summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1X7iFJN.ipynb99
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1oAQQUs.ipynb221
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_249CONS.ipynb210
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_32LhWna.ipynb221
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5FjPI0K.ipynb73
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_674AOQU.ipynb206
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_6FrZp4V.ipynb167
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7lqJxZS.ipynb221
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7mCirX8.ipynb177
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_8CUOhvt.ipynb168
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_9lfHTPa.ipynb131
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_CtUwKOt.ipynb221
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_G05Dl5E.ipynb181
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_HTSThxL.ipynb221
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KC7XWFB.ipynb195
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_OhJEIZW.ipynb158
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_P2e5pSM.ipynb195
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Pk7b9LC.ipynb184
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PsTln1E.ipynb73
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PvDqzDQ.ipynb177
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_R4I62FG.ipynb149
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SBjZLMJ.ipynb139
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SJwMqQP.ipynb157
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SY19qB5.ipynb260
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_TF6X2fm.ipynb183
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_X9h3IeS.ipynb131
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XhB36rB.ipynb220
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XzIRgL4.ipynb210
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Y9CwzJf.ipynb73
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z1uuTRh.ipynb131
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z54k8Ai.ipynb177
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZNNgbDf.ipynb181
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_a6lN8YC.ipynb184
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aVHvEjQ.ipynb227
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aoumhJm.ipynb99
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_atzCquQ.ipynb158
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dZYAnnw.ipynb206
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dsq2gfs.ipynb206
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_fKVhvNn.ipynb157
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gI9NaAW.ipynb260
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gXQu2hh.ipynb183
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gmcBgGR.ipynb168
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hWr9kYf.ipynb220
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hdRT9rD.ipynb139
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_iazK9ta.ipynb131
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jsDJxKP.ipynb168
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jyE0OmR.ipynb183
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nHWGDuY.ipynb260
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nR6dR6C.ipynb184
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_naWaV0X.ipynb195
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nfECUYk.ipynb181
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_okauj8T.ipynb210
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_puMH42p.ipynb149
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qKtFmfh.ipynb131
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qSBPW0G.ipynb221
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qk1kbtW.ipynb167
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rkTIcxR.ipynb220
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_sDirHoE.ipynb139
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tPBnBoe.ipynb227
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tz4UUvV.ipynb167
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_uYhMYzW.ipynb157
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_v6vpMzh.ipynb131
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vk5bg1Q.ipynb149
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vspbqnp.ipynb227
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_wiBzQbF.ipynb99
-rw-r--r--Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_y64N1aC.ipynb158
66 files changed, 11571 insertions, 0 deletions
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1X7iFJN.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1X7iFJN.ipynb
new file mode 100644
index 00000000..412d8eb1
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1X7iFJN.ipynb
@@ -0,0 +1,99 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 28 GAUSS'S LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 28.3 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=1*10**-10 #radius of the atom in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 28.4 Electric field strength at the nuclear surface"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=6.9*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1oAQQUs.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1oAQQUs.ipynb
new file mode 100644
index 00000000..c497e908
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_1oAQQUs.ipynb
@@ -0,0 +1,221 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 26:CHARGE AND MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.1 Magnitude of total charges in a copper penny"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Magnitude of the charges in coulombs is 133687.50000000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "m =3.1 #mass of copper penny in grams\n",
+ "e =4.6*10** -18 #charge in coulombs\n",
+ "N0 =6*10**23 #avogadro’s number atoms / mole\n",
+ "M =64 #molecular weight of copper in gm/ mole\n",
+ "\n",
+ "#Calculation\n",
+ "N =( N0 * m ) / M #No. of copper atoms in penny\n",
+ "q = N * e # magnitude of the charges in coulombs\n",
+ "print (\" Magnitude of the charges in coulomb is \",q )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.2 Separation between total positive and negative charges"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Separation between total positive and negative charges in meters is 5813776741.499454\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "F =4.5 #Force of attraction in nt\n",
+ "q =1.3*10**5 #total charge in coulomb\n",
+ "r = q * math.sqrt ((9*10**9) / F ) ;\n",
+ "print(\" Separation between total positive and negative charges in meters is \",r )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.3 Force acting on charge q1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "X component of resultant force acting on q1 in nt is 2.0999999999999996\n",
+ "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given three charges q1,q2,q3\n",
+ "q1=-1.0*10**-6 #charge in coul\n",
+ "q2=+3.0*10**-6 #charge in coul\n",
+ "q3=-2.0*10**-6 #charge in coul\n",
+ "r12=15*10**-2 #separation between q1 and q2 in m\n",
+ "r13=10*10**-2 # separation between q1 and q3 in m\n",
+ "angle=math.pi/6 #in degrees\n",
+ "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n",
+ "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n",
+ "F12x=-F12 #ignoring signs of charges\n",
+ "F13x=F13*math.sin(angle);\n",
+ "F1x=F12x+F13x\n",
+ "F12y=0 #from fig.263\n",
+ "F13y=-F13*math.cos(angle);\n",
+ "F1y=F12y+F13y #in nt\n",
+ "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n",
+ "print(\"Y component of resultant force acting on q1 in nt is\",F1y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.4 Electrical and Gravitational force between two particles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coulomb force in nt is 8.202207191171238e-08\n",
+ "Gravitational force in nt is 3.689889640441438e-47\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n",
+ "m1=9.1*10**-31 #mass of electron in kg\n",
+ "m2=1.7*10**-27 #mass of proton in kg\n",
+ "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n",
+ "F2=G*m1*m2/(r**2) #gravitational force\n",
+ "print(\"Coulomb force in nt is\",F1)\n",
+ "print(\"Gravitational force in nt is\",F2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.5 Repulsive force between two protons in a nucleus of iron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Repulsive coulomb force F 14.4 nt\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n",
+ "print(\"Repulsive coulomb force F \",F,'nt')"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_249CONS.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_249CONS.ipynb
new file mode 100644
index 00000000..d197d07e
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_249CONS.ipynb
@@ -0,0 +1,210 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 29 ELECTRIC POTENTIAL"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.3 Magnitude of an isolated positive point charge"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential due to a point charge is V=q/4*pi*epislon0*r\n",
+ "Magnitude of positive point charge in coul is 1.112e-09\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V=100 #electric potential in volts\n",
+ "r=10*10**-2 #in meters\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n",
+ "q=V*4*math.pi*epsilon0*r\n",
+ "print(\"Magnitude of positive point charge in coul is %.3e\"%q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.4 Electric potential at the surface of a gold nucleus"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric potential at the surface of the nucleus in volts is 17220668\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=6.6*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "V=q/(4*math.pi*epsilon0*r)\n",
+ "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.5 Potential at the center of the square"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential at the center of the square in volts is 508.65\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.0*10**-8 #in coul\n",
+ "q2=-2.0*10**-8 #in coul\n",
+ "q3=3.0*10**-8 #in coul\n",
+ "q4=2.0*10**-8 #in coul\n",
+ "a=1 #side of square in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "#refer to the fig 29.7\n",
+ "r=a/math.sqrt(2) #distance of charges from centre in meter\n",
+ "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Potential at the center of the square in volts is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.8 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mutual electric potential energy of two proton in joules is 3.837e-14\n",
+ "Mutual electric potential energy of two proton in ev is 239781.46\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.6*10**-19 #charge in coul\n",
+ "q2=1.6*10**-19 #charge in coul\n",
+ "r=6.0*10**-15 #seperation b/w two protons in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "U=(q1*q2)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n",
+ "V=U/q1\n",
+ "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.9 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total energy is the sum of each pair of particles \n",
+ "Mutual potential energy of the particles in joules is -0.008991804694457362\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-7 #charge in coul\n",
+ "a=10*10**-2 #side of triangle in meter\n",
+ "q1=q\n",
+ "q2=-4*q\n",
+ "q3=2*q\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Total energy is the sum of each pair of particles \")\n",
+ "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n",
+ "print(\"Mutual potential energy of the particles in joules is\",U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_32LhWna.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_32LhWna.ipynb
new file mode 100644
index 00000000..c497e908
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_32LhWna.ipynb
@@ -0,0 +1,221 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 26:CHARGE AND MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.1 Magnitude of total charges in a copper penny"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Magnitude of the charges in coulombs is 133687.50000000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "m =3.1 #mass of copper penny in grams\n",
+ "e =4.6*10** -18 #charge in coulombs\n",
+ "N0 =6*10**23 #avogadro’s number atoms / mole\n",
+ "M =64 #molecular weight of copper in gm/ mole\n",
+ "\n",
+ "#Calculation\n",
+ "N =( N0 * m ) / M #No. of copper atoms in penny\n",
+ "q = N * e # magnitude of the charges in coulombs\n",
+ "print (\" Magnitude of the charges in coulomb is \",q )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.2 Separation between total positive and negative charges"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Separation between total positive and negative charges in meters is 5813776741.499454\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "F =4.5 #Force of attraction in nt\n",
+ "q =1.3*10**5 #total charge in coulomb\n",
+ "r = q * math.sqrt ((9*10**9) / F ) ;\n",
+ "print(\" Separation between total positive and negative charges in meters is \",r )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.3 Force acting on charge q1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "X component of resultant force acting on q1 in nt is 2.0999999999999996\n",
+ "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given three charges q1,q2,q3\n",
+ "q1=-1.0*10**-6 #charge in coul\n",
+ "q2=+3.0*10**-6 #charge in coul\n",
+ "q3=-2.0*10**-6 #charge in coul\n",
+ "r12=15*10**-2 #separation between q1 and q2 in m\n",
+ "r13=10*10**-2 # separation between q1 and q3 in m\n",
+ "angle=math.pi/6 #in degrees\n",
+ "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n",
+ "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n",
+ "F12x=-F12 #ignoring signs of charges\n",
+ "F13x=F13*math.sin(angle);\n",
+ "F1x=F12x+F13x\n",
+ "F12y=0 #from fig.263\n",
+ "F13y=-F13*math.cos(angle);\n",
+ "F1y=F12y+F13y #in nt\n",
+ "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n",
+ "print(\"Y component of resultant force acting on q1 in nt is\",F1y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.4 Electrical and Gravitational force between two particles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coulomb force in nt is 8.202207191171238e-08\n",
+ "Gravitational force in nt is 3.689889640441438e-47\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n",
+ "m1=9.1*10**-31 #mass of electron in kg\n",
+ "m2=1.7*10**-27 #mass of proton in kg\n",
+ "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n",
+ "F2=G*m1*m2/(r**2) #gravitational force\n",
+ "print(\"Coulomb force in nt is\",F1)\n",
+ "print(\"Gravitational force in nt is\",F2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.5 Repulsive force between two protons in a nucleus of iron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Repulsive coulomb force F 14.4 nt\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n",
+ "print(\"Repulsive coulomb force F \",F,'nt')"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5FjPI0K.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5FjPI0K.ipynb
new file mode 100644
index 00000000..486ad42a
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_5FjPI0K.ipynb
@@ -0,0 +1,73 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 39 ELECTROMAGNETIC WAVES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 39.6 Magnitude of electric and magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of E in volts/meter= 244.94897\n",
+ "B in weber/meter^2= 0.00000082\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=1 #in m\n",
+ "p=10**3 \n",
+ "m=4*math.pi*10**-7 #weber/amp-m\n",
+ "c=3*10**8 #speed of light\n",
+ "x=2*math.pi\n",
+ "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n",
+ "print(\"The value of E in volts/meter= %.5f\"%E_m)\n",
+ "B=E_m/c\n",
+ "print(\"B in weber/meter^2= %.8f\"%B)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_674AOQU.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_674AOQU.ipynb
new file mode 100644
index 00000000..80d62fec
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_674AOQU.ipynb
@@ -0,0 +1,206 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 48 WAVES AND PROPOGATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.1 Velocity and Wavelength of particle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in m/s 5929994.5\n",
+ "Wavelength in A 1.222\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=100*(1.6*(10**-19))\n",
+ "m=9.1*(10**-31)\n",
+ "\n",
+ "v=math.sqrt(((2*k)/(m)))\n",
+ "print(\"Velocity in m/s %.1f\"%v)\n",
+ "h=6.6*(10**-34)\n",
+ "p=5.4*(10**-34)\n",
+ "lamda=h/p\n",
+ "print(\"Wavelength in A %.3f\"%lamda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.2 Quantized energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in Joule= 5.984e-20\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1\n",
+ "h=(6.6)*10**-34 #j/sec\n",
+ "m=9.1*(10**-31) #in kg\n",
+ "l=1*(10**-9) #in m\n",
+ "E=(n**2)*((h**2)/(8*m*(l**2)))\n",
+ "print(\"Energy in Joule= %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.3 Quantum number"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 5.000e-22\n",
+ "Quantum number= 3.030e+14\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=10**-9 #in kg\n",
+ "v=10**-6 #in m/s\n",
+ "l=10**-4 #in m\n",
+ "h=(6.6)*(10**-34) #j/s\n",
+ "E=(0.5)*m*(v**2)\n",
+ "print(\"Energy in joule= %.3e\"%E)\n",
+ "n=(l/h)*(math.sqrt(8*m*E))\n",
+ "print(\"Quantum number= %.3e\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.5 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electrom momentum in kg-m/s= 2.730e-28\n",
+ "Delta_p in kg-m/s= 2.730e-32\n",
+ "Minimum uncertainaity in m= 0.02418\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*(10**-31) #in kg\n",
+ "v=300 #in m/s\n",
+ "h=6.6*(10**-34) #in j-s\n",
+ "p=m*v\n",
+ "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n",
+ "delta_p=(0.0001)*p\n",
+ "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n",
+ "delta_x=(h/delta_p)\n",
+ "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.6 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Momentum in kg-m/s= 15.0\n",
+ "Delta_x in meter= 4.400e-35\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=0.05 #in kg\n",
+ "v=300 #m/s\n",
+ "delta_p=m*v\n",
+ "print(\"Momentum in kg-m/s=\",delta_p)\n",
+ "delta_x=(6.6*10**-34)/delta_p\n",
+ "print(\"Delta_x in meter= %.3e\"%delta_x)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_6FrZp4V.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_6FrZp4V.ipynb
new file mode 100644
index 00000000..7cae8043
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_6FrZp4V.ipynb
@@ -0,0 +1,167 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 40 NATURE AND PROPOGATION OF LIGHT"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.1 Force and energy reflected"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Energy reflected from mirror in joule= 36000.0\n",
+ "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n",
+ "(B) Force in newton= 6.667e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "u=(10)*(1.0)*3600 #in Joules\n",
+ "c=3*10**8 #in m/sec\n",
+ "t=3600 #in sec\n",
+ "print(\"(A) Energy reflected from mirror in joule=\",u)\n",
+ "p=(2*u)/c\n",
+ "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n",
+ "f=p/t\n",
+ "print(\"(B) Force in newton= %.3e\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.2 Angular speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular speed in rev/sec= 12.07030\n"
+ ]
+ }
+ ],
+ "source": [
+ "theta=1/1440\n",
+ "c=3*10**8 #in m/sec\n",
+ "l=8630 #in m\n",
+ "w=(c*theta)/(2*l)\n",
+ "print(\"Angular speed in rev/sec= %.5f\"%w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.3 Calculation of c"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lambda_g in cm= 3.9\n",
+ "Value of c in m/sec= 2.992e+10\n"
+ ]
+ }
+ ],
+ "source": [
+ "l=15.6 #in cm\n",
+ "n=8\n",
+ "lambda_g=(2*l)/n\n",
+ "print(\"Lambda_g in cm=\",lambda_g)\n",
+ "lamda=3.15 #in cm\n",
+ "f=9.5*10**9 #cycles/sec\n",
+ "c=lamda*f\n",
+ "print(\"Value of c in m/sec= %.3e\"%c)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.4 Percentage error"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of light in miles/hour= 50000\n"
+ ]
+ }
+ ],
+ "source": [
+ "v_1=25000 #miles/hr\n",
+ "u=25000 #miles/hr\n",
+ "c=6.7*10**8 #miles/hr\n",
+ "x=1+((v_1*u)/(c)**2)\n",
+ "v=(v_1+u)/x\n",
+ "print(\"Speed of light in miles/hour= %.0f\"%v)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7lqJxZS.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7lqJxZS.ipynb
new file mode 100644
index 00000000..ee009cd1
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7lqJxZS.ipynb
@@ -0,0 +1,221 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 36 INDUCTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.1 Inductance of a toroid"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "N=10**3 #no.of turns\n",
+ "a=5*10**-2 #im meter\n",
+ "b=10*10**-2 #in meter\n",
+ "h=1*10**-2 #in metre\n",
+ "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n",
+ "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.2 Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=50 #inductance in henry\n",
+ "R=30 #resistance in ohms\n",
+ "t0=math.log(2)*(L/R)\n",
+ "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.3 Maximum Current and Energy stored"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum current in amp is 5.0\n",
+ "Energy stored in the magnetic field in joules is 62.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=5 #inductance in henry\n",
+ "V=100 #emf in volts\n",
+ "R=20 #resistance in ohms\n",
+ "i=V/R\n",
+ "print(\"Maximum current in amp is\",i)\n",
+ "U=(L*i**2)/2\n",
+ "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.4 Rate at which energy is stored and delivered and appeared"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The rate at which energy is delivred by the battery in watt is 0.5689085\n",
+ "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n",
+ "Let D=di/dt\n",
+ "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=3 #inductance in henry\n",
+ "R=10 #resistance in ohm\n",
+ "V=3 #emf in volts\n",
+ "t=0.30 #in sec\n",
+ "T=0.30 #inductive time constant in sec\n",
+ "#(a)\n",
+ "i=(V/R)*(1-math.exp(-t/T))\n",
+ "P1=V*i\n",
+ "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n",
+ "#(b)\n",
+ "P2=i**2*R\n",
+ "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n",
+ "#(c)\n",
+ "print(\"Let D=di/dt\")\n",
+ "D=(V/L)*math.exp(-t/T) #in amp/sec\n",
+ "P3=L*i*D\n",
+ "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.6 Energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n",
+ "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "E=10**5 #elelctric field in volts/meter\n",
+ "B=1 #magnetic field in weber/meter2\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "a=0.1 #side of the cube in meter\n",
+ "V0=a**3 #volume of the cube in meter3\n",
+ "#(a)\n",
+ "U1=epsilon0*E**2*V0/2 #in elelctric field\n",
+ "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n",
+ "#(b)\n",
+ "U2=(B**2/(2*u0))*V0\n",
+ "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7mCirX8.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7mCirX8.ipynb
new file mode 100644
index 00000000..5d6ec9b4
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_7mCirX8.ipynb
@@ -0,0 +1,177 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 43 INTERFERENCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.1 Angular position of first minimum"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sin theta = 0.00273\n",
+ "Angle in degree= 0.15642\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=546*10**-9\n",
+ "d=0.10*10**-3 #in m\n",
+ "sin_theta=((m-0.5)*lamda)/(d)\n",
+ "print(\"Sin theta = %.5f\"%sin_theta)\n",
+ "theta=math.degrees(math.asin(sin_theta))\n",
+ "print(\"Angle in degree= %.5f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.2 Linear distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Linear distance in meter= 0.00109\n"
+ ]
+ }
+ ],
+ "source": [
+ "delta=546*10**-9 #in meter\n",
+ "D=20*10**-2 #in meter\n",
+ "d=0.10*10**-3 #in meter\n",
+ "delta_y=(delta*D)/d\n",
+ "print(\"Linear distance in meter= %.5f\"%delta_y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.4 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 1\n",
+ "Lambda_max= 5674.666666666667\n",
+ "Lambda_min= 8500.0\n",
+ "When m= 2\n",
+ "Lambda_max= 3404.8\n",
+ "Lambda_min= 4250.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "d=3200 #in A\n",
+ "n=1.33\n",
+ "for m in range(1,3):\n",
+ " lambda_max=(2*d*n)/(m+0.5)\n",
+ " lambda_min=(8500/m)\n",
+ " print(\"When m=\",m)\n",
+ " print(\"Lambda_max=\",lambda_max)\n",
+ " print(\"Lambda_min=\",lambda_min)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.5 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 0\n",
+ "d in A=905.797\n",
+ "When m= 1\n",
+ "d in A=2717.391\n",
+ "When m= 2\n",
+ "d in A=4528.986\n",
+ "When m= 3\n",
+ "d in A=6340.580\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5000 #in A\n",
+ "n=1.38\n",
+ "for m in range(0,4):\n",
+ " print(\"When m=\",m)\n",
+ " d=((m+0.5)*lamda)/(2*n)\n",
+ " print(\"d in A=%.3f\"%d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_8CUOhvt.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_8CUOhvt.ipynb
new file mode 100644
index 00000000..21e23dc9
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_8CUOhvt.ipynb
@@ -0,0 +1,168 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 30 CAPACITORS AND DIELECTRICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.1 Plate area"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Plate area in square meter is 1.130e+08\n"
+ ]
+ }
+ ],
+ "source": [
+ "C=1.0 #capacitance in farad\n",
+ "d=1.0*10**-3 #separation b/w plates in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=d*C/epsilon0\n",
+ "print(\"Plate area in square meter is %.3e\"%A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n",
+ "(b)Free charge in coul is 8.850e-10\n",
+ "(c)Electric field strength in the gap in volts/meter is 10000\n",
+ "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n",
+ "(e)Potential difference between the plates in volts is 57.1429\n",
+ "(f)Capacitance with the slab in place in farads is 1.549e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "b=5*10**-3 #thickness of dielectric lab in meter\n",
+ "V0=100#in volts\n",
+ "k=7\n",
+ "#(a)\n",
+ "C0=epsilon0*A/d\n",
+ "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n",
+ "#(b)\n",
+ "q=C0*V0\n",
+ "print(\"(b)Free charge in coul is %.3e\"%q)\n",
+ "#(c)\n",
+ "E0=q/(epsilon0*A)\n",
+ "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n",
+ "#(d)\n",
+ "E=q/(k*epsilon0*A)\n",
+ "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n",
+ "#(e)\n",
+ "#Refer to fig30-12\n",
+ "V=E0*(d-b)+E*b\n",
+ "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n",
+ "#(f)\n",
+ "C=q/V\n",
+ "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n",
+ "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n",
+ "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n",
+ "Electric polarisation in air gap in coul/square meter is 0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "V0=100#in volts\n",
+ "E0=1*10**4 #Electric field in the air gap in volts/meter\n",
+ "k=7\n",
+ "k0=1\n",
+ "E=1.43*10**3 #in volts/metre\n",
+ "D=k*E*epsilon0\n",
+ "P=epsilon0*(k-1)*E\n",
+ "#(a)\n",
+ "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n",
+ "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n",
+ "#(b)\n",
+ "D0=k0*epsilon0*E0\n",
+ "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n",
+ "P0=epsilon0*(k0-1)*E0\n",
+ "print(\"Electric polarisation in air gap in coul/square meter is\",P0)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_9lfHTPa.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_9lfHTPa.ipynb
new file mode 100644
index 00000000..34883c4a
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_9lfHTPa.ipynb
@@ -0,0 +1,131 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 35 FARADAYS LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 35.1 Induced EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0376991\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000118\n",
+ "Induced EMF in volts is -0.0473741\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "l=1.0 #length of solenoid in meter\n",
+ "r=3*10**-2 #radius of solenoid in meter\n",
+ "n=200*10**2 #number of turns in solenoid per meter\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i=1.5 #current in amp\n",
+ "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n",
+ "d=2*10**-2 #diameter of coil in meter\n",
+ "delta_T=0.050 #in sec\n",
+ "#(A)\n",
+ "B=u0*i*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n",
+ "delta_Q=Q-(-Q)\n",
+ "E=-(N*delta_Q/delta_T)\n",
+ "print(\"Induced EMF in volts is %.7f\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 35.7 Induced electric field and EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n",
+ "(A) Induced electric field in volt/m observed by Z 2.0\n",
+ "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n",
+ "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n",
+ "(C) Induced emf in volt observed by S is 0.2\n",
+ "Induced emf in volt observed by Z is 0.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "B=2 #magnetic field in wb/m2\n",
+ "l=10*10**-2 #in m\n",
+ "v=1.0 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n",
+ "#(A)\n",
+ "E=v*B\n",
+ "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n",
+ "#(B)\n",
+ "F=q*v*B\n",
+ "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n",
+ "F1=q*E\n",
+ "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n",
+ "#(C)\n",
+ "emf1=B*l*v\n",
+ "print(\"(C) Induced emf in volt observed by S is\",emf1)\n",
+ "emf2=E*l\n",
+ "print(\"Induced emf in volt observed by Z is\",emf2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_CtUwKOt.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_CtUwKOt.ipynb
new file mode 100644
index 00000000..ee009cd1
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_CtUwKOt.ipynb
@@ -0,0 +1,221 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 36 INDUCTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.1 Inductance of a toroid"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "N=10**3 #no.of turns\n",
+ "a=5*10**-2 #im meter\n",
+ "b=10*10**-2 #in meter\n",
+ "h=1*10**-2 #in metre\n",
+ "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n",
+ "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.2 Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=50 #inductance in henry\n",
+ "R=30 #resistance in ohms\n",
+ "t0=math.log(2)*(L/R)\n",
+ "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.3 Maximum Current and Energy stored"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum current in amp is 5.0\n",
+ "Energy stored in the magnetic field in joules is 62.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=5 #inductance in henry\n",
+ "V=100 #emf in volts\n",
+ "R=20 #resistance in ohms\n",
+ "i=V/R\n",
+ "print(\"Maximum current in amp is\",i)\n",
+ "U=(L*i**2)/2\n",
+ "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.4 Rate at which energy is stored and delivered and appeared"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The rate at which energy is delivred by the battery in watt is 0.5689085\n",
+ "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n",
+ "Let D=di/dt\n",
+ "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=3 #inductance in henry\n",
+ "R=10 #resistance in ohm\n",
+ "V=3 #emf in volts\n",
+ "t=0.30 #in sec\n",
+ "T=0.30 #inductive time constant in sec\n",
+ "#(a)\n",
+ "i=(V/R)*(1-math.exp(-t/T))\n",
+ "P1=V*i\n",
+ "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n",
+ "#(b)\n",
+ "P2=i**2*R\n",
+ "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n",
+ "#(c)\n",
+ "print(\"Let D=di/dt\")\n",
+ "D=(V/L)*math.exp(-t/T) #in amp/sec\n",
+ "P3=L*i*D\n",
+ "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.6 Energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n",
+ "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "E=10**5 #elelctric field in volts/meter\n",
+ "B=1 #magnetic field in weber/meter2\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "a=0.1 #side of the cube in meter\n",
+ "V0=a**3 #volume of the cube in meter3\n",
+ "#(a)\n",
+ "U1=epsilon0*E**2*V0/2 #in elelctric field\n",
+ "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n",
+ "#(b)\n",
+ "U2=(B**2/(2*u0))*V0\n",
+ "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_G05Dl5E.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_G05Dl5E.ipynb
new file mode 100644
index 00000000..d8f167d7
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_G05Dl5E.ipynb
@@ -0,0 +1,181 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 37 MAGNETIC PROPERTIES OF MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.2 Orbital dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Orbital dipole moment in amp-m2 is 9.061e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n",
+ "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.4 Change in magnetic moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "B=2 #in wb/m2\n",
+ "delta_p=(e**2*B*r**2)/(4*m)\n",
+ "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.5 Precession frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "u=1.4*10**-26 #in amp-m2\n",
+ "B=0.50 #wb/m2\n",
+ "Lp=0.53*10**-34 #in joule-sec\n",
+ "fp=u*B/(2*math.pi*Lp)\n",
+ "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field strength in amp/m is 2000\n",
+ "(B) Magnetisation is Zero when core is removed\n",
+ " Magnetisation when the core is replaced in amp/m 793774.72\n",
+ "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n",
+ " Effective magnetizing current in amp is 793.77472\n",
+ "(D) Permeability 397.88736\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=10*10**2 #turns/m\n",
+ "i=2 #in amp\n",
+ "B=1.0 #in wb/m\n",
+ "u0=4*math.pi*10**-7 #in wb/amp-m\n",
+ "#(A)\n",
+ "H=n*i\n",
+ "print(\"(A) Magnetic field strength in amp/m is\",H)\n",
+ "#(B)\n",
+ "M=(B-u0*H)/u0\n",
+ "print(\"(B) Magnetisation is Zero when core is removed\")\n",
+ "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n",
+ "#(C)\n",
+ "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n",
+ "i=M/n\n",
+ "print(\" Effective magnetizing current in amp is %.5f\"%i)\n",
+ "#D\n",
+ "Km=B/(u0*H)\n",
+ "print(\"(D) Permeability %.5f\"%Km)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_HTSThxL.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_HTSThxL.ipynb
new file mode 100644
index 00000000..c497e908
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_HTSThxL.ipynb
@@ -0,0 +1,221 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 26:CHARGE AND MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.1 Magnitude of total charges in a copper penny"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Magnitude of the charges in coulombs is 133687.50000000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "m =3.1 #mass of copper penny in grams\n",
+ "e =4.6*10** -18 #charge in coulombs\n",
+ "N0 =6*10**23 #avogadro’s number atoms / mole\n",
+ "M =64 #molecular weight of copper in gm/ mole\n",
+ "\n",
+ "#Calculation\n",
+ "N =( N0 * m ) / M #No. of copper atoms in penny\n",
+ "q = N * e # magnitude of the charges in coulombs\n",
+ "print (\" Magnitude of the charges in coulomb is \",q )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.2 Separation between total positive and negative charges"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Separation between total positive and negative charges in meters is 5813776741.499454\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "F =4.5 #Force of attraction in nt\n",
+ "q =1.3*10**5 #total charge in coulomb\n",
+ "r = q * math.sqrt ((9*10**9) / F ) ;\n",
+ "print(\" Separation between total positive and negative charges in meters is \",r )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.3 Force acting on charge q1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "X component of resultant force acting on q1 in nt is 2.0999999999999996\n",
+ "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "#given three charges q1,q2,q3\n",
+ "q1=-1.0*10**-6 #charge in coul\n",
+ "q2=+3.0*10**-6 #charge in coul\n",
+ "q3=-2.0*10**-6 #charge in coul\n",
+ "r12=15*10**-2 #separation between q1 and q2 in m\n",
+ "r13=10*10**-2 # separation between q1 and q3 in m\n",
+ "angle=math.pi/6 #in degrees\n",
+ "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n",
+ "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n",
+ "F12x=-F12 #ignoring signs of charges\n",
+ "F13x=F13*math.sin(angle);\n",
+ "F1x=F12x+F13x\n",
+ "F12y=0 #from fig.263\n",
+ "F13y=-F13*math.cos(angle);\n",
+ "F1y=F12y+F13y #in nt\n",
+ "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n",
+ "print(\"Y component of resultant force acting on q1 in nt is\",F1y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.4 Electrical and Gravitational force between two particles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coulomb force in nt is 8.202207191171238e-08\n",
+ "Gravitational force in nt is 3.689889640441438e-47\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n",
+ "m1=9.1*10**-31 #mass of electron in kg\n",
+ "m2=1.7*10**-27 #mass of proton in kg\n",
+ "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n",
+ "F2=G*m1*m2/(r**2) #gravitational force\n",
+ "print(\"Coulomb force in nt is\",F1)\n",
+ "print(\"Gravitational force in nt is\",F2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Example 26.5 Repulsive force between two protons in a nucleus of iron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Repulsive coulomb force F 14.4 nt\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n",
+ "print(\"Repulsive coulomb force F \",F,'nt')"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KC7XWFB.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KC7XWFB.ipynb
new file mode 100644
index 00000000..381ec056
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_KC7XWFB.ipynb
@@ -0,0 +1,195 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.1 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Max current in amps 0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V_o=50 #in volts\n",
+ "C=1*10**-6 #in farad\n",
+ "L=10*10**-3\n",
+ "i_m=V_o*(math.sqrt(C/L))\n",
+ "print(\"Max current in amps \",i_m)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.2 Angular frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=10*(10**-3) #in henry\n",
+ "C=(10)**-6 #in farad\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.3 Angular frequency and time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n",
+ "Time in sec= 0.13863\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=10*(10**-3) #in henry\n",
+ "C=10**-6 #in farad\n",
+ "R=0.1 #in ohm\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)\n",
+ "t=(2*L*math.log(2))/R\n",
+ "print(\"Time in sec= %.5f\"%t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.5 Magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field in weber/m**2= 0.0000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "B=(0.5*m_0*e_0*R*dEbydT)\n",
+ "print(\"Magnetic field in weber/m**2= %.7f\"%B)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.6 Calculation of current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.0699004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "i_d=(e_0*math.pi*R*R*dEbydT)\n",
+ "print(\"Current in amp= %.7f\"%i_d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_OhJEIZW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_OhJEIZW.ipynb
new file mode 100644
index 00000000..4651a1a4
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_OhJEIZW.ipynb
@@ -0,0 +1,158 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 44 DIFFRACTION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.1 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a in A=13000\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=6500 #in A\n",
+ "a=(m*lamda)/math.sin(30*math.pi/180)\n",
+ "print(\"a in A=%d\"%a)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.2 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength in A = 4333.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=6500\n",
+ "lambda_1=lamda/1.5\n",
+ "print(\"Wavelength in A = %.3f\"%lambda_1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.5 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.06990\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "byd=10**12\n",
+ "i_d=(e_0*math.pi*R*R*byd)\n",
+ "print(\"Current in amp= %.5f\"%i_d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.7 Delta Y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) D in m= 0.00240\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=480*10**-9 #in m\n",
+ "d=0.10*10**-3 #in m\n",
+ "D=50*10**-2 #in m\n",
+ "a=0.02*10**-3\n",
+ "delta_y=(lamda*D)/d\n",
+ "print(\"(A) D in m= %.5f\"%delta_y)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_P2e5pSM.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_P2e5pSM.ipynb
new file mode 100644
index 00000000..381ec056
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_P2e5pSM.ipynb
@@ -0,0 +1,195 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.1 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Max current in amps 0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V_o=50 #in volts\n",
+ "C=1*10**-6 #in farad\n",
+ "L=10*10**-3\n",
+ "i_m=V_o*(math.sqrt(C/L))\n",
+ "print(\"Max current in amps \",i_m)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.2 Angular frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=10*(10**-3) #in henry\n",
+ "C=(10)**-6 #in farad\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.3 Angular frequency and time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n",
+ "Time in sec= 0.13863\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=10*(10**-3) #in henry\n",
+ "C=10**-6 #in farad\n",
+ "R=0.1 #in ohm\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)\n",
+ "t=(2*L*math.log(2))/R\n",
+ "print(\"Time in sec= %.5f\"%t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.5 Magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field in weber/m**2= 0.0000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "B=(0.5*m_0*e_0*R*dEbydT)\n",
+ "print(\"Magnetic field in weber/m**2= %.7f\"%B)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.6 Calculation of current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.0699004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "i_d=(e_0*math.pi*R*R*dEbydT)\n",
+ "print(\"Current in amp= %.7f\"%i_d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Pk7b9LC.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Pk7b9LC.ipynb
new file mode 100644
index 00000000..0209a02b
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Pk7b9LC.ipynb
@@ -0,0 +1,184 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.4 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "x= 0.05\n",
+ "The value of i in cm= 40.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=1\n",
+ "n2=2\n",
+ "o=20 #in cm\n",
+ "r=10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"x=\",x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm=\",i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.5 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "The value of i in cm= -0.03333\n",
+ "The value of i in cm= -30\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=2\n",
+ "n2=1\n",
+ "o=15 #in cm\n",
+ "r=-10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"The value of i in cm= %.5f\"%x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm= %d\"%i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.7 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/f in cm= 0.0325\n",
+ "f=1/x\n",
+ "f in cm= 30.76923\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1.65\n",
+ "r_1=40 #in cm\n",
+ "r_2=-40 #in cm\n",
+ "x=(n-1)*((1/r_1)-(1/r_2))\n",
+ "print(\"x=1/f in cm= %.4f\"%x)\n",
+ "print(\"f=1/x\")\n",
+ "f=1/x\n",
+ "print(\"f in cm= %.5f\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.8 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/i in cm= -0.06944\n",
+ "i in cm= -14.4\n",
+ "Lateral magnification =\n",
+ "m= 1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "o=9 #in cm\n",
+ "f=24 #in cm\n",
+ "x=(1/f)-(1/o)\n",
+ "print(\"x=1/i in cm= %.5f\"%x)\n",
+ "i=1/x\n",
+ "print(\"i in cm= %.1f\"%i)\n",
+ "print(\"Lateral magnification =\")\n",
+ "m=-(i/o)\n",
+ "print('m= %.1f'%m)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PsTln1E.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PsTln1E.ipynb
new file mode 100644
index 00000000..486ad42a
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PsTln1E.ipynb
@@ -0,0 +1,73 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 39 ELECTROMAGNETIC WAVES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 39.6 Magnitude of electric and magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of E in volts/meter= 244.94897\n",
+ "B in weber/meter^2= 0.00000082\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=1 #in m\n",
+ "p=10**3 \n",
+ "m=4*math.pi*10**-7 #weber/amp-m\n",
+ "c=3*10**8 #speed of light\n",
+ "x=2*math.pi\n",
+ "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n",
+ "print(\"The value of E in volts/meter= %.5f\"%E_m)\n",
+ "B=E_m/c\n",
+ "print(\"B in weber/meter^2= %.8f\"%B)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PvDqzDQ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PvDqzDQ.ipynb
new file mode 100644
index 00000000..5d6ec9b4
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_PvDqzDQ.ipynb
@@ -0,0 +1,177 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 43 INTERFERENCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.1 Angular position of first minimum"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sin theta = 0.00273\n",
+ "Angle in degree= 0.15642\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=546*10**-9\n",
+ "d=0.10*10**-3 #in m\n",
+ "sin_theta=((m-0.5)*lamda)/(d)\n",
+ "print(\"Sin theta = %.5f\"%sin_theta)\n",
+ "theta=math.degrees(math.asin(sin_theta))\n",
+ "print(\"Angle in degree= %.5f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.2 Linear distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Linear distance in meter= 0.00109\n"
+ ]
+ }
+ ],
+ "source": [
+ "delta=546*10**-9 #in meter\n",
+ "D=20*10**-2 #in meter\n",
+ "d=0.10*10**-3 #in meter\n",
+ "delta_y=(delta*D)/d\n",
+ "print(\"Linear distance in meter= %.5f\"%delta_y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.4 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 1\n",
+ "Lambda_max= 5674.666666666667\n",
+ "Lambda_min= 8500.0\n",
+ "When m= 2\n",
+ "Lambda_max= 3404.8\n",
+ "Lambda_min= 4250.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "d=3200 #in A\n",
+ "n=1.33\n",
+ "for m in range(1,3):\n",
+ " lambda_max=(2*d*n)/(m+0.5)\n",
+ " lambda_min=(8500/m)\n",
+ " print(\"When m=\",m)\n",
+ " print(\"Lambda_max=\",lambda_max)\n",
+ " print(\"Lambda_min=\",lambda_min)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.5 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 0\n",
+ "d in A=905.797\n",
+ "When m= 1\n",
+ "d in A=2717.391\n",
+ "When m= 2\n",
+ "d in A=4528.986\n",
+ "When m= 3\n",
+ "d in A=6340.580\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5000 #in A\n",
+ "n=1.38\n",
+ "for m in range(0,4):\n",
+ " print(\"When m=\",m)\n",
+ " d=((m+0.5)*lamda)/(2*n)\n",
+ " print(\"d in A=%.3f\"%d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_R4I62FG.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_R4I62FG.ipynb
new file mode 100644
index 00000000..2da66d96
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_R4I62FG.ipynb
@@ -0,0 +1,149 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 34 AMPERES LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.3 Distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Separation between two wires in metres 0.0054795\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "i1=100 #in amp\n",
+ "i2=20 #in amp\n",
+ "W=0.073 #weight of second wire W=F/l in nt/m\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "d=u0*i1*i2/(2*math.pi*W)\n",
+ "print(\"Separation between two wires in metres %.7f\"%d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.5 Magnetic field and Magnetic flux"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0267035\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000189\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "l=1.0 #length of solenoid in meter\n",
+ "d=3*10**-2 #diameter of solenoid in meter\n",
+ "n=5*850 #number of layers and turns of wire\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i0=5.0 #current in amp\n",
+ "#(A)\n",
+ "B=u0*i0*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.9 Magnetic field and Magnetic dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n",
+ "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "e=1.6*10**-19 #in coul\n",
+ "R=5.1*10**-11 #radius of th enucleus in meter\n",
+ "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "x=0 #x is any point on the orbit, since at center x=0\n",
+ "#(A)\n",
+ "i=e*f\n",
+ "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n",
+ "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n",
+ "N=1 #no.of turns\n",
+ "A=math.pi*R**2\n",
+ "U=N*i*A\n",
+ "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SBjZLMJ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SBjZLMJ.ipynb
new file mode 100644
index 00000000..a0180572
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SBjZLMJ.ipynb
@@ -0,0 +1,139 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.1 Angle between two refracted beams"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For 4000 A beam, theta_2 in degree= 19.88234\n",
+ "For 5000 A beam, theta_2 in degree= 19.99290\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_1=30\n",
+ "n_qa=1.4702\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n",
+ "\n",
+ "theta_1=30\n",
+ "n_qa=1.4624\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.4 Index of glass"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index reflection= 1.41421\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=1/math.sin(45*math.pi/180)\n",
+ "print(\"Index reflection= %.5f\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.5 Calculation of Angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle theta_c in degree= 62.45732\n",
+ "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n",
+ "Angle of refraction:\n",
+ "Theta_2 in degree= 52.89097\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n2=1.33\n",
+ "n1=1.50\n",
+ "theta_c=math.degrees(math.asin(n2/n1))\n",
+ "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n",
+ "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n",
+ "print(\"Angle of refraction:\")\n",
+ "x=n1/n2\n",
+ "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n",
+ "print(\"Theta_2 in degree= %.5f\"%theta_2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SJwMqQP.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SJwMqQP.ipynb
new file mode 100644
index 00000000..6cc02fdd
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SJwMqQP.ipynb
@@ -0,0 +1,157 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 47 LIGHT AND QUANTUM PHYSICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.1 Velocity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in cycles/s 0.71176\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=20 #in nt/m\n",
+ "m=1 #in kg\n",
+ "\n",
+ "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n",
+ "print(\"Velocity in cycles/s %.5f\"%v)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.2 Time calculation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power in j-sec 1.000000e-23\n",
+ "('Time reqired in sec =', 80000.0)\n",
+ "Time required in hour 22.22224\n"
+ ]
+ }
+ ],
+ "source": [
+ "P=(10**(-3))*(3*10**(-18))/(300)\n",
+ "print(\"Power in j-sec %e\"%P)\n",
+ "s=1.6*(10**(-19))\n",
+ "t=(5*s)/P\n",
+ "print(\"Time reqired in sec =\",t)\n",
+ "one_sec=0.000277778 #hr\n",
+ "in_hour=one_sec*t\n",
+ "print(\"Time required in hour %.5f\"%in_hour)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.3 Work function for sodium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 2.911e-19\n"
+ ]
+ }
+ ],
+ "source": [
+ "h=6.63*10**(-34) #in joule/sec\n",
+ "v=4.39*10**(14) #cycles/sec\n",
+ "E_o=h*(v)\n",
+ "print(\"Energy in joule= %.3e\"%E_o)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.4 Kinetic energy to be imparten on recoiling electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "h=(6.63)*10**-34\n",
+ "m=9.11*10**-31\n",
+ "c=3*10**8\n",
+ "delta_h=(h/(m*c))*(1-math.cos(90))\n",
+ "print(\"(A) Compton shift in meter %.3e\",delta_h)\n",
+ "delta=1*10**-10\n",
+ "k=(h*c*delta_h)/(delta*(delta+delta_h))\n",
+ "print(\"(B) Kinetic energy in joules\",k)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SY19qB5.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SY19qB5.ipynb
new file mode 100644
index 00000000..047fa477
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_SY19qB5.ipynb
@@ -0,0 +1,260 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 33 THE MAGNETIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.1 Force acting on a proton"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of the proton in meters/sec is 30678599.55\n",
+ "Force acting on proton in nt is 7.363e-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "K=5*10**6 #ev\n",
+ "e=1.6*10**-19 #in coul\n",
+ "K1=K*e #in joules\n",
+ "m=1.7*10**-27 #in kg\n",
+ "B=1.5 #wb/m\n",
+ "theta=math.pi/2\n",
+ "v=math.sqrt(2*K1/m)\n",
+ "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n",
+ "F=e*v*B*math.sin(theta)\n",
+ "print(\"Force acting on proton in nt is %.3e\"%F)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.3 Torsional constant of the spring"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Torssional constant in nt-m/deg is 3.333e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "N=250 #turns in coil\n",
+ "i=1.0*10**-4 #in amp\n",
+ "B=0.2 #wb/m2\n",
+ "h=2*10**-2 #coil height in m\n",
+ "w=1.0*10**-2 #width of coil in m\n",
+ "Q=30 #angular deflectin in degrees\n",
+ "theta=math.pi/2\n",
+ "A=h*w\n",
+ "k=N*i*A*B*math.sin(theta)/Q\n",
+ "print(\"Torssional constant in nt-m/deg is %.3e\"%k)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.4 Work done"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "N=100 #turns in circular coil\n",
+ "i=0.10 #in amp\n",
+ "B=1.5 #in wb/m2\n",
+ "a=5*10**-2 #radius of coil in meter\n",
+ "u=N*i*math.pi*(a**2) #u is dipole moment\n",
+ "U1=(-u*B*math.cos(0))\n",
+ "U2=-u*B*math.cos(math.pi)\n",
+ "W=U2-U1\n",
+ "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.5 Hall potential difference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n"
+ ]
+ }
+ ],
+ "source": [
+ "i=200 #current in the strip in amp\n",
+ "B=1.5 #magnetic field in wb/m2\n",
+ "n=8.4*10**28 #in m-3\n",
+ "e=1.6*10**-19 #in coul\n",
+ "h=1.0*10**-3 #thickness of copper strip in metre\n",
+ "w=2*10**-2 #width of copper strip in meter\n",
+ "Vxy=i*B/(n*e*h)\n",
+ "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.6 Orbital radius Cyclotron frequency and Period of revolution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Orbit radius in meter is 0.1080625\n",
+ "(B) Cyclotron frequency in rev/sec is 2798328.7\n",
+ "(C) Period of revolution in sec is 0.0000004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "m=9.1*10**-31 # in kg\n",
+ "v=1.9*10**6 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "B=1.0*10**-4 #in wb/m2\n",
+ "\n",
+ "#(A)\n",
+ "r=m*v/(q*B)\n",
+ "print(\"(A) Orbit radius in meter is %.7f\"%r)\n",
+ "#(B)\n",
+ "f=q*B/(2*math.pi*m)\n",
+ "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n",
+ "#(C)\n",
+ "T=1/f\n",
+ "print(\"(C) Period of revolution in sec is %.7f\"%T)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.7 Magnetic induction and Deuteron energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n",
+ "(B) Deuteron energy in joule is 2.669e-12\n",
+ " Deuteron energy in ev is 16679852\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "f0=12*10**6 #cyclotron frequency in cycles/sec\n",
+ "r=21#dee radius in inches\n",
+ "R=r*0.0254 #dee radius in meter\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "m=3.3*10**-27 #in kg\n",
+ "#(A)\n",
+ "B=2*math.pi*f0*m/q\n",
+ "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n",
+ "#(B)\n",
+ "K=((q**2*B**2*R**2)/(2*m))\n",
+ "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n",
+ "K1=K*(1/(1.6*10**-19))\n",
+ "print(\" Deuteron energy in ev is %d\"%K1)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_TF6X2fm.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_TF6X2fm.ipynb
new file mode 100644
index 00000000..2b7da278
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_TF6X2fm.ipynb
@@ -0,0 +1,183 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 27 THE ELECTRIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.1 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength E=F/q where F=mg\n",
+ "electric field strength in nt/coul is 5.574e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "g=9.8 #acceleration due to gravity in m/s\n",
+ "q=1.6*10**-19 #charge of electron in coul\n",
+ "print(\"Electric field strength E=F/q where F=mg\")\n",
+ "E=m*g/q\n",
+ "print(\"electric field strength in nt/coul is %.3e\"%E)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.4 The point on the line joining two charges for the electric field strength to be zero"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For the electric field strength to be zero the point should lie between the charges where E1=E2\n",
+ "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n",
+ "Electric field strength is zero at x=4.142 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "q1=1.0*10**-6 #in coul\n",
+ "q2=2.0*10**-6 #in coul\n",
+ "l=10 #sepearation b/w q1 and q2 in cm\n",
+ "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n",
+ "#\"Refer to the fig 27.9\"\n",
+ "#E1=electric fied strength due to q1\n",
+ "#E2=electric fied strength due to q2\n",
+ "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n",
+ "x=l/(1+math.sqrt(q2/q1))\n",
+ "print(\"Electric field strength is zero at x=%.3f cm\"%x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.9 Deflection of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Corresponding deflection in meters is 0.000337\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #charge in coul\n",
+ "E=1.2*10**4 #electric field in nt/coul\n",
+ "x=1.5*10**-2 #length of deflecting assembly in m\n",
+ "K0=3.2*10**-16 #kinetic energy of electron in joule\n",
+ "#calculation\n",
+ "y=e*E*x**2/(4*K0)\n",
+ "print(\"Corresponding deflection in meters is %.6f\"%y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.11 Torque and work done by external agent on electric dipole"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Maximum torque exerted by the fied in nt-m is\n",
+ "0.002\n",
+ "(b) Work done by the external agent to turn dipole end for end in joule is \n",
+ "0.004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n",
+ "d=2.0*10**-2 #seperation b/w charges in m\n",
+ "E=1.0*10**5 #external field in nt/coul\n",
+ "#calculations\n",
+ "#(a)Max torque if found when theta=90 degrees\n",
+ "#Torque =pEsin(theta)\n",
+ "p=q*d #electric dipole moment\n",
+ "T=p*E*math.sin(math.pi/2)\n",
+ "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n",
+ "print(T)\n",
+ "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n",
+ "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n",
+ "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n",
+ "print(W)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_X9h3IeS.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_X9h3IeS.ipynb
new file mode 100644
index 00000000..34883c4a
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_X9h3IeS.ipynb
@@ -0,0 +1,131 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 35 FARADAYS LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 35.1 Induced EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0376991\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000118\n",
+ "Induced EMF in volts is -0.0473741\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "l=1.0 #length of solenoid in meter\n",
+ "r=3*10**-2 #radius of solenoid in meter\n",
+ "n=200*10**2 #number of turns in solenoid per meter\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i=1.5 #current in amp\n",
+ "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n",
+ "d=2*10**-2 #diameter of coil in meter\n",
+ "delta_T=0.050 #in sec\n",
+ "#(A)\n",
+ "B=u0*i*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n",
+ "delta_Q=Q-(-Q)\n",
+ "E=-(N*delta_Q/delta_T)\n",
+ "print(\"Induced EMF in volts is %.7f\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 35.7 Induced electric field and EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n",
+ "(A) Induced electric field in volt/m observed by Z 2.0\n",
+ "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n",
+ "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n",
+ "(C) Induced emf in volt observed by S is 0.2\n",
+ "Induced emf in volt observed by Z is 0.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "B=2 #magnetic field in wb/m2\n",
+ "l=10*10**-2 #in m\n",
+ "v=1.0 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n",
+ "#(A)\n",
+ "E=v*B\n",
+ "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n",
+ "#(B)\n",
+ "F=q*v*B\n",
+ "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n",
+ "F1=q*E\n",
+ "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n",
+ "#(C)\n",
+ "emf1=B*l*v\n",
+ "print(\"(C) Induced emf in volt observed by S is\",emf1)\n",
+ "emf2=E*l\n",
+ "print(\"Induced emf in volt observed by Z is\",emf2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XhB36rB.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XhB36rB.ipynb
new file mode 100644
index 00000000..904b1c32
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XhB36rB.ipynb
@@ -0,0 +1,220 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 31 CURRENT AND RESISTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.1 Current density"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density in Aluminium wire in amp/square inches 1273.240\n",
+ "Current density in copper wire in amp/square inches 3108.495\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d1=0.10 #diameter of aluminium wire in inches\n",
+ "d2=0.064 #diameter of copper wire in inches\n",
+ "i=10 #current carried by composite wire in amperes\n",
+ "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n",
+ "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n",
+ "j1=i/A1\n",
+ "j2=i/A2\n",
+ "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n",
+ "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.2 Drift speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No.of free electrons per unit volume in atoms/mole 8.438e+22\n",
+ "Drift speed of electron in cm/sec is 0.03556\n"
+ ]
+ }
+ ],
+ "source": [
+ "j=480 #current density for copper wire in amp/cm2\n",
+ "N0=6*10**23 #avagadro number in atoms/mole\n",
+ "M=64 #molecular wt in gm/mole\n",
+ "d=9.0 #density in gm/cm3\n",
+ "e=1.6*10**-19 #elecron charge in coul\n",
+ "n=d*N0/M \n",
+ "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n",
+ "Vd=j/(n*e)\n",
+ "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.3 Resistance and resistivity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n",
+ "(a) Resistance measured b/w the two square ends in ohm is 0.175\n",
+ "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n",
+ "l=1.0*10**-2 #in meter\n",
+ "b=1.0*10**-2#in meter\n",
+ "h=50*10**-2 #in meter\n",
+ "p=3.5*10**-5 #resisivity of carbon in ohm-m\n",
+ "#(a)Resistance b/w two square ends\n",
+ "l1=h\n",
+ "A1=b*l\n",
+ "R1=p*l1/A1\n",
+ "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n",
+ "l2=l\n",
+ "A2=b*h\n",
+ "R2=p*l2/A2\n",
+ "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.4 Mean time and Mean free path"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a) Mean time b/w collisions in sec is 4.979e-14\n",
+ "(b) Mean free path in cm is 0.000008\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #in kg\n",
+ "n=8.4*10**28 #in m-1\n",
+ "e=1.6*10**-19 #in coul\n",
+ "p=1.7*10**-8 #in ohm-m\n",
+ "v=1.6*10**8 #in cm/sec\n",
+ "T=2*m/(n*p*e**2)\n",
+ "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n",
+ "Lambda=T*v\n",
+ "print(\"(b) Mean free path in cm is %f\"%Lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.5 Power"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Power for the single coil in watts is 504.167\n",
+ "(b)Power for a coil of half the length in watts is 1008.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "V=110 #in volt\n",
+ "R=24 #ohms\n",
+ "P1=V**2/R\n",
+ "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n",
+ "P2=V**2/(R/2)\n",
+ "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XzIRgL4.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XzIRgL4.ipynb
new file mode 100644
index 00000000..d197d07e
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_XzIRgL4.ipynb
@@ -0,0 +1,210 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 29 ELECTRIC POTENTIAL"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.3 Magnitude of an isolated positive point charge"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential due to a point charge is V=q/4*pi*epislon0*r\n",
+ "Magnitude of positive point charge in coul is 1.112e-09\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V=100 #electric potential in volts\n",
+ "r=10*10**-2 #in meters\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n",
+ "q=V*4*math.pi*epsilon0*r\n",
+ "print(\"Magnitude of positive point charge in coul is %.3e\"%q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.4 Electric potential at the surface of a gold nucleus"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric potential at the surface of the nucleus in volts is 17220668\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=6.6*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "V=q/(4*math.pi*epsilon0*r)\n",
+ "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.5 Potential at the center of the square"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential at the center of the square in volts is 508.65\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.0*10**-8 #in coul\n",
+ "q2=-2.0*10**-8 #in coul\n",
+ "q3=3.0*10**-8 #in coul\n",
+ "q4=2.0*10**-8 #in coul\n",
+ "a=1 #side of square in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "#refer to the fig 29.7\n",
+ "r=a/math.sqrt(2) #distance of charges from centre in meter\n",
+ "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Potential at the center of the square in volts is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.8 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mutual electric potential energy of two proton in joules is 3.837e-14\n",
+ "Mutual electric potential energy of two proton in ev is 239781.46\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.6*10**-19 #charge in coul\n",
+ "q2=1.6*10**-19 #charge in coul\n",
+ "r=6.0*10**-15 #seperation b/w two protons in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "U=(q1*q2)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n",
+ "V=U/q1\n",
+ "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.9 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total energy is the sum of each pair of particles \n",
+ "Mutual potential energy of the particles in joules is -0.008991804694457362\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-7 #charge in coul\n",
+ "a=10*10**-2 #side of triangle in meter\n",
+ "q1=q\n",
+ "q2=-4*q\n",
+ "q3=2*q\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Total energy is the sum of each pair of particles \")\n",
+ "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n",
+ "print(\"Mutual potential energy of the particles in joules is\",U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Y9CwzJf.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Y9CwzJf.ipynb
new file mode 100644
index 00000000..486ad42a
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Y9CwzJf.ipynb
@@ -0,0 +1,73 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 39 ELECTROMAGNETIC WAVES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 39.6 Magnitude of electric and magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of E in volts/meter= 244.94897\n",
+ "B in weber/meter^2= 0.00000082\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=1 #in m\n",
+ "p=10**3 \n",
+ "m=4*math.pi*10**-7 #weber/amp-m\n",
+ "c=3*10**8 #speed of light\n",
+ "x=2*math.pi\n",
+ "E_m=(1/r)*(math.sqrt((p*m*c)/x))\n",
+ "print(\"The value of E in volts/meter= %.5f\"%E_m)\n",
+ "B=E_m/c\n",
+ "print(\"B in weber/meter^2= %.8f\"%B)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z1uuTRh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z1uuTRh.ipynb
new file mode 100644
index 00000000..cd850cd0
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z1uuTRh.ipynb
@@ -0,0 +1,131 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 46 POLARIZATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.1 Calculation of theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Polarization angle theta= 135.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta=math.degrees(math.acos(1/math.sqrt(2)))\n",
+ "theta=180-theta\n",
+ "print(\"Polarization angle theta=\",theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.2 Angle of refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Theta_p in degrees=56.30993\n",
+ "Angle of refraction fron Snells law in degrees=33.69007\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_p= math.degrees(math.atan(1.5))\n",
+ "print(\"Theta_p in degrees=%.5f\"%theta_p)\n",
+ "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n",
+ "theta_r=math.degrees(math.asin(sin_theta_r))\n",
+ "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.3 Thickness of slab"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Value of x in m= 163611.111111113\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "n_e=1.553\n",
+ "n_o=1.544\n",
+ "s=(n_e)-(n_o)\n",
+ "x=(lamda)/(4*s)\n",
+ "\n",
+ "print(\"The Value of x in m=\",x)\n",
+ "#The answer provided in the textbook is wrong"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z54k8Ai.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z54k8Ai.ipynb
new file mode 100644
index 00000000..5d6ec9b4
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_Z54k8Ai.ipynb
@@ -0,0 +1,177 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 43 INTERFERENCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.1 Angular position of first minimum"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sin theta = 0.00273\n",
+ "Angle in degree= 0.15642\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=546*10**-9\n",
+ "d=0.10*10**-3 #in m\n",
+ "sin_theta=((m-0.5)*lamda)/(d)\n",
+ "print(\"Sin theta = %.5f\"%sin_theta)\n",
+ "theta=math.degrees(math.asin(sin_theta))\n",
+ "print(\"Angle in degree= %.5f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.2 Linear distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Linear distance in meter= 0.00109\n"
+ ]
+ }
+ ],
+ "source": [
+ "delta=546*10**-9 #in meter\n",
+ "D=20*10**-2 #in meter\n",
+ "d=0.10*10**-3 #in meter\n",
+ "delta_y=(delta*D)/d\n",
+ "print(\"Linear distance in meter= %.5f\"%delta_y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.4 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 1\n",
+ "Lambda_max= 5674.666666666667\n",
+ "Lambda_min= 8500.0\n",
+ "When m= 2\n",
+ "Lambda_max= 3404.8\n",
+ "Lambda_min= 4250.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "d=3200 #in A\n",
+ "n=1.33\n",
+ "for m in range(1,3):\n",
+ " lambda_max=(2*d*n)/(m+0.5)\n",
+ " lambda_min=(8500/m)\n",
+ " print(\"When m=\",m)\n",
+ " print(\"Lambda_max=\",lambda_max)\n",
+ " print(\"Lambda_min=\",lambda_min)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 43.5 Refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When m= 0\n",
+ "d in A=905.797\n",
+ "When m= 1\n",
+ "d in A=2717.391\n",
+ "When m= 2\n",
+ "d in A=4528.986\n",
+ "When m= 3\n",
+ "d in A=6340.580\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5000 #in A\n",
+ "n=1.38\n",
+ "for m in range(0,4):\n",
+ " print(\"When m=\",m)\n",
+ " d=((m+0.5)*lamda)/(2*n)\n",
+ " print(\"d in A=%.3f\"%d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZNNgbDf.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZNNgbDf.ipynb
new file mode 100644
index 00000000..d8f167d7
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_ZNNgbDf.ipynb
@@ -0,0 +1,181 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 37 MAGNETIC PROPERTIES OF MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.2 Orbital dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Orbital dipole moment in amp-m2 is 9.061e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n",
+ "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.4 Change in magnetic moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "B=2 #in wb/m2\n",
+ "delta_p=(e**2*B*r**2)/(4*m)\n",
+ "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.5 Precession frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "u=1.4*10**-26 #in amp-m2\n",
+ "B=0.50 #wb/m2\n",
+ "Lp=0.53*10**-34 #in joule-sec\n",
+ "fp=u*B/(2*math.pi*Lp)\n",
+ "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field strength in amp/m is 2000\n",
+ "(B) Magnetisation is Zero when core is removed\n",
+ " Magnetisation when the core is replaced in amp/m 793774.72\n",
+ "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n",
+ " Effective magnetizing current in amp is 793.77472\n",
+ "(D) Permeability 397.88736\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=10*10**2 #turns/m\n",
+ "i=2 #in amp\n",
+ "B=1.0 #in wb/m\n",
+ "u0=4*math.pi*10**-7 #in wb/amp-m\n",
+ "#(A)\n",
+ "H=n*i\n",
+ "print(\"(A) Magnetic field strength in amp/m is\",H)\n",
+ "#(B)\n",
+ "M=(B-u0*H)/u0\n",
+ "print(\"(B) Magnetisation is Zero when core is removed\")\n",
+ "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n",
+ "#(C)\n",
+ "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n",
+ "i=M/n\n",
+ "print(\" Effective magnetizing current in amp is %.5f\"%i)\n",
+ "#D\n",
+ "Km=B/(u0*H)\n",
+ "print(\"(D) Permeability %.5f\"%Km)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_a6lN8YC.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_a6lN8YC.ipynb
new file mode 100644
index 00000000..0209a02b
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_a6lN8YC.ipynb
@@ -0,0 +1,184 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.4 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "x= 0.05\n",
+ "The value of i in cm= 40.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=1\n",
+ "n2=2\n",
+ "o=20 #in cm\n",
+ "r=10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"x=\",x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm=\",i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.5 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "The value of i in cm= -0.03333\n",
+ "The value of i in cm= -30\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=2\n",
+ "n2=1\n",
+ "o=15 #in cm\n",
+ "r=-10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"The value of i in cm= %.5f\"%x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm= %d\"%i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.7 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/f in cm= 0.0325\n",
+ "f=1/x\n",
+ "f in cm= 30.76923\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1.65\n",
+ "r_1=40 #in cm\n",
+ "r_2=-40 #in cm\n",
+ "x=(n-1)*((1/r_1)-(1/r_2))\n",
+ "print(\"x=1/f in cm= %.4f\"%x)\n",
+ "print(\"f=1/x\")\n",
+ "f=1/x\n",
+ "print(\"f in cm= %.5f\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.8 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/i in cm= -0.06944\n",
+ "i in cm= -14.4\n",
+ "Lateral magnification =\n",
+ "m= 1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "o=9 #in cm\n",
+ "f=24 #in cm\n",
+ "x=(1/f)-(1/o)\n",
+ "print(\"x=1/i in cm= %.5f\"%x)\n",
+ "i=1/x\n",
+ "print(\"i in cm= %.1f\"%i)\n",
+ "print(\"Lateral magnification =\")\n",
+ "m=-(i/o)\n",
+ "print('m= %.1f'%m)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aVHvEjQ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aVHvEjQ.ipynb
new file mode 100644
index 00000000..57d1a771
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aVHvEjQ.ipynb
@@ -0,0 +1,227 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 45 GRATING AND SPECTRA"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.1 Calculation of angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 7.249\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=4000 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.3f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.2 Calculation of angle theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) The first order diffraction pattern in degree= 13.408\n",
+ "(B) Angle of seperation in degree= 0.0002388\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=5890 #in A\n",
+ "d=25400 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n",
+ "del_lambda=5.9 #in A\n",
+ "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n",
+ "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.3 Calculation of Sodium Doublet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolving power= 998.305\n",
+ "Number of rulings needed is= 332.768\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "lamda_1=5895.9 #A\n",
+ "m=3\n",
+ "delta_lambda=(lamda_1-lamda) #in A\n",
+ "R=lamda/(delta_lambda)\n",
+ "print(\"Resolving power= %.3f\"%R)\n",
+ "N=(R/m)\n",
+ "print(\"Number of rulings needed is= %.3f\"%N)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.4 Calculation of Dispersion"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 31.11244\n",
+ "(A) The dispersion in radian/A= 0.0001105\n",
+ "(B) Wave length difference in A= 0.13650\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=3\n",
+ "m1=5\n",
+ "lamda=5460 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n",
+ "D=m/(d*math.cos(theta*math.pi/180))\n",
+ "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n",
+ "N=8000\n",
+ "lamda=5460\n",
+ "R=N*m1\n",
+ "delta_lambda=lamda/R\n",
+ "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.5 Calculation of Angles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interplanar spacing d in A= 2.51781\n",
+ "Diffracted beam occurs when m=1,m=2 and m=3\n",
+ "When m1=1, Theta in degree= 12.61763\n",
+ "When m1=2, Theta in degree= 25.90544\n",
+ "When m1=3, Theta in degree= 40.94473\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "a_o=5.63 #A\n",
+ "d=a_o/math.sqrt(5)\n",
+ "lamda=1.10 #in A\n",
+ "print(\"Interplanar spacing d in A= %.5f\"%d)\n",
+ "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n",
+ "m1=1\n",
+ "x=(m1*lamda)/(2*d)\n",
+ "theta_1=math.degrees(math.asin(x))\n",
+ "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n",
+ "m2=2\n",
+ "x=(m2*lamda)/(2*d)\n",
+ "theta_2=math.degrees(math.asin(x))\n",
+ "print('When m1=2, Theta in degree= %.5f'%theta_2)\n",
+ "m3=3\n",
+ "x=(m3*lamda)/(2*d)\n",
+ "theta_3=math.degrees(math.asin(x))\n",
+ "print('When m1=3, Theta in degree= %.5f'%theta_3)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aoumhJm.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aoumhJm.ipynb
new file mode 100644
index 00000000..412d8eb1
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_aoumhJm.ipynb
@@ -0,0 +1,99 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 28 GAUSS'S LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 28.3 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=1*10**-10 #radius of the atom in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 28.4 Electric field strength at the nuclear surface"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=6.9*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_atzCquQ.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_atzCquQ.ipynb
new file mode 100644
index 00000000..4651a1a4
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_atzCquQ.ipynb
@@ -0,0 +1,158 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 44 DIFFRACTION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.1 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a in A=13000\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=6500 #in A\n",
+ "a=(m*lamda)/math.sin(30*math.pi/180)\n",
+ "print(\"a in A=%d\"%a)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.2 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength in A = 4333.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=6500\n",
+ "lambda_1=lamda/1.5\n",
+ "print(\"Wavelength in A = %.3f\"%lambda_1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.5 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.06990\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "byd=10**12\n",
+ "i_d=(e_0*math.pi*R*R*byd)\n",
+ "print(\"Current in amp= %.5f\"%i_d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.7 Delta Y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) D in m= 0.00240\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=480*10**-9 #in m\n",
+ "d=0.10*10**-3 #in m\n",
+ "D=50*10**-2 #in m\n",
+ "a=0.02*10**-3\n",
+ "delta_y=(lamda*D)/d\n",
+ "print(\"(A) D in m= %.5f\"%delta_y)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dZYAnnw.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dZYAnnw.ipynb
new file mode 100644
index 00000000..80d62fec
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dZYAnnw.ipynb
@@ -0,0 +1,206 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 48 WAVES AND PROPOGATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.1 Velocity and Wavelength of particle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in m/s 5929994.5\n",
+ "Wavelength in A 1.222\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=100*(1.6*(10**-19))\n",
+ "m=9.1*(10**-31)\n",
+ "\n",
+ "v=math.sqrt(((2*k)/(m)))\n",
+ "print(\"Velocity in m/s %.1f\"%v)\n",
+ "h=6.6*(10**-34)\n",
+ "p=5.4*(10**-34)\n",
+ "lamda=h/p\n",
+ "print(\"Wavelength in A %.3f\"%lamda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.2 Quantized energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in Joule= 5.984e-20\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1\n",
+ "h=(6.6)*10**-34 #j/sec\n",
+ "m=9.1*(10**-31) #in kg\n",
+ "l=1*(10**-9) #in m\n",
+ "E=(n**2)*((h**2)/(8*m*(l**2)))\n",
+ "print(\"Energy in Joule= %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.3 Quantum number"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 5.000e-22\n",
+ "Quantum number= 3.030e+14\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=10**-9 #in kg\n",
+ "v=10**-6 #in m/s\n",
+ "l=10**-4 #in m\n",
+ "h=(6.6)*(10**-34) #j/s\n",
+ "E=(0.5)*m*(v**2)\n",
+ "print(\"Energy in joule= %.3e\"%E)\n",
+ "n=(l/h)*(math.sqrt(8*m*E))\n",
+ "print(\"Quantum number= %.3e\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.5 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electrom momentum in kg-m/s= 2.730e-28\n",
+ "Delta_p in kg-m/s= 2.730e-32\n",
+ "Minimum uncertainaity in m= 0.02418\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*(10**-31) #in kg\n",
+ "v=300 #in m/s\n",
+ "h=6.6*(10**-34) #in j-s\n",
+ "p=m*v\n",
+ "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n",
+ "delta_p=(0.0001)*p\n",
+ "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n",
+ "delta_x=(h/delta_p)\n",
+ "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.6 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Momentum in kg-m/s= 15.0\n",
+ "Delta_x in meter= 4.400e-35\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=0.05 #in kg\n",
+ "v=300 #m/s\n",
+ "delta_p=m*v\n",
+ "print(\"Momentum in kg-m/s=\",delta_p)\n",
+ "delta_x=(6.6*10**-34)/delta_p\n",
+ "print(\"Delta_x in meter= %.3e\"%delta_x)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dsq2gfs.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dsq2gfs.ipynb
new file mode 100644
index 00000000..80d62fec
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_dsq2gfs.ipynb
@@ -0,0 +1,206 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 48 WAVES AND PROPOGATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.1 Velocity and Wavelength of particle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in m/s 5929994.5\n",
+ "Wavelength in A 1.222\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=100*(1.6*(10**-19))\n",
+ "m=9.1*(10**-31)\n",
+ "\n",
+ "v=math.sqrt(((2*k)/(m)))\n",
+ "print(\"Velocity in m/s %.1f\"%v)\n",
+ "h=6.6*(10**-34)\n",
+ "p=5.4*(10**-34)\n",
+ "lamda=h/p\n",
+ "print(\"Wavelength in A %.3f\"%lamda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.2 Quantized energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in Joule= 5.984e-20\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1\n",
+ "h=(6.6)*10**-34 #j/sec\n",
+ "m=9.1*(10**-31) #in kg\n",
+ "l=1*(10**-9) #in m\n",
+ "E=(n**2)*((h**2)/(8*m*(l**2)))\n",
+ "print(\"Energy in Joule= %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.3 Quantum number"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 5.000e-22\n",
+ "Quantum number= 3.030e+14\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=10**-9 #in kg\n",
+ "v=10**-6 #in m/s\n",
+ "l=10**-4 #in m\n",
+ "h=(6.6)*(10**-34) #j/s\n",
+ "E=(0.5)*m*(v**2)\n",
+ "print(\"Energy in joule= %.3e\"%E)\n",
+ "n=(l/h)*(math.sqrt(8*m*E))\n",
+ "print(\"Quantum number= %.3e\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.5 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electrom momentum in kg-m/s= 2.730e-28\n",
+ "Delta_p in kg-m/s= 2.730e-32\n",
+ "Minimum uncertainaity in m= 0.02418\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*(10**-31) #in kg\n",
+ "v=300 #in m/s\n",
+ "h=6.6*(10**-34) #in j-s\n",
+ "p=m*v\n",
+ "print(\"The electrom momentum in kg-m/s= %.3e\"%p)\n",
+ "delta_p=(0.0001)*p\n",
+ "print(\"Delta_p in kg-m/s= %.3e\"%delta_p)\n",
+ "delta_x=(h/delta_p)\n",
+ "print(\"Minimum uncertainaity in m= %.5f\"%delta_x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 48.6 Position of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Momentum in kg-m/s= 15.0\n",
+ "Delta_x in meter= 4.400e-35\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=0.05 #in kg\n",
+ "v=300 #m/s\n",
+ "delta_p=m*v\n",
+ "print(\"Momentum in kg-m/s=\",delta_p)\n",
+ "delta_x=(6.6*10**-34)/delta_p\n",
+ "print(\"Delta_x in meter= %.3e\"%delta_x)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_fKVhvNn.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_fKVhvNn.ipynb
new file mode 100644
index 00000000..6cc02fdd
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_fKVhvNn.ipynb
@@ -0,0 +1,157 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 47 LIGHT AND QUANTUM PHYSICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.1 Velocity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in cycles/s 0.71176\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=20 #in nt/m\n",
+ "m=1 #in kg\n",
+ "\n",
+ "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n",
+ "print(\"Velocity in cycles/s %.5f\"%v)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.2 Time calculation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power in j-sec 1.000000e-23\n",
+ "('Time reqired in sec =', 80000.0)\n",
+ "Time required in hour 22.22224\n"
+ ]
+ }
+ ],
+ "source": [
+ "P=(10**(-3))*(3*10**(-18))/(300)\n",
+ "print(\"Power in j-sec %e\"%P)\n",
+ "s=1.6*(10**(-19))\n",
+ "t=(5*s)/P\n",
+ "print(\"Time reqired in sec =\",t)\n",
+ "one_sec=0.000277778 #hr\n",
+ "in_hour=one_sec*t\n",
+ "print(\"Time required in hour %.5f\"%in_hour)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.3 Work function for sodium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 2.911e-19\n"
+ ]
+ }
+ ],
+ "source": [
+ "h=6.63*10**(-34) #in joule/sec\n",
+ "v=4.39*10**(14) #cycles/sec\n",
+ "E_o=h*(v)\n",
+ "print(\"Energy in joule= %.3e\"%E_o)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.4 Kinetic energy to be imparten on recoiling electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "h=(6.63)*10**-34\n",
+ "m=9.11*10**-31\n",
+ "c=3*10**8\n",
+ "delta_h=(h/(m*c))*(1-math.cos(90))\n",
+ "print(\"(A) Compton shift in meter %.3e\",delta_h)\n",
+ "delta=1*10**-10\n",
+ "k=(h*c*delta_h)/(delta*(delta+delta_h))\n",
+ "print(\"(B) Kinetic energy in joules\",k)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gI9NaAW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gI9NaAW.ipynb
new file mode 100644
index 00000000..047fa477
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gI9NaAW.ipynb
@@ -0,0 +1,260 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 33 THE MAGNETIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.1 Force acting on a proton"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of the proton in meters/sec is 30678599.55\n",
+ "Force acting on proton in nt is 7.363e-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "K=5*10**6 #ev\n",
+ "e=1.6*10**-19 #in coul\n",
+ "K1=K*e #in joules\n",
+ "m=1.7*10**-27 #in kg\n",
+ "B=1.5 #wb/m\n",
+ "theta=math.pi/2\n",
+ "v=math.sqrt(2*K1/m)\n",
+ "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n",
+ "F=e*v*B*math.sin(theta)\n",
+ "print(\"Force acting on proton in nt is %.3e\"%F)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.3 Torsional constant of the spring"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Torssional constant in nt-m/deg is 3.333e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "N=250 #turns in coil\n",
+ "i=1.0*10**-4 #in amp\n",
+ "B=0.2 #wb/m2\n",
+ "h=2*10**-2 #coil height in m\n",
+ "w=1.0*10**-2 #width of coil in m\n",
+ "Q=30 #angular deflectin in degrees\n",
+ "theta=math.pi/2\n",
+ "A=h*w\n",
+ "k=N*i*A*B*math.sin(theta)/Q\n",
+ "print(\"Torssional constant in nt-m/deg is %.3e\"%k)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.4 Work done"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "N=100 #turns in circular coil\n",
+ "i=0.10 #in amp\n",
+ "B=1.5 #in wb/m2\n",
+ "a=5*10**-2 #radius of coil in meter\n",
+ "u=N*i*math.pi*(a**2) #u is dipole moment\n",
+ "U1=(-u*B*math.cos(0))\n",
+ "U2=-u*B*math.cos(math.pi)\n",
+ "W=U2-U1\n",
+ "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.5 Hall potential difference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n"
+ ]
+ }
+ ],
+ "source": [
+ "i=200 #current in the strip in amp\n",
+ "B=1.5 #magnetic field in wb/m2\n",
+ "n=8.4*10**28 #in m-3\n",
+ "e=1.6*10**-19 #in coul\n",
+ "h=1.0*10**-3 #thickness of copper strip in metre\n",
+ "w=2*10**-2 #width of copper strip in meter\n",
+ "Vxy=i*B/(n*e*h)\n",
+ "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.6 Orbital radius Cyclotron frequency and Period of revolution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Orbit radius in meter is 0.1080625\n",
+ "(B) Cyclotron frequency in rev/sec is 2798328.7\n",
+ "(C) Period of revolution in sec is 0.0000004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "m=9.1*10**-31 # in kg\n",
+ "v=1.9*10**6 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "B=1.0*10**-4 #in wb/m2\n",
+ "\n",
+ "#(A)\n",
+ "r=m*v/(q*B)\n",
+ "print(\"(A) Orbit radius in meter is %.7f\"%r)\n",
+ "#(B)\n",
+ "f=q*B/(2*math.pi*m)\n",
+ "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n",
+ "#(C)\n",
+ "T=1/f\n",
+ "print(\"(C) Period of revolution in sec is %.7f\"%T)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.7 Magnetic induction and Deuteron energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n",
+ "(B) Deuteron energy in joule is 2.669e-12\n",
+ " Deuteron energy in ev is 16679852\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "f0=12*10**6 #cyclotron frequency in cycles/sec\n",
+ "r=21#dee radius in inches\n",
+ "R=r*0.0254 #dee radius in meter\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "m=3.3*10**-27 #in kg\n",
+ "#(A)\n",
+ "B=2*math.pi*f0*m/q\n",
+ "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n",
+ "#(B)\n",
+ "K=((q**2*B**2*R**2)/(2*m))\n",
+ "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n",
+ "K1=K*(1/(1.6*10**-19))\n",
+ "print(\" Deuteron energy in ev is %d\"%K1)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gXQu2hh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gXQu2hh.ipynb
new file mode 100644
index 00000000..2b7da278
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gXQu2hh.ipynb
@@ -0,0 +1,183 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 27 THE ELECTRIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.1 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength E=F/q where F=mg\n",
+ "electric field strength in nt/coul is 5.574e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "g=9.8 #acceleration due to gravity in m/s\n",
+ "q=1.6*10**-19 #charge of electron in coul\n",
+ "print(\"Electric field strength E=F/q where F=mg\")\n",
+ "E=m*g/q\n",
+ "print(\"electric field strength in nt/coul is %.3e\"%E)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.4 The point on the line joining two charges for the electric field strength to be zero"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For the electric field strength to be zero the point should lie between the charges where E1=E2\n",
+ "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n",
+ "Electric field strength is zero at x=4.142 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "q1=1.0*10**-6 #in coul\n",
+ "q2=2.0*10**-6 #in coul\n",
+ "l=10 #sepearation b/w q1 and q2 in cm\n",
+ "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n",
+ "#\"Refer to the fig 27.9\"\n",
+ "#E1=electric fied strength due to q1\n",
+ "#E2=electric fied strength due to q2\n",
+ "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n",
+ "x=l/(1+math.sqrt(q2/q1))\n",
+ "print(\"Electric field strength is zero at x=%.3f cm\"%x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.9 Deflection of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Corresponding deflection in meters is 0.000337\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #charge in coul\n",
+ "E=1.2*10**4 #electric field in nt/coul\n",
+ "x=1.5*10**-2 #length of deflecting assembly in m\n",
+ "K0=3.2*10**-16 #kinetic energy of electron in joule\n",
+ "#calculation\n",
+ "y=e*E*x**2/(4*K0)\n",
+ "print(\"Corresponding deflection in meters is %.6f\"%y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.11 Torque and work done by external agent on electric dipole"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Maximum torque exerted by the fied in nt-m is\n",
+ "0.002\n",
+ "(b) Work done by the external agent to turn dipole end for end in joule is \n",
+ "0.004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n",
+ "d=2.0*10**-2 #seperation b/w charges in m\n",
+ "E=1.0*10**5 #external field in nt/coul\n",
+ "#calculations\n",
+ "#(a)Max torque if found when theta=90 degrees\n",
+ "#Torque =pEsin(theta)\n",
+ "p=q*d #electric dipole moment\n",
+ "T=p*E*math.sin(math.pi/2)\n",
+ "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n",
+ "print(T)\n",
+ "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n",
+ "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n",
+ "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n",
+ "print(W)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gmcBgGR.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gmcBgGR.ipynb
new file mode 100644
index 00000000..21e23dc9
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_gmcBgGR.ipynb
@@ -0,0 +1,168 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 30 CAPACITORS AND DIELECTRICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.1 Plate area"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Plate area in square meter is 1.130e+08\n"
+ ]
+ }
+ ],
+ "source": [
+ "C=1.0 #capacitance in farad\n",
+ "d=1.0*10**-3 #separation b/w plates in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=d*C/epsilon0\n",
+ "print(\"Plate area in square meter is %.3e\"%A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n",
+ "(b)Free charge in coul is 8.850e-10\n",
+ "(c)Electric field strength in the gap in volts/meter is 10000\n",
+ "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n",
+ "(e)Potential difference between the plates in volts is 57.1429\n",
+ "(f)Capacitance with the slab in place in farads is 1.549e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "b=5*10**-3 #thickness of dielectric lab in meter\n",
+ "V0=100#in volts\n",
+ "k=7\n",
+ "#(a)\n",
+ "C0=epsilon0*A/d\n",
+ "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n",
+ "#(b)\n",
+ "q=C0*V0\n",
+ "print(\"(b)Free charge in coul is %.3e\"%q)\n",
+ "#(c)\n",
+ "E0=q/(epsilon0*A)\n",
+ "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n",
+ "#(d)\n",
+ "E=q/(k*epsilon0*A)\n",
+ "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n",
+ "#(e)\n",
+ "#Refer to fig30-12\n",
+ "V=E0*(d-b)+E*b\n",
+ "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n",
+ "#(f)\n",
+ "C=q/V\n",
+ "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n",
+ "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n",
+ "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n",
+ "Electric polarisation in air gap in coul/square meter is 0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "V0=100#in volts\n",
+ "E0=1*10**4 #Electric field in the air gap in volts/meter\n",
+ "k=7\n",
+ "k0=1\n",
+ "E=1.43*10**3 #in volts/metre\n",
+ "D=k*E*epsilon0\n",
+ "P=epsilon0*(k-1)*E\n",
+ "#(a)\n",
+ "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n",
+ "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n",
+ "#(b)\n",
+ "D0=k0*epsilon0*E0\n",
+ "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n",
+ "P0=epsilon0*(k0-1)*E0\n",
+ "print(\"Electric polarisation in air gap in coul/square meter is\",P0)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hWr9kYf.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hWr9kYf.ipynb
new file mode 100644
index 00000000..904b1c32
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hWr9kYf.ipynb
@@ -0,0 +1,220 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 31 CURRENT AND RESISTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.1 Current density"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density in Aluminium wire in amp/square inches 1273.240\n",
+ "Current density in copper wire in amp/square inches 3108.495\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d1=0.10 #diameter of aluminium wire in inches\n",
+ "d2=0.064 #diameter of copper wire in inches\n",
+ "i=10 #current carried by composite wire in amperes\n",
+ "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n",
+ "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n",
+ "j1=i/A1\n",
+ "j2=i/A2\n",
+ "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n",
+ "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.2 Drift speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No.of free electrons per unit volume in atoms/mole 8.438e+22\n",
+ "Drift speed of electron in cm/sec is 0.03556\n"
+ ]
+ }
+ ],
+ "source": [
+ "j=480 #current density for copper wire in amp/cm2\n",
+ "N0=6*10**23 #avagadro number in atoms/mole\n",
+ "M=64 #molecular wt in gm/mole\n",
+ "d=9.0 #density in gm/cm3\n",
+ "e=1.6*10**-19 #elecron charge in coul\n",
+ "n=d*N0/M \n",
+ "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n",
+ "Vd=j/(n*e)\n",
+ "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.3 Resistance and resistivity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n",
+ "(a) Resistance measured b/w the two square ends in ohm is 0.175\n",
+ "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n",
+ "l=1.0*10**-2 #in meter\n",
+ "b=1.0*10**-2#in meter\n",
+ "h=50*10**-2 #in meter\n",
+ "p=3.5*10**-5 #resisivity of carbon in ohm-m\n",
+ "#(a)Resistance b/w two square ends\n",
+ "l1=h\n",
+ "A1=b*l\n",
+ "R1=p*l1/A1\n",
+ "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n",
+ "l2=l\n",
+ "A2=b*h\n",
+ "R2=p*l2/A2\n",
+ "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.4 Mean time and Mean free path"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a) Mean time b/w collisions in sec is 4.979e-14\n",
+ "(b) Mean free path in cm is 0.000008\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #in kg\n",
+ "n=8.4*10**28 #in m-1\n",
+ "e=1.6*10**-19 #in coul\n",
+ "p=1.7*10**-8 #in ohm-m\n",
+ "v=1.6*10**8 #in cm/sec\n",
+ "T=2*m/(n*p*e**2)\n",
+ "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n",
+ "Lambda=T*v\n",
+ "print(\"(b) Mean free path in cm is %f\"%Lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.5 Power"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Power for the single coil in watts is 504.167\n",
+ "(b)Power for a coil of half the length in watts is 1008.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "V=110 #in volt\n",
+ "R=24 #ohms\n",
+ "P1=V**2/R\n",
+ "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n",
+ "P2=V**2/(R/2)\n",
+ "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hdRT9rD.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hdRT9rD.ipynb
new file mode 100644
index 00000000..a0180572
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_hdRT9rD.ipynb
@@ -0,0 +1,139 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.1 Angle between two refracted beams"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For 4000 A beam, theta_2 in degree= 19.88234\n",
+ "For 5000 A beam, theta_2 in degree= 19.99290\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_1=30\n",
+ "n_qa=1.4702\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n",
+ "\n",
+ "theta_1=30\n",
+ "n_qa=1.4624\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.4 Index of glass"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index reflection= 1.41421\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=1/math.sin(45*math.pi/180)\n",
+ "print(\"Index reflection= %.5f\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.5 Calculation of Angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle theta_c in degree= 62.45732\n",
+ "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n",
+ "Angle of refraction:\n",
+ "Theta_2 in degree= 52.89097\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n2=1.33\n",
+ "n1=1.50\n",
+ "theta_c=math.degrees(math.asin(n2/n1))\n",
+ "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n",
+ "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n",
+ "print(\"Angle of refraction:\")\n",
+ "x=n1/n2\n",
+ "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n",
+ "print(\"Theta_2 in degree= %.5f\"%theta_2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_iazK9ta.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_iazK9ta.ipynb
new file mode 100644
index 00000000..34883c4a
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_iazK9ta.ipynb
@@ -0,0 +1,131 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 35 FARADAYS LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 35.1 Induced EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0376991\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000118\n",
+ "Induced EMF in volts is -0.0473741\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "l=1.0 #length of solenoid in meter\n",
+ "r=3*10**-2 #radius of solenoid in meter\n",
+ "n=200*10**2 #number of turns in solenoid per meter\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i=1.5 #current in amp\n",
+ "N=100 #no.of turns in a close packed coil placed at the center of solenoid\n",
+ "d=2*10**-2 #diameter of coil in meter\n",
+ "delta_T=0.050 #in sec\n",
+ "#(A)\n",
+ "B=u0*i*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)\n",
+ "delta_Q=Q-(-Q)\n",
+ "E=-(N*delta_Q/delta_T)\n",
+ "print(\"Induced EMF in volts is %.7f\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 35.7 Induced electric field and EMF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\n",
+ "(A) Induced electric field in volt/m observed by Z 2.0\n",
+ "(B) Force acting on charge carrier in nt w.r.t S is 3.2e-19\n",
+ "Force acting on charge carrier in nt w.r.t Z is 3.2e-19\n",
+ "(C) Induced emf in volt observed by S is 0.2\n",
+ "Induced emf in volt observed by Z is 0.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "B=2 #magnetic field in wb/m2\n",
+ "l=10*10**-2 #in m\n",
+ "v=1.0 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "print(\"Let S be the frame of reference fixed w.r.t the magnet and Z be the frame of reference w.r.t the loop\")\n",
+ "#(A)\n",
+ "E=v*B\n",
+ "print(\"(A) Induced electric field in volt/m observed by Z\",E)\n",
+ "#(B)\n",
+ "F=q*v*B\n",
+ "print(\"(B) Force acting on charge carrier in nt w.r.t S is %.1e\"%F)\n",
+ "F1=q*E\n",
+ "print(\"Force acting on charge carrier in nt w.r.t Z is %.1e\"%F1)\n",
+ "#(C)\n",
+ "emf1=B*l*v\n",
+ "print(\"(C) Induced emf in volt observed by S is\",emf1)\n",
+ "emf2=E*l\n",
+ "print(\"Induced emf in volt observed by Z is\",emf2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jsDJxKP.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jsDJxKP.ipynb
new file mode 100644
index 00000000..21e23dc9
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jsDJxKP.ipynb
@@ -0,0 +1,168 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 30 CAPACITORS AND DIELECTRICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.1 Plate area"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Plate area in square meter is 1.130e+08\n"
+ ]
+ }
+ ],
+ "source": [
+ "C=1.0 #capacitance in farad\n",
+ "d=1.0*10**-3 #separation b/w plates in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=d*C/epsilon0\n",
+ "print(\"Plate area in square meter is %.3e\"%A)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Capacitance before the slab is inserted in farad is 8.850e-12\n",
+ "(b)Free charge in coul is 8.850e-10\n",
+ "(c)Electric field strength in the gap in volts/meter is 10000\n",
+ "(d)Electric field strength in the dielectric in volts/meter is 1428.5714\n",
+ "(e)Potential difference between the plates in volts is 57.1429\n",
+ "(f)Capacitance with the slab in place in farads is 1.549e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "b=5*10**-3 #thickness of dielectric lab in meter\n",
+ "V0=100#in volts\n",
+ "k=7\n",
+ "#(a)\n",
+ "C0=epsilon0*A/d\n",
+ "print(\"(a)Capacitance before the slab is inserted in farad is %.3e\"%C0)\n",
+ "#(b)\n",
+ "q=C0*V0\n",
+ "print(\"(b)Free charge in coul is %.3e\"%q)\n",
+ "#(c)\n",
+ "E0=q/(epsilon0*A)\n",
+ "print(\"(c)Electric field strength in the gap in volts/meter is %d\"%E0)\n",
+ "#(d)\n",
+ "E=q/(k*epsilon0*A)\n",
+ "print(\"(d)Electric field strength in the dielectric in volts/meter is %.4f\"%E)\n",
+ "#(e)\n",
+ "#Refer to fig30-12\n",
+ "V=E0*(d-b)+E*b\n",
+ "print(\"(e)Potential difference between the plates in volts is %.4f\"%V)\n",
+ "#(f)\n",
+ "C=q/V\n",
+ "print(\"(f)Capacitance with the slab in place in farads is %.3e\"%C)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Electric displacement in dielectric in coul/square metre is 8.859e-08\n",
+ "Electric polarisation in dielectric in coul/square meter is 7.593e-08\n",
+ "(b)Electric displacement in air gap in coul/square metre is 8.850e-08\n",
+ "Electric polarisation in air gap in coul/square meter is 0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "A=100*10**-4#area of the plate in square meter\n",
+ "d=1*10**-2 #separation b/w plates in meter\n",
+ "V0=100#in volts\n",
+ "E0=1*10**4 #Electric field in the air gap in volts/meter\n",
+ "k=7\n",
+ "k0=1\n",
+ "E=1.43*10**3 #in volts/metre\n",
+ "D=k*E*epsilon0\n",
+ "P=epsilon0*(k-1)*E\n",
+ "#(a)\n",
+ "print(\"(a)Electric displacement in dielectric in coul/square metre is %.3e\"%D)\n",
+ "print(\"Electric polarisation in dielectric in coul/square meter is %.3e\"%P)\n",
+ "#(b)\n",
+ "D0=k0*epsilon0*E0\n",
+ "print(\"(b)Electric displacement in air gap in coul/square metre is %.3e\"%D0)\n",
+ "P0=epsilon0*(k0-1)*E0\n",
+ "print(\"Electric polarisation in air gap in coul/square meter is\",P0)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jyE0OmR.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jyE0OmR.ipynb
new file mode 100644
index 00000000..2b7da278
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_jyE0OmR.ipynb
@@ -0,0 +1,183 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 27 THE ELECTRIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.1 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength E=F/q where F=mg\n",
+ "electric field strength in nt/coul is 5.574e-11\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "g=9.8 #acceleration due to gravity in m/s\n",
+ "q=1.6*10**-19 #charge of electron in coul\n",
+ "print(\"Electric field strength E=F/q where F=mg\")\n",
+ "E=m*g/q\n",
+ "print(\"electric field strength in nt/coul is %.3e\"%E)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.4 The point on the line joining two charges for the electric field strength to be zero"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For the electric field strength to be zero the point should lie between the charges where E1=E2\n",
+ "E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\n",
+ "Electric field strength is zero at x=4.142 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "q1=1.0*10**-6 #in coul\n",
+ "q2=2.0*10**-6 #in coul\n",
+ "l=10 #sepearation b/w q1 and q2 in cm\n",
+ "print(\"For the electric field strength to be zero the point should lie between the charges where E1=E2\")\n",
+ "#\"Refer to the fig 27.9\"\n",
+ "#E1=electric fied strength due to q1\n",
+ "#E2=electric fied strength due to q2\n",
+ "print(\"E1=E2 which implies q1/4πϵx2 = q2/4πϵ(l-x)2\")\n",
+ "x=l/(1+math.sqrt(q2/q1))\n",
+ "print(\"Electric field strength is zero at x=%.3f cm\"%x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.9 Deflection of electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Corresponding deflection in meters is 0.000337\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #charge in coul\n",
+ "E=1.2*10**4 #electric field in nt/coul\n",
+ "x=1.5*10**-2 #length of deflecting assembly in m\n",
+ "K0=3.2*10**-16 #kinetic energy of electron in joule\n",
+ "#calculation\n",
+ "y=e*E*x**2/(4*K0)\n",
+ "print(\"Corresponding deflection in meters is %.6f\"%y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 27.11 Torque and work done by external agent on electric dipole"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Maximum torque exerted by the fied in nt-m is\n",
+ "0.002\n",
+ "(b) Work done by the external agent to turn dipole end for end in joule is \n",
+ "0.004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-6 #magnitude of two opposite charges of a electric dipole in coul\n",
+ "d=2.0*10**-2 #seperation b/w charges in m\n",
+ "E=1.0*10**5 #external field in nt/coul\n",
+ "#calculations\n",
+ "#(a)Max torque if found when theta=90 degrees\n",
+ "#Torque =pEsin(theta)\n",
+ "p=q*d #electric dipole moment\n",
+ "T=p*E*math.sin(math.pi/2)\n",
+ "print(\"(a)Maximum torque exerted by the fied in nt-m is\")\n",
+ "print(T)\n",
+ "#(b)work done by the external agent is the potential energy b/w the positions theta=180 and 0 degree\n",
+ "W=(-p*E*math.cos(math.pi))-(-p*E*math.cos(0))\n",
+ "print(\"(b) Work done by the external agent to turn dipole end for end in joule is \")\n",
+ "print(W)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nHWGDuY.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nHWGDuY.ipynb
new file mode 100644
index 00000000..047fa477
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nHWGDuY.ipynb
@@ -0,0 +1,260 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 33 THE MAGNETIC FIELD"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.1 Force acting on a proton"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of the proton in meters/sec is 30678599.55\n",
+ "Force acting on proton in nt is 7.363e-12\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "K=5*10**6 #ev\n",
+ "e=1.6*10**-19 #in coul\n",
+ "K1=K*e #in joules\n",
+ "m=1.7*10**-27 #in kg\n",
+ "B=1.5 #wb/m\n",
+ "theta=math.pi/2\n",
+ "v=math.sqrt(2*K1/m)\n",
+ "print(\"Speed of the proton in meters/sec is %.2f\"%v)\n",
+ "F=e*v*B*math.sin(theta)\n",
+ "print(\"Force acting on proton in nt is %.3e\"%F)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.3 Torsional constant of the spring"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Torssional constant in nt-m/deg is 3.333e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "N=250 #turns in coil\n",
+ "i=1.0*10**-4 #in amp\n",
+ "B=0.2 #wb/m2\n",
+ "h=2*10**-2 #coil height in m\n",
+ "w=1.0*10**-2 #width of coil in m\n",
+ "Q=30 #angular deflectin in degrees\n",
+ "theta=math.pi/2\n",
+ "A=h*w\n",
+ "k=N*i*A*B*math.sin(theta)/Q\n",
+ "print(\"Torssional constant in nt-m/deg is %.3e\"%k)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.4 Work done"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is 0.23561944901923454\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "N=100 #turns in circular coil\n",
+ "i=0.10 #in amp\n",
+ "B=1.5 #in wb/m2\n",
+ "a=5*10**-2 #radius of coil in meter\n",
+ "u=N*i*math.pi*(a**2) #u is dipole moment\n",
+ "U1=(-u*B*math.cos(0))\n",
+ "U2=-u*B*math.cos(math.pi)\n",
+ "W=U2-U1\n",
+ "print(\"Work required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is \",W)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.5 Hall potential difference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall potential difference aross strip in volt is 2.232142857142857e-05 or 0.0000223\n"
+ ]
+ }
+ ],
+ "source": [
+ "i=200 #current in the strip in amp\n",
+ "B=1.5 #magnetic field in wb/m2\n",
+ "n=8.4*10**28 #in m-3\n",
+ "e=1.6*10**-19 #in coul\n",
+ "h=1.0*10**-3 #thickness of copper strip in metre\n",
+ "w=2*10**-2 #width of copper strip in meter\n",
+ "Vxy=i*B/(n*e*h)\n",
+ "print(\"Hall potential difference aross strip in volt is\",Vxy,\"or\",\"%.7f\"%Vxy)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.6 Orbital radius Cyclotron frequency and Period of revolution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Orbit radius in meter is 0.1080625\n",
+ "(B) Cyclotron frequency in rev/sec is 2798328.7\n",
+ "(C) Period of revolution in sec is 0.0000004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "m=9.1*10**-31 # in kg\n",
+ "v=1.9*10**6 #in m/sec\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "B=1.0*10**-4 #in wb/m2\n",
+ "\n",
+ "#(A)\n",
+ "r=m*v/(q*B)\n",
+ "print(\"(A) Orbit radius in meter is %.7f\"%r)\n",
+ "#(B)\n",
+ "f=q*B/(2*math.pi*m)\n",
+ "print(\"(B) Cyclotron frequency in rev/sec is %.1f\"%f)\n",
+ "#(C)\n",
+ "T=1/f\n",
+ "print(\"(C) Period of revolution in sec is %.7f\"%T)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 33.7 Magnetic induction and Deuteron energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic induction needed to accelerate deuterons in wb/m2 is 1.5550883635269475\n",
+ "(B) Deuteron energy in joule is 2.669e-12\n",
+ " Deuteron energy in ev is 16679852\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "f0=12*10**6 #cyclotron frequency in cycles/sec\n",
+ "r=21#dee radius in inches\n",
+ "R=r*0.0254 #dee radius in meter\n",
+ "q=1.6*10**-19 #charge in coul\n",
+ "m=3.3*10**-27 #in kg\n",
+ "#(A)\n",
+ "B=2*math.pi*f0*m/q\n",
+ "print(\"(A) Magnetic induction needed to accelerate deuterons in wb/m2 is\",B)\n",
+ "#(B)\n",
+ "K=((q**2*B**2*R**2)/(2*m))\n",
+ "print(\"(B) Deuteron energy in joule is %.3e\"%K)\n",
+ "K1=K*(1/(1.6*10**-19))\n",
+ "print(\" Deuteron energy in ev is %d\"%K1)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nR6dR6C.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nR6dR6C.ipynb
new file mode 100644
index 00000000..0209a02b
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nR6dR6C.ipynb
@@ -0,0 +1,184 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 42 REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.4 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "x= 0.05\n",
+ "The value of i in cm= 40.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=1\n",
+ "n2=2\n",
+ "o=20 #in cm\n",
+ "r=10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"x=\",x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm=\",i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.5 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=n2/i\n",
+ "The value of i in cm= -0.03333\n",
+ "The value of i in cm= -30\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "n1=2\n",
+ "n2=1\n",
+ "o=15 #in cm\n",
+ "r=-10 #in cm\n",
+ "print(\"x=n2/i\")\n",
+ "x=((n2-n1)/r)-(n1/o)\n",
+ "print(\"The value of i in cm= %.5f\"%x)\n",
+ "i=n2/x\n",
+ "print(\"The value of i in cm= %d\"%i)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.7 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/f in cm= 0.0325\n",
+ "f=1/x\n",
+ "f in cm= 30.76923\n"
+ ]
+ }
+ ],
+ "source": [
+ "n=1.65\n",
+ "r_1=40 #in cm\n",
+ "r_2=-40 #in cm\n",
+ "x=(n-1)*((1/r_1)-(1/r_2))\n",
+ "print(\"x=1/f in cm= %.4f\"%x)\n",
+ "print(\"f=1/x\")\n",
+ "f=1/x\n",
+ "print(\"f in cm= %.5f\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 42.8 Location of image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x=1/i in cm= -0.06944\n",
+ "i in cm= -14.4\n",
+ "Lateral magnification =\n",
+ "m= 1.6\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "o=9 #in cm\n",
+ "f=24 #in cm\n",
+ "x=(1/f)-(1/o)\n",
+ "print(\"x=1/i in cm= %.5f\"%x)\n",
+ "i=1/x\n",
+ "print(\"i in cm= %.1f\"%i)\n",
+ "print(\"Lateral magnification =\")\n",
+ "m=-(i/o)\n",
+ "print('m= %.1f'%m)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_naWaV0X.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_naWaV0X.ipynb
new file mode 100644
index 00000000..381ec056
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_naWaV0X.ipynb
@@ -0,0 +1,195 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 38 ELECTROMAGNETIC OSCILLATIONS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.1 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Max current in amps 0.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V_o=50 #in volts\n",
+ "C=1*10**-6 #in farad\n",
+ "L=10*10**-3\n",
+ "i_m=V_o*(math.sqrt(C/L))\n",
+ "print(\"Max current in amps \",i_m)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.2 Angular frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=10*(10**-3) #in henry\n",
+ "C=(10)**-6 #in farad\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.3 Angular frequency and time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular frequency in radians/sec= 10000.0\n",
+ "Time in sec= 0.13863\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=10*(10**-3) #in henry\n",
+ "C=10**-6 #in farad\n",
+ "R=0.1 #in ohm\n",
+ "w=math.sqrt(1/(L*C))\n",
+ "print(\"Angular frequency in radians/sec=\",w)\n",
+ "t=(2*L*math.log(2))/R\n",
+ "print(\"Time in sec= %.5f\"%t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.5 Magnetic field"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field in weber/m**2= 0.0000003\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "B=(0.5*m_0*e_0*R*dEbydT)\n",
+ "print(\"Magnetic field in weber/m**2= %.7f\"%B)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 38.6 Calculation of current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.0699004\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "dEbydT=10**12\n",
+ "i_d=(e_0*math.pi*R*R*dEbydT)\n",
+ "print(\"Current in amp= %.7f\"%i_d)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nfECUYk.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nfECUYk.ipynb
new file mode 100644
index 00000000..d8f167d7
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_nfECUYk.ipynb
@@ -0,0 +1,181 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 37 MAGNETIC PROPERTIES OF MATTER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.2 Orbital dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Orbital dipole moment in amp-m2 is 9.061e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "p=((e**2)/4)*math.sqrt(r/(math.pi*epsilon0*m))\n",
+ "print(\"Orbital dipole moment in amp-m2 is %.3e\"%p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.4 Change in magnetic moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in Orbital dipole moment in amp-m2 is + 0r - 3.659e-29\n"
+ ]
+ }
+ ],
+ "source": [
+ "e=1.6*10**-19 #in coul\n",
+ "r=5.1*10**-11 #radius of hydrogen atom in meter\n",
+ "m=9.1*10**-31 #mass of electron in kg\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "B=2 #in wb/m2\n",
+ "delta_p=(e**2*B*r**2)/(4*m)\n",
+ "print(\"Change in Orbital dipole moment in amp-m2 is + 0r - %.3e\"%delta_p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.5 Precession frequency"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Precession frequency of phoyon in given magnetic field in cps is 21020464.18\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "u=1.4*10**-26 #in amp-m2\n",
+ "B=0.50 #wb/m2\n",
+ "Lp=0.53*10**-34 #in joule-sec\n",
+ "fp=u*B/(2*math.pi*Lp)\n",
+ "print(\"Precession frequency of phoyon in given magnetic field in cps is %.2f\"%fp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field strength in amp/m is 2000\n",
+ "(B) Magnetisation is Zero when core is removed\n",
+ " Magnetisation when the core is replaced in amp/m 793774.72\n",
+ "(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\n",
+ " Effective magnetizing current in amp is 793.77472\n",
+ "(D) Permeability 397.88736\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=10*10**2 #turns/m\n",
+ "i=2 #in amp\n",
+ "B=1.0 #in wb/m\n",
+ "u0=4*math.pi*10**-7 #in wb/amp-m\n",
+ "#(A)\n",
+ "H=n*i\n",
+ "print(\"(A) Magnetic field strength in amp/m is\",H)\n",
+ "#(B)\n",
+ "M=(B-u0*H)/u0\n",
+ "print(\"(B) Magnetisation is Zero when core is removed\")\n",
+ "print(\" Magnetisation when the core is replaced in amp/m %.2f\"%M)\n",
+ "#(C)\n",
+ "print(\"(C) Effective magnetizing current i=i(M,0)=M*(2*math.pi*r0/N0)=M/n\")\n",
+ "i=M/n\n",
+ "print(\" Effective magnetizing current in amp is %.5f\"%i)\n",
+ "#D\n",
+ "Km=B/(u0*H)\n",
+ "print(\"(D) Permeability %.5f\"%Km)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_okauj8T.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_okauj8T.ipynb
new file mode 100644
index 00000000..d197d07e
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_okauj8T.ipynb
@@ -0,0 +1,210 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 29 ELECTRIC POTENTIAL"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.3 Magnitude of an isolated positive point charge"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential due to a point charge is V=q/4*pi*epislon0*r\n",
+ "Magnitude of positive point charge in coul is 1.112e-09\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V=100 #electric potential in volts\n",
+ "r=10*10**-2 #in meters\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Potential due to a point charge is V=q/4*pi*epislon0*r\")\n",
+ "q=V*4*math.pi*epsilon0*r\n",
+ "print(\"Magnitude of positive point charge in coul is %.3e\"%q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.4 Electric potential at the surface of a gold nucleus"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric potential at the surface of the nucleus in volts is 17220668\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "r=6.6*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "V=q/(4*math.pi*epsilon0*r)\n",
+ "print(\"Electric potential at the surface of the nucleus in volts is %d\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.5 Potential at the center of the square"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential at the center of the square in volts is 508.65\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.0*10**-8 #in coul\n",
+ "q2=-2.0*10**-8 #in coul\n",
+ "q3=3.0*10**-8 #in coul\n",
+ "q4=2.0*10**-8 #in coul\n",
+ "a=1 #side of square in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "#refer to the fig 29.7\n",
+ "r=a/math.sqrt(2) #distance of charges from centre in meter\n",
+ "V=(q1+q2+q3+q4)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Potential at the center of the square in volts is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.8 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mutual electric potential energy of two proton in joules is 3.837e-14\n",
+ "Mutual electric potential energy of two proton in ev is 239781.46\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q1=1.6*10**-19 #charge in coul\n",
+ "q2=1.6*10**-19 #charge in coul\n",
+ "r=6.0*10**-15 #seperation b/w two protons in meter\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "U=(q1*q2)/(4*math.pi*epsilon0*r)\n",
+ "print(\"Mutual electric potential energy of two proton in joules is %.3e\"%U)\n",
+ "V=U/q1\n",
+ "print(\"Mutual electric potential energy of two proton in ev is %.2f\"%V)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 29.9 Mutual potential energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total energy is the sum of each pair of particles \n",
+ "Mutual potential energy of the particles in joules is -0.008991804694457362\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "q=1.0*10**-7 #charge in coul\n",
+ "a=10*10**-2 #side of triangle in meter\n",
+ "q1=q\n",
+ "q2=-4*q\n",
+ "q3=2*q\n",
+ "epsilon0=8.85*10**-12 #coul2/nt-m2\n",
+ "print(\"Total energy is the sum of each pair of particles \")\n",
+ "U=(1/(4*math.pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))\n",
+ "print(\"Mutual potential energy of the particles in joules is\",U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_puMH42p.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_puMH42p.ipynb
new file mode 100644
index 00000000..2da66d96
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_puMH42p.ipynb
@@ -0,0 +1,149 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 34 AMPERES LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.3 Distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Separation between two wires in metres 0.0054795\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "i1=100 #in amp\n",
+ "i2=20 #in amp\n",
+ "W=0.073 #weight of second wire W=F/l in nt/m\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "d=u0*i1*i2/(2*math.pi*W)\n",
+ "print(\"Separation between two wires in metres %.7f\"%d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.5 Magnetic field and Magnetic flux"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0267035\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000189\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "l=1.0 #length of solenoid in meter\n",
+ "d=3*10**-2 #diameter of solenoid in meter\n",
+ "n=5*850 #number of layers and turns of wire\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i0=5.0 #current in amp\n",
+ "#(A)\n",
+ "B=u0*i0*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.9 Magnetic field and Magnetic dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n",
+ "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "e=1.6*10**-19 #in coul\n",
+ "R=5.1*10**-11 #radius of th enucleus in meter\n",
+ "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "x=0 #x is any point on the orbit, since at center x=0\n",
+ "#(A)\n",
+ "i=e*f\n",
+ "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n",
+ "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n",
+ "N=1 #no.of turns\n",
+ "A=math.pi*R**2\n",
+ "U=N*i*A\n",
+ "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qKtFmfh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qKtFmfh.ipynb
new file mode 100644
index 00000000..cd850cd0
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qKtFmfh.ipynb
@@ -0,0 +1,131 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 46 POLARIZATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.1 Calculation of theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Polarization angle theta= 135.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta=math.degrees(math.acos(1/math.sqrt(2)))\n",
+ "theta=180-theta\n",
+ "print(\"Polarization angle theta=\",theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.2 Angle of refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Theta_p in degrees=56.30993\n",
+ "Angle of refraction fron Snells law in degrees=33.69007\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_p= math.degrees(math.atan(1.5))\n",
+ "print(\"Theta_p in degrees=%.5f\"%theta_p)\n",
+ "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n",
+ "theta_r=math.degrees(math.asin(sin_theta_r))\n",
+ "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.3 Thickness of slab"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Value of x in m= 163611.111111113\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "n_e=1.553\n",
+ "n_o=1.544\n",
+ "s=(n_e)-(n_o)\n",
+ "x=(lamda)/(4*s)\n",
+ "\n",
+ "print(\"The Value of x in m=\",x)\n",
+ "#The answer provided in the textbook is wrong"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qSBPW0G.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qSBPW0G.ipynb
new file mode 100644
index 00000000..ee009cd1
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qSBPW0G.ipynb
@@ -0,0 +1,221 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 36 INDUCTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.1 Inductance of a toroid"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Inductance of a toroid of recyangular cross section in henry is 0.0013863\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "N=10**3 #no.of turns\n",
+ "a=5*10**-2 #im meter\n",
+ "b=10*10**-2 #in meter\n",
+ "h=1*10**-2 #in metre\n",
+ "L=(u0*N**2*h)/(2*math.pi)*math.log(b/a)\n",
+ "print(\"Inductance of a toroid of recyangular cross section in henry is %.7f\"%L)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.2 Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken for the current to reach one-half of its final equilibrium in sec is 1.1552453\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "L=50 #inductance in henry\n",
+ "R=30 #resistance in ohms\n",
+ "t0=math.log(2)*(L/R)\n",
+ "print(\"Time taken for the current to reach one-half of its final equilibrium in sec is %.7f\"%t0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.3 Maximum Current and Energy stored"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum current in amp is 5.0\n",
+ "Energy stored in the magnetic field in joules is 62.5\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=5 #inductance in henry\n",
+ "V=100 #emf in volts\n",
+ "R=20 #resistance in ohms\n",
+ "i=V/R\n",
+ "print(\"Maximum current in amp is\",i)\n",
+ "U=(L*i**2)/2\n",
+ "print(\"Energy stored in the magnetic field in joules is %.1f\"%U)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.4 Rate at which energy is stored and delivered and appeared"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The rate at which energy is delivred by the battery in watt is 0.5689085\n",
+ "The rate at which energy appears as Joule heat in the resistor in watt is 0.3596188\n",
+ "Let D=di/dt\n",
+ "The desired rate at which energy is being stored in the magnetic field in watt is 0.2092897\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=3 #inductance in henry\n",
+ "R=10 #resistance in ohm\n",
+ "V=3 #emf in volts\n",
+ "t=0.30 #in sec\n",
+ "T=0.30 #inductive time constant in sec\n",
+ "#(a)\n",
+ "i=(V/R)*(1-math.exp(-t/T))\n",
+ "P1=V*i\n",
+ "print(\"The rate at which energy is delivred by the battery in watt is %.7f\"%P1)\n",
+ "#(b)\n",
+ "P2=i**2*R\n",
+ "print(\"The rate at which energy appears as Joule heat in the resistor in watt is %.7f\"%P2)\n",
+ "#(c)\n",
+ "print(\"Let D=di/dt\")\n",
+ "D=(V/L)*math.exp(-t/T) #in amp/sec\n",
+ "P3=L*i*D\n",
+ "print(\"The desired rate at which energy is being stored in the magnetic field in watt is %.7f\"%P3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.6 Energy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Energy required to set up in the given cube on edge in electric field in joules is 0.0000445\n",
+ "(b)Energy required to set up in the given cube on edge in magnetic field in joules is 397.887\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "epsilon0=8.9*10**-12 #in coul2/nt-m2\n",
+ "E=10**5 #elelctric field in volts/meter\n",
+ "B=1 #magnetic field in weber/meter2\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m Mu-not=u0\n",
+ "a=0.1 #side of the cube in meter\n",
+ "V0=a**3 #volume of the cube in meter3\n",
+ "#(a)\n",
+ "U1=epsilon0*E**2*V0/2 #in elelctric field\n",
+ "print(\"(a)Energy required to set up in the given cube on edge in electric field in joules is %.7f\"%U1)\n",
+ "#(b)\n",
+ "U2=(B**2/(2*u0))*V0\n",
+ "print(\"(b)Energy required to set up in the given cube on edge in magnetic field in joules is %.3f\"%U2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qk1kbtW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qk1kbtW.ipynb
new file mode 100644
index 00000000..7cae8043
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_qk1kbtW.ipynb
@@ -0,0 +1,167 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 40 NATURE AND PROPOGATION OF LIGHT"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.1 Force and energy reflected"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Energy reflected from mirror in joule= 36000.0\n",
+ "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n",
+ "(B) Force in newton= 6.667e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "u=(10)*(1.0)*3600 #in Joules\n",
+ "c=3*10**8 #in m/sec\n",
+ "t=3600 #in sec\n",
+ "print(\"(A) Energy reflected from mirror in joule=\",u)\n",
+ "p=(2*u)/c\n",
+ "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n",
+ "f=p/t\n",
+ "print(\"(B) Force in newton= %.3e\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.2 Angular speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular speed in rev/sec= 12.07030\n"
+ ]
+ }
+ ],
+ "source": [
+ "theta=1/1440\n",
+ "c=3*10**8 #in m/sec\n",
+ "l=8630 #in m\n",
+ "w=(c*theta)/(2*l)\n",
+ "print(\"Angular speed in rev/sec= %.5f\"%w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.3 Calculation of c"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lambda_g in cm= 3.9\n",
+ "Value of c in m/sec= 2.992e+10\n"
+ ]
+ }
+ ],
+ "source": [
+ "l=15.6 #in cm\n",
+ "n=8\n",
+ "lambda_g=(2*l)/n\n",
+ "print(\"Lambda_g in cm=\",lambda_g)\n",
+ "lamda=3.15 #in cm\n",
+ "f=9.5*10**9 #cycles/sec\n",
+ "c=lamda*f\n",
+ "print(\"Value of c in m/sec= %.3e\"%c)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.4 Percentage error"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of light in miles/hour= 50000\n"
+ ]
+ }
+ ],
+ "source": [
+ "v_1=25000 #miles/hr\n",
+ "u=25000 #miles/hr\n",
+ "c=6.7*10**8 #miles/hr\n",
+ "x=1+((v_1*u)/(c)**2)\n",
+ "v=(v_1+u)/x\n",
+ "print(\"Speed of light in miles/hour= %.0f\"%v)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rkTIcxR.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rkTIcxR.ipynb
new file mode 100644
index 00000000..904b1c32
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_rkTIcxR.ipynb
@@ -0,0 +1,220 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 31 CURRENT AND RESISTANCE"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.1 Current density"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current density in Aluminium wire in amp/square inches 1273.240\n",
+ "Current density in copper wire in amp/square inches 3108.495\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "d1=0.10 #diameter of aluminium wire in inches\n",
+ "d2=0.064 #diameter of copper wire in inches\n",
+ "i=10 #current carried by composite wire in amperes\n",
+ "A1=math.pi*(d1/2)**2 #crosssectional area of aluminium wire in square inches\n",
+ "A2=math.pi*(d2/2)**2 #crosssectional area of copper wire in square inches\n",
+ "j1=i/A1\n",
+ "j2=i/A2\n",
+ "print(\"Current density in Aluminium wire in amp/square inches %.3f\"%j1)\n",
+ "print(\"Current density in copper wire in amp/square inches %.3f\"%j2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.2 Drift speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No.of free electrons per unit volume in atoms/mole 8.438e+22\n",
+ "Drift speed of electron in cm/sec is 0.03556\n"
+ ]
+ }
+ ],
+ "source": [
+ "j=480 #current density for copper wire in amp/cm2\n",
+ "N0=6*10**23 #avagadro number in atoms/mole\n",
+ "M=64 #molecular wt in gm/mole\n",
+ "d=9.0 #density in gm/cm3\n",
+ "e=1.6*10**-19 #elecron charge in coul\n",
+ "n=d*N0/M \n",
+ "print(\"No.of free electrons per unit volume in atoms/mole %.3e\"%n)\n",
+ "Vd=j/(n*e)\n",
+ "print(\"Drift speed of electron in cm/sec is %.5f\"%Vd)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.3 Resistance and resistivity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\n",
+ "(a) Resistance measured b/w the two square ends in ohm is 0.175\n",
+ "(a) Resistance measured b/w the two opposite rectangular faces in ohm is 7.0e-05\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "print(\"Dimensions of rectangular carbon block are 1.0cm*1.0cm*50cm\")\n",
+ "l=1.0*10**-2 #in meter\n",
+ "b=1.0*10**-2#in meter\n",
+ "h=50*10**-2 #in meter\n",
+ "p=3.5*10**-5 #resisivity of carbon in ohm-m\n",
+ "#(a)Resistance b/w two square ends\n",
+ "l1=h\n",
+ "A1=b*l\n",
+ "R1=p*l1/A1\n",
+ "print(\"(a) Resistance measured b/w the two square ends in ohm is %.3f\"%R1)\n",
+ "l2=l\n",
+ "A2=b*h\n",
+ "R2=p*l2/A2\n",
+ "print(\"(a) Resistance measured b/w the two opposite rectangular faces in ohm is %.1e\"%R2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.4 Mean time and Mean free path"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a) Mean time b/w collisions in sec is 4.979e-14\n",
+ "(b) Mean free path in cm is 0.000008\n"
+ ]
+ }
+ ],
+ "source": [
+ "m=9.1*10**-31 #in kg\n",
+ "n=8.4*10**28 #in m-1\n",
+ "e=1.6*10**-19 #in coul\n",
+ "p=1.7*10**-8 #in ohm-m\n",
+ "v=1.6*10**8 #in cm/sec\n",
+ "T=2*m/(n*p*e**2)\n",
+ "print(\"(a) Mean time b/w collisions in sec is %.3e\"%T)\n",
+ "Lambda=T*v\n",
+ "print(\"(b) Mean free path in cm is %f\"%Lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 31.5 Power"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(a)Power for the single coil in watts is 504.167\n",
+ "(b)Power for a coil of half the length in watts is 1008.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "V=110 #in volt\n",
+ "R=24 #ohms\n",
+ "P1=V**2/R\n",
+ "print(\"(a)Power for the single coil in watts is %.3f\"%P1)\n",
+ "P2=V**2/(R/2)\n",
+ "print(\"(b)Power for a coil of half the length in watts is %.3f\"%P2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_sDirHoE.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_sDirHoE.ipynb
new file mode 100644
index 00000000..a0180572
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_sDirHoE.ipynb
@@ -0,0 +1,139 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 41 REFLECTION AND REFRACTION OF PLANE WAVES AND PLANE SURFACES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.1 Angle between two refracted beams"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For 4000 A beam, theta_2 in degree= 19.88234\n",
+ "For 5000 A beam, theta_2 in degree= 19.99290\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_1=30\n",
+ "n_qa=1.4702\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 4000 A beam, theta_2 in degree= %.5f\"%theta2)\n",
+ "\n",
+ "theta_1=30\n",
+ "n_qa=1.4624\n",
+ "theta2=math.degrees(math.asin(math.sin(theta_1*math.pi/180)/n_qa))\n",
+ "print(\"For 5000 A beam, theta_2 in degree= %.5f\"%theta2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.4 Index of glass"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index reflection= 1.41421\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n=1/math.sin(45*math.pi/180)\n",
+ "print(\"Index reflection= %.5f\"%n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 41.5 Calculation of Angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle theta_c in degree= 62.45732\n",
+ "Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\n",
+ "Angle of refraction:\n",
+ "Theta_2 in degree= 52.89097\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "n2=1.33\n",
+ "n1=1.50\n",
+ "theta_c=math.degrees(math.asin(n2/n1))\n",
+ "print(\"Angle theta_c in degree= %.5f\"%theta_c)\n",
+ "print(\"Actual angle of indices = 45 is less than theta_ c, so there is no internal angle reflection\")\n",
+ "print(\"Angle of refraction:\")\n",
+ "x=n1/n2\n",
+ "theta_2=(math.asin(x*math.sin(45*math.pi/180))*180/math.pi)\n",
+ "print(\"Theta_2 in degree= %.5f\"%theta_2)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tPBnBoe.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tPBnBoe.ipynb
new file mode 100644
index 00000000..57d1a771
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tPBnBoe.ipynb
@@ -0,0 +1,227 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 45 GRATING AND SPECTRA"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.1 Calculation of angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 7.249\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=4000 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.3f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.2 Calculation of angle theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) The first order diffraction pattern in degree= 13.408\n",
+ "(B) Angle of seperation in degree= 0.0002388\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=5890 #in A\n",
+ "d=25400 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n",
+ "del_lambda=5.9 #in A\n",
+ "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n",
+ "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.3 Calculation of Sodium Doublet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolving power= 998.305\n",
+ "Number of rulings needed is= 332.768\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "lamda_1=5895.9 #A\n",
+ "m=3\n",
+ "delta_lambda=(lamda_1-lamda) #in A\n",
+ "R=lamda/(delta_lambda)\n",
+ "print(\"Resolving power= %.3f\"%R)\n",
+ "N=(R/m)\n",
+ "print(\"Number of rulings needed is= %.3f\"%N)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.4 Calculation of Dispersion"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 31.11244\n",
+ "(A) The dispersion in radian/A= 0.0001105\n",
+ "(B) Wave length difference in A= 0.13650\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=3\n",
+ "m1=5\n",
+ "lamda=5460 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n",
+ "D=m/(d*math.cos(theta*math.pi/180))\n",
+ "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n",
+ "N=8000\n",
+ "lamda=5460\n",
+ "R=N*m1\n",
+ "delta_lambda=lamda/R\n",
+ "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.5 Calculation of Angles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interplanar spacing d in A= 2.51781\n",
+ "Diffracted beam occurs when m=1,m=2 and m=3\n",
+ "When m1=1, Theta in degree= 12.61763\n",
+ "When m1=2, Theta in degree= 25.90544\n",
+ "When m1=3, Theta in degree= 40.94473\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "a_o=5.63 #A\n",
+ "d=a_o/math.sqrt(5)\n",
+ "lamda=1.10 #in A\n",
+ "print(\"Interplanar spacing d in A= %.5f\"%d)\n",
+ "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n",
+ "m1=1\n",
+ "x=(m1*lamda)/(2*d)\n",
+ "theta_1=math.degrees(math.asin(x))\n",
+ "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n",
+ "m2=2\n",
+ "x=(m2*lamda)/(2*d)\n",
+ "theta_2=math.degrees(math.asin(x))\n",
+ "print('When m1=2, Theta in degree= %.5f'%theta_2)\n",
+ "m3=3\n",
+ "x=(m3*lamda)/(2*d)\n",
+ "theta_3=math.degrees(math.asin(x))\n",
+ "print('When m1=3, Theta in degree= %.5f'%theta_3)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tz4UUvV.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tz4UUvV.ipynb
new file mode 100644
index 00000000..7cae8043
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_tz4UUvV.ipynb
@@ -0,0 +1,167 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 40 NATURE AND PROPOGATION OF LIGHT"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.1 Force and energy reflected"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Energy reflected from mirror in joule= 36000.0\n",
+ "Momentum after 1 hr illumination in kg-m/sec= 0.00024\n",
+ "(B) Force in newton= 6.667e-08\n"
+ ]
+ }
+ ],
+ "source": [
+ "u=(10)*(1.0)*3600 #in Joules\n",
+ "c=3*10**8 #in m/sec\n",
+ "t=3600 #in sec\n",
+ "print(\"(A) Energy reflected from mirror in joule=\",u)\n",
+ "p=(2*u)/c\n",
+ "print(\"Momentum after 1 hr illumination in kg-m/sec= %.5f\"%p)\n",
+ "f=p/t\n",
+ "print(\"(B) Force in newton= %.3e\"%f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.2 Angular speed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angular speed in rev/sec= 12.07030\n"
+ ]
+ }
+ ],
+ "source": [
+ "theta=1/1440\n",
+ "c=3*10**8 #in m/sec\n",
+ "l=8630 #in m\n",
+ "w=(c*theta)/(2*l)\n",
+ "print(\"Angular speed in rev/sec= %.5f\"%w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.3 Calculation of c"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lambda_g in cm= 3.9\n",
+ "Value of c in m/sec= 2.992e+10\n"
+ ]
+ }
+ ],
+ "source": [
+ "l=15.6 #in cm\n",
+ "n=8\n",
+ "lambda_g=(2*l)/n\n",
+ "print(\"Lambda_g in cm=\",lambda_g)\n",
+ "lamda=3.15 #in cm\n",
+ "f=9.5*10**9 #cycles/sec\n",
+ "c=lamda*f\n",
+ "print(\"Value of c in m/sec= %.3e\"%c)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 40.4 Percentage error"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of light in miles/hour= 50000\n"
+ ]
+ }
+ ],
+ "source": [
+ "v_1=25000 #miles/hr\n",
+ "u=25000 #miles/hr\n",
+ "c=6.7*10**8 #miles/hr\n",
+ "x=1+((v_1*u)/(c)**2)\n",
+ "v=(v_1+u)/x\n",
+ "print(\"Speed of light in miles/hour= %.0f\"%v)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_uYhMYzW.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_uYhMYzW.ipynb
new file mode 100644
index 00000000..6cc02fdd
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_uYhMYzW.ipynb
@@ -0,0 +1,157 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 47 LIGHT AND QUANTUM PHYSICS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.1 Velocity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Velocity in cycles/s 0.71176\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "k=20 #in nt/m\n",
+ "m=1 #in kg\n",
+ "\n",
+ "v=(math.sqrt((k)/(m)))*(1/(2*math.pi))\n",
+ "print(\"Velocity in cycles/s %.5f\"%v)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.2 Time calculation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power in j-sec 1.000000e-23\n",
+ "('Time reqired in sec =', 80000.0)\n",
+ "Time required in hour 22.22224\n"
+ ]
+ }
+ ],
+ "source": [
+ "P=(10**(-3))*(3*10**(-18))/(300)\n",
+ "print(\"Power in j-sec %e\"%P)\n",
+ "s=1.6*(10**(-19))\n",
+ "t=(5*s)/P\n",
+ "print(\"Time reqired in sec =\",t)\n",
+ "one_sec=0.000277778 #hr\n",
+ "in_hour=one_sec*t\n",
+ "print(\"Time required in hour %.5f\"%in_hour)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.3 Work function for sodium"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Energy in joule= 2.911e-19\n"
+ ]
+ }
+ ],
+ "source": [
+ "h=6.63*10**(-34) #in joule/sec\n",
+ "v=4.39*10**(14) #cycles/sec\n",
+ "E_o=h*(v)\n",
+ "print(\"Energy in joule= %.3e\"%E_o)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 47.4 Kinetic energy to be imparten on recoiling electron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "h=(6.63)*10**-34\n",
+ "m=9.11*10**-31\n",
+ "c=3*10**8\n",
+ "delta_h=(h/(m*c))*(1-math.cos(90))\n",
+ "print(\"(A) Compton shift in meter %.3e\",delta_h)\n",
+ "delta=1*10**-10\n",
+ "k=(h*c*delta_h)/(delta*(delta+delta_h))\n",
+ "print(\"(B) Kinetic energy in joules\",k)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_v6vpMzh.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_v6vpMzh.ipynb
new file mode 100644
index 00000000..cd850cd0
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_v6vpMzh.ipynb
@@ -0,0 +1,131 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 46 POLARIZATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.1 Calculation of theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Polarization angle theta= 135.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta=math.degrees(math.acos(1/math.sqrt(2)))\n",
+ "theta=180-theta\n",
+ "print(\"Polarization angle theta=\",theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.2 Angle of refraction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Theta_p in degrees=56.30993\n",
+ "Angle of refraction fron Snells law in degrees=33.69007\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "theta_p= math.degrees(math.atan(1.5))\n",
+ "print(\"Theta_p in degrees=%.5f\"%theta_p)\n",
+ "sin_theta_r= (math.sin(theta_p*math.pi/180))/1.5\n",
+ "theta_r=math.degrees(math.asin(sin_theta_r))\n",
+ "print(\"Angle of refraction fron Snells law in degrees=%.5f\"%theta_r)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.3 Thickness of slab"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Value of x in m= 163611.111111113\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "n_e=1.553\n",
+ "n_o=1.544\n",
+ "s=(n_e)-(n_o)\n",
+ "x=(lamda)/(4*s)\n",
+ "\n",
+ "print(\"The Value of x in m=\",x)\n",
+ "#The answer provided in the textbook is wrong"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vk5bg1Q.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vk5bg1Q.ipynb
new file mode 100644
index 00000000..2da66d96
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vk5bg1Q.ipynb
@@ -0,0 +1,149 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 34 AMPERES LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.3 Distance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Separation between two wires in metres 0.0054795\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "i1=100 #in amp\n",
+ "i2=20 #in amp\n",
+ "W=0.073 #weight of second wire W=F/l in nt/m\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "d=u0*i1*i2/(2*math.pi*W)\n",
+ "print(\"Separation between two wires in metres %.7f\"%d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.5 Magnetic field and Magnetic flux"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnetic field at center in wb/m2 is 0.0267035\n",
+ "Magnetic flux at the center of the solenoid in weber is 0.0000189\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "l=1.0 #length of solenoid in meter\n",
+ "d=3*10**-2 #diameter of solenoid in meter\n",
+ "n=5*850 #number of layers and turns of wire\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "i0=5.0 #current in amp\n",
+ "#(A)\n",
+ "B=u0*i0*n\n",
+ "print(\"Magnetic field at center in wb/m2 is %.7f\"%B)\n",
+ "#(B)\n",
+ "A=math.pi*(d/2)**2\n",
+ "Q=B*A\n",
+ "print(\"Magnetic flux at the center of the solenoid in weber is %.7f\"%Q)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 34.9 Magnetic field and Magnetic dipole moment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) Magnetic field at the center of the orbit in wb/m2 13.404\n",
+ "(B) Equivalent magnetic dipole moment in amp-m2 is 8.890e-24\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "from __future__ import division\n",
+ "e=1.6*10**-19 #in coul\n",
+ "R=5.1*10**-11 #radius of th enucleus in meter\n",
+ "f=6.8*10**15 #frequency with which elecron circulates in rev/sec\n",
+ "u0=4*math.pi*10**-7 #in weber/amp-m\n",
+ "x=0 #x is any point on the orbit, since at center x=0\n",
+ "#(A)\n",
+ "i=e*f\n",
+ "B=u0*i*R**2*0.5/((R**2+x**2)**(3/2))\n",
+ "print(\"(A) Magnetic field at the center of the orbit in wb/m2 %.3f\"%B)\n",
+ "N=1 #no.of turns\n",
+ "A=math.pi*R**2\n",
+ "U=N*i*A\n",
+ "print(\"(B) Equivalent magnetic dipole moment in amp-m2 is %.3e\"%U)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vspbqnp.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vspbqnp.ipynb
new file mode 100644
index 00000000..57d1a771
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_vspbqnp.ipynb
@@ -0,0 +1,227 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 45 GRATING AND SPECTRA"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.1 Calculation of angle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 7.249\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=4000 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.3f\"%theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.2 Calculation of angle theta"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) The first order diffraction pattern in degree= 13.408\n",
+ "(B) Angle of seperation in degree= 0.0002388\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "import math\n",
+ "m=1\n",
+ "lamda=5890 #in A\n",
+ "d=25400 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"(A) The first order diffraction pattern in degree= %.3f\"%theta)\n",
+ "del_lambda=5.9 #in A\n",
+ "delta_theta=(m*(del_lambda))/(d*(math.cos(theta*math.pi/180)))\n",
+ "print(\"(B) Angle of seperation in degree= %.7f\"%delta_theta)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.3 Calculation of Sodium Doublet"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolving power= 998.305\n",
+ "Number of rulings needed is= 332.768\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=5890 #A\n",
+ "lamda_1=5895.9 #A\n",
+ "m=3\n",
+ "delta_lambda=(lamda_1-lamda) #in A\n",
+ "R=lamda/(delta_lambda)\n",
+ "print(\"Resolving power= %.3f\"%R)\n",
+ "N=(R/m)\n",
+ "print(\"Number of rulings needed is= %.3f\"%N)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.4 Calculation of Dispersion"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first order diffraction pattern in degree= 31.11244\n",
+ "(A) The dispersion in radian/A= 0.0001105\n",
+ "(B) Wave length difference in A= 0.13650\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=3\n",
+ "m1=5\n",
+ "lamda=5460 #in A\n",
+ "d=31700 #in A\n",
+ "theta=math.degrees(math.asin((m*lamda)/d))\n",
+ "print(\"The first order diffraction pattern in degree= %.5f\"%theta)\n",
+ "D=m/(d*math.cos(theta*math.pi/180))\n",
+ "print(\"(A) The dispersion in radian/A= %.7f\"%D)\n",
+ "N=8000\n",
+ "lamda=5460\n",
+ "R=N*m1\n",
+ "delta_lambda=lamda/R\n",
+ "print(\"(B) Wave length difference in A= %.5f\"%delta_lambda)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 45.5 Calculation of Angles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Interplanar spacing d in A= 2.51781\n",
+ "Diffracted beam occurs when m=1,m=2 and m=3\n",
+ "When m1=1, Theta in degree= 12.61763\n",
+ "When m1=2, Theta in degree= 25.90544\n",
+ "When m1=3, Theta in degree= 40.94473\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "a_o=5.63 #A\n",
+ "d=a_o/math.sqrt(5)\n",
+ "lamda=1.10 #in A\n",
+ "print(\"Interplanar spacing d in A= %.5f\"%d)\n",
+ "print(\"Diffracted beam occurs when m=1,m=2 and m=3\")\n",
+ "m1=1\n",
+ "x=(m1*lamda)/(2*d)\n",
+ "theta_1=math.degrees(math.asin(x))\n",
+ "print(\"When m1=1, Theta in degree= %.5f\"%theta_1)\n",
+ "m2=2\n",
+ "x=(m2*lamda)/(2*d)\n",
+ "theta_2=math.degrees(math.asin(x))\n",
+ "print('When m1=2, Theta in degree= %.5f'%theta_2)\n",
+ "m3=3\n",
+ "x=(m3*lamda)/(2*d)\n",
+ "theta_3=math.degrees(math.asin(x))\n",
+ "print('When m1=3, Theta in degree= %.5f'%theta_3)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_wiBzQbF.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_wiBzQbF.ipynb
new file mode 100644
index 00000000..412d8eb1
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_wiBzQbF.ipynb
@@ -0,0 +1,99 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 28 GAUSS'S LAW"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 28.3 Electric field strength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 1.138e+13\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=1*10**-10 #radius of the atom in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 28.4 Electric field strength at the nuclear surface"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electric field strength at the surface of the gold atom in nt/coul is 2.389e+21\n"
+ ]
+ }
+ ],
+ "source": [
+ "r=6.9*10**-15 #radius of the gold nucleus in meter\n",
+ "Z=79 #gold atomic number\n",
+ "e=1.6*10**-19 #charge in coul\n",
+ "q=Z*e #total positive charge in coul\n",
+ "E=(9.0*10**9)*q/r**2\n",
+ "print(\"Electric field strength at the surface of the gold atom in nt/coul is %.3e\"%E)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_y64N1aC.ipynb b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_y64N1aC.ipynb
new file mode 100644
index 00000000..4651a1a4
--- /dev/null
+++ b/Physics_For_Students_Of_Science_And_Engineering_Part_2_by_D_Halliday_and_R_Resnick/Cha_y64N1aC.ipynb
@@ -0,0 +1,158 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 44 DIFFRACTION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.1 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a in A=13000\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m=1\n",
+ "lamda=6500 #in A\n",
+ "a=(m*lamda)/math.sin(30*math.pi/180)\n",
+ "print(\"a in A=%d\"%a)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.2 Calculation of wavelength"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Wavelength in A = 4333.333\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=6500\n",
+ "lambda_1=lamda/1.5\n",
+ "print(\"Wavelength in A = %.3f\"%lambda_1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.5 Current"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in amp= 0.06990\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "m_0=(4*math.pi*10**-7) #in weber\n",
+ "e_0=(8.9*10**-12)\n",
+ "R=5*10**-2 #meters\n",
+ "byd=10**12\n",
+ "i_d=(e_0*math.pi*R*R*byd)\n",
+ "print(\"Current in amp= %.5f\"%i_d)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.7 Delta Y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(A) D in m= 0.00240\n"
+ ]
+ }
+ ],
+ "source": [
+ "lamda=480*10**-9 #in m\n",
+ "d=0.10*10**-3 #in m\n",
+ "D=50*10**-2 #in m\n",
+ "a=0.02*10**-3\n",
+ "delta_y=(lamda*D)/d\n",
+ "print(\"(A) D in m= %.5f\"%delta_y)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ },
+ "widgets": {
+ "state": {},
+ "version": "1.1.2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}