summaryrefslogtreecommitdiff
path: root/Mechanics_of_Structures/Chapter1.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commitc7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch)
tree725a7d43dc1687edf95bc36d39bebc3000f1de8f /Mechanics_of_Structures/Chapter1.ipynb
parent62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff)
downloadPython-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz
Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2
Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip
added books
Diffstat (limited to 'Mechanics_of_Structures/Chapter1.ipynb')
-rwxr-xr-xMechanics_of_Structures/Chapter1.ipynb745
1 files changed, 745 insertions, 0 deletions
diff --git a/Mechanics_of_Structures/Chapter1.ipynb b/Mechanics_of_Structures/Chapter1.ipynb
new file mode 100755
index 00000000..339836e5
--- /dev/null
+++ b/Mechanics_of_Structures/Chapter1.ipynb
@@ -0,0 +1,745 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9ca9b2e0d1cc4391d74881e14e5e9fe9e8aa0cd9b6ad3418d2abbf628f065e94"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter1-Simple stresses and strains"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "#calculate the elongnation of the bar \n",
+ "P = 5.5 ;##Axial pull in tons\n",
+ "E = 13000 ;##modulus of elasticity tons/in^2\n",
+ "l = 120 ;##length in inches\n",
+ "A = math.pi/4. ;##Area of resisting section in^2\n",
+ "p = P/A ;##Intensity of stress in tons/in^2\n",
+ "e = p/E ;##strain\n",
+ "delta_l = l*e;##elongation of the bar in inches\n",
+ "print'%s %.4f %s'%('The elongation of the bar is',delta_l,'inch');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The elongation of the bar is 0.0646 inch\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the minimum diameter d of each stay bolt\n",
+ "s_p = 200.;##steam pressure in lb/in^2\n",
+ "l = 4.;##length in inches\n",
+ "b = 4.;##breadth in inches\n",
+ "p = 14000.;##permissible streaa in lb/in^2\n",
+ "P = s_p*l*b;##Pull on each bolt in lb-wt\n",
+ "A = P/p ;##necessary area of bolt-section\n",
+ "d = math.sqrt(4*A/math.pi) ;##minimum diameter in inches\n",
+ "print'%s %.2f %s'%('The minimum diameter d of each stay bolt =',d,'inch');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum diameter d of each stay bolt = 0.54 inch\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the safe load in tons\n",
+ "D = 8.;##external diameter in inches \n",
+ "d = 6.;##internal diameter in inches\n",
+ "sigma = 36.;##ultimate stress in tons/in^2\n",
+ "n = 6.;##safety factor\n",
+ "A = 0.25*math.pi*(D**2 - d**2);##Area of section in in^2\n",
+ "P = sigma*A; ##crushing load for the column in tons \n",
+ "P_safe = P/n ;##safe load in tons\n",
+ "print'%s %.2f %s'%('Safe load =',P_safe,'tons'); \n",
+ "##there is an error in the answer given in textbook.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Safe load = 131.95 tons\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate compressive stress of the punch\n",
+ "sigma = 20.;##ultimate sheat stress in tons/in^2\n",
+ "d = 1./2.;##diameter of the hole in inches\n",
+ "t = 3./8.;##thickness of the plate in inches\n",
+ "A = 0.25*math.pi*d**2;##area of the cross-section of the punch in^2\n",
+ "P = math.pi*d*t*sigma;##necessary force in tons\n",
+ "sigma_comp = P/A;##compressive stress on the punch\n",
+ "print'%s %.1f %s'%('The compressive stress of the punch =',sigma_comp,'tons/in^2');\n",
+ "##there is an error in the answer given in textbook.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The compressive stress of the punch = 60.0 tons/in^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate change in volume \n",
+ "b = 8.;##width in inches\n",
+ "t = 3./8.;##thickness in inches\n",
+ "l = 20.;##length in feets\n",
+ "P = 22.;##pull in tons\n",
+ "E = 13500.;##modulus of elasticity in tons/in^2\n",
+ "sigma = 0.3;##poisson/s ratio\n",
+ "A = b*t;##in in^2\n",
+ "V = l*A*12;##in cub.inch\n",
+ "p = P/A;##in tons/in^2\n",
+ "e = p/E;\n",
+ "delta_l = e*l*12;##stretch of the bar in inches\n",
+ "Lateral_strain = e*sigma ;##lateral strain\n",
+ "del_b = b*Lateral_strain;##in inches\n",
+ "del_t = t*Lateral_strain;##in inches\n",
+ "k = e*(1-2*sigma);##(del_V)/(V)\n",
+ "del_V = k*V;##change in volume in cub.inch\n",
+ "print'%s %.3f %s'%('The change in volume is',del_V,'cub.inch');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The change in volume is 0.156 cub.inch\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate contraction in diameter and change in volume and work done in streching the bar \n",
+ "d = 7./8.;##diameter of the bar in inches\n",
+ "l = 10.;##length in feets\n",
+ "P = 6.;##axial pull in tons\n",
+ "E = 13000.;##modulus of elsticity in tons/in^2\n",
+ "m = 4.;\n",
+ "A = 0.25*math.pi*d**2;##in in^2\n",
+ "V = 0.25*math.pi*d**2*l*12;##volume in cub.inches\n",
+ "p = P/A;##in tons/in^2\n",
+ "e = p/E;\n",
+ "del_l = e*l*12;##stretchof the bar in inches\n",
+ "Lateral_strain = e/m ;##lateral strain\n",
+ "del_d = Lateral_strain*d;##Contraction in diameter in inches\n",
+ "print'%s %.4f %s'%('The Contraction in diameter is',del_d,'inches');\n",
+ "k = e*(1-2/m);##(del_V)/(V)\n",
+ "del_V = k*V;##change in volume in cub.inch\n",
+ "print'%s %.4f %s'%('The change in volume is',del_V,'cub. inch');\n",
+ "W = 0.5*P*del_l;##work done in stretching the bar in in-ton\n",
+ "print'%s %.4f %s'%('The work done in stretching the bar is',W,'in-ton');\n",
+ "##there is an error in the answer given in textbook.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Contraction in diameter is 0.0002 inches\n",
+ "The change in volume is 0.0277 cub. inch\n",
+ "The work done in stretching the bar is 0.2763 in-ton\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate total change in length of the bar and energy stored in bar \n",
+ "L = 24.;##length of the bar in ft\n",
+ "d1 = 9./8.;##diameter of the bar in inches\n",
+ "l1 = 6.;##in ft\n",
+ "d2 = 1.;##in inches\n",
+ "l2 = 12.;##in ft\n",
+ "d3 = 5./4.;##in inches\n",
+ "l3 = L-l1-l2;##in ft\n",
+ "P = 10000.;##axial compression in lb-wt\n",
+ "E = 28.*10**6;##modulus of elasticity in lb/in^2\n",
+ "A1 = 0.25*math.pi*d1**2;##in in^2\n",
+ "A2 = 0.25*math.pi*d2**2;##in in^2\n",
+ "A3 = 0.25*math.pi*d3**2;##in in^2\n",
+ "p1 = P/A1 ;##in lb/in^2\n",
+ "e1 = p1/E;\n",
+ "p2 = P/A2 ;##in lb/in^2\n",
+ "e2 = p2/E;\n",
+ "p3 = P/A3 ;##in lb/in^2\n",
+ "e3 = p3/E;\n",
+ "del_l1 = e1*l1*12;##in inches\n",
+ "del_l2 = e2*l2*12;##in inches\n",
+ "del_l3 = e3*l3*12;##in inches\n",
+ "del_l = del_l1+del_l2+del_l3;##total change in length in ft\n",
+ "W = 0.5*P*del_l/12;##energy stored in the bar in ft-lbs\n",
+ "print'%s %.3f %s'%('Total change in length of the bar is',del_l,'inches');\n",
+ "print'%s %.f %s'%('The energy stored in the bar is',W,'ft-lbs');\n",
+ "##there is an error in the answer given in textbook.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Total change in length of the bar is 0.112 inches\n",
+ "The energy stored in the bar is 47 ft-lbs\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate change in lenght of the rod \n",
+ "P = 1200.;##axial pull in lb-wt\n",
+ "d1 = 1.;##diameter of one end in inches\n",
+ "d2 = 0.5;##diameter of other end in inches\n",
+ "l = 10.;##length of the rod in inches\n",
+ "E = 14.*10**6;##modulus of elsticity in lb/in^2\n",
+ "del_l = 4*P*l/(math.pi*E*d1*d2);##change in length in inches \n",
+ "print'%s %.4f %s'%('The change in length of the rod is',del_l,'inches');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The change in length of the rod is 0.0022 inches\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the strain and extension of the bar and the work done in streching \n",
+ "d = 1.;##diameter of the steel bar in inches\n",
+ "l = 12.;##length of the steel bar in inches\n",
+ "d1 = 3./2.;##external diameter in inches\n",
+ "d2 = 1.;##internal diameter in inches\n",
+ "P = 5.;##axial pull in tons\n",
+ "E_s = 30.*10**6;##modulus of elasticity of steel in lb/in^2\n",
+ "E_b = 14.*10**6;##modulus of elasticity of brass in lb/in^2\n",
+ "A_s = 0.25*math.pi*d**2;##area of the steel section in in^2\n",
+ "A_b = 0.25*math.pi*(d1**2-d2**2);##area of the brass section in in^2\n",
+ "P_b = (P/((E_s/E_b)*A_s+A_b))*A_b;##load resisted by the brass tube in tons\n",
+ "P_s = P-P_b;##bal;ance load resisted by the steel tube\n",
+ "e = (P_b/A_b)*2240./E_b ;##strain\n",
+ "print'%s %.4f %s'%('The strain e =',e,'');\n",
+ "del_l = e*l ;##extension of the bar in inches\n",
+ "print'%s %.4f %s'%('The extension of the bar =',del_l,'inches');\n",
+ "W = 0.5*P*del_l;##work done in stretching in inch-ton\n",
+ "print'%s %.3f %s'%('The work done in stretching is',W,'inch-ton');"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The strain e = 0.0003 \n",
+ "The extension of the bar = 0.0036 inches\n",
+ "The work done in stretching is 0.009 inch-ton\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate safe central load and the reinforcing bar\n",
+ "a = 12.;##length of each side in inches\n",
+ "d = 9./8.;##diameter of each reinforced bar in inches\n",
+ "r = 3.;##distance of centre from the edges in inches\n",
+ "p_c = 600.;##in lb/in^2\n",
+ "n = 18.;##modular ration E_s/E_c\n",
+ "A_s = 4.*0.25*math.pi*d**2;##in in^2\n",
+ "A_c = a**2 - A_s;##in in^2\n",
+ "p_s = n*p_c;##in lb/in^2\n",
+ "P = p_s*A_s+p_c*A_c;##safe central load in lb-wt\n",
+ "print'%s %.f %s'%('Safe central load =',P,'lb-wt');\n",
+ "print'%s %.d %s'%('Of this, the reinforcing bars carry',p_s*A_s,'lb-wt',);\n",
+ "\n",
+ "##there is an error in the answer given in textbook.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Safe central load = 126956 lb-wt\n",
+ "Of this, the reinforcing bars carry 42941 lb-wt\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate P_sand p_b and x\n",
+ "l = 8.;##length in feet\n",
+ "d = 0.5;##diameter in inches\n",
+ "r = 30.;##distance between two rods in inches\n",
+ "P = 2000.;##load in lb-wt\n",
+ "E_s = 30.*10**6;##modulus of elsticity of steel rod\n",
+ "E_b = 16.*10**6;##modulus of elsticity of brass rod\n",
+ "A_s = 0.25*math.pi*d**2;##section area in in**2\n",
+ "p_b = P/(A_s*(1+(E_s/E_b)));\n",
+ "p_s = (P/A_s) - p_b ;\n",
+ "P_b = A_s*p_b;\n",
+ "P_s = A_s*p_s;\n",
+ "print'%s %.1f %s'%('P_s =',P_s,'lb/in**2')\n",
+ "print'%s %.1f %s'%('and P_b =',P_b,'lb/in**2');\n",
+ "x = r*P_b/P ;##\n",
+ "print'%s %.2f %s'%('x =',x,'inches');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "P_s = 1304.3 lb/in**2\n",
+ "and P_b = 695.7 lb/in**2\n",
+ "x = 10.43 inches\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#calculate tensile strain imposed by end grips and p and P\n",
+ "alpha = 0.0000062 ;##co-efficient of the expansion in \"per F\"\n",
+ "t = 100.;##in F\n",
+ "d = 3/4.;##in inches\n",
+ "D = 0.02;##in inches\n",
+ "l = 15.;##in ft\n",
+ "E = 13000.;##in tons/in**2\n",
+ "e = alpha*t - (D/(l*12));\n",
+ "p = E*e;##in tons/in**2\n",
+ "A = 0.25*math.pi*d**2;##in in**2\n",
+ "P = p*A ;##in tons\n",
+ "print'%s %.4f %s'%('Tensile strain imposed by end-grips,e =',e,'');\n",
+ "print'%s %.2f %s'%('p =',p,'tons/in**2')\n",
+ "print'%s %.4f %s'%('P =',P,'tons');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Tensile strain imposed by end-grips,e = 0.00051 \n",
+ "p = 6.62 tons/in**2\n",
+ "P = 2.9227 tons\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the stresses induced in each metal and p_s\n",
+ "d = 1.;##diameter of steel bar in inches\n",
+ "d1 = 3./2.;##external diameter of brass tube in inches\n",
+ "d2 = 1.;##internal diameter of brass tube in inches\n",
+ "t = 100.;##in F\n",
+ "alpha_s = 0.0000062;##alpha of steel in \"per F\"\n",
+ "alpha_b = 0.000010;##alpha of brass in \"per F\"\n",
+ "E_s = 30.*10**6;##in lb/in^2\n",
+ "E_b = 14.*10**6;##in lb/in^2\n",
+ "A_s = 0.25*math.pi*d**2;##section area of steel bar in in^2\n",
+ "A_b = 0.25*math.pi*(d1**2-d2**2);##section area of brass tube in in^2\n",
+ "p_b = t*(alpha_b-alpha_s)*E_s/((A_b/A_s)+(E_s/E_b));\n",
+ "p_s = (A_b/A_s)*p_b;\n",
+ "print'%s %.d %s'%('The stresses induced in each metal are, p_b =',p_b,'lb/in^2')\n",
+ "print'%s %.d %s'%('p_s =',p_s,'lb/in^2');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The stresses induced in each metal are, p_b = 3360 lb/in^2\n",
+ "p_s = 4200 lb/in^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the least temperature the tube must be heated\n",
+ "D = 4.;##diameter of the wheel in ft\n",
+ "p = 6. ;##hoop stress in tons/in^2\n",
+ "alpha = 0.0000062;##in \"per F\" \n",
+ "E = 13000.;##in tons/in^2\n",
+ "d = (1./(1.+(p/E)))*D*12.;##internal diameter in inches\n",
+ "t = (D*12.-d)/(d*alpha);\n",
+ "print'%s %.1f %s'%('The least temperature the tube must be heated is, t =',t,'F');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The least temperature the tube must be heated is, t = 74.4 F\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate Resultant stress intensity and normal stress intensity and tangential stress intensity and The maximum possible shear on any plane and these planes are inclined at',angle,'degrees to the normal section.\n",
+ "p = 8.;##normal stress intensity in tons/in^2\n",
+ "theta = 35.*math.pi/180.;##inclination of the section in degrees\n",
+ "P = p*math.cos(theta);##resultant stress intensity in tons/in^2\n",
+ "p_n = P*math.cos(theta);##normal stress intensity in tons/in^2\n",
+ "p_t = P*math.sin(theta);##tangential stress intensity in tons/in^2\n",
+ "p_max = 0.5*p;##maximum possible shear in tons/in^2\n",
+ "angle = 45.;##inclination of these planes in degrees\n",
+ "print'%s %.2f %s'%('Resultant stress intensity =',P,'tons/in^2');\n",
+ "print'%s %.2f %s'%('normal stress intensity =',p_n,'tons/in^2');\n",
+ "print'%s %.2f %s'%('tangential stress intensity =',p_t,'tons/in^2');\n",
+ "print'%s %.d %s'%('The maximum possible shear on any plane is',p_max,'tons/in^2');\n",
+ "print'%s %.d %s'%('and these planes are inclined at',angle,'degrees to the normal section.');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resultant stress intensity = 6.55 tons/in^2\n",
+ "normal stress intensity = 5.37 tons/in^2\n",
+ "tangential stress intensity = 3.76 tons/in^2\n",
+ "The maximum possible shear on any plane is 4 tons/in^2\n",
+ "and these planes are inclined at 45 degrees to the normal section.\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex16-pg28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate poisson ratio and E,N,K,\n",
+ "d = 9./8.;##diameter of the steel bar in inches\n",
+ "P = 6.;##tensile load in tons\n",
+ "del_l = 0.0036 ;##extension of length inches\n",
+ "l = 8.;##gauge length in inches\n",
+ "del_d = 0.00015;##change in diameter in inches\n",
+ "A = 0.25*math.pi*d**2;##section area in in^2\n",
+ "p = P/A;##stress in tons/in^2\n",
+ "e = del_l/l;##strain\n",
+ "E = p/e;##modulus of elasticity in tons/in^2\n",
+ "LS = del_d/d;##lateral strain \n",
+ "PR = LS/e;##poisson's ratio \n",
+ "N = E/(2.*(1.+PR));##rigidity modulus in tons/in^2\n",
+ "K = E/(3.*(1.-2.*PR));##bulk modulus in tons/in^2\n",
+ "print'%s %.4f %s'%('Poisson ratio 1/m =',PR,'');\n",
+ "print'%s %.d %s'%('E =',E,'tons/in^2');\n",
+ "print'%s %.d %s'%('N =',N,'tons/in^2');\n",
+ "print'%s %.d %s'%('K =',K,'tons/in^2');\n",
+ "\n",
+ "##there is an error in the answer given in textbook.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Poisson ratio 1/m = 0.2963 \n",
+ "E = 13413 tons/in^2\n",
+ "N = 5173 tons/in^2\n",
+ "K = 10974 tons/in^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex17-pg29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate Poisson ratio and E\n",
+ "N = 2640.;##rigidity modulus in tons/in^2\n",
+ "d = 3./8.;##diameter of the rod in inches\n",
+ "P = 1./2.;##axial pull in tons\n",
+ "del_d = 0.000078;##change in diameter in inches\n",
+ "A = 0.25*math.pi*d**2;##section area in in^2\n",
+ "p = P/A ;##stress tons/in^2\n",
+ "LS = del_d/d;##lateral strain\n",
+ "m = p/(LS*2.*N) - 1.;\n",
+ "E = 2.*N*(1. + 1./m);##modulus of elasticity in ton/in^2\n",
+ "PR = 1./m;##poisson's ratio \n",
+ "print'%s %.3f %s'%('Poisson ratio 1/m =',PR,'');\n",
+ "print'%s %.d %s'%('E =',E,'ton/in^2');\n",
+ "\n",
+ "##there is an error in the answer given in textbook.\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Poisson ratio 1/m = 0.320 \n",
+ "E = 6971 ton/in^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file