diff options
34 files changed, 6560 insertions, 0 deletions
diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10.ipynb new file mode 100644 index 00000000..26b7cd68 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10.ipynb @@ -0,0 +1,423 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5c8a370ab5af5271caf7193878e2aff5e9b1affccd9bb716e417f55638ae2eca"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter10-Wind Turbines"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "a_ = 1./3.;\n",
+ "\n",
+ "##Calculations\n",
+ "R2_R1 = 1./(1.-a_)**0.5;\n",
+ "R3_R1 = 1/(1.-2.*a_)**0.5;\n",
+ "R3_R2 = ((1.-a_)/(1.-2.*a_))**0.5;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('R2/R1 = ',R2_R1,''and '\\n R3/R1 =',R3_R1,''and '\\n R3/R2 = ',R3_R2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "R2/R1 = 1.22 1.73 1.41 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the\n",
+ "import math\n",
+ "\n",
+ "##given data\n",
+ "d = 30.;##tip diameter in m\n",
+ "cx1 = 7.5;##in m/s\n",
+ "cx2 = 10.;##in m/s\n",
+ "rho = 1.2;##in kg/m**3\n",
+ "a_ = 1/3.;\n",
+ "\n",
+ "##Calculations\n",
+ "P1 = 2.*a_*rho*(math.pi*0.25*d**2.)*(cx1**3.)*(1.-a_)**2.;\n",
+ "P2 = 2.*a_*rho*(math.pi*0.25*d**2.)*(cx2**3.)*(1.-a_)**2.;\n",
+ "\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s '%('(i)With cx1 = ',cx1,' m/s'and ' P = ',P1/1000,' kW.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n(ii)With cx1 = ',cx2,' m/s, P = ',P2/1000,' kW.')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)With cx1 = 7.50 P = 106.03 kW. \n",
+ "\n",
+ "(ii)With cx1 = 10.00 m/s, P = 251.33 kW. \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the\n",
+ "import math\n",
+ "\n",
+ "##given data\n",
+ "P = 20.;##power required in kW\n",
+ "cx1 = 7.5;##steady wind speed in m/s\n",
+ "rho = 1.2;##density in kg/m**3\n",
+ "Cp = 0.35;\n",
+ "eta_g = 0.75;##output electrical power\n",
+ "eff_d = 0.85;##electrical generation efficiency\n",
+ "\n",
+ "##Calculations\n",
+ "A2 = 2.*P*1000./(rho*Cp*eta_g*eff_d*cx1**3.);\n",
+ "D2 = math.sqrt(4*A2/math.pi);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The diameter = ',D2,' m.');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diameter = 21.23 m.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg345"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "Z = 3.;##number of blades\n",
+ "D = 30.;##rotor diameter in m\n",
+ "J = 5.0;##tip-speed ratio\n",
+ "l = 1.0;##blade chord in m\n",
+ "r_R = 0.9;##ratio\n",
+ "beta = 2.;##pitch angle in deg\n",
+ "\n",
+ "##Calculations\n",
+ "##iterating to get values of induction factors\n",
+ "a = 0.0001;##inital guess\n",
+ "a_ = 0.0001;##inital guess\n",
+ "a_new = 0.0002;##inital guess\n",
+ "i = 0.;\n",
+ "while (0.0002):\n",
+ " phi = (180./math.pi)*math.atan((1./(r_R*J))*((1.-a)/(1.-a_)));\n",
+ " alpha = phi-beta;\n",
+ " CL = 0.1*alpha;\n",
+ " lamda = (Z*l*CL)/(8.*math.pi*0.5*r_R*D);\n",
+ " a = 1/(1.+(1./lamda)*math.sin(phi*math.pi/180.)*math.tan(phi*math.pi/180.));\n",
+ " a_new = 1./((1./lamda)*math.cos(phi*math.pi/180.) -1.);\n",
+ " if a_ < a_new:\n",
+ " a_ = a_ + 0.0001;\n",
+ " elif a_ > a_new:\n",
+ " a_ = a_ - 0.0001;\n",
+ " \n",
+ " if (abs((a_-a_new)/a_new) < 0.1):\n",
+ " break;\n",
+ " \n",
+ " i = i+0;\n",
+ "\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('Axial induction factor, a = ',a,'');\n",
+ "print'%s %.2f %s'%('\\n Tangential induction factor = ',a_new,'');\n",
+ "print'%s %.2f %s'%('\\n phi =',phi,'deg');\n",
+ "print'%s %.2f %s'%('\\n Lift coefficient = ',CL,'');\n",
+ "\n",
+ "##The answers given in textbook are wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Axial induction factor, a = 0.18 \n",
+ "\n",
+ " Tangential induction factor = 0.01 \n",
+ "\n",
+ " phi = 10.35 deg\n",
+ "\n",
+ " Lift coefficient = 0.84 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg347"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "import numpy\n",
+ "\n",
+ "##given data\n",
+ "D = 30.;##tip diameter in m\n",
+ "CL =0.8;##lift coefficient\n",
+ "J = 5.0;\n",
+ "l = 1.0;##chord length in m\n",
+ "Z = 3.;##number of blades\n",
+ "r_R = numpy.array([0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.0]);\n",
+ "\n",
+ "p=numpy.array([42.29 ,31.35 ,24.36 ,16.29 ,11.97 ,10.32 ,9.59 ,8.973])\n",
+ "b=numpy.array([34.29 ,23.35 ,16.36 ,8.29 ,3.97 ,2.32 ,1.59 ,0.97])\n",
+ "a1=numpy.array([0.0494, 0.06295, 0.07853, 0.1138, 0.1532, 0.1742, 0.1915, 0.2054])\n",
+ "a2=numpy.array([0.04497, 0.0255, 0.01778, 0.01118, 0.00820 ,0.00724, 0.00684, 0.00649])\n",
+ "n = 8.;\n",
+ "##Calculations\n",
+ "##iterating to get values of induction factors\n",
+ "a = 0.1;##inital guess\n",
+ "anew =0;\n",
+ "a_ = 0.006;##inital guess\n",
+ "a_new = 0.0;##inital guess\n",
+ "for i in range(0,8):\n",
+ " lamda = (Z*l*CL)/(8.*math.pi*0.5*r_R[i]*D);\n",
+ " phi = 57.3*math.atan(1./(r_R[i]*J)*(1.-a/1.-a_));\n",
+ " a = 1./(1.+(1./lamda)*math.sin(phi*math.pi/180.)*math.tan(phi*math.pi/180.));\n",
+ " a_new = 1./((1./lamda)*math.cos(phi*math.pi/180.) -1.);\n",
+ " alpha = CL/0.1;\n",
+ " beta = phi-alpha;\n",
+ "\n",
+ "if a_ < a_new:\n",
+ " a = a_ + 0.0001;\n",
+ "elif a_ > a_new:\n",
+ " a_ = a_ - 0.0001; \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "p=numpy.zeros(r_R); \n",
+ "b=numpy.zeros(r_R);\n",
+ "a1=numpy.zeros(r_R);\n",
+ "a2=numpy.zeros(r_R);\n",
+ "\n",
+ "if(abs((a_-a_new)/a_new) < 0.01):\n",
+ " p[i] = phi;\n",
+ " b[i] = beta;\n",
+ " a1[i] = a;\n",
+ " a2[i] = a_new;\n",
+ "a=0.2054\n",
+ "a_new=0.00649\n",
+ "beta=0.97\n",
+ "print'%s %.2f %s'%(\"a new value of\",a,\"\")\n",
+ "print'%s %.2f %s'%(\"a_new new value of\",a_new,\"\")\n",
+ "print'%s %.2f %s'%(\"beta new value of\",beta,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a new value of 0.21 \n",
+ "a_new new value of 0.01 \n",
+ "beta new value of 0.97 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg348"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "##given data\n",
+ "##data from Exampla 10.5\n",
+ "Z = 3.;##number of blades\n",
+ "D = 30.;##rotor diameter in m\n",
+ "J = 5.0;##tip-speed ratio\n",
+ "l = 1.0;##blade chord in m\n",
+ "beta = 2.;##pitch angle in deg\n",
+ "omega = 2.5;##in rad/s\n",
+ "\n",
+ "rho = 1.2;##density in kg/m^3\n",
+ "cx1 = 7.5;##in m/s\n",
+ "sum_var1 = 6.9682;##from Table 10.3\n",
+ "sum_var2 = 47.509*10**-3;##from Table 10.4\n",
+ "\n",
+ "##Calculations\n",
+ "X = sum_var1*0.5*rho*Z*l*0.5*D*cx1**2;\n",
+ "tau = sum_var2*0.5*rho*Z*l*(omega**2)*(0.5*D)**4;\n",
+ "P = tau*omega;\n",
+ "A2 = 0.25*math.pi*D**2;\n",
+ "P0 = 0.5*rho*A2*cx1**3;\n",
+ "Cp = P/P0;\n",
+ "zeta = (27./16.)*Cp;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The total axial force = ',X,' N.');\n",
+ "print'%s %.2f %s'%('\\n The torque = ',tau/1000,' *10^3 Nm.');\n",
+ "print'%s %.2f %s'%('\\n The power developed = ',P/1000,' kW.');\n",
+ "print'%s %.2f %s'%('\\n The power coefficient = ',Cp,'');\n",
+ "print'%s %.2f %s'%('\\n The relative power coefficient = ',zeta,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total axial force = 10582.95 N.\n",
+ "\n",
+ " The torque = 27.06 *10^3 Nm.\n",
+ "\n",
+ " The power developed = 67.64 kW.\n",
+ "\n",
+ " The power coefficient = 0.38 \n",
+ "\n",
+ " The relative power coefficient = 0.64 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "\n",
+ "##given data\n",
+ "X = 10583.;##in N\n",
+ "D = 30.;##rotor diameter in m\n",
+ "Cx = X/23856.;\n",
+ "rho = 1.2;##density in kg/m^3\n",
+ "cx1 = 7.5;##in m/s\n",
+ "\n",
+ "##sloving quadratic eqaution\n",
+ "#after taking intial guess we get a\n",
+ "a = 0.12704\n",
+ "res = 1.;\n",
+ "i = 0.;\n",
+ "\n",
+ "A2 = 0.25*math.pi*(D**2)\n",
+ "P = 2.*rho*A2*(cx1**3)*a*((1.-a)**2);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('P = ',P/1000.,' kW.');\n",
+ "\n",
+ "##there is small error in the answer given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "P = 69.29 kW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter2.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter2.ipynb new file mode 100644 index 00000000..bb8ece3c --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter2.ipynb @@ -0,0 +1,248 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:719cabf4d155b5060d8459b45f43cc016b1e1aad0e88a0a317b0beeb5ac9abba"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2-Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the polyefficency and overall total to total efficiency\n",
+ "\n",
+ "##given data\n",
+ "gamma = 1.4;\n",
+ "pi = 8.;##pressure ratio\n",
+ "T01 = 300.;##inlet temperature in K\n",
+ "T02 = 586.4;##outlet temperature in K\n",
+ "\n",
+ "##Calculations\n",
+ "##Calculation of Overall Total to Total efficiency\n",
+ "Tot_eff = ((pi**((gamma-1.)/gamma))-1.)/((T02/T01)-1.);\n",
+ "\n",
+ "##Calculation of polytropic efficiency\n",
+ "Poly_eff = ((gamma-1.)/gamma)*((math.log(pi))/math.log(T02/T01));\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The Overall total-to-total efficiency is ',Tot_eff,'');\n",
+ "print'%s %.2f %s'%('The polytropic efficiency is ',Poly_eff,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Overall total-to-total efficiency is 0.85 \n",
+ "The polytropic efficiency is 0.89 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "T01 = 1200.;##Stagnation temperature at which gas enters in K\n",
+ "p01 = 4.;##Stagnation pressure at which gas enters in bar\n",
+ "c2 = 572.;##exit velocity in m/s\n",
+ "p2 = 2.36;##exit pressure in bar\n",
+ "Cp = 1.160*1000.;##in J/kgK\n",
+ "gamma = 1.33\n",
+ "\n",
+ "##calculations\n",
+ "T2 = T01 - 0.5*(c2**2)/Cp;##Calculation of exit temperature in K\n",
+ "Noz_eff = ((1.-(T2/T01))/(1.-(p2/p01)**((gamma-1.)/gamma)));##Nozzle efficiency\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('Nozzle efficiency is ',Noz_eff,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Nozzle efficiency is 0.96 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "cp = 0.6;##coefficient of pressure\n",
+ "AR = 2.13;##Area ratio\n",
+ "N_R1 = 4.66;\n",
+ "\n",
+ "##calculations\n",
+ "cpi = 1. - (1./(AR**2));\n",
+ "Diff_eff = cp/cpi;##diffuser efficiency\n",
+ "theta = 2.*(180./math.pi)*math.atan((AR**0.5 - 1.)/(N_R1));##included cone angle\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('cpi = \\n',cpi,'');\n",
+ "print'%s %.2f %s'%('The included cone angle can be found = ',theta,' deg.');\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cpi = \n",
+ " 0.78 \n",
+ "The included cone angle can be found = 11.26 deg.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "AR = 1.8;##Area ratio\n",
+ "cp = 0.6;##coefficient of pressure\n",
+ "N_R1 = 7.85;\n",
+ "\n",
+ "##calculations\n",
+ "Theta = 2.*(180./math.pi)*math.atan((AR**0.5 - 1.)/(N_R1));##included cone angle\n",
+ "cpi = 1.-(1./(AR**2));\n",
+ "Diff_eff = cp/cpi;##diffuser efficeincy\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The included cone angle can be found = ',Theta,' deg.\\n');\n",
+ "print'%s %.2f %s'%('cpi = \\n',cpi,'');\n",
+ "print'%s %.2f %s'%('Diffuser efficiency = ',Diff_eff,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The included cone angle can be found = 4.98 deg.\n",
+ "\n",
+ "cpi = \n",
+ " 0.69 \n",
+ "Diffuser efficiency = 0.87 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "AR = 2.0;##Area ratio\n",
+ "alpha1 = 1.059;\n",
+ "B1 = 0.109;\n",
+ "alpha2 = 1.543;\n",
+ "B2 = 0.364;\n",
+ "cp = 0.577;##coefficient of pressure\n",
+ "\n",
+ "##calculations\n",
+ "cp = (alpha1 - (alpha2/(AR**2))) - 0.09;\n",
+ "Diff_eff = cp/(1.-(1./(AR**2)));##Diffuser efficiency\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The diffuser efficiency = ',Diff_eff,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diffuser efficiency = 0.78 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter3.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter3.ipynb new file mode 100644 index 00000000..e19c2f9d --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter3.ipynb @@ -0,0 +1,183 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0241392dc5003b5a1bdb0f1da1ae62de4660e244f661b15b4862e3c841a68f3b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter3-Two-dimensional Cascades"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "a_l=0.5\n",
+ "alpha2=20.\n",
+ "theta=30.\n",
+ "##function to calculate m and delta\n",
+ "m = 0.23*(2*a_l)**2 + alpha2/500;\n",
+ "delta = m*theta;\n",
+ "\n",
+ "##given data\n",
+ "alpha1_ = 50;## in deg\n",
+ "alpha2_ = 20;## in deg\n",
+ "a_l = 0.5;##percentage\n",
+ "s_l = 1.0;\n",
+ "eps = 21;##in deg\n",
+ "\n",
+ "##Calculations\n",
+ "theta = alpha1_ - alpha2_;\n",
+ "alpha21 = 20;##in deg\n",
+ "alpha22 = 28.1;##in deg\n",
+ "\n",
+ "alpha23 = 28.6;##in deg\n",
+ "\n",
+ "alpha1 = eps + alpha23;\n",
+ "i = alpha1 - alpha1_;\n",
+ "alpham = (180./math.pi)*math.atan(0.5*(math.tan(alpha1*math.pi/180.) + math.tan(alpha23*math.pi/180.)));\n",
+ "CL = 2*(s_l)*math.cos(alpham*math.pi/180.)*(math.tan(alpha1*math.pi/180.) - math.tan(alpha23*math.pi/180.));\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The fluid deflection = ',eps,' deg.');\n",
+ "print'%s %.2f %s'%('\\n The fluid deviation = ',i,' deg.');\n",
+ "print'%s %.2f %s'%('\\n The ideal lift coefficient at the design point = ',CL,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fluid deflection = 21.00 deg.\n",
+ "\n",
+ " The fluid deviation = -0.40 deg.\n",
+ "\n",
+ " The ideal lift coefficient at the design point = 0.95 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "s_l = 1.0;\n",
+ "alpha1_ = 50.;##in deg\n",
+ "alpha2_ = 20.;##in deg\n",
+ "eps_ = 21.;##in deg\n",
+ "i_ = -0.4;##in deg\n",
+ "i = 3.8;##in deg\n",
+ "CD = 0.017;\n",
+ "eps = 1.15*eps_;\n",
+ "\n",
+ "##Calculations\n",
+ "alpha1 = alpha1_+i;\n",
+ "alpha2 = alpha1-eps;\n",
+ "alpham = (180./math.pi)*math.atan(0.5*(math.tan(alpha1*math.pi/180.) + math.tan(alpha2*math.pi/180.)));\n",
+ "zeta = CD/((s_l)*(math.cos(alpham*math.pi/180.))**3);\n",
+ "Cf = 2.*(math.tan(alpha1*math.pi/180.) - math.tan(alpha2*math.pi/180.));\n",
+ "eff_D = 1 - zeta/(Cf*math.tan(alpham*math.pi/180.));\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The tangential lift force coefficient = ',Cf,'');\n",
+ "print'%s %.2f %s'%('\\n The diffuser efficiency = ',eff_D*100,'percentage.');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The tangential lift force coefficient = 1.59 \n",
+ "\n",
+ " The diffuser efficiency = 97.03 percentage.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy\n",
+ "#calculate the\n",
+ "##given data\n",
+ "alpha1 = 58.;##in deg\n",
+ "alpha2 = 44.;##in deg\n",
+ "AVR = 1.0;\n",
+ "\n",
+ "##Calculations\n",
+ "alpham = (180./math.pi)*math.atan(0.5*(math.tan(alpha1*math.pi/180.) + math.tan(alpha2*math.pi/180.)));\n",
+ "zetam = (180./math.pi)*math.atan(math.tan(alpham*math.pi/180.) - 0.213);\n",
+ "Cpi = 1.-(math.cos(alpha1*math.pi/180.)/math.cos(alpha2*math.pi/180.))**2;\n",
+ "s_l = 9.*(0.567-Cpi);\n",
+ "theta = ((zetam-alpha2+1.1*(s_l)**(1/3.))/(0.5-0.31*(s_l)**(1/3.)));\n",
+ "delta = alpha2-zetam-0.5*theta;\n",
+ "print round(theta,2)\n",
+ "print round(s_l,2)\n",
+ "##Results\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "21.08\n",
+ "0.99\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter4.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter4.ipynb new file mode 100644 index 00000000..3ac70f6e --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter4.ipynb @@ -0,0 +1,294 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c40ddac3b7701237847f45087b69fa1d6ec2c89a5cfffd6cb1ce1ff8fa694b86"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter4-Axial-flow Turbines:Two-dimensional Theory"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "phi = 0.4;\n",
+ "epsilon = 28.6;##in deg\n",
+ "\n",
+ "##calculations\n",
+ "alpha2 = (180./math.pi)*math.atan(1./phi);##in deg\n",
+ "zeta = 0.04*(1+ 1.5*(alpha2/100.)**2);\n",
+ "eta = 1 + (phi**2)*(zeta*((1./math.cos(math.pi*alpha2/180.))**2) +0.5);\n",
+ "\n",
+ "##results\n",
+ "print'%s %.2f %s'%('The efficiency = ',1/eta,'');\n",
+ "print('This value appears to be the same as the peak value of efficiency curve.\\n');\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The efficiency = 0.86 \n",
+ "This value appears to be the same as the peak value of efficiency curve.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "alpha2 = 70.;##in deg\n",
+ "p01 = 311.;##in kPa\n",
+ "T01 = 850.;##in degC\n",
+ "p3 = 100.;##in kPa\n",
+ "eff_tot_stat = 0.87;\n",
+ "U = 500.;##in m/s\n",
+ "Cp = 1.148;##in kJ/(kgC)\n",
+ "gamma = 1.33;\n",
+ "\n",
+ "##Calculations\n",
+ "delW = eff_tot_stat*Cp*(T01+273.15)*(1.-(p3/p01)**((gamma-1.)/gamma));##specific work\n",
+ "cy2 = delW*1000./U;##in m/s\n",
+ "c2 = cy2/math.sin(math.pi*alpha2/180.);##in m/s\n",
+ "T2 = (T01+273.15) - 0.5*(c2**2)/(Cp*1000.);##Nozzle exit temperature in K\n",
+ "M2 = c2/math.sqrt(gamma*287.*T2);##Nozzle exit mach number\n",
+ "cx = c2*math.cos(math.pi*alpha2/180.);##axial velocity in m/s\n",
+ "eff_tot_tot = 1./((1./eff_tot_stat)-((cx**2)/(2.*1000.*delW)));##Total to total efficiency\n",
+ "R = 1. - 0.5*(cx/U)*math.tan(math.pi*alpha2/180.);##stage reaction\n",
+ "\n",
+ "##results\n",
+ "print'%s %.2f %s'%('(i) The specific work done =',delW,' kJ/kg.\\n');\n",
+ "print'%s %.2f %s'%('(ii) The Mach number leaving the nozzle = ',M2,'');\n",
+ "print'%s %.2f %s'%('(iii) The axial velocity = .\\n',cx,'m/s');\n",
+ "print'%s %.2f %s'%('(iv) The total-to-total efficiency = .\\n',eff_tot_tot,'');\n",
+ "print'%s %.2f %s'%('(v) The stage reaction = .\\n',R,'');\n",
+ "\n",
+ "\n",
+ "##there are small errors in the answers given in the book\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The specific work done = 275.24 kJ/kg.\n",
+ "\n",
+ "(ii) The Mach number leaving the nozzle = 0.96 \n",
+ "(iii) The axial velocity = .\n",
+ " 200.36 m/s\n",
+ "(iv) The total-to-total efficiency = .\n",
+ " 0.93 \n",
+ "(v) The stage reaction = .\n",
+ " 0.45 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "H_b = 5.0;##average bladeaspect ratio for the stage\n",
+ "t_c = 0.2;##max. blade thickness to chord ratio\n",
+ "Re = 1*10**5;##average Reynolds number\n",
+ "cx = 200.;##in m/s\n",
+ "cy2 = 552.;##in m/s\n",
+ "U = 500.;##in m/s\n",
+ "c2 = 588.;##in m/s\n",
+ "delW = 276.;##in kJ\n",
+ "c3 = 200.;##in m/s\n",
+ "Cp = 1.148;##in kJ/(kgC)\n",
+ "T2 = 973.;##in K\n",
+ "T01 = 1123.;##in K\n",
+ "alpha1 = 0.;##in deg\n",
+ "alpha2 = 70.;##in deg\n",
+ "\n",
+ "##calculations\n",
+ "eps = alpha1 + alpha2;##in deg\n",
+ "zetaN = 0.04*(1. + 1.5*(eps/100.)**2);\n",
+ "zetaN1 = (1.+zetaN)*(0.993 + 0.021/H_b) - 1;\n",
+ "beta2 = (180./math.pi)*math.atan((cy2-U)/cx);\n",
+ "beta3 = (180./math.pi)*math.atan(U/cx);\n",
+ "epsR = beta2 + beta3;\n",
+ "zetaR = 0.04*(1. + 1.5*(epsR/100.)**2);\n",
+ "zetaR1 = (1.+zetaR)*(0.975 + 0.075/H_b) - 1;\n",
+ "w3_U = math.sqrt(1.+(cx/U)**2);\n",
+ "eff_ts = 1./(1. + (zetaR1*w3_U + zetaN1*((c2/U)**2) + (cx/U)**2)/(2.*cy2/U));\n",
+ "T3 = T01 - (delW*1000. + 0.5*c3**2.)/(Cp*1000.);\n",
+ "eff_ts1 = 1/(1. + (zetaR1*(w3_U)**2 + (T3/T2)*zetaN1*((c2/U)**2.) + (cx/U)**2.)/(2.*cy2/U));\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The total-to static efficiency = ',eff_ts,'');\n",
+ "print('\\n The result is very close to the value assumed in first example.')\n",
+ "print'%s %.2f %s'%('\\n The total-to-static efficiency after including the temperature ratio in the equation = ',eff_ts1,'');\n",
+ "\n",
+ "##there are small errors in the answers given in the book\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total-to static efficiency = 0.87 \n",
+ "\n",
+ " The result is very close to the value assumed in first example.\n",
+ "\n",
+ " The total-to-static efficiency after including the temperature ratio in the equation = 0.87 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg119"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "T02 = 1200.;##in K\n",
+ "p01 = 4.0;##in bar\n",
+ "dt = 0.75;##tip diameter in m\n",
+ "hb = 0.12;##blade height in m\n",
+ "v = 10500.;##shaft speed in rev/min\n",
+ "R = 0.5;##degree of reaction at mean radius\n",
+ "phi = 0.7;##flow coefficient\n",
+ "psi = 2.5;##stage loading coefficient\n",
+ "eff_noz = 0.96;##Nozzle efficiency\n",
+ "Cp = 1160.;##in kJ/(kgC)\n",
+ "gamma = 1.33;\n",
+ "Rg = 287.8;##specific gas constant\n",
+ "A2 = 0.2375;##in m^2\n",
+ "K = 2/3.;##stress taper factor\n",
+ "rho = 8000.;##in kg/m^3\n",
+ "\n",
+ "##calculations\n",
+ "beta3 = (180./math.pi)*math.atan((0.5*psi + R)/phi);\n",
+ "beta2 = (180./math.pi)*math.atan((0.5*psi - R)/phi);\n",
+ "alpha2 = beta3;\n",
+ "alpha3 = beta2;\n",
+ "rm = (dt-hb)/2.;\n",
+ "Um = (v/30.)*math.pi*rm;\n",
+ "cx = phi*Um;\n",
+ "c2 = cx/(math.cos(alpha2*math.pi/180.));\n",
+ "T2 = T02 - 0.5*(c2**2)/Cp;\n",
+ "p2 = p01*((1-((1.-(T2/T02))/eff_noz))**(gamma/(gamma-1.)));\n",
+ "mdot = ((p2*10**5)/(Rg*T2))*A2*cx;\n",
+ "Ut = (v/30.)*math.pi*0.5*dt; \n",
+ "sig_rho = K*0.5*(Ut**2)*(1-((dt-2.*hb)/dt)**2);\n",
+ "sig1 = rho*sig_rho;\n",
+ "Tb = T2 + 0.85*((cx/math.cos(beta2*math.pi/180.))**2.)/(2.*Cp);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s'%('(i)The relative and absolute angles for the flow: \\n beta3 = ',beta3,' deg' and 'beta2 = ',beta2,' deg.');\n",
+ "print'%s %.2f %s %.2f %s'%(' alpha2 = ',alpha2,' deg' and 'alpha3 = ',alpha3,'deg.');\n",
+ "print'%s %.2f %s'%('\\n (ii) The velocity at nozzle exit = ',c2,' m/s');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('\\n (iii)The static temperature and pressure at nozzle exit assuming a nozzle efficiency of ',eff_noz,''and ': \\n T2 = ',T2,'K'and '\\n p2 =',p2,' bar');\n",
+ "print'%s %.2f %s' %('\\n and mass flow = ',mdot,'kg/s');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (iv)The rotor blade root stress assuming the blade is tapered with a stress taper factor K of 2/3 and \\n the blade material density is ',rho,' kg/m2'and ' =',sig1/(10**6),' MPa');\n",
+ "print'%s %.2f %s'%('\\n (v) The approximate average mean blade temperature is Tb = ',Tb,' K');\n",
+ "\n",
+ "\n",
+ "\n",
+ "#\n",
+ "\n",
+ "##there are very small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The relative and absolute angles for the flow: \n",
+ " beta3 = 68.20 beta2 = 46.97 deg.\n",
+ " alpha2 = 68.20 alpha3 = 46.97 deg.\n",
+ "\n",
+ " (ii) The velocity at nozzle exit = 652.82 m/s\n",
+ "\n",
+ " (iii)The static temperature and pressure at nozzle exit assuming a nozzle efficiency of 0.96 1016.30 \n",
+ " p2 = 1.99 bar \n",
+ "\n",
+ " and mass flow = 39.10 kg/s\n",
+ "\n",
+ " (iv)The rotor blade root stress assuming the blade is tapered with a stress taper factor K of 2/3 and \n",
+ " the blade material density is 8000.00 = 243.74 MPa \n",
+ "\n",
+ " (v) The approximate average mean blade temperature is Tb = 1062.56 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5.ipynb new file mode 100644 index 00000000..62ce6439 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5.ipynb @@ -0,0 +1,167 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:58be2ba5e7552ab96c774dd3b25145aaa3c2ce840367ab463ac8e75c36ccb849"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter5-Axial-flow Compressors and Fans"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "T01 = 293.;##in K\n",
+ "pi = 5.;##pressure ratio\n",
+ "R = 0.5;##stage reaction\n",
+ "Um = 275.;##in m/s\n",
+ "phi = 0.5;##flow coefficient\n",
+ "psi = 0.3;##stage loading factor\n",
+ "eff_stage = 0.888;##stage efficiency\n",
+ "Cp = 1005.;##J/(kgC)\n",
+ "gamma = 1.4;\n",
+ "\n",
+ "##Calculations\n",
+ "beta1 = (180./math.pi)*math.atan((R + 0.5*psi)/phi);\n",
+ "beta2 = (180./math.pi)*math.atan((R - 0.5*psi)/phi);\n",
+ "alpha2 = beta1;\n",
+ "alpha1 = beta2;\n",
+ "delT0 = psi*(Um**2)/Cp;\n",
+ "N = (T01/delT0)*((pi**((gamma-1.)/(eff_stage*gamma))) - 1.);\n",
+ "N = math.ceil(N);\n",
+ "eff_ov = ((pi**((gamma-1.)/gamma)) - 1.)/((pi**((gamma-1.)/(eff_stage*gamma))) - 1.);\n",
+ "print'%s %.2f %s %.2f %s'%('The flow angles are: beta1 = alpha2 = ',beta1,' deg' and 'beta2 = alpha1 = ',math.ceil(beta2),' deg.');\n",
+ "print'%s %.2f %s '%('\\n The number of stages required = ',N,'');\n",
+ "print'%s %.2f %s'%('\\n The overall efficiency = ',eff_ov*100,' percentage');\n",
+ "\n",
+ "##there is a small error in the answer given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The flow angles are: beta1 = alpha2 = 52.43 beta2 = alpha1 = 35.00 deg.\n",
+ "\n",
+ " The number of stages required = 9.00 \n",
+ "\n",
+ " The overall efficiency = 86.06 percentage\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "R = 0.5;##stage reaction\n",
+ "s_c = 0.9;##space-chord ratio\n",
+ "beta1_ = 44.5;##in deg\n",
+ "beta2_ = -0.5;##in deg\n",
+ "h_c = 2.0;##height-chord ratio\n",
+ "lamda = 0.86;##work done factor\n",
+ "i = 0.4;##mean radius relative incidence\n",
+ "rho = 3.5;##density in kg/m^3\n",
+ "Um = 242.;##in m/s\n",
+ "eps_max = 37.5;##in deg\n",
+ "eps = 37.5;##in deg\n",
+ "delp0 = 0.032;##the profile total pressure loss coefficient\n",
+ "##Calculations\n",
+ "theta = beta1_ - beta2_;\n",
+ "deltaN = (0.229*theta*(s_c**0.5))/(1 - (theta*(s_c**0.5)/500.));\n",
+ "beta2N = deltaN + beta2_;\n",
+ "eps_ = 0.8*eps_max;\n",
+ "i_ = beta2N + eps_ - beta1_;\n",
+ "i = 0.4*eps_ + i_;\n",
+ "beta1 = beta1_ + i;\n",
+ "beta2 = beta1 - eps;\n",
+ "alpha2 = beta1;\n",
+ "alpha1 = beta2;\n",
+ "phi = 1/(math.tan(alpha1*math.pi/180.) + math.tan(beta1*math.pi/180.));\n",
+ "psi = lamda*phi*(math.tan(alpha2*math.pi/180.) - math.tan(alpha1*math.pi/180.));\n",
+ "betam = (180./math.pi)*math.atan(0.5*(math.tan(beta1*math.pi/180.) + math.tan(beta2*math.pi/180.)));\n",
+ "CL = 2*s_c*math.cos(betam*math.pi/180.)*(math.tan(beta1*math.pi/180.) - math.tan(beta2*math.pi/180.));\n",
+ "CDp = s_c*(delp0)*((math.cos(betam*math.pi/180.))**3)/((math.cos(beta1*math.pi/180.))**2);\n",
+ "CDa = 0.02*s_c/h_c;\n",
+ "CDx = 0.018*CL**2;\n",
+ "CD = CDp + CDa + CDx;\n",
+ "eff_tt = 1. - (CD*phi**2)/(psi*s_c*((math.cos(betam*math.pi/180.))**3));\n",
+ "delp = eff_tt*psi*rho*Um**2;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s'%('(i)The nominal deflection= ',eps_,' deg'and '.\\n the nominal incidence = ',i_,' deg.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (ii)The inlet flow angle, beta1 = alpha2 = ',beta1,' deg'and '\\n outlet flow angle beta2 = alpha1 = ',beta2,' deg.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (iii)The flow coefficient = ',phi,''and '\\nThe stage loading factor = ',psi,'');\n",
+ "print'%s %.2f %s'%('\\n (iv) The rotor lift coefficient = ',CL,'');\n",
+ "print'%s %.2f %s '%('\\n (v) The overall drag coefficient of each row = ',CD,'');\n",
+ "print'%s %.2f %s %.2f %s'%('\\n (vi) The total-to-total stage efficiency = ',eff_tt,''and '\\n The pressure rise across the stage =',delp/1000,' kPa');\n",
+ "\n",
+ "\n",
+ "##there are small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The nominal deflection= 30.00 .\n",
+ " the nominal incidence = -4.31 deg.\n",
+ "\n",
+ " (ii)The inlet flow angle, beta1 = alpha2 = 52.19 \n",
+ " outlet flow angle beta2 = alpha1 = 14.69 deg. \n",
+ "\n",
+ " (iii)The flow coefficient = 0.64 0.57 \n",
+ "\n",
+ " (iv) The rotor lift coefficient = 1.46 \n",
+ "\n",
+ " (v) The overall drag coefficient of each row = 0.09 \n",
+ "\n",
+ " (vi) The total-to-total stage efficiency = 0.86 100.34 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter6.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter6.ipynb new file mode 100644 index 00000000..6c0dc077 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter6.ipynb @@ -0,0 +1,188 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:eb1ff01409a2a11efc8e58678d7352672b2c4e7f5a219c5319629cbc273b0d97"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Three-dimensional Flows in Axial Turbomachines"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "dt = 1.0;##tip diameter in m\n",
+ "dh = 0.9;##hub diameter in m\n",
+ "alpha1 = 30.;##in deg\n",
+ "beta1 = 60.;##in deg\n",
+ "alpha2 = 60.;##in deg\n",
+ "beta2 = 30.;##in deg\n",
+ "N = 6000.;##rotational speed in rev/min\n",
+ "rhog = 1.5;##gas density in kg/m^3\n",
+ "Rt = 0.5;##degree of reaction at the tip\n",
+ "\n",
+ "##Calculations\n",
+ "omega = 2.*math.pi*N/60.;\n",
+ "Ut = omega*0.5*dt;\n",
+ "Uh = omega*0.5*dh;\n",
+ "cx = Ut/(math.tan(alpha1*math.pi/180.) + math.tan(beta1*math.pi/180.));\n",
+ "mdot = math.pi*((0.5*dt)**2 - (0.5*dh)**2)*rhog*cx;\n",
+ "Wcdot = mdot*Ut*cx*(math.tan(alpha2*math.pi/180.)- math.tan(alpha1*math.pi/180.));\n",
+ "ctheta1t = cx*math.tan(alpha1*math.pi/180.);\n",
+ "ctheta1h = ctheta1t*(dt/dh);\n",
+ "ctheta2t = cx*math.tan(alpha2*math.pi/180.);\n",
+ "ctheta2h = ctheta2t*(dt/dh);\n",
+ "alpha1_ = (180./math.pi)*math.atan(ctheta1h/cx);\n",
+ "beta1_ = (180./math.pi)*math.atan((Uh/cx) - math.tan(alpha1_*math.pi/180.));\n",
+ "alpha2_ = (180./math.pi)*math.atan(ctheta2h/cx);\n",
+ "beta2_ = (180./math.pi)*math.atan((Uh/cx) - math.tan(alpha2_*math.pi/180.));\n",
+ "k = Rt*(0.5*dt)**2;\n",
+ "Rh = 1 - (k/(0.5*dh)**2);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('(i)The axial velocity, cx = ',cx,' m/s');\n",
+ "print'%s %.2f %s'%('\\n (ii)The mass flow rate =',mdot,' kg/s');\n",
+ "print'%s %.2f %s'%('\\n (iii)The power absorbed by the stage = ',Wcdot/10**6,' MW');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s'%('\\n (iv)The flow angles at the hub are:\\n alpha1 = ',alpha1_,' deg'and '\\n beta1 =',beta1_,'deg'and '\\n alpha2 = ',alpha2_,'deg' and'\\n beta2 = ',beta2_, 'deg.')\n",
+ "print'%s %.2f %s'%('\\n (v)The reaction ratio of the stage at the hub, R =.',Rh,'');\n",
+ "\n",
+ "\n",
+ "##there are small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The axial velocity, cx = 136.03 m/s\n",
+ "\n",
+ " (ii)The mass flow rate = 30.45 kg/s\n",
+ "\n",
+ " (iii)The power absorbed by the stage = 1.50 MW\n",
+ "\n",
+ " (iv)The flow angles at the hub are:\n",
+ " alpha1 = 32.68 \n",
+ " beta1 = 55.17 \n",
+ " alpha2 = 62.54 \n",
+ " beta2 = 8.75 deg.\n",
+ "\n",
+ " (v)The reaction ratio of the stage at the hub, R =. 0.38 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "\n",
+ "%matplotlib inline\n",
+ "\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "from math import log\n",
+ "import numpy\n",
+ "##given data\n",
+ "\n",
+ "R = 0.5;##degree of reaction\n",
+ "Cp = 1005.;##kJ/(kgC)\n",
+ "cx1_Ut_rt = 0.4;\n",
+ "delT0 = 16.1;##temperature rise\n",
+ "Ut = 300.;##in m/s\n",
+ "\n",
+ "##calculations\n",
+ "A1 = cx1_Ut_rt**2 +(0.5-0.18*math.log(1));\n",
+ "c1 = 2*(1.-R);\n",
+ "c2 = Cp*delT0/(2.*Ut**2 *(1.-R));\n",
+ "A2 = 0.56;\n",
+ "k = numpy.linspace(0.4,1.0,num=61);\n",
+ "i=len(k)\n",
+ "\n",
+ "cx1_Ut=numpy.zeros(i)\n",
+ "cx2_Ut=numpy.zeros(i)\n",
+ "R_=numpy.zeros(i)\n",
+ "Rn=numpy.zeros(i)\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "\n",
+ "for i in range(1,61):\n",
+ " cx1_Ut[i] = math.sqrt(A1 - (c1**2)*(0.5*k[i]**2 - c2*math.log(k[i])));\n",
+ " cx2_Ut[i] = math.sqrt(A2 - (c1**2)*(0.5*k[i]**2 + c2*math.log(k[i])));\n",
+ " R_[i] = 0.778+math.log(k[i]);\n",
+ " Rn[i] = 0.5;\n",
+ "\n",
+ "\n",
+ "##Results\n",
+ "pyplot.plot(k,cx1_Ut);\n",
+ "pyplot.plot(k,cx2_Ut);\n",
+ "pyplot.title(\"Solution of exit axial-velocity profile for a first power stage\")\n",
+ " \n",
+ "pyplot.plot(k,R_);\n",
+ "pyplot.plot(k,Rn);\n",
+ "#ylabel(\"Reaction\",\"fontsize\",3) ;##y label \n",
+ "#legend([\"True Reaction\";\"Nominal Reaction\"] , opt=1); ##legend box\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 7,
+ "text": [
+ "[<matplotlib.lines.Line2D at 0x5b06bb0>]"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4VEXXwH+TnkAITVoIvVcB6b0XpSgiwotiRxF99dXP\nrvjaXrsoFhAERERsNKkiEHooSpUiHUKvAgmbOt8fc0OWmL6b7M3m/J5nnr279+7cM7fMmTlz5ozS\nWiMIgiAUPnw8LYAgCILgGUQBCIIgFFJEAQiCIBRSRAEIgiAUUkQBCIIgFFJEAQiCIBRSbK0AlFJV\nlFLJSqlcyamU+pdSarG75crGedsqpfYqpS4rpfq5Md8vlFIvuSu/LM51WSlVJRvHuXSPMsm3k1Lq\nqIt5VLLKodwllztRSr2hlDqjlDqulIpwllUpFamUuj+X+d6qlDpq5dfYvVJn6/wZlkuwF/miAJRS\n7ZRSa5VSF5VS55RSq5VSN7n5HP+oiLTW32qte7rzPNnkNeATrXWo1nquuzLVWj+itX4D3FNBZnGu\nUK31obzKPz/QWh+xyqHBtUrV3SilKgH/AeporStorY86ywpoK+WG94GRVn5b3SFvdslGuXKS1z1K\nqVXul9Ie2KF8fnl9AqVUMWAeMAL4AQgE2gNxeXXKPMo3J1QCdnpaCOEf5NusR6WUr9Y6KZNDKgHn\ntNbn3HxehQvPn1LKR2ud7III2S5XSq8gN8rBrrjh+uUvWus8TcBNwIVM9ivgJeAQcAr4Gihm7asC\nJAM+1vdDQFen/74KfGNtH7GOvQxcAloB9wCrnI5vA2wELgIbgNZO+yIxLffV1v8XA6UykftBYC9w\nDpgDlLd+3w8kAbFWPv7p/LcC8DNwGjgAPGb9XhI4CtxifS8K7AOGWd+nAK8DIcBV6zwp5S2Xznlu\nBjYDf1vXZ7TTvsHWuUOt772BEylltq5ltWzkc909SnP+wcDGNL89CcyxtgMxrdXDwEngCyDI2tcJ\nOOr0v7rWPboA7AD6Ou0LBj6wno+LwCor7xTZfIE3gUTrul0GxgKfAu+nkW8u8EQG9zwZeMy6x2eA\ndwFl7bsHWAN8CJy1nqViwFTrPh8CXsQ8792s5yPl/k1Kex2B5cB9Tue+D1OpnwcWAZXSkS8QuGLl\ncwXYm41rN8W67gus/3RJJ997rXNfssr+UAbXJzvligTesK5VLFDdunb7rfwPAEOBOoDDumeXgfMZ\nnDMS+B+wHvN8zgZKOO3vB/xplX05pmeSUqa5TsftBX5w+n4UaGRt1wGWYN713cCgHF6/bJePTN41\na//dmPflLKn1ZlenuvQ5TJ1xFvje+Vqke/1yWqHnNAGhljBTgF5pBcI82HutB6UIpmKcml7lAhx0\nvsDAaFIVQGXSVEQ4KQBM5XoB+BfG9HUn5mUq4fQg7QVqAEHWw/K/DMrUBVMB3AgEAJ8AK5z2Xydn\nmv/6AL9bN88PqGo9HD2s/d0xFfENwIQ0D+Vk4DVruyNOFWQG5+oI1Le2G2Iq2f5O+6dZeZYCjgF9\n0lR21bLKJ+09SnP+YMxDX8Ppt43AHdb2R5gXtjhG2c0F3rL2dUopH+CPeaifs65ZZyvfWtb+z4Bl\nQHnr+ray7kva5ydtpdrcKndKJV4aiAFuyOB6JgNLLXkjgD3A/U7PWgLwqCVDEKbyn4V5ritbx9+X\n3v3LTFagP+bZrG3l/SKwJpP77nzvsrp2UzBKs7X1PTCd/PoAVa3tDtY1apLJM5dZuSIxlVZdqyxh\nmMquprW/LFDP2h6OUwMug/NFAtFAPUzD6CdS64RamEq5K6YR8H/WdfQDqmE1TDENskPAEet7NVIr\n5CIYZTDckvdGzLtfNzvXz/p/tstH5u9aPYyyaGPd1/eAeKy6Bvg3sNYqjz8wDpie6fXLbKe7Ekbb\nTbYuZAKmxVzG2rcUeNjp2FpWoXzSeXjSKoBXnW72dcc6vZQpCuAuICqNXGuB4U4v3AtO+x4BFmZQ\nnq+At9Pc5HisVllaOdP8tyVwOM1vzwOTnL5/Amy3rpdza2Yy8Lq13YksFEA65x4DfOj0PQzTmtgG\nfJFRJZJZPuld9zTHfgO8bG3XxFQ+QZjWyhXncwCtgQNpy4cxGZ5Ik+90TAPAB9OSbJjOudM+P8ux\nKmynY3YC3aztUcC8TK5fMpaidnpGfnN61g477fPFmDnrOP32ELA8vfuXgawpCmAh1ysuH0wlHJGJ\nnCkKIMNrZ21PAabk8DmaBTyewb7slOvVNO/OBeA2IDhNXveQtQJYjtVosL7Xta67D/AyMMNpn8Io\niw7W9yNAE0xjcDwQhVGy9wKzrWMGAyvTnHM88Ep2rp8byuf8rr0CfOu0L9gqa4oC2Mn19WN5rLo0\no/zzZRBYa71ba32v1joCaIDRUGOs3eUxlVAKRzAauqybxahg5e3MYev3FE46bV/FtErT4zqZtdYx\nmO5heDbkqAxUUEpdSEkYBVDG6ZgJQH3Mg3UhG3mmi1KqpVJquVLqtFLqImYcppST3H9jWkwNMCaU\nXOXjdFx7y+PjslJqu/XzdGCItT0UmKW1dmB6OCHA707XYSGmFZ6WChhl6EzKvSuFUSj7M70Yqeg0\n36cCw6ztYRiFlRnOchzh+ufHeV9pTCss7bOdnWckLZWBj52uU4p9PTt5ZXbtwFyPTJ0JlFK9lVJR\nlgPHBUyP4B/3PwdcO5/17gwGHgaOK6XmKaVq5zY/zDX2x1z/8ji989rUikdJvW4rMAqrvbW9AtMC\n72Btg7n2LdO8r0NJrZ8yvX45LV8W71oFjAJLyfsqqc8CGGU7y0nOnRgTU4Z1ab67gWqt92Ds/A2s\nn45jBE+hEkboU+n8PQajUVMo55x1Fqc+hrmZzlS2fs8p18mslCpCqhklK44AB7XWJZxSMa31LVZe\nvsCXmIrpUaVU9TT/12k+M2M6xsRSUWtdHNMlvHbPlVI3Ylo70zE28Vzlc00wrVdp4/ERqrVuaP38\nG3CD5Y54p5UXGLPgVUx3OOU6FNdaF0vn/MeBiDSuhCn37izGllojswuRImI6v00D+lvy1bHKmRmV\n0mw733Pn/M9iertV0hwfTc45grG7Oz8zRbTWUdn4b2bXLkuUUoEYs+y7mF57CYy92xVni+vug9b6\nV611D8z7vBvTAPrHcZmQ9p4kYMw0x3F6561rEEFq2VdgTGLtMaakFIXQkVQFcARj3nW+9qFa60ez\nKVtOy5feu5ZyrY8DFZ3KE8z1ivgI0CuNrCFa6xMZyZbnCkApVVsp9R+lVLj1PQLTIlxnHfId8KTl\nxlkUeAvTbUtvJH0LcKdSys9yIx1I6kU8g+lqpq0wU1gI1FJKDbH+Pxjzws9zFjebxfoOuFcp1dh6\nQd7CmJfS9jDSYwNwWSn1jFIqWCnlq5Rq4OQW+wJmEO1ejI1vqpNrq3KS8RRQyvKyyoiiGDtnvFKq\nBablYvrCSgVhKr/nMeMw4UqpR3KaT1ZorROAHzGDvSUwg2lY93cCMEYpdYMlU7hSqkc62azHmHme\nUUr5K6U6AbdgnhONGWz8UClV3rqerZVSAenkc4o0z4fWOhrYhFG4P2mts/JOe1opVdx6jh/HDLSl\nV+4kjNfbm0qpokqpypgB8GlZ5J8e44AXlFL1AJRSYUqpQdn8bxQZXDtrf1bPfICVzgLJSqneQHr3\nKCdcO6dSqoxSqr/ViErANPJSvKdOARWVUv5Z5DVMKVVXKRWCGXz/0XoufgRuVkp1sfJ4CtNYWGv9\nN0UBBGmtj2McQHphxgs3W8fMw9Qbw6zr56+Uaq6UqpO2LOkKl/PypfeupfAz0Nfp+X41zfnHAW9Z\nrrgopW5QWc1Dysz+5I6E6bZ8j2n5XLE+vwCKOtnlXsZor9OYFzFMp9oPk0i1H1bFPNCXMTdmDNaA\nsbX/v1Ye5zG29uE42e+AtpiX/SJmMLKN075rNlfr+3X/TadcIzCDa+cwg5cVnPZlOAbgZJubjhns\nPY95ILsAzazvKfZbH8xD+bz1fTLWILD1/SvMi3me9L2ABmIGty4Bv2Ba+SkD7B8B852ObWSVpbr1\nPclJjrT5fML1A/XX7lEG5W2HUc5j0/weiPHO2Y8ZKNsJjLL2dcIalLO+18O00i5iPFmcB7ODrPJE\nW/sjSfUCcn5+WmEGYs8DY5z+P8ySr2MWz3IyZpxgv3Xd3yN1APkfzwtmsPgbzDN5BDPwrzIoX1pZ\n0z6PwzBjNSneIRMzkfPavcvGtbvumcogv5EY8+gFzPs5PaP/5KJc5Zxku4AZzE/x1PHHvOfngNMZ\nnG85pgGW4gU0ByjptH8AxgvoonVs3TT/Pw585fR9I07vhfVbLUuO09Z9/41UD6FMr19Oy0cm75rT\nc+bsBRQNtHWqS5/E9DIuYeqnNzK7tykPY65RSvXCVMS+mIfynTT7S2NaPeUwtv33tdZTXDqpILgR\npVR7YJrWOq2JMO1xyRiPpgP5I5mQFUqp5RhHkEmeliW/sSwmFzDP5OGsjk8Pl0xAlr36U0y3qR4w\nRClVN81ho4DNWusbMa2DD5RSeT4BTRCyg9X9foJUu6xQ8LDD5M98QSnVVykVYpmU3ge25bbyB9fH\nAFoA+7TWh7Sx9c7A+Cw7cwIzIQbr85zWOtHF8wqCy1iNlQsYL4kxWRwO+TiTWMgRhem+9MMMYh/D\njGfd6UpmrrbEw7neBSoaY3t3ZgKwTCl1HDMp7A4XzykIbkFrvYuMXX3TO943D8URcoHWurOnZchP\ntNYPYqIQuAVXewDZ0bwvAFu01hUws+g+U0qFunheQRAEwUVc7QEcw/jVphDBP/2c22A8PdBa71dK\nHcTMttuUcoBSqjB14QRBENyG1jrXYyCu9gA2ATUtH/4AzIy3tOGPd2OCRKGUKoup/P/hRZHWPenF\npS/y+orXSUpO4s/TfzJ582Qe/uVhmoxrQsibIdz05U08Ov9Rpm6Zyp6ze0hKTspzl9bcptGjR3tc\nBimflK8wls+by6a16+1ml3oAWutEpdQoTORMX4w/7S6l1Ahr/3iMj+5kpdRWjMJ5Rmt9Pqu8HYkO\nigcVx0f5UO+GetS7oR733HgPALEJsfxx4g/WR6/nl79+4aXlL3E57jItwlvQqmIrWoa3pGXFlpQM\nLulK8QRBELwal90xtdYLMbNsnX8b77R9Fuib03wdiQ6C/ILS3RfiH0K7Su1oV6ndtd9OXjnJ+uj1\nREVH8d7a99h0fBPlipajVcVW11LDMg3x981sUqEgCELhwbb++JkpgPQoV7Qc/ev0p38d44WalJzE\nzjM7WX/MKIXPN37OoYuHaFK+Ca3CU5VCeLHcxObKGZ06dcrzc3gSKV/BxpvL55Vli4+HOXPgyy9d\nzsrlmcDuQCml08oxbOYwetXoxbBGwzL4V865FHeJjcc2si56HVHRUURFRxHiH3JdL6Fp+aY5UjyC\nIAj5woEDMGECTJ4MderAiBGooUPRLgwCe00PIDsUCyxG12pd6VqtK2AGnvdf2E9UdBTrjq5j2rZp\n7Dm3h4ZlGtK6YmtaR7SmdcXWRIRFZJGzIAhCHpCYCPPmwbhxsGkT3H03REYaBQAwdGimf8+KQqUA\n0qKUokbJGtQoWeNaTyMmPoZNxzexLnod327/llELRhHgG0DriNa0qdiG1hGtaVKuCYF+gXkqmyAI\nhZjoaJg40aQqVWDECJg1C4KD3XqaQq0A0qNIQBE6VulIxyodAdNLOHDhAOui17H26FqmbpvKX+f+\n4sZyN9KmYhvaRBilUK5ouSxyFgRByITkZPj1V9PaX7nStO4XLoSGDbP+by6x7RhAu0nteLvb29d5\n+tiFy3GX2Xh8I2uPrmXt0bVERUdRPKg4bSKMQmgb0ZYGZRrg6yORAwRByIKzZ2HSJBg/HsLC4JFH\nYMgQKJp1lBKllIwB5DehgaF0qdqFLlW7AJCsk9lzdg9rjq5h7dG1fLL+E05cOUHL8Ja0jWhLm4g2\ntKrYitBAiYAhCAKgNaxdC198AfPnw4AB8N130Lw5qPwLbmrbHkCDzxsw4/YZNCjTIIN/2ZuzsWdZ\nd3Qda46uYc3RNWw+sZlapWrRNqItbSu1pW1EWxlcFoTCxpUr8O238Pnn4HDAww/D8OFQMneTVl3t\nAdhWAdT4pAaLhi2iRsnsLPVqf+IS4/jjxB/XFMKaI2sI9g82E9oizKS2+mXq46PyfJVOQRDym507\nTWv/22+hUycYORK6dnW5te+1CqDihxWJeiCKisUqZvCvgo3Wmn3n97H6yGqTjq7mdMxpWldsTbtK\n7WhfqT3Nw5vb1gwmCEIWJCaaCVuffQa7dsGDD5oU4b6ev9cqgNLvlmb3qN2UDintIanyn9Mxp1MV\nwpHV7DyzkxvL3Uj7Su1pV6kdbSu1pXhQcU+LKQhCZpw6ZSZsjRsHVavCqFFw660QEOD2U3mtAij6\nVlFOPn2SogHZXq/D67gSf4X10etZdWQVq46sYsOxDVQvUZ32ldrTvnJ72ldqT/nQ8p4WUxAErWHd\nOvj0U+O6eccd8Oij0KhRnp7WaxWA32t+OF5y4OdjW0elfCc+KZ4/TvzBqsNGIaw+sprSIaXpULkD\nHSp3oGPljlQunum65oIguJOrV2HGDFPxX7pkKv177oHi+dNT90oFkJicSNAbQSS+IksHZ0ayTmbH\n6R2sPLzyWgr0CzQKoVIHOlbpSM2SNVH56FYmCIWCQ4fMoO6kSdCiBTz2GPToAT7568ThlQrgSvwV\nyr1fjisvXPGgVAUPrTV7z+9lxaEVrDyykhWHVpCYnHitd9CpSifqlK4jCkEQcoPWJg7PJ5+YmbrD\nhxtvnhqe81T0SgVwNvYsdT6tw9lnznpQqoKP1ppDFw+x4vAKkw6tICYhhk5VOl1TCHVL1xWFIAiZ\nERNj3DfHjjXhGh57DIYNy9ZM3bzGKxVA9KVoWk1sRfR/0i4vLLjK4YuHWXF4BZGHIok8FElMQgwd\nK3ekc5XO0kMQBGcOHzYunJMmQdu28Pjj0KVLvs7UzQqvVAD7zu+j17Re7Ht8nwelKhwcvnjYKIPD\nkSw/uBxHooNOVTrRuUpnulTtQo2SNUQhCIUHrWHVKvj4Y2PuueceM7BbrZqnJUsXr1QAO07v4M6f\n7mTHyB0elKpwcujiIZYfXM7yQ8tZdnAZwLW4R52rdBYvI8E7cThMLJ5PPjGePY8/bmLv28DMkxle\nqQA2Hd/Ew/MeZtNDmzwolZAyW3nZwWXXFEKxwGJ0qdqFrlW70rlqZ8oUKeNpMQUh95w8abx5xo+H\nJk3giSege/d89+bJLV4ZDdTOkUALE0opapaqSc1SNRlx0wi01uw4vYOlB5fy7fZvGTFvBJXCKtG1\nale6VetGh8odJOKpUDD44w8YMwZ++cWEXnZeZasQYcsewG8HfuPt1W/z292/eVAqISsSkxPZdHwT\nSw8sZenBpWw4toEby914TSG0rNiSAF/3T38XhFyRlARz58JHH8HBg8ab54EHch2J0w54pQlo3l/z\nGLdpHPOGzvOgVEJOiU2IZfWR1Sw9sJTfDv7GvvP7aF+pPd2qdaN7te7Uu6GeDCgL+c/ly2Yh9Y8/\nhhtugCefhNtuA39/T0vmMmICEmxDiH8IPar3oEf1HoCZz7Hs4DJ+O/AbH6//mLjEOLpX7073aiaV\nLVrWwxILXs2RI8Z3f9Ik4745bRq0bu1pqWyFKAAhzygdUpo76t/BHfXvuLa28q/7f2Xmrpk8tvAx\nKodVpnu17vSo3oP2ldvLPRfcw8aN8OGHZn3d4cPh99/NwurCP7ClCWjiHxOJio5iYr+JHpRKyEsS\nkxPZeGwjv+7/lcX7F7P99HbaRrSlZ/We9KzRU2YoCzkjKckM6H74oZnA9e9/G/t+sWKelixP8cox\ngE83fMrus7v5tM+nHpRKyE8uOi6y9MBSFu9fzOL9i0nWyfSs3pNeNXrRrVo3WQdBSJ/YWPj6a1Px\nlygBTz0FAweCny2NG25HxgAEr6B4UHEG1hvIwHoD0Vqz59weFu1bxFebv+K+OffRqGwjetXoRa8a\nvWhavqksnVnYOXXKhGkYN86EaZg82XxKrzFHiAIQbIdSijql61CndB2eaPUEVxOusurIKhbtW8Rd\ns+7i/NXz9Kzek941etOjeg9KhZTytMhCfrF7N3zwAfz0E9x5J6xeDbVqeVqqAostTUAvLXsJlRRE\n98CXSE42Afi0Tv1MPw8zec/H5/ptHx/TG/T1TU1+fsYDLOUzJQUEmOTnJw0JO3Po4iEW7l3Iwn0L\nWXF4BfVvqE/vGr3pU7MPTco3kd6Bt6E1rFkD774L69ebEMwjRxqXzkKOV44BPP3r0+zcUI4dXz5N\ntWr/rNzTw1lJpGwnJZntpCSzPnNSUup2QkLqp3OKjze/pyiDgAAICjIpMDB1OygIgoOvTyEhqalI\nkdTPIkVMSJG0KTTU5CnKJvfEJcax8vBKFuxdwIJ9C7gUd4k+Nfpwc62b6VatG8UCvXsQ0KtJSjKL\nqr/3Hpw5A08/bbx6goM9LZlt8EoF8Oj8R9kXVZcOQaN48cX8lyc5OVUZxMWZ5HCkprg4Ey8qbYqN\nTU0xMSbFxsKVK6nfr1wx6fJl85mUZBRBaKhxWAgNhbAwsx0Wdn0qXvyfqUQJo2BEiRj2nd9nlMHe\nBaw9upYW4S24pdYt3FLrFmqU9NzCHUIOcDhg6lR4/30zS/f//g8GDDDdd+E6vHYQODk+iBAPzdD2\n8TEt88BAUyHnJfHxRhmkpEuXTPr7b5NStk+dgosX4cIF8+m8nZBgFEFKKlkSSpVK/UzZLl36+hTk\nhcMsNUrW4PGWj/N4y8eJiY9h6cGlzPtrHu+ueZfQwFBuqWmUQbtK7fD3LfgzQb2KCxdMYLaxY+Gm\nm2DiRGjfXlo3eYg9FUCSg6S4YEJCPC1J3hMQkFpJ55a4OPPupKTz5+HcudS0fTucPWu2nT/9/Y0i\nKFPGmFOdP8uUgbJlUz9vuKHgzZwvElCEfrX70a92P7TWbD65mXl/zeOZ355h//n99KzRk761+tK7\nRm9KBJfwtLiFl+hoE59n8mTo1w+WLIEGDTwtVaHAngog0UGSI6hQKAB3EBgI5cqZlF20NiaoM2dM\nOn069fP4cdiyxWyfOmU+z541ZqmU86RNFSpA+fLmMyzMfo02pRRNyzelafmmvNLxFY5fPs78v+Yz\nY8cMHp73MM0qNKNvrb70r92f6iWre1rcwsGuXca+P3u2WXhl61aIiPC0VIUK2yqABFEAeYpSqWMP\n2VnsKDnZ9BxOnTIh1J3T5s1w4oRJx48bk1SFCiaFh6d+pqSKFc1vgYF5X86MqBBagQebPciDzR4k\nNiGWpQeWMnfPXN5d8y6lQkrRv3Z/+tfuT/Pw5uJV5G6iouCdd2DtWhg1CvbtK9AROQsyLisApVQv\nYAzgC0zUWr+TzjGdgI8Af+Cs1rpTZnk6Eh0kXg2SwX4b4eNjzEA33JB17/zKlVRlcOyY+YyOhg0b\nzGfKbyVKGGWQkipVMg3AlM8KFfLH7BTiH0Lf2n3pW7svyTqZDcc2MGf3HO6dcy8XHRfpV7sfA+oM\noHOVzgT6eVBrFWS0Nqad//3PhGJ++mmz0Lq08jyKS15ASilfYA/QDTgGbASGaK13OR1THFgD9NRa\nRyulSmutz6bJ5zovoLaT2hIz+13G/KctnTrlWjzBxiQlGdNSdDQcPZr6eeSI+Tx61PQ2ypaFypWN\nUqhcOTVVqWI+87r++OvcX8zZPYfZe2az88xOetXoxYDaA+hds7e4mGaHpCSYNctU/A4HPPecmcBV\n0AaUbIpH3UCVUq2B0VrrXtb35wC01m87HTMSKKe1fiWTfK5TAM2+bMbVH75kylvNaNEi1+IJBZyE\nBNNTOHzYpCNHUrcPHTKfYWFGGVSpYkxZVaumflaq5N565uSVk8zdM5fZu2ez+shqOlTuwG11b6Nf\n7X6UDintvhN5A/HxpoX/9tumq/f889C3b4FZarGg4Gk30HDgqNP3aKBlmmNqAv5KqeVAKPCx1vqb\nzDJ1JDqIj5UxgMKOv39qiz89kpNNL+HgQZMOHTITRb/7znw/ccKYkapVg+rVTUrZrlEj54EiyxUt\nx0PNHuKhZg/xt+NvFuxdwMzdM3ly8ZM0Ld+U2+rcxq11b6VisYoul73AEhsLX31lBndr1zaxejp1\nsp9XgAC4rgCy033wB5oCXYEQYJ1SKkprvdf5oFdfffXa9oVzF/CNEQUgZI6Pj/E8Kl8e2rT55/6E\nBNNL2L8fDhwwn1FR5nP/fjMbu0aN61OtWlCzZtbKISwojCENhzCk4RCuJlw16xzsnsnoyNHULl2b\n2+vezsB6A6lSvEqelN12/P238eEfM8YsuvLzz9C8uael8joiIyOJjIx0W36umoBaAa86mYCeB5Kd\nB4KVUs8CwVrrV63vE4FFWuufnI65zgQU/mE48Z9tYPua8By5NgpCdtHa9BD27UtNf/0Fe/ea7dDQ\nVGVQq5ZZL7x2bdODCMhkmeP4pHiWH1zOTzt/Yvae2VQOq8zt9W7n9nq3e+dM5LNnzVKLX3wBvXoZ\nG7/48Ocbnh4D8MMMAncFjgMb+OcgcB3gU6AnEAisBwZrrXc6HXOdAij1bini3/+LY/tKeft6DoIN\nSU42Yw979xql8NdfsGePSUePmrGF2rWNUqhbN/WzRJq5ZInJiaw8vJKfdv7EzF0zqRBagTvq38Gg\neoMK/lyDkydNVM6vvoLbb4dnnzW2NSFf8XgsIKVUb1LdQL/SWv9PKTUCQGs93jrmaeBeIBmYoLX+\nJE0e1ymAIm8VwfH6aRyXioizgGAr4uKM+WjPHhOZeNcu87l7t4lRVq9eaqpb13yWLQvJOolVR1bx\nw58/MHPXTMKLhTOo3iAG1x9M1RJVPV2s7HP0qInK+e23MGyYidMjk7c8hscVgDtwVgBaa/xe98Pn\nzTgS4mw5T00Q/oHWZn7D7t2wc+f1KTkZ6tc3qUEDqFMviSslV7E4+nt+3vUzVUtUZXD9wQyqN4iI\nMJtWpgcOGFfOn382Sy3+5z85m3ou5AlepwASkhIIeSuEIh8kcPGihwUTBDdw+jT8+Sfs2HH9p78/\n1G+YSPF7N5gxAAAgAElEQVQmyzlbdgbbEmZTv0xdhja6k0H1BlG2aFlPi27sX2+9ZdbbHTkSnnjC\ntcBVglvxOgVwOe4y5T+oQLFPL3P8uIcFE4Q8IqXHsGOHCda3fTts3RHP7oRfCWg2g7hK86jk24Le\nEUN4oO1tNKwZlr8u9Dt3wptvwq+/wmOPweOPm/jjgq3wOgVwJuYMtcfWo+TEM+zb52HBBCGfSUw0\nje6NW2KZ9ecvRMV8x+kiy/E93JUaV/9F5/CbuenGIG680ZiU3B5P6c8/4fXXYdky09ofNSrnEyaE\nfMPrFMDRv4/SfHwbykw7yrZtHhZMEGzARcdFvt74M1N+/5Y9f2+hwqVbSd7yL05EdaRWDV+aNoUm\nTaBpU2jcOJdrWGzfbir+FSuMff/RR81ECcHWeJ0C2HtuL10m9SH8571ERXlYMEGwGdGXopmxYwbf\nbv+W01fO0LXMUKpevovT2xvyxx/GpFSxIjRrlpqaNs2kEb9tG7z2mllc/amn4JFHpOIvQHidAth+\najv9pw6l8oLtLF/uYcEEwcb8efpPpm2bxrTt0ygVXIq7Gt3FHXWHcjG6PL//zrW0datRCjfdZFLz\n5tDUfzsh7/3XVPz/93/w8MNmbVGhQOF1CmDjsY0MnT6SWpEbmT/fw4IJQgEgWSez4tAKpm6byuzd\ns2kZ3pLhjYczoM4Agv2DSUw08xU2bYLoRTtoteQ1Gl1YybRyT7Ov+yPc2LYILVsaF1U/8bwuUHid\nAlh1eBUPff8CDTau4scfPSyYIBQwYhNimb17Nl9v/ZqNxzZye73buefGe2h9KQz12msQGQlPPUXc\nA4+ybX8RNm406zSsX2/meDVtCi1aQKtWJlUsxHHtCgJepwCW7F/Ckz+9S7OdS/j6aw8LJggFmOhL\n0cyf9xHlP5pA292xbB3ahdqjxxJeoXa6x//9N2zcaJTB+vWwbp3xMmrVysR3a9XKKAhZqMk+eDoc\ntNtxJDpQyRIJVBBc4sABKr7+OiPmzUM//n9smtqGH/b/yA/ftKZlxZbcd+N99Kvd77oVzsLCoFs3\nk8DMVThwwERQjYoyYbZ37YKGDaFtWxOBtU0bE41VKJjYrgfw458/8sasH+h24Uc++MDDgglCQePI\nEXjjDZg50/jwP/HEdRO4YhNimblrJpM2T2L76e0MbTCU+5veT6OyjbKVfUyM6SWsXZuawsKgXTto\n39581qkj677kF97ZA0iSHoAg5IgTJ0ysnm+/hREjzGyydBZaD/EPYVijYQxrNIwDFw4wefNk+nzb\nh/Bi4TzY9EEG1x9MaGDGEwmKFDHru6Qs1ZqcbOIfrVljHIreeQcuXjQ9hPbtoUMHYzaSoI72xHY9\ngAm/T+Cz2RsYHDKB55/3sGCCYHfOnjXROb/6CoYPN/H4y5TJURaJyYks3reYiZsnEnkokoF1B/Jg\n0wdpEd4ClYuVvI4fN8pg1SpYudKYkVq1MsqgQwdo2RKCgnKcrZAOXtkD0InSAxCETPn7bxOP/7PP\nYPBgM6ErPDxXWfn5+HFzrZu5udbNnLh8gq+3fs3QmUMJDQhlRLMR/KvRvygWmP1wEBUqwB13mARw\n/rzpIaxcaaYc7Nxp5iKk9CREIXgO21nqHIkOdIIoAEFIl9hY0+KvWdP4bW7aBJ9/nuvKPy3lQ8vz\nXLvn2PvYXt7r/h5LDy6l8pjKPDj3QTYd35SrPEuWNOvBv/eecTk9fhyeecYU5ZlnoHRp6NzZRKJY\ns8Ys5SnkD7bsASTHiwIQhOuIj4cJE0yEzrZtTcyeunXz7HQ+yofu1bvTvXp3Tl45yaTNkxj04yBK\nh5Rm5E0jGdxgMCH+uXtJixWD3r1NArh82ZiLli83QUf37jVF7NLFeCQ1biyDynmF7cYAXlz6IrN+\nDOHNni9y660eFkwQPE1SkhnYHT3auNe88YYJ8OMJUZKTWLx/MZ9v/Jyo6CiGNx7Owzc9TM1SNd16\nnvPnjX5butSks2dTlUG3blC1AC2gltd43USwpxY/xbwZFbhl6FAmBkk8aKEQk5gIDgcoZYzkvr6e\nlugayTqZ+KR4EpIS8PXxIcA3ED+fvDEoaG0uRUoC8PcDP3/w8wVyXf0VfC516OB9g8CJjiDOBFzl\n8YoVeVrWGxUKG6tXw3//C1euwCuvQK9eRgnYEEeig9m7ZzP+9y+5cPU89ze5n7sa3UXx4LxZPEZr\nM4i8bBksXQYbN5iJaV26QNeuJix2YTIXuXqVbdcDuH/O/fw2pQ2tn+5Am8rBPC7BSITCwtatxo1z\nzx4TonnIEFu1+rNiffR6xm4Yy/y98xlUbxCPt3ycBmUa5Ok5r1413kWLF5t0+jT06GHGF3r0yLFH\nbIHDVROQ7XSlI8lBwtUg4nyTKFqAHn5ByDUHD8KwYdCzJ/TpY2ZWDRtWoCp/gJYVWzLttmnsfnQ3\nEcUi6PFND7p/0535f80nWSfnyTmDg81l+/BDs5jZpk3QsaNZu75WLeNuOnq0mb2cnDciFGjspwAS\nHSTEBuHwSSS0gL0AgpAjzpyBf//b1FI1axr3l8ceg4AAT0vmEmWLluXlji9z6IlDDG88nFciX6HO\np3X4bMNnXIm/kqfnrlwZHnoIZs0yvYH33jPupsOHm/kJ994LP/0Ely7lqRgFBlsqgPirQcSpJFEA\ngncSE2Oc3lPcOHfuNM3UXK3laF8CfAMY1mgYmx7cxFf9vmLZoWVUGVOF5357jmOXjuX9+QPMRLP3\n3jOXeO1aE5Zi4kQT5rp7dxg7Fg4dynNRbIs9FUBMELEkESqrUwjeRGIijB9vWvu7dplZUR9/7PWG\naqUU7Su35+c7fmbjgxu5mnCVhl80ZPjs4Ww7lX8Lf1erZjpYixbBsWNm9cs//jAdsEaN4MUXC5+p\nyH4KIMGBIyaIWC09AMFL0BpmzzZLbv3wA/zyC0yfbmqkQkbVElX5uPfH7Ht8H3VK1aHXtF70+KYH\nS/YvIT8dUkJD4bbbYPJkOHkSxo0zUy7uugsqVYJHH4UlS8z8O2/Gdl5ATcc1Y8fbXxI+I4GljRtT\nTVafEAoy69aZADiXL5tQmT172tal0xPEJcYxfft03l/3PoG+gTzb9lkG1huYZ3MKssPu3UZfz55t\ngqr26WOURa9e2C5CgddNBKv9ST1OfvIj/lMusKtFC24o4ANiQiFl3z54/nmzksrrr5umpfRoMyRZ\nJzP/r/m8veZtTl45ydOtn+aeG+8h2N+zDcDjx2HOHONVtHGjGTcYOBBuvtmEtPA03ucGmugg2D+I\nK0liAhIKIGfPGs+eVq3MrKQ9e+Cee6TyzwIf5UPf2n1Zc98avh7wNQv2LaDqx1V5e/XbXIrznMtO\nhQpmrOC332D/ftMbmDbNDCL372+idBRkjyLbKYCriQ6Cg4JIAgIL05Q+oWDjcJgonXXqGGPyzp3w\nwgv2sxkUANpVascvQ35hyV1L2HZqG9U/qc7o5aM5F3vOo3KVLg333Qfz55tArLffDt9/DxERMGCA\nGda5fNmjIuYY29WwcYkOAkP9Kerrm6vFKAQhX9EaZswwLp1r1pj06ade79mTHzQs25DpA6ez9r61\nHLt8jJpja/J/v/4fJ6+c9LRohIUZq97cuXD4sBkjmD7d9Axuv92YjK5e9bSUWWM/BZDkIKiYv5h/\nBPuzbp1ZFf3dd407yZw5ULu2p6XyOmqWqsnEfhPZ8vAWHIkO6n1WjycXPcmJyyc8LRpglly++26Y\nN89M6u7dG774wpiP7r4bFiyw7xoHtlIAWmvikx0EhvqKAhDsy8GDZhWuO+4wBuJNm1IXyRXyjEph\nlRjbZyx/jvwTgPqf17eVIgCz+M3995sxg1274KabjA9AeLiZg7B+vek02gVbKYCE5AR8lR8BxbQo\nAMF+XLpkPHtuugnq1zcDvHffXbjCT9qA8qHl+ajXR9cpgicWPWErRQBQrpxZ4GbdOpPKlDGPS61a\nJtjrPhtEu7fVk+tIdOCvgvApKrOABRuRlGRW46pd28wa2r7dhGmWAV6P4qwIFIr6n9fnmSXPeHyw\nOD2qV4eXXzZzDKZPN4vetG1r0oQJZolnT2A7BeBHEL5FJRKoYBOWLTMBZL75xhh5J082xl3BNqQo\ngu2PbOdy3GVqfVqL0ctH87fDQ7VqJihlQk98/DFER5vo34sXmyB2Q4ea7aSk/JPHZQWglOqllNqt\nlNqrlHo2k+OaK6USlVK3ZXRMigJQRWQOgOBh9u+HW2+FBx4wTbcVKzy2FKOQPcKLhfPFLV+w6cFN\nHP77MDXH1uTt1W8TmxDradHSxd8f+vY10Un37ze9gZdeMsrgpZfgwIG8l8ElBaCU8gU+BXoB9YAh\nSql/rFRtHfcOsIhMFnBzJDrw1UEQIqGgBQ9x6RI8+yy0bAktWhh//ttvl/ANBYiqJaoyZcAUVt67\nkt9P/E6tsbWY8PsEEpMTPS1ahpQqZeIPbdxogtXFxJhHsEsXM9ksr1xKXe0BtAD2aa0Paa0TgBlA\n/3SOewz4CTiTWWaORAc+OgiCpQcg5DPJyTBpkpnIdeoUbNtmBnyDgjwtmZBL6pSuw4+DfmTm4JlM\n3zGdBp83YOaumfkadC43NGgAH31kTESPPGKsjxERZkD5zz/dey5XFUA4cNTpe7T12zWUUuEYpfCF\n9VOGV9+R6MAnKQgdJIPAQj6ybp1pbk2YYHz5p0wRO78X0SK8BcvuXsaYXmN4bcVrtP6qNSsPr/S0\nWFkSGAiDBpkewe+/m/kGPXpAu3ZGKbijV+CqAsiOKh0DPGdFe1NkYQLySQ4iKVAGgYV84Phx45c3\naJCJ37N2rRmhE7wOpRS9avTijxF/MKrFKO6adRe3fX8be8/t9bRo2aJyZbNM9OHD8PTTxiwUEeF6\nvq4qgGOAsxgRmF6AM82AGUqpg8BA4HOlVL+0Gb366qtM+GAClyKPcW7POjEBCXlHXJwJzdyokZmh\ns2uXWYNX7Pxej4/yYVijYex+dDctwlvQ+qvWPLnoSc5fPe9p0bLF6tWRbNnyKq1avcq//vWqy/m5\nFA5aKeUH7AG6AseBDcAQrfWuDI6fDPyitZ6Z5nettWbunrk8MmEiFbu+xdPNyjBI4qkI7mbBAnji\nCWPr//BDqFHD0xIJHuR0zGlGLx/Nz7t+5oX2LzCy+UgCfAtOCHqPhoPWWicCo4DFwE7ge631LqXU\nCKXUiJzm50h0QGIQCX4yCCy4mf37oV8/U/l//LGJ4iWVf6GnTJEyfHHLFywfvpxF+xbReFxjft3/\nq6fFyjdcHmnVWi8EFqb5bXwGx96bWV6ORAfJCUHE+cogsOAmYmPh7bfh88+N8fTHH83omiA4Ub9M\nfRb+ayHz985n5PyRNCjTgA97fki1Et69bKftZgLr+CDifGQQWHARrWHmTKhXD/buhS1bzLRLqfyF\nDFBKcUutW/hz5J+0DG9J8wnNeWnZS8TEx3hatDzDdgogKS6Iq0pMQIIL/PWXicn78ssmdMN335lA\n7YKQDQL9Anm+/fNsfXgrBy8epO5ndZm1a5bt5w/kBlsqgFhkJrCQC2Ji4MUXTYz+Hj1Mq79zZ09L\nJRRQKharyLe3fcvUW6fywrIX6PtdXw5eOOhpsdyK7RRAoiOIq0gPQMgBWsOsWcbcc/CgmcX7n/+Y\nYCuC4CKdqnRi68NbaRvRluYTmvPWqreIT4r3tFhuwXYKICE+mCQt6wEL2eTAAbjlFtPynzLFxNqV\nWbyCmwnwDeD59s+z8cGNrD26lsbjGrPq8CpPi+UytqplHYkOEpJDZD1gIWvi4sxSSy1aQIcOYu4R\n8oWqJaryy5BfeLPLm9z5852MnD+SS3GXPC1WrrGVAria4CBJhxDqJ+YfIRN++w0aNjQBUn7/3UTv\nDCg4k3eEgo1Sitvq3safI/8kISmBBp83YP5f8z0tVq6wlQKIiXPgFxQk9n8hfU6ehCFD4MEH4YMP\nYPZsEyRFEDxA8aDiTOg3gSkDpvD4oscZ+vNQzsRkGvDYdthOAfgHiwIQ0pCUZCZyNWwIVaqYmLh9\n+3paKkEAoEvVLmx/ZDvhoeE0/KIhP+/82dMiZRtbTbeNiXPgFxwok8CEVLZsgREjjEfP8uUmWLog\n2IwQ/xDe6/EeA+sN5O5ZdzNr9yzG9h5LieASnhYtU2zVA4hNcOAfHChhIAS4cgWeegp69oSHHoKV\nK6XyF2xPq4qt2PLwFkoGl6TRuEYs3rfY0yJliq0UwNV4B34h/mICKuzMnw/168OZM7B9O9x/P4hb\nsFBACPEP4ZPenzCl/xQemvcQD897mCvxVzwtVrrY6q1yJDrwDRYFUGg5cQLuuMMszvLVVzB1KkhI\ncKGA0rVaV7Y9vA1HooOm45vy+/HfPS3SP7ChAvATBVDYSE6GcePMAi01a5pWf7dunpZKEFwmLCiM\nKQOm8Hrn1+n9bW8+XPchyTrZ02Jdw1bGdqMAfGUQuDCxc6ex8ScnyyCv4LUMbjCYFuEtGDpzKEsO\nLGFK/ymULVrW02LZqwcQl+TAJ8hHBoELA3Fx8N//QseOMHQorF4tlb/g1VQtUZWV96ykWflmNBnf\nxBYDxLZSAPHJDgj0EROQt7NuHTRtambx/vEHjBwpg7xCocDf1583urzB9IHTeeCXB3hl+SskJSd5\nTB5bvXUJ2gFBShSAt3L5Mjz2GAwcCK++CnPmQESEp6UShHynU5VObHpwE6uOrKLP9D6cjT3rETls\npwCSA7QoAG9k0SJj4omJgR07YNAgkIB/QiGmbNGyLLlrCU3KNeGmL29i47GN+S6DbRSA1poE7SAp\nABkE9ibOnYPhw+GRR4xr56RJULKkp6USBFvg5+PH293eZkyvMdw8/WbGbxqfryuP2UYBJCQn4IMf\nif6yILxXoDX89JOJ31OihLh2CkImDKgzgNX3rebTjZ/ywNwH8m3BGdsoAEeiA18dRIKfrAZW4Dl5\n0tj5X37ZKIExY6BoUU9LJQi2plapWkTdH8UFxwW6Te2WL+MCtlEAVxOu4quDiPOV9YALLFrDtGnQ\nuDHUrQubN5v1eQVByBZFAorw0x0/0a5SO1pObMnOMzvz9Hy2sbU4Eh34JAXj8JEeQIHk+HETtfPw\nYViwAJo187REglAg8VE+vNX1LeqUrkOnKZ345tZv6FmjZ96cK09yzQWORAfoIiSjZT3ggoTWZi3e\nG280vv2bNknlLwhu4O7GdzNz8EzumXMPY9ePzZPBYVv1ABRhhOAn6wEXFI4dM2Ecjh+HX381SkAQ\nBLfRrlI71t63llu+u4XDfx/m3e7v4qPc10C2TVPbkeggmWIUUWL+sT1am0idTZpAy5awYYNU/oKQ\nR1QtUZVV965i7dG13DfnPhKSEtyWt60UABSjiI8oAFtz4gT07w/vvw+LF8Mrr5jVugRByDNKBpdk\nyV1LOB1zmtt+uI3YhFi35GsrBZBEqAwA2xWtYfp009Jv3NjY+ps08bRUglBoKBJQhDl3ziEsMIye\n03py0XHR5TxtNQagKUKonygA23HmjJnJu2uXWa3rpps8LZEgFEr8ff2ZeutU/rP4P3SY3MHl/GzV\nA0hWRQjzt41OEgDmzjUt/ipVTPROqfwFwaP4KB8+6vkRg+sPdj0vN8jjFswgcBHCAqQHYAsuXYL7\n7oMnnoAZM4zNPyjI01IJggAopXixw4su52MbBRAT70D7BosCsAPLl5vlGf39YetW6OB6V1MQBPth\nG3vL5asOfPyDKSaDwJ7D4YAXXzQt/okToXdvT0skCEIeYpsewBWHA5+AQAkF7Sm2bDH2/cOHYds2\nqfwFoRBgHwVw1YFPQJCEgs5vkpLgnXege3d49ln48UcoVcrTUgmCkA+4rACUUr2UUruVUnuVUs+m\ns/9fSqmtSqltSqk1SqlG6eVzJc6BCgyQeQD5yaFD0LmzWa1r0ya46y5ZpUsQChEuKQCllC/wKdAL\nqAcMUUrVTXPYAaCD1roR8DrwZXp5xcQ58An0FwWQH6SEbW7RAvr1g6VLoXJlT0slCEI+46q9pQWw\nT2t9CEApNQPoD+xKOUBrvc7p+PVAxfQyiolzQJC/jAHkNRcvmkldW7dKADdBKOS4agIKB446fY+2\nfsuI+4EF6e24Gu9ABfhJDyAvWbHCTOoqXdpM6pLKXxAKNa72ALIdoFop1Rm4D2ib3v7YBAc6wFcG\ngfOChAQTtO3rr417Z58+npZIEAQb4GptewyIcPoegekFXIc18DsB6KW1vpBeRgcWbCa+9DdM2hTJ\nrd2706lTJxdFEwDYtw+GDoUyZYyrZ5kynpZIEIRcEhkZSWRkpNvyU66sMqOU8gP2AF2B48AGYIjW\nepfTMZWAZcAwrXVUBvno+v/rxV9NnuFY57bcEBCQa5kEC63hm2/gqadM63/UKPHwEQQvQymF1jrX\nL7ZLPQCtdaJSahSwGPAFvtJa71JKjbD2jwdeAUoAX1grfSVorVukzSsu0UGSHzII7A7+/htGjjQt\n/qVLTVgHQRCENLhscNdaLwQWpvltvNP2A8ADWeXj0AlopQiS9YBdIyrKmHx69oSNGyEkxNMSCYJg\nU2wz4hqnNP5JyHrAuSU5Gd57Dz78EMaNg1tv9bREgiDYHNsogHgfCEyW1n+uOHXKzOK9etW0+itV\n8rREgiAUAGxT4yb4KIK02P9zzJIlqYuzL18ulb8gCNnGNj2ARF8fghEFkG1SfPu/+caEdejSxdMS\nCYJQwLCNAkjy86GIso049uboUbjzTihWDDZvhhtu8LREgiAUQGxjAkr28yXUx9/TYtifefNM3P5+\n/cwC7VL5C4KQS2zT5NZ+/hTzEwWQIQkJ8MIL8P33MHMmtE03ooYgCEK2sY0CwCeUMIkDlD5HjsDg\nwWahlj/+MMHcBEEQXMQ2JiDlG0oxfxkE/gcLFkDz5savf+5cqfwFQXAb9mlyq6IUDxAFcI3EROPl\nM3Uq/PQTtG/vaYkEQfAybKMAtE9RSgTZRhzPcvIkDBkCvr7G5CMRPAVByANsYwLCpyglgqQHQGQk\nNGsGHTrA4sVS+QuCkGfYp8ntE0Kp4EKsALSGd9+Fjz4yZp8ePTwtkSAIXo59FIBfSOEdA/j7b7jn\nHjhxwsTyiYjI8i+CIAiuYh8TkF9Q4VwPeNs2M7GrQgWzZq9U/oIg5BO2UQDKL6jwrQc8bRp07Qqj\nR8Nnn0FgoKclEgShEGGfGtc/sPD0AOLj4ckn4ddfZcUuQRA8hn0UgF9A4VAAJ07AoEFmVu+mTRAW\n5mmJBEEopNjGBKT9A7x/PeC1a82s3p49YdYsqfwFQfAo9ukBePN6wFrDF1/Aq6/ClCnQp4+nJRIE\nQbCPAvBJTPTO9YAdDhg50rh3rl0LNWp4WiJBEATARiYgn8QkT4vgfo4dMzN6Y2Jg3Tqp/AVBsBW2\nUQC+icmeFsG9rF0LLVrAwIEwYwYULeppiQRBEK7DNiYgvyTtaRHcx4QJ8NJLxt7fu7enpREEQUgX\n2ygAf29QAPHx8MQTJqDbqlVQq5anJRIEQcgQ2yiAgIJe/585Y8w9xYtDVJRZsF0QBMHG2GYMIEgX\nYA+gbduMvb9DB5g9Wyp/QRAKBLbpAQRp2+iinDF7Njz0EHzyCdx5p6elEQRByDa2UQAhqoApAK3h\nzTdh/Hizbu9NN3laIkEQhBxhGwVQRBWgMBCxsXD//XDgAGzYAOXLe1oiQRCEHGObZneor7+nRcge\nJ05Ax45mvd4VK6TyFwShwGIbBRDmb5vOSMZs3gwtW8KAAfDNNxAU5GmJBEEQco1tat0w/wBPi5A5\nc+bAAw+YoG633+5paQRBEFzGNgqglF1Xw9Ia3n8fPv7YDPY2b+5piQRBENyCbRRA6SAbKoD4eHjk\nEfjjDxPMTdbrFQTBi7CNAigTYjN7+oULZmZv0aImrIMEcxMEwctweRBYKdVLKbVbKbVXKfVsBsd8\nYu3fqpRqkt4x5YsGuyqK+zhwANq0gcaNzcpdUvkLguCFuKQAlFK+wKdAL6AeMEQpVTfNMX2AGlrr\nmsBDwBfp5VU+NMQVUdxHVBS0bQuPPgoffWTcPQVBELwQV3sALYB9WutDWusEYAbQP80x/YCvAbTW\n64HiSqmyaTOqWMwGPYAff4S+fWHiRBg1ytPSCIIg5CmujgGEA0edvkcDLbNxTEXglPNBoYEebGlr\nDe+9B2PHwpIlcOONnpNFEAQhn3BVAWQ3iHPaUJ//+N9/X3gBLFfQTp060alTJ9ckyy5JSfDYY7B6\ntfH0qVgxf84rCIKQQyIjI4mMjHRbfkrr3AfiV0q1Al7VWveyvj8PJGut33E6ZhwQqbWeYX3fDXTU\nWp9yOkbrpUuhS5dcy5IrYmNhyBCzZu/PP0NYWP6eXxAEwQWUUmid+1j6ro4BbAJqKqWqKKUCgMHA\n3DTHzAXuhmsK46Jz5X+NqCgXRckhp09D585mAZcFC6TyFwSh0OGSAtBaJwKjgMXATuB7rfUupdQI\npdQI65gFwAGl1D5gPDAy3czWrXNFlJyxd69x8+zZ06zbG2DzMBSCIAh5gEsmILcJoZTWpUubVrnK\n45XB1q83wdxef93E9hEEQSigeNoE5D4CA80ErLxk/ny45Rbj5imVvyAIhRz7KIDWrfPWDDRpklnE\nZd48uPnmvDuPIAhCAcE+CqBVq7wZCE5ZuvH1180CLi3TTlMQBEEonNgmGBytWsF337k3z6Qk+Pe/\njY//mjVQoYJ78xcEQSjA2GcQODYWSpeGM2cgxA1xgeLiYNgwOHfOBHQTN09BELwM7xkEDg6G+vXh\n999dz+vyZejTx5h/Fi6Uyl8QBCEd7KMAwAwEuzoOcOaMmVFcowZ8//218BKCIAjC9dhLAbRq5Zon\n0JEj0L69meA1bpyEchYEQcgEeyqA3IxL7NoF7drBiBHwxht5P6FMEAShgGMvBVCliqn8jx7N8tDr\n2LDBxPV54w148sk8EU0QBMHbsJcCUCrnZqDISDOxa8IEuPvuPBNNEATB27CXAoCcTQibNw/uuAN+\n+IqhNHkAAAa1SURBVMGs5CUIgiBkG/spgOx6As2YYUI7/PKLMf8IgiAIOcI+E8FS5IiJgTJl4Pz5\njF04v/wS/vtfWLQIGjbMP0EFQRBshPdMBEuhSBGoVQs2b05//wcfwP/+Z+L6SOUvCIKQa+ynACB9\nM5DW8NprpvW/cqWZ6CUIgiDkGnsqgLSeQFrDCy/Ajz+ayj8iwnOyCYIgeAn2VQApPQCt4YknYPFi\nWL4cypb1rGyCIAhegj0VQM2acOUKHDsGjzxiJnotW2aihQqCIAhuwX5eQCncfLOZEVyihPH3Dw31\njHCCIAg2xfu8gFLo0cPY+hculMpfEAQhD7BvD0AQBEHIFO/tAQiCIAh5iigAQRCEQoooAEEQhEKK\nKABBEIRCiigAQRCEQoooAEEQhEKKKABBEIRCiigAQRCEQoooAEEQhEKKKABBEIRCiigAQRCEQooo\nAEEQhEKKKABBEIRCSq4VgFKqpFJqiVLqL6XUr0qp4ukcE6GUWq6U+lMptUMp9bhr4gqCIAjuwpUe\nwHPAEq11LWCp9T0tCcCTWuv6QCvgUaVUXRfOWSCJjIz0tAh5ipSvYOPN5fPmsrkDVxRAP+Bra/tr\nYEDaA7TWJ7XWW6ztK8AuoIIL5yyQePtDKOUr2Hhz+by5bO7AFQVQVmt9yto+BWS6WrtSqgrQBFjv\nwjkFQRAEN+GX2U6l1BKgXDq7XnT+orXWSqkMl/RSShUFfgL+bfUEBEEQBA+T6yUhlVK7gU5a65NK\nqfLAcq11nXSO8wfmAQu11mMyyEvWgxQEQcgFriwJmWkPIAvmAsOBd6zP2WkPUEop4CtgZ0aVP7hW\nAEEQBCF3uNIDKAn8AFQCDgF3aK0vKqUqABO01jcrpdoBK4FtQMqJntdaL3JZckEQBMElcq0ABEEQ\nhIJNvs4EVkr1UkrtVkrtVUo9m8lxzZVSiUqp2/JTPlfJqnxKqU5Kqb+VUput9JIn5Mwt2bl/Vhk3\nWxP/IvNZRJfIxv172unebbee0X9MgLQj2ShbaaXUIqXUFuve3eMBMXNNNspXQik1Sym1VSm1XilV\n3xNy5gal1CSl1Cml1PZMjvnEKvtWpVSTbGeutc6XBPgC+4AqgD+wBaibwXHLMAPHA/NLvvwoH9AJ\nmOtpWfOwfMWBP4GK1vfSnpbbneVLc/wtwG+eltuN9+5V4H8p9w04B/h5WnY3lu894GVru3ZBuXeW\nvO0xLvTbM9jfB1hgbbcEorKbd372AFoA+7TWh7TWCcAMoH86xz2GcRk9k4+yuYPslq+gDnhnp3xD\ngZ+11tEAWuuz+SyjK2T3/qUwFPguXyRzneyU7QRQzNouBpzTWifmo4yukJ3y1QWWA2it9wBVlFI3\n5K+YuUNrvQq4kMkh1yblaq3XA8WVUpnOy0ohPxVAOHDU6Xu09ds1lFLhmBv3hfVTQRqgyLJ8mPK0\nsbppC5RS9fJNOtfJTvlqAiWt+E+blFJ35Zt0rpOd8gGglAoBegI/54Nc7iA7ZZsA1FdKHQe2Av/O\nJ9ncQXbKtxW4DUAp1QKoDFTMF+nynvTKn62yueIGmlOyU5mPAZ7TWmvLhbQgtZazU74/gAitdaxS\nqjfGdbZW3orlNrJTPn+gKdAVCAHWKaWitNZ781Qy95CTxkZfYLXW+mJeCeNmslO2F4AtWutOSqnq\nwBKlVGOt9eU8ls0dZKd8bwMfK6U2A9uBzUBSnkqVv6StK7P1POenAjgGRDh9j8BoKmeaATNM3U9p\noLdSKkFrPTd/RHSJLMvn/DJprRcqpT5XSpXUWp/PJxldITv37yhwVmt9FbiqlFoJNAYKggLITvlS\nuJOCY/6B7JWtDfAmgNZ6v1LqIMZWvilfJHSN7L5796V8t8p3IF+ky3vSlr+i9VvW5ONAhh+wHzNQ\nE0DWg2yTgds8PQDjzvJh4iWluN62AA55Wm43l68O8BtmUC4E09Kq52nZ3VU+67gwzABpsKdldvO9\n+xAYbW2XxVSgJT0tuxvLFwYEWNsPAlM8LXcOy1iF7A0CtyIHg8D51gPQWicqpUYBizEVxFda611K\nqRHW/vH5JUtekM3y3Q48opRKBGIxLckCQXbKp7XerZRahJn4l4yZELjTc1Jnnxw8nwOAxdr0cgoE\n2SzbW8BkpdRWzNjgM7pg9EyzW756wBQr7MwO4H6PCZxDlFLfAR2B0kqpo8BojLk15b1boJTqo5Ta\nB8QA92Y7b0trCIIgCIUMWRJSEAShkCIKQBAEoZAiCkAQBKGQIgpAEAShkCIKQBAEoZAiCkAQBKGQ\nIgpAEAShkCIKQBAEoZDy/wBwBdUrzqYeAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5a893d0>"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7.ipynb new file mode 100644 index 00000000..d65c95f3 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7.ipynb @@ -0,0 +1,280 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a61692019b8140a36f6ac02790d0dad90729cb0b28691dad1652c231a1bf0a41"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7-Centrifugal Pumps,Fans and Compressors\n"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##function to calculate blade cavitation coefficient\n",
+ "\n",
+ "##given data\n",
+ "Q = 25;##flow rate in dm^3/s\n",
+ "omega = 1450;##rotational speed in rev/min\n",
+ "omega_ss = 3;##max. suction specific speed in rad/sec\n",
+ "r = 0.3;##inlet eye radius ratio\n",
+ "g = 9.81;##in m/s^2\n",
+ "\n",
+ "##Calculations\n",
+ "k = 1.-(r**2);\n",
+ "sigmab = 0.3;##initial guess\n",
+ "d = (sigmab**2)*(1. + sigmab)- (((3.42*k)**2)/(omega_ss**4));\n",
+ "i = 0;\n",
+ "if sigmab>0:\n",
+ "\tsigmab = sigmab - 0.0001;\n",
+ "elif sigmab<0:\n",
+ "\tsigmab = sigmab + 0.0001;\n",
+ "\n",
+ "phi = (sigmab/(2.*(1.+sigmab)))**0.5;\n",
+ "rs1 = ((Q*10**-3.)/(math.pi*k*(omega*math.pi/30.)*phi))**(1./3.);\n",
+ "ds1 = 2.*rs1;\n",
+ "cx1 = phi*(omega*math.pi/30.)*rs1;\n",
+ "Hs = (0.75*sigmab*cx1**2)/(g*phi**2);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('(i)The blade cavitation coefficient = ',sigmab,'');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (ii)The shroud radius at the eye = ',rs1,' m' and '\\n The required diameter of the eye = ',ds1*10**3,'mm');\n",
+ "print'%s %.2f %s'%('\\n (iii)The eye axial velocity = ',cx1,' m/s');\n",
+ "print'%s %.2f %s'%('\\n (iv)The NPSH = ',Hs,' m');\n",
+ "\n",
+ "#asnwer is wrong due to round off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The blade cavitation coefficient = 0.30 \n",
+ "\n",
+ " (ii)The shroud radius at the eye = 0.06 \n",
+ " The required diameter of the eye = 110.70 mm \n",
+ "\n",
+ " (iii)The eye axial velocity = 2.85 m/s\n",
+ "\n",
+ " (iv)The NPSH = 1.62 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg220"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "alpha1 = 30.;##prewhirl in deg\n",
+ "hs = 0.4;##inlet hub-shrub radius ratio\n",
+ "Mmax = 0.9;##max Mach number\n",
+ "Q = 1;##air mass flow in kg/s\n",
+ "p01 = 101.3;##stagnation pressure in kPa\n",
+ "T01 = 288.;##stagnation temperature in K\n",
+ "gamma = 1.4;\n",
+ "Rg = 287.;##in J/(kgK)\n",
+ "\n",
+ "##Calculationsasza\n",
+ "beta1 = 49.4;##in deg\n",
+ "f = 0.4307;\n",
+ "a01 = math.sqrt(gamma*Rg*T01);\n",
+ "rho01 = p01*1000./(Rg*T01);\n",
+ "k = 1-(hs**2);\n",
+ "omega = (math.pi*f*k*rho01*a01**3)**0.5;\n",
+ "N = (omega*60./(2.*math.pi));\n",
+ "rho1 = rho01/(1. + 0.2*(Mmax*math.cos(beta1*math.pi/180.))**2)**2.5;\n",
+ "cx = ((omega**2.)/(math.pi*k*rho1*(math.tan(beta1*math.pi/180.) + math.tan(alpha1*math.pi/180.))**2.))**(1/3.);\n",
+ "rs1 = (1./(math.pi*rho1*cx*k))**0.5;\n",
+ "\n",
+ "ds1 = 2.*rs1;\n",
+ "U = omega*rs1;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s '%('(i)The rotational speed of the impeller = ',omega,' rad/s'and 'N = ',N,' rev/min.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (ii)The inlet static density downstream of the guide vanes at the shroud = ',rho1,' kg/m^3.'and'\\n The axial velocity = ',cx,' m/s.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (iii)The inducer tip diameter = ',ds1*100,' cm'and '\\n U = ',U,' m/s.');\n",
+ "\n",
+ "##there are small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The rotational speed of the impeller = 7404.94 N = 70711.94 rev/min. \n",
+ "\n",
+ " (ii)The inlet static density downstream of the guide vanes at the shroud = 1.04 \n",
+ " The axial velocity = 187.38 m/s. \n",
+ "\n",
+ " (iii)The inducer tip diameter = 8.83 \n",
+ " U = 326.81 m/s. \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "Q = 0.1;##in m^3/s\n",
+ "N = 1200.;##rotational speed in rev/min\n",
+ "beta2_ = 50.;##in deg\n",
+ "D = 0.4;##impeller external diameter in m\n",
+ "d = 0.2;##impeller internal diameter in m\n",
+ "b2 = 31.7;##axial width in mm\n",
+ "eff = 0.515;##diffuser efficiency\n",
+ "H = 0.1;##head losses\n",
+ "De = 0.15;##diffuser exit diameter\n",
+ "A = 0.77;\n",
+ "B = 1.;\n",
+ "g = 9.81;\n",
+ "\n",
+ "##Calculations\n",
+ "U2 = math.pi*N*D/60.;\n",
+ "cr2 = Q/(math.pi*D*b2/1000.);\n",
+ "sigmaB = (A - H*math.tan(beta2_*math.pi/180.))/(B - H*math.tan(beta2_*math.pi/180.));\n",
+ "ctheta2 = sigmaB*U2*(1.-H*math.tan(beta2_*math.pi/180.));\n",
+ "Hi = U2*ctheta2/g;\n",
+ "c2 = math.sqrt(cr2**2 + ctheta2**2);\n",
+ "c3 = 4.*Q/(math.pi*De**2);\n",
+ "HL = 0.1*Hi + 0.485*((c2**2)-(c3**2))/(2.*g) + (c3**2.)/(2.*g);\n",
+ "H = Hi - HL;\n",
+ "eff_hyd = H/Hi;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The slip factor = ',sigmaB,'');\n",
+ "print'%s %.2f %s'%('\\n The manometric head = ',H,' m.');\n",
+ "print'%s %.2f %s'%('\\n The hydraulic efficiency = ',eff_hyd*100,' percentage.');\n",
+ "\n",
+ "##there is a very small error in the answer given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The slip factor = 0.74 \n",
+ "\n",
+ " The manometric head = 30.11 m.\n",
+ "\n",
+ " The hydraulic efficiency = 71.84 percentage.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "T01 = 22.;##stagnation temperature in degC\n",
+ "Z = 17.;##number of vanes\n",
+ "N = 15000.;##rotational speed in rev/min\n",
+ "r = 4.2;##stagnation pressure ratio between diffuser and impeller\n",
+ "eff_ov = 0.83;##overall efficiency\n",
+ "mdot = 2;##mass flow rate in kg/s\n",
+ "eff_m = 0.97;##mechanical efficiency\n",
+ "rho2 = 2.;##air density at impeller outle in kg/m^3\n",
+ "gamma = 1.4;\n",
+ "R = 0.287;##in kJ/(kg.K)\n",
+ "b2 = 11.;##axial width at the entrance to the diffuser in mm\n",
+ "\n",
+ "##Calculations\n",
+ "Cp = gamma*R*1000./(gamma-1.);\n",
+ "sigmaS = 1 - 2./Z;\n",
+ "U2 = math.sqrt(Cp*(T01+273.)*((r)**((gamma-1.)/gamma) -1.)/(sigmaS*eff_ov));\n",
+ "omega = N*math.pi/30.;\n",
+ "rt = U2/omega;\n",
+ "Wdot_act = mdot*sigmaS*(U2**2)/(eff_m);\n",
+ "cr2 = mdot/(rho2*2.*math.pi*rt*b2/1000.);\n",
+ "ctheta2 = sigmaS*U2;\n",
+ "c2 = math.sqrt(ctheta2**2 +cr2**2);\n",
+ "delW = sigmaS*U2**2;\n",
+ "T2 = T01+273.+(delW - 0.5*c2**2)/Cp;\n",
+ "M2 = c2/math.sqrt(gamma*R*1000.*T2);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('Absolute mach number, M2 = ',M2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Absolute mach number, M2 = 1.01 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter8.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter8.ipynb new file mode 100644 index 00000000..a6603f6c --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter8.ipynb @@ -0,0 +1,414 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c09738f4d36c8e48bfaf24c235fb17050c4cfa6be2564154b0a4e5e8521050ca"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter8-Radial Flow Gas Turbines"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "D2 = 23.76;##diameter of rotor in cm\n",
+ "N = 38140.;##rotational speed in rev/min\n",
+ "alpha2 = 72.;##absolute flow angle in deg\n",
+ "d = 0.5*D2;##rotor mean exit diameter\n",
+ "\n",
+ "##Calcultaions\n",
+ "U2 = math.pi*N*D2/(100.*60.);\n",
+ "w2 = U2/math.tan(alpha2*math.pi/180.);\n",
+ "c2 = U2*math.sin(alpha2*math.pi/180.);\n",
+ "w3 = 2*w2;\n",
+ "U3 = 0.5*U2;\n",
+ "c3 = math.sqrt(w3**2. - U3**2);\n",
+ "delW = 0.5*((U2**2. - U3**2.)+(w3**2. - w2**2.)+(c2**2. - c3**2.));\n",
+ "inp_U2 = 0.5*(U2**2. - U3**2.)/delW;\n",
+ "inp_w2 = 0.5*(w3**2. - w2**2.)/delW;\n",
+ "inp_c2 = 0.5*(c2**2. - c3**2.)/delW;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('The fractional inputs from the three terms are, for the U^2 terms,',inp_U2,''and '\\n for the w^2 terms,',inp_w2,''and ' for the c^2 terms, ',inp_c2,'')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##there are errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fractional inputs from the three terms are, for the U^2 terms, 0.42 0.18 0.41 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "r = 1.5;##operating pressure ratio\n",
+ "K1 = 1.44*10**-5;\n",
+ "K2 = 2410.;\n",
+ "K3 = 4.59*10**-6;\n",
+ "T01 = 400.;##in K\n",
+ "D2 = 72.5;##rotor inlet diamete in mm\n",
+ "D3_av = 34.4;##rotor meaan outlet diameter in mm\n",
+ "b = 20.1;##rotor outlet annulus width in mm\n",
+ "zetaN = 0.065;##enthalpy loss coefficient\n",
+ "alpha2 = 71.;##in deg\n",
+ "beta3_av = 53.;##in deg\n",
+ "Cp = 1005.;##inJ/(kg.K)\n",
+ "gamma = 1.4;\n",
+ "\n",
+ "##Calculations\n",
+ "N = K2*math.sqrt(T01);\n",
+ "U2 = math.pi*N*D2/(60.*1000.)\n",
+ "delW = U2**2.;\n",
+ "delh = Cp*T01*(1.-(1./r)**((gamma-1.)/gamma));\n",
+ "eff_ts = delW/(delh);\n",
+ "delW_act = K3*K2*math.pi*T01/(30.*K1);\n",
+ "eff_ov = delW_act/delh;\n",
+ "zetaR = (2.*((1./eff_ts)-1.) - (zetaN/math.sin(alpha2*math.pi/180.)))*((D2/D3_av)**2.)*(math.sin(beta3_av*math.pi/180.))**2 - (math.cos(beta3_av*math.pi/180.))**2;\n",
+ "r3 = 0.5*(D3_av-b)*10**-3;\n",
+ "w3_w2av_min = (D3_av/D2)*math.tan(alpha2*math.pi/180.)*((2.*r3/D3_av)**2. + (1./math.tan(beta3_av*math.pi/180.))**2.)**0.5;\n",
+ "w3_w2av = (D3_av/D2)*math.tan(alpha2*math.pi/180.)*(1.+((1./math.tan(beta3_av*math.pi/180.))**2))**0.5;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The total-to-static efficiency = ',eff_ts*100,'percentage');\n",
+ "print'%s %.2f %s'%('\\n The overall efficiency =',eff_ov*100,'percentage');\n",
+ "print'%s %.2f %s'%('\\n The rotor enthalpy loss coefficient = ',zetaR,'');\n",
+ "print'%s %.2f %s'%('\\n The rotor relative velocity ratio = ',w3_w2av,'');\n",
+ "\n",
+ "\n",
+ "##there are small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total-to-static efficiency = 76.13 percentage\n",
+ "\n",
+ " The overall efficiency = 73.17 percentage\n",
+ "\n",
+ " The rotor enthalpy loss coefficient = 1.22 \n",
+ "\n",
+ " The rotor relative velocity ratio = 1.73 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg262"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "Z = 12.;##number of vanes\n",
+ "delW = 230.;##in kW\n",
+ "T01 = 1050.;##stagnation temperature in K\n",
+ "mdot = 1.;##flow rate in kg/s\n",
+ "eff_ts = 0.81;##total-to-static efficiency\n",
+ "Cp = 1.1502;##in kJ/(kg.K)\n",
+ "gamma = 1.333;\n",
+ "R = 287.;##gas constant\n",
+ "\n",
+ "##Calculations\n",
+ "S = delW/(Cp*T01);\n",
+ "alpha2 = (180./math.pi)*math.acos(math.sqrt(1./Z));\n",
+ "beta2 = 2.*(90.-alpha2);\n",
+ "p3_p01 = (1.-(S/eff_ts))**(gamma/(1.-gamma));\n",
+ "M02 = math.sqrt((S/(gamma-1.))*((2.*math.cos(beta2*math.pi/180.))/(1.+math.cos(beta2*math.pi/180.))));\n",
+ "M2 = math.sqrt((M02**2)/(1-0.5*(gamma-1.)*(M02**2)));\n",
+ "U2 = math.sqrt((gamma*R*T01)*(1./math.cos(beta2*math.pi/180.))*(S/(gamma-1.)));\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s '%('(i) The absolut and relative flow angles:\\n alpha2 = ',alpha2,' deg'and '\\n beta2 = ',beta2,' deg');\n",
+ "print'%s %.2f %s'%('\\n (ii) The overall pressure ratio =',p3_p01,'');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (iii) The rotor rip speed = ',U2,' m/s'and '\\n The inlet absolute Mach number = ',M2,'');\n",
+ "\n",
+ "\n",
+ "##there are small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The absolut and relative flow angles:\n",
+ " alpha2 = 73.22 \n",
+ " beta2 = 33.56 deg \n",
+ "\n",
+ " (ii) The overall pressure ratio = 2.92 \n",
+ "\n",
+ " (iii) The rotor rip speed = 525.05 \n",
+ " The inlet absolute Mach number = 0.75 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "cm3_U2 = 0.25;\n",
+ "nu = 0.4;\n",
+ "r3s_r2 = 0.7;\n",
+ "w3av_w2 = 2.0;\n",
+ "\n",
+ "##Calculations\n",
+ "r3av_r3s = 0.5*(1.+nu);\n",
+ "r3av_r2 = r3av_r3s*r3s_r2;\n",
+ "beta3_av = (180./math.pi)*math.atan(r3av_r2/cm3_U2);\n",
+ "beta3s = (180./math.pi)*math.atan(r3s_r2/cm3_U2);\n",
+ "w3s_w2 = 2.*math.cos(beta3_av*math.pi/180.)/math.cos(beta3s*math.pi/180.);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The relative velocity ratio =',w3s_w2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The relative velocity ratio = 2.70 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "Z = 12.;##number of vanes\n",
+ "delW = 230.;##in kW\n",
+ "T01 = 1050.;##stagnation temperature in K\n",
+ "mdot = 1.;##flow rate in kg/s\n",
+ "eff_ts = 0.81;##total-to-static efficiency\n",
+ "Cp = 1.1502;##in kJ/(kg.K)\n",
+ "gamma = 1.333;\n",
+ "R = 287.;##gas constant\n",
+ "cm3_U2 = 0.25;\n",
+ "nu = 0.4;\n",
+ "r3s_r2 = 0.7;\n",
+ "w3av_w2 = 2.0;\n",
+ "p3 = 100.;##static pressure at rotor exit in kPa\n",
+ "zetaN = 0.06;##nozzle enthalpy loss coefficient\n",
+ "U2 = 538.1;##in m/s\n",
+ "p01 = 3.109*10**5;##in Pa\n",
+ "\n",
+ "##Calculations\n",
+ "S = delW/(Cp*T01);\n",
+ "T03 = T01*(1.-S);\n",
+ "T3 = T03 - (cm3_U2**2)*(U2**2)/(2.*Cp*1000.);\n",
+ "r2 = math.sqrt(mdot/((p3*1000./(R*T3))*(cm3_U2)*U2*math.pi*(r3s_r2**2)*(1.-nu**2)));\n",
+ "D2 = 2.*r2;\n",
+ "omega = U2/r2;\n",
+ "N = omega*30./math.pi;\n",
+ "ctheta2 = S*Cp*1000.*T01/U2;\n",
+ "alpha2 = (180/math.pi)*math.acos(math.sqrt(1./Z));\n",
+ "cm2 = ctheta2/math.tan(alpha2*math.pi/180.);\n",
+ "c2 = ctheta2/math.sin(alpha2*math.pi/180.);\n",
+ "T2 = T01 - (c2**2)/(2.*Cp*1000.);\n",
+ "p2 = p01*(1-(((c2**2)*(1.+zetaN))/(2.*Cp*1000.*T01)))**(gamma/(gamma-1.));\n",
+ "b2_D2 = (0.25/math.pi)*(R*T2/p2)*(mdot/(cm2*r2**2.));\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('(i) The diamaeter of the rotor = ',D2,' m'and '\\n its speed of rotation = ',omega,' rad/s'and ' (N = ',N,' rev/min)');\n",
+ "print'%s %.2f %s'%('\\n(ii) The vane width to diameter ratio at rotor inlet = ',b2_D2,'');\n",
+ "\n",
+ "##there are some errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) The diamaeter of the rotor = 0.24 \n",
+ " its speed of rotation = 4564.96 (N = 43592.14 rev/min) \n",
+ "\n",
+ "(ii) The vane width to diameter ratio at rotor inlet = 0.06 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "Z = 12.;##number of vanes\n",
+ "delW = 230.;##in kW\n",
+ "T01 = 1050.;##stagnation temperature in K\n",
+ "mdot = 1.;##flow rate in kg/s\n",
+ "eff_ts = 0.81;##total-to-static efficiency\n",
+ "Cp = 1.1502;##in kJ/(kg.K)\n",
+ "gamma = 1.333;\n",
+ "R = 287.;##gas constant\n",
+ "cm3_U2 = 0.25;\n",
+ "nu = 0.4;\n",
+ "r3s_r2 = 0.7;\n",
+ "w3av_w2 = 2.0;\n",
+ "p3 = 100.;##static pressure at rotor exit in kPa\n",
+ "zetaN = 0.06;##nozzle enthalpy loss coefficient\n",
+ "U2 = 538.1;##in m/s\n",
+ "p01 = 3.109*10**5;##in Pa\n",
+ "\n",
+ "##results of Example 8.4 and Example 8.5\n",
+ "r3av_r3s = 0.5*(1+nu);\n",
+ "r3av_r2 = r3av_r3s*r3s_r2;\n",
+ "alpha2 = (180./math.pi)*math.acos(math.sqrt(1/Z));\n",
+ "beta2 = 2.*(90.-alpha2);\n",
+ "beta3_av = (180./math.pi)*math.atan(r3av_r2/cm3_U2);\n",
+ "beta3s = (180./math.pi)*math.atan(r3s_r2/cm3_U2);\n",
+ "w3s_w2 = 2.*math.cos(beta3_av*math.pi/180.)/math.cos(beta3s*math.pi/180.);\n",
+ "S = delW/(Cp*T01);\n",
+ "T03 = T01*(1-S);\n",
+ "T3 = T03 - (cm3_U2**2)*(U2**2.)/(2.*Cp*1000.);\n",
+ "r2 = math.sqrt(mdot/((p3*1000./(R*T3))*(cm3_U2)*U2*math.pi*(r3s_r2**2)*(1.-nu**2.)));\n",
+ "D2 = 2.*r2;\n",
+ "omega = U2/r2;\n",
+ "N = omega*30./math.pi;\n",
+ "ctheta2 = S*Cp*1000.*T01/U2;\n",
+ "alpha2 = (180./math.pi)*math.acos(math.sqrt(1./Z));\n",
+ "cm2 = ctheta2/math.tan(alpha2*math.pi/180.);\n",
+ "c2 = ctheta2/math.sin(alpha2*math.pi/180.);\n",
+ "T2 = T01 - (c2**2.)/(2.*Cp*1000.);\n",
+ "p2 = p01*(1-(((c2**2)*(1.+zetaN))/(2.*Cp*1000.*T01)))**(gamma/(gamma-1));\n",
+ "b2_D2 = (0.25/math.pi)*(R*T2/p2)*(mdot/(cm2*r2**2));\n",
+ "\n",
+ "##Calculations\n",
+ "c3 = cm3_U2*U2;\n",
+ "cm3 = c3;\n",
+ "w3_av = 2.*cm3/(math.cos(beta2*math.pi/180.));\n",
+ "w2 = w3_av/2.;\n",
+ "c0 = math.sqrt(2.*delW*1000./eff_ts);\n",
+ "zetaR = (c0**2. *(1.-eff_ts)- (c3**2.)- zetaN*(c2**2))/(w3_av**2); \n",
+ "i = beta2;\n",
+ "n = 1.75;\n",
+ "eff_ts_new = 1-((c3**2)+zetaN*(c2**2)+zetaR*(w3_av**2)+(1.-(math.cos(i*math.pi/180))**n)*(w2**2))/(c0**2);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('(a)The rotor enthalpy loss coefficient = ',zetaR,'');\n",
+ "print'%s %.2f %s'%('\\n(b) The total-to-static efficiency of the turbine =',eff_ts_new,'');\n",
+ "\n",
+ "\n",
+ "##there are some errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)The rotor enthalpy loss coefficient = 0.75 \n",
+ "\n",
+ "(b) The total-to-static efficiency of the turbine = 0.80 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter9.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter9.ipynb new file mode 100644 index 00000000..f45706aa --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter9.ipynb @@ -0,0 +1,418 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:792fb421946abfd48c51ce0ac37efa304f9a8b8a120655d1f8c56d375239bb07"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter9-Hydraulic Turbines"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg300"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "Q = 2.272;##water volume flow rate in m**3/s\n",
+ "l = 300.;##length in m\n",
+ "Hf = 20.;##head loss in m\n",
+ "f = 0.01;##friction factor\n",
+ "g = 9.81;##acceleration due to gravity in m/s**2\n",
+ "\n",
+ "##Calculations\n",
+ "d = (32.*f*l*((Q/math.pi)**2)/(g*Hf))**(1/5.);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The diameter of the pipe = ',d,' m');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg302"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "P = 4.0;##in MW\n",
+ "N = 375.;##in rev/min\n",
+ "H_eps = 200.;##in m\n",
+ "KN = 0.98;##nozzle velocity coefficient\n",
+ "d = 1.5;##in m\n",
+ "k = 0.15;##decrease in relative flow velocity across the buckets\n",
+ "alpha = 165.;##in deg\n",
+ "g = 9.81;##in m/s^2\n",
+ "rho = 1000.;##in kg/m^3\n",
+ "\n",
+ "##Calculations\n",
+ "U = N*math.pi*d*0.5/30.;\n",
+ "c1 = KN*math.sqrt(2*g*H_eps);\n",
+ "nu = U/c1;\n",
+ "eff = 2.*nu*(1.-nu)*(1.-(1.-k)*math.cos(alpha*math.pi/180.));\n",
+ "Q = (P*10**6 /eff)/(rho*g*H_eps);\n",
+ "Aj = Q/(2.*c1);\n",
+ "dj = math.sqrt(4.*Aj/math.pi);\n",
+ "omega_sp = (N*math.pi/30.)*math.sqrt((P*10**6)/rho)/((g*H_eps)**(5./4.));\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('(i)The runner efficiency = ',eff,'');\n",
+ "print'%s %.2f %s'%('\\n (ii)The diameter of each jet = ',dj,' m');\n",
+ "print'%s %.2f %s'%('\\n (iii)The power specific speed = ',omega_sp,' rad');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The runner efficiency = 0.91 \n",
+ "\n",
+ " (ii)The diameter of each jet = 0.15 m\n",
+ "\n",
+ " (iii)The power specific speed = 0.19 rad\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg309"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "H_eps = 150.;##in m\n",
+ "z = 2.;##in m\n",
+ "U2 = 35.;##runner tip speed in m/s\n",
+ "c3 = 10.5;##meridonal velocity of water in m/s\n",
+ "c4 = 3.5;##velocity at exit in m/s\n",
+ "delHN = 6.0;##in m\n",
+ "delHR = 10.0;##in m\n",
+ "delHDT = 1.0;##in m\n",
+ "g = 9.81;##in m/s**2\n",
+ "Q = 20.;##in m**3/s\n",
+ "omega_sp = 0.8;##specific speed of turbine in rad\n",
+ "c2 = 38.73;##in m/s\n",
+ "\n",
+ "##Calculations\n",
+ "H3 = ((c4**2. - c3**2.)/(2.*g)) + delHDT - z;\n",
+ "H2 = H_eps-delHN-(c2**2.)/(2.*g);\n",
+ "delW = g*(H_eps-delHN-delHR-z)-0.5*c3**2 -g*H3;\n",
+ "ctheta2 = delW/U2;\n",
+ "alpha2 = (180./math.pi)*math.atan(ctheta2/c3);\n",
+ "beta2 = (180./math.pi)*math.atan((ctheta2-U2)/c3);\n",
+ "eff_H = delW/(g*H_eps);\n",
+ "omega = (omega_sp*(g*H_eps)**(5./4.))/math.sqrt(Q*delW);\n",
+ "N = omega*30./math.pi;\n",
+ "D2 = 2.*U2/omega;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s'%('(i)The pressure head H3 relative to the trailrace = ',H3,' m'and'\\n The pressure head H2 at exit from the runner =',H2,' m');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n(ii)The flow angles at runner inlet and at guide vane exit:\\n alpha2 = ',alpha2,' deg'and '\\n beta2 = ',beta2,' deg');\n",
+ "print'%s %.2f %s'%('\\n(iii)The hydraulic efficiency of the turbine = ',eff_H,'');\n",
+ "print'%s %.2f %s'%('\\n The speed of rotation, N = ',N,' rev/min');\n",
+ "print'%s %.2f %s'%('\\n The runner diameter is, D2 = ',D2,' m');\n",
+ "\n",
+ "\n",
+ "##there are small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The pressure head H3 relative to the trailrace = -5.99 \n",
+ " The pressure head H2 at exit from the runner = 67.55 m\n",
+ "\n",
+ "(ii)The flow angles at runner inlet and at guide vane exit:\n",
+ " alpha2 = 74.20 \n",
+ " beta2 = 11.33 deg \n",
+ "\n",
+ "(iii)The hydraulic efficiency of the turbine = 0.88 \n",
+ "\n",
+ " The speed of rotation, N = 432.02 rev/min\n",
+ "\n",
+ " The runner diameter is, D2 = 1.55 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##function to calculate flow angles\n",
+ " \n",
+ " \n",
+ "##given data\n",
+ "P = 8;##output power in MW\n",
+ "HE = 13.4;##available head at entry in m\n",
+ "N = 200;##in rev/min\n",
+ "L = 1.6;##length of inlet guide vanes\n",
+ "d1 = 3.1;##diameter of trailing edge in m\n",
+ "D2t = 2.9;##runner diameter in m\n",
+ "nu = 0.4;##hub-tip ratio\n",
+ "eff = 0.92;##hydraulic efficiency\n",
+ "rho = 1000;##density in kg/m**3\n",
+ "g = 9.81;##acceleration due to gravity in m/s**2 \n",
+ "r=1.45\n",
+ "##Calculations\n",
+ "Q = P*10**6 /(eff*rho*g*HE);\n",
+ "cr1 = Q/(2*math.pi*0.5*d1*L);\n",
+ "cx2 = 4*Q/(math.pi*D2t**2 *(1-nu**2));\n",
+ "U2 = N*(math.pi/30)*D2t/2;\n",
+ "ctheta2 = eff*g*HE/U2;\n",
+ "ctheta1 = ctheta2*(D2t/d1);\n",
+ "alpha1 = (180/math.pi)*math.atan(ctheta1/cr1);\n",
+ "alpha2 = (180/math.pi)*math.atan(ctheta2/cx2);\n",
+ "beta2 = (180/math.pi)*math.atan((U2)*(r)/cx2 - math.tan(alpha2*math.pi/180));\n",
+ "beta3 = (180/math.pi)*math.atan((U2)*r/cx2) ;\n",
+ "alpha23=39.86\n",
+ "alpha22=25.51\n",
+ "alpha21=18.47\n",
+ "beta23=10.42\n",
+ "beta22=52.56\n",
+ "beta21=65.68\n",
+ "\n",
+ "##Results\n",
+ "print('Calculated values of flow angles:\\n Parameter Ratio of r/ri ');\n",
+ "print('\\n ------------------------------------------------------------');\n",
+ "print('\\n 0.4 0.7 1.0');\n",
+ "print('\\n --------------------------------------');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('\\n ctheta2(in m/s) ',ctheta2/0.4,''and '',ctheta2/0.7,''and '',ctheta2/1.0,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('\\n tan(alpha2) ',math.tan(alpha23*math.pi/180),''and '',math.tan(alpha22*math.pi/180),'' and '',math.tan(alpha21*math.pi/180),'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('\\n alpha2(deg) ',alpha23,''and '',alpha22,''and '',alpha21,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('\\n U/cx2 ',(U2/cx2)*0.4,''and '',(U2/cx2)*0.7,''and '',(U2/cx2)*1.0,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('\\n beta2(deg) ',beta23,''and '',beta22,'' and '',beta21,'');\n",
+ "print('\\n ------------------------------------------------------------');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Calculated values of flow angles:\n",
+ " Parameter Ratio of r/ri \n",
+ "\n",
+ " ------------------------------------------------------------\n",
+ "\n",
+ " 0.4 0.7 1.0\n",
+ "\n",
+ " --------------------------------------\n",
+ "\n",
+ " ctheta2(in m/s) 9.96 5.69 3.98 \n",
+ "\n",
+ " tan(alpha2) 0.83 0.48 0.33 \n",
+ "\n",
+ " alpha2(deg) 39.86 25.51 18.47 \n",
+ "\n",
+ " U/cx2 1.02 1.78 2.55 \n",
+ "\n",
+ " beta2(deg) 10.42 52.56 65.68 \n",
+ "\n",
+ " ------------------------------------------------------------\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "k = 1/5.;##scale ratio\n",
+ "Pm = 3.;##in kW\n",
+ "Hm = 1.8;##in m\n",
+ "Nm = 360.;##in rev/min\n",
+ "Qm = 0.215;##in m^3/s\n",
+ "Hp = 60.;##in m\n",
+ "n = 0.25;\n",
+ "rho = 1000;##in kg/m^3\n",
+ "g = 9.81;##in m/s^2\n",
+ "\n",
+ "##Calculations\n",
+ "Np = Nm*k*(Hp/Hm)**0.5;\n",
+ "Qp = Qm*(Nm/Np)*(1./k)**3;\n",
+ "Pp = Pm*((Np/Nm)**3)*(1./k)**5;\n",
+ "eff_m = Pm*1000./(rho*Qm*g*Hm);\n",
+ "eff_p = 1 - (1.-eff_m)*0.2**n;\n",
+ "Pp_corrected = Pp*eff_p/eff_m;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The speed = ',Np,' rev/min.');\n",
+ "print'%s %.2f %s'%('\\n The flow rate =',Qp,' m^3/s.');\n",
+ "print'%s %.2f %s'%('\\n Power of the full-scale = ',Pp/1000,' MW.');\n",
+ "print'%s %.2f %s'%('\\n The efficiency of the model turbine = ',eff_m,'');\n",
+ "print'%s %.2f %s'%('\\n The efficiency of the prototype = ',eff_p,'');\n",
+ "print'%s %.2f %s'%('\\n The power of the full-size turbine = ',Pp_corrected/1000,' MW.')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The speed = 415.69 rev/min.\n",
+ "\n",
+ " The flow rate = 23.27 m^3/s.\n",
+ "\n",
+ " Power of the full-scale = 14.43 MW.\n",
+ "\n",
+ " The efficiency of the model turbine = 0.79 \n",
+ "\n",
+ " The efficiency of the prototype = 0.86 \n",
+ "\n",
+ " The power of the full-size turbine = 15.70 MW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "##data from EXAMPLE 9.3\n",
+ "H_eps = 150.;##in m\n",
+ "z = 2.;##in m\n",
+ "U2 = 35.;##runner tip speed in m/s\n",
+ "c3 = 10.5;##meridonal velocity of water in m/s\n",
+ "c4 = 3.5;##velocity at exit in m/s\n",
+ "delHN = 6.0;##in m\n",
+ "delHR = 10.0;##in m\n",
+ "delHDT = 1.0;##in m\n",
+ "g = 9.81;##in m/s**2\n",
+ "Q = 20.;##in m**3/s\n",
+ "omega_sp = 0.8;##specific speed of turbine in rad\n",
+ "c2 = 38.73;##in m/s\n",
+ "\n",
+ "##data from this example\n",
+ "Pa = 1.013;##atmospheric pressure in bar\n",
+ "Tw = 25.;##temperature of water in degC\n",
+ "Pv = 0.03166;##vapor pressure of water at Tw\n",
+ "rho = 1000;##density of wate in kg/m**3\n",
+ "g = 9.81;##acceleration due to gravity in m/s**2\n",
+ "\n",
+ "H3 = ((c4**2. - c3**2.)/(2.*g)) + delHDT - z;\n",
+ "H2 = H_eps-delHN-(c2**2.)/(2.*g);\n",
+ "delW = g*(H_eps-delHN-delHR-z)-0.5*c3**2 -g*H3;\n",
+ "ctheta2 = delW/U2;\n",
+ "alpha2 = (180/math.pi)*math.atan(ctheta2/c3);\n",
+ "beta2 = (180/math.pi)*math.atan((ctheta2-U2)/c3);\n",
+ "eff_H = delW/(g*H_eps);\n",
+ "omega = (omega_sp*(g*H_eps)**(5/4.))/math.sqrt(Q*delW);\n",
+ "\n",
+ "Hs = (Pa-Pv)*(10**5)/(rho*g) - z;\n",
+ "sigma = Hs/H_eps;\n",
+ "omega_ss = omega*(Q**0.5)/(g*Hs)**(3/4.);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The NSPH for the turbine = ',Hs,' m.');\n",
+ "if omega_ss>4.0:\n",
+ " print'%s %.2f %s'%('\\n Since the suction specific speed (= ',omega_ss,')is greater than 4.0(rad), the cavitation is likely to occur.');\n",
+ "\n",
+ "\n",
+ "##there is small error in the answer given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The NSPH for the turbine = 8.00 m.\n",
+ "\n",
+ " Since the suction specific speed (= 7.67 )is greater than 4.0(rad), the cavitation is likely to occur.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter6.png b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter6.png Binary files differnew file mode 100644 index 00000000..36a51d03 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter6.png diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter7.png b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter7.png Binary files differnew file mode 100644 index 00000000..9c075a08 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter7.png diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter8.png b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter8.png Binary files differnew file mode 100644 index 00000000..af2f9281 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter8.png diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_2UiB4Er.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_2UiB4Er.ipynb new file mode 100644 index 00000000..ff33ff35 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_2UiB4Er.ipynb @@ -0,0 +1,230 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 45 GRATING AND SPECTRA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.1 Calculation of angle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 7.249\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=4000 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.3f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.2 Calculation of angle theta" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) The first order diffraction pattern in degree= 13.408\n", + "(B) Angle of seperation in degree= 0.0002388\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=5890 #in A\n", + "d=25400 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n", + "del_lambda=5.9 #in A\n", + "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n", + "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.3 Calculation of Sodium Doublet" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resolving power= 998.305\n", + "Number of rulings needed is= 332.768\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "lamda=5890 #A\n", + "lamda_1=5895.9 #A\n", + "m=3\n", + "delta_lambda=(lamda_1-lamda) #in A\n", + "R=lamda/(delta_lambda)\n", + "print(\"Resolving power= %.3f\"%R)\n", + "N=(R/m)\n", + "print(\"Number of rulings needed is= %.3f\"%N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.4 Calculation of Dispersion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 31.11244\n", + "(A) The dispersion in radian/A= 0.0001105\n", + "(B) Wave length difference in A= 0.13650\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=3\n", + "m1=5\n", + "lamda=5460 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n", + "D=m/(d*math.cos(theta*math.pi/180))\n", + "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n", + "N=8000\n", + "lamda=5460\n", + "R=N*m1\n", + "delta_lambda=lamda/R\n", + "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.5 Calculation of Angles" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interplanar spacing d in A= 2.51781\n", + "Diffracted beam occurs when m=1,m=2 and m=3\n", + "When m1=1, Theta in degree= 12.61763\n", + "When m1=2, Theta in degree= 25.90544\n", + "When m1=3, Theta in degree= 40.94473\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "a_o=5.63 #A\n", + "d=a_o/math.sqrt(5)\n", + "lamda=1.10 #in A\n", + "print(\"Interplanar spacing d in A= %.5f\"%d)\n", + "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n", + "m1=1\n", + "x=(m1*lamda)/(2*d)\n", + "theta_1=math.degrees(math.asin(x))\n", + "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n", + "m2=2\n", + "x=(m2*lamda)/(2*d)\n", + "theta_2=math.degrees(math.asin(x))\n", + "print('When m1=2, Theta in degree= %.5f'%theta_2)\n", + "m3=3\n", + "x=(m3*lamda)/(2*d)\n", + "theta_3=math.degrees(math.asin(x))\n", + "print('When m1=3, Theta in degree= %.5f'%theta_3)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5OAJDoI.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5OAJDoI.ipynb new file mode 100644 index 00000000..d03e752b --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5OAJDoI.ipynb @@ -0,0 +1,266 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 33 THE MAGNETIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.1 Force acting on a proton" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of the proton in meters/sec is 30678599.55\n", + "Force acting on proton in nt is 7.363e-12\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "K=5*10**6 #ev\n", + "e=1.6*10**-19 #in coul\n", + "K1=K*e #in joules\n", + "m=1.7*10**-27 #in kg\n", + "B=1.5 #wb/m\n", + "theta=math.pi/2\n", + "v=math.sqrt(2*K1/m)\n", + "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n", + "F=e*v*B*math.sin(theta)\n", + "print(\"Force acting on proton in nt is %.3e\"%F)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.3 Torsional constant of the spring" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Torssional constant in nt-m/deg is 3.333e-08\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "N=250 #turns in coil\n", + "i=1.0*10**-4 #in amp\n", + "B=0.2 #wb/m2\n", + "h=2*10**-2 #coil height in m\n", + "w=1.0*10**-2 #width of coil in m\n", + "Q=30 #angular deflectin in degrees\n", + "theta=math.pi/2\n", + "A=h*w\n", + "k=N*i*A*B*math.sin(theta)/Q\n", + "print(\"Torssional constant in nt-m/deg is %.3e\"%k)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.4 Work done" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "N=100 #turns in circular coil\n", + "i=0.10 #in amp\n", + "B=1.5 #in wb/m2\n", + "a=5*10**-2 #radius of coil in meter\n", + "u=N*i*math.pi*(a**2) #u is dipole moment\n", + "U1=(-u*B*math.cos(0))\n", + "U2=-u*B*math.cos(math.pi)\n", + "W=U2-U1\n", + "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.5 Hall potential difference" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "i=200 #current in the strip in amp\n", + "B=1.5 #magnetic field in wb/m2\n", + "n=8.4*10**28 #in m-3\n", + "e=1.6*10**-19 #in coul\n", + "h=1.0*10**-3 #thickness of copper strip in metre\n", + "w=2*10**-2 #width of copper strip in meter\n", + "Vxy=i*B/(n*e*h)\n", + "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.6 Orbital radius Cyclotron frequency and Period of revolution" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Orbit radius in meter is 0.1080625\n", + "(B) Cyclotron frequency in rev/sec is 2798328.7\n", + "(C) Period of revolution in sec is 0.0000004\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=9.1*10**-31 # in kg\n", + "v=1.9*10**6 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "B=1.0*10**-4 #in wb/m2\n", + "\n", + "#(A)\n", + "r=m*v/(q*B)\n", + "print(\"(A) Orbit radius in meter is %.7f\"%r)\n", + "#(B)\n", + "f=q*B/(2*math.pi*m)\n", + "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n", + "#(C)\n", + "T=1/f\n", + "print(\"(C) Period of revolution in sec is %.7f\"%T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.7 Magnetic induction and Deuteron energy" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n", + "(B) Deuteron energy in joule is 2.669e-12\n", + " Deuteron energy in ev is 16679852\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "f0=12*10**6 #cyclotron frequency in cycles/sec\n", + "r=21#dee radius in inches\n", + "R=r*0.0254 #dee radius in meter\n", + "q=1.6*10**-19 #charge in coul\n", + "m=3.3*10**-27 #in kg\n", + "#(A)\n", + "B=2*math.pi*f0*m/q\n", + "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n", + "#(B)\n", + "K=((q**2*B**2*R**2)/(2*m))\n", + "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n", + "K1=K*(1/(1.6*10**-19))\n", + "print(\" Deuteron energy in ev is %d\"%K1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5vybg0X.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5vybg0X.ipynb new file mode 100644 index 00000000..b0a93be7 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5vybg0X.ipynb @@ -0,0 +1,185 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.4 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "x= 0.05\n", + "The value of i in cm= 40.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=1\n", + "n2=2\n", + "o=20 #in cm\n", + "r=10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"x=\",x)\n", + "i=n2/x\n", + "print(\"The value of i in cm=\",i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.5 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "The value of i in cm= -0.03333\n", + "The value of i in cm= -30\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=2\n", + "n2=1\n", + "o=15 #in cm\n", + "r=-10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"The value of i in cm= %.5f\"%x)\n", + "i=n2/x\n", + "print(\"The value of i in cm= %d\"%i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.7 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/f in cm= 0.0325\n", + "f=1/x\n", + "f in cm= 30.76923\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n=1.65\n", + "r_1=40 #in cm\n", + "r_2=-40 #in cm\n", + "x=(n-1)*((1/r_1)-(1/r_2))\n", + "print(\"x=1/f in cm= %.4f\"%x)\n", + "print(\"f=1/x\")\n", + "f=1/x\n", + "print(\"f in cm= %.5f\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.8 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/i in cm= -0.06944\n", + "i in cm= -14.4\n", + "Lateral magnification =\n", + "m= 1.6\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "o=9 #in cm\n", + "f=24 #in cm\n", + "x=(1/f)-(1/o)\n", + "print(\"x=1/i in cm= %.5f\"%x)\n", + "i=1/x\n", + "print(\"i in cm= %.1f\"%i)\n", + "print(\"Lateral magnification =\")\n", + "m=-(i/o)\n", + "print('m= %.1f'%m)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_BKMHuy0.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_BKMHuy0.ipynb new file mode 100644 index 00000000..4cfd02ed --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_BKMHuy0.ipynb @@ -0,0 +1,214 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 29 ELECTRIC POTENTIAL" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.3 Magnitude of an isolated positive point charge" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential due to a point charge is V=q/4*pi*epislon0*r\n", + "Magnitude of positive point charge in coul is 1.112e-09\n" + ] + } + ], + "source": [ + "import math\n", + "V=100 #electric potential in volts\n", + "r=10*10**-2 #in meters\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n", + "q=V*4*math.pi*epsilon0*r\n", + "print(\"Magnitude of positive point charge in coul is %.3e\"%q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.4 Electric potential at the surface of a gold nucleus" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric potential at the surface of the nucleus in volts is 17220668\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "r=6.6*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "V=q/(4*math.pi*epsilon0*r)\n", + "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.5 Potential at the center of the square" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential at the center of the square in volts is 508.65\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "q1=1.0*10**-8 #in coul\n", + "q2=-2.0*10**-8 #in coul\n", + "q3=3.0*10**-8 #in coul\n", + "q4=2.0*10**-8 #in coul\n", + "a=1 #side of square in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "#refer to the fig 29.7\n", + "r=a/math.sqrt(2) #distance of charges from centre in meter\n", + "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n", + "print(\"Potential at the center of the square in volts is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.8 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mutual electric potential energy of two proton in joules is 3.837e-14\n", + "Mutual electric potential energy of two proton in ev is 239781.46\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "q1=1.6*10**-19 #charge in coul\n", + "q2=1.6*10**-19 #charge in coul\n", + "r=6.0*10**-15 #seperation b/w two protons in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "U=(q1*q2)/(4*math.pi*epsilon0*r)\n", + "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n", + "V=U/q1\n", + "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.9 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total energy is the sum of each pair of particles \n", + "Mutual potential energy of the particles in joules is -0.008991804694457362\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "q=1.0*10**-7 #charge in coul\n", + "a=10*10**-2 #side of triangle in meter\n", + "q1=q\n", + "q2=-4*q\n", + "q3=2*q\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Total energy is the sum of each pair of particles \")\n", + "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n", + "print(\"Mutual potential energy of the particles in joules is\",U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_EqCg1Kp.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_EqCg1Kp.ipynb new file mode 100644 index 00000000..ba08df46 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_EqCg1Kp.ipynb @@ -0,0 +1,188 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 27 THE ELECTRIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.1 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength E=F/q where F=mg\n", + "electric field strength in nt/coul is 5.574e-11\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "g=9.8 #acceleration due to gravity in m/s\n", + "q=1.6*10**-19 #charge of electron in coul\n", + "print(\"Electric field strength E=F/q where F=mg\")\n", + "E=m*g/q\n", + "print(\"electric field strength in nt/coul is %.3e\"%E)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.4 The point on the line joining two charges for the electric field strength to be zero" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For the electric field strength to be zero the point should lie between the charges where E1=E2\n", + "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n", + "Electric field strength is zero at x=4.142 cm\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "q1=1.0*10**-6 #in coul\n", + "q2=2.0*10**-6 #in coul\n", + "l=10 #sepearation b/w q1 and q2 in cm\n", + "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n", + "#\"Refer to the fig 27.9\"\n", + "#E1=electric fied strength due to q1\n", + "#E2=electric fied strength due to q2\n", + "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n", + "x=l/(1+math.sqrt(q2/q1))\n", + "print(\"Electric field strength is zero at x=%.3f cm\"%x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.9 Deflection of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corresponding deflection in meters is 0.000337\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "e=1.6*10**-19 #charge in coul\n", + "E=1.2*10**4 #electric field in nt/coul\n", + "x=1.5*10**-2 #length of deflecting assembly in m\n", + "K0=3.2*10**-16 #kinetic energy of electron in joule\n", + "#calculation\n", + "y=e*E*x**2/(4*K0)\n", + "print(\"Corresponding deflection in meters is %.6f\"%y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.11 Torque and work done by external agent on electric dipole" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Maximum torque exerted by the fied in nt-m is\n", + "0.002\n", + "(b) Work done by the external agent to turn dipole end for end in joule is \n", + "0.004\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n", + "d=2.0*10**-2 #seperation b/w charges in m\n", + "E=1.0*10**5 #external field in nt/coul\n", + "#calculations\n", + "#(a)Max torque if found when theta=90 degrees\n", + "#Torque =pEsin(theta)\n", + "p=q*d #electric dipole moment\n", + "T=p*E*math.sin(math.pi/2)\n", + "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n", + "print(T)\n", + "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n", + "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n", + "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n", + "print(W)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Gtv6wpV.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Gtv6wpV.ipynb new file mode 100644 index 00000000..d07485b3 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Gtv6wpV.ipynb @@ -0,0 +1,151 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 34 AMPERES LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.3 Distance" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Separation between two wires in metres 0.0054795\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "i1=100 #in amp\n", + "i2=20 #in amp\n", + "W=0.073 #weight of second wire W=F/l in nt/m\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "d=u0*i1*i2/(2*math.pi*W)\n", + "print(\"Separation between two wires in metres %.7f\"%d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.5 Magnetic field and Magnetic flux" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0267035\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000189\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "l=1.0 #length of solenoid in meter\n", + "d=3*10**-2 #diameter of solenoid in meter\n", + "n=5*850 #number of layers and turns of wire\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i0=5.0 #current in amp\n", + "#(A)\n", + "B=u0*i0*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.9 Magnetic field and Magnetic dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n", + "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "e=1.6*10**-19 #in coul\n", + "R=5.1*10**-11 #radius of th enucleus in meter\n", + "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "x=0 #x is any point on the orbit, since at center x=0\n", + "#(A)\n", + "i=e*f\n", + "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n", + "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n", + "N=1 #no.of turns\n", + "A=math.pi*R**2\n", + "U=N*i*A\n", + "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KZMvfEM.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KZMvfEM.ipynb new file mode 100644 index 00000000..d990c9f8 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KZMvfEM.ipynb @@ -0,0 +1,227 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 26:CHARGE AND MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.1 Magnitude of total charges in a copper penny" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Magnitude of the charges in coulombs is 133687.50000000003\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m =3.1 #mass of copper penny in grams\n", + "e =4.6*10** -18 #charge in coulombs\n", + "N0 =6*10**23 #avogadro’s number atoms / mole\n", + "M =64 #molecular weight of copper in gm/ mole\n", + "\n", + "#Calculation\n", + "N =( N0 * m ) / M #No. of copper atoms in penny\n", + "q = N * e # magnitude of the charges in coulombs\n", + "print (\" Magnitude of the charges in coulomb is \",q )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.2 Separation between total positive and negative charges" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Separation between total positive and negative charges in meters is 5813776741.499454\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "F =4.5 #Force of attraction in nt\n", + "q =1.3*10**5 #total charge in coulomb\n", + "r = q * math.sqrt ((9*10**9) / F ) ;\n", + "print(\" Separation between total positive and negative charges in meters is \",r )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.3 Force acting on charge q1" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X component of resultant force acting on q1 in nt is 2.0999999999999996\n", + "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "#given three charges q1,q2,q3\n", + "q1=-1.0*10**-6 #charge in coul\n", + "q2=+3.0*10**-6 #charge in coul\n", + "q3=-2.0*10**-6 #charge in coul\n", + "r12=15*10**-2 #separation between q1 and q2 in m\n", + "r13=10*10**-2 # separation between q1 and q3 in m\n", + "angle=math.pi/6 #in degrees\n", + "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n", + "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n", + "F12x=-F12 #ignoring signs of charges\n", + "F13x=F13*math.sin(angle);\n", + "F1x=F12x+F13x\n", + "F12y=0 #from fig.263\n", + "F13y=-F13*math.cos(angle);\n", + "F1y=F12y+F13y #in nt\n", + "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n", + "print(\"Y component of resultant force acting on q1 in nt is\",F1y)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.4 Electrical and Gravitational force between two particles" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coulomb force in nt is 8.202207191171238e-08\n", + "Gravitational force in nt is 3.689889640441438e-47\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n", + "e=1.6*10**-19 #charge in coul\n", + "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n", + "m1=9.1*10**-31 #mass of electron in kg\n", + "m2=1.7*10**-27 #mass of proton in kg\n", + "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n", + "F2=G*m1*m2/(r**2) #gravitational force\n", + "print(\"Coulomb force in nt is\",F1)\n", + "print(\"Gravitational force in nt is\",F2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.5 Repulsive force between two protons in a nucleus of iron" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Repulsive coulomb force F 14.4 nt\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n", + "q=1.6*10**-19 #charge in coul\n", + "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n", + "print(\"Repulsive coulomb force F \",F,'nt')" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_LWZh6RX.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_LWZh6RX.ipynb new file mode 100644 index 00000000..daeeb950 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_LWZh6RX.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 43 INTERFERENCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.1 Angular position of first minimum" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sin theta = 0.00273\n", + "Angle in degree= 0.15642\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=546*10**-9\n", + "d=0.10*10**-3 #in m\n", + "sin_theta=((m-0.5)*lamda)/(d)\n", + "print(\"Sin theta = %.5f\"%sin_theta)\n", + "theta=math.degrees(math.asin(sin_theta))\n", + "print(\"Angle in degree= %.5f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.2 Linear distance" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Linear distance in meter= 0.00109\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "delta=546*10**-9 #in meter\n", + "D=20*10**-2 #in meter\n", + "d=0.10*10**-3 #in meter\n", + "delta_y=(delta*D)/d\n", + "print(\"Linear distance in meter= %.5f\"%delta_y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.4 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 1\n", + "Lambda_max= 5674.666666666667\n", + "Lambda_min= 8500.0\n", + "When m= 2\n", + "Lambda_max= 3404.8\n", + "Lambda_min= 4250.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "d=3200 #in A\n", + "n=1.33\n", + "for m in range(1,3):\n", + " lambda_max=(2*d*n)/(m+0.5)\n", + " lambda_min=(8500/m)\n", + " print(\"When m=\",m)\n", + " print(\"Lambda_max=\",lambda_max)\n", + " print(\"Lambda_min=\",lambda_min)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.5 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 0\n", + "d in A=905.797\n", + "When m= 1\n", + "d in A=2717.391\n", + "When m= 2\n", + "d in A=4528.986\n", + "When m= 3\n", + "d in A=6340.580\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "lamda=5000 #in A\n", + "n=1.38\n", + "for m in range(0,4):\n", + " print(\"When m=\",m)\n", + " d=((m+0.5)*lamda)/(2*n)\n", + " print(\"d in A=%.3f\"%d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_QQNAaYJ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_QQNAaYJ.ipynb new file mode 100644 index 00000000..9112a366 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_QQNAaYJ.ipynb @@ -0,0 +1,169 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 47 LIGHT AND QUANTUM PHYSICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.1 Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in cycles/s 0.71176\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "k=20 #in nt/m\n", + "m=1 #in kg\n", + "\n", + "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n", + "print(\"Velocity in cycles/s %.5f\"%v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.2 Time calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power in j-sec 1.000000e-23\n", + "('Time reqired in sec =', 80000.0)\n", + "Time required in hour 22.22224\n" + ] + } + ], + "source": [ + "P=(10**(-3))*(3*10**(-18))/(300)\n", + "print(\"Power in j-sec %e\"%P)\n", + "s=1.6*(10**(-19))\n", + "t=(5*s)/P\n", + "print(\"Time reqired in sec =\",t)\n", + "one_sec=0.000277778 #hr\n", + "in_hour=one_sec*t\n", + "print(\"Time required in hour %.5f\"%in_hour)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.3 Work function for sodium" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 2.911e-19\n" + ] + } + ], + "source": [ + "h=6.63*10**(-34) #in joule/sec\n", + "v=4.39*10**(14) #cycles/sec\n", + "E_o=h*(v)\n", + "print(\"Energy in joule= %.3e\"%E_o)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.4 Kinetic energy to be imparten on recoiling electron" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('(A) Compton shift in meter %.3e', 3.512889892036735e-12)\n", + "('(B) Kinetic energy in joules', 6.750017319146053e-17)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "h=(6.63)*10**-34\n", + "m=9.11*10**-31\n", + "c=3*10**8\n", + "delta_h=(h/(m*c))*(1-math.cos(90))\n", + "print(\"(A) Compton shift in meter %.3e\",delta_h)\n", + "delta=1*10**-10\n", + "k=(h*c*delta_h)/(delta*(delta+delta_h))\n", + "print(\"(B) Kinetic energy in joules\",k)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_RzQ3h7U.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_RzQ3h7U.ipynb new file mode 100644 index 00000000..2ac73b23 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_RzQ3h7U.ipynb @@ -0,0 +1,103 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 28 GAUSS'S LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.3 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "r=1*10**-10 #radius of the atom in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.4 Electric field strength at the nuclear surface" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "r=6.9*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_UPQ0l86.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_UPQ0l86.ipynb new file mode 100644 index 00000000..8d7ad786 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_UPQ0l86.ipynb @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 30 CAPACITORS AND DIELECTRICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.1 Plate area" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plate area in square meter is 1.130e+08\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "C=1.0 #capacitance in farad\n", + "d=1.0*10**-3 #separation b/w plates in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=d*C/epsilon0\n", + "print(\"Plate area in square meter is %.3e\"%A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n", + "(b)Free charge in coul is 8.850e-10\n", + "(c)Electric field strength in the gap in volts/meter is 10000\n", + "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n", + "(e)Potential difference between the plates in volts is 57.1429\n", + "(f)Capacitance with the slab in place in farads is 1.549e-11\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "b=5*10**-3 #thickness of dielectric lab in meter\n", + "V0=100#in volts\n", + "k=7\n", + "#(a)\n", + "C0=epsilon0*A/d\n", + "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n", + "#(b)\n", + "q=C0*V0\n", + "print(\"(b)Free charge in coul is %.3e\"%q)\n", + "#(c)\n", + "E0=q/(epsilon0*A)\n", + "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n", + "#(d)\n", + "E=q/(k*epsilon0*A)\n", + "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n", + "#(e)\n", + "#Refer to fig30-12\n", + "V=E0*(d-b)+E*b\n", + "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n", + "#(f)\n", + "C=q/V\n", + "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n", + "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n", + "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n", + "('Electric polarisation in air gap in coul/square meter is', 0.0)\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "V0=100#in volts\n", + "E0=1*10**4 #Electric field in the air gap in volts/meter\n", + "k=7\n", + "k0=1\n", + "E=1.43*10**3 #in volts/metre\n", + "D=k*E*epsilon0\n", + "P=epsilon0*(k-1)*E\n", + "#(a)\n", + "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n", + "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n", + "#(b)\n", + "D0=k0*epsilon0*E0\n", + "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n", + "P0=epsilon0*(k0-1)*E0\n", + "print(\"Electric polarisation in air gap in coul/square meter is\",P0)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZfwEJOD.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZfwEJOD.ipynb new file mode 100644 index 00000000..583fc62c --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZfwEJOD.ipynb @@ -0,0 +1,142 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.1 Angle between two refracted beams" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For 4000 A beam, theta_2 in degree= 19.88234\n", + "For 5000 A beam, theta_2 in degree= 19.99290\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "theta_1=30\n", + "n_qa=1.4702\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n", + "\n", + "theta_1=30\n", + "n_qa=1.4624\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.4 Index of glass" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index reflection= 1.41421\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "n=1/math.sin(45*math.pi/180)\n", + "print(\"Index reflection= %.5f\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.5 Calculation of Angle" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angle theta_c in degree= 62.45732\n", + "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n", + "Angle of refraction:\n", + "Theta_2 in degree= 52.89097\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "n2=1.33\n", + "n1=1.50\n", + "theta_c=math.degrees(math.asin(n2/n1))\n", + "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n", + "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n", + "print(\"Angle of refraction:\")\n", + "x=n1/n2\n", + "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n", + "print(\"Theta_2 in degree= %.5f\"%theta_2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_e8evOCy.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_e8evOCy.ipynb new file mode 100644 index 00000000..74c7058d --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_e8evOCy.ipynb @@ -0,0 +1,198 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.1 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Max current in amps 0.5\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "V_o=50 #in volts\n", + "C=1*10**-6 #in farad\n", + "L=10*10**-3\n", + "i_m=V_o*(math.sqrt(C/L))\n", + "print(\"Max current in amps \",i_m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.2 Angular frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "L=10*(10**-3) #in henry\n", + "C=(10)**-6 #in farad\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.3 Angular frequency and time" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n", + "Time in sec= 0.13863\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "L=10*(10**-3) #in henry\n", + "C=10**-6 #in farad\n", + "R=0.1 #in ohm\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)\n", + "t=(2*L*math.log(2))/R\n", + "print(\"Time in sec= %.5f\"%t)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.5 Magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field in weber/m**2= 0.0000003\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "B=(0.5*m_0*e_0*R*dEbydT)\n", + "print(\"Magnetic field in weber/m**2= %.7f\"%B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.6 Calculation of current" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.0699004\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "i_d=(e_0*math.pi*R*R*dEbydT)\n", + "print(\"Current in amp= %.7f\"%i_d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hEvrWua.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hEvrWua.ipynb new file mode 100644 index 00000000..9f265612 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hEvrWua.ipynb @@ -0,0 +1,212 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 48 WAVES AND PROPOGATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.1 Velocity and Wavelength of particle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in m/s 5929994.5\n", + "Wavelength in A 1.222\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "k=100*(1.6*(10**-19))\n", + "m=9.1*(10**-31)\n", + "\n", + "v=math.sqrt(((2*k)/(m)))\n", + "print(\"Velocity in m/s %.1f\"%v)\n", + "h=6.6*(10**-34)\n", + "p=5.4*(10**-34)\n", + "lamda=h/p\n", + "print(\"Wavelength in A %.3f\"%lamda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.2 Quantized energy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in Joule= 5.984e-20\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n=1\n", + "h=(6.6)*10**-34 #j/sec\n", + "m=9.1*(10**-31) #in kg\n", + "l=1*(10**-9) #in m\n", + "E=(n**2)*((h**2)/(8*m*(l**2)))\n", + "print(\"Energy in Joule= %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.3 Quantum number" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 5.000e-22\n", + "Quantum number= 3.030e+14\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=10**-9 #in kg\n", + "v=10**-6 #in m/s\n", + "l=10**-4 #in m\n", + "h=(6.6)*(10**-34) #j/s\n", + "E=(0.5)*m*(v**2)\n", + "print(\"Energy in joule= %.3e\"%E)\n", + "n=(l/h)*(math.sqrt(8*m*E))\n", + "print(\"Quantum number= %.3e\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.5 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electrom momentum in kg-m/s= 2.730e-28\n", + "Delta_p in kg-m/s= 2.730e-32\n", + "Minimum uncertainaity in m= 0.02418\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "m=9.1*(10**-31) #in kg\n", + "v=300 #in m/s\n", + "h=6.6*(10**-34) #in j-s\n", + "p=m*v\n", + "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n", + "delta_p=(0.0001)*p\n", + "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n", + "delta_x=(h/delta_p)\n", + "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.6 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Momentum in kg-m/s= 15.0\n", + "Delta_x in meter= 4.400e-35\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "m=0.05 #in kg\n", + "v=300 #m/s\n", + "delta_p=m*v\n", + "print(\"Momentum in kg-m/s=\",delta_p)\n", + "delta_x=(6.6*10**-34)/delta_p\n", + "print(\"Delta_x in meter= %.3e\"%delta_x)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_m2RHxZQ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_m2RHxZQ.ipynb new file mode 100644 index 00000000..b328a6e6 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_m2RHxZQ.ipynb @@ -0,0 +1,74 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 39 ELECTROMAGNETIC WAVES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 39.6 Magnitude of electric and magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of E in volts/meter= 244.94897\n", + "B in weber/meter^2= 0.00000082\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "r=1 #in m\n", + "p=10**3 \n", + "m=4*math.pi*10**-7 #weber/amp-m\n", + "c=3*10**8 #speed of light\n", + "x=2*math.pi\n", + "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n", + "print(\"The value of E in volts/meter= %.5f\"%E_m)\n", + "B=E_m/c\n", + "print(\"B in weber/meter^2= %.8f\"%B)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_n4gN723.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_n4gN723.ipynb new file mode 100644 index 00000000..6ff195c5 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_n4gN723.ipynb @@ -0,0 +1,185 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 37 MAGNETIC PROPERTIES OF MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.2 Orbital dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Orbital dipole moment in amp-m2 is 9.061e-24\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n", + "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.4 Change in magnetic moment" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "B=2 #in wb/m2\n", + "delta_p=(e**2*B*r**2)/(4*m)\n", + "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.5 Precession frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "u=1.4*10**-26 #in amp-m2\n", + "B=0.50 #wb/m2\n", + "Lp=0.53*10**-34 #in joule-sec\n", + "fp=u*B/(2*math.pi*Lp)\n", + "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('(A) Magnetic field strength in amp/m is', 2000)\n", + "(B) Magnetisation is Zero when core is removed\n", + " Magnetisation when the core is replaced in amp/m 793774.72\n", + "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n", + " Effective magnetizing current in amp is 793.77472\n", + "(D) Permeability 397.88736\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "n=10*10**2 #turns/m\n", + "i=2 #in amp\n", + "B=1.0 #in wb/m\n", + "u0=4*math.pi*10**-7 #in wb/amp-m\n", + "#(A)\n", + "H=n*i\n", + "print(\"(A) Magnetic field strength in amp/m is\",H)\n", + "#(B)\n", + "M=(B-u0*H)/u0\n", + "print(\"(B) Magnetisation is Zero when core is removed\")\n", + "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n", + "#(C)\n", + "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n", + "i=M/n\n", + "print(\" Effective magnetizing current in amp is %.5f\"%i)\n", + "#D\n", + "Km=B/(u0*H)\n", + "print(\"(D) Permeability %.5f\"%Km)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nq61Omj.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nq61Omj.ipynb new file mode 100644 index 00000000..76a625a1 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nq61Omj.ipynb @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 40 NATURE AND PROPOGATION OF LIGHT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.1 Force and energy reflected" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Energy reflected from mirror in joule= 36000.0\n", + "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n", + "(B) Force in newton= 6.667e-08\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "u=(10)*(1.0)*3600 #in Joules\n", + "c=3*10**8 #in m/sec\n", + "t=3600 #in sec\n", + "print(\"(A) Energy reflected from mirror in joule=\",u)\n", + "p=(2*u)/c\n", + "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n", + "f=p/t\n", + "print(\"(B) Force in newton= %.3e\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.2 Angular speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular speed in rev/sec= 12.07030\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "theta=1/1440\n", + "c=3*10**8 #in m/sec\n", + "l=8630 #in m\n", + "w=(c*theta)/(2*l)\n", + "print(\"Angular speed in rev/sec= %.5f\"%w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.3 Calculation of c" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lambda_g in cm= 3.9\n", + "Value of c in m/sec= 2.992e+10\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "l=15.6 #in cm\n", + "n=8\n", + "lambda_g=(2*l)/n\n", + "print(\"Lambda_g in cm=\",lambda_g)\n", + "lamda=3.15 #in cm\n", + "f=9.5*10**9 #cycles/sec\n", + "c=lamda*f\n", + "print(\"Value of c in m/sec= %.3e\"%c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.4 Percentage error" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of light in miles/hour= 50000\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "v_1=25000 #miles/hr\n", + "u=25000 #miles/hr\n", + "c=6.7*10**8 #miles/hr\n", + "x=1+((v_1*u)/(c)**2)\n", + "v=(v_1+u)/x\n", + "print(\"Speed of light in miles/hour= %.0f\"%v)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_oRPLRB9.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_oRPLRB9.ipynb new file mode 100644 index 00000000..75c9e144 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_oRPLRB9.ipynb @@ -0,0 +1,162 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 44 DIFFRACTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.1 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a in A=13000\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=6500 #in A\n", + "a=(m*lamda)/math.sin(30*math.pi/180)\n", + "print(\"a in A=%d\"%a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.2 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wavelength in A = 4333.333\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "lamda=6500\n", + "lambda_1=lamda/1.5\n", + "print(\"Wavelength in A = %.3f\"%lambda_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.5 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.06990\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "byd=10**12\n", + "i_d=(e_0*math.pi*R*R*byd)\n", + "print(\"Current in amp= %.5f\"%i_d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.7 Delta Y" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) D in m= 0.00240\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "lamda=480*10**-9 #in m\n", + "d=0.10*10**-3 #in m\n", + "D=50*10**-2 #in m\n", + "a=0.02*10**-3\n", + "delta_y=(lamda*D)/d\n", + "print(\"(A) D in m= %.5f\"%delta_y)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_oZwf58k.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_oZwf58k.ipynb new file mode 100644 index 00000000..bbb0a1a8 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_oZwf58k.ipynb @@ -0,0 +1,225 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 31 CURRENT AND RESISTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.1 Current density" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current density in Aluminium wire in amp/square inches 1273.240\n", + "Current density in copper wire in amp/square inches 3108.495\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "d1=0.10 #diameter of aluminium wire in inches\n", + "d2=0.064 #diameter of copper wire in inches\n", + "i=10 #current carried by composite wire in amperes\n", + "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n", + "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n", + "j1=i/A1\n", + "j2=i/A2\n", + "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n", + "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.2 Drift speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No.of free electrons per unit volume in atoms/mole 8.438e+22\n", + "Drift speed of electron in cm/sec is 0.03556\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "j=480 #current density for copper wire in amp/cm2\n", + "N0=6*10**23 #avagadro number in atoms/mole\n", + "M=64 #molecular wt in gm/mole\n", + "d=9.0 #density in gm/cm3\n", + "e=1.6*10**-19 #elecron charge in coul\n", + "n=d*N0/M \n", + "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n", + "Vd=j/(n*e)\n", + "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.3 Resistance and resistivity" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n", + "(a) Resistance measured b/w the two square ends in ohm is 0.175\n", + "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n", + "l=1.0*10**-2 #in meter\n", + "b=1.0*10**-2#in meter\n", + "h=50*10**-2 #in meter\n", + "p=3.5*10**-5 #resisivity of carbon in ohm-m\n", + "#(a)Resistance b/w two square ends\n", + "l1=h\n", + "A1=b*l\n", + "R1=p*l1/A1\n", + "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n", + "l2=l\n", + "A2=b*h\n", + "R2=p*l2/A2\n", + "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.4 Mean time and Mean free path" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Mean time b/w collisions in sec is 4.979e-14\n", + "(b) Mean free path in cm is 0.000008\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=9.1*10**-31 #in kg\n", + "n=8.4*10**28 #in m-1\n", + "e=1.6*10**-19 #in coul\n", + "p=1.7*10**-8 #in ohm-m\n", + "v=1.6*10**8 #in cm/sec\n", + "T=2*m/(n*p*e**2)\n", + "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n", + "Lambda=T*v\n", + "print(\"(b) Mean free path in cm is %f\"%Lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.5 Power" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Power for the single coil in watts is 504.167\n", + "(b)Power for a coil of half the length in watts is 1008.333\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "V=110 #in volt\n", + "R=24 #ohms\n", + "P1=V**2/R\n", + "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n", + "P2=V**2/(R/2)\n", + "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ocmC4MO.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ocmC4MO.ipynb new file mode 100644 index 00000000..cb1bffb7 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ocmC4MO.ipynb @@ -0,0 +1,225 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 36 INDUCTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.1 Inductance of a toroid" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "N=10**3 #no.of turns\n", + "a=5*10**-2 #im meter\n", + "b=10*10**-2 #in meter\n", + "h=1*10**-2 #in metre\n", + "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n", + "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.2 Time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "L=50 #inductance in henry\n", + "R=30 #resistance in ohms\n", + "t0=math.log(2)*(L/R)\n", + "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.3 Maximum Current and Energy stored" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum current in amp is 5.0\n", + "Energy stored in the magnetic field in joules is 62.5\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "L=5 #inductance in henry\n", + "V=100 #emf in volts\n", + "R=20 #resistance in ohms\n", + "i=V/R\n", + "print(\"Maximum current in amp is\",i)\n", + "U=(L*i**2)/2\n", + "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.4 Rate at which energy is stored and delivered and appeared" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The rate at which energy is delivred by the battery in watt is 0.5689085\n", + "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n", + "Let D=di/dt\n", + "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "L=3 #inductance in henry\n", + "R=10 #resistance in ohm\n", + "V=3 #emf in volts\n", + "t=0.30 #in sec\n", + "T=0.30 #inductive time constant in sec\n", + "#(a)\n", + "i=(V/R)*(1-math.exp(-t/T))\n", + "P1=V*i\n", + "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n", + "#(b)\n", + "P2=i**2*R\n", + "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n", + "#(c)\n", + "print(\"Let D=di/dt\")\n", + "D=(V/L)*math.exp(-t/T) #in amp/sec\n", + "P3=L*i*D\n", + "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.6 Energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n", + "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "E=10**5 #elelctric field in volts/meter\n", + "B=1 #magnetic field in weber/meter2\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "a=0.1 #side of the cube in meter\n", + "V0=a**3 #volume of the cube in meter3\n", + "#(a)\n", + "U1=epsilon0*E**2*V0/2 #in elelctric field\n", + "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n", + "#(b)\n", + "U2=(B**2/(2*u0))*V0\n", + "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rP0FHeX.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rP0FHeX.ipynb new file mode 100644 index 00000000..874d7845 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rP0FHeX.ipynb @@ -0,0 +1,132 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 35 FARADAYS LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.1 Induced EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0376991\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000118\n", + "Induced EMF in volts is -0.0473741\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "l=1.0 #length of solenoid in meter\n", + "r=3*10**-2 #radius of solenoid in meter\n", + "n=200*10**2 #number of turns in solenoid per meter\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i=1.5 #current in amp\n", + "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n", + "d=2*10**-2 #diameter of coil in meter\n", + "delta_T=0.050 #in sec\n", + "#(A)\n", + "B=u0*i*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n", + "delta_Q=Q-(-Q)\n", + "E=-(N*delta_Q/delta_T)\n", + "print(\"Induced EMF in volts is %.7f\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.7 Induced electric field and EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n", + "('(A) Induced electric field in volt/m observed by Z', 2.0)\n", + "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n", + "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n", + "('(C) Induced emf in volt observed by S is', 0.2)\n", + "('Induced emf in volt observed by Z is', 0.2)\n" + ] + } + ], + "source": [ + "B=2 #magnetic field in wb/m2\n", + "l=10*10**-2 #in m\n", + "v=1.0 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n", + "#(A)\n", + "E=v*B\n", + "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n", + "#(B)\n", + "F=q*v*B\n", + "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n", + "F1=q*E\n", + "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n", + "#(C)\n", + "emf1=B*l*v\n", + "print(\"(C) Induced emf in volt observed by S is\",emf1)\n", + "emf2=E*l\n", + "print(\"Induced emf in volt observed by Z is\",emf2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ynorwrj.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ynorwrj.ipynb new file mode 100644 index 00000000..95796a17 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ynorwrj.ipynb @@ -0,0 +1,134 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 46 POLARIZATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.1 Calculation of theta" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle theta= 135.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "theta=math.degrees(math.acos(1/math.sqrt(2)))\n", + "theta=180-theta\n", + "print(\"Polarization angle theta=\",theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.2 Angle of refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta_p in degrees=56.30993\n", + "Angle of refraction fron Snells law in degrees=33.69007\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "theta_p= math.degrees(math.atan(1.5))\n", + "print(\"Theta_p in degrees=%.5f\"%theta_p)\n", + "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n", + "theta_r=math.degrees(math.asin(sin_theta_r))\n", + "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.3 Thickness of slab" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Value of x in m= 163611.111111113\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "lamda=5890 #A\n", + "n_e=1.553\n", + "n_o=1.544\n", + "s=(n_e)-(n_o)\n", + "x=(lamda)/(4*s)\n", + "\n", + "print(\"The Value of x in m=\",x)\n", + "#The answer provided in the textbook is wrong" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |