summaryrefslogtreecommitdiff
path: root/Modern_Physics/Chapter6.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commit92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch)
tree205e68d0ce598ac5caca7de839a2934d746cce86 /Modern_Physics/Chapter6.ipynb
parentb14c13fcc6bb6d01c468805d612acb353ec168ac (diff)
downloadPython-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip
added books
Diffstat (limited to 'Modern_Physics/Chapter6.ipynb')
-rwxr-xr-xModern_Physics/Chapter6.ipynb262
1 files changed, 156 insertions, 106 deletions
diff --git a/Modern_Physics/Chapter6.ipynb b/Modern_Physics/Chapter6.ipynb
index 76cd1700..53684185 100755
--- a/Modern_Physics/Chapter6.ipynb
+++ b/Modern_Physics/Chapter6.ipynb
@@ -1,7 +1,7 @@
{
"metadata": {
- "name": "",
- "signature": "sha256:846e8e3b3770f7cb30a2e91a53718bf5de841338951843c54481c2acfda5e63d"
+ "name": "Chapter6",
+ "signature": "sha256:36f31f6870acf2c11b00274dcf34bd9e9879abf6f82026373900139ccc4b5799"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -13,7 +13,7 @@
"level": 1,
"metadata": {},
"source": [
- "Chapter 6: Quantum Mechanics in One Dimension"
+ "Chapter 6:The Rutherford Bohr Model"
]
},
{
@@ -21,33 +21,25 @@
"level": 2,
"metadata": {},
"source": [
- "Example 6.4, page no. 197"
+ "Example 6.1 Page 178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
- " \n",
+ "#initiation of variable\n",
+ "from math import sqrt, pi\n",
+ "R=0.1;Z=79.0; x=1.44; #x=e^2/4*pi*epsi0\n",
+ "zkR2=2*Z*x/R # from zkR2= (2*Z*e^2)*R^2/(4*pi*epsi0)*R^3\n",
+ "mv2=10.0*10**6; #MeV=>eV\n",
"\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "\n",
- "me = 9.11 * 10 ** -31 #mass of electron (kg)\n",
- "h = 1.055 * 10**-34 #h/2*pi (J.s)\n",
- "dx0 = 1.0 * 10**-10 #initial location of electron(m)\n",
- "m = 1.0 * 10**-3 #mass of marble (kg)\n",
- "dx0m = 10**-4 #initial location of marble (m)\n",
- "\n",
- "#Calculation\n",
- "\n",
- "te = math.sqrt(99)* (2* me / h) * dx0**2\n",
- "tm = math.sqrt(99)* (2* m / h) * dx0m**2\n",
+ "#calculation\n",
+ "theta=sqrt(3.0/4)*zkR2/mv2; #deflection angle\n",
+ "theta=theta*(180/pi); #converting to degrees\n",
"\n",
"#result\n",
- "\n",
- "print \"The time elapsed for electron is\",round(te/10**-15,1),\"X 10^-15 s and that of marble is \",round(tm/10**24,1),\"X 10^24 s.\""
+ "print\"Hence the average deflection angle per collision in degrees is\",round(theta,3 );"
],
"language": "python",
"metadata": {},
@@ -56,56 +48,122 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "The time elapsed for electron is 1.7 X 10^-15 s and that of marble is 1.9 X 10^24 s.\n"
+ "Hence the average deflection angle per collision in degrees.is 0.011\n"
]
}
],
- "prompt_number": 1
+ "prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
- "Example 6.5, page no. 202"
+ "Example 6.2 Page 181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "\n",
- "m = 1.0 * 10 **-6 #mass (kg)\n",
- "h = 6.626 * 10 **-34 #Planck's constant(J.s)\n",
- "n = 1.0\n",
- "L = 1.0 * 10**-2 #separation(m)\n",
- "\n",
- "#Calculation\n",
- "\n",
- "E1 = n**2 * h**2 /(8*m*L**2)\n",
- "v1 = math.sqrt(2*E1/m)\n",
+ "#initiation of variable\n",
+ "from math import sin, cos, tan, sqrt, pi\n",
+ "Na=6.023*10**23;p=19.3;M=197.0;\n",
+ "n=Na*p/M; #The number of nuclei per atom\n",
+ "t=2*10**-6;Z=79;K=8*10**6;x=1.44; theta=90.0*pi/180; #x=e^2/4*pi*epsi0\n",
+ "b1=t*Z*x/tan(theta/2)/(2*K) #impact parameter b\n",
+ "f1=n*pi*b1**2*t #scattering angle greater than 90\n",
"\n",
"#result\n",
+ "print\"The fraction of alpha particles scattered at angles greater than 90 degrees is %.1e\" %f1;\n",
"\n",
- "print \"(a) The minimum speed of the particle is\",round(v1/10**-26,2),\"X 10^-26 m/s.\"\n",
+ "#part b\n",
+ "theta=45.0*pi/180;\n",
+ "b2=t*Z*x/tan(theta/2)/(2*K);\n",
+ "f2=n*pi*b2**2*t; #scattering angle greater than 45\n",
+ "fb=f2-f1 #scattering angle between 45 to 90\n",
"\n",
+ "#result\n",
+ "print\"The fraction of particles with scattering angle from 45 to 90 is %.1e\" %fb;"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fraction of alpha particles scattered at angles greater than 90 degrees is 7.5e-05\n",
+ "The fraction of particles with scattering angle from 45 to 90 is 3.6e-04\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3 Page 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "from math import sin, cos, tan, sqrt, pi\n",
+ "Z=79.0;x=1.44;K=8.0*10**6;z=2; #where x=e^2/4*pi*epsi0;z=2 for alpha particles\n",
"\n",
- "#Variable declaration\n",
+ "#calculation\n",
+ "d=z*x*Z/K; #distance\n",
"\n",
- "v = 3.00 * 10**-2 #speed of the particle (m/s)\n",
+ "#result\n",
+ "print \"The distance of closest approach in nm. is\",d*10**-9"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The distance of closest approasch in nm. is 2.844e-14\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.4 Page 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#initiation of variable\n",
+ "sl=820.1;n0=3.0; #given values\n",
+ "n=4;w=sl*(n**2/(n**2-n0**2)); \n",
+ "#result\n",
+ "print \"The 3 longest possible wavelengths in nm respectively are a.\",round(w,3),; \n",
"\n",
- "#Calculation\n",
+ "#partb\n",
+ "n=5.0;w=sl*(n**2/(n**2-n0**2)); \n",
"\n",
- "E = m* v**2 /2\n",
- "n = math.sqrt(8*m*L**2*E)/h\n",
+ "#result\n",
+ "print \"b. (in nm)\",round(w,3),;\n",
"\n",
- "#results\n",
+ "#partc\n",
+ "n=6.0;w=sl*(n**2/(n**2-n0**2));\n",
"\n",
- "print \"(b) We get n = \",round(n/10**23,2),\"X 10^23.\""
+ "#result\n",
+ "print \"c. (in nm )\",round(w,3);\n"
],
"language": "python",
"metadata": {},
@@ -114,8 +172,7 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "(a) The minimum speed of the particle is 3.31 X 10^-26 m/s.\n",
- "(b) We get n = 9.06 X 10^23.\n"
+ "The 3 longest possible wavelengths in nm respectively are a. 1874.514 b. (in nm) 1281.406 c. (in nm ) 1093.467\n"
]
}
],
@@ -126,33 +183,31 @@
"level": 2,
"metadata": {},
"source": [
- "Example 6.6, page no. 203"
+ "Example 6.5 Page 189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
+ "#initiation of variable\n",
+ "sl=364.5;n=3.0; #given variables and various constants are declared in the subsequent steps wherever necessary \n",
+ "w1=sl*(n**2/(n**2-4)); #longest wavelength of balmer \n",
+ "c=3.0*10**8;\n",
+ "f1=c/(w1*10**-9); #corresponding freq.\n",
+ "n0=1.0;n=2.0; \n",
"\n",
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "\n",
- "L = 0.2 #length of the box (nm)\n",
- "me = 511 * 10 ** 3 #mass of electron (eV/c^2)\n",
- "hc = 197.3 #(eV.nm)\n",
- "\n",
- "#Calculation\n",
- "\n",
- "E1 = math.pi ** 2 * hc**2 /(2* me * L**2)\n",
- "E2 = 2**2 * E1\n",
- "dE = E2-E1\n",
- "lamda = hc*2*math.pi / dE\n",
+ "#calculation\n",
+ "w2=91.13*(n**2/(n**2-n0**2)); #first longest of lymann \n",
+ "f2=c/(w2*10**-9); #correspoding freq\n",
+ "n0=1.0;n=3.0\n",
+ "w3=91.13*(n**2/(n**2-n0**2)); #second longest of lymann\n",
+ "f3=3.0*10**8/(w3*10**-9) #corresponding freq.\n",
"\n",
"#result\n",
- "\n",
- "print \"The energy required is\",round(dE,1),\"eV and the wavelength of the photon that could cause this transition is\",round(lamda),\"nm.\""
+ "print \"The freq. corresponding to the longest wavelength of balmer is %.1e\" %f1,\" & First longest wavelength of Lymann is %.1e\" %f2;\n",
+ "print\"The sum of which s equal to %.1e\" %(f1+f2);\n",
+ "print\"The freq. corresponding to 2nd longest wavelength was found out to be %.1e\" %f3,\"Hence Ritz combination principle is satisfied.\";"
],
"language": "python",
"metadata": {},
@@ -161,45 +216,42 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "The energy required is 28.2 eV and the wavelength of the photon that could cause this transition is 44.0 nm.\n"
+ "The freq. corresponding to the longest wavelength of balmer is 4.6e+14 & First longest wavelength of Lymann is 2.5e+15\n",
+ "The sum of which s equal to 2.9e+15\n",
+ "The freq. corresponding to 2nd longest wavelength was found out to be 2.92622261239e+15 Hence Ritz combination principle is satisfied.\n"
]
}
],
- "prompt_number": 5
+ "prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
- "Example 6.8, page no. 211"
+ "Example 6.6 Page 192"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
+ "#initiation of variable\n",
+ "Rinfi=1.097*10**7; #known value \n",
+ "n1=3.0;n2=2.0; #first 2 given states\n",
"\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "\n",
- "h = 197.3 #(eV.nm/c)\n",
- "m = 511 * 10**3 #mass of electron (eV/c**2)\n",
- "U = 100 #(eV)\n",
- "L = 0.200 #width(nm)\n",
+ "#calculation\n",
+ "w=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n",
"\n",
- "#Calculation\n",
+ "#result\n",
+ "print\"Wavelength of transition from n1=3 to n2=2 in nm is\",round(w*10**9,3);\n",
"\n",
- "d = h /math.sqrt(2*m*U)\n",
- "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n",
- "new_U = U - E\n",
- "d = h/math.sqrt(2*m*new_U)\n",
- "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n",
+ "#partb\n",
+ "n1=4.0;n2=2.0; #second 2 given states \n",
+ "w=(n1**2*n2**2)/((n1**2-n2**2)*Rinfi);\n",
"\n",
"#result\n",
- "\n",
- "print \"The ground-state energy for the electron is\",round(E,3),\"eV.\""
+ "print\"Wavelength of transition from n1=3 to n2=2 in nm is\",round(w*10**9,3);"
],
"language": "python",
"metadata": {},
@@ -208,45 +260,42 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "The ground-state energy for the electron is 6.506 eV.\n"
+ "Wavelength of trnasition from n1=3 to n2=2 in nm is 656.335\n",
+ "Wavelength of trnasition from n1=3 to n2=2 in nm is 486.174\n"
]
}
],
- "prompt_number": 7
+ "prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
- "Example 6.13, page no. 217"
+ "Example 6.7 Page 194"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
- "\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "\n",
- "m = 0.0100 #mass of the spring (kg)\n",
- "K = 0.100 #force constant of spring (N/m)\n",
- "Kh = 510.5 #force constant of hydrogen (N/m)\n",
- "h = 6.582 * 10**-16#Planck's constant (eV.s)\n",
- "mu = 8.37 * 10**-28#mass of hydrogen molecule(kg)\n",
+ "#initiation of variable\n",
+ "n1=3.0;n2=2.0;Z=4.0;hc=1240.0;\n",
+ "delE=(-13.6)*(Z**2)*((1/(n1**2))-((1/n2**2)));\n",
"\n",
"#calculation\n",
+ "w=(hc)/delE; #for transition 1\n",
"\n",
- "w = math.sqrt(K / m)\n",
- "dE = h * w\n",
- "wh =math.sqrt(Kh / mu)\n",
- "dEh = h * wh\n",
+ "#result\n",
+ "print \"The wavelngth of radiation for transition(2->3) in nm is\", round(w,3);\n",
"\n",
- "#results\n",
+ "#for transition 2\n",
+ "n1=4.0;n2=2.0; # n values for transition 2\n",
+ "delE=(-13.6)*(Z**2)*((1/n1**2)-(1/n2**2));\n",
+ "w=(hc)/delE;\n",
"\n",
- "print \"The quantum level spacing in the spring case is\",round(dE/10**-15,2),\"X 10^-15 eV, while in case of hydrogen molecule it is\",round(dEh,3),\"eV which is easily measurable.\""
+ "#result\n",
+ "print \"The wavelngth of radiation emitted for transition(2->4) in nm is\", round(w,3);"
],
"language": "python",
"metadata": {},
@@ -255,11 +304,12 @@
"output_type": "stream",
"stream": "stdout",
"text": [
- "The quantum level spacing in the spring case is 2.08 X 10^-15 eV, while in case of hydrogen molecule it is 0.514 eV which is easily measurable.\n"
+ "The wavelngth of radiation for transition(2->3) in nm is 41.029\n",
+ "The wavelngth of radiation emitted for transition(2->4) in nm is 30.392\n"
]
}
],
- "prompt_number": 10
+ "prompt_number": 11
}
],
"metadata": {}