLMVMo5A0hTSsQN5EVFxBlJJiwEfRsQ0SfMDfwWOA0YCb0TEKZKO\nAIa6WGzWmsaNS5aS/PnPk4VkrHyFFIsjYlhELNf7UsVzfxa4I60R3A9cHxG3A2OBzSU9DXwt3bYK\neneLdDLnIlNmLmbMgL33hlNOgfHjy28E/Lmoz2xrBJJ2p+8jgt9XelxETALW7OP2NwGvO2TWoiZP\nTrqCVl45WUBmgQXKjsjqVU3X0C/JGoL5SX7F/yMiti80MHcNmTWdq6+GffaBMWOS9YRVUweENUKh\ncw3lXmQocFlEjKzpgTVyQ2DWPGbOhCOPhCuugMsvT6aMsOZU1ICy3t4DvFRlA7n/M+NcZBqVi5de\ngq99DR59FB56qDkbAX8u6lNNjeD63OYcwCrA5YVFZGZN4847k0LwD34ARx0Fcwzkp6M1vWpqBCNy\nmx8Cz0bE80UGlb6uu4bMSvLRRzB2LJx9Nlx8MWzm0ztaRiFrFkdE14AjMrOW8+absNtu8NZbyVlB\nyyxTdkRWtH4P9CRNl/ROP5f/NDLITuf+z4xzkSkiFw8+mEwYt+KK0NXVOo2APxf16feIICJ8drBZ\nh4hIJoo75pjk3+22Kzsia6Rq1yxeHdiEZDzBXRExsfDAXCMwa4jp02HffWHSpGQBmeWXLzsiq0dR\nS1UeBPwRWJxkyug/SDpwYCGaWTN54olk3YC554Z773Uj0KmqORlsb2C9iDgmIo4G1gf+b7FhWZ77\nPzPORabeXPzpT7DJJnDIIclykkOGDE5cZfDnoj7VLhvxUT/XzazFvP9+8uV/881w660wfHjZEVnZ\nqhlHcDAwGrgKEMnSkuMi4sxCA3ONwGzQPfssjBoFSy2VHAUMHVp2RDbYBrVGIOlwSctGxBnAHiTr\nDb8BjC66ETCzwXfzzUk9YNQouOoqNwKWqVQjWAq4R9JdwHrAJRFxVkQ83JjQrIf7PzPORabaXMya\nlZwWuvfeyaRxhxzSfrOG+nNRn34bgoj4EfB54GhgNeARSTdL2l3Sgo0K0MwGbupUGDkS7r47GSy2\n8cZlR2TNqOppqCXNSbKgzFhgxYgo9BwD1wjM6jNhAnz/+8l0EccdB3NVe2qItbRC5hpKn3g14PvA\nKOB14Ke1h2dmjRCRrCE8diz87nfwrW+VHZE1u0rF4hUkHSPpMZIBZdOBLSJi/Yj4RcMiNPd/5jgX\nmb5y8fbbyTKSl1wC99/fOY2APxf1qVQsvgmYF9ghIlaNiJMi4l8NisvMajRxIqy9NiyxRFITGDas\n7IisVdS8VGWjuEZgVr1x4+Cww5IuoZ13LjsaK1NhNQIza04zZsABBySF4fHjYZVVyo7IWpEXnmsB\n7v/MOBeZP/6xiw02gHffTRaQ6eRGwJ+L+lRsCCTNJemPjQrGzKpz1VWw337JILFLLoEFvHqI1aGa\nuYbuBr4eEe83JqSPX9c1ArNeHn88GRn8zDPJWsLrrVd2RNZsiqoR/Bu4W9J1wHvpbZHOQWRmDfD6\n6zBmDFx+ORx1FPzwhzDPPGVHZe2imhrBM8CN6b4LAAumF2sQ939mOi0X778Pp58OK68Mc8wBTz4J\nP/pR0gh0Wi4qcS7qM9sjgog4tgFxmFlOBFxzTXJK6Iorwt/+ljQGZkWopkbwGeBwYBVg/vTmiIiv\nFRqYawTWoR5+GA4+GF57Dc44A7bYouyIrJUUsmYxyfQSTwJfAI4FpgAP1hqcmVX28suw557wjW/A\nDjtAd7cbAWuMahqCRSPit8AHETE+IvYACj0asE9y/2emHXMxYwb87Gfw5S/DYovBU0/BvvvOfrbQ\ndszFQDkX9anmrKEP0n9fkfRt4CVg4eJCMusMEckC8kccAeusAw88AF/8YtlRWSeqpkawFXAXsCxw\nNrAQcGxEXFdoYK4RWBu77z748Y/hgw/gzDNhk03KjsjaxUBqBJ50zqyBnnsuOQL429/gxBNh112T\n00LNBstgL15/doXLWfWHa9Vy/2emVXMxfTr8v/8Ha6wByy+f1AF2372+RqBVc1EE56I+lWoEDwE9\nP8l7ty7+qW5WhVmz4KKLkkbg619PzgRadtmyozL7pFrWLF6QZPzA9GJD+vj13DVkLa2rK6kDDBmS\n1AHWXbfsiKwTFDLXkKRVgd8Di6bbrwG7R8SjA4rSrM1NnpyMCH74YTjlFBg1ClTTn6VZY1XTQ3ke\ncHBEfC4iPgcckt5mDeL+z0wz52LatGRm0PXXT379P/lkMjCsqEagmXPRaM5FfappCIZExJ09GxHR\nBXyqsIjMWsyHH8I55yRzAv3nP/Doo/DTn8J885UdmVl1qhlHcA1J4fhikqLxzsBaEbFNoYG5RmAt\n4Oabk6OAJZdM5gVaffWyI7JOV8g4AkmLAMcBG6Y33UUyoOytAUVZbWBuCKyJ5ReIOe002Gor1wGs\nORQy6VxEvBkRB0TEmunloKIbAfsk939mys7F668nS0RuuimMHJl0A229dTmNQNm5aCbORX36PWtI\n0vUk4wX6+ohHRGxdWFRmTeaDD+Dss2HsWNhxx6QQvOiiZUdlNjj67RpKTxN9AbgUuL/n5vTfiIjx\nhQbmriFrAvkFYlZaKekGWmmlsqMy69+g1ggkzQVsDuwIrEqyXOWlEfFYvYFWFZgbAitZzwIxr7+e\nFII337zsiMxmb1BrBBHxYUTcFBG7AesDk4HxkvavM06rkfs/M43IRe8FYh5+uDkbAX8uMs5FfSoW\niyXNJ2k74A/AfsAvgKurfXJJy0q6U9Jjkh6VdGB6+7GSXpD0cHrZsp43YTYYZsxIZgStdYEYs1ZX\nqWvoYuBLwF+AyyJiUs1PLi0JLBkR3ZIWIBmP8F1gFPBORJxR4bHuGrKG6L1AzKmnwhe+UHZUZgMz\n2DWCj4B3+3lcRMRCNcbXMzjtlyRjEqZHxOkV9nVDYIXrWSBm5sykDuAFYqzVDXaNYI6IWLCfy0Aa\ngWHAGsB96U0HSJoo6QJJQ2t9vk7i/s/MYOXiuedgp51g++2T7p8HHmi9RsCfi4xzUZ+G9H6m3UJX\nAgdFxHRJ5wLHp3efAJwO7NX7caNHj2bYsGEADB06lOHDhzNixAgg+4/3dmdt9xjo49deewRjx8JZ\nZ3WxzTbw1FMj+NSnmuf91bLd3d3dVPGUud3d3d1U8TRyu6uri3HjxgF8/H1Zq8KXqpQ0N3ADcFNE\n/LyP+4cB10fEqr1ud9eQDZqeBWKOPhq+9jU46SQvEGPtqZD1COohScAFwOP5RkDSZyPi5XRzG6Dm\nQrRZtfILxFx9tReIMeut6GWzNwR2Ab6aO1X0G8Apkh6RNBHYFPhxwXG0tN7dIp2sllxMngzbbAN7\n7JFMC3333e3VCPhzkXEu6lPoEUFE3E3fjc1NRb6udbZp0+CEE5KuoEMPhUsv9doAZpUUXiMYKNcI\nrFYffgjnnQfHHZfMCHrCCck6AWadpOlqBGaNkl8g5pZbvECMWS2KrhHYIHD/Z6Z3Lh5/PJkT6MAD\n4eST4bbbOqcR8Oci41zUxw2BtaSeBWJGjCh/gRizVucagbWU3gvEjBnjBWLM8lwjsLY1a1YyBuCI\nI5KFYe66ywvEmA0Wdw21gE7u/5w6NRkF/IUvwOmnw777dnHDDW4EoLM/F705F/VxQ2BNJwLuuQd2\n2QVWXBH+9a/kaODee2HttcuOzqz9uEZgTePdd+GSS+Ccc2D6dPjhD2H0aFh44bIjM2sdg7oeQdnc\nEHSOp5+Gc8+Fiy+GDTdMGoDNN4c5fLxqVrNBXY/Amkc79n/OmgXXXgtbbAEbb5xMAfHgg8ltI0f2\n3wi0Yy4GyrnIOBf18VlD1lBTp8Jvfwu/+Q0stVQyFuB734N55y07MrPO5a4hK1xEUug95xy48UbY\nbruk+2fNNcuOzKz9uEZgTcXFX7PGc42gTbVa/+fTTycLwXz+83DDDcko4KeeSm6rtxFotVwUybnI\nOBf1cY3ABsWsWcmX/q9+Bd3dsNdeSfF3gEuomlkDuWvI6tJX8Xf77b0QjFlZPNeQNURfxd+rr3bx\n16xVuUbQApql//Pdd5Nf/2uuCbvvDmutlUz/0HNbIzRLLpqBc5FxLurjIwKbrd4jf8eO9chfs3bi\nGoH1qa/i7z77uPhr1uxcI7C6TZ0KF1wAv/51Vvy97joXf83amQ/uW0DR/Z+9p31+5pls2udddmmu\nRsB9wRnnIuNc1MdHBB3svfeSkb+/+lUy8vcHP0iWgfTIX7PO4hpBB8oXfzfYIOn+cfHXrD24RmD9\n8shfM+uPfwO2gHr6P6dOhZNPTtb8HTsWdtsNnnsuua0VGwH3BWeci4xzUR8fEbShCLjvvuTXv0f+\nmtnsuEbQRvoq/u6xh4u/Zp3E6xF0qH/+M5n35/e/T0b+uvhr1rm8HkGb6qv/s2fN35EjYaONknP9\nH3ooGfxVac3fVue+4IxzkXEu6uMaQYvpa+Tvtdc216AvM2st7hpqAX0Vf73mr5n1xTWCNhKR9P3f\ndhucf76Lv2ZWHdcIWlhEMuL3vPNgp51g6aVhs82SI4Edd+ziqafg4IPdCLgvOONcZJyL+rhGUJKe\nX/xdXdllrrngq19Nzvg58cRkwJeU3NeuxV8zK5+7hhqk0hf/iBHJpeeL38xsoFwjaCL+4jezMrhG\nUKL++vgnTEi6eiZMgGefhYsuSgq+yy1XfSPg/s+Mc5FxLjLORX1cIxigWvr4zcyambuGquSuHjNr\nBa4RDCJ/8ZtZK3KNoA5F9vHXy/2fGeci41xknIv6dGyNwH38ZmaJjukaclePmXUC1why/MVvZp2o\n6WoEkpaVdKekxyQ9KunA9PZFJN0q6WlJt0gaWu9rNXMff73c/5lxLjLORca5qE/RxeKZwI8j4kvA\n+sB+klYGjgBujYgVgNvT7Zq08xd/b93d3WWH0DSci4xzkXEu6lNosTgiXgFeSa9Pl/QEsDSwNbBp\nuttFQBezaQw6ubg7bdq0skNoGs5FxrnIOBf1adhZQ5KGAWsA9wNLRMSr6V2vAkv09Zinn+7ML34z\ns0ZqSEMgaQHgz8BBEfGOct/eERGS+qwKb7aZv/gBpkyZUnYITcO5yDgXGeeiPoWfNSRpbuAG4KaI\n+Hl625PAiIh4RdJngTsjYqVej2vO05nMzJpcrWcNFXpEoOSn/wXA4z2NQOo6YHfglPTfa3o/ttY3\nYmZmA1MWfF3bAAAGT0lEQVToEYGkjYC/AY8APS/0U+AB4HLgc8AUYFREuNpjZlaCph1QZmZmjVHq\npHOStpT0pKR/SvpJP/ucld4/UdIajY6xkWaXD0k7p3l4RNIESauVEWfRqvlcpPutI+lDSds2Mr5G\nqvJvZISkh9NBm10NDrFhqvj7WEzSzZK601yMLiHMhpD0O0mvSppUYZ/qvzsjopQLMCcwGRgGzA10\nAyv32uebwF/S6+sB95UVb5Pk4yvAp9PrW7ZjPqrJQ26/O0hORNiu7LhL/EwMBR4Dlkm3Fys77hJz\ncSxwck8egDeAucqOvaB8bExyOv6kfu6v6buzzCOCdYHJETElImYCfwK+02ufrUkGnBER9wNDJfU5\n5qANzDYfEXFvRLydbt4PLNPgGBuhms8FwAHAlcBrjQyuwarJxU7AnyPiBYCIeL3BMTZKNbl4GVgo\nvb4Q8EZEfNjAGBsmIu4C3qqwS03fnWU2BEsDz+e2X0hvm90+7fjlB9XlI28v4C+FRlSO2eZB0tIk\nXwLnpje1a6Grms/E8sAi6ZxeD0ratWHRNVY1uTgf+JKkl4CJwEENiq0Z1fTdWeZ6BNX+8fY+jbRd\n/+irfl+SvgrsCWxYXDilqSYPPweOiIhIT1Fu11ONq8nF3MCawNeBIcC9ku6LiH8WGlnjVZOLI4Hu\niBgh6YvArZJWj4h3Co6tWVX93VlmQ/AisGxue1mSVqvSPsukt7WjavJBWiA+H9gyIiodGraqavKw\nFvCndIT6YsA3JM2MiOsaE2LDVJOL54HXI2IGMEPS34DVgXZrCKrJxQbAiQAR8YykfwMrAg82JMLm\nUtN3Z5ldQw8Cy0saJmkeYAeSgWZ51wG7AUhaH5gW2RxF7Wa2+ZD0OeAqYJeImFxCjI0w2zxExBci\nYrmIWI6kTvCDNmwEoLq/kWuBjSTNKWkISWHw8QbH2QjV5OJJYDOAtD98ReBfDY2yedT03VnaEUFE\nfChpf+CvJGcEXBART0jaJ73/NxHxF0nflDQZeBfYo6x4i1ZNPoBjgIWBc9NfwzMjYt2yYi5ClXno\nCFX+jTwp6WaSQZsfAedHRNs1BFV+Lk4CLpQ0keRH7uER8WZpQRdI0qUkMzgvJul5YAxJN+GAvjs9\noMzMrMOVOqDMzMzK54bAzKzDuSEwM+twbgjMzDqcGwIzsw7nhsDMrMO5IbCWJOkjSRfntueS9Jqk\n62fzuNGSzq7xtS5Np/Kte+4aSUf22p5Q73Oa1csNgbWqd0kmGJsv3d6cZMqB2Q2MqWngjKQlgbUj\nYvWI+EWv++as5blSP/1EMBHtOF+UtRg3BNbK/gJ8K72+I3Ap6URbkhaRdE36S/5eSav2frCkxSVd\nKemB9LJBH69xC7B0uvDLRpK6JJ0p6e/AQZK+Lek+Sf+QdKukz6TPvYCkC9NFhCZK2lbSycD86XNd\nnO43Pf1Xkv5b0qT0MaPS20ekr3mFpCck/WFwU2hW7qRzZvW6DDhG0g3AqsAFJAt2ABwHPBQR301n\na/09yUIe+RkZfwGcGRET0nmcbgZW6fUaWwE3RMQaAJICmDsi1km3h0bE+un1vYHDgUOBo4G3ImK1\n3H5XSdq/57lSPUco25JMFrcasDjw93QCOYDhaVwvAxMkbRgR7lKyQeOGwFpWREySNIzkaODGXndv\nSPLlSkTcKWlRSQv22mczYOV03iaABSUNiYj3cvv0NcX1Zbnry0q6HFgSmIdskrOvk0yM1hPrtNm8\nnY2ASyKZ82WqpPHAOsB/gAci4iUASd0kq3S5IbBB44bAWt11wGkkE3At3uu+2c3HLmC9iPigxtd8\nN3f9bOC0iLhB0qYkyyX29/qVRB/798T7fu62Wfjv1gaZawTW6n4HHBsRj/W6/S5gZ0j62YHXImJ6\nr31uAQ7s2ZA0vMrXzH9hLwS8lF4fnbv9VmC/3HMPTa/OlNTXF/ldwA6S5pC0OLAJ8AC1NSZmA+KG\nwFpVAETEixHxy9xtPb+ijwXWSqckPgnYvY99DgTWTou5jwH/Vem1+tk+FrhC0oMk6yf33PczYOG0\n+NsNjEhvPw94JHfqa8/7uJpkKumJwO3AYRExtVe8/cVjVhdPQ21m1uF8RGBm1uHcEJiZdTg3BGZm\nHc4NgZlZh3NDYGbW4dwQmJl1ODcEZmYdzg2BmVmH+//j6OBpCcj7ngAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f9070c5aed0>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For X1 = 0.5\n",
+ "\n",
+ "Partial molar volume of component 1 is 3.38e-05 cubic m/mol\n",
+ "\n",
+ "Partial molar volume of component 2 is 1.70e-05 cubic m/mol\n",
+ "\n",
+ "\n",
+ "\n",
+ "For X2 = 0.75\n",
+ "\n",
+ "Partial molar volume of component 1 is 3.83e-05 cubic m/mol\n",
+ "\n",
+ "Partial molar volume of component 2 is 1.72e-05 cubic m/mol\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEPCAYAAADiVdsmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0FFX6//H3QyAIiCCK7CgKUUBZVBZRJECQzQEUFRE0\nUX8jXxW3GTUJiERZ4+i44TYOKqis6igqshN0kEVkFWQbRQE1sggisoU8vz9uAW3M0km60p3wvM7p\nQ3X1vVW360B/uFW3bomqYowxxkSCUuFugDHGGHOMhZIxxpiIYaFkjDEmYlgoGWOMiRgWSsYYYyKG\nhZIxxpiI4WsoiUgXEVkvIptEJDGHMs95n68SkeZ51RWRKiIyW0Q2isgsEakc8FmyV369iFyVzb6m\niciagPdlRWSyV2exiJwdum9vjDEmv3wLJRGJAsYAXYBGQF8RaZilTDegvqo2AO4AXgqibhIwW1Vj\ngLnee0SkEdDHK98FeFFESgXs61pgHxB4Y9btwC5v/08DqSE7AMYYY/LNz55SS2Czqm5R1SPAJKBn\nljI9gHEAqroEqCwi1fOoe7yO92cvb7knMFFVj6jqFmCztx1E5FTgAWA4INntH3gX6FjYL22MMabg\n/AylWsDWgPfbvHXBlKmZS91qqpruLacD1bzlml65wDo1veVhwJPA7zntX1UzgL0iUiWvL2aMMcYf\nfoZSsPMXSd5FkOy2p26OpNz2IyLSDDhXVT8Icl/GGGPCpLSP294O1Al4X4c/9mSyK1PbK1Mmm/Xb\nveV0Eamuqj+JSA3g5zy21Rq4VES+xX3fs0Rknqp28OrUBX4QkdJAJVXdnfWLiIhNEGiMMQWgqvnq\nDPjZU1oGNBCRc0QkGjcIYVqWMtOAWwBEpDWwxzs1l1vdaUC8txwPvB+w/kYRiRaRekADYKmqvqyq\ntVS1HnAFsNELpKzbug43cCJbqmovVYYOHRr2NkTKy46FHQs7Frm/CsK3npKqZojIQGAmEAWMVdWv\nRWSA9/krqjpdRLqJyGZgP3BrbnW9TY8GpojI7cAW4AavzjoRmQKsAzKAu/TPRyXracCxwJsisgnY\nBdwY2qNgjDEmP/w8fYeqfgJ8kmXdK1neDwy2rrd+NxCXQ52RwMhc2rMFaBLw/hBeqBljjAk/m9HB\n5EtsbGy4mxAx7FicYMfiBDsWhSMFPe93MhGRbM4EGmOMyY2IoBE00MEYY4zJFwslY4wxEcNCyRhj\nTMSwUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSwUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSw\nUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSwUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSwUApS\n9wndWZ2+OtzNMMaYEs1CKUidz+tMpzc7Ef9+PN/t+S7czTHGmBLJQilI97a6l033bOLsSmdz8b8u\n5m8z/8bO33eGu1nGGFOiWCjlw2llT+Px9o+z9q61HMo4xAVjLmDEpyPYf3h/uJtmjDElgoVSAVQ/\ntTovdH+BRbcvYvXPq4kZE8Mry17hyNEj4W6aMcYUa6Kq4W5DxBMRze04LfthGYlzEtm6dysjO46k\nd8PeiEgRttAYYyKPiKCq+foxtFAKQl6hBKCqzP5mNklzkigTVYbRHUfTvl77ImqhMcZEnoKEkq+n\n70Ski4isF5FNIpKYQ5nnvM9XiUjzvOqKSBURmS0iG0VklohUDvgs2Su/XkSuClg/Q0RWishaERkr\nImW89QkiskNEVniv2wrxXbnqvKtYdscy7m91P7dPu52ub3dl1U+rCrpJY4w56fgWSiISBYwBugCN\ngL4i0jBLmW5AfVVtANwBvBRE3SRgtqrGAHO994hII6CPV74L8KKcOId2nao2U9XGQCWvHIACE1W1\nufd6rbDfu5SUou9FfVk/cD3dG3Sn81ud6f9ef7795dvCbtoYY0o8P3tKLYHNqrpFVY8Ak4CeWcr0\nAMYBqOoSoLKIVM+j7vE63p+9vOWeuIA5oqpbgM1AK2/bvwF4PaRo4NhYbvFeIRcdFc3AlgPZdM8m\n6lepz6WvXsr9M+5nx/4dfuzOGGNKBD9DqRawNeD9Nm9dMGVq5lK3mqqme8vpQDVvuaZXLtv9ichM\nr/wBVZ3hrVagt4isFpGpIlI7+K8XnIplK5ISm8K6u9ZxNPMoF7xwAcMWDOO3w7+FelfGGFPs+RlK\nwY6gCKanItltzxt9kNt+NKBsZ6AGUFZE4r3VHwJnq2oTYDYnemAhV+3Uajzf7XmW/r+lfL3za2Ke\nj+HFL160YeTGGBOgtI/b3g7UCXhfhz/2ZLIrU9srUyab9du95XQRqa6qP4lIDeDnXLa1PeA9qnpI\nRN7FndYbp6q7Az4eCzyR05dJSUk5vhwbG0tsbGxORXN1XpXzmNB7Ast/XE7SnCSeXvw0w9sP5/rG\n11NK7LYxY0zxlZaWRlpaWqG24duQcBEpDWwAOgI/AEuBvqr6dUCZbsBAVe0mIq2BZ1S1dW51ReQJ\nYJeqpopIElBZVZO8gQ4TcNejagFzgPpAeeA0Vf3R2+7bwCxVHXss3Ly2XAM8pKptsvkueQ4JL6g5\n38whaU4SAKlxqXQ8t6Mv+zHGmKIWcfcpiUhX4BkgChirqqNEZACAqr7ilTk2ym4/cKuqLs+prre+\nCjAFqAtsAW5Q1T3eZ4OA24AM4D5VnSkiZwEfAWVxpwFnAg+rqorISNzAiQxgF3Cnqm7M5nv4FkoA\nmZrJ1LVTGTxvMOeefi6j40ZzcY2LfdufMcYUhYgLpZLC71A65vDRw/x7+b8Z9ukw2p/TnmHth3Fe\nlfN8368xxvgh4m6eNfkTHRXNXS3uYtM9m2h4ZkNa/rsl90y/h5/3/5x3ZWOMKQEslCLQqdGnMqTd\nENbfvZ6oUlE0fKEhKWkp7Du0L9xNM8YYX1koRbCqFaryTJdnWPbXZWzevZkGzzdgzNIxHD56ONxN\nM8YYX9g1pSAU1TWlvKz8aSXJc5PZuGsjw9sPp8+FfWwYuTEmYtlAB5+IiG7apNSvH+6WOPO/nU/i\nnEQyMjNIjUul03mdwt0kY4z5Ewsln4iIVq2qxMRAQgJcfz1UqhTeNqkq7379LoPmDqJupbqMjhvN\npTUvDW+jjDEmgI2+89G2bfDQQzB9Opx9NvTrB7Nnw9Gj4WmPiHBdo+tYe9darm90PT0m9uDGd25k\n8+7N4WmQMcaEgPWUgpD1mtLOnTBxIrzxBqSnwy23QHw8nH9++Nq4//B+nln8DE8vfpo+jfswpN0Q\nqp9aPXwNMsac9KynVETOPBPuuQe+/BI++QQOH4Z27eCyy+CVV2DPnqJvU4XoCgy+cjDrB66nbOmy\nNH6xMY/Of5RfD/1a9I0xxpgCsp5SEIIZfZeRATNnut7TrFnQtavrPXXqBKX9nPY2B1v2bOHR+Y8y\n63+zGNR2EAMuGUDZ0mWLviHGmJOWDXTwSX6HhO/eDZMmuYDatg3693cB1bixf23Myer01STPTWbd\njnUMbz+cvhf1tWHkxpgiYaHkk8Lcp7RuHYwbB2++CbVru3Dq2xeqVAlxI/OwYMsCEuckcjDjIKPj\nRtP5vM6ceFq8McaEnoWST0Jx82xGBsyZ43pPn3ziTuslJEDnzlCmTEiamSdV5T/r/0Py3GRqVaxF\nalwqLWq1KJqdG2NOOhZKPgn1jA579sDkya4H9c03bnh5fDw0aRKyXeQqIzOD11e8TsqCFNrUacOI\nDiOIOSOmaHZujDlpWCj5xM9phjZsgPHj3atqVdd7uukmN8LPb78f+Z1nFz/LU4ue4vpG1/Nou0ep\nUbGG/zs2xpwULJR8UhRz3x09CvPnu9N7H34IHTq4gOraFaKjfd01u37fxaj/juL1la9z56V38lCb\nh6h0SpinrDDGFHsWSj4p6glZf/0Vpk51AbVhg+s5xcdDs2bg59iE7/d+z9C0oUzfNJ2ky5O4q8Vd\nNozcGFNgFko+Cecs4Zs3u1N748ZB5counPr1g2rV/NvnmvQ1DJo3iDXpaxjWfhg3XXQTUaWi/Nuh\nMaZEslDySSQ8uiIzExYscL2nDz6Atm3d6b2rr4ayPnVmPvvuMxLnJLL/yH5GdRxF1/pdbRi5MSZo\nFko+iYRQCrRvH7z7rguotWuhTx8XUJdcEvrTe6rKBxs+IHluMtUqVCM1LpVWtVuFdifGmBLJQskn\nkRZKgb799sTpvXLlXDj17w81QjyILiMzg3ErxzE0bSitardiZIeRnH9mGGegNcZEPAsln0RyKB2T\nmQn//a8Lp/fec5PDJiRAjx5wyimh28/vR37n+SXP8+SiJ7n2gmsZGjuUmhVrhm4HxpgSw0LJJ8Uh\nlALt3w//+Y87vbdiBdxwgxsg0apV6E7v7T6wm9H/Hc3YFWMZcMkAHr78YSqfUjk0GzfGlAgWSj4p\nbqEU6Pvv3bx7b7wBUVEunG6+2c3DFwpb924lJS2FDzd+SOLlidzd8m5OKR3CrpkxptiyUPJJcQ6l\nY1Rh0SIXTu+8Ay1auIDq1QvKly/89tf+vJZB8wax8qeVPB77OP2b9Ldh5Mac5CyUfFISQinQgQPw\n/vsuoL74Anr3dtef2rQp/Om9hd8vJHFOInsP7WVUx1F0b9DdhpEbc5KyUPJJSQulQNu2wVtvuQES\nGRmu93TLLVC3bsG3qap8uPFDkucmc0a5M0iNS+WyOpeFrtHGmGLBQsknJTmUjlGFpUtdOE2e7KY0\nSkiAa6+FChUKts2jmUcZv2o8j6Y9yqU1L2Vkh5E0rNowpO02xkQuCyWfnAyhFOjgQZg2zQXU55/D\nNde4gLriCihVgIfWHjhygBe+eIHUhan0PL8nKbEp1D4tRCMtjDERqyCh5OtzsUWki4isF5FNIpKY\nQ5nnvM9XiUjzvOqKSBURmS0iG0VklohUDvgs2Su/XkSuClg/Q0RWishaERkrImW89WVFZLJXZ7GI\nnO3PkSheTjnFDSP/+GP35NxGjeCuu6B+fXjsMXfDbn6UK1OOB9s8yMaBGzmz/Jk0fbkpibMT+eXA\nL/58AWNMseVbKIlIFDAG6AI0AvqKSMMsZboB9VW1AXAH8FIQdZOA2aoaA8z13iMijYA+XvkuwIty\n4gr7daraTFUbA5W8cgC3A7u8/T8NpIb2KBR/NWrAgw/CmjUwZQrs3OlG7sXGwuuvuymPgnV6udMZ\nHTeaVf+3it0HdhMzJoZ/LPwHB44c8K39xpjixc+eUktgs6puUdUjwCSgZ5YyPYBxAKq6BKgsItXz\nqHu8jvdnL2+5JzBRVY+o6hZgM9DK2/ZvAF4PKRrYmc223gU6huB7l0gicOml8PzzsH073Huvu0G3\nTh03MGLePDerRDBqn1abV3u8yqcJn7Jo2yJixsTw2orXyMjM8PdLGGMinp+hVAvYGvB+m7cumDI1\nc6lbTVXTveV04NhDHGp65bLdn4jM9MofUNUZWfevqhnAXhGpEuT3O2mVLesGQEyb5p731Lw5PPAA\n1KsHQ4a4x20Eo2HVhrzX5z2mXDeFN1a+QdOXm/LB+g84ma7fGWP+qLSP2w72lyWYi2CS3fZUVUUk\nt/1oQNnOIlIWmCwi8ao6Lpd6f5KSknJ8OTY2ltjY2PxUL7GqVXOB9MADsHKlu/epTRuIiXGDI66/\nHirl8RDby+pcxoKEBe7hgnOTeOLzJ0iNS+WKulcUxVcwxoRIWloaaWlphdqGb6PvRKQ1kKKqXbz3\nyUCmqqYGlHkZSFPVSd779UA7oF5Odb0ysar6k4jUAOar6gUikgSgqqO9OjOAod5pwcB23Qy0UtWB\nXpkUVV0sIqWBH1W1ajbf5aQafVdYhw/DJ5+40Xvz5kH37i6gOnRwUx3l5mjmUd5e8zZD5g+habWm\njOo4isZnNS6SdhtjQivSRt8tAxqIyDkiEo0bXDAtS5lpwC1wPMT2eKfmcqs7DYj3luOB9wPW3ygi\n0SJSD2gALBWRCl544QXP1cCKbLZ1HW7ghCmk6Gjo2dPNVr55M7RuDUlJcPbZMGiQO+WXk6hSUdzS\n9BY2DNxA7DmxtB/Xnts+uI2te7fmXMkYU2L4ep+SiHQFngGigLGqOkpEBgCo6itemWOj7PYDt6rq\n8pzqeuurAFOAusAW4AZV3eN9Ngi4DcgA7lPVmSJyFvARUBZ3GnAm8LB36q8s8CbQHNgF3OgNksj6\nPaynFAJr1rje01tvuetPCQnuAYWVc5lcfO/BvTyx8Ale/vJlbmt2G8ltk6lSzi77GVMc2M2zPrFQ\nCq2MDJg5011/mjULunZ10xt16gSlc7jK+cO+H3h8weO8+/W7/P2yv3Nvq3spXyYEM8kaY3zjWyiJ\nSFvc/USvi0hV4FRVzectlMWXhZJ/du+GSZNcQG3b5p6aGx8PjXO4jLRh5wYGzxvM4m2LSYlNIaFZ\nAqVL+TlexxhTUL6EkoikAJcA56tqjIjUAqao6uUFbmkxY6FUNNatO3F6r1YtF059+0KVbM7WLdm2\nhMQ5iaTvT2dkh5H0uqCXzUZuTITxK5RW4a65fKmqzb11q1W1SYFbWsxYKBWtjAyYM8cF1PTp7rRe\nQgJ07gxlypwop6rM2DyDpLlJlC9TntS4VK48+8qwtdsY80d+hdJSVW0pIitUtbmIVAAWWSiZorBn\nj5u1fNw4+OYb6NfP9aCaBPzty9RMJqyZwCPzHuHCsy5kVMdRXFTtovA12hgD+DckfKqIvIKbAugO\n3LDpfxekgcbkV+XKMGCAm618wQI3WWz37nDxxfDcc24uvlJSiv5N+rNh4Abizo0j7s04Et5P4Ls9\n34W7+caYfAp2oMNVwLFZt2eq6mxfWxVhrKcUWY4ehfnz3eCIDz90N+UmJLhRfNHRbhj5k58/yYvL\nXiShaQKD2g7ijPJnhLvZxpx0fB0SLiKVcNMSKYCq7s53C4spC6XI9euvMHWqC6gNG+Cmm9zpvWbN\n4KfffmTYp8OYsnYKf7vsb9zX6j4qRBfwiYXGmHzz65rSAOAx4BBwbB5oVdVzC9TKYshCqXjYvBnG\nj3fXnypXduHUrx/sLb2RR+Y9wsKtCxnabii3Nb/NhpEbUwT8CqXNQGtV3ZlrwRLMQql4ycx015/e\neAM++ADatnWn96pf8gVDFiSyfd92RnYYybUNr7Vh5Mb4yK9QmgVco6r7C9O44sxCqfjatw/efdf1\nnr76Cm7oo1zQfRavfZ9EdFQ0qXGpxJ4TG+5mGlMi+RVKFwNvAIuAw95qVdV7C9LI4shCqWT49tsT\np/dOKZdJs/6TWFj2ERpXu4BRHUfRtHrTcDfRmBLFr1BaBnwKrMFdUxJcKOXreUTFmYVSyZKZCf/9\nrwund98/TM0er/DDeSPodkEnRsYN45zK54S7icaUCH6F0opjMzmcrCyUSq79+91j3f/95q8siXoK\nbTGGXvVu4fnrB1O1wpnhbp4xxZpfoTQS+A737KFDx9bbkHBT0nz/Pbw0Pp2X1g3jt3Mm0b78/bzQ\n7wFi6tkwcmMKwq9Q2kL2jyKvl6/WFWMWSicXVZg6dzODZg/hm8wFXJD+KEmdb+e6a8pQ3p6WYUzQ\n7HlKPrFQOnkt/PZL/u+dJL7Z9R0ybwQ3Nr2OWxOENm3ARpMbkzu/ekrxZN9TGp+/5hVfFkpm9v9m\n8/dPkvhldxQydzRlf+hAfDzccgvUrRvu1hkTmfwKpTGcCKVyQAdguapeV6BWFkMWSgbcbORT1k5h\n8LzBnBXVgDobRjP37WY0a+Zuzr32Wqhgl5+MOa5ITt+JSGVgsqp2zlfFYsxCyQQ6fPQwr375KsM/\nG067uh24/NAwZkw8l88/h2uucdMbtW0LpYKZg9+YEsyvR1dk9Ttw0gxyMCar6Kho7m55NxsHbqRh\n1RhSfmhB/YH38dmXO2jUCO6+G+rXh8ceczfsGmOCl2coiciHAa+PgQ3Af/xvmjGRrWLZigyNHcrX\nd3+NorR75wJ+b/E4i778jalT3bOeWrSA2Fh4/XU35ZExJnfBXFOKDXibAXynqlv9bFSksdN3Jhjf\n/PINQ+YPYd6383ik7SP89ZK/ohnRfPyxmxz200+hRw93/Sk21k7vmZLPhoT7xELJ5MeKH1eQNDeJ\n/+3+HyM6jOD6xtdTSkqRng4TJriA2rPHjdyLj3en+owpiUIaSiLyG9kMBfeoqp6Wz/YVWxZKpiDm\nfjOXpLlJZGomqXGpxJ0bd/yzlStdOE2YADExrvd0/fVQqVLYmmtMyFlPyScWSqagVJV31r3DoHmD\nOKfyOYzuOJpLal5y/PPDh+GTT9zksPPmQffuLqA6dICoqPC125hQ8C2URKQpcCWu5/SZqq4qWBOL\nJwslU1hHjh7h38v/zbBPh9HunHYMbz+c86qc94cyO3fCxImuB5WefuL03vnnh6fNxhSWL0PCReQ+\n4G2gKlANeEtETppnKRkTCmWiynBnizvZeM9GGldtTKt/t2Lg9IGk/5Z+vMyZZ8I998CXX7re0+HD\n0K4dXHYZvPKKuw5lTEkXzOi7NbjHoe/33lcAFqvqRUXQvohgPSUTajv272DkZyMZv3o8A1sM5ME2\nD1KxbMU/lcvIgJkzXe9p1izo2tX1njp1gtKli77dxuSHnzfPZuawnFeDuojIehHZJCKJOZR5zvt8\nlYg0z6uuiFQRkdkislFEZnkzTBz7LNkrv15ErvLWlRORj0XkaxH5SkRGBZRPEJEdIrLCe90W7Hcz\npjCqVqjK012eZtlfl/HNnm9o8HwDnl/yPIePHv5DudKl3XWmqVPdjbhXXglDh7r59h5+GNauDdMX\nMMYvqprrC/gbsBpIAR4DVgEPBFEvCtgMnAOUAVYCDbOU6QZM95Zb4XpgudYFngAe9pYTgdHeciOv\nXBmv3mbcU3LLAe28MmVwT9Ht4r2PB54L4ruoMX5a+eNK7fpWV633TD19e/XbejTzaK7l165Vffhh\n1Zo1VVu0UB0zRnXXriJqrDFB8n4788yZwFeOPSUReVhE6qjqP4FbgV+AXUCCqj4dRN61BDar6hZV\nPQJMAnpmKdMDGOf96i8BKotI9TzqHq/j/dnLW+4JTFTVI6q6xQulVqp6QFUXePs4AiwHah37mt7L\nmLBqWr0p0/tN57Wer/Hskme55F+XMHPzzGP/KfqTRo0gNRW++w4ef9w93r1ePbjuOvjoIzhypIi/\ngDEhktvpu5rA5yLyGa4XM0FVn1PVFUFuuxYQOPPDNk6EQV5lauZSt5qqHrs6nI4bfHGsvdty2593\nqu8vwFxvlQK9RWS1iEwVkdrBfTVj/BF7TiyLb1/MI20f4d4Z9xL3ZhxfbP8ix/KlS0OXLm7U3nff\nuWtNI0dCnTrw97/D6tVF2HhjQiDHS6Wqer+I/A03FPxGYIiIrAImAu+pal4zeQU7MiCYnopktz1V\nVRHJbT/HPxOR0ri2P+v1pAA+xIXtERG5A9fz6pjdhlJSUo4vx8bGEhsbG0Szjck/EaF3o970OL8H\nr698nV6Te3F5ncsZ0WEEDc5okGO9ypVhwAD32rABxo9316OqVnX3PvXt65aN8UtaWhppaWmF2kbQ\nN8+KSBQQB4wGzlfVXB8MLSKtgRRV7eK9TwYyVTU1oMzLQJqqTvLerwfa4WYhz7auVyZWVX8SkRrA\nfFW9QESSAFR1tFdnBjDUOy2IiLwG/Kqq9+fy/XapauVsPtNgj5Mxobb/8H6eXfIs/1z0T25ofAOP\ntnuU6qdWD6ru0aMwf74bvffRR9C+vRu9160bREf7225jfBt9JyJNgGHAC8AhIDmIasuABiJyjohE\nA32AaVnKTANu8fbRGtjjnZrLre403AAFvD/fD1h/o4hEi0g9oAGw1Nv2cOA04IEs3yvwX3YPYF0Q\n38uYIlUhugKD2g5iw8ANlCtdjsYvNmbIvCH8eujXPOtGRUFcHLz1Fnz/PVx9NTz1FNSuDfffDytW\ngP1/y0SS3Oa+i8GdtuuDGwY+EZikqt8EvXGRrsAzuNF0Y1V1lIgMAFDVV7wyY4AuwH7gVlVdnlNd\nb30VYApQF9gC3KCqe7zPBgG34WYzv09VZ3rXib4HvgaOjbd9XlVfE5GRuDDKwA3iuFNVN2bzPayn\nZCLGd3u+Y2jaUD7Z/AmDrhjE/136f5QtXTZf29i82Z3eGzfOnfaLj4d+/aBatbzrGhOsUE/I+j/c\nqLeJqvpVCNpXbFkomUi0Jn0NyXOTWbtjLcPaD+Omi26ilOTveRiZmbBggTu998EH7om5CQmuR1U2\nfzlnzJ/YhKw+sVAykezT7z4lcU4iB44cYFTHUXSp3wWR/N/psG8fvPuu6z199RX06eMC6pJLoACb\nM8ZCyS8WSibSqSrvr3+f5LnJ1KhYg9S4VFrWalng7X377YnTe+XKuXDq3x9q1Ahdm03JZ6HkEwsl\nU1xkZGbwxso3SElLoXXt1ozoMILzzyz4NOOZme7G3HHj4L333OSw8fHQsyecckoIG25KpJCHkndv\nzzhV7VfYxhVnFkqmuPn9yO88t+Q5nlr0FL0b9mZou6HUqFi4bs7+/fCf/7jrTytWwA03uIBq1cpO\n75nshXxIuKpmAGeLiF3yNKYYKV+mPElXJLFh4AYqRlfkwpcuZPDcwew9uLfA26xQwZ3CmzPHhVLt\n2nDzzdCwIYwaBdu25b0NY/ISzKMr3gQuwN0H9Lu3Wr058U4K1lMyxd33e78nJS2FjzZ+RNIVSdzV\n4i5OKV3482+qsGiR6z298w60aOF6T716Qflcb683JwNfrimJSIq3eKyg4ELpsXy3sJiyUDIlxVc/\nf8WguYNYlb6KYe2H0e+ifkSVCs1z1w8cgPffd9efli6F3r3dAIk2bez03snKBjr4xELJlDT//f6/\nJM5J5NdDvzK642i6NehWoGHkOdm2zc0iMW6ce1BhfLx7vHvduiHbhSkG/OopnQU8jHteUTlvtapq\nhwK1shiyUDIlkaoybcM0kucmU7VCVVLjUmldu3WI9+F6TePGweTJ0KyZ6z1de627RmVKNr9CaTYw\nGXgQGAAkADtU9eECtrPYsVAyJVlGZgbjV41naNpQWtRswciOI7ngzAtCvp+DB2HaNBdQn38O11zj\nelBt20KivgaaAAAcKklEQVSp/E1EYYoJv0JpuapeLCKrVbWJt26Zql5aiLYWKxZK5mRw4MgBxiwd\nwxOfP8E1F1zD0HZDqXVa1keghcaPP8Lbb7sBEr//fuL0Xr16vuzOhIlfs4Qfm8T0JxG5WkQuBk7P\nd+uMMRGtXJlyPHT5Q2wcuJHTTzmdJi83IXlOMnsO7gn5vmrUgAcfhDVrYOpU2LnTjdyLjYXXX3dT\nHpmTUzA9pb8AnwF1gOdxj4BIUdWsj6EosaynZE5G237dRkpaCtM2TOPhyx9mYMuBIRlGnpNDh+Dj\nj13v6dNPoUcPd/0pNtZO7xVXNvrOJxZK5mS2bsc6Bs0dxPIfl/N4+8e5ucnNIRtGnpP0dJgwwQXU\nnj3u1F58PNSv7+tuTYiF+tEVz+dST1X13vzsqDizUDIGPt/6OYlzEvnlwC+M6jiKq2OuDukw8pys\nXOkGR7z9NsTEuN7T9ddDpUq+79oUUqhDKYE/3jAbSFV1XL5bWExZKBnjqCofbfyI5LnJnF7udFLj\nUmlTp02R7PvwYfjkExdQ8+ZB9+4uoDp0cE/YNZHH19N3IlIRF0a/FaRxxZmFkjF/dDTzKG+ufpNH\n5z/KxTUuZmTHkTSq2qjI9r9zJ0yc6E7vpaefOL13fsEnRDc+8GtI+EXAeOAMb9UOIP5kehqthZIx\n2TuYcZAXlr5A6sJU/hLzFx5r/xi1T6tdpG1Ys8b1nt56yw0pT0hwDyisXLlIm2Gy4VcoLQIGqep8\n730sMFJVi6bPHgEslIzJ3Z6De3hi4RO88uUr3N78dpKuSKJKuSpF2oaMDJg50/WeZs2Crl1d76lT\nJyhdukibYjx+hdIqVW2a17qSzELJmOD8sO8HHkt7jPfWv8dDbR7inpb3UK5Mubwrhtju3TBpkguo\nbdvcIzfi46Fx4yJvyknNr1B6H/gSeBM34KEfcImqXlPQhhY3FkrG5M/6nesZPG8wS7cvJaVdCvHN\n4ildKjzdlXXrTpzeq1XLhVPfvlClaDtyJyW/QqkK8BhwubfqM9zNs78UqJXFkIWSMQWzeNtiEuck\nsmP/DkZ2HEnP83sWyTDy7GRkuAcUjhsH06e703oJCdC5M5QpE5YmlXh286xPLJSMKThV5ZPNn5A0\nJ4lTo08lNS6Vtme3DWub9uyBKVPc6b1vvoF+/VwPqkmTsDarxAn1fUof4u5Tym6Dqqo98t/E4slC\nyZjCO5p5lAlrJjBk/hAuqnYRozqO4sKzLgx3s9iwAcaPd6+qVV3vqW9ft2wKJ9ShtAPYBkwElhxb\n7f2pqrqgoA0tbiyUjAmdgxkHeemLlxi90D1c8LHYx6hbKfxP/zt6FObPd72njz6C9u1d76lbN4iO\nDnfriqdQh1JpoBPQF7gI+BiYqKprC9vQ4sZCyZjQ23twL//4/B+8tOwlbm12K8lXJHNG+TPyrlgE\nfv3VzV7+xhuuJ3XTTS6gmjWzR7vnh2/XlESkLC6cnsQNchhTsCYWTxZKxvjnx30/8viCx5m6bip/\nv+zv3Nf6PsqXKR/uZh23efOJ03uVKrlw6tcPqlULd8siX8hDSUROAboDNwLnANOA11R1eyHaWexY\nKBnjv427NjJ43mAWbV3E0HZDubX5rWEbRp6dzExYsMD1nj74wD0xNyEBrr4aypYNd+siU0gf8ici\nbwKfA82Bx1W1haoOy08giUgXEVkvIptEJDGHMs95n68SkeZ51RWRKiIyW0Q2isgsEakc8FmyV369\niFzlrSsnIh+LyNci8pWIjAooX1ZEJnt1FovI2cF+N2NMaMWcEcPU66fyXp/3mPDVBC588ULe+/o9\nIuU/hKVKuetM48bB1q3QuzeMGQO1a8PAgbBsGURIU4u13K4pZQL7c6inqnparhsWiQI2AHHAduAL\noK+qfh1QphswUFW7iUgr4FlVbZ1bXRF5Atipqk94YXW6qiaJSCNgAtACqAXMARoApwAtVXWBiJQB\n5uKmSZohIncBF6rqXSLSB7hGVW/M5rtYT8mYIqSqzPzfTJLmJHFK6VNIjUul3Tntwt2sbH37Lbz5\nputBlSvnek/9+7un657sQtpTUtVSqloxh1eugeRpCWxW1S2qegSYBPTMUqYHMM7b3xKgsohUz6Pu\n8Tren7285Z64gRhHVHULsBlopaoHjo0U9La1HBdaWbf1LtAxiO9ljPGZiNClfheWD1jOPS3vIeGD\nBLpP6M7q9NXhbtqf1KsHjz7qrj299BKsXw+NGrlRe5Mnw8GD4W5h8eLnQ4ZrAVsD3m/jRBjkVaZm\nLnWrqWq6t5wOHLvcWNMrl+P+vFN9f8H1lv6wf1XNAPZ6M1gYYyJAKSlFvyb9WH/3ejqf15lOb3Yi\n/v14vtvzXbib9ielSsGVV8LYsW6+vZtugldfdVMb3XknLF5sp/eC4edVxGAPfzBdO8lue6qqIpLb\nfo5/5g1xn4g7RbglyLYdl5KScnw5NjaW2NjY/G7CGFNAZUuX5d5W95LQLIEnP3+Si/91MfFN4xnU\ndhBnlj8z3M37kwoV3Cm8/v3h++/d6b1bbnHBFR8PN9/srkWVNGlpaaSlpRVqG75NMyQirXHDx7t4\n75OBTFVNDSjzMpCmqpO89+uBdkC9nOp6ZWJV9ScRqQHMV9ULRCQJQFVHe3VmAEO904KIyGvAr6p6\nf8D+Z3j7WeyF1o+q+qf7uO2akjGR5afffmLYgmFMXjuZB1o/wP2t76dCdIVwNytXqrBokbv29M47\n0KKFC6hevaB85IyAD6mQXlMKgWVAAxE5R0SigT64IeWBpgG3wPEQ2+Odmsut7jQg3luOB94PWH+j\niESLSD3cIIel3raHA6cBD2Sz/2Pbuo4Tp/WMMRGs+qnVeaH7Cyy6fRGrf15NzJgYXln2CkeOHgl3\n03IkAm3awL/+Bdu3uwER48e7HtNf/woLF9rpPfB5QlYR6Qo8A0QBY1V1lIgMAFDVV7wyY4AuuJF+\nt6rq8pzqeuurAFOAusAW4AZV3eN9Ngi4DcgA7lPVmSJSG/ge+Bo47DXteVV9zbsp+E3csPddwI3Z\nndqznpIxkW3ZD8tInJPI1r1bGdlxJL0b9g7bbOT5tW2be6zGuHFuJvP4eHeqr274Z14qNJsl3CcW\nSsZEPlVl9jezSZqTRJmoMozuOJr29dqHu1lBU4WlS104TZ7spjRKSIBrr3XXqIojCyWfWCgZU3xk\naiaTv5rM4HmDOf/M8xndcTRNqxevB2UfPAjTprmA+vxzuOYa14Nq29YNliguLJR8YqFkTPFz+Ohh\n/vXlvxj+6XDizo1jWPth1Du9XriblW8//ghvv+0GSPz++4nTe/WKwVexUPKJhZIxxde+Q/t4atFT\nPL/0eW5ucjOD2w6maoXi97AkVVi+3IXTpEnQuLELqOuug4oVw9267Fko+cRCyZjiL/23dIZ/OpwJ\nX03g/lb388BlD3Bq9KnhblaBHDoEH3/sAurTT6FHD3f9KTY2sk7vWSj5xELJmJLjf7v/x5D5Q0jb\nksYjVz7CXy/+K2WiyoS7WQWWng4TJriA2rPHndqLj4f69cPdMgsl31goGVPyLP9xOUlzkvh2z7eM\n6DCC6xpdRymJoG5GAaxc6QZHvP02xMS43tP117vnQIWDhZJPLJSMKbnmfDOHpDlJiAijO46m47nF\nf17mw4fhk09cQM2bB927u4Dq0AGiooquHRZKPrFQMqZky9RMpq6dyuB5gzmvynmM7jia5jWa512x\nGNi5EyZOdKf30tNPnN47/3z/922h5BMLJWNODoePHubfy//NsE+H0f6c9gzvMJxzTz833M0KmTVr\nXO/prbfckPKEBOjTBypXzrNqgVgo+cRCyZiTy2+Hf+Ofi/7Js0uepd9F/Xjkykc4q8JZ4W5WyGRk\nwMyZrvc0axZ07ep6T506QekQPjvCQsknFkrGnJx+3v8zIz4dwVtr3uLelvfyt8v+RsWyEXpTUAHt\n3u3uezr2mPf+/V1ANW5c+G1bKPnEQsmYk9u3v3zLkPlDmPvtXAa3Hcwdl9xBdFR0uJsVcuvWnTi9\nV6uWC6e+faFKAR99aqHkEwslYwzAyp9Wkjw3mY27NjKiwwhuaHxDsR9Gnp2MDJgzxwXU9OnutF5C\nAnTuDGXycUuXhZJPLJSMMYHmfzufxDmJZGRmkBqXSqfzOoW7Sb7ZswemTHHXn775Bvr1cz2oJk3y\nrmuh5BMLJWNMVqrKu1+/y6C5g6hbqS6j40Zzac1Lw90sX23Y4B5MOH48VK3qek99+7rl7Fgo+cRC\nyRiTkyNHj/Daitd4bMFjXHn2lQzvMJz6VSJgjh8fHT0K8+e73tNHH0H79q731K0bRAdcarNQ8omF\nkjEmL/sP7+eZxc/w9OKn6dO4D0PaDaH6qdXD3Szf/forTJ3qAmrDBrjpJhdQzZpBqVIWSr6wUDLG\nBGvn7zsZ+dlIxq0ax90t7ubBNg9yWtnTwt2sIrF584nTe6efDitXWij5wkLJGJNfW/Zs4dH5jzLr\nf7MY1HYQAy4ZQNnSZcPdrCKRmekmh73kEgslX1goGWMKanX6apLnJrNuxzqGtx9O34v6lshh5Nmx\na0o+sVAyxhTWgi0LSJyTyMGMg4yOG03n8zojkq/f62LHQsknFkrGmFBQVf6z/j8kz02mVsVapMal\n0qJWi3A3yzcWSj6xUDLGhFJGZgavr3idlAUptKnThhEdRhBzRky4mxVyBQmlk+PEpjHGRJDSpUrz\n10v+yqZ7NnFx9YtpM7YNd350Jz/u+zHcTQs7CyVjjAmT8mXKk9w2mQ0DN1AhugIXvnQhj8x7hL0H\n94a7aWFjoWSMMWF2RvkzePKqJ1kxYAXb920nZkwMTy96mkMZh8LdtCJn15SCYNeUjDFFaU36GgbN\nG8Sa9DUMaz+Mmy66iahSUeFuVr7ZQAefWCgZY8Lhs+8+I3FOIvuP7GdUx1F0rd+1WA0jj7iBDiLS\nRUTWi8gmEUnMocxz3uerRKR5XnVFpIqIzBaRjSIyS0QqB3yW7JVfLyJXBawfISLfi8i+LPtOEJEd\nIrLCe90W2iNgjDEF1/bstiy8bSGPxT7G32f9nfbj2rNk25JwN8tXvoWSiEQBY4AuQCOgr4g0zFKm\nG1BfVRsAdwAvBVE3CZitqjHAXO89ItII6OOV7wK8KCf+S/EB0DKbZiowUVWbe6/XQvLljTEmRESE\nXhf0Ys2da7i5yc30ntKb3lN6s2HnhnA3zRd+9pRaAptVdYuqHgEmAT2zlOkBjANQ1SVAZRGpnkfd\n43W8P3t5yz1xAXNEVbcAm4FW3raXqupP2bRRvJcxxkS00qVKc/vFt7Pxno20rNmSK16/ggEfDuCH\nfT+Eu2kh5Wco1QK2Brzf5q0LpkzNXOpWU9V0bzkdqOYt1/TK5ba/rBToLSKrRWSqiNTOo7wxxoRV\n+TLlSbwikQ0DN1DplEpc9NJFDJo7iD0H94S7aSHhZygFOzIgmJ6KZLc9b/RBbvvJqw0fAmerahNg\nNid6YMYYE9GqlKvCE52eYOWAlaT/lk7M8zE89flTHMw4GO6mFUppH7e9HagT8L4Of+zJZFemtlem\nTDbrt3vL6SJSXVV/EpEawM+5bGs7uVDV3QFvxwJP5FQ2JSXl+HJsbCyxsbG5bdoYY4pEnUp1GNtz\nLGt/XsugeYN4bulzPB77OP2b9C/yYeRpaWmkpaUVahu+DQkXkdLABqAj8AOwFOirql8HlOkGDFTV\nbiLSGnhGVVvnVldEngB2qWqqiCQBlVU1yRvoMAF3PaoWMAc3iEID9rdPVSsGvK9+7FqTiFwDPKSq\nbbL5LjYk3BhTLCz8fiGJcxLZe2gvozqOonuD7mEbRh5x9ymJSFfgGSAKGKuqo0RkAICqvuKVOTbK\nbj9wq6ouz6mut74KMAWoC2wBblDVPd5ng4DbgAzgPlWd6a1/AugL1AB+BF5V1cdFZCRu4EQGsAu4\nU1U3ZvM9LJSMMcWGqvLhxg9JnpvMGeXOIDUulcvqXFbk7Yi4UCopLJSMMcXR0cyjjF81nkfTHuXS\nmpcyssNIGlZtmHfFEIm4m2eNMcaET1SpKG5tfisbB27k8jqXc+UbV/L/pv0/tv2a9fJ+5LBQMsaY\nEq5cmXI82OZBNg7cyJnlz6Tpy01JmpPELwd+CXfT/sRCyRhjThKnlzud0XGjWfV/q9j1+y5ixsTw\nj4X/4MCRA+Fu2nF2TSkIdk3JGFMSfb3jawbPG8yyH5bxWOxj3NL0lpAOI7eBDj6xUDLGlGSLti4i\ncU4iuw7sYlTHUfwl5i8hGUZuoeQTCyVjTEmnqkzfNJ2kuUlUKluJ1LhULq97eaG2aaHkEwslY8zJ\n4mjmUd5e8zZD5g+hWfVmjOwwksZnNS7QtmxIuDHGmEKJKhXFLU1vYcPADbQ7ux3tx7Xntg9uY+ve\nrXlXDgELJWOMMX9ySulT+Ntlf2PTPZuocWoNmr3SjIdmPcTuA7vzrlwIFkrGGGNyVOmUSozoOII1\nd65h3+F9nD/mfEb/dzS/H/ndl/3ZNaUg2DUlY4xxNuzcwOB5g1m8bTEpsSkkNEugdKnsHzhhAx18\nYqFkjDF/tGTbEhLnJJK+P52RHUbS64JefxpGbqHkEwslY4z5M1VlxuYZJM1NonyZ8qTGpXLl2Vce\n/9xCyScWSsYYk7NMzWTCmgk8Mu8RLjzrQkZ1HMVF1S6yUPKLhZIxxuTtUMYhXlr2EqP+O4qu9bsy\n7ppxFkp+sFAyxpjg7T24l4lfTeTOFndaKPnBQskYY/LPZnQwxhhTrFkoGWOMiRgWSsYYYyKGhZIx\nxpiIYaFkjDEmYlgoGWOMiRgWSsYYYyKGhZIxxpiIYaFkjDEmYlgoGWOMiRgWSsYYYyKGr6EkIl1E\nZL2IbBKRxBzKPOd9vkpEmudVV0SqiMhsEdkoIrNEpHLAZ8le+fUiclXA+hEi8r2I7Muy77IiMtmr\ns1hEzg7tETDGGJMfvoWSiEQBY4AuQCOgr4g0zFKmG1BfVRsAdwAvBVE3CZitqjHAXO89ItII6OOV\n7wK8KCceg/gB0DKbZt4O7PL2/zSQGoKvXqKlpaWFuwkRw47FCXYsTrBjUTh+9pRaAptVdYuqHgEm\nAT2zlOkBjANQ1SVAZRGpnkfd43W8P3t5yz2Biap6RFW3AJuBVt62l6rqT9m0MXBb7wIdC/F9Twr2\nD+4EOxYn2LE4wY5F4fgZSrWArQHvt3nrgilTM5e61VQ13VtOB6p5yzW9crntL8c2qmoGsFdEquRR\nxxhjjE/8DKVgH0AUzLM2JLvteQ85ym0/9hAkY4wpTlTVlxfQGpgR8D4ZSMxS5mXgxoD363E9nxzr\nemWqe8s1gPXechKQFFBnBtAqy/72ZXk/A2jtLZcGduTwXdRe9rKXveyV/1d+s6M0/lkGNBCRc4Af\ncIMQ+mYpMw0YCEwSkdbAHlVNF5FdudSdBsTjBiXEA+8HrJ8gIv/EnZZrACzNo43HtrUYuA43cOJP\n8vvkRGOMMQXjWyipaoaIDARmAlHAWFX9WkQGeJ+/oqrTRaSbiGwG9gO35lbX2/RoYIqI3A5sAW7w\n6qwTkSnAOiADuOvYM8xF5AlcqJUTka3Aq6r6ODAWeFNENgG7gBv9Oh7GGGPyJt7vtjHGGBN2NqOD\npzA3+pY0eR0LEennHYPVIrJQRJqEo51FIZi/F165FiKSISLXFmX7ilKQ/0ZiRWSFiHwlImlF3MQi\nE8S/kTNFZIaIrPSORUIYmuk7EXlNRNJFZE0uZfL3u+nXQIfi9MKdItwMnAOUAVYCDbOU6QZM95Zb\nAYvD3e4wHovLgErecpeT+VgElJsHfAT0Dne7w/j3ojKwFqjtvT8z3O0O47FIAUYdOw64ywOlw912\nH45FW6A5sCaHz/P9u2k9JaegN/pWo+TJ81io6iJV3eu9XQLULuI2FpVg/l4A3AO8A+woysYVsWCO\nxU3Au6q6DUBVdxZxG4tKMMfiR+A0b/k03MwxGUXYxiKhqp8Bv+RSJN+/mxZKTkFv9C2JP8bBHItA\ntwPTfW1R+OR5LESkFu4H6SVvVUm9SBvM34sGQBURmS8iy0Tk5iJrXdEK5li8CjQWkR+AVcB9RdS2\nSJPv300/h4QXJ8H+kGQdGl4Sf4CC/k4i0h64Dbjcv+aEVTDH4hnc/XHqzbVYUm8fCOZYlAEuxk3X\nVR5YJCKLVXWTry0resEci0HASlWNFZHzgNki0lRV9+VVsQTK1++mhZKzHagT8L4Of5yyKLsytb11\nJU0wxwJvcMOrQBdVza37XpwFcywuwd1nB+7aQVcROaKq04qmiUUmmGOxFdipqgeAAyLyKdAUKGmh\nFMyxaAOMAFDV/4nIt8D5uPs3Tyb5/t2003fO8Rt9RSQad7Nu1h+VacAtAIE3+hZtM4tEnsdCROoC\n7wH9VXVzGNpYVPI8Fqp6rqrWU9V6uOtKd5bAQILg/o18AFwhIlEiUh53YXtdEbezKARzLNYDcQDe\nNZTzgW+KtJWRId+/m9ZTonA3+pY0wRwL4FHgdOAlr4dwRFWzezRIsRbksTgpBPlvZL2IzABWA5m4\nm9RLXCgF+fdiJPC6iKzC/ef/YVXdHbZG+0REJgLtgDO9iQmG4k7jFvh3026eNcYYEzHs9J0xxpiI\nYaFkjDEmYlgoGWOMiRgWSsYYYyKGhZIxxpiIYaFkjDEmYlgoGVNIIpIpIm8GvC8tIjtE5MM86iWI\nyPP53NdE7xEAhZ5LTUQGZXm/sLDbNKawLJSMKbz9uMk3T/Hed8JNO5PXTYD5uklQRKoDl6pqU1V9\nNstnUfnZlif5D41RLalzGJpixELJmNCYDnT3lvsCE/EmohSRKiLyvtfDWSQiF2WtLCJVReQdEVnq\nvdpks49ZQC3vIXpXiEiaiDwtIl8A94nI1SKyWESWi8hsETnL2/apIvK691DGVSJyrYiMAsp523rT\nK/eb96eIyD9EZI1X5wZvfay3z6ki8rWIvBXaQ2iMTTNkTKhMBh4VkY+Ai4CxuAegATwGfKmqvbyZ\n1cfjHowWOHvys8DTqrrQm1twBtAoyz7+Anykqs0BRESBMqrawntfWVVbe8v/D3gYeBAYAvyiqk0C\nyr0nIgOPbctzrOd2LW4i1SZAVeALb3JVgGZeu34EForI5apqp/1MyFgoGRMCqrpGRM7B9ZI+zvLx\n5bgfelR1voicISIVs5SJAxp6cwkCVBSR8qr6e0CZ7B6LMTlguY6ITAGqA9GcmAC0I27S0GNt3ZPH\n17kCmKBuDrKfRWQB0AL4FViqqj8AiMhK3NNXLZRMyFgoGRM604AncRNUVs3yWV7PlBGglaoezuc+\n9wcsPw88qaofiUg73CO5c9p/bjSb8sfaeyhg3VHsN8SEmF1TMiZ0XgNSVHVtlvWfAf3AXZcBdqjq\nb1nKzALuPfZGRJoFuc/A8DgN+MFbTghYPxu4O2Dblb3FIyKSXah8BvQRkVIiUhW4ElhK/oLNmAKx\nUDKm8BRAVber6piAdcd6FynAJd5jDEYC8dmUuRe41BuIsBa4I7d95fA+BZgqIsuAHQGfDQdO9wYu\nrARivfX/AlYHDGc/9j3+g3v8xCpgLvCQqv6cpb05tceYQrFHVxhjjIkY1lMyxhgTMSyUjDHGRAwL\nJWOMMRHDQskYY0zEsFAyxhgTMSyUjDHGRAwLJWOMMRHDQskYY0zE+P/Fu4BdNlHpCgAAAABJRU5E\nrkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f9070ba6bd0>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "print \"Example: 9.7 - Page: 342\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# Data = [X1 V*10**6(cubic m/mol)]#\n",
+ "from numpy import mat\n",
+ "Data = mat([[0, 20],[0.2, 21.5],[0.4, 24.0],[0.6, 27.4],[0.8, 32.0],[1, 40]])\n",
+ "#************#\n",
+ "%matplotlib inline\n",
+ "from matplotlib.pyplot import plot, title, xlabel, ylabel, show, grid\n",
+ "plot(Data[:,0],Data[:,1])\n",
+ "title(\"Example 9.7\")\n",
+ "xlabel(\"Mole fraction\")\n",
+ "ylabel(\"Molar Volume*10**(6)\")\n",
+ "grid()#\n",
+ "show()\n",
+ "# Solution (i)\n",
+ "print \"For X1 = 0.5\\n\"\n",
+ "# A tangent is drawn to the curve at X1 = 0.5.\n",
+ "# The intercept at X2 = 0 or X1 = 1, gives V1_bar.\n",
+ "V1_bar1 = 33.8*10**(-6)## [cubic m/mol]\n",
+ "# The intercept at X2 = 1 or X1 = 0, gives V2_bar.\n",
+ "V2_bar1 = 17*10**(-6)## [cubic m/mol]\n",
+ "print \"Partial molar volume of component 1 is %.2e cubic m/mol\\n\"%(V1_bar1)#\n",
+ "print \"Partial molar volume of component 2 is %.2e cubic m/mol\\n\"%(V2_bar1)#\n",
+ "print \"\\n\"\n",
+ "\n",
+ "# Solution (ii)\n",
+ "print \"For X2 = 0.75\\n\"\n",
+ "# A tangent is drawn to the curve at X1 = 0.75.\n",
+ "# The intercept at X2 = 0 or X1 = 1, gives V1_bar.\n",
+ "V1_bar2 = 36.6*10**(-6)## [cubic m/mol]\n",
+ "# The intercept at X2 = 1 or X1 = 0, gives V2_bar.\n",
+ "V2_bar2 = 12.4*10**(-6)## [cubic m/mol]\n",
+ "point1 = mat([[0, V1_bar1],[ 1 ,V2_bar1]])\n",
+ "point2 = mat([[0, V1_bar2],[1, V2_bar2]])\n",
+ "plot(point1[:,0],point1[:,1],point2[:,0],point2[:,1])\n",
+ "#legend(\"X1 = 0.5\"%(\"X1 = 0.75\"\n",
+ "xlabel(\"Mole fraction\")\n",
+ "ylabel(\"Molar Volume\")\n",
+ "print \"Partial molar volume of component 1 is %.2e cubic m/mol\\n\"%(V1_bar)#\n",
+ "print \"Partial molar volume of component 2 is %.2e cubic m/mol\\n\"%(V2_bar)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.8 Page: 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.8 - Page: 352\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 9.8 on page 352 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.8 - Page: 352\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 9.8 on page number 352 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 9.8 on page 352 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.9 Page: 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.9 - Page: 352\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 9.9 on page 352 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.9 - Page: 352\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 9.9 on page number 352 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 9.9 on page 352 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.10 Page: 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.10 - Page: 354\n",
+ "\n",
+ "\n",
+ "Fugacity of the gaseous mixture is 40.095 bar\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp, log\n",
+ "print \"Example: 9.10 - Page: 354\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "x1 = 0.3## [mole fraction of component 1 in the mixture]\n",
+ "x2 = 0.7## [mole fraction of component 2 in the mixture]\n",
+ "phi1 = 0.7## [fugacity coeffecient of component 1 in the mixture]\n",
+ "phi2 = 0.85## [fugacity coeffecient of component 2 in the mixture]\n",
+ "P = 50## [bar]\n",
+ "T = 273 + 100## [K]\n",
+ "#*************#\n",
+ "\n",
+ "phi = exp(x1*log(phi1) + x2*log(phi2))## [fugacity coeffecient of the mixture]\n",
+ "f = phi*P## [bar]\n",
+ "print \"Fugacity of the gaseous mixture is %.3f bar\"%(f)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.11 Page: 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.11 - Page: 354\n",
+ "\n",
+ "\n",
+ "Fugacity of the gaseous mixture is 45.479 bar\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.11 - Page: 354\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "x1 = 0.3## [mole fraction of hydrogen in the mixture]\n",
+ "x2 = 0.25## [mole fraction of nitrogen in the mixture]\n",
+ "x3 = 0.45## [mole fraction of oxygen in the mixture]\n",
+ "phi1 = 0.7## [fugacity coeffecient of oxygen in the mixture]\n",
+ "phi2 = 0.85## [fugacity coeffecient of nitrogen in the mixture]\n",
+ "phi3 = 0.75## [fugacity coeffecient of oxygen in the mixture]\n",
+ "P = 60## [bar]\n",
+ "T = 273 + 150## [K]\n",
+ "#***********#\n",
+ "\n",
+ "phi = exp(x1*log(phi1) + x2*log(phi2) + x3*log(phi3))## [fugacity coeffecient of the mixture]\n",
+ "f = phi*P## [bar]\n",
+ "print \"Fugacity of the gaseous mixture is %.3f bar\"%(f)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.12 Page: 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.12 - Page: 356\n",
+ "\n",
+ "\n",
+ "Fugacity of liquid water is 1.0012 bar\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.12 - Page: 356\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "T = 372.12## [K]\n",
+ "Psat = 100## [kPa]\n",
+ "P = 300# #[kPa]\n",
+ "Vspecific = 1.043*10**(-3)##[cubic m/kg]\n",
+ "M = 18*10**(-3)## [molecular weight of water, kg/mol]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#***************#\n",
+ "\n",
+ "Psat = Psat/100## [bar]\n",
+ "P = P/100## [bar]\n",
+ "Vl = Vspecific*M## [cubic m/mol]\n",
+ "# Vapour is assumed to be like an ideal gas.\n",
+ "phi = 1#\n",
+ "fsat = Psat*phi## [bar]\n",
+ "fl = fsat*exp(Vl*(P - Psat)*10**5/(R*T))## [bar]\n",
+ "print \"Fugacity of liquid water is %.4f bar\"%(fl)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.13 Page: 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.13 - Page: 357\n",
+ "\n",
+ "\n",
+ "The fugacity of the liquid water is 4.2051 bar\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.13 - Page: 357\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Vl = 90.45*10**(-6)## [molar volume of liquid butadiene, cubic m/mol]\n",
+ "fsat = 4.12## [bar]\n",
+ "P = 10## [bar]\n",
+ "Psat = 4.12## [bar]\n",
+ "T = 313## [K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#************#\n",
+ "\n",
+ "fl = fsat*exp(Vl*(P - Psat)*10**5/(R*T))## [bar]\n",
+ "print \"The fugacity of the liquid water is %.4f bar\"%(fl)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.14 Page: 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.14 - Page: 357\n",
+ "\n",
+ "\n",
+ "The fugacity of the gas is 1411 atm \n",
+ "\n",
+ "The fugacity coeffecient of the gas is 1.411 atm\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.14 - Page: 357\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "b = 0.0391## [cubic dm/mol]\n",
+ "P1 = 1000## [atm]\n",
+ "T = 1000 + 273## [K]\n",
+ "R = 0.0892## [L bar/K mol]\n",
+ "#deff('[Vreal] = f1(P)','Vreal = R*T/P + b')#\n",
+ "#deff('[Videal] = f2(P)','Videal = R*T/P')#\n",
+ "def f1(P):\n",
+ " Vreal = R*T/P + b\n",
+ " return Vreal\n",
+ "\n",
+ "def f2(P):\n",
+ " Videal = R*T/P\n",
+ " return Videal\n",
+ "\n",
+ "def f(P):\n",
+ " f12 = f1(P)-f2(P)\n",
+ " return f12\n",
+ "\n",
+ "#**************#\n",
+ "\n",
+ "# We know that:\n",
+ "# RTlog(f/P) = integral('Vreal - Videal',P,0,P)\n",
+ "\n",
+ "from sympy.mpmath import quad\n",
+ "f = P1*exp((1/(R*T))*quad(f,[0,P1]))## [atm]\n",
+ "phi = f/P1#\n",
+ "print \"The fugacity of the gas is %d atm \\n\"%(f)#\n",
+ "print \"The fugacity coeffecient of the gas is %.3f atm\"%(phi)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.15 Page: 359"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.15 - Page: 359\n",
+ "\n",
+ "\n",
+ "Fugacity of liquid butadiene at 313 K & 10 bar is 8.109 bar\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.15 - Page: 359\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Vl = 73*10**(-6)## [cubic m/mol]\n",
+ "P = 275## [bar]\n",
+ "Psat = 4.360## [bar]\n",
+ "T = 110 + 273## [K]\n",
+ "R = 8.314## [J/mol K]\n",
+ "#**************#\n",
+ "\n",
+ "# Acetone vapour is assumed to behave like ideal gas.\n",
+ "phi = 1#\n",
+ "fsat = Psat## [bar]\n",
+ "fl = fsat*exp(Vl*(P - Psat)*10**5/(R*T))## [bar]\n",
+ "print \"Fugacity of liquid butadiene at 313 K & 10 bar is %.3f bar\"%(fl)# "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.16 Page: 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.16 - Page: 362\n",
+ "\n",
+ "\n",
+ "The entropy change of mixiong is 0.749 cal/K mol\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.16 - Page: 362\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "V1 = 2.8## [Volume of Oxygen, L]\n",
+ "V2 = 19.6## [Volume of hydrogen, L]\n",
+ "R = 1.987## [cal/K mol]\n",
+ "#**************#\n",
+ "\n",
+ "n1 = V1/22.4## [moles of Oxygen]\n",
+ "n2 = V2/22.4## [moles of Hydrogen]\n",
+ "n = n1 + n2## [total number of moles]\n",
+ "x1 = n1/n## [mole fraction of Oxygen]\n",
+ "x2 = n2/n## [mole fraction of Hydrogen]\n",
+ "# From Eqn. 9.88:\n",
+ "deltaS_mix = - (R*(x1*log(x1) + x2*log(x2)))## [cal/K mol]\n",
+ "print \"The entropy change of mixiong is %.3f cal/K mol\"%(deltaS_mix)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.17 Page: 363"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.17 - Page: 363\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 9.17 on page 363 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.17 - Page: 363\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 9.17 on page number 363 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 9.17 on page 363 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.18 Page: 364"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.18 - Page: 364\n",
+ "\n",
+ "\n",
+ "The free energy change of mixing is -1513.46 J\n",
+ "\n",
+ "The enthalpy change of mixing is 0 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.18 - Page: 364\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "n1 = 0.7## [moles of helium]\n",
+ "n2 = 0.3## [moles of argon]\n",
+ "R = 8.314## [J/mol K]\n",
+ "T = 273 + 25## [K]\n",
+ "#******************#\n",
+ "\n",
+ "n = n1 + n2## [total moles]\n",
+ "x1 = n1/n## [mole fraction of helium]\n",
+ "x2 = n2/n## [mole fraction of argon]\n",
+ "deltaG_mix = n*R*T*(x1*log(x1) + x2*log(x2))## [J]\n",
+ "print \"The free energy change of mixing is %.2f J\\n\"%(deltaG_mix)#\n",
+ "\n",
+ "# Since the gases are ideal:\n",
+ "deltaH_mix = 0## [J]\n",
+ "print \"The enthalpy change of mixing is %d J\\n\"%(deltaH_mix)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.19 Page: 364"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.19 - Page: 364\n",
+ "\n",
+ "\n",
+ "Free Energy change of mixing is -15.37 J\n",
+ "\n",
+ "Enthalpy change in mixing is 0.00 J\n",
+ "\n",
+ "Entropy Change in mixing is 0.052 J/K\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.19 - Page: 364\\n\\n\"\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "V = 20## [Volume of vessel, L]\n",
+ "V1 = 12## [Volume of Hydrogen, L]\n",
+ "V2 = 10## [Volume of Nitrogen, L]\n",
+ "P = 1## [atm]\n",
+ "T = 298## [K]\n",
+ "P1 = 1## [atm]\n",
+ "P2 = 1## [atm]\n",
+ "R = 0.082## [L atm/K mol]\n",
+ "#************#\n",
+ "\n",
+ "n1 = P1*V1/(R*T)## [number of moles of Hydrogen]\n",
+ "n2 = P2*V2/(R*T)## [number of moles of Nitrogen]\n",
+ "n = n1 + n2## [total number of moles]\n",
+ "Pfinal = n*R*T/V## [atm]\n",
+ "p1 = Pfinal*n1## [partial pressure of Hydrogen, atm]\n",
+ "p2 = Pfinal*n2## [partial pressure of Nitrogen, atm]\n",
+ "deltaG_mix = R*T*(n1*log(p1/P1) + n2*log(p2/P2))## [J]\n",
+ "print \"Free Energy change of mixing is %.2f J\\n\"%(deltaG_mix)#\n",
+ "\n",
+ "# Since mixing is ideal:\n",
+ "deltaH_mix = 0## [J]\n",
+ "print \"Enthalpy change in mixing is %.2f J\\n\"%(deltaH_mix)#\n",
+ "\n",
+ "deltaS_mix = - (deltaG_mix/T)## [J/K]\n",
+ "print \"Entropy Change in mixing is %.3f J/K\\n\"%(deltaS_mix)#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.20 Page: 367"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.20 - Page: 367\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 9.20 on page 367 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.20 - Page: 367\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 9.20 on page number 367 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 9.20 on page 367 of the book.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: 9.21 Page: 373"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Example: 9.21 - Page: 373\n",
+ "\n",
+ "\n",
+ " Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "\n",
+ "\n",
+ " For prove refer to this example 9.21 on page 373 of the book.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print \"Example: 9.21 - Page: 373\\n\\n\"\n",
+ "\n",
+ "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
+ "# For prove refer to this example 9.21 on page number 373 of the book.\n",
+ "\n",
+ "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
+ "print \" For prove refer to this example 9.21 on page 373 of the book.\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9MolFracNMolVol.png b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9MolFracNMolVol.png
new file mode 100644
index 00000000..7c3c13e4
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9MolFracNMolVol.png
Binary files differ
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9_molarFracNMolVol.png b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9_molarFracNMolVol.png
new file mode 100644
index 00000000..51237d39
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9_molarFracNMolVol.png
Binary files differ
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/ch10_consistency.png b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/ch10_consistency.png
new file mode 100644
index 00000000..c8c54b38
--- /dev/null
+++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/ch10_consistency.png
Binary files differ
diff --git a/Machine_Design_by_T._H._Wentzell,_P._E/README.txt b/Machine_Design_by_T._H._Wentzell,_P._E/README.txt
new file mode 100644
index 00000000..09504020
--- /dev/null
+++ b/Machine_Design_by_T._H._Wentzell,_P._E/README.txt
@@ -0,0 +1,10 @@
+Contributed By: jay parmar
+Course: btech
+College/Institute/Organization: iitbombay
+Department/Designation: chemical engineering
+Book Title: Machine Design
+Author: T. H. Wentzell, P. E
+Publisher: Cengage Learning, New Delhi
+Year of publication: 2007
+Isbn: 978-81-315-0878-7
+Edition: 1 \ No newline at end of file
diff --git a/Microwaves_and_Radar_Principles_and_Applications_by_A._K._Maini/README.txt b/Microwaves_and_Radar_Principles_and_Applications_by_A._K._Maini/README.txt
new file mode 100644
index 00000000..575b3f1e
--- /dev/null
+++ b/Microwaves_and_Radar_Principles_and_Applications_by_A._K._Maini/README.txt
@@ -0,0 +1,10 @@
+Contributed By: saikomal chanagam
+Course: btech
+College/Institute/Organization: SASTRA University
+Department/Designation: ECE
+Book Title: Microwaves and Radar Principles and Applications
+Author: A. K. Maini
+Publisher: Khanna Publishers, New Delhi
+Year of publication: 2004
+Isbn: 81-7409-129-7
+Edition: 3 \ No newline at end of file
diff --git a/Network_Analysis_and_Synthesis_by_B_R_Gupta/README.txt b/Network_Analysis_and_Synthesis_by_B_R_Gupta/README.txt
new file mode 100644
index 00000000..f026fdb2
--- /dev/null
+++ b/Network_Analysis_and_Synthesis_by_B_R_Gupta/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Chandra Shiva
+Course: btech
+College/Institute/Organization: SRM University
+Department/Designation: Computer science Engineering
+Book Title: Network Analysis and Synthesis
+Author: B R Gupta
+Publisher: S chand, new delhi
+Year of publication: 2009
+Isbn: 978-8121930550
+Edition: 3 \ No newline at end of file