diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | 92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch) | |
tree | 205e68d0ce598ac5caca7de839a2934d746cce86 /Modern_Physics/Chapter6.ipynb | |
parent | b14c13fcc6bb6d01c468805d612acb353ec168ac (diff) | |
download | Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2 Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip |
added books
Diffstat (limited to 'Modern_Physics/Chapter6.ipynb')
-rwxr-xr-x | Modern_Physics/Chapter6.ipynb | 262 |
1 files changed, 156 insertions, 106 deletions
diff --git a/Modern_Physics/Chapter6.ipynb b/Modern_Physics/Chapter6.ipynb index 76cd1700..53684185 100755 --- a/Modern_Physics/Chapter6.ipynb +++ b/Modern_Physics/Chapter6.ipynb @@ -1,7 +1,7 @@ { "metadata": { - "name": "", - "signature": "sha256:846e8e3b3770f7cb30a2e91a53718bf5de841338951843c54481c2acfda5e63d" + "name": "Chapter6", + "signature": "sha256:36f31f6870acf2c11b00274dcf34bd9e9879abf6f82026373900139ccc4b5799" }, "nbformat": 3, "nbformat_minor": 0, @@ -13,7 +13,7 @@ "level": 1, "metadata": {}, "source": [ - "Chapter 6: Quantum Mechanics in One Dimension" + "Chapter 6:The Rutherford Bohr Model" ] }, { @@ -21,33 +21,25 @@ "level": 2, "metadata": {}, "source": [ - "Example 6.4, page no. 197" + "Example 6.1 Page 178" ] }, { "cell_type": "code", "collapsed": false, "input": [ - " \n", + "#initiation of variable\n", + "from math import sqrt, pi\n", + "R=0.1;Z=79.0; x=1.44; #x=e^2/4*pi*epsi0\n", + "zkR2=2*Z*x/R # from zkR2= (2*Z*e^2)*R^2/(4*pi*epsi0)*R^3\n", + "mv2=10.0*10**6; #MeV=>eV\n", "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "me = 9.11 * 10 ** -31 #mass of electron (kg)\n", - "h = 1.055 * 10**-34 #h/2*pi (J.s)\n", - "dx0 = 1.0 * 10**-10 #initial location of electron(m)\n", - "m = 1.0 * 10**-3 #mass of marble (kg)\n", - "dx0m = 10**-4 #initial location of marble (m)\n", - "\n", - "#Calculation\n", - "\n", - "te = math.sqrt(99)* (2* me / h) * dx0**2\n", - "tm = math.sqrt(99)* (2* m / h) * dx0m**2\n", + "#calculation\n", + "theta=sqrt(3.0/4)*zkR2/mv2; #deflection angle\n", + "theta=theta*(180/pi); #converting to degrees\n", "\n", "#result\n", - "\n", - "print \"The time elapsed for electron is\",round(te/10**-15,1),\"X 10^-15 s and that of marble is \",round(tm/10**24,1),\"X 10^24 s.\"" + "print\"Hence the average deflection angle per collision in degrees is\",round(theta,3 );" ], "language": "python", "metadata": {}, @@ -56,56 +48,122 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The time elapsed for electron is 1.7 X 10^-15 s and that of marble is 1.9 X 10^24 s.\n" + "Hence the average deflection angle per collision in degrees.is 0.011\n" ] } ], - "prompt_number": 1 + "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 6.5, page no. 202" + "Example 6.2 Page 181" ] }, { "cell_type": "code", "collapsed": false, "input": [ - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "m = 1.0 * 10 **-6 #mass (kg)\n", - "h = 6.626 * 10 **-34 #Planck's constant(J.s)\n", - "n = 1.0\n", - "L = 1.0 * 10**-2 #separation(m)\n", - "\n", - "#Calculation\n", - "\n", - "E1 = n**2 * h**2 /(8*m*L**2)\n", - "v1 = math.sqrt(2*E1/m)\n", + "#initiation of variable\n", + "from math import sin, cos, tan, sqrt, pi\n", + "Na=6.023*10**23;p=19.3;M=197.0;\n", + "n=Na*p/M; #The number of nuclei per atom\n", + "t=2*10**-6;Z=79;K=8*10**6;x=1.44; theta=90.0*pi/180; #x=e^2/4*pi*epsi0\n", + "b1=t*Z*x/tan(theta/2)/(2*K) #impact parameter b\n", + "f1=n*pi*b1**2*t #scattering angle greater than 90\n", "\n", "#result\n", + "print\"The fraction of alpha particles scattered at angles greater than 90 degrees is %.1e\" %f1;\n", "\n", - "print \"(a) The minimum speed of the particle is\",round(v1/10**-26,2),\"X 10^-26 m/s.\"\n", + "#part b\n", + "theta=45.0*pi/180;\n", + "b2=t*Z*x/tan(theta/2)/(2*K);\n", + "f2=n*pi*b2**2*t; #scattering angle greater than 45\n", + "fb=f2-f1 #scattering angle between 45 to 90\n", "\n", + "#result\n", + "print\"The fraction of particles with scattering angle from 45 to 90 is %.1e\" %fb;" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The fraction of alpha particles scattered at angles greater than 90 degrees is 7.5e-05\n", + "The fraction of particles with scattering angle from 45 to 90 is 3.6e-04\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.3 Page 185" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "from math import sin, cos, tan, sqrt, pi\n", + "Z=79.0;x=1.44;K=8.0*10**6;z=2; #where x=e^2/4*pi*epsi0;z=2 for alpha particles\n", "\n", - "#Variable declaration\n", + "#calculation\n", + "d=z*x*Z/K; #distance\n", "\n", - "v = 3.00 * 10**-2 #speed of the particle (m/s)\n", + "#result\n", + "print \"The distance of closest approach in nm. is\",d*10**-9" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The distance of closest approasch in nm. is 2.844e-14\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.4 Page 188" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#initiation of variable\n", + "sl=820.1;n0=3.0; #given values\n", + "n=4;w=sl*(n**2/(n**2-n0**2)); \n", + "#result\n", + "print \"The 3 longest possible wavelengths in nm respectively are a.\",round(w,3),; \n", "\n", - "#Calculation\n", + "#partb\n", + "n=5.0;w=sl*(n**2/(n**2-n0**2)); \n", "\n", - "E = m* v**2 /2\n", - "n = math.sqrt(8*m*L**2*E)/h\n", + "#result\n", + "print \"b. (in nm)\",round(w,3),;\n", "\n", - "#results\n", + "#partc\n", + "n=6.0;w=sl*(n**2/(n**2-n0**2));\n", "\n", - "print \"(b) We get n = \",round(n/10**23,2),\"X 10^23.\"" + "#result\n", + "print \"c. (in nm )\",round(w,3);\n" ], "language": "python", "metadata": {}, @@ -114,8 +172,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "(a) The minimum speed of the particle is 3.31 X 10^-26 m/s.\n", - "(b) We get n = 9.06 X 10^23.\n" + "The 3 longest possible wavelengths in nm respectively are a. 1874.514 b. (in nm) 1281.406 c. (in nm ) 1093.467\n" ] } ], @@ -126,33 +183,31 @@ "level": 2, "metadata": {}, "source": [ - "Example 6.6, page no. 203" + "Example 6.5 Page 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ + "#initiation of variable\n", + "sl=364.5;n=3.0; #given variables and various constants are declared in the subsequent steps wherever necessary \n", + "w1=sl*(n**2/(n**2-4)); #longest wavelength of balmer \n", + "c=3.0*10**8;\n", + "f1=c/(w1*10**-9); #corresponding freq.\n", + "n0=1.0;n=2.0; \n", "\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "L = 0.2 #length of the box (nm)\n", - "me = 511 * 10 ** 3 #mass of electron (eV/c^2)\n", - "hc = 197.3 #(eV.nm)\n", - "\n", - "#Calculation\n", - "\n", - "E1 = math.pi ** 2 * hc**2 /(2* me * L**2)\n", - "E2 = 2**2 * E1\n", - "dE = E2-E1\n", - "lamda = hc*2*math.pi / dE\n", + "#calculation\n", + "w2=91.13*(n**2/(n**2-n0**2)); #first longest of lymann \n", + "f2=c/(w2*10**-9); #correspoding freq\n", + "n0=1.0;n=3.0\n", + "w3=91.13*(n**2/(n**2-n0**2)); #second longest of lymann\n", + "f3=3.0*10**8/(w3*10**-9) #corresponding freq.\n", "\n", "#result\n", - "\n", - "print \"The energy required is\",round(dE,1),\"eV and the wavelength of the photon that could cause this transition is\",round(lamda),\"nm.\"" + "print \"The freq. corresponding to the longest wavelength of balmer is %.1e\" %f1,\" & First longest wavelength of Lymann is %.1e\" %f2;\n", + "print\"The sum of which s equal to %.1e\" %(f1+f2);\n", + "print\"The freq. corresponding to 2nd longest wavelength was found out to be %.1e\" %f3,\"Hence Ritz combination principle is satisfied.\";" ], "language": "python", "metadata": {}, @@ -161,45 +216,42 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The energy required is 28.2 eV and the wavelength of the photon that could cause this transition is 44.0 nm.\n" + "The freq. corresponding to the longest wavelength of balmer is 4.6e+14 & First longest wavelength of Lymann is 2.5e+15\n", + "The sum of which s equal to 2.9e+15\n", + "The freq. corresponding to 2nd longest wavelength was found out to be 2.92622261239e+15 Hence Ritz combination principle is satisfied.\n" ] } ], - "prompt_number": 5 + "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 6.8, page no. 211" + "Example 6.6 Page 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ + "#initiation of variable\n", + "Rinfi=1.097*10**7; #known value \n", + "n1=3.0;n2=2.0; #first 2 given states\n", "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "h = 197.3 #(eV.nm/c)\n", - "m = 511 * 10**3 #mass of electron (eV/c**2)\n", - "U = 100 #(eV)\n", - "L = 0.200 #width(nm)\n", + "#calculation\n", + "w=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n", "\n", - "#Calculation\n", + "#result\n", + "print\"Wavelength of transition from n1=3 to n2=2 in nm is\",round(w*10**9,3);\n", "\n", - "d = h /math.sqrt(2*m*U)\n", - "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n", - "new_U = U - E\n", - "d = h/math.sqrt(2*m*new_U)\n", - "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n", + "#partb\n", + "n1=4.0;n2=2.0; #second 2 given states \n", + "w=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n", "\n", "#result\n", - "\n", - "print \"The ground-state energy for the electron is\",round(E,3),\"eV.\"" + "print\"Wavelength of transition from n1=3 to n2=2 in nm is\",round(w*10**9,3);" ], "language": "python", "metadata": {}, @@ -208,45 +260,42 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The ground-state energy for the electron is 6.506 eV.\n" + "Wavelength of trnasition from n1=3 to n2=2 in nm is 656.335\n", + "Wavelength of trnasition from n1=3 to n2=2 in nm is 486.174\n" ] } ], - "prompt_number": 7 + "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ - "Example 6.13, page no. 217" + "Example 6.7 Page 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "\n", - "m = 0.0100 #mass of the spring (kg)\n", - "K = 0.100 #force constant of spring (N/m)\n", - "Kh = 510.5 #force constant of hydrogen (N/m)\n", - "h = 6.582 * 10**-16#Planck's constant (eV.s)\n", - "mu = 8.37 * 10**-28#mass of hydrogen molecule(kg)\n", + "#initiation of variable\n", + "n1=3.0;n2=2.0;Z=4.0;hc=1240.0;\n", + "delE=(-13.6)*(Z**2)*((1/(n1**2))-((1/n2**2)));\n", "\n", "#calculation\n", + "w=(hc)/delE; #for transition 1\n", "\n", - "w = math.sqrt(K / m)\n", - "dE = h * w\n", - "wh =math.sqrt(Kh / mu)\n", - "dEh = h * wh\n", + "#result\n", + "print \"The wavelngth of radiation for transition(2->3) in nm is\", round(w,3);\n", "\n", - "#results\n", + "#for transition 2\n", + "n1=4.0;n2=2.0; # n values for transition 2\n", + "delE=(-13.6)*(Z**2)*((1/n1**2)-(1/n2**2));\n", + "w=(hc)/delE;\n", "\n", - "print \"The quantum level spacing in the spring case is\",round(dE/10**-15,2),\"X 10^-15 eV, while in case of hydrogen molecule it is\",round(dEh,3),\"eV which is easily measurable.\"" + "#result\n", + "print \"The wavelngth of radiation emitted for transition(2->4) in nm is\", round(w,3);" ], "language": "python", "metadata": {}, @@ -255,11 +304,12 @@ "output_type": "stream", "stream": "stdout", "text": [ - "The quantum level spacing in the spring case is 2.08 X 10^-15 eV, while in case of hydrogen molecule it is 0.514 eV which is easily measurable.\n" + "The wavelngth of radiation for transition(2->3) in nm is 41.029\n", + "The wavelngth of radiation emitted for transition(2->4) in nm is 30.392\n" ] } ], - "prompt_number": 10 + "prompt_number": 11 } ], "metadata": {} |