diff options
66 files changed, 11571 insertions, 0 deletions
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1X7iFJN.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1X7iFJN.ipynb new file mode 100644 index 00000000..412d8eb1 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1X7iFJN.ipynb @@ -0,0 +1,99 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 28 GAUSS'S LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.3 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n" + ] + } + ], + "source": [ + "r=1*10**-10 #radius of the atom in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.4 Electric field strength at the nuclear surface" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n" + ] + } + ], + "source": [ + "r=6.9*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1oAQQUs.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1oAQQUs.ipynb new file mode 100644 index 00000000..c497e908 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1oAQQUs.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 26:CHARGE AND MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.1 Magnitude of total charges in a copper penny" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Magnitude of the charges in coulombs is 133687.50000000003\n" + ] + } + ], + "source": [ + "m =3.1 #mass of copper penny in grams\n", + "e =4.6*10** -18 #charge in coulombs\n", + "N0 =6*10**23 #avogadro’s number atoms / mole\n", + "M =64 #molecular weight of copper in gm/ mole\n", + "\n", + "#Calculation\n", + "N =( N0 * m ) / M #No. of copper atoms in penny\n", + "q = N * e # magnitude of the charges in coulombs\n", + "print (\" Magnitude of the charges in coulomb is \",q )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.2 Separation between total positive and negative charges" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Separation between total positive and negative charges in meters is 5813776741.499454\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "F =4.5 #Force of attraction in nt\n", + "q =1.3*10**5 #total charge in coulomb\n", + "r = q * math.sqrt ((9*10**9) / F ) ;\n", + "print(\" Separation between total positive and negative charges in meters is \",r )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.3 Force acting on charge q1" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X component of resultant force acting on q1 in nt is 2.0999999999999996\n", + "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given three charges q1,q2,q3\n", + "q1=-1.0*10**-6 #charge in coul\n", + "q2=+3.0*10**-6 #charge in coul\n", + "q3=-2.0*10**-6 #charge in coul\n", + "r12=15*10**-2 #separation between q1 and q2 in m\n", + "r13=10*10**-2 # separation between q1 and q3 in m\n", + "angle=math.pi/6 #in degrees\n", + "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n", + "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n", + "F12x=-F12 #ignoring signs of charges\n", + "F13x=F13*math.sin(angle);\n", + "F1x=F12x+F13x\n", + "F12y=0 #from fig.263\n", + "F13y=-F13*math.cos(angle);\n", + "F1y=F12y+F13y #in nt\n", + "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n", + "print(\"Y component of resultant force acting on q1 in nt is\",F1y)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.4 Electrical and Gravitational force between two particles" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coulomb force in nt is 8.202207191171238e-08\n", + "Gravitational force in nt is 3.689889640441438e-47\n" + ] + } + ], + "source": [ + "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n", + "e=1.6*10**-19 #charge in coul\n", + "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n", + "m1=9.1*10**-31 #mass of electron in kg\n", + "m2=1.7*10**-27 #mass of proton in kg\n", + "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n", + "F2=G*m1*m2/(r**2) #gravitational force\n", + "print(\"Coulomb force in nt is\",F1)\n", + "print(\"Gravitational force in nt is\",F2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.5 Repulsive force between two protons in a nucleus of iron" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Repulsive coulomb force F 14.4 nt\n" + ] + } + ], + "source": [ + "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n", + "q=1.6*10**-19 #charge in coul\n", + "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n", + "print(\"Repulsive coulomb force F \",F,'nt')" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_249CONS.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_249CONS.ipynb new file mode 100644 index 00000000..d197d07e --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_249CONS.ipynb @@ -0,0 +1,210 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 29 ELECTRIC POTENTIAL" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.3 Magnitude of an isolated positive point charge" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential due to a point charge is V=q/4*pi*epislon0*r\n", + "Magnitude of positive point charge in coul is 1.112e-09\n" + ] + } + ], + "source": [ + "import math\n", + "V=100 #electric potential in volts\n", + "r=10*10**-2 #in meters\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n", + "q=V*4*math.pi*epsilon0*r\n", + "print(\"Magnitude of positive point charge in coul is %.3e\"%q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.4 Electric potential at the surface of a gold nucleus" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric potential at the surface of the nucleus in volts is 17220668\n" + ] + } + ], + "source": [ + "import math\n", + "r=6.6*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "V=q/(4*math.pi*epsilon0*r)\n", + "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.5 Potential at the center of the square" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential at the center of the square in volts is 508.65\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.0*10**-8 #in coul\n", + "q2=-2.0*10**-8 #in coul\n", + "q3=3.0*10**-8 #in coul\n", + "q4=2.0*10**-8 #in coul\n", + "a=1 #side of square in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "#refer to the fig 29.7\n", + "r=a/math.sqrt(2) #distance of charges from centre in meter\n", + "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n", + "print(\"Potential at the center of the square in volts is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.8 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mutual electric potential energy of two proton in joules is 3.837e-14\n", + "Mutual electric potential energy of two proton in ev is 239781.46\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.6*10**-19 #charge in coul\n", + "q2=1.6*10**-19 #charge in coul\n", + "r=6.0*10**-15 #seperation b/w two protons in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "U=(q1*q2)/(4*math.pi*epsilon0*r)\n", + "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n", + "V=U/q1\n", + "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.9 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total energy is the sum of each pair of particles \n", + "Mutual potential energy of the particles in joules is -0.008991804694457362\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-7 #charge in coul\n", + "a=10*10**-2 #side of triangle in meter\n", + "q1=q\n", + "q2=-4*q\n", + "q3=2*q\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Total energy is the sum of each pair of particles \")\n", + "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n", + "print(\"Mutual potential energy of the particles in joules is\",U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_32LhWna.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_32LhWna.ipynb new file mode 100644 index 00000000..c497e908 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_32LhWna.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 26:CHARGE AND MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.1 Magnitude of total charges in a copper penny" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Magnitude of the charges in coulombs is 133687.50000000003\n" + ] + } + ], + "source": [ + "m =3.1 #mass of copper penny in grams\n", + "e =4.6*10** -18 #charge in coulombs\n", + "N0 =6*10**23 #avogadro’s number atoms / mole\n", + "M =64 #molecular weight of copper in gm/ mole\n", + "\n", + "#Calculation\n", + "N =( N0 * m ) / M #No. of copper atoms in penny\n", + "q = N * e # magnitude of the charges in coulombs\n", + "print (\" Magnitude of the charges in coulomb is \",q )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.2 Separation between total positive and negative charges" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Separation between total positive and negative charges in meters is 5813776741.499454\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "F =4.5 #Force of attraction in nt\n", + "q =1.3*10**5 #total charge in coulomb\n", + "r = q * math.sqrt ((9*10**9) / F ) ;\n", + "print(\" Separation between total positive and negative charges in meters is \",r )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.3 Force acting on charge q1" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X component of resultant force acting on q1 in nt is 2.0999999999999996\n", + "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given three charges q1,q2,q3\n", + "q1=-1.0*10**-6 #charge in coul\n", + "q2=+3.0*10**-6 #charge in coul\n", + "q3=-2.0*10**-6 #charge in coul\n", + "r12=15*10**-2 #separation between q1 and q2 in m\n", + "r13=10*10**-2 # separation between q1 and q3 in m\n", + "angle=math.pi/6 #in degrees\n", + "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n", + "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n", + "F12x=-F12 #ignoring signs of charges\n", + "F13x=F13*math.sin(angle);\n", + "F1x=F12x+F13x\n", + "F12y=0 #from fig.263\n", + "F13y=-F13*math.cos(angle);\n", + "F1y=F12y+F13y #in nt\n", + "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n", + "print(\"Y component of resultant force acting on q1 in nt is\",F1y)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.4 Electrical and Gravitational force between two particles" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coulomb force in nt is 8.202207191171238e-08\n", + "Gravitational force in nt is 3.689889640441438e-47\n" + ] + } + ], + "source": [ + "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n", + "e=1.6*10**-19 #charge in coul\n", + "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n", + "m1=9.1*10**-31 #mass of electron in kg\n", + "m2=1.7*10**-27 #mass of proton in kg\n", + "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n", + "F2=G*m1*m2/(r**2) #gravitational force\n", + "print(\"Coulomb force in nt is\",F1)\n", + "print(\"Gravitational force in nt is\",F2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.5 Repulsive force between two protons in a nucleus of iron" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Repulsive coulomb force F 14.4 nt\n" + ] + } + ], + "source": [ + "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n", + "q=1.6*10**-19 #charge in coul\n", + "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n", + "print(\"Repulsive coulomb force F \",F,'nt')" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5FjPI0K.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5FjPI0K.ipynb new file mode 100644 index 00000000..486ad42a --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5FjPI0K.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 39 ELECTROMAGNETIC WAVES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 39.6 Magnitude of electric and magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of E in volts/meter= 244.94897\n", + "B in weber/meter^2= 0.00000082\n" + ] + } + ], + "source": [ + "import math\n", + "r=1 #in m\n", + "p=10**3 \n", + "m=4*math.pi*10**-7 #weber/amp-m\n", + "c=3*10**8 #speed of light\n", + "x=2*math.pi\n", + "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n", + "print(\"The value of E in volts/meter= %.5f\"%E_m)\n", + "B=E_m/c\n", + "print(\"B in weber/meter^2= %.8f\"%B)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_674AOQU.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_674AOQU.ipynb new file mode 100644 index 00000000..80d62fec --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_674AOQU.ipynb @@ -0,0 +1,206 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 48 WAVES AND PROPOGATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.1 Velocity and Wavelength of particle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in m/s 5929994.5\n", + "Wavelength in A 1.222\n" + ] + } + ], + "source": [ + "import math\n", + "k=100*(1.6*(10**-19))\n", + "m=9.1*(10**-31)\n", + "\n", + "v=math.sqrt(((2*k)/(m)))\n", + "print(\"Velocity in m/s %.1f\"%v)\n", + "h=6.6*(10**-34)\n", + "p=5.4*(10**-34)\n", + "lamda=h/p\n", + "print(\"Wavelength in A %.3f\"%lamda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.2 Quantized energy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in Joule= 5.984e-20\n" + ] + } + ], + "source": [ + "n=1\n", + "h=(6.6)*10**-34 #j/sec\n", + "m=9.1*(10**-31) #in kg\n", + "l=1*(10**-9) #in m\n", + "E=(n**2)*((h**2)/(8*m*(l**2)))\n", + "print(\"Energy in Joule= %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.3 Quantum number" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 5.000e-22\n", + "Quantum number= 3.030e+14\n" + ] + } + ], + "source": [ + "m=10**-9 #in kg\n", + "v=10**-6 #in m/s\n", + "l=10**-4 #in m\n", + "h=(6.6)*(10**-34) #j/s\n", + "E=(0.5)*m*(v**2)\n", + "print(\"Energy in joule= %.3e\"%E)\n", + "n=(l/h)*(math.sqrt(8*m*E))\n", + "print(\"Quantum number= %.3e\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.5 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electrom momentum in kg-m/s= 2.730e-28\n", + "Delta_p in kg-m/s= 2.730e-32\n", + "Minimum uncertainaity in m= 0.02418\n" + ] + } + ], + "source": [ + "m=9.1*(10**-31) #in kg\n", + "v=300 #in m/s\n", + "h=6.6*(10**-34) #in j-s\n", + "p=m*v\n", + "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n", + "delta_p=(0.0001)*p\n", + "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n", + "delta_x=(h/delta_p)\n", + "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.6 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Momentum in kg-m/s= 15.0\n", + "Delta_x in meter= 4.400e-35\n" + ] + } + ], + "source": [ + "m=0.05 #in kg\n", + "v=300 #m/s\n", + "delta_p=m*v\n", + "print(\"Momentum in kg-m/s=\",delta_p)\n", + "delta_x=(6.6*10**-34)/delta_p\n", + "print(\"Delta_x in meter= %.3e\"%delta_x)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_6FrZp4V.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_6FrZp4V.ipynb new file mode 100644 index 00000000..7cae8043 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_6FrZp4V.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 40 NATURE AND PROPOGATION OF LIGHT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.1 Force and energy reflected" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Energy reflected from mirror in joule= 36000.0\n", + "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n", + "(B) Force in newton= 6.667e-08\n" + ] + } + ], + "source": [ + "u=(10)*(1.0)*3600 #in Joules\n", + "c=3*10**8 #in m/sec\n", + "t=3600 #in sec\n", + "print(\"(A) Energy reflected from mirror in joule=\",u)\n", + "p=(2*u)/c\n", + "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n", + "f=p/t\n", + "print(\"(B) Force in newton= %.3e\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.2 Angular speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular speed in rev/sec= 12.07030\n" + ] + } + ], + "source": [ + "theta=1/1440\n", + "c=3*10**8 #in m/sec\n", + "l=8630 #in m\n", + "w=(c*theta)/(2*l)\n", + "print(\"Angular speed in rev/sec= %.5f\"%w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.3 Calculation of c" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lambda_g in cm= 3.9\n", + "Value of c in m/sec= 2.992e+10\n" + ] + } + ], + "source": [ + "l=15.6 #in cm\n", + "n=8\n", + "lambda_g=(2*l)/n\n", + "print(\"Lambda_g in cm=\",lambda_g)\n", + "lamda=3.15 #in cm\n", + "f=9.5*10**9 #cycles/sec\n", + "c=lamda*f\n", + "print(\"Value of c in m/sec= %.3e\"%c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.4 Percentage error" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of light in miles/hour= 50000\n" + ] + } + ], + "source": [ + "v_1=25000 #miles/hr\n", + "u=25000 #miles/hr\n", + "c=6.7*10**8 #miles/hr\n", + "x=1+((v_1*u)/(c)**2)\n", + "v=(v_1+u)/x\n", + "print(\"Speed of light in miles/hour= %.0f\"%v)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7lqJxZS.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7lqJxZS.ipynb new file mode 100644 index 00000000..ee009cd1 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7lqJxZS.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 36 INDUCTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.1 Inductance of a toroid" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "N=10**3 #no.of turns\n", + "a=5*10**-2 #im meter\n", + "b=10*10**-2 #in meter\n", + "h=1*10**-2 #in metre\n", + "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n", + "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.2 Time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n" + ] + } + ], + "source": [ + "import math\n", + "L=50 #inductance in henry\n", + "R=30 #resistance in ohms\n", + "t0=math.log(2)*(L/R)\n", + "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.3 Maximum Current and Energy stored" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum current in amp is 5.0\n", + "Energy stored in the magnetic field in joules is 62.5\n" + ] + } + ], + "source": [ + "L=5 #inductance in henry\n", + "V=100 #emf in volts\n", + "R=20 #resistance in ohms\n", + "i=V/R\n", + "print(\"Maximum current in amp is\",i)\n", + "U=(L*i**2)/2\n", + "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.4 Rate at which energy is stored and delivered and appeared" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The rate at which energy is delivred by the battery in watt is 0.5689085\n", + "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n", + "Let D=di/dt\n", + "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n" + ] + } + ], + "source": [ + "L=3 #inductance in henry\n", + "R=10 #resistance in ohm\n", + "V=3 #emf in volts\n", + "t=0.30 #in sec\n", + "T=0.30 #inductive time constant in sec\n", + "#(a)\n", + "i=(V/R)*(1-math.exp(-t/T))\n", + "P1=V*i\n", + "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n", + "#(b)\n", + "P2=i**2*R\n", + "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n", + "#(c)\n", + "print(\"Let D=di/dt\")\n", + "D=(V/L)*math.exp(-t/T) #in amp/sec\n", + "P3=L*i*D\n", + "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.6 Energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n", + "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "E=10**5 #elelctric field in volts/meter\n", + "B=1 #magnetic field in weber/meter2\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "a=0.1 #side of the cube in meter\n", + "V0=a**3 #volume of the cube in meter3\n", + "#(a)\n", + "U1=epsilon0*E**2*V0/2 #in elelctric field\n", + "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n", + "#(b)\n", + "U2=(B**2/(2*u0))*V0\n", + "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7mCirX8.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7mCirX8.ipynb new file mode 100644 index 00000000..5d6ec9b4 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7mCirX8.ipynb @@ -0,0 +1,177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 43 INTERFERENCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.1 Angular position of first minimum" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sin theta = 0.00273\n", + "Angle in degree= 0.15642\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=546*10**-9\n", + "d=0.10*10**-3 #in m\n", + "sin_theta=((m-0.5)*lamda)/(d)\n", + "print(\"Sin theta = %.5f\"%sin_theta)\n", + "theta=math.degrees(math.asin(sin_theta))\n", + "print(\"Angle in degree= %.5f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.2 Linear distance" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Linear distance in meter= 0.00109\n" + ] + } + ], + "source": [ + "delta=546*10**-9 #in meter\n", + "D=20*10**-2 #in meter\n", + "d=0.10*10**-3 #in meter\n", + "delta_y=(delta*D)/d\n", + "print(\"Linear distance in meter= %.5f\"%delta_y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.4 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 1\n", + "Lambda_max= 5674.666666666667\n", + "Lambda_min= 8500.0\n", + "When m= 2\n", + "Lambda_max= 3404.8\n", + "Lambda_min= 4250.0\n" + ] + } + ], + "source": [ + "d=3200 #in A\n", + "n=1.33\n", + "for m in range(1,3):\n", + " lambda_max=(2*d*n)/(m+0.5)\n", + " lambda_min=(8500/m)\n", + " print(\"When m=\",m)\n", + " print(\"Lambda_max=\",lambda_max)\n", + " print(\"Lambda_min=\",lambda_min)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.5 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 0\n", + "d in A=905.797\n", + "When m= 1\n", + "d in A=2717.391\n", + "When m= 2\n", + "d in A=4528.986\n", + "When m= 3\n", + "d in A=6340.580\n" + ] + } + ], + "source": [ + "lamda=5000 #in A\n", + "n=1.38\n", + "for m in range(0,4):\n", + " print(\"When m=\",m)\n", + " d=((m+0.5)*lamda)/(2*n)\n", + " print(\"d in A=%.3f\"%d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_8CUOhvt.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_8CUOhvt.ipynb new file mode 100644 index 00000000..21e23dc9 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_8CUOhvt.ipynb @@ -0,0 +1,168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 30 CAPACITORS AND DIELECTRICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.1 Plate area" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plate area in square meter is 1.130e+08\n" + ] + } + ], + "source": [ + "C=1.0 #capacitance in farad\n", + "d=1.0*10**-3 #separation b/w plates in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=d*C/epsilon0\n", + "print(\"Plate area in square meter is %.3e\"%A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n", + "(b)Free charge in coul is 8.850e-10\n", + "(c)Electric field strength in the gap in volts/meter is 10000\n", + "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n", + "(e)Potential difference between the plates in volts is 57.1429\n", + "(f)Capacitance with the slab in place in farads is 1.549e-11\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "b=5*10**-3 #thickness of dielectric lab in meter\n", + "V0=100#in volts\n", + "k=7\n", + "#(a)\n", + "C0=epsilon0*A/d\n", + "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n", + "#(b)\n", + "q=C0*V0\n", + "print(\"(b)Free charge in coul is %.3e\"%q)\n", + "#(c)\n", + "E0=q/(epsilon0*A)\n", + "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n", + "#(d)\n", + "E=q/(k*epsilon0*A)\n", + "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n", + "#(e)\n", + "#Refer to fig30-12\n", + "V=E0*(d-b)+E*b\n", + "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n", + "#(f)\n", + "C=q/V\n", + "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n", + "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n", + "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n", + "Electric polarisation in air gap in coul/square meter is 0.0\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "V0=100#in volts\n", + "E0=1*10**4 #Electric field in the air gap in volts/meter\n", + "k=7\n", + "k0=1\n", + "E=1.43*10**3 #in volts/metre\n", + "D=k*E*epsilon0\n", + "P=epsilon0*(k-1)*E\n", + "#(a)\n", + "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n", + "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n", + "#(b)\n", + "D0=k0*epsilon0*E0\n", + "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n", + "P0=epsilon0*(k0-1)*E0\n", + "print(\"Electric polarisation in air gap in coul/square meter is\",P0)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_9lfHTPa.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_9lfHTPa.ipynb new file mode 100644 index 00000000..34883c4a --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_9lfHTPa.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 35 FARADAYS LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.1 Induced EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0376991\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000118\n", + "Induced EMF in volts is -0.0473741\n" + ] + } + ], + "source": [ + "import math \n", + "l=1.0 #length of solenoid in meter\n", + "r=3*10**-2 #radius of solenoid in meter\n", + "n=200*10**2 #number of turns in solenoid per meter\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i=1.5 #current in amp\n", + "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n", + "d=2*10**-2 #diameter of coil in meter\n", + "delta_T=0.050 #in sec\n", + "#(A)\n", + "B=u0*i*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n", + "delta_Q=Q-(-Q)\n", + "E=-(N*delta_Q/delta_T)\n", + "print(\"Induced EMF in volts is %.7f\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.7 Induced electric field and EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n", + "(A) Induced electric field in volt/m observed by Z 2.0\n", + "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n", + "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n", + "(C) Induced emf in volt observed by S is 0.2\n", + "Induced emf in volt observed by Z is 0.2\n" + ] + } + ], + "source": [ + "B=2 #magnetic field in wb/m2\n", + "l=10*10**-2 #in m\n", + "v=1.0 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n", + "#(A)\n", + "E=v*B\n", + "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n", + "#(B)\n", + "F=q*v*B\n", + "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n", + "F1=q*E\n", + "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n", + "#(C)\n", + "emf1=B*l*v\n", + "print(\"(C) Induced emf in volt observed by S is\",emf1)\n", + "emf2=E*l\n", + "print(\"Induced emf in volt observed by Z is\",emf2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_CtUwKOt.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_CtUwKOt.ipynb new file mode 100644 index 00000000..ee009cd1 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_CtUwKOt.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 36 INDUCTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.1 Inductance of a toroid" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "N=10**3 #no.of turns\n", + "a=5*10**-2 #im meter\n", + "b=10*10**-2 #in meter\n", + "h=1*10**-2 #in metre\n", + "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n", + "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.2 Time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n" + ] + } + ], + "source": [ + "import math\n", + "L=50 #inductance in henry\n", + "R=30 #resistance in ohms\n", + "t0=math.log(2)*(L/R)\n", + "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.3 Maximum Current and Energy stored" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum current in amp is 5.0\n", + "Energy stored in the magnetic field in joules is 62.5\n" + ] + } + ], + "source": [ + "L=5 #inductance in henry\n", + "V=100 #emf in volts\n", + "R=20 #resistance in ohms\n", + "i=V/R\n", + "print(\"Maximum current in amp is\",i)\n", + "U=(L*i**2)/2\n", + "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.4 Rate at which energy is stored and delivered and appeared" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The rate at which energy is delivred by the battery in watt is 0.5689085\n", + "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n", + "Let D=di/dt\n", + "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n" + ] + } + ], + "source": [ + "L=3 #inductance in henry\n", + "R=10 #resistance in ohm\n", + "V=3 #emf in volts\n", + "t=0.30 #in sec\n", + "T=0.30 #inductive time constant in sec\n", + "#(a)\n", + "i=(V/R)*(1-math.exp(-t/T))\n", + "P1=V*i\n", + "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n", + "#(b)\n", + "P2=i**2*R\n", + "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n", + "#(c)\n", + "print(\"Let D=di/dt\")\n", + "D=(V/L)*math.exp(-t/T) #in amp/sec\n", + "P3=L*i*D\n", + "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.6 Energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n", + "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "E=10**5 #elelctric field in volts/meter\n", + "B=1 #magnetic field in weber/meter2\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "a=0.1 #side of the cube in meter\n", + "V0=a**3 #volume of the cube in meter3\n", + "#(a)\n", + "U1=epsilon0*E**2*V0/2 #in elelctric field\n", + "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n", + "#(b)\n", + "U2=(B**2/(2*u0))*V0\n", + "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_G05Dl5E.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_G05Dl5E.ipynb new file mode 100644 index 00000000..d8f167d7 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_G05Dl5E.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 37 MAGNETIC PROPERTIES OF MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.2 Orbital dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Orbital dipole moment in amp-m2 is 9.061e-24\n" + ] + } + ], + "source": [ + "import math\n", + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n", + "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.4 Change in magnetic moment" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "B=2 #in wb/m2\n", + "delta_p=(e**2*B*r**2)/(4*m)\n", + "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.5 Precession frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n" + ] + } + ], + "source": [ + "import math\n", + "u=1.4*10**-26 #in amp-m2\n", + "B=0.50 #wb/m2\n", + "Lp=0.53*10**-34 #in joule-sec\n", + "fp=u*B/(2*math.pi*Lp)\n", + "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field strength in amp/m is 2000\n", + "(B) Magnetisation is Zero when core is removed\n", + " Magnetisation when the core is replaced in amp/m 793774.72\n", + "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n", + " Effective magnetizing current in amp is 793.77472\n", + "(D) Permeability 397.88736\n" + ] + } + ], + "source": [ + "import math\n", + "n=10*10**2 #turns/m\n", + "i=2 #in amp\n", + "B=1.0 #in wb/m\n", + "u0=4*math.pi*10**-7 #in wb/amp-m\n", + "#(A)\n", + "H=n*i\n", + "print(\"(A) Magnetic field strength in amp/m is\",H)\n", + "#(B)\n", + "M=(B-u0*H)/u0\n", + "print(\"(B) Magnetisation is Zero when core is removed\")\n", + "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n", + "#(C)\n", + "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n", + "i=M/n\n", + "print(\" Effective magnetizing current in amp is %.5f\"%i)\n", + "#D\n", + "Km=B/(u0*H)\n", + "print(\"(D) Permeability %.5f\"%Km)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_HTSThxL.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_HTSThxL.ipynb new file mode 100644 index 00000000..c497e908 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_HTSThxL.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 26:CHARGE AND MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.1 Magnitude of total charges in a copper penny" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Magnitude of the charges in coulombs is 133687.50000000003\n" + ] + } + ], + "source": [ + "m =3.1 #mass of copper penny in grams\n", + "e =4.6*10** -18 #charge in coulombs\n", + "N0 =6*10**23 #avogadro’s number atoms / mole\n", + "M =64 #molecular weight of copper in gm/ mole\n", + "\n", + "#Calculation\n", + "N =( N0 * m ) / M #No. of copper atoms in penny\n", + "q = N * e # magnitude of the charges in coulombs\n", + "print (\" Magnitude of the charges in coulomb is \",q )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.2 Separation between total positive and negative charges" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Separation between total positive and negative charges in meters is 5813776741.499454\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "F =4.5 #Force of attraction in nt\n", + "q =1.3*10**5 #total charge in coulomb\n", + "r = q * math.sqrt ((9*10**9) / F ) ;\n", + "print(\" Separation between total positive and negative charges in meters is \",r )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.3 Force acting on charge q1" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X component of resultant force acting on q1 in nt is 2.0999999999999996\n", + "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "#given three charges q1,q2,q3\n", + "q1=-1.0*10**-6 #charge in coul\n", + "q2=+3.0*10**-6 #charge in coul\n", + "q3=-2.0*10**-6 #charge in coul\n", + "r12=15*10**-2 #separation between q1 and q2 in m\n", + "r13=10*10**-2 # separation between q1 and q3 in m\n", + "angle=math.pi/6 #in degrees\n", + "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n", + "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n", + "F12x=-F12 #ignoring signs of charges\n", + "F13x=F13*math.sin(angle);\n", + "F1x=F12x+F13x\n", + "F12y=0 #from fig.263\n", + "F13y=-F13*math.cos(angle);\n", + "F1y=F12y+F13y #in nt\n", + "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n", + "print(\"Y component of resultant force acting on q1 in nt is\",F1y)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.4 Electrical and Gravitational force between two particles" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coulomb force in nt is 8.202207191171238e-08\n", + "Gravitational force in nt is 3.689889640441438e-47\n" + ] + } + ], + "source": [ + "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n", + "e=1.6*10**-19 #charge in coul\n", + "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n", + "m1=9.1*10**-31 #mass of electron in kg\n", + "m2=1.7*10**-27 #mass of proton in kg\n", + "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n", + "F2=G*m1*m2/(r**2) #gravitational force\n", + "print(\"Coulomb force in nt is\",F1)\n", + "print(\"Gravitational force in nt is\",F2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.5 Repulsive force between two protons in a nucleus of iron" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Repulsive coulomb force F 14.4 nt\n" + ] + } + ], + "source": [ + "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n", + "q=1.6*10**-19 #charge in coul\n", + "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n", + "print(\"Repulsive coulomb force F \",F,'nt')" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KC7XWFB.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KC7XWFB.ipynb new file mode 100644 index 00000000..381ec056 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KC7XWFB.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.1 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Max current in amps 0.5\n" + ] + } + ], + "source": [ + "import math\n", + "V_o=50 #in volts\n", + "C=1*10**-6 #in farad\n", + "L=10*10**-3\n", + "i_m=V_o*(math.sqrt(C/L))\n", + "print(\"Max current in amps \",i_m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.2 Angular frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n" + ] + } + ], + "source": [ + "import math\n", + "L=10*(10**-3) #in henry\n", + "C=(10)**-6 #in farad\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.3 Angular frequency and time" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n", + "Time in sec= 0.13863\n" + ] + } + ], + "source": [ + "L=10*(10**-3) #in henry\n", + "C=10**-6 #in farad\n", + "R=0.1 #in ohm\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)\n", + "t=(2*L*math.log(2))/R\n", + "print(\"Time in sec= %.5f\"%t)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.5 Magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field in weber/m**2= 0.0000003\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "B=(0.5*m_0*e_0*R*dEbydT)\n", + "print(\"Magnetic field in weber/m**2= %.7f\"%B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.6 Calculation of current" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.0699004\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "i_d=(e_0*math.pi*R*R*dEbydT)\n", + "print(\"Current in amp= %.7f\"%i_d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_OhJEIZW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_OhJEIZW.ipynb new file mode 100644 index 00000000..4651a1a4 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_OhJEIZW.ipynb @@ -0,0 +1,158 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 44 DIFFRACTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.1 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a in A=13000\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=6500 #in A\n", + "a=(m*lamda)/math.sin(30*math.pi/180)\n", + "print(\"a in A=%d\"%a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.2 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wavelength in A = 4333.333\n" + ] + } + ], + "source": [ + "lamda=6500\n", + "lambda_1=lamda/1.5\n", + "print(\"Wavelength in A = %.3f\"%lambda_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.5 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.06990\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "byd=10**12\n", + "i_d=(e_0*math.pi*R*R*byd)\n", + "print(\"Current in amp= %.5f\"%i_d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.7 Delta Y" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) D in m= 0.00240\n" + ] + } + ], + "source": [ + "lamda=480*10**-9 #in m\n", + "d=0.10*10**-3 #in m\n", + "D=50*10**-2 #in m\n", + "a=0.02*10**-3\n", + "delta_y=(lamda*D)/d\n", + "print(\"(A) D in m= %.5f\"%delta_y)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_P2e5pSM.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_P2e5pSM.ipynb new file mode 100644 index 00000000..381ec056 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_P2e5pSM.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.1 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Max current in amps 0.5\n" + ] + } + ], + "source": [ + "import math\n", + "V_o=50 #in volts\n", + "C=1*10**-6 #in farad\n", + "L=10*10**-3\n", + "i_m=V_o*(math.sqrt(C/L))\n", + "print(\"Max current in amps \",i_m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.2 Angular frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n" + ] + } + ], + "source": [ + "import math\n", + "L=10*(10**-3) #in henry\n", + "C=(10)**-6 #in farad\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.3 Angular frequency and time" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n", + "Time in sec= 0.13863\n" + ] + } + ], + "source": [ + "L=10*(10**-3) #in henry\n", + "C=10**-6 #in farad\n", + "R=0.1 #in ohm\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)\n", + "t=(2*L*math.log(2))/R\n", + "print(\"Time in sec= %.5f\"%t)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.5 Magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field in weber/m**2= 0.0000003\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "B=(0.5*m_0*e_0*R*dEbydT)\n", + "print(\"Magnetic field in weber/m**2= %.7f\"%B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.6 Calculation of current" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.0699004\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "i_d=(e_0*math.pi*R*R*dEbydT)\n", + "print(\"Current in amp= %.7f\"%i_d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Pk7b9LC.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Pk7b9LC.ipynb new file mode 100644 index 00000000..0209a02b --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Pk7b9LC.ipynb @@ -0,0 +1,184 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.4 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "x= 0.05\n", + "The value of i in cm= 40.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=1\n", + "n2=2\n", + "o=20 #in cm\n", + "r=10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"x=\",x)\n", + "i=n2/x\n", + "print(\"The value of i in cm=\",i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.5 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "The value of i in cm= -0.03333\n", + "The value of i in cm= -30\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=2\n", + "n2=1\n", + "o=15 #in cm\n", + "r=-10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"The value of i in cm= %.5f\"%x)\n", + "i=n2/x\n", + "print(\"The value of i in cm= %d\"%i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.7 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/f in cm= 0.0325\n", + "f=1/x\n", + "f in cm= 30.76923\n" + ] + } + ], + "source": [ + "n=1.65\n", + "r_1=40 #in cm\n", + "r_2=-40 #in cm\n", + "x=(n-1)*((1/r_1)-(1/r_2))\n", + "print(\"x=1/f in cm= %.4f\"%x)\n", + "print(\"f=1/x\")\n", + "f=1/x\n", + "print(\"f in cm= %.5f\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.8 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/i in cm= -0.06944\n", + "i in cm= -14.4\n", + "Lateral magnification =\n", + "m= 1.6\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "o=9 #in cm\n", + "f=24 #in cm\n", + "x=(1/f)-(1/o)\n", + "print(\"x=1/i in cm= %.5f\"%x)\n", + "i=1/x\n", + "print(\"i in cm= %.1f\"%i)\n", + "print(\"Lateral magnification =\")\n", + "m=-(i/o)\n", + "print('m= %.1f'%m)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PsTln1E.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PsTln1E.ipynb new file mode 100644 index 00000000..486ad42a --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PsTln1E.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 39 ELECTROMAGNETIC WAVES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 39.6 Magnitude of electric and magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of E in volts/meter= 244.94897\n", + "B in weber/meter^2= 0.00000082\n" + ] + } + ], + "source": [ + "import math\n", + "r=1 #in m\n", + "p=10**3 \n", + "m=4*math.pi*10**-7 #weber/amp-m\n", + "c=3*10**8 #speed of light\n", + "x=2*math.pi\n", + "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n", + "print(\"The value of E in volts/meter= %.5f\"%E_m)\n", + "B=E_m/c\n", + "print(\"B in weber/meter^2= %.8f\"%B)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PvDqzDQ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PvDqzDQ.ipynb new file mode 100644 index 00000000..5d6ec9b4 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PvDqzDQ.ipynb @@ -0,0 +1,177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 43 INTERFERENCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.1 Angular position of first minimum" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sin theta = 0.00273\n", + "Angle in degree= 0.15642\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=546*10**-9\n", + "d=0.10*10**-3 #in m\n", + "sin_theta=((m-0.5)*lamda)/(d)\n", + "print(\"Sin theta = %.5f\"%sin_theta)\n", + "theta=math.degrees(math.asin(sin_theta))\n", + "print(\"Angle in degree= %.5f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.2 Linear distance" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Linear distance in meter= 0.00109\n" + ] + } + ], + "source": [ + "delta=546*10**-9 #in meter\n", + "D=20*10**-2 #in meter\n", + "d=0.10*10**-3 #in meter\n", + "delta_y=(delta*D)/d\n", + "print(\"Linear distance in meter= %.5f\"%delta_y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.4 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 1\n", + "Lambda_max= 5674.666666666667\n", + "Lambda_min= 8500.0\n", + "When m= 2\n", + "Lambda_max= 3404.8\n", + "Lambda_min= 4250.0\n" + ] + } + ], + "source": [ + "d=3200 #in A\n", + "n=1.33\n", + "for m in range(1,3):\n", + " lambda_max=(2*d*n)/(m+0.5)\n", + " lambda_min=(8500/m)\n", + " print(\"When m=\",m)\n", + " print(\"Lambda_max=\",lambda_max)\n", + " print(\"Lambda_min=\",lambda_min)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.5 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 0\n", + "d in A=905.797\n", + "When m= 1\n", + "d in A=2717.391\n", + "When m= 2\n", + "d in A=4528.986\n", + "When m= 3\n", + "d in A=6340.580\n" + ] + } + ], + "source": [ + "lamda=5000 #in A\n", + "n=1.38\n", + "for m in range(0,4):\n", + " print(\"When m=\",m)\n", + " d=((m+0.5)*lamda)/(2*n)\n", + " print(\"d in A=%.3f\"%d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_R4I62FG.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_R4I62FG.ipynb new file mode 100644 index 00000000..2da66d96 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_R4I62FG.ipynb @@ -0,0 +1,149 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 34 AMPERES LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.3 Distance" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Separation between two wires in metres 0.0054795\n" + ] + } + ], + "source": [ + "import math\n", + "i1=100 #in amp\n", + "i2=20 #in amp\n", + "W=0.073 #weight of second wire W=F/l in nt/m\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "d=u0*i1*i2/(2*math.pi*W)\n", + "print(\"Separation between two wires in metres %.7f\"%d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.5 Magnetic field and Magnetic flux" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0267035\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000189\n" + ] + } + ], + "source": [ + "import math\n", + "l=1.0 #length of solenoid in meter\n", + "d=3*10**-2 #diameter of solenoid in meter\n", + "n=5*850 #number of layers and turns of wire\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i0=5.0 #current in amp\n", + "#(A)\n", + "B=u0*i0*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.9 Magnetic field and Magnetic dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n", + "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "e=1.6*10**-19 #in coul\n", + "R=5.1*10**-11 #radius of th enucleus in meter\n", + "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "x=0 #x is any point on the orbit, since at center x=0\n", + "#(A)\n", + "i=e*f\n", + "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n", + "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n", + "N=1 #no.of turns\n", + "A=math.pi*R**2\n", + "U=N*i*A\n", + "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SBjZLMJ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SBjZLMJ.ipynb new file mode 100644 index 00000000..a0180572 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SBjZLMJ.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.1 Angle between two refracted beams" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For 4000 A beam, theta_2 in degree= 19.88234\n", + "For 5000 A beam, theta_2 in degree= 19.99290\n" + ] + } + ], + "source": [ + "import math\n", + "theta_1=30\n", + "n_qa=1.4702\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n", + "\n", + "theta_1=30\n", + "n_qa=1.4624\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.4 Index of glass" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index reflection= 1.41421\n" + ] + } + ], + "source": [ + "import math\n", + "n=1/math.sin(45*math.pi/180)\n", + "print(\"Index reflection= %.5f\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.5 Calculation of Angle" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angle theta_c in degree= 62.45732\n", + "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n", + "Angle of refraction:\n", + "Theta_2 in degree= 52.89097\n" + ] + } + ], + "source": [ + "import math\n", + "n2=1.33\n", + "n1=1.50\n", + "theta_c=math.degrees(math.asin(n2/n1))\n", + "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n", + "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n", + "print(\"Angle of refraction:\")\n", + "x=n1/n2\n", + "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n", + "print(\"Theta_2 in degree= %.5f\"%theta_2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SJwMqQP.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SJwMqQP.ipynb new file mode 100644 index 00000000..6cc02fdd --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SJwMqQP.ipynb @@ -0,0 +1,157 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 47 LIGHT AND QUANTUM PHYSICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.1 Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in cycles/s 0.71176\n" + ] + } + ], + "source": [ + "import math\n", + "k=20 #in nt/m\n", + "m=1 #in kg\n", + "\n", + "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n", + "print(\"Velocity in cycles/s %.5f\"%v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.2 Time calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power in j-sec 1.000000e-23\n", + "('Time reqired in sec =', 80000.0)\n", + "Time required in hour 22.22224\n" + ] + } + ], + "source": [ + "P=(10**(-3))*(3*10**(-18))/(300)\n", + "print(\"Power in j-sec %e\"%P)\n", + "s=1.6*(10**(-19))\n", + "t=(5*s)/P\n", + "print(\"Time reqired in sec =\",t)\n", + "one_sec=0.000277778 #hr\n", + "in_hour=one_sec*t\n", + "print(\"Time required in hour %.5f\"%in_hour)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.3 Work function for sodium" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 2.911e-19\n" + ] + } + ], + "source": [ + "h=6.63*10**(-34) #in joule/sec\n", + "v=4.39*10**(14) #cycles/sec\n", + "E_o=h*(v)\n", + "print(\"Energy in joule= %.3e\"%E_o)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.4 Kinetic energy to be imparten on recoiling electron" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "h=(6.63)*10**-34\n", + "m=9.11*10**-31\n", + "c=3*10**8\n", + "delta_h=(h/(m*c))*(1-math.cos(90))\n", + "print(\"(A) Compton shift in meter %.3e\",delta_h)\n", + "delta=1*10**-10\n", + "k=(h*c*delta_h)/(delta*(delta+delta_h))\n", + "print(\"(B) Kinetic energy in joules\",k)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SY19qB5.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SY19qB5.ipynb new file mode 100644 index 00000000..047fa477 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SY19qB5.ipynb @@ -0,0 +1,260 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 33 THE MAGNETIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.1 Force acting on a proton" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of the proton in meters/sec is 30678599.55\n", + "Force acting on proton in nt is 7.363e-12\n" + ] + } + ], + "source": [ + "import math\n", + "K=5*10**6 #ev\n", + "e=1.6*10**-19 #in coul\n", + "K1=K*e #in joules\n", + "m=1.7*10**-27 #in kg\n", + "B=1.5 #wb/m\n", + "theta=math.pi/2\n", + "v=math.sqrt(2*K1/m)\n", + "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n", + "F=e*v*B*math.sin(theta)\n", + "print(\"Force acting on proton in nt is %.3e\"%F)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.3 Torsional constant of the spring" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Torssional constant in nt-m/deg is 3.333e-08\n" + ] + } + ], + "source": [ + "N=250 #turns in coil\n", + "i=1.0*10**-4 #in amp\n", + "B=0.2 #wb/m2\n", + "h=2*10**-2 #coil height in m\n", + "w=1.0*10**-2 #width of coil in m\n", + "Q=30 #angular deflectin in degrees\n", + "theta=math.pi/2\n", + "A=h*w\n", + "k=N*i*A*B*math.sin(theta)/Q\n", + "print(\"Torssional constant in nt-m/deg is %.3e\"%k)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.4 Work done" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n" + ] + } + ], + "source": [ + "import math\n", + "N=100 #turns in circular coil\n", + "i=0.10 #in amp\n", + "B=1.5 #in wb/m2\n", + "a=5*10**-2 #radius of coil in meter\n", + "u=N*i*math.pi*(a**2) #u is dipole moment\n", + "U1=(-u*B*math.cos(0))\n", + "U2=-u*B*math.cos(math.pi)\n", + "W=U2-U1\n", + "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.5 Hall potential difference" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n" + ] + } + ], + "source": [ + "i=200 #current in the strip in amp\n", + "B=1.5 #magnetic field in wb/m2\n", + "n=8.4*10**28 #in m-3\n", + "e=1.6*10**-19 #in coul\n", + "h=1.0*10**-3 #thickness of copper strip in metre\n", + "w=2*10**-2 #width of copper strip in meter\n", + "Vxy=i*B/(n*e*h)\n", + "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.6 Orbital radius Cyclotron frequency and Period of revolution" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Orbit radius in meter is 0.1080625\n", + "(B) Cyclotron frequency in rev/sec is 2798328.7\n", + "(C) Period of revolution in sec is 0.0000004\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "m=9.1*10**-31 # in kg\n", + "v=1.9*10**6 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "B=1.0*10**-4 #in wb/m2\n", + "\n", + "#(A)\n", + "r=m*v/(q*B)\n", + "print(\"(A) Orbit radius in meter is %.7f\"%r)\n", + "#(B)\n", + "f=q*B/(2*math.pi*m)\n", + "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n", + "#(C)\n", + "T=1/f\n", + "print(\"(C) Period of revolution in sec is %.7f\"%T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.7 Magnetic induction and Deuteron energy" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n", + "(B) Deuteron energy in joule is 2.669e-12\n", + " Deuteron energy in ev is 16679852\n" + ] + } + ], + "source": [ + "import math\n", + "f0=12*10**6 #cyclotron frequency in cycles/sec\n", + "r=21#dee radius in inches\n", + "R=r*0.0254 #dee radius in meter\n", + "q=1.6*10**-19 #charge in coul\n", + "m=3.3*10**-27 #in kg\n", + "#(A)\n", + "B=2*math.pi*f0*m/q\n", + "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n", + "#(B)\n", + "K=((q**2*B**2*R**2)/(2*m))\n", + "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n", + "K1=K*(1/(1.6*10**-19))\n", + "print(\" Deuteron energy in ev is %d\"%K1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_TF6X2fm.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_TF6X2fm.ipynb new file mode 100644 index 00000000..2b7da278 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_TF6X2fm.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 27 THE ELECTRIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.1 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength E=F/q where F=mg\n", + "electric field strength in nt/coul is 5.574e-11\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #mass of electron in kg\n", + "g=9.8 #acceleration due to gravity in m/s\n", + "q=1.6*10**-19 #charge of electron in coul\n", + "print(\"Electric field strength E=F/q where F=mg\")\n", + "E=m*g/q\n", + "print(\"electric field strength in nt/coul is %.3e\"%E)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.4 The point on the line joining two charges for the electric field strength to be zero" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For the electric field strength to be zero the point should lie between the charges where E1=E2\n", + "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n", + "Electric field strength is zero at x=4.142 cm\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "q1=1.0*10**-6 #in coul\n", + "q2=2.0*10**-6 #in coul\n", + "l=10 #sepearation b/w q1 and q2 in cm\n", + "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n", + "#\"Refer to the fig 27.9\"\n", + "#E1=electric fied strength due to q1\n", + "#E2=electric fied strength due to q2\n", + "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n", + "x=l/(1+math.sqrt(q2/q1))\n", + "print(\"Electric field strength is zero at x=%.3f cm\"%x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.9 Deflection of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corresponding deflection in meters is 0.000337\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #charge in coul\n", + "E=1.2*10**4 #electric field in nt/coul\n", + "x=1.5*10**-2 #length of deflecting assembly in m\n", + "K0=3.2*10**-16 #kinetic energy of electron in joule\n", + "#calculation\n", + "y=e*E*x**2/(4*K0)\n", + "print(\"Corresponding deflection in meters is %.6f\"%y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.11 Torque and work done by external agent on electric dipole" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Maximum torque exerted by the fied in nt-m is\n", + "0.002\n", + "(b) Work done by the external agent to turn dipole end for end in joule is \n", + "0.004\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n", + "d=2.0*10**-2 #seperation b/w charges in m\n", + "E=1.0*10**5 #external field in nt/coul\n", + "#calculations\n", + "#(a)Max torque if found when theta=90 degrees\n", + "#Torque =pEsin(theta)\n", + "p=q*d #electric dipole moment\n", + "T=p*E*math.sin(math.pi/2)\n", + "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n", + "print(T)\n", + "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n", + "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n", + "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n", + "print(W)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_X9h3IeS.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_X9h3IeS.ipynb new file mode 100644 index 00000000..34883c4a --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_X9h3IeS.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 35 FARADAYS LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.1 Induced EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0376991\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000118\n", + "Induced EMF in volts is -0.0473741\n" + ] + } + ], + "source": [ + "import math \n", + "l=1.0 #length of solenoid in meter\n", + "r=3*10**-2 #radius of solenoid in meter\n", + "n=200*10**2 #number of turns in solenoid per meter\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i=1.5 #current in amp\n", + "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n", + "d=2*10**-2 #diameter of coil in meter\n", + "delta_T=0.050 #in sec\n", + "#(A)\n", + "B=u0*i*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n", + "delta_Q=Q-(-Q)\n", + "E=-(N*delta_Q/delta_T)\n", + "print(\"Induced EMF in volts is %.7f\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.7 Induced electric field and EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n", + "(A) Induced electric field in volt/m observed by Z 2.0\n", + "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n", + "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n", + "(C) Induced emf in volt observed by S is 0.2\n", + "Induced emf in volt observed by Z is 0.2\n" + ] + } + ], + "source": [ + "B=2 #magnetic field in wb/m2\n", + "l=10*10**-2 #in m\n", + "v=1.0 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n", + "#(A)\n", + "E=v*B\n", + "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n", + "#(B)\n", + "F=q*v*B\n", + "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n", + "F1=q*E\n", + "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n", + "#(C)\n", + "emf1=B*l*v\n", + "print(\"(C) Induced emf in volt observed by S is\",emf1)\n", + "emf2=E*l\n", + "print(\"Induced emf in volt observed by Z is\",emf2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XhB36rB.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XhB36rB.ipynb new file mode 100644 index 00000000..904b1c32 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XhB36rB.ipynb @@ -0,0 +1,220 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 31 CURRENT AND RESISTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.1 Current density" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current density in Aluminium wire in amp/square inches 1273.240\n", + "Current density in copper wire in amp/square inches 3108.495\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "d1=0.10 #diameter of aluminium wire in inches\n", + "d2=0.064 #diameter of copper wire in inches\n", + "i=10 #current carried by composite wire in amperes\n", + "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n", + "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n", + "j1=i/A1\n", + "j2=i/A2\n", + "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n", + "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.2 Drift speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No.of free electrons per unit volume in atoms/mole 8.438e+22\n", + "Drift speed of electron in cm/sec is 0.03556\n" + ] + } + ], + "source": [ + "j=480 #current density for copper wire in amp/cm2\n", + "N0=6*10**23 #avagadro number in atoms/mole\n", + "M=64 #molecular wt in gm/mole\n", + "d=9.0 #density in gm/cm3\n", + "e=1.6*10**-19 #elecron charge in coul\n", + "n=d*N0/M \n", + "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n", + "Vd=j/(n*e)\n", + "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.3 Resistance and resistivity" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n", + "(a) Resistance measured b/w the two square ends in ohm is 0.175\n", + "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n" + ] + } + ], + "source": [ + "\n", + "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n", + "l=1.0*10**-2 #in meter\n", + "b=1.0*10**-2#in meter\n", + "h=50*10**-2 #in meter\n", + "p=3.5*10**-5 #resisivity of carbon in ohm-m\n", + "#(a)Resistance b/w two square ends\n", + "l1=h\n", + "A1=b*l\n", + "R1=p*l1/A1\n", + "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n", + "l2=l\n", + "A2=b*h\n", + "R2=p*l2/A2\n", + "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.4 Mean time and Mean free path" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Mean time b/w collisions in sec is 4.979e-14\n", + "(b) Mean free path in cm is 0.000008\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #in kg\n", + "n=8.4*10**28 #in m-1\n", + "e=1.6*10**-19 #in coul\n", + "p=1.7*10**-8 #in ohm-m\n", + "v=1.6*10**8 #in cm/sec\n", + "T=2*m/(n*p*e**2)\n", + "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n", + "Lambda=T*v\n", + "print(\"(b) Mean free path in cm is %f\"%Lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.5 Power" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Power for the single coil in watts is 504.167\n", + "(b)Power for a coil of half the length in watts is 1008.333\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "V=110 #in volt\n", + "R=24 #ohms\n", + "P1=V**2/R\n", + "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n", + "P2=V**2/(R/2)\n", + "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XzIRgL4.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XzIRgL4.ipynb new file mode 100644 index 00000000..d197d07e --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XzIRgL4.ipynb @@ -0,0 +1,210 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 29 ELECTRIC POTENTIAL" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.3 Magnitude of an isolated positive point charge" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential due to a point charge is V=q/4*pi*epislon0*r\n", + "Magnitude of positive point charge in coul is 1.112e-09\n" + ] + } + ], + "source": [ + "import math\n", + "V=100 #electric potential in volts\n", + "r=10*10**-2 #in meters\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n", + "q=V*4*math.pi*epsilon0*r\n", + "print(\"Magnitude of positive point charge in coul is %.3e\"%q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.4 Electric potential at the surface of a gold nucleus" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric potential at the surface of the nucleus in volts is 17220668\n" + ] + } + ], + "source": [ + "import math\n", + "r=6.6*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "V=q/(4*math.pi*epsilon0*r)\n", + "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.5 Potential at the center of the square" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential at the center of the square in volts is 508.65\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.0*10**-8 #in coul\n", + "q2=-2.0*10**-8 #in coul\n", + "q3=3.0*10**-8 #in coul\n", + "q4=2.0*10**-8 #in coul\n", + "a=1 #side of square in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "#refer to the fig 29.7\n", + "r=a/math.sqrt(2) #distance of charges from centre in meter\n", + "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n", + "print(\"Potential at the center of the square in volts is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.8 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mutual electric potential energy of two proton in joules is 3.837e-14\n", + "Mutual electric potential energy of two proton in ev is 239781.46\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.6*10**-19 #charge in coul\n", + "q2=1.6*10**-19 #charge in coul\n", + "r=6.0*10**-15 #seperation b/w two protons in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "U=(q1*q2)/(4*math.pi*epsilon0*r)\n", + "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n", + "V=U/q1\n", + "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.9 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total energy is the sum of each pair of particles \n", + "Mutual potential energy of the particles in joules is -0.008991804694457362\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-7 #charge in coul\n", + "a=10*10**-2 #side of triangle in meter\n", + "q1=q\n", + "q2=-4*q\n", + "q3=2*q\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Total energy is the sum of each pair of particles \")\n", + "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n", + "print(\"Mutual potential energy of the particles in joules is\",U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Y9CwzJf.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Y9CwzJf.ipynb new file mode 100644 index 00000000..486ad42a --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Y9CwzJf.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 39 ELECTROMAGNETIC WAVES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 39.6 Magnitude of electric and magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of E in volts/meter= 244.94897\n", + "B in weber/meter^2= 0.00000082\n" + ] + } + ], + "source": [ + "import math\n", + "r=1 #in m\n", + "p=10**3 \n", + "m=4*math.pi*10**-7 #weber/amp-m\n", + "c=3*10**8 #speed of light\n", + "x=2*math.pi\n", + "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n", + "print(\"The value of E in volts/meter= %.5f\"%E_m)\n", + "B=E_m/c\n", + "print(\"B in weber/meter^2= %.8f\"%B)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z1uuTRh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z1uuTRh.ipynb new file mode 100644 index 00000000..cd850cd0 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z1uuTRh.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 46 POLARIZATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.1 Calculation of theta" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle theta= 135.0\n" + ] + } + ], + "source": [ + "import math\n", + "theta=math.degrees(math.acos(1/math.sqrt(2)))\n", + "theta=180-theta\n", + "print(\"Polarization angle theta=\",theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.2 Angle of refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta_p in degrees=56.30993\n", + "Angle of refraction fron Snells law in degrees=33.69007\n" + ] + } + ], + "source": [ + "import math\n", + "theta_p= math.degrees(math.atan(1.5))\n", + "print(\"Theta_p in degrees=%.5f\"%theta_p)\n", + "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n", + "theta_r=math.degrees(math.asin(sin_theta_r))\n", + "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.3 Thickness of slab" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Value of x in m= 163611.111111113\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "n_e=1.553\n", + "n_o=1.544\n", + "s=(n_e)-(n_o)\n", + "x=(lamda)/(4*s)\n", + "\n", + "print(\"The Value of x in m=\",x)\n", + "#The answer provided in the textbook is wrong" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z54k8Ai.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z54k8Ai.ipynb new file mode 100644 index 00000000..5d6ec9b4 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z54k8Ai.ipynb @@ -0,0 +1,177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 43 INTERFERENCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.1 Angular position of first minimum" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sin theta = 0.00273\n", + "Angle in degree= 0.15642\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=546*10**-9\n", + "d=0.10*10**-3 #in m\n", + "sin_theta=((m-0.5)*lamda)/(d)\n", + "print(\"Sin theta = %.5f\"%sin_theta)\n", + "theta=math.degrees(math.asin(sin_theta))\n", + "print(\"Angle in degree= %.5f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.2 Linear distance" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Linear distance in meter= 0.00109\n" + ] + } + ], + "source": [ + "delta=546*10**-9 #in meter\n", + "D=20*10**-2 #in meter\n", + "d=0.10*10**-3 #in meter\n", + "delta_y=(delta*D)/d\n", + "print(\"Linear distance in meter= %.5f\"%delta_y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.4 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 1\n", + "Lambda_max= 5674.666666666667\n", + "Lambda_min= 8500.0\n", + "When m= 2\n", + "Lambda_max= 3404.8\n", + "Lambda_min= 4250.0\n" + ] + } + ], + "source": [ + "d=3200 #in A\n", + "n=1.33\n", + "for m in range(1,3):\n", + " lambda_max=(2*d*n)/(m+0.5)\n", + " lambda_min=(8500/m)\n", + " print(\"When m=\",m)\n", + " print(\"Lambda_max=\",lambda_max)\n", + " print(\"Lambda_min=\",lambda_min)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 43.5 Refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "When m= 0\n", + "d in A=905.797\n", + "When m= 1\n", + "d in A=2717.391\n", + "When m= 2\n", + "d in A=4528.986\n", + "When m= 3\n", + "d in A=6340.580\n" + ] + } + ], + "source": [ + "lamda=5000 #in A\n", + "n=1.38\n", + "for m in range(0,4):\n", + " print(\"When m=\",m)\n", + " d=((m+0.5)*lamda)/(2*n)\n", + " print(\"d in A=%.3f\"%d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZNNgbDf.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZNNgbDf.ipynb new file mode 100644 index 00000000..d8f167d7 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZNNgbDf.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 37 MAGNETIC PROPERTIES OF MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.2 Orbital dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Orbital dipole moment in amp-m2 is 9.061e-24\n" + ] + } + ], + "source": [ + "import math\n", + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n", + "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.4 Change in magnetic moment" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "B=2 #in wb/m2\n", + "delta_p=(e**2*B*r**2)/(4*m)\n", + "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.5 Precession frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n" + ] + } + ], + "source": [ + "import math\n", + "u=1.4*10**-26 #in amp-m2\n", + "B=0.50 #wb/m2\n", + "Lp=0.53*10**-34 #in joule-sec\n", + "fp=u*B/(2*math.pi*Lp)\n", + "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field strength in amp/m is 2000\n", + "(B) Magnetisation is Zero when core is removed\n", + " Magnetisation when the core is replaced in amp/m 793774.72\n", + "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n", + " Effective magnetizing current in amp is 793.77472\n", + "(D) Permeability 397.88736\n" + ] + } + ], + "source": [ + "import math\n", + "n=10*10**2 #turns/m\n", + "i=2 #in amp\n", + "B=1.0 #in wb/m\n", + "u0=4*math.pi*10**-7 #in wb/amp-m\n", + "#(A)\n", + "H=n*i\n", + "print(\"(A) Magnetic field strength in amp/m is\",H)\n", + "#(B)\n", + "M=(B-u0*H)/u0\n", + "print(\"(B) Magnetisation is Zero when core is removed\")\n", + "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n", + "#(C)\n", + "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n", + "i=M/n\n", + "print(\" Effective magnetizing current in amp is %.5f\"%i)\n", + "#D\n", + "Km=B/(u0*H)\n", + "print(\"(D) Permeability %.5f\"%Km)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_a6lN8YC.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_a6lN8YC.ipynb new file mode 100644 index 00000000..0209a02b --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_a6lN8YC.ipynb @@ -0,0 +1,184 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.4 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "x= 0.05\n", + "The value of i in cm= 40.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=1\n", + "n2=2\n", + "o=20 #in cm\n", + "r=10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"x=\",x)\n", + "i=n2/x\n", + "print(\"The value of i in cm=\",i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.5 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "The value of i in cm= -0.03333\n", + "The value of i in cm= -30\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=2\n", + "n2=1\n", + "o=15 #in cm\n", + "r=-10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"The value of i in cm= %.5f\"%x)\n", + "i=n2/x\n", + "print(\"The value of i in cm= %d\"%i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.7 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/f in cm= 0.0325\n", + "f=1/x\n", + "f in cm= 30.76923\n" + ] + } + ], + "source": [ + "n=1.65\n", + "r_1=40 #in cm\n", + "r_2=-40 #in cm\n", + "x=(n-1)*((1/r_1)-(1/r_2))\n", + "print(\"x=1/f in cm= %.4f\"%x)\n", + "print(\"f=1/x\")\n", + "f=1/x\n", + "print(\"f in cm= %.5f\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.8 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/i in cm= -0.06944\n", + "i in cm= -14.4\n", + "Lateral magnification =\n", + "m= 1.6\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "o=9 #in cm\n", + "f=24 #in cm\n", + "x=(1/f)-(1/o)\n", + "print(\"x=1/i in cm= %.5f\"%x)\n", + "i=1/x\n", + "print(\"i in cm= %.1f\"%i)\n", + "print(\"Lateral magnification =\")\n", + "m=-(i/o)\n", + "print('m= %.1f'%m)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aVHvEjQ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aVHvEjQ.ipynb new file mode 100644 index 00000000..57d1a771 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aVHvEjQ.ipynb @@ -0,0 +1,227 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 45 GRATING AND SPECTRA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.1 Calculation of angle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 7.249\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=4000 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.3f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.2 Calculation of angle theta" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) The first order diffraction pattern in degree= 13.408\n", + "(B) Angle of seperation in degree= 0.0002388\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=5890 #in A\n", + "d=25400 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n", + "del_lambda=5.9 #in A\n", + "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n", + "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.3 Calculation of Sodium Doublet" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resolving power= 998.305\n", + "Number of rulings needed is= 332.768\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "lamda_1=5895.9 #A\n", + "m=3\n", + "delta_lambda=(lamda_1-lamda) #in A\n", + "R=lamda/(delta_lambda)\n", + "print(\"Resolving power= %.3f\"%R)\n", + "N=(R/m)\n", + "print(\"Number of rulings needed is= %.3f\"%N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.4 Calculation of Dispersion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 31.11244\n", + "(A) The dispersion in radian/A= 0.0001105\n", + "(B) Wave length difference in A= 0.13650\n" + ] + } + ], + "source": [ + "import math\n", + "m=3\n", + "m1=5\n", + "lamda=5460 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n", + "D=m/(d*math.cos(theta*math.pi/180))\n", + "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n", + "N=8000\n", + "lamda=5460\n", + "R=N*m1\n", + "delta_lambda=lamda/R\n", + "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.5 Calculation of Angles" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interplanar spacing d in A= 2.51781\n", + "Diffracted beam occurs when m=1,m=2 and m=3\n", + "When m1=1, Theta in degree= 12.61763\n", + "When m1=2, Theta in degree= 25.90544\n", + "When m1=3, Theta in degree= 40.94473\n" + ] + } + ], + "source": [ + "import math\n", + "a_o=5.63 #A\n", + "d=a_o/math.sqrt(5)\n", + "lamda=1.10 #in A\n", + "print(\"Interplanar spacing d in A= %.5f\"%d)\n", + "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n", + "m1=1\n", + "x=(m1*lamda)/(2*d)\n", + "theta_1=math.degrees(math.asin(x))\n", + "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n", + "m2=2\n", + "x=(m2*lamda)/(2*d)\n", + "theta_2=math.degrees(math.asin(x))\n", + "print('When m1=2, Theta in degree= %.5f'%theta_2)\n", + "m3=3\n", + "x=(m3*lamda)/(2*d)\n", + "theta_3=math.degrees(math.asin(x))\n", + "print('When m1=3, Theta in degree= %.5f'%theta_3)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aoumhJm.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aoumhJm.ipynb new file mode 100644 index 00000000..412d8eb1 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aoumhJm.ipynb @@ -0,0 +1,99 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 28 GAUSS'S LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.3 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n" + ] + } + ], + "source": [ + "r=1*10**-10 #radius of the atom in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.4 Electric field strength at the nuclear surface" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n" + ] + } + ], + "source": [ + "r=6.9*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_atzCquQ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_atzCquQ.ipynb new file mode 100644 index 00000000..4651a1a4 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_atzCquQ.ipynb @@ -0,0 +1,158 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 44 DIFFRACTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.1 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a in A=13000\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=6500 #in A\n", + "a=(m*lamda)/math.sin(30*math.pi/180)\n", + "print(\"a in A=%d\"%a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.2 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wavelength in A = 4333.333\n" + ] + } + ], + "source": [ + "lamda=6500\n", + "lambda_1=lamda/1.5\n", + "print(\"Wavelength in A = %.3f\"%lambda_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.5 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.06990\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "byd=10**12\n", + "i_d=(e_0*math.pi*R*R*byd)\n", + "print(\"Current in amp= %.5f\"%i_d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.7 Delta Y" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) D in m= 0.00240\n" + ] + } + ], + "source": [ + "lamda=480*10**-9 #in m\n", + "d=0.10*10**-3 #in m\n", + "D=50*10**-2 #in m\n", + "a=0.02*10**-3\n", + "delta_y=(lamda*D)/d\n", + "print(\"(A) D in m= %.5f\"%delta_y)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dZYAnnw.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dZYAnnw.ipynb new file mode 100644 index 00000000..80d62fec --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dZYAnnw.ipynb @@ -0,0 +1,206 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 48 WAVES AND PROPOGATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.1 Velocity and Wavelength of particle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in m/s 5929994.5\n", + "Wavelength in A 1.222\n" + ] + } + ], + "source": [ + "import math\n", + "k=100*(1.6*(10**-19))\n", + "m=9.1*(10**-31)\n", + "\n", + "v=math.sqrt(((2*k)/(m)))\n", + "print(\"Velocity in m/s %.1f\"%v)\n", + "h=6.6*(10**-34)\n", + "p=5.4*(10**-34)\n", + "lamda=h/p\n", + "print(\"Wavelength in A %.3f\"%lamda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.2 Quantized energy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in Joule= 5.984e-20\n" + ] + } + ], + "source": [ + "n=1\n", + "h=(6.6)*10**-34 #j/sec\n", + "m=9.1*(10**-31) #in kg\n", + "l=1*(10**-9) #in m\n", + "E=(n**2)*((h**2)/(8*m*(l**2)))\n", + "print(\"Energy in Joule= %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.3 Quantum number" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 5.000e-22\n", + "Quantum number= 3.030e+14\n" + ] + } + ], + "source": [ + "m=10**-9 #in kg\n", + "v=10**-6 #in m/s\n", + "l=10**-4 #in m\n", + "h=(6.6)*(10**-34) #j/s\n", + "E=(0.5)*m*(v**2)\n", + "print(\"Energy in joule= %.3e\"%E)\n", + "n=(l/h)*(math.sqrt(8*m*E))\n", + "print(\"Quantum number= %.3e\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.5 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electrom momentum in kg-m/s= 2.730e-28\n", + "Delta_p in kg-m/s= 2.730e-32\n", + "Minimum uncertainaity in m= 0.02418\n" + ] + } + ], + "source": [ + "m=9.1*(10**-31) #in kg\n", + "v=300 #in m/s\n", + "h=6.6*(10**-34) #in j-s\n", + "p=m*v\n", + "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n", + "delta_p=(0.0001)*p\n", + "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n", + "delta_x=(h/delta_p)\n", + "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.6 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Momentum in kg-m/s= 15.0\n", + "Delta_x in meter= 4.400e-35\n" + ] + } + ], + "source": [ + "m=0.05 #in kg\n", + "v=300 #m/s\n", + "delta_p=m*v\n", + "print(\"Momentum in kg-m/s=\",delta_p)\n", + "delta_x=(6.6*10**-34)/delta_p\n", + "print(\"Delta_x in meter= %.3e\"%delta_x)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dsq2gfs.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dsq2gfs.ipynb new file mode 100644 index 00000000..80d62fec --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dsq2gfs.ipynb @@ -0,0 +1,206 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 48 WAVES AND PROPOGATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.1 Velocity and Wavelength of particle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in m/s 5929994.5\n", + "Wavelength in A 1.222\n" + ] + } + ], + "source": [ + "import math\n", + "k=100*(1.6*(10**-19))\n", + "m=9.1*(10**-31)\n", + "\n", + "v=math.sqrt(((2*k)/(m)))\n", + "print(\"Velocity in m/s %.1f\"%v)\n", + "h=6.6*(10**-34)\n", + "p=5.4*(10**-34)\n", + "lamda=h/p\n", + "print(\"Wavelength in A %.3f\"%lamda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.2 Quantized energy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in Joule= 5.984e-20\n" + ] + } + ], + "source": [ + "n=1\n", + "h=(6.6)*10**-34 #j/sec\n", + "m=9.1*(10**-31) #in kg\n", + "l=1*(10**-9) #in m\n", + "E=(n**2)*((h**2)/(8*m*(l**2)))\n", + "print(\"Energy in Joule= %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.3 Quantum number" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 5.000e-22\n", + "Quantum number= 3.030e+14\n" + ] + } + ], + "source": [ + "m=10**-9 #in kg\n", + "v=10**-6 #in m/s\n", + "l=10**-4 #in m\n", + "h=(6.6)*(10**-34) #j/s\n", + "E=(0.5)*m*(v**2)\n", + "print(\"Energy in joule= %.3e\"%E)\n", + "n=(l/h)*(math.sqrt(8*m*E))\n", + "print(\"Quantum number= %.3e\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.5 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The electrom momentum in kg-m/s= 2.730e-28\n", + "Delta_p in kg-m/s= 2.730e-32\n", + "Minimum uncertainaity in m= 0.02418\n" + ] + } + ], + "source": [ + "m=9.1*(10**-31) #in kg\n", + "v=300 #in m/s\n", + "h=6.6*(10**-34) #in j-s\n", + "p=m*v\n", + "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n", + "delta_p=(0.0001)*p\n", + "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n", + "delta_x=(h/delta_p)\n", + "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 48.6 Position of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Momentum in kg-m/s= 15.0\n", + "Delta_x in meter= 4.400e-35\n" + ] + } + ], + "source": [ + "m=0.05 #in kg\n", + "v=300 #m/s\n", + "delta_p=m*v\n", + "print(\"Momentum in kg-m/s=\",delta_p)\n", + "delta_x=(6.6*10**-34)/delta_p\n", + "print(\"Delta_x in meter= %.3e\"%delta_x)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_fKVhvNn.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_fKVhvNn.ipynb new file mode 100644 index 00000000..6cc02fdd --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_fKVhvNn.ipynb @@ -0,0 +1,157 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 47 LIGHT AND QUANTUM PHYSICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.1 Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in cycles/s 0.71176\n" + ] + } + ], + "source": [ + "import math\n", + "k=20 #in nt/m\n", + "m=1 #in kg\n", + "\n", + "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n", + "print(\"Velocity in cycles/s %.5f\"%v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.2 Time calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power in j-sec 1.000000e-23\n", + "('Time reqired in sec =', 80000.0)\n", + "Time required in hour 22.22224\n" + ] + } + ], + "source": [ + "P=(10**(-3))*(3*10**(-18))/(300)\n", + "print(\"Power in j-sec %e\"%P)\n", + "s=1.6*(10**(-19))\n", + "t=(5*s)/P\n", + "print(\"Time reqired in sec =\",t)\n", + "one_sec=0.000277778 #hr\n", + "in_hour=one_sec*t\n", + "print(\"Time required in hour %.5f\"%in_hour)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.3 Work function for sodium" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 2.911e-19\n" + ] + } + ], + "source": [ + "h=6.63*10**(-34) #in joule/sec\n", + "v=4.39*10**(14) #cycles/sec\n", + "E_o=h*(v)\n", + "print(\"Energy in joule= %.3e\"%E_o)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.4 Kinetic energy to be imparten on recoiling electron" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "h=(6.63)*10**-34\n", + "m=9.11*10**-31\n", + "c=3*10**8\n", + "delta_h=(h/(m*c))*(1-math.cos(90))\n", + "print(\"(A) Compton shift in meter %.3e\",delta_h)\n", + "delta=1*10**-10\n", + "k=(h*c*delta_h)/(delta*(delta+delta_h))\n", + "print(\"(B) Kinetic energy in joules\",k)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gI9NaAW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gI9NaAW.ipynb new file mode 100644 index 00000000..047fa477 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gI9NaAW.ipynb @@ -0,0 +1,260 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 33 THE MAGNETIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.1 Force acting on a proton" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of the proton in meters/sec is 30678599.55\n", + "Force acting on proton in nt is 7.363e-12\n" + ] + } + ], + "source": [ + "import math\n", + "K=5*10**6 #ev\n", + "e=1.6*10**-19 #in coul\n", + "K1=K*e #in joules\n", + "m=1.7*10**-27 #in kg\n", + "B=1.5 #wb/m\n", + "theta=math.pi/2\n", + "v=math.sqrt(2*K1/m)\n", + "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n", + "F=e*v*B*math.sin(theta)\n", + "print(\"Force acting on proton in nt is %.3e\"%F)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.3 Torsional constant of the spring" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Torssional constant in nt-m/deg is 3.333e-08\n" + ] + } + ], + "source": [ + "N=250 #turns in coil\n", + "i=1.0*10**-4 #in amp\n", + "B=0.2 #wb/m2\n", + "h=2*10**-2 #coil height in m\n", + "w=1.0*10**-2 #width of coil in m\n", + "Q=30 #angular deflectin in degrees\n", + "theta=math.pi/2\n", + "A=h*w\n", + "k=N*i*A*B*math.sin(theta)/Q\n", + "print(\"Torssional constant in nt-m/deg is %.3e\"%k)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.4 Work done" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n" + ] + } + ], + "source": [ + "import math\n", + "N=100 #turns in circular coil\n", + "i=0.10 #in amp\n", + "B=1.5 #in wb/m2\n", + "a=5*10**-2 #radius of coil in meter\n", + "u=N*i*math.pi*(a**2) #u is dipole moment\n", + "U1=(-u*B*math.cos(0))\n", + "U2=-u*B*math.cos(math.pi)\n", + "W=U2-U1\n", + "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.5 Hall potential difference" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n" + ] + } + ], + "source": [ + "i=200 #current in the strip in amp\n", + "B=1.5 #magnetic field in wb/m2\n", + "n=8.4*10**28 #in m-3\n", + "e=1.6*10**-19 #in coul\n", + "h=1.0*10**-3 #thickness of copper strip in metre\n", + "w=2*10**-2 #width of copper strip in meter\n", + "Vxy=i*B/(n*e*h)\n", + "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.6 Orbital radius Cyclotron frequency and Period of revolution" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Orbit radius in meter is 0.1080625\n", + "(B) Cyclotron frequency in rev/sec is 2798328.7\n", + "(C) Period of revolution in sec is 0.0000004\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "m=9.1*10**-31 # in kg\n", + "v=1.9*10**6 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "B=1.0*10**-4 #in wb/m2\n", + "\n", + "#(A)\n", + "r=m*v/(q*B)\n", + "print(\"(A) Orbit radius in meter is %.7f\"%r)\n", + "#(B)\n", + "f=q*B/(2*math.pi*m)\n", + "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n", + "#(C)\n", + "T=1/f\n", + "print(\"(C) Period of revolution in sec is %.7f\"%T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.7 Magnetic induction and Deuteron energy" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n", + "(B) Deuteron energy in joule is 2.669e-12\n", + " Deuteron energy in ev is 16679852\n" + ] + } + ], + "source": [ + "import math\n", + "f0=12*10**6 #cyclotron frequency in cycles/sec\n", + "r=21#dee radius in inches\n", + "R=r*0.0254 #dee radius in meter\n", + "q=1.6*10**-19 #charge in coul\n", + "m=3.3*10**-27 #in kg\n", + "#(A)\n", + "B=2*math.pi*f0*m/q\n", + "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n", + "#(B)\n", + "K=((q**2*B**2*R**2)/(2*m))\n", + "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n", + "K1=K*(1/(1.6*10**-19))\n", + "print(\" Deuteron energy in ev is %d\"%K1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gXQu2hh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gXQu2hh.ipynb new file mode 100644 index 00000000..2b7da278 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gXQu2hh.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 27 THE ELECTRIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.1 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength E=F/q where F=mg\n", + "electric field strength in nt/coul is 5.574e-11\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #mass of electron in kg\n", + "g=9.8 #acceleration due to gravity in m/s\n", + "q=1.6*10**-19 #charge of electron in coul\n", + "print(\"Electric field strength E=F/q where F=mg\")\n", + "E=m*g/q\n", + "print(\"electric field strength in nt/coul is %.3e\"%E)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.4 The point on the line joining two charges for the electric field strength to be zero" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For the electric field strength to be zero the point should lie between the charges where E1=E2\n", + "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n", + "Electric field strength is zero at x=4.142 cm\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "q1=1.0*10**-6 #in coul\n", + "q2=2.0*10**-6 #in coul\n", + "l=10 #sepearation b/w q1 and q2 in cm\n", + "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n", + "#\"Refer to the fig 27.9\"\n", + "#E1=electric fied strength due to q1\n", + "#E2=electric fied strength due to q2\n", + "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n", + "x=l/(1+math.sqrt(q2/q1))\n", + "print(\"Electric field strength is zero at x=%.3f cm\"%x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.9 Deflection of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corresponding deflection in meters is 0.000337\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #charge in coul\n", + "E=1.2*10**4 #electric field in nt/coul\n", + "x=1.5*10**-2 #length of deflecting assembly in m\n", + "K0=3.2*10**-16 #kinetic energy of electron in joule\n", + "#calculation\n", + "y=e*E*x**2/(4*K0)\n", + "print(\"Corresponding deflection in meters is %.6f\"%y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.11 Torque and work done by external agent on electric dipole" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Maximum torque exerted by the fied in nt-m is\n", + "0.002\n", + "(b) Work done by the external agent to turn dipole end for end in joule is \n", + "0.004\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n", + "d=2.0*10**-2 #seperation b/w charges in m\n", + "E=1.0*10**5 #external field in nt/coul\n", + "#calculations\n", + "#(a)Max torque if found when theta=90 degrees\n", + "#Torque =pEsin(theta)\n", + "p=q*d #electric dipole moment\n", + "T=p*E*math.sin(math.pi/2)\n", + "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n", + "print(T)\n", + "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n", + "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n", + "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n", + "print(W)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gmcBgGR.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gmcBgGR.ipynb new file mode 100644 index 00000000..21e23dc9 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gmcBgGR.ipynb @@ -0,0 +1,168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 30 CAPACITORS AND DIELECTRICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.1 Plate area" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plate area in square meter is 1.130e+08\n" + ] + } + ], + "source": [ + "C=1.0 #capacitance in farad\n", + "d=1.0*10**-3 #separation b/w plates in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=d*C/epsilon0\n", + "print(\"Plate area in square meter is %.3e\"%A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n", + "(b)Free charge in coul is 8.850e-10\n", + "(c)Electric field strength in the gap in volts/meter is 10000\n", + "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n", + "(e)Potential difference between the plates in volts is 57.1429\n", + "(f)Capacitance with the slab in place in farads is 1.549e-11\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "b=5*10**-3 #thickness of dielectric lab in meter\n", + "V0=100#in volts\n", + "k=7\n", + "#(a)\n", + "C0=epsilon0*A/d\n", + "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n", + "#(b)\n", + "q=C0*V0\n", + "print(\"(b)Free charge in coul is %.3e\"%q)\n", + "#(c)\n", + "E0=q/(epsilon0*A)\n", + "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n", + "#(d)\n", + "E=q/(k*epsilon0*A)\n", + "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n", + "#(e)\n", + "#Refer to fig30-12\n", + "V=E0*(d-b)+E*b\n", + "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n", + "#(f)\n", + "C=q/V\n", + "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n", + "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n", + "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n", + "Electric polarisation in air gap in coul/square meter is 0.0\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "V0=100#in volts\n", + "E0=1*10**4 #Electric field in the air gap in volts/meter\n", + "k=7\n", + "k0=1\n", + "E=1.43*10**3 #in volts/metre\n", + "D=k*E*epsilon0\n", + "P=epsilon0*(k-1)*E\n", + "#(a)\n", + "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n", + "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n", + "#(b)\n", + "D0=k0*epsilon0*E0\n", + "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n", + "P0=epsilon0*(k0-1)*E0\n", + "print(\"Electric polarisation in air gap in coul/square meter is\",P0)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hWr9kYf.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hWr9kYf.ipynb new file mode 100644 index 00000000..904b1c32 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hWr9kYf.ipynb @@ -0,0 +1,220 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 31 CURRENT AND RESISTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.1 Current density" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current density in Aluminium wire in amp/square inches 1273.240\n", + "Current density in copper wire in amp/square inches 3108.495\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "d1=0.10 #diameter of aluminium wire in inches\n", + "d2=0.064 #diameter of copper wire in inches\n", + "i=10 #current carried by composite wire in amperes\n", + "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n", + "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n", + "j1=i/A1\n", + "j2=i/A2\n", + "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n", + "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.2 Drift speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No.of free electrons per unit volume in atoms/mole 8.438e+22\n", + "Drift speed of electron in cm/sec is 0.03556\n" + ] + } + ], + "source": [ + "j=480 #current density for copper wire in amp/cm2\n", + "N0=6*10**23 #avagadro number in atoms/mole\n", + "M=64 #molecular wt in gm/mole\n", + "d=9.0 #density in gm/cm3\n", + "e=1.6*10**-19 #elecron charge in coul\n", + "n=d*N0/M \n", + "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n", + "Vd=j/(n*e)\n", + "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.3 Resistance and resistivity" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n", + "(a) Resistance measured b/w the two square ends in ohm is 0.175\n", + "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n" + ] + } + ], + "source": [ + "\n", + "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n", + "l=1.0*10**-2 #in meter\n", + "b=1.0*10**-2#in meter\n", + "h=50*10**-2 #in meter\n", + "p=3.5*10**-5 #resisivity of carbon in ohm-m\n", + "#(a)Resistance b/w two square ends\n", + "l1=h\n", + "A1=b*l\n", + "R1=p*l1/A1\n", + "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n", + "l2=l\n", + "A2=b*h\n", + "R2=p*l2/A2\n", + "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.4 Mean time and Mean free path" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Mean time b/w collisions in sec is 4.979e-14\n", + "(b) Mean free path in cm is 0.000008\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #in kg\n", + "n=8.4*10**28 #in m-1\n", + "e=1.6*10**-19 #in coul\n", + "p=1.7*10**-8 #in ohm-m\n", + "v=1.6*10**8 #in cm/sec\n", + "T=2*m/(n*p*e**2)\n", + "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n", + "Lambda=T*v\n", + "print(\"(b) Mean free path in cm is %f\"%Lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.5 Power" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Power for the single coil in watts is 504.167\n", + "(b)Power for a coil of half the length in watts is 1008.333\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "V=110 #in volt\n", + "R=24 #ohms\n", + "P1=V**2/R\n", + "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n", + "P2=V**2/(R/2)\n", + "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hdRT9rD.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hdRT9rD.ipynb new file mode 100644 index 00000000..a0180572 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hdRT9rD.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.1 Angle between two refracted beams" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For 4000 A beam, theta_2 in degree= 19.88234\n", + "For 5000 A beam, theta_2 in degree= 19.99290\n" + ] + } + ], + "source": [ + "import math\n", + "theta_1=30\n", + "n_qa=1.4702\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n", + "\n", + "theta_1=30\n", + "n_qa=1.4624\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.4 Index of glass" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index reflection= 1.41421\n" + ] + } + ], + "source": [ + "import math\n", + "n=1/math.sin(45*math.pi/180)\n", + "print(\"Index reflection= %.5f\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.5 Calculation of Angle" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angle theta_c in degree= 62.45732\n", + "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n", + "Angle of refraction:\n", + "Theta_2 in degree= 52.89097\n" + ] + } + ], + "source": [ + "import math\n", + "n2=1.33\n", + "n1=1.50\n", + "theta_c=math.degrees(math.asin(n2/n1))\n", + "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n", + "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n", + "print(\"Angle of refraction:\")\n", + "x=n1/n2\n", + "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n", + "print(\"Theta_2 in degree= %.5f\"%theta_2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_iazK9ta.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_iazK9ta.ipynb new file mode 100644 index 00000000..34883c4a --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_iazK9ta.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 35 FARADAYS LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.1 Induced EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0376991\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000118\n", + "Induced EMF in volts is -0.0473741\n" + ] + } + ], + "source": [ + "import math \n", + "l=1.0 #length of solenoid in meter\n", + "r=3*10**-2 #radius of solenoid in meter\n", + "n=200*10**2 #number of turns in solenoid per meter\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i=1.5 #current in amp\n", + "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n", + "d=2*10**-2 #diameter of coil in meter\n", + "delta_T=0.050 #in sec\n", + "#(A)\n", + "B=u0*i*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n", + "delta_Q=Q-(-Q)\n", + "E=-(N*delta_Q/delta_T)\n", + "print(\"Induced EMF in volts is %.7f\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 35.7 Induced electric field and EMF" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n", + "(A) Induced electric field in volt/m observed by Z 2.0\n", + "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n", + "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n", + "(C) Induced emf in volt observed by S is 0.2\n", + "Induced emf in volt observed by Z is 0.2\n" + ] + } + ], + "source": [ + "B=2 #magnetic field in wb/m2\n", + "l=10*10**-2 #in m\n", + "v=1.0 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n", + "#(A)\n", + "E=v*B\n", + "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n", + "#(B)\n", + "F=q*v*B\n", + "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n", + "F1=q*E\n", + "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n", + "#(C)\n", + "emf1=B*l*v\n", + "print(\"(C) Induced emf in volt observed by S is\",emf1)\n", + "emf2=E*l\n", + "print(\"Induced emf in volt observed by Z is\",emf2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jsDJxKP.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jsDJxKP.ipynb new file mode 100644 index 00000000..21e23dc9 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jsDJxKP.ipynb @@ -0,0 +1,168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 30 CAPACITORS AND DIELECTRICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.1 Plate area" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plate area in square meter is 1.130e+08\n" + ] + } + ], + "source": [ + "C=1.0 #capacitance in farad\n", + "d=1.0*10**-3 #separation b/w plates in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=d*C/epsilon0\n", + "print(\"Plate area in square meter is %.3e\"%A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n", + "(b)Free charge in coul is 8.850e-10\n", + "(c)Electric field strength in the gap in volts/meter is 10000\n", + "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n", + "(e)Potential difference between the plates in volts is 57.1429\n", + "(f)Capacitance with the slab in place in farads is 1.549e-11\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "b=5*10**-3 #thickness of dielectric lab in meter\n", + "V0=100#in volts\n", + "k=7\n", + "#(a)\n", + "C0=epsilon0*A/d\n", + "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n", + "#(b)\n", + "q=C0*V0\n", + "print(\"(b)Free charge in coul is %.3e\"%q)\n", + "#(c)\n", + "E0=q/(epsilon0*A)\n", + "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n", + "#(d)\n", + "E=q/(k*epsilon0*A)\n", + "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n", + "#(e)\n", + "#Refer to fig30-12\n", + "V=E0*(d-b)+E*b\n", + "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n", + "#(f)\n", + "C=q/V\n", + "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n", + "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n", + "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n", + "Electric polarisation in air gap in coul/square meter is 0.0\n" + ] + } + ], + "source": [ + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "A=100*10**-4#area of the plate in square meter\n", + "d=1*10**-2 #separation b/w plates in meter\n", + "V0=100#in volts\n", + "E0=1*10**4 #Electric field in the air gap in volts/meter\n", + "k=7\n", + "k0=1\n", + "E=1.43*10**3 #in volts/metre\n", + "D=k*E*epsilon0\n", + "P=epsilon0*(k-1)*E\n", + "#(a)\n", + "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n", + "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n", + "#(b)\n", + "D0=k0*epsilon0*E0\n", + "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n", + "P0=epsilon0*(k0-1)*E0\n", + "print(\"Electric polarisation in air gap in coul/square meter is\",P0)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jyE0OmR.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jyE0OmR.ipynb new file mode 100644 index 00000000..2b7da278 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jyE0OmR.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 27 THE ELECTRIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.1 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength E=F/q where F=mg\n", + "electric field strength in nt/coul is 5.574e-11\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #mass of electron in kg\n", + "g=9.8 #acceleration due to gravity in m/s\n", + "q=1.6*10**-19 #charge of electron in coul\n", + "print(\"Electric field strength E=F/q where F=mg\")\n", + "E=m*g/q\n", + "print(\"electric field strength in nt/coul is %.3e\"%E)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.4 The point on the line joining two charges for the electric field strength to be zero" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For the electric field strength to be zero the point should lie between the charges where E1=E2\n", + "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n", + "Electric field strength is zero at x=4.142 cm\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "q1=1.0*10**-6 #in coul\n", + "q2=2.0*10**-6 #in coul\n", + "l=10 #sepearation b/w q1 and q2 in cm\n", + "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n", + "#\"Refer to the fig 27.9\"\n", + "#E1=electric fied strength due to q1\n", + "#E2=electric fied strength due to q2\n", + "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n", + "x=l/(1+math.sqrt(q2/q1))\n", + "print(\"Electric field strength is zero at x=%.3f cm\"%x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.9 Deflection of electron" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corresponding deflection in meters is 0.000337\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #charge in coul\n", + "E=1.2*10**4 #electric field in nt/coul\n", + "x=1.5*10**-2 #length of deflecting assembly in m\n", + "K0=3.2*10**-16 #kinetic energy of electron in joule\n", + "#calculation\n", + "y=e*E*x**2/(4*K0)\n", + "print(\"Corresponding deflection in meters is %.6f\"%y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 27.11 Torque and work done by external agent on electric dipole" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Maximum torque exerted by the fied in nt-m is\n", + "0.002\n", + "(b) Work done by the external agent to turn dipole end for end in joule is \n", + "0.004\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n", + "d=2.0*10**-2 #seperation b/w charges in m\n", + "E=1.0*10**5 #external field in nt/coul\n", + "#calculations\n", + "#(a)Max torque if found when theta=90 degrees\n", + "#Torque =pEsin(theta)\n", + "p=q*d #electric dipole moment\n", + "T=p*E*math.sin(math.pi/2)\n", + "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n", + "print(T)\n", + "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n", + "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n", + "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n", + "print(W)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nHWGDuY.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nHWGDuY.ipynb new file mode 100644 index 00000000..047fa477 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nHWGDuY.ipynb @@ -0,0 +1,260 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 33 THE MAGNETIC FIELD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.1 Force acting on a proton" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of the proton in meters/sec is 30678599.55\n", + "Force acting on proton in nt is 7.363e-12\n" + ] + } + ], + "source": [ + "import math\n", + "K=5*10**6 #ev\n", + "e=1.6*10**-19 #in coul\n", + "K1=K*e #in joules\n", + "m=1.7*10**-27 #in kg\n", + "B=1.5 #wb/m\n", + "theta=math.pi/2\n", + "v=math.sqrt(2*K1/m)\n", + "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n", + "F=e*v*B*math.sin(theta)\n", + "print(\"Force acting on proton in nt is %.3e\"%F)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.3 Torsional constant of the spring" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Torssional constant in nt-m/deg is 3.333e-08\n" + ] + } + ], + "source": [ + "N=250 #turns in coil\n", + "i=1.0*10**-4 #in amp\n", + "B=0.2 #wb/m2\n", + "h=2*10**-2 #coil height in m\n", + "w=1.0*10**-2 #width of coil in m\n", + "Q=30 #angular deflectin in degrees\n", + "theta=math.pi/2\n", + "A=h*w\n", + "k=N*i*A*B*math.sin(theta)/Q\n", + "print(\"Torssional constant in nt-m/deg is %.3e\"%k)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.4 Work done" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n" + ] + } + ], + "source": [ + "import math\n", + "N=100 #turns in circular coil\n", + "i=0.10 #in amp\n", + "B=1.5 #in wb/m2\n", + "a=5*10**-2 #radius of coil in meter\n", + "u=N*i*math.pi*(a**2) #u is dipole moment\n", + "U1=(-u*B*math.cos(0))\n", + "U2=-u*B*math.cos(math.pi)\n", + "W=U2-U1\n", + "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.5 Hall potential difference" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n" + ] + } + ], + "source": [ + "i=200 #current in the strip in amp\n", + "B=1.5 #magnetic field in wb/m2\n", + "n=8.4*10**28 #in m-3\n", + "e=1.6*10**-19 #in coul\n", + "h=1.0*10**-3 #thickness of copper strip in metre\n", + "w=2*10**-2 #width of copper strip in meter\n", + "Vxy=i*B/(n*e*h)\n", + "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.6 Orbital radius Cyclotron frequency and Period of revolution" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Orbit radius in meter is 0.1080625\n", + "(B) Cyclotron frequency in rev/sec is 2798328.7\n", + "(C) Period of revolution in sec is 0.0000004\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "m=9.1*10**-31 # in kg\n", + "v=1.9*10**6 #in m/sec\n", + "q=1.6*10**-19 #charge in coul\n", + "B=1.0*10**-4 #in wb/m2\n", + "\n", + "#(A)\n", + "r=m*v/(q*B)\n", + "print(\"(A) Orbit radius in meter is %.7f\"%r)\n", + "#(B)\n", + "f=q*B/(2*math.pi*m)\n", + "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n", + "#(C)\n", + "T=1/f\n", + "print(\"(C) Period of revolution in sec is %.7f\"%T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 33.7 Magnetic induction and Deuteron energy" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n", + "(B) Deuteron energy in joule is 2.669e-12\n", + " Deuteron energy in ev is 16679852\n" + ] + } + ], + "source": [ + "import math\n", + "f0=12*10**6 #cyclotron frequency in cycles/sec\n", + "r=21#dee radius in inches\n", + "R=r*0.0254 #dee radius in meter\n", + "q=1.6*10**-19 #charge in coul\n", + "m=3.3*10**-27 #in kg\n", + "#(A)\n", + "B=2*math.pi*f0*m/q\n", + "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n", + "#(B)\n", + "K=((q**2*B**2*R**2)/(2*m))\n", + "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n", + "K1=K*(1/(1.6*10**-19))\n", + "print(\" Deuteron energy in ev is %d\"%K1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nR6dR6C.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nR6dR6C.ipynb new file mode 100644 index 00000000..0209a02b --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nR6dR6C.ipynb @@ -0,0 +1,184 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.4 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "x= 0.05\n", + "The value of i in cm= 40.0\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=1\n", + "n2=2\n", + "o=20 #in cm\n", + "r=10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"x=\",x)\n", + "i=n2/x\n", + "print(\"The value of i in cm=\",i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.5 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=n2/i\n", + "The value of i in cm= -0.03333\n", + "The value of i in cm= -30\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "n1=2\n", + "n2=1\n", + "o=15 #in cm\n", + "r=-10 #in cm\n", + "print(\"x=n2/i\")\n", + "x=((n2-n1)/r)-(n1/o)\n", + "print(\"The value of i in cm= %.5f\"%x)\n", + "i=n2/x\n", + "print(\"The value of i in cm= %d\"%i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.7 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/f in cm= 0.0325\n", + "f=1/x\n", + "f in cm= 30.76923\n" + ] + } + ], + "source": [ + "n=1.65\n", + "r_1=40 #in cm\n", + "r_2=-40 #in cm\n", + "x=(n-1)*((1/r_1)-(1/r_2))\n", + "print(\"x=1/f in cm= %.4f\"%x)\n", + "print(\"f=1/x\")\n", + "f=1/x\n", + "print(\"f in cm= %.5f\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.8 Location of image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x=1/i in cm= -0.06944\n", + "i in cm= -14.4\n", + "Lateral magnification =\n", + "m= 1.6\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "o=9 #in cm\n", + "f=24 #in cm\n", + "x=(1/f)-(1/o)\n", + "print(\"x=1/i in cm= %.5f\"%x)\n", + "i=1/x\n", + "print(\"i in cm= %.1f\"%i)\n", + "print(\"Lateral magnification =\")\n", + "m=-(i/o)\n", + "print('m= %.1f'%m)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_naWaV0X.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_naWaV0X.ipynb new file mode 100644 index 00000000..381ec056 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_naWaV0X.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.1 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Max current in amps 0.5\n" + ] + } + ], + "source": [ + "import math\n", + "V_o=50 #in volts\n", + "C=1*10**-6 #in farad\n", + "L=10*10**-3\n", + "i_m=V_o*(math.sqrt(C/L))\n", + "print(\"Max current in amps \",i_m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.2 Angular frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n" + ] + } + ], + "source": [ + "import math\n", + "L=10*(10**-3) #in henry\n", + "C=(10)**-6 #in farad\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.3 Angular frequency and time" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular frequency in radians/sec= 10000.0\n", + "Time in sec= 0.13863\n" + ] + } + ], + "source": [ + "L=10*(10**-3) #in henry\n", + "C=10**-6 #in farad\n", + "R=0.1 #in ohm\n", + "w=math.sqrt(1/(L*C))\n", + "print(\"Angular frequency in radians/sec=\",w)\n", + "t=(2*L*math.log(2))/R\n", + "print(\"Time in sec= %.5f\"%t)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.5 Magnetic field" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field in weber/m**2= 0.0000003\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "B=(0.5*m_0*e_0*R*dEbydT)\n", + "print(\"Magnetic field in weber/m**2= %.7f\"%B)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 38.6 Calculation of current" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.0699004\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "dEbydT=10**12\n", + "i_d=(e_0*math.pi*R*R*dEbydT)\n", + "print(\"Current in amp= %.7f\"%i_d)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nfECUYk.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nfECUYk.ipynb new file mode 100644 index 00000000..d8f167d7 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nfECUYk.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 37 MAGNETIC PROPERTIES OF MATTER" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.2 Orbital dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Orbital dipole moment in amp-m2 is 9.061e-24\n" + ] + } + ], + "source": [ + "import math\n", + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n", + "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.4 Change in magnetic moment" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n" + ] + } + ], + "source": [ + "e=1.6*10**-19 #in coul\n", + "r=5.1*10**-11 #radius of hydrogen atom in meter\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "B=2 #in wb/m2\n", + "delta_p=(e**2*B*r**2)/(4*m)\n", + "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.5 Precession frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n" + ] + } + ], + "source": [ + "import math\n", + "u=1.4*10**-26 #in amp-m2\n", + "B=0.50 #wb/m2\n", + "Lp=0.53*10**-34 #in joule-sec\n", + "fp=u*B/(2*math.pi*Lp)\n", + "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field strength in amp/m is 2000\n", + "(B) Magnetisation is Zero when core is removed\n", + " Magnetisation when the core is replaced in amp/m 793774.72\n", + "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n", + " Effective magnetizing current in amp is 793.77472\n", + "(D) Permeability 397.88736\n" + ] + } + ], + "source": [ + "import math\n", + "n=10*10**2 #turns/m\n", + "i=2 #in amp\n", + "B=1.0 #in wb/m\n", + "u0=4*math.pi*10**-7 #in wb/amp-m\n", + "#(A)\n", + "H=n*i\n", + "print(\"(A) Magnetic field strength in amp/m is\",H)\n", + "#(B)\n", + "M=(B-u0*H)/u0\n", + "print(\"(B) Magnetisation is Zero when core is removed\")\n", + "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n", + "#(C)\n", + "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n", + "i=M/n\n", + "print(\" Effective magnetizing current in amp is %.5f\"%i)\n", + "#D\n", + "Km=B/(u0*H)\n", + "print(\"(D) Permeability %.5f\"%Km)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_okauj8T.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_okauj8T.ipynb new file mode 100644 index 00000000..d197d07e --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_okauj8T.ipynb @@ -0,0 +1,210 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 29 ELECTRIC POTENTIAL" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.3 Magnitude of an isolated positive point charge" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential due to a point charge is V=q/4*pi*epislon0*r\n", + "Magnitude of positive point charge in coul is 1.112e-09\n" + ] + } + ], + "source": [ + "import math\n", + "V=100 #electric potential in volts\n", + "r=10*10**-2 #in meters\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n", + "q=V*4*math.pi*epsilon0*r\n", + "print(\"Magnitude of positive point charge in coul is %.3e\"%q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.4 Electric potential at the surface of a gold nucleus" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric potential at the surface of the nucleus in volts is 17220668\n" + ] + } + ], + "source": [ + "import math\n", + "r=6.6*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "V=q/(4*math.pi*epsilon0*r)\n", + "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.5 Potential at the center of the square" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Potential at the center of the square in volts is 508.65\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.0*10**-8 #in coul\n", + "q2=-2.0*10**-8 #in coul\n", + "q3=3.0*10**-8 #in coul\n", + "q4=2.0*10**-8 #in coul\n", + "a=1 #side of square in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "#refer to the fig 29.7\n", + "r=a/math.sqrt(2) #distance of charges from centre in meter\n", + "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n", + "print(\"Potential at the center of the square in volts is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.8 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mutual electric potential energy of two proton in joules is 3.837e-14\n", + "Mutual electric potential energy of two proton in ev is 239781.46\n" + ] + } + ], + "source": [ + "import math\n", + "q1=1.6*10**-19 #charge in coul\n", + "q2=1.6*10**-19 #charge in coul\n", + "r=6.0*10**-15 #seperation b/w two protons in meter\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "U=(q1*q2)/(4*math.pi*epsilon0*r)\n", + "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n", + "V=U/q1\n", + "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 29.9 Mutual potential energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total energy is the sum of each pair of particles \n", + "Mutual potential energy of the particles in joules is -0.008991804694457362\n" + ] + } + ], + "source": [ + "import math\n", + "q=1.0*10**-7 #charge in coul\n", + "a=10*10**-2 #side of triangle in meter\n", + "q1=q\n", + "q2=-4*q\n", + "q3=2*q\n", + "epsilon0=8.85*10**-12 #coul2/nt-m2\n", + "print(\"Total energy is the sum of each pair of particles \")\n", + "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n", + "print(\"Mutual potential energy of the particles in joules is\",U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_puMH42p.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_puMH42p.ipynb new file mode 100644 index 00000000..2da66d96 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_puMH42p.ipynb @@ -0,0 +1,149 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 34 AMPERES LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.3 Distance" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Separation between two wires in metres 0.0054795\n" + ] + } + ], + "source": [ + "import math\n", + "i1=100 #in amp\n", + "i2=20 #in amp\n", + "W=0.073 #weight of second wire W=F/l in nt/m\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "d=u0*i1*i2/(2*math.pi*W)\n", + "print(\"Separation between two wires in metres %.7f\"%d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.5 Magnetic field and Magnetic flux" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0267035\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000189\n" + ] + } + ], + "source": [ + "import math\n", + "l=1.0 #length of solenoid in meter\n", + "d=3*10**-2 #diameter of solenoid in meter\n", + "n=5*850 #number of layers and turns of wire\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i0=5.0 #current in amp\n", + "#(A)\n", + "B=u0*i0*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.9 Magnetic field and Magnetic dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n", + "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "e=1.6*10**-19 #in coul\n", + "R=5.1*10**-11 #radius of th enucleus in meter\n", + "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "x=0 #x is any point on the orbit, since at center x=0\n", + "#(A)\n", + "i=e*f\n", + "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n", + "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n", + "N=1 #no.of turns\n", + "A=math.pi*R**2\n", + "U=N*i*A\n", + "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qKtFmfh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qKtFmfh.ipynb new file mode 100644 index 00000000..cd850cd0 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qKtFmfh.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 46 POLARIZATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.1 Calculation of theta" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle theta= 135.0\n" + ] + } + ], + "source": [ + "import math\n", + "theta=math.degrees(math.acos(1/math.sqrt(2)))\n", + "theta=180-theta\n", + "print(\"Polarization angle theta=\",theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.2 Angle of refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta_p in degrees=56.30993\n", + "Angle of refraction fron Snells law in degrees=33.69007\n" + ] + } + ], + "source": [ + "import math\n", + "theta_p= math.degrees(math.atan(1.5))\n", + "print(\"Theta_p in degrees=%.5f\"%theta_p)\n", + "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n", + "theta_r=math.degrees(math.asin(sin_theta_r))\n", + "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.3 Thickness of slab" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Value of x in m= 163611.111111113\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "n_e=1.553\n", + "n_o=1.544\n", + "s=(n_e)-(n_o)\n", + "x=(lamda)/(4*s)\n", + "\n", + "print(\"The Value of x in m=\",x)\n", + "#The answer provided in the textbook is wrong" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qSBPW0G.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qSBPW0G.ipynb new file mode 100644 index 00000000..ee009cd1 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qSBPW0G.ipynb @@ -0,0 +1,221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 36 INDUCTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.1 Inductance of a toroid" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "N=10**3 #no.of turns\n", + "a=5*10**-2 #im meter\n", + "b=10*10**-2 #in meter\n", + "h=1*10**-2 #in metre\n", + "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n", + "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.2 Time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n" + ] + } + ], + "source": [ + "import math\n", + "L=50 #inductance in henry\n", + "R=30 #resistance in ohms\n", + "t0=math.log(2)*(L/R)\n", + "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.3 Maximum Current and Energy stored" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum current in amp is 5.0\n", + "Energy stored in the magnetic field in joules is 62.5\n" + ] + } + ], + "source": [ + "L=5 #inductance in henry\n", + "V=100 #emf in volts\n", + "R=20 #resistance in ohms\n", + "i=V/R\n", + "print(\"Maximum current in amp is\",i)\n", + "U=(L*i**2)/2\n", + "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.4 Rate at which energy is stored and delivered and appeared" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The rate at which energy is delivred by the battery in watt is 0.5689085\n", + "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n", + "Let D=di/dt\n", + "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n" + ] + } + ], + "source": [ + "L=3 #inductance in henry\n", + "R=10 #resistance in ohm\n", + "V=3 #emf in volts\n", + "t=0.30 #in sec\n", + "T=0.30 #inductive time constant in sec\n", + "#(a)\n", + "i=(V/R)*(1-math.exp(-t/T))\n", + "P1=V*i\n", + "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n", + "#(b)\n", + "P2=i**2*R\n", + "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n", + "#(c)\n", + "print(\"Let D=di/dt\")\n", + "D=(V/L)*math.exp(-t/T) #in amp/sec\n", + "P3=L*i*D\n", + "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.6 Energy" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n", + "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "\n", + "epsilon0=8.9*10**-12 #in coul2/nt-m2\n", + "E=10**5 #elelctric field in volts/meter\n", + "B=1 #magnetic field in weber/meter2\n", + "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n", + "a=0.1 #side of the cube in meter\n", + "V0=a**3 #volume of the cube in meter3\n", + "#(a)\n", + "U1=epsilon0*E**2*V0/2 #in elelctric field\n", + "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n", + "#(b)\n", + "U2=(B**2/(2*u0))*V0\n", + "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qk1kbtW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qk1kbtW.ipynb new file mode 100644 index 00000000..7cae8043 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qk1kbtW.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 40 NATURE AND PROPOGATION OF LIGHT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.1 Force and energy reflected" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Energy reflected from mirror in joule= 36000.0\n", + "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n", + "(B) Force in newton= 6.667e-08\n" + ] + } + ], + "source": [ + "u=(10)*(1.0)*3600 #in Joules\n", + "c=3*10**8 #in m/sec\n", + "t=3600 #in sec\n", + "print(\"(A) Energy reflected from mirror in joule=\",u)\n", + "p=(2*u)/c\n", + "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n", + "f=p/t\n", + "print(\"(B) Force in newton= %.3e\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.2 Angular speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular speed in rev/sec= 12.07030\n" + ] + } + ], + "source": [ + "theta=1/1440\n", + "c=3*10**8 #in m/sec\n", + "l=8630 #in m\n", + "w=(c*theta)/(2*l)\n", + "print(\"Angular speed in rev/sec= %.5f\"%w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.3 Calculation of c" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lambda_g in cm= 3.9\n", + "Value of c in m/sec= 2.992e+10\n" + ] + } + ], + "source": [ + "l=15.6 #in cm\n", + "n=8\n", + "lambda_g=(2*l)/n\n", + "print(\"Lambda_g in cm=\",lambda_g)\n", + "lamda=3.15 #in cm\n", + "f=9.5*10**9 #cycles/sec\n", + "c=lamda*f\n", + "print(\"Value of c in m/sec= %.3e\"%c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.4 Percentage error" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of light in miles/hour= 50000\n" + ] + } + ], + "source": [ + "v_1=25000 #miles/hr\n", + "u=25000 #miles/hr\n", + "c=6.7*10**8 #miles/hr\n", + "x=1+((v_1*u)/(c)**2)\n", + "v=(v_1+u)/x\n", + "print(\"Speed of light in miles/hour= %.0f\"%v)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rkTIcxR.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rkTIcxR.ipynb new file mode 100644 index 00000000..904b1c32 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rkTIcxR.ipynb @@ -0,0 +1,220 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 31 CURRENT AND RESISTANCE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.1 Current density" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current density in Aluminium wire in amp/square inches 1273.240\n", + "Current density in copper wire in amp/square inches 3108.495\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "d1=0.10 #diameter of aluminium wire in inches\n", + "d2=0.064 #diameter of copper wire in inches\n", + "i=10 #current carried by composite wire in amperes\n", + "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n", + "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n", + "j1=i/A1\n", + "j2=i/A2\n", + "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n", + "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.2 Drift speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No.of free electrons per unit volume in atoms/mole 8.438e+22\n", + "Drift speed of electron in cm/sec is 0.03556\n" + ] + } + ], + "source": [ + "j=480 #current density for copper wire in amp/cm2\n", + "N0=6*10**23 #avagadro number in atoms/mole\n", + "M=64 #molecular wt in gm/mole\n", + "d=9.0 #density in gm/cm3\n", + "e=1.6*10**-19 #elecron charge in coul\n", + "n=d*N0/M \n", + "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n", + "Vd=j/(n*e)\n", + "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.3 Resistance and resistivity" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n", + "(a) Resistance measured b/w the two square ends in ohm is 0.175\n", + "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n" + ] + } + ], + "source": [ + "\n", + "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n", + "l=1.0*10**-2 #in meter\n", + "b=1.0*10**-2#in meter\n", + "h=50*10**-2 #in meter\n", + "p=3.5*10**-5 #resisivity of carbon in ohm-m\n", + "#(a)Resistance b/w two square ends\n", + "l1=h\n", + "A1=b*l\n", + "R1=p*l1/A1\n", + "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n", + "l2=l\n", + "A2=b*h\n", + "R2=p*l2/A2\n", + "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.4 Mean time and Mean free path" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a) Mean time b/w collisions in sec is 4.979e-14\n", + "(b) Mean free path in cm is 0.000008\n" + ] + } + ], + "source": [ + "m=9.1*10**-31 #in kg\n", + "n=8.4*10**28 #in m-1\n", + "e=1.6*10**-19 #in coul\n", + "p=1.7*10**-8 #in ohm-m\n", + "v=1.6*10**8 #in cm/sec\n", + "T=2*m/(n*p*e**2)\n", + "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n", + "Lambda=T*v\n", + "print(\"(b) Mean free path in cm is %f\"%Lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 31.5 Power" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(a)Power for the single coil in watts is 504.167\n", + "(b)Power for a coil of half the length in watts is 1008.333\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "\n", + "V=110 #in volt\n", + "R=24 #ohms\n", + "P1=V**2/R\n", + "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n", + "P2=V**2/(R/2)\n", + "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_sDirHoE.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_sDirHoE.ipynb new file mode 100644 index 00000000..a0180572 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_sDirHoE.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.1 Angle between two refracted beams" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For 4000 A beam, theta_2 in degree= 19.88234\n", + "For 5000 A beam, theta_2 in degree= 19.99290\n" + ] + } + ], + "source": [ + "import math\n", + "theta_1=30\n", + "n_qa=1.4702\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n", + "\n", + "theta_1=30\n", + "n_qa=1.4624\n", + "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n", + "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.4 Index of glass" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index reflection= 1.41421\n" + ] + } + ], + "source": [ + "import math\n", + "n=1/math.sin(45*math.pi/180)\n", + "print(\"Index reflection= %.5f\"%n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 41.5 Calculation of Angle" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angle theta_c in degree= 62.45732\n", + "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n", + "Angle of refraction:\n", + "Theta_2 in degree= 52.89097\n" + ] + } + ], + "source": [ + "import math\n", + "n2=1.33\n", + "n1=1.50\n", + "theta_c=math.degrees(math.asin(n2/n1))\n", + "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n", + "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n", + "print(\"Angle of refraction:\")\n", + "x=n1/n2\n", + "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n", + "print(\"Theta_2 in degree= %.5f\"%theta_2)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tPBnBoe.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tPBnBoe.ipynb new file mode 100644 index 00000000..57d1a771 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tPBnBoe.ipynb @@ -0,0 +1,227 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 45 GRATING AND SPECTRA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.1 Calculation of angle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 7.249\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=4000 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.3f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.2 Calculation of angle theta" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) The first order diffraction pattern in degree= 13.408\n", + "(B) Angle of seperation in degree= 0.0002388\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=5890 #in A\n", + "d=25400 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n", + "del_lambda=5.9 #in A\n", + "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n", + "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.3 Calculation of Sodium Doublet" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resolving power= 998.305\n", + "Number of rulings needed is= 332.768\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "lamda_1=5895.9 #A\n", + "m=3\n", + "delta_lambda=(lamda_1-lamda) #in A\n", + "R=lamda/(delta_lambda)\n", + "print(\"Resolving power= %.3f\"%R)\n", + "N=(R/m)\n", + "print(\"Number of rulings needed is= %.3f\"%N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.4 Calculation of Dispersion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 31.11244\n", + "(A) The dispersion in radian/A= 0.0001105\n", + "(B) Wave length difference in A= 0.13650\n" + ] + } + ], + "source": [ + "import math\n", + "m=3\n", + "m1=5\n", + "lamda=5460 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n", + "D=m/(d*math.cos(theta*math.pi/180))\n", + "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n", + "N=8000\n", + "lamda=5460\n", + "R=N*m1\n", + "delta_lambda=lamda/R\n", + "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.5 Calculation of Angles" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interplanar spacing d in A= 2.51781\n", + "Diffracted beam occurs when m=1,m=2 and m=3\n", + "When m1=1, Theta in degree= 12.61763\n", + "When m1=2, Theta in degree= 25.90544\n", + "When m1=3, Theta in degree= 40.94473\n" + ] + } + ], + "source": [ + "import math\n", + "a_o=5.63 #A\n", + "d=a_o/math.sqrt(5)\n", + "lamda=1.10 #in A\n", + "print(\"Interplanar spacing d in A= %.5f\"%d)\n", + "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n", + "m1=1\n", + "x=(m1*lamda)/(2*d)\n", + "theta_1=math.degrees(math.asin(x))\n", + "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n", + "m2=2\n", + "x=(m2*lamda)/(2*d)\n", + "theta_2=math.degrees(math.asin(x))\n", + "print('When m1=2, Theta in degree= %.5f'%theta_2)\n", + "m3=3\n", + "x=(m3*lamda)/(2*d)\n", + "theta_3=math.degrees(math.asin(x))\n", + "print('When m1=3, Theta in degree= %.5f'%theta_3)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tz4UUvV.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tz4UUvV.ipynb new file mode 100644 index 00000000..7cae8043 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tz4UUvV.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 40 NATURE AND PROPOGATION OF LIGHT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.1 Force and energy reflected" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Energy reflected from mirror in joule= 36000.0\n", + "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n", + "(B) Force in newton= 6.667e-08\n" + ] + } + ], + "source": [ + "u=(10)*(1.0)*3600 #in Joules\n", + "c=3*10**8 #in m/sec\n", + "t=3600 #in sec\n", + "print(\"(A) Energy reflected from mirror in joule=\",u)\n", + "p=(2*u)/c\n", + "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n", + "f=p/t\n", + "print(\"(B) Force in newton= %.3e\"%f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.2 Angular speed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular speed in rev/sec= 12.07030\n" + ] + } + ], + "source": [ + "theta=1/1440\n", + "c=3*10**8 #in m/sec\n", + "l=8630 #in m\n", + "w=(c*theta)/(2*l)\n", + "print(\"Angular speed in rev/sec= %.5f\"%w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.3 Calculation of c" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lambda_g in cm= 3.9\n", + "Value of c in m/sec= 2.992e+10\n" + ] + } + ], + "source": [ + "l=15.6 #in cm\n", + "n=8\n", + "lambda_g=(2*l)/n\n", + "print(\"Lambda_g in cm=\",lambda_g)\n", + "lamda=3.15 #in cm\n", + "f=9.5*10**9 #cycles/sec\n", + "c=lamda*f\n", + "print(\"Value of c in m/sec= %.3e\"%c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 40.4 Percentage error" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Speed of light in miles/hour= 50000\n" + ] + } + ], + "source": [ + "v_1=25000 #miles/hr\n", + "u=25000 #miles/hr\n", + "c=6.7*10**8 #miles/hr\n", + "x=1+((v_1*u)/(c)**2)\n", + "v=(v_1+u)/x\n", + "print(\"Speed of light in miles/hour= %.0f\"%v)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_uYhMYzW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_uYhMYzW.ipynb new file mode 100644 index 00000000..6cc02fdd --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_uYhMYzW.ipynb @@ -0,0 +1,157 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 47 LIGHT AND QUANTUM PHYSICS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.1 Velocity" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Velocity in cycles/s 0.71176\n" + ] + } + ], + "source": [ + "import math\n", + "k=20 #in nt/m\n", + "m=1 #in kg\n", + "\n", + "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n", + "print(\"Velocity in cycles/s %.5f\"%v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.2 Time calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Power in j-sec 1.000000e-23\n", + "('Time reqired in sec =', 80000.0)\n", + "Time required in hour 22.22224\n" + ] + } + ], + "source": [ + "P=(10**(-3))*(3*10**(-18))/(300)\n", + "print(\"Power in j-sec %e\"%P)\n", + "s=1.6*(10**(-19))\n", + "t=(5*s)/P\n", + "print(\"Time reqired in sec =\",t)\n", + "one_sec=0.000277778 #hr\n", + "in_hour=one_sec*t\n", + "print(\"Time required in hour %.5f\"%in_hour)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.3 Work function for sodium" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy in joule= 2.911e-19\n" + ] + } + ], + "source": [ + "h=6.63*10**(-34) #in joule/sec\n", + "v=4.39*10**(14) #cycles/sec\n", + "E_o=h*(v)\n", + "print(\"Energy in joule= %.3e\"%E_o)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 47.4 Kinetic energy to be imparten on recoiling electron" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "h=(6.63)*10**-34\n", + "m=9.11*10**-31\n", + "c=3*10**8\n", + "delta_h=(h/(m*c))*(1-math.cos(90))\n", + "print(\"(A) Compton shift in meter %.3e\",delta_h)\n", + "delta=1*10**-10\n", + "k=(h*c*delta_h)/(delta*(delta+delta_h))\n", + "print(\"(B) Kinetic energy in joules\",k)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_v6vpMzh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_v6vpMzh.ipynb new file mode 100644 index 00000000..cd850cd0 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_v6vpMzh.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 46 POLARIZATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.1 Calculation of theta" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polarization angle theta= 135.0\n" + ] + } + ], + "source": [ + "import math\n", + "theta=math.degrees(math.acos(1/math.sqrt(2)))\n", + "theta=180-theta\n", + "print(\"Polarization angle theta=\",theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.2 Angle of refraction" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta_p in degrees=56.30993\n", + "Angle of refraction fron Snells law in degrees=33.69007\n" + ] + } + ], + "source": [ + "import math\n", + "theta_p= math.degrees(math.atan(1.5))\n", + "print(\"Theta_p in degrees=%.5f\"%theta_p)\n", + "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n", + "theta_r=math.degrees(math.asin(sin_theta_r))\n", + "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 46.3 Thickness of slab" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Value of x in m= 163611.111111113\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "n_e=1.553\n", + "n_o=1.544\n", + "s=(n_e)-(n_o)\n", + "x=(lamda)/(4*s)\n", + "\n", + "print(\"The Value of x in m=\",x)\n", + "#The answer provided in the textbook is wrong" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vk5bg1Q.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vk5bg1Q.ipynb new file mode 100644 index 00000000..2da66d96 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vk5bg1Q.ipynb @@ -0,0 +1,149 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 34 AMPERES LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.3 Distance" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Separation between two wires in metres 0.0054795\n" + ] + } + ], + "source": [ + "import math\n", + "i1=100 #in amp\n", + "i2=20 #in amp\n", + "W=0.073 #weight of second wire W=F/l in nt/m\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "d=u0*i1*i2/(2*math.pi*W)\n", + "print(\"Separation between two wires in metres %.7f\"%d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.5 Magnetic field and Magnetic flux" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Magnetic field at center in wb/m2 is 0.0267035\n", + "Magnetic flux at the center of the solenoid in weber is 0.0000189\n" + ] + } + ], + "source": [ + "import math\n", + "l=1.0 #length of solenoid in meter\n", + "d=3*10**-2 #diameter of solenoid in meter\n", + "n=5*850 #number of layers and turns of wire\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "i0=5.0 #current in amp\n", + "#(A)\n", + "B=u0*i0*n\n", + "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n", + "#(B)\n", + "A=math.pi*(d/2)**2\n", + "Q=B*A\n", + "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 34.9 Magnetic field and Magnetic dipole moment" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n", + "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n" + ] + } + ], + "source": [ + "import math\n", + "from __future__ import division\n", + "e=1.6*10**-19 #in coul\n", + "R=5.1*10**-11 #radius of th enucleus in meter\n", + "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n", + "u0=4*math.pi*10**-7 #in weber/amp-m\n", + "x=0 #x is any point on the orbit, since at center x=0\n", + "#(A)\n", + "i=e*f\n", + "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n", + "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n", + "N=1 #no.of turns\n", + "A=math.pi*R**2\n", + "U=N*i*A\n", + "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vspbqnp.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vspbqnp.ipynb new file mode 100644 index 00000000..57d1a771 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vspbqnp.ipynb @@ -0,0 +1,227 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 45 GRATING AND SPECTRA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.1 Calculation of angle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 7.249\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=4000 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.3f\"%theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.2 Calculation of angle theta" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) The first order diffraction pattern in degree= 13.408\n", + "(B) Angle of seperation in degree= 0.0002388\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "import math\n", + "m=1\n", + "lamda=5890 #in A\n", + "d=25400 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n", + "del_lambda=5.9 #in A\n", + "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n", + "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.3 Calculation of Sodium Doublet" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Resolving power= 998.305\n", + "Number of rulings needed is= 332.768\n" + ] + } + ], + "source": [ + "lamda=5890 #A\n", + "lamda_1=5895.9 #A\n", + "m=3\n", + "delta_lambda=(lamda_1-lamda) #in A\n", + "R=lamda/(delta_lambda)\n", + "print(\"Resolving power= %.3f\"%R)\n", + "N=(R/m)\n", + "print(\"Number of rulings needed is= %.3f\"%N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.4 Calculation of Dispersion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first order diffraction pattern in degree= 31.11244\n", + "(A) The dispersion in radian/A= 0.0001105\n", + "(B) Wave length difference in A= 0.13650\n" + ] + } + ], + "source": [ + "import math\n", + "m=3\n", + "m1=5\n", + "lamda=5460 #in A\n", + "d=31700 #in A\n", + "theta=math.degrees(math.asin((m*lamda)/d))\n", + "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n", + "D=m/(d*math.cos(theta*math.pi/180))\n", + "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n", + "N=8000\n", + "lamda=5460\n", + "R=N*m1\n", + "delta_lambda=lamda/R\n", + "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 45.5 Calculation of Angles" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Interplanar spacing d in A= 2.51781\n", + "Diffracted beam occurs when m=1,m=2 and m=3\n", + "When m1=1, Theta in degree= 12.61763\n", + "When m1=2, Theta in degree= 25.90544\n", + "When m1=3, Theta in degree= 40.94473\n" + ] + } + ], + "source": [ + "import math\n", + "a_o=5.63 #A\n", + "d=a_o/math.sqrt(5)\n", + "lamda=1.10 #in A\n", + "print(\"Interplanar spacing d in A= %.5f\"%d)\n", + "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n", + "m1=1\n", + "x=(m1*lamda)/(2*d)\n", + "theta_1=math.degrees(math.asin(x))\n", + "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n", + "m2=2\n", + "x=(m2*lamda)/(2*d)\n", + "theta_2=math.degrees(math.asin(x))\n", + "print('When m1=2, Theta in degree= %.5f'%theta_2)\n", + "m3=3\n", + "x=(m3*lamda)/(2*d)\n", + "theta_3=math.degrees(math.asin(x))\n", + "print('When m1=3, Theta in degree= %.5f'%theta_3)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_wiBzQbF.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_wiBzQbF.ipynb new file mode 100644 index 00000000..412d8eb1 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_wiBzQbF.ipynb @@ -0,0 +1,99 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 28 GAUSS'S LAW" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.3 Electric field strength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n" + ] + } + ], + "source": [ + "r=1*10**-10 #radius of the atom in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.4 Electric field strength at the nuclear surface" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n" + ] + } + ], + "source": [ + "r=6.9*10**-15 #radius of the gold nucleus in meter\n", + "Z=79 #gold atomic number\n", + "e=1.6*10**-19 #charge in coul\n", + "q=Z*e #total positive charge in coul\n", + "E=(9.0*10**9)*q/r**2\n", + "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_y64N1aC.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_y64N1aC.ipynb new file mode 100644 index 00000000..4651a1a4 --- /dev/null +++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_y64N1aC.ipynb @@ -0,0 +1,158 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 44 DIFFRACTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.1 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a in A=13000\n" + ] + } + ], + "source": [ + "import math\n", + "m=1\n", + "lamda=6500 #in A\n", + "a=(m*lamda)/math.sin(30*math.pi/180)\n", + "print(\"a in A=%d\"%a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.2 Calculation of wavelength" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wavelength in A = 4333.333\n" + ] + } + ], + "source": [ + "lamda=6500\n", + "lambda_1=lamda/1.5\n", + "print(\"Wavelength in A = %.3f\"%lambda_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.5 Current" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current in amp= 0.06990\n" + ] + } + ], + "source": [ + "import math\n", + "m_0=(4*math.pi*10**-7) #in weber\n", + "e_0=(8.9*10**-12)\n", + "R=5*10**-2 #meters\n", + "byd=10**12\n", + "i_d=(e_0*math.pi*R*R*byd)\n", + "print(\"Current in amp= %.5f\"%i_d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 44.7 Delta Y" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(A) D in m= 0.00240\n" + ] + } + ], + "source": [ + "lamda=480*10**-9 #in m\n", + "d=0.10*10**-3 #in m\n", + "D=50*10**-2 #in m\n", + "a=0.02*10**-3\n", + "delta_y=(lamda*D)/d\n", + "print(\"(A) D in m= %.5f\"%delta_y)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |