summaryrefslogtreecommitdiff
path: root/Mass_-_Transfer_Operations/Chapter8.ipynb
diff options
context:
space:
mode:
authorhardythe12015-04-07 15:58:05 +0530
committerhardythe12015-04-07 15:58:05 +0530
commit92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch)
tree205e68d0ce598ac5caca7de839a2934d746cce86 /Mass_-_Transfer_Operations/Chapter8.ipynb
parentb14c13fcc6bb6d01c468805d612acb353ec168ac (diff)
downloadPython-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2
Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip
added books
Diffstat (limited to 'Mass_-_Transfer_Operations/Chapter8.ipynb')
-rwxr-xr-xMass_-_Transfer_Operations/Chapter8.ipynb1462
1 files changed, 1462 insertions, 0 deletions
diff --git a/Mass_-_Transfer_Operations/Chapter8.ipynb b/Mass_-_Transfer_Operations/Chapter8.ipynb
new file mode 100755
index 00000000..3199859d
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter8.ipynb
@@ -0,0 +1,1462 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6de1fbbc284930cae33ad8c4ecbf1043ba348d822deaa7750919e4f3aba2cece"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8: Gas Absorption"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.1: Page 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.1\n",
+ "# Page: 278\n",
+ "\n",
+ "print'Illustration 8.1 - Page: 278\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "P_star = 2*10**(5);# [N/square m]\n",
+ "X_methane = 0.6;\n",
+ "X_ethane = 0.2;\n",
+ "X_propane = 0.08;\n",
+ "X_nbutane = 0.06;\n",
+ "X_npentane = 0.06;\n",
+ "#******#\n",
+ "\n",
+ "MoleFraction = [0.6, 0.2 ,0.08, 0.06 ,0.06]\n",
+ "Heading = [\"Component\", \"Equilibrium Partial Pressure\", \"Vapour Pressue \" ,\"Mole Fraction\"];\n",
+ "Component = [\"Methane\", \"Ethane \" ,\"Propane\" ,\"n-Butane\", \"n-Pentane\"];\n",
+ "VapPressure = [0 ,42.05, 8.96, 2.36 ,0.66];# [N/square m]\n",
+ "Sum = 0;\n",
+ "\n",
+ "print Heading[0],\"\\t \\t \\t \\t\",Heading[1],\"\\t \\t \\t \\t\",Heading[2],\"\\t \\t \\t \\t\",Heading[3],\"\\t \\n\"\n",
+ "\n",
+ "\n",
+ "for i in range(0,5):\n",
+ " print \"\\n \",Component[i],\" \\t \\t \\t \\t \\t\",(\"{:.2e}\".format(MoleFraction[i]*P_star)),\"\\t \\t \\t \\t \\t \\t \\t \\t \",(\"{:.2e}\".format(VapPressure[i]*10**(5))),\n",
+ " if VapPressure[i]==0:\n",
+ " Sum = Sum+0;\n",
+ " else:\n",
+ " \n",
+ " print \"\\t \\t \\t \\t \\t \\t \\t \\t \\t \\t\",(\"{:.2e}\".format((MoleFraction[i]*P_star)/(VapPressure[i]*10**(5)))),\"\\t\",\n",
+ " Sum = Sum+(MoleFraction[i]*P_star)/(VapPressure[i]*10**(5))\n",
+ "\n",
+ "\n",
+ "\n",
+ "print\"\\n Mole Fraction Of solvent Oil is \",round(1-Sum,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.1 - Page: 278\n",
+ "\n",
+ "\n",
+ "Component \t \t \t \tEquilibrium Partial Pressure \t \t \t \tVapour Pressue \t \t \t \tMole Fraction \t \n",
+ "\n",
+ "\n",
+ " Methane \t \t \t \t \t1.20e+05 \t \t \t \t \t \t \t \t 0.00e+00 \n",
+ " Ethane \t \t \t \t \t4.00e+04 \t \t \t \t \t \t \t \t 4.20e+06 \t \t \t \t \t \t \t \t \t \t9.51e-03 \t\n",
+ " Propane \t \t \t \t \t1.60e+04 \t \t \t \t \t \t \t \t 8.96e+05 \t \t \t \t \t \t \t \t \t \t1.79e-02 \t\n",
+ " n-Butane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 2.36e+05 \t \t \t \t \t \t \t \t \t \t5.08e-02 \t\n",
+ " n-Pentane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 6.60e+04 \t \t \t \t \t \t \t \t \t \t1.82e-01 \t\n",
+ " Mole Fraction Of solvent Oil is 0.74\n"
+ ]
+ }
+ ],
+ "prompt_number": 165
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.2: Page 286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.2\n",
+ "# Page: 286\n",
+ "\n",
+ "print'Illustration 8.2 - Page: 286\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "#****Data****#\n",
+ "# Absorber:\n",
+ "G = 0.250;# [cubic m/s]\n",
+ "Temp1 = 273+26.0;# [K]\n",
+ "Pt = 1.07*10**(5);# [N/square m]\n",
+ "y1 = 0.02;\n",
+ "x2 = 0.005;\n",
+ "#******#\n",
+ "\n",
+ "G1 = G*(273.0/Temp1)*(Pt/(1.0133*10**(5)))*(1/22.41);# [kmol/s]\n",
+ "Y1 = y1/(1-y1);# [kmol benzene/kmol dry gas]\n",
+ "Gs = G1*(1.0-y1);# [kmol dry gas/s]\n",
+ "# For 95% removal of benzene:\n",
+ "Y2 = Y1*0.05;\n",
+ "X2 = x2/(1.0-x2);# [kmol benzene/kmol oil]\n",
+ "# Vapour pressure of benzene:\n",
+ "\n",
+ "P_star = 13330.0;# [N/square m]\n",
+ "X_star = numpy.zeros(20);\n",
+ "Y_star = numpy.zeros(20);\n",
+ "j = -1;\n",
+ "for i in range(1,21,1):\n",
+ " j = j+1;\n",
+ " x = i/100.0;\n",
+ " X_star[j] = i/100.0;\n",
+ " def f27(y):\n",
+ " return (y/(1+y))-(P_star/Pt)*(x/(1+x))\n",
+ " Y_star[j] = fsolve(f27,0.0);\n",
+ "\n",
+ "# For min flow rate:\n",
+ "X1 = 0.176;# [kmolbenzene/kmol oil]\n",
+ "DataMinFlow = numpy.array([[X2, Y2],[X1, Y1]]);\n",
+ "\n",
+ "plt.plot(X_star,Y_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\");\n",
+ "minLs = (Gs*(Y1-Y2)/(X1-X2));# [kmol/s]\n",
+ "# For 1.5 times the minimum:\n",
+ "Ls = 1.5*minLs;# [kmol/s]\n",
+ "X1_prime = (Gs*1.0*(Y1-Y2)/Ls)+X2;# [kmol benzene/kmol oil]\n",
+ "DataOperLine = numpy.array([[X2 ,Y2],[X1_prime ,Y1]]);\n",
+ "plt.plot(DataOperLine[:,0],DataOperLine[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "legend(loc='lower right');\n",
+ "plt.title(\"Absorption\")\n",
+ "plt.show()\n",
+ "print\"The Oil circulation rate is \",(\"{:.2e}\".format(Ls)),\" kmol/s\\n\"\n",
+ "\n",
+ "# Stripping\n",
+ "Temp2 = 122+273;# [K]\n",
+ "# Vapour pressure at 122 OC\n",
+ "P_star = 319.9;# [kN/square m]\n",
+ "Pt = 101.33;# [kN/square m]\n",
+ "X_star = numpy.zeros(7);\n",
+ "Y_star = numpy.zeros(7);\n",
+ "j = -1;\n",
+ "for i in range(0,7,1):\n",
+ " j = j+1;\n",
+ " x = i/10.0;\n",
+ " X_star[j] = i/10.0;\n",
+ " def f28(y):\n",
+ " return (y/(1.0+y))-(P_star/Pt)*(x/(1.0+x))\n",
+ " Y_star[j] = fsolve(f28,0.0);\n",
+ "\n",
+ "X1 = X2;# [kmol benzene/kmol oil]\n",
+ "X2 = X1_prime;# [kmol benzene/kmol oil]\n",
+ "Y1 = 0.0;# [kmol benzene/kmol steam]\n",
+ "# For min. steam rate:\n",
+ "Y2 = 0.45;\n",
+ "DataMinFlow =numpy.array([[X2 ,Y2],[X1 ,Y1]]);\n",
+ "minGs = Ls*(X2-X1)/(Y2-Y1);# [kmol steam/s]\n",
+ "slopeOperat = 1.5*(Y2-Y1)/(X2-X1);\n",
+ "def f29(x):\n",
+ " return slopeOperat*(x-X1)+Y1\n",
+ "x =numpy.arange(0,0.14,0.01)\n",
+ "\n",
+ "plt.plot(Y_star,X_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\")\n",
+ "plt.plot(x,f29(x),label=\"Operating Line\");\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "plt.legend(loc='lower left');\n",
+ "plt.title(\"Stripping\");\n",
+ "plt.show()\n",
+ "print\"The Steam circulation rate is \",(\"{:.2e}\".format(1.5*minGs)),\" kmol/s\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.2 - Page: 286\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEZCAYAAAC0HgObAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWd4VFUTgN+hiQgYkKa0iBRBaRZEESkqAiqICoiAgH4i\nhiYCIigCgggivSMRQRBQUAHpLRRp0oXQIfTei5Qk8/04m5jElE2ym91Nzvs892HvveeeM3uy7OyZ\nmTMjqorFYrFYLK4inacFsFgsFkvqwioWi8VisbgUq1gsFovF4lKsYrFYLBaLS7GKxWKxWCwuxSoW\ni8VisbgUq1gslhiIyA8i0tvTcsSGiFwVEX9Py2GxxIdVLJY0jYgEicgFEckU5bI6Do/ikO29qNdU\nNZuqhnhIJIvFKaxisaRZHL/8KwBngDoxb7t57PRONPO4crNYkoJVLJa0zDvAEuBHoFmMe7lEZJGI\nXHGsHApF3BCRwSJyWkQui8h2EXnEcf1eEZkkImdEJEREPhMRcdxrLiJ/isggETkH9BSRZo5rw0Xk\nkojsEpHqjvZfAZWBEQ7z1zDH9XARKeLkeKtFZIBjRXZQRGq6dTYtFgdWsVjSMu8A04GfgZdEJLfj\nugCNgS+BXMBWYAqAiLyE+cIvpqr3AvWB847nhgPZgAeBKo7+W0QZrwJwAMgDfOUYpwKwH7gP6AH8\nKiJ+qvoZsApo7TB/tYtFfmfG2+3o+xsgMHHTY7EkDatYLGkSEXkWyA/MVtV9QDBGmUTwh6quVtXb\nwGfA0yKSH7iN+TIvKSLpVHWPqp5ymLYaAl1V9bqqHgYGAk2j9HlCVUeqariq3nRcO6OqQ1U1TFV/\nBvYAr0QVNQ75nRnvsKoGqkkIOAm4X0TyJH62LJbEYRWLJa3SDFikqlcd578Q3Rx2LOKFql4HLgAP\nqOpyYAQwEjgtImNFJBtmZZMROByljyMY5RXB0VjkOB7j/DBwf5TzuPwszox3Ksp7uOF4mTWO/iwW\nl2EViyXNISJ3Aw2A6iJyUkROAh2BMiJSBvNlXjBK+6xATuAEgKoOV9UngFJAcaAzcBa4A/hHGaoQ\nURQUsSuJ/DHOC0eME0f7CM45MZ7F4hGsYrGkRV4DQoGSQFnHURJYjfFTCFBbRCo5wpB7A2tV9biI\nPCEiT4lIRuAGcBMIU9VwjK/mKxHJKiKFgQ7A5ARkySMi7UQko4jUBx4G5jnunQYeiu0hVQ1L4ngW\ni9uxisWSFnkH+F5Vj6nqGcdxGmPiaoz5fzEF40w/D5QHmjiezQ6Mw5jGQjArhwGOe22B68BBjON9\nCjDBcS+uvTHrgWKYFU9v4A1Vvei4NxR40xHVNSSWZxM7ng1ftqQI4s5CX47wxiFAemC8qvaPpc0w\noBbm119zVd0iIgUxzsY8mP8M41Q1ItyyJ/A/zH9EMM7LBW57ExaLmxCR5sB7qlrZ07JYLK4kg7s6\ndkStjABewDgo/xKR2aq6K0qb2kBRVS0mIk8Bo4GKGNtxB1Xd6rBvbxKRRaq6G6NoBqnqIHfJbrFY\nLJak405TWAVgv6qGqOodYBpQN0abOsBEAFVdD/iJSF5VPaWqWx3XrwG7iO7kdOuuaIslhfCK1DEW\ni6txp2LJT/TwymP8NwImtjYFojZwpN0oj7FFR9BWRLaJSKCI+LlKYIslJVHViar6nKflsFhcjTsV\ni7O/xGKuPiKfc5jBZgDtHSsXMOayB4FywEnMpjCLxWKxeAlu87Fg/CoFo5wX5L8x9jHbFHBcwxHO\nOROYrKq/RzRQ1TMRr0VkPDAntsFFxJoYLBaLJZGoarJdDe5csWwEiomIv2MvQENgdow2szGhn4hI\nReCSqp52JNILBIJVNVqYpYhE3ZVcD/g7LgFU1R4uOHr06OFxGVLTYefTzqe3Hq7CbSsWVQ0VkTbA\nQky4caCq7hKRDxz3x6rqPBGpLSL7MfH4EQn0KmH2DWwXkS2OaxFhxf1FpBzGZHYI+MBd78FiCAkJ\n8bQIqQo7n67Fzqf34U5TGKo6H5gf49rYGOdtYnluNXGsplT1HVfKaLFYLBbXYnfeWxKkefPmnhYh\nVWHn07XY+fQ+3Lrz3pOIiKbW92axWCzuQERQL3feW1IJQUFBnhYhVWHn07XY+fQ+rGKxWCwWi0ux\npjCLxWKxANYUZrFYLBYvxSoWS4JYG7ZrsfPpWux8eh9WsVgsFovFpVgfi8VisVgA62OxWCwWi5di\nFYslQawN27XY+XQtdj69D6tYLBaLxeJSrI/FYrFYLID1sVgsFovFS7GKxZIg1obtWux8uhY7n96H\nVSwWi8VicSnWx2KxWCwWwPpYLBaLxeKlWMViSRBrw3Ytdj5di51P78MqFovFYrG4FOtjsVgsFgtg\nfSwWi8Vi8VKsYrEkiLVhuxY7n67Fzqf3YRWLxWKxWFyK9bFYLBaLBbA+FovFYrF4KVaxWBLE2rBd\ni51P12Ln0/uwisVisVgsLsX6WCwWi8UCWB+LxWKxWFxEcDA0aeK6/qxisSSItWG7FjufrsXOZ9LZ\nsgXefBOqVYNSpVzXr1UsFovFksZYtw5efRVefhmeeQYOHoRu3VzXv/WxWCwWSxpAFVauhD59YO9e\n6NIF3n0XMmf+t42rfCwZktuBxWKxWLwXVVi0yCiUU6ega1fjT8mUyX1jJmgKE5FnRSSr43VTERkk\nIoXdJ5LF27A2bNdi59O12PmMnfBwmDULKlSAjz+GDz+EXbvMKsWdSgWcW7GMBsqISFngY2A8MAmo\n4k7BLBaLGwgNhQzWUOEpwsLDSJ8uvXvHCIMZM+Crr8yf+vPP4bXXIF0KetSdGSrU4ax4DRipqiOB\nbM50LiI1RWS3iOwTkS5xtBnmuL9NRMo7rhUUkeUislNEdohIuyjtc4rIYhHZKyKLRMTPGVksSadq\n1aqeFiFV4bH5PH8ennsOUtkvfF/4fF6+eZl289vR9Lembhvjzh2YONFEdw0ZAv36waZN8PrrKatU\nwDnFclVEugFNgD9EJD2QMaGHHO1GADWBUkAjESkZo01toKiqFgNaYlZHAHeADqr6CFARaC0iDzvu\nfQosVtXiwFLHucViiY8jR+DZZ6FyZahijQ0phaoyeftkSo4syc3QmwyvNdzlY9y+DePHQ4kSRrGM\nHg1r1kDt2iDJdsMnDWcUS0PgFvCuqp4C8gPfOvFcBWC/qoao6h1gGlA3Rps6wEQAVV0P+IlIXlU9\npapbHdevAbsc40Z7xvHva07IYkkG1obtWlJ8PnfuNEqlZUvo399z3zZuwls/nzvP7KTaxGoMWjuI\n3xr+xrhXx3Fflvtc1v+tWzBmDBQrBr/8ApMmwbJlUL265//ECRpbVfUkMDDK+RH+/WKPj/zA0Sjn\nx4CnnGhTADgdcUFE/IHywHrHpbyqGnH/NJDXCVkslrTJmjVQrx4MGgSNG3tamjTB1VtX6bWiFxO3\nTaRnlZ60eqKVS/0qN2+aFUr//lCmDEyfDhUruqx7l5CgYhGRp4FhQEngLiA9cE1VsyfwqLObSGLq\n1sjnHNFoM4D2jpVL9IaqKiJxjtO8eXP8/f0B8PPzo1y5cpH22IhfOfY84fOqVat6lTy+fp5i87l2\nLVUHD4YffyTorrsgKMgr3r+rz73l86mqnM1zlo6LOvLI9UcY9/g46lWo57L+b96E3burMmAA+PsH\n8fnn8MEHyZM/4nVISAguRVXjPYBNQDFgC0aptAD6OfFcRWBBlPOuQJcYbcYAb0U5341ZkYDx4ywE\nPorxzG4gn+P1/cDuOMZXiyXN8v33qvnyqa5f72lJ0gS7z+7WFya9oKVHldaVIStd2vfVq6oDBpg/\n5+uvq27e7NLuo+H43kxQLyR0OBUroKr7gPSqGqaqEzAO+YTYCBQTEX8RyYTx1cyO0WY28A6AiFQE\nLqnqaRERIBAIVtUhsTzTzPG6GfC7M+/BknSi/rqxJB+3zqeqCQfq1ctEf1Wo4L6xvARPfj6v375O\nt6XdqPR9JWoXrc2mlpuoXLiyS/q+etX8KR96CP76y2xynDkTypd3SfduxZmA9usichewTUS+AU7x\nX/PVf1DVUBFpg1l1pAcCVXWXiHzguD9WVeeJSG0R2Q9cx6yGACphotC2i8gWx7WuqroA6Af8LCLv\nASFAA2ffrMWSqgkPh44dYckS+PNPyJ8/4WcsSUJVmbVnFh8t+IhnCj7D9g+380C2B1zS9+XLMHw4\nDBsGL74Iy5e7NkFkSpBgrjCH8/w0kAnoAGQHRqnqfncLlxxsrjBLmuL2bWjRAo4ehdmzwc9u73IX\nBy4coN2Cdhy8eJCRtUdS/cHqLun34kUYOhRGjDDJIbt1MyHEKUmK5QpT1RDHy3+Anskd0GKxuJhr\n1+CNN+Duu2HhQvOvxeX8c+cf+v/ZnxEbRtD5mc781vA3MqVPfm6UCxdM0N7o0WaH/Lp1ULSoCwT2\nIM7kCvtbRLY7/o14vVpEBouI64KyLV6L9bG4FpfO59mzZuNCoUImj0caVCop8fmct28ej45+lB1n\ndrD5g810ebZLspXKhQsm3UqxYnDmDGzcCIGBvq9UwDkfywIgFPgJ41t5C8iCMY/9ALzqLuEsFks8\nhIRAjRrQsCF8+aXnd8WlQg5fOsxHCz9ix5kdjKw9kppFnYlbip/z52HwYLNCeeMNk3bFsSsi1eCM\nj2WLqpaP7ZqI/K2qpd0qYRKxPhZLqmb7dpOz49NPoU0bT0uT6rgddpuBawYycO1A2j/Vns6VOpM5\nQ+aEH4yHmAqlWzfvUygpWY8lvYg8pSblCiJSgX9NaKHJFcBisSSSlSuhfn0TOtTABkW6miUHl9Bm\nXhuK3VeMDe9voEiOIsnq7/x540MZMyb1rlBi4sw+lveAQBEJEZEQzP6S90XkHuBrdwpn8Q6sj8W1\nJGs+f//dFCn/6SerVBy46vN5/MpxGs5oyPtz3mfAiwOY02hOspTK+fPw2WdQvLhxhW3aBOPGpX6l\nAk4oFlX9S1UfBcoB5VS1tKpuUNXrqvqz+0W0WCyA+VYKCIAFC+D55z0tTarhTtgdBq4ZSNkxZSme\nszg7A3byaomku46jKpRz59KWQonA1ry3WLwdVVNX9ocfTDhxaggb8hJWhKyg9bzW5M+en+G1hlP8\nvuJJ7iuqyevNN00JYF9TJrbmvcWSFggLg/btzU76P/+EfPk8LVGq4NS1U3Re3JkVISsY/NJgXi/5\nOpLEqLqYCiUt+FASIoXrill8EetjcS1Oz+etW9CoEQQHw4oVVqnEQWI+n6HhoQxfP5zSo0vzQNYH\nCG4dzBul3kiSUrl4Ebp3j+5DGTvWKhVwLm3+JuB74CdVveh+kSwWC1eumDoqOXPCvHmQOXmhrhZY\ne3QtAfMC8Mvsx4rmKyiVO2kJuC5fNqV/hw83O+U3boQHH3SxsD6OM/tYimGSQzbAZCyeACzydgeG\n9bFYfJbTp6FWLVO9afhwSO+6IlFpkbPXz/Lpkk9ZcGABA14cQKNHGyVphXLlikkMOXSoyeXVvbvJ\nPJyacJWPxZmosH2q2g0ojtl9/z1wRER6iUjO5ApgsViicOAAVKpkfgqPHGmVSjIICw9j7MaxPDLq\nEbLflZ1drXfxdum3E61Url0z6euLFoXdu42r64cfUp9ScSVO+VhEpCwwCBgAzATqA1eBZe4TzeIt\nWB+La4lzPrdsgcqVoXNn+OILm6LFSWKbz40nNvJ04NP8uP1HFjddzOCag8l+V0JFb6Nz4wZ8+61R\nINu2GTfX5MnGp2KJH2d9LJeB8ZgKkLcct9aJSCV3CmexpBmWLYO33jKhRa+/7mlpfJYL/1zgs6Wf\n8dvu3+j3Qj/eKfsO6SRxMUr//GP+DN98A88+C0uXwqOPukngVEq8PhYRSQd8qqp9U04k12B9LBaf\n4ZdfTL6vn3+GKlU8LY1PEq7hTNw6ka5Lu/JGyTfoU70POe7Okag+bt6E774zZq8KFaBnTyhb1j3y\neispso9FVcNF5A3A5xSLxeITjBoFffuaurNp7VvMRWw7tY2AeQGEhocy9+25PP7A44l6/tYt+P57\n82coV87USXs8cV1YYuDMGnGxiHQSkYIikjPicLtkFq/B+lhcS1BQkNlN/8UXJm511SqrVJLA5ZuX\n+WjBR1TtVZVmZZux9r21iVIqd+7A+PHGZzJnjqknP2eOVSquwJmd928BCrSOcd1GblssSSEsDD74\nwDjrV6+GPHk8LZFPoar89PdPdF7cmdrFavND3R+o+3hdp58PC4OpU42py9/fvH7mGbeJmyaxucIs\nlpTk5k2zm/76dfMTOVs2T0vkUwSfDab1vNZcvnmZUS+PomKBik4/Gx5uprxHD8iRw6Rfq1bNjcL6\nIG73sTh8K3F+M6vqr8kd3GJJU1y6BHXrQv78MH06ZEp+vfS0wrXb1/hyxZdM2DqBHlV68OETH5I+\nnXN7fFThjz/MhsYMGUxer5destHc7iQ+U9irGMWSB3iGf/esVAPWAFaxpBGCgoKoWrWqp8XwbU6c\ngJo1oVo1gurWpapVKk6hqswInsHHiz6mmn81dny4g7xZ80ZrE9fnUxWWLDF15W/cgN69jV63CsX9\nxKlYVLU5gIgsBkqp6knH+f3AxBSRzmJJDezda34if/ABdOlidtpZEmTv+b20mdeGk9dOMuX1KTxX\n+Dmnn1250qxQTp2CXr1MTbR0NuVuiuFMrrDdQMkIh4Vjb0uwqj6cAvIlGetjsXgFf/0FderAV1/B\nu+96Whqf4MadG/Rd1ZcxG8fQrXI32lZoS8b0GZ16dsMGo1D27TO+lMaNjfnL4hwpWY9lCbBQRH4C\nBGgILE7uwBZLqmfRImjSxMS01qnjaWm8HlVl9p7ZfLTwI57K/xTbWm0jf/b8Tj27dauJ3t682SiW\nFi2sC8uTOBUVJiKvA5UdpytV9Te3SuUC7IrFdVgfSxL46Sfo0AF+/dUklYyCnc//cvDiQdrNb8f+\nC/sZWXskzxdxrvTyrl3w4YdB7NlTlU8/NdZGW2Eg6aRoBUlHBJh11lsszjB0KAwcaPJ/PfKIp6Xx\nam6G3uSbP79h2PphdHqmE782/JVM6RNeahw6ZHwnc+easjVz58I996SAwBansPtYLBZXoQrdusHv\nv5va9IUKeVoir2b+vvm0nd+WMnnLMKTmEArdm/B8nTxp3FVTp0Lr1tCxI9x7bwoIm0awNe8tFm8i\nNBTef9/YZlatgly5PC2R13Lk8hE+WvAR209vZ3it4dQqVivBZy5cMNmGx40z/pPduyF37hQQ1pIk\nnK3HkkVESrhbGIt3YnOFJcCNG8Yec/q0ybGegFJJq/N5O+w2/Vb347Gxj1EuXzl2BOxIUKlcvWp2\nyBcvbmrMb99urIxRlUpanU9vJkHFIiJ1gC3AQsd5eRGZ7W7BLBaf4MIFePFFkyNk1ixr6I+DpQeX\nUmZ0GVYfWc2G9zfwRZUvyJwhbi/7zZsweLCp2rhrF6xbB2PHQoECKSi0Jck4s49lM1AdWK6q5R3X\ndqiqV5e+sT4Wi9s5dsxsfKxdG/r3tzvwYuH4leN0XNSRdcfWMbTmUOqUqBNvaeA7d0zZ3y+/hMce\nM7vly5RJOXnTOilW8x64o6qXYlwLT+7AFotPs2uXCSNu0QIGDLBKJQZ3wu4waO0gyo4py0M5HiK4\ndTB1H64bp1IJD4dp00wQ3bRppvbZrFlWqfgqzvxv2CkijYEMIlJMRIZjcoVZ0gjWhh2DtWtNWtw+\nfaBTp0Q/ntrnc9XhVTw27jEW7F/AmvfW8NXzX5ElY5ZY20YkiCxf3pSmGT3auKkqOp+0ONXPpy/i\nTFRYW+Az4BYwFeNr6e1OoSwWr2XuXLNKmTgRaiUczZSWOH3tNJ8s+YRlh5YxqMYg3iz1Zrxmr6Ag\nE5199aoJIX71VZsgMtWgqm47gJrAbmAf0CWONsMc97cB5aNc/x44Dfwdo31P4BgmoGALUDOOftVi\ncSkTJ6rmzau6bp2nJfEqQsNCdfj64Zrrm1zaaWEnvXLzSrztN21Sfekl1SJFVCdPVg0NTSFBLQni\n+N5M9nd/fPVY5sSvjzTe5Ecikh4YAbwAHAf+EpHZqrorSpvaQFFVLSYiTwGjgYhF8ARgODAp5tjA\nIFUdFN/4FotLGTAARo40P7Mf9ur8qynKumPrCJgbQPa7shPULIhH8sSdaWDfPpPHKyLz8Hvv2Xxe\nqZX4TGED47nnTLhVBWC/qoYAiMg0oC6wK0qbOjhS8KvqehHxE5F8qnpKVVeJiH8cfdsFcwqSpnNb\nhYdD585mJ/3q1S6Jd00N83nuxjm6LunK3H1zGfDiAN4u/XacZq8TJ0yU18yZ8PHHEBjo2qjs1DCf\nqY04nfeqGhRxAGuB88A54E9VdaagRH7gaJTzY45riW0TG21FZJuIBIqInxPtLZbEc/s2vPMOrF9v\ndtPbTRSEazjjNo2j1MhSZMmYhV2td9G4TONYlcrFi/Dpp1C6tEm7smcPdO1qt/qkBRJ03otIVcyq\n4rDjUiERaeaEcnF2E0nMT2RCz40GvnS87o1ZWb3n5FiWJJAmfw1euwZvvmlsNYsWQZbYo5qSgq/O\n56YTmwiYF0B6Sc+iposol69crO1u3IBhw8wO+Xr1YNs29+pkX53P1IwzUWGDgBqqugdARIoD04DH\nEnjuOFAwynlBzIokvjYFHNfiRFXPRLwWkfFAnL6g5s2b4+/vD4Cfnx/lypWL/BBGhCjac3v+n/Nz\n5wiqXBkefJCqv/4KGTJ4l3wpfH7xn4u0GNKClUdWMrDlQJqVa8bKFSsJ2h0UrX1oKOzfX5XevaF4\n8SAGDYKmTT0vvz2P+zzidUhICC4lIe8+sN2Za7G0yQAcAPyBTMBWTCXKqG1qA/McrysC62Lc9+e/\nUWH3R3ndAfgpjvGTHhphicby5cs9LULKERKiWqKEarduquHhbhnCV+YzLDxMJ2yZoHkH5NVWc1rp\n+RvnY28Xpjp1qmrRoqo1aqhu3JiycvrKfPoCuDsqLAqbHCuDyRizVWNgoxMKK1RE2mD2vaQHAlV1\nl4h84Lg/VlXniUhtEdkPXAdaRDwvIlOBKsB9InIU+EJVJwD9RaQcxmR2CPjAifdgsSTM33+b9Cyd\nO0O7dp6WxqNsP72dgLkB3Aq7xZxGc3gy/5P/aaNqYhq6djUWw7FjoXp1Dwhr8TqcyRWWGWgNRJTB\nWwWMUtVbbpYtWdhcYZZEsWqV8akMHQpvveVpaTzGlVtX6LG8B1P+nkLvar3532P/I3269P9pt349\ndOliEjp/9ZXxpdjNjb6Pq3KF2UJfFsusWaaWypQpJlNxGkRVmbpjKp0Xd6bmQzXp90I/ct/z34In\ne/bAZ58ZxdKzJzRrBhlsVadUQ4oloRSRV0Vki4hcFJGrjuNKcge2+A5RHX2pjvHjoVUrmDcvxZSK\nt81n8Nlgnp/0PN/8+Q2/1P+FwLqB/1EqJ0+aaXr2WahQAfbuNRscvUGpeNt8WpxLQjkEaAbcp6rZ\nHEd2N8tlsbgXVejb1xwrV8ITT3haohTn2u1rdFnchSo/VKHew/XY2HIjzxR8Jlqby5fh88/h0Uch\ne3azYvnkE7j7bg8JbfEJnPGxrACqq2pYyojkGqwpzBIn4eHw0UewYgUsWAD33+9piVIUVeXXXb/S\nYWEHqvhXYcCLA8iXNV+0NrdumUzDX39t4hl69YJCCZekt/g4KVnzvgswX0SWA7cd11Rtri6LL3Lr\nltlNf/q0Wance6+nJUpR9p3fR5v5bTh+5Tg/1vuRKv5Vot0PD4epU/9dpSxZYnbOWyyJwRlTWG/g\nGpAZyOo4srlTKIt3kWps2FevwssvQ2ioWal4SKl4Yj5v3LlB92XdeTrwaV4s8iJbPtgSTalEhA4/\n9hgMH26qOM6Z4xtKJdV8PlMRzqxY7lfVtBkqY0k9nDlj6qc8+aTJUpz+vyG0qZU5e+bQbkE7KuSv\nwNZWWymQPXp+lY0bTejwsWPG9GVDhy3JxRkfyzfAUlVdmDIiuQbrY7FEcvCgqU3fuDH06JFmvjUP\nXTxEuwXt2Ht+LyNrj+SFIi9Eu79/vwkdXr3aTMu773pHlJfFc6RkzfsAjI/lpg03tvgcW7dC5com\nX3vPnmlCqdwMvUnvFb154rsneLrA02xvtT2aUjlzBtq0MeV/y5QxocMtW1qlYnEdCSoWVc2qqulU\nNbMNN06b+KwNe/lyqFHD7Kb/8ENPSxOJO+dz4f6FlB5dms2nNrO55Wa6Ve7GXRnuAuD6dejTB0qV\nMpbA3bvNisXX09j77OczFWN/o1hSJzNmQEAATJ8O1ap5Whq3c/TyUTos7MCWU1sYXms4tYvVjrwX\nFmac8T16QKVKZtf8Qw95TlZL6semdLGkPsaMgd69Ye5cKBd7zZDUwu2w2wxeO5gBawbQpkIbulTq\nwt0Zze5FVZg/32xozJnTVFd+6ikPC2zxalJyH4vF4huomp18U6aYpJJFinhaIrey/NByWs9rzYM5\nHmT9/9bzUM5/lyGbNpkkzSdPQv/+8OqracK9ZPES4vSxiMgmERkqIjUdGY4taRSfsGGHhRk/ypw5\nJszJi5VKcufzxNUTvD3zbVrMakHf5/vyR6M/IpVKSIgJfnv1VWjY0FQCqFMndSsVn/h8pjHic95X\nBH4HqgErRGS+iLR3VJC0WLyHmzehQQMTP7t8OeTN62mJ3EJoeCiD1w6mzOgy+Pv5szNgJ689/Boi\nwoUL0KkTPP44FC9uIr0++MBGelk8g9M+FhHJD9QEXgKKYqo9BrhRtmRhfSxphMuXoW5do0wmTYK7\n7vK0RG5h9ZHVBMwNIG/WvIyoNYISuUoARqeOGGHMXW+8YRz0aSz1mcWFeLQei4ikByqq6p/JFcBd\nWMWSBjh50uymf+45GDIE0jmzLcu3OH3tNF2WdGHJwSUMemkQ9UvVR0Qic3p99hmULQv9+kHJkp6W\n1uLrpOQGyf+gqmHerFQsrsUrbdj79pnY2QYNzD4VH1IqzsxnWHgYIzeM5NHRj5IrSy52td5Fg0ca\nICIsW2Yy0wwdChMnmjplaVmpeOXnM41jLbAW32PTJuOd/vJL+N//PC2Ny1l/bD0B8wLImikry5st\n59E8jwJwFkfeAAAgAElEQVSwa5cJHd6506xQ6tdP3U55i+9i97FYfIvFi03Y03ffGd9KKuL8jfN0\nXdqVP/b+wTcvfkPj0o0REc6cMdlofvkFunaF1q1TrSvJ4mFSsjRxCRFZKiI7HedlROTz5A5ssSSa\nadOgSROYOTNVKZVwDWf85vGUGlWKzBkyE9w6mCZlmnDzptCvn0nBkimTScHy8cdWqVi8H2cM098B\n3fi3yNffQCO3SWTxOrzChj1smNnxt2SJSSrpw0Sdz80nN/NM4DMEbglkQeMFDKs1jOyZ/JgyBR5+\nGP76C9auNbEJ993nOZm9Ga/4fFqi4YyPJYuqrheHMVdVVUTuuFcsi8WBqilnOHOm2fhYuLCnJXIJ\nl25e4vNlnzMjeAZ9n+9L83LNSSfpWLkSOnY0vpPJk31eh1rSKM4olrMiUjTiRETeBE66TySLt1G1\nalXPDBwaCq1ame3jq1dDrlyekcOFqCpHchyh0chG1C1Rl+DWweS8Oyd795piW1u2mGJbDRv6VKCb\nR/HY59MSJ84oljbAOOBhETkBHAIau1Uqi+XGDWjUyNSoX7oUsmb1tETJ5u/TfxMwL4B/7vzD7Ldm\n82T+Jzl3Dtp1gZ9+MhFfU6dCZptAyeLjOFOP5YCqPg/kAkqoaiVVDXG7ZBavIcVt2Bcvmjoq2bPD\n7Nk+r1Su3LrCxws/5vlJz9O4dGP6F+1PmVxP8u23Zv9JePi/ocRWqSQe62PxPhJcsTgSUL4B+APp\nxThbVFW/dLNslrTI8eOmjPBLL5k87z5sD1JVpu+cTqdFnajxUA12BuwkV5bc9OgRxPv/g9KljYWv\nRAlPS2qxuBZnat4vBC4Bm4CwiOuqOtC9oiUPu4/FB9m9G2rWNBs1Onf2tDTJYtfZXbSZ34ZzN84x\nqvYoKhWqxLp10KED3L4N336bJuqPWXyMlKzHkl9VX0ruQBZLvKxfb/am9O8PzZp5Wpokc/32dXqv\n7E3glkC6P9edgCcDOHEsA2+/DStXwldfQdOmPr0Qs1gSxJmP9xoRKeN2SSxei9tt2PPnmxQtgYE+\nq1RUlV93/UqpUaU4duUY21tt591H2tHziwyULw/FisGePebtrVwZ5GlxUxXWx+J9OLNiqQy0EJFD\nwC3HNVVVq2wsyefHH43Za9YsePppT0uTJPad30fb+W05euUoE1+bSOWCVZk4Ebp3h+rVYds2KFDA\n01JaLCmHMz4W/9iue3tkmPWx+AADB5od9QsW+GR63n/u/MPXq79m1F+j6FKpCx9V/Ig/V2WkQwe4\n5x4YNAgqVPC0lBaL86SYj0VVQ0SkMlBUVSeISG7At+M/LZ4lPNzsBpw3z4RFFSzoaYkSzR97/6Dd\n/HY88cATbG21lZtnCtDgTdi61biJbOZhS1rGmSSUPYFPgK6OS5mAyW6UyeJluNSGfecOtGgBa9bA\nqlU+p1QOXTxE3Wl1+Xjhx4x5ZQzjXvyZwb0KULEiPPWU2Y/SoEH8SsX6BFyLnU/vwxnnfT2gLnAd\nQFWPA9ncKZQllXL9uon8On/epL/PmdPTEjnNrdBb9FnZhye+e4IKD1Rgy/t/s29BDUqUgGvXTI2U\nTz+1GxwtFnDOeX9LVcMjklCKyD3uFcnibbgkF9P58/Dyy8aXMm4cZMyY/D5TiEUHFtFmXhtK5S7F\nppab2LXWnycfg/z5jX4sk8gwFpvbyrXY+fQ+nFEsv4jIWMBPRFoC7wLjnelcRGoCQ4D0wHhV7R9L\nm2FALeAG0FxVtziufw+8DJxR1dJR2ucEpgOFgRCggapeckYei4c4csTspH/tNejb12ecD8euHKPD\nwg5sOrGJ4bWG82Doy7R6Cw4dMnEHL7/sM2/FYklRnMkVNgCY6TiKA91VdVhCz4lIemAEUBMoBTQS\nkZIx2tTGBAUUA1oCo6PcnuB4NiafAotVtTiw1HFucSPJsmHv3AnPPgsffGDS9vrAN/HtsNt88+c3\nlBtTjlK5SrGq0U4WDH+ZqlWhVi3YsQNeeSXpb8X6BFyLnU/vwxnnfXdgl6p2chyLHSuXhKgA7FfV\nEFW9A0zD+GqiUgeYCKCq6zGronyO81XAxVj6jXzG8e9rTshi8QR//mk2cvTrBx995GlpnCIoJIhy\nY8qxPGQ5q5uvI/fOXpR/9G7CwyE4GNq39ykrnsXiEZwxhbUF3hKRtqq6zHHtQ0wq/fjIDxyNcn4M\neMqJNvmBU/H0m1dVTztenwbyJiCHJZkkyYY9Zw68956pVlWjhstlcjUnr56k0+JOrD6ymiEvDeGe\no6/xRjXh/vtN1v7SpRPuw1msT8C12Pn0PpyJCjsO1Ab6icgniejb2d2JMQ0KTu9qdOyAtLsgvY3v\nv4eWLeGPP7xeqYSGhzJk3RBKjy5NoeyFmP1SMBO61CMgQOjb1zjnXalULJa0gDMrFlT1sIg8B4wR\nkRnA3U48dhyIukmhIGZFEl+bAo5r8XFaRPKp6ikRuR84E1fD5s2b4+/vD4Cfnx/lypWL/HUTYZe1\n5wmfR7Vhx9telarr1sG4cQR98w3cuEFVx3Pe9H4izv8+/TfjL44nV5Zc9Ck4iOXfFeL5pffwySfQ\npk0QmTKBiOvHd3o+7bmdTzefR7wOCQnBpahqvAcmmivqeWvgoBPPZQAOYOq4ZAK2AiVjtKkNzHO8\nrgisi3HfH/g7xrVvgC6O158C/eIYXy2uYfny5Qk3CgtTbd9etXRp1ePH3S5Tcjh97bQ2/7255h+Y\nX3/aNk3Hjg3XfPlU331X9eRJ94/v1HxanMbOp+twfG8mqBcSOhLMFZYcRKQW/4YbB6rq1yLygeNb\nf6yjTUTk2HWghapudlyfClQB7sOsSr5Qk1ImJ/AzUIh4wo1trrAU5PZtaN4cjh0zFR/9/DwtUayE\nhYcxbtM4egT1oGmZpryQoSfdOmUja1YYMgQef9zTElosnsVVucKcSUL5LNADs3qIMJ2pqhZJ7uDu\nxCqWFOLqVXjjDZN18aef4G5nrKQpz4bjGwiYG0CWjFnoVm4kgX1Ls2EDfPNNwilYLJa0gqsUizPO\n+0BgEPAs8KTjsDlb0xBR7bHROHPGhBP7+8Mvv3ilUjl/4zwfzPmAutPq8kG59jy7fwWNXyhN6dIm\nr1fDhimvVOKcT0uSsPPpfTijWC6p6nxVPa2q5yIOt0tm8W4OHTIbH2vVgrFjIYNTcSApRriGE7g5\nkEdGPULG9JnomWsXvV5vypHDwrZt8MUXkCWLp6W0WFInzpjC+mF8JL/yb6EvInwh3oo1hbmRbdtM\nPpOuXU19ei9jy8ktBMwLQFVpW2QUo7o/xq1bpvTLM894WjqLxXtJSR9LELHsFVHVaskd3J1YxeIm\nVqwwTokRI0zRES/i0s1LdF/WnZ+Df6brk33ZOaUFc2ano08fk6k/fXpPS2ixeDcp5mNR1aqqWi3m\nkdyBLb5DpA3711+NMpk61auUiqry47YfKTWyFDfv3KZ9+mC+evM9st6Tjt274X//8y6lYn0CrsXO\np/eRoGHckbvrKyC/qtYUkVLA06oa6HbpLN7D2LHQq5cpI/zYY56WJpIdZ3YQMDeA63eu063I74zu\nVoGQB8zCqlQpT0tnsaRNnDGFLcBkGv5MVcuISEZgi6o+mhICJhVrCnMRqtC7N0yaBAsXwkMPeVoi\nAK7eukrPoJ78uP1H2pXuxebvWrJ1S3oGDTK1xGz4sMWSeFIy3DiXqk4HwgDUZCoOTe7AFh8gLAza\ntIHffzeZir1Aqagq03dMp+TIkpy5doGmV3cwpMmHPFY+PTt3mpIvVqlYLJ7FGcVyTUTuizgRkYrA\nZfeJZPEKbt2Ct96C3bsJ6t0b8no+ifTuc7upMbkGfVf3pWXOaazoMIET+/KwZQt8/rlXbqOJFesT\ncC12Pr0PZxRLR2AOUERE1gA/Au3cKpXFs1y+bPanAMybZ3bVe5Drt6/TdUlXKk+ozGP3vILf9E38\nOuRZJk82cQQFCybch8ViSTmcyhUmIhmAEpgU93sc5jCvxvpYksipU0apPPOM2fjhwXAqVeX33b/z\n0cKPeDLvs2Rd8y3zf76fXr3g/fe9K9LLYkkNuMrH4kxU2N1AACaliwKrRGS0qt5M7uAWL2P/flOb\nvnlzY1vyoLPiwIUDtJ3flpBLIbyZ/gcmf1SNN980aVhy5vSYWBaLxQmcMYVNwtSsH4apYf8Ixhxm\nSU1s3gzPPQeffgrdu0dTKilpw/7nzj/0WN6Dp8Y/RZF0Vcn8w1Y2/FyNRYtg5MjUoVSsT8C12Pn0\nPpxJ8PSIqkbdEbBMRILdJZDFAyxdCo0amb0q9ep5TIy5e+fSbkE7HsnxGNX3beG3oQX55ht4+20b\n6WWx+BLO7GOZDIxU1bWO84pAa1VtmgLyJRnrY3GSn3+Gtm1NduLnnvOICCGXQvhowUcEnw3mhdvD\n+aXfSzRrZhJFZs/uEZEsljSJ230sIvJ3lDZ/ishRjI+lELAnuQNbvIARI6BfP1PYvUyZFB/+Vugt\nvl3zLYPWDaJevg5kCpzOnvvusrvmLRYfJ84Vi4j4x/OcquphdwjkKuyKJR5UzXJg+nSzm/7BB+Nt\nHhQUFFkr21UsPrCYNvPb4J/1Ye4OGsLmZQ8ycCC8+WbqN3u5Yz7TMnY+XYfbVyyqGpLczi1eSGgo\nfPghbN1qdtPnzp2iwx+7coyPF37MxhMbqfrPMGb3fIWWLWHKLo9vl7FYLC7CrTXvPYldscTCP/8Y\nT/iNGzBzJmTNmmJD3wm7w9D1Q+m3uh+1cgXw1+CuPFjgboYOheLFU0wMr0ZS+1LN4lXE9v2YYvtY\nLKmES5egTh0oUMCYwDJlSrGhV4SsIGBeALkzFeTJ7WtZ/Wcxhgwx4tjv0ujYH0OWlMDdP2IS3Mci\nIllFJL3jdQkRqePIcGzxFU6cgMqVTbr7yZMTrVSSuk/g1LVTNPm1CU1+a0q5C735+9P5VCxWjODg\ntJ2B2O67sKR2nNkguRK4S0TyAwuBpsAP7hTK4kL27IFKlaBJExg8GNI58ydPHqHhoQxbP4zSo0tz\n53wBMo3dxbW/XmfjX0KPHr6TLNJisSQNZ/axbFHV8iLSFrhbVb8RkW2qWjZlREwa1scCbNhglgZ9\n+5ravCnAmqNrCJgbwD3pcnLPipEcWFeSYcPg5ZdTZHifxmHf9rQYljRAXJ+1lKzHgog8DTQG5ibm\nOYsHWbgQXnkFvvsuRZTK2etneXfWu9T/uT6lLnzK7m5LeaZYSXbssErFYklrOKMgPgK6Ar+p6k4R\neQhY7l6xLMliyhR45x1ToOuVV5LdXXw+gbDwMMZsHMMjox7h6lk/sk7cxaXVb7FhvdCzpzV7xYb1\nsfxLSEgI6dKlIzw8HIDatWvz448mFeEPP/xA5cqVE9Vf1Oc9xddff83777/vURk8TYJRYaq6Algh\nIvc4zg9g67F4L4MHm2PZMnjkEbcO9dfxvwiYF0C68Mw8HryEDcvKMHRo2nbMp1b8/f05c+YM6aPU\nKmjRogXDhg1z6Tjz5s3z6PPOEhISQpEiRQgNDSVdDL9l165dU0QGb8aZtPnPAOOBbEBBESkHtFTV\nAHcLZ0kEqiYz8Zw5sHo1FCrksq5j7mq+8M8Fui3txqzds6gW3o9FA97h+feFGcF2k6Mz+OIucRHh\njz/+oHr16p4WJVYi/AV2L5B34IwpbAhQEzgHoKpbgSruFMqSSO7cMX6UlSth1SqXKpWohGs432/5\nnlIjS3H2dAbum7aLM4uasXqV0LevVSpplfDwcDp16kTu3Ll56KGHGDlyZDTzlr+/P0uXLo1s37Nn\nT5o2jT2HbdWqVQkMDIw8V1Xatm2Ln58fJUuWZNmyZdHafv7551SqVImsWbNy8ODBaM/HHCem2a1q\n1ap0796dSpUqkS1bNurUqcO5c+do3Lgx9957LxUqVODw4cRnroo6bsSYkyZNonDhwuTOnZu+fftG\ne3/9+vWjaNGi5MqVi4YNG3Lx4sVEj+ltOOWEV9UjMS6FukEWS1K4ccOkuj97FpYsgfvuc/kQQUFB\nbD21lcoTKjNi3Vie3DuPDT1H8MUnfixeDA8/7PIhUzW+6mOJK2Jt3LhxzJ07l61bt7Jx40ZmzJgR\nbeUgIv85j4uYbdevX0/RokU5f/48vXr14vXXX+fSpUuR9ydPnsz48eO5evUqhQsXjva8M6uX6dOn\nM3nyZI4fP86BAwd4+umnee+997hw4QIlS5akV69eCfYR23uIyZ9//snevXtZunQpX375JXv2mDy+\nw4YNY/bs2axcuZKTJ0+SI0cOWrdunegxvQ1nFMsREakEICKZRKQTsMu9Ylmc4sIFeOEFo0x+/90t\nS4bLNy8zbP0wXpr8Ev4Xm3O0x1pKZH+M4GBo0MD6UlISEdccSUFVee2118iRI0fkEbEy+Pnnn+nQ\noQP58+cnR44cdOvWLd6w6cSEVOfJk4f27duTPn16GjRoQIkSJfjjjz8c8yE0b96ckiVLki5dOjJk\niG7Zd2IrBS1atODBBx8ke/bs1KpVi+LFi1O9enXSp09P/fr12bJli9Oyxjdujx49uOuuuyhTpgxl\ny5Zl27ZtAIwZM4Y+ffrwwAMPkDFjRnr06MGMGTMiV1W+ijMpXT4EhgL5gePAIsD3Vaqvc/SoKSP8\nyivQv7/Lv+FVlSl/T+GTxZ9QIfcr3P9dMMcy3cfyZfDooy4dKs2RVB+LJ7e4iAizZs2K1cdy8uRJ\nChYsGHleyIWm2Pz580c7L1y4MCdPnow8jzpuUsibN2/k68yZM5MnT55o59euXUtW/xHky5cv8nWW\nLFki+z18+DD16tWLFgCQIUMGTp8+zf333++SsT2BM1FhZ4G3U0AWi7MEB0OtWtC+PXz8scu733lm\nJ63ntebijSs8FfIb6wc+Rf/+ZvO+XaFYYnL//fdz5Mi/1vKorwHuuecerl+/Hnl+6tQpp/s+fvx4\ntPPDhw9Tt27dyPP4zF1Zs2blxo0bTo/rKsd/YvopVKgQEyZM4Omnn3bJ2N5CnKYwERkez+HaGEOL\n86xdC9Wrw1dfuVypXL11lU6LOlF1YlUKX6vP6T5/8UD4U4wbF0TTplapuIrU5mNp0KABw4YN4/jx\n41y8eJF+/fpF+3ItV64c06ZNIzQ0lI0bNzJz5kynv3zPnDnDsGHDuHPnDr/88gu7d++mdu3aCcoU\nMe7KlSs5evQoly9f5uuvv473PSUl68HNmzejHaqaqH5atWpFt27dIpXx2bNnmT17dqLl8DbiW7Fs\nwlSMBIj5KbB5JzzB3Lkm+mvSJKhZ02Xdqiq/BP9Cx0UdeSLn8xRfvJMd5/MwZxY8+ST46PegxcW8\n+uqr0fax1KhRg5kzZ/L++++zd+9eypYty7333kvHjh1ZvvzfPdS9e/emUaNG5MiRgypVqtC4cWMu\nXLgQeT8uJSMiVKxYkX379pE7d27y5cvHzJkzyZEjR4LPArzwwgs0bNiQMmXKkDt3bj755JNI/0xs\nz8cMHEiofzCroqhtFy1alKhghfbt26Oq1KhRgxMnTpAnTx7eeust6tSpE++43o7T9VhEJBumcqRr\njI5uJtXlCps40exT+f13eOopl3W759we2s5vy4krpyh/ciQLxlbmiy8gIACifIdYUoDUkissvs2D\nFu/A3bnCnNkgWRqYBNznOD8LNFPVHckd3OIEqjBgAIwaBcuXuyy298adG/RZ2Ydxm8ZRL9dn7BvU\nhjtPZmTbNnjgAZcMYbFY0ijO/JwYB3ysqoVUtRDQ0XEtQUSkpojsFpF9ItIljjbDHPe3iUj5hJ4V\nkZ4ickxEtjgO19mEvI3wcOjYEX780ZQRdoFSUVV+3/07pUaWIvhECBU2bSfo6w6MHZ2RadNiVyq+\n6hPwVtLCfNod8GkbZ8KNs6hqpMFUVYMi8obFh6M42AjgBUyY8l8iMltVd0VpUxsoqqrFROQpYDRQ\nMYFnFRikqoOcf5s+yO3bxp9y5IjZUR/FrpxUDl48SNv5bTl44SC1bn/PLx2q06YN/DoRMmd2gcwW\nC2anfVhYmKfFsHgQZxTLIRHpDvyIceI3Bg468VwFYL+qhgCIyDSgLtE3V9YBJgKo6noR8RORfMCD\nCTybun8OXbsGb74Jd90FixYlO0XwzdCb9F/dn+EbhtOgQGeOBv7G/lyZWLPGuXrzvpjbypux82lJ\n7ThjCnsXyAP8CswEcjuuJUR+4GiU82OOa860eSCBZ9s6TGeBIuLnhCy+w9mzJpy4QAGYOTPZSmXe\nvnk8OupRNh37mxqHNvN7py50/SQTixY5p1QsFoslsTizQfIC0DYJfTsb3pLY1cdo4EvH697AQOC9\n2Bo2b94cf39/APz8/ChXrlzkr8UIO7dXnZ86RdUePaB+fYKefx5Wr05yf9P+mMaIDSM4nfs0dTOO\nYEK7zFSpcpDg4EL4+SWuv6g+Aa+aLx89j28+LZaUIuIzFxQUREhIiEv7dqY08ZNAN8CffxWRqmqZ\nBJ6rCPRU1ZqO865AuKr2j9JmDBCkqtMc57sxmZMfTOhZx3V/YI6qlo5lfN8KN96+HWrXhi5doG1S\n9LjhdthtBq4ZyMC1A3n7ofZsHdmZG1cyM2YMPPFE0voMCgqy5hsXEtd8ppZwY4v34+5wY2cUy16g\nE7ADiMyMFuH/iOe5DMAe4HngBLABaBSL876NqtZ2KKIhqloxvmdF5H5VPel4vgPwpKr+J+WMTymW\nVauMT2XYMGjYMMndLDm4hDbz2vCQXzGK7B3K1FFF+OILaN3a7knxBaxisaQUHt/HApxV1UTnGFDV\nUBFpAywE0gOBDsXwgeP+WFWdJyK1RWQ/cB1oEd+zjq77O4qNKXAI+CCxsnkVv/8OLVvCTz+ZTMVJ\n4PiV43y86GM2HN/Aew8MY9Jnr5K5NGzdalw1FktK8eGHH5I/f34+//xzl/abLl069u/fT5EiRVza\nr7fz9ddfc/DgQb777jtPi5I4InLbxHUANYBAoBHwhuN4PaHnPH2Yt+blfPed6v33q27cmKTHb4fe\n1m///Fbv63+ffjznc3272XUtVEh11izXirl8+XLXdpjGiWs+vfkzW7hwYc2UKZOeO3cu2vVy5cqp\niOjhw4eTPUaVKlU0c+bMmjVr1shj3bp1qqoqInrgwIFkjxEXzZo100yZMmnWrFk1R44cWr16dd2x\nY4dTzx46dEhFRMPCwpI0dnKfTwpxfdYc15P9/etMVFgzoCymiuQrjuNVVyu4NIUq9OkDX38NK1bA\n448nuouVh1dSfmx5Fh1YREe/NUx+rzd5c2Zh507w8TRDFi9ERChSpAhTp06NvPb333/zzz//uDQr\n8MiRI7l69Wrk8ZQL0xclNHaXLl24evUqJ06coFChQrRo0SJRfag1Y0bijGJ5AuPHaKaqLSIOdwuW\nagkLM875GTNMbfpixRL1+Klrp2j6W1Oa/NqElsV6cTNwATPHFWf+fBg0CKLkxHMZ1nHvWnx1Pps0\nacKkSZMizydOnMg777wT7Qu1efPmdO/eHTBBCgUKFGDQoEHkzZuXBx54gB9++CHZcly+fJl33nmH\nPHny4O/vz1dffRUpQ+HChdm8eTMAU6ZMIV26dOzaZazogYGB1KtXL8H+M2fOTP369dm5c2fktblz\n51K+fHnuvfdeChUqFK2y5HPPPQeYyNNs2bKxfv16AL7//ntKlSpFzpw5qVmz5n/KCTiDr5Y5dkax\nrAFKuVuQNMGtW/D227Bzp1mpJKKQT2h4KMPXD6f06NLkufsBmlwO5stGb/DG68L69fDYY26U22IB\nKlasyJUrV9i9ezdhYWFMnz6dJk2aRGsTM7Pv6dOnuXLlCidOnCAwMJDWrVtz+fLlOMdw5ld/27Zt\nuXr1KocOHWLFihVMmjSJCRMmANHDuVesWMFDDz3EihUrIs/jU+oRY1+/fp2pU6dGWy1lzZqVyZMn\nc/nyZebOncvo0aOZNWsWAKtWrQKMwotYZc2aNYuvv/6a3377jXPnzlG5cmUaNWqU4HuLic+WOU7I\nVgbsBu4Ae4G/Hcd2V9jh3Hngbfbqy5dVq1dXfeMN1X/+SdSja46s0XJjymnVH6rq93N2avHiqvXq\nqR496iZZY2B9LK4lqT4WeuKSIyn4+/vrkiVLtE+fPtq1a1edP3++1qhRQ0NDQ6P5WJo3b66ff/55\n5Pu8++67o/kO8uTJo+vXr491jCpVqmiWLFnUz89P/fz89PHHH4+8F+FjCQ0N1UyZMumuXbsi740d\nO1arVq2qqqqBgYFap04dVVUtWbKkBgYG6ltvvaWqxk+0ZcuWWMdu1qyZZs6cWf38/DRdunRapEgR\nPXv2bJzz0b59e+3QoYOqxu4jqVmzpgYGBkaeh4WFaZYsWfTIkSP/6Ss+H0uPHj20SZMm0dodP348\n8n6FChV0+vTpqqr68MMP69KlSyPvnThxQjNmzBhrv3F91nCRj8WZqLDUm+QxpTh92uxRqVABRoxw\nOvb33I1zdFnchQUHFvBFxQGsGdeIHsuE4cMhShE9SxpBe3jWhi8iNG3alMqVK3Po0KH/mMFi4777\n7ouWOj9qWd7Y+h8+fDjvvht3Yo9z585x584dChcuHHmtUKFCkZUmn3vuOTp16sSpU6cICwujfv36\n9OzZk8OHD3P58mXKlSsX59idO3fmyy+/5OjRo7z00ktMmjSJjx3F9NavX8+nn37Kzp07uX37Nrdu\n3aJBgwZxynn48GHat29Px44do10/fvx4sssp+0KZ4wRNYaoaEtuRArKlDg4cgEqVjEd91CinlEq4\nhjN241hKjSxFtruy87nfLr6o9zY5cwg7d6a8UvFVn4C34svzWahQIYoUKcL8+fN5/fXXY23jzszG\nuXLlImPGjNF2ih85coQCjrj6okWLkiVLFoYPH06VKlXIli0b+fLlY9y4cVSuXDneviOUZMGCBRk2\nbBi9e/fm6tWrALz99tu89tprHDt2jEuXLtGqVSvCw822vtjeb6FChRg3bhwXL16MPK5fv07FihUT\n9TDUrusAABaRSURBVH4TW+Z4wYIF0ca8ceNGiisVcM7HYkkqW7bAc89Bp07Qo4dTtX03nthIxfEV\n+XH7j3xXeTHb+g9m/MjszJsHgwdDtmwpILfFEg+BgYEsW7aMu2PJY6f/mqKTRELPpk+fngYNGvDZ\nZ59x7do1Dh8+zODBg6P5eqpUqcKIESOoUqUKYBR51HNnxn3hhRcoWrQoo0aNAuDatWvkyJGDTJky\nsWHDBn766afIL/3cuXOTLl06Dhw4EPl8q1at6Nu3L8HBwYDxv/zyyy/xvrfUVObYKhZ3sXw5vPSS\n2U3fqlWCzS/+c5GAuQG88tMrtCwfwIvHVvLeK2WpWxfWr09SRLLLsHmsXIuvz2eRIkV4LEq0SHzl\nfRO7eomvTHEEw4cP55577qFIkSJUrlyZxo0bRwsNrlKlCteuXYuM1op5Hlf/Mcfu3Lkzw4YN486d\nO4waNYovvviC7Nmz07t3bxpGyZCRJUsWPvvsMypVqkSOHDnYsGEDr732Gl26dOGtt97i3nvvpXTp\n0ixcuDDe9541a1ayZMlClixZuOeee1i2bFmiyxzXqVOHGjVqkD17dp5++mk2bNgQ75juwunSxL6G\nR1O6zJhhavv+/DMkYPYI13Ambp1I16VdeaPkG9TJ1oeOATnw9zeWs0KFUkTieLG5wlyLzRVm8TQe\nzxXmq3hMsYweDV99BXPnQtmy8Tbddmobree15k74Hb6pMopfhj7OzJkwZAg0aOCU5cySirCKxZJS\neEOuMIszqELPnibn18qVEE9Oo8s3L9MjqAdTd0yld7Xe5D76P5pUT0eNGmaLS86cKSe2xWKxuBrr\nY3EFYWHGjzJ3rqlNH4dSUVWmbJ9CyZEluXb7Gkvf2Mmir1vySed0TJoEgYHeqVR83Sfgbdj5tKR2\n7Ioludy8aXbTX71qHPZxhG0Fnw2m9bzWXL55mRn1f2XHgopUe88kNv7xx2QXirRYLBavwfpYksOl\nS2ZTyQMPwMSJkCnTf5pcu32NL1d8yYStE+hRpQfVsn7Ih63Sc+sWfPcdlIm3XJolLWF9LJaUwt0+\nFmsKSyonT0KVKsZBP2XKf5SKqjIjeAalRpbi1LVTbP7fDi4ubEOV59Lz5puwZo1VKhaLJXViTWFJ\nYe9eqFkT3n8fPv30P+Fbe8/vpe38tpy4eoLJr08m44nnqFUZ/P1h82bvCCFODDbc2LXY+bSkduyK\nJbH89ZdZqXz2GXTtGk2p3Lhzg8+Xfc4zgc/w0kMvEfTWZqZ/8xyvvw7du8OcOb6nVCwWiyWxWMWS\nGBYvhpdfhrFj4b33ot2avWc2j4x6hP0X9rOt1TaKnv2YcmUycuuWCSFu2NB396XYX9euxc6ne1i1\nahUPP/xwio555MgRsmXLZn1jMXFFimRvPHB12vyfflLNk0d11apolw9cOKCv/PSKlhheQpccWKKn\nT6s2bKhatKjqsmWuFcGSunH5Z9bFTJgwQR999FHNkiWL5suXTz/88EO9dOmSx+Rxd7niqPy/vXMP\nj6q6FvhvERACTUJ4BgyviHpTpbGAvFvCVZFSQUWgsRgRtLT0FuwVW7jVKhSLykcsXqkopSpX8AoI\nKHp5FrFFXvKmiIhUg2JAjY9LkVcSVv84e4bJOEkmZCbJJOv3fefLnn32c83OWbP3Pnutvn376ty5\ncyulrsqgpLFGJbomNh5/HH79a1i3Dvr0AeB04Wl+99ff0e1P3ejdpjd7fraXvI3X0KmTt9y1Zw/0\n61fF7Y4Qdu4issSiPHNycpg0aRI5OTkcP36cLVu2cPjwYa677joKCgoiXl9RUVFY6bSSZgqhbIkZ\nJWOKpTRUvX2U2bM9N8JXXgnAqkOr6DS7E7uP7WbnT3fy47aTuGnQRcyY4Z2RnD4dGjas4rYbRoQ4\nfvw4kydPZtasWfTv35+4uDjatWvHokWLyM3NZf78+YDnRnfo0KFkZWWRmJhIly5d2Lt3r7+cvLw8\nbrnlFlq0aEFaWhpPPPGE/54vb3Z2NklJScybN49t27bRs2dPkpOTad26NePGjfMrMZ9ByYyMDBIS\nEli8eDFvvPFGMV8n7du3Jycnh4yMDBo3bkxWVhZnzpzx358+fTqtW7cmNTWVuXPnUqdOHd5///1y\nycbnLthnQj8zM5MHHniAPn36kJiYyPXXX8/nn3/uT79lyxZ69epFcnIyV111ld+7ZY0jEtOe6nhR\n0WWFggLVUaNUu3VTdZ7kDn91WIcsHKKXPH6Jrji4QouKVGfNUm3aVPWhh1TPnq1YlUbtpsJjNkqs\nXLlS69atG9IT4ciRI/XWW29VVc/bYb169XTJkiVaWFioM2bM0A4dOmhhYaEWFRVp586dderUqVpQ\nUKDvv/++pqWl6erVq4vlfeWVV1RV9dSpU7pjxw7dunWrFhUVaW5urqanp+vMmTP9dQcvha1fv15T\nU1P9n9u3b6/du3fXo0eP6hdffKHp6en61FNP+fuUkpKi+/fv15MnT+qIESO0Tp06JS6tZWZmFvMI\n6SPY+2Pfvn21Y8eO+t577+mpU6c0MzNTJ02apKqqR44c0aZNm+rKlStVVXXt2rXatGnTUj1VRouS\nxhq2FBZFTp6Em2/2zqq8/jpnkxN55M1H6Px0ZzJaZrDv5/voUPQDvv99zzTYhg3eS2L16lV1w40a\njUhkrnKSn59Ps2bNinkm9JGSkkJ+fr7/c9euXRkyZAhxcXHcc889nD59ms2bN7Nt2zby8/O5//77\nqVu3Lh06dOCuu+7ixRdf9Oft1asXgwcPBqBBgwZ07tyZbt26UadOHdq1a8eYMWPK/Qt//PjxpKSk\nkJyczKBBg9i9ezcAixYtYvTo0aSnpxMfH8+UKVMisqwmIowaNYqOHTvSoEEDhg8f7q9z/vz5DBw4\nkAEDPKe81157LV27dmXFihUVrre6YYolmC++gP79oXFjWL6c1z/dSsZTGbz54Zu89ZO3+K9eD/DY\n9Ab06QNZWZ5SSU+v6kZHl1jcE6jOXLA8VSNzlZNmzZqRn5/vX+4J5OjRozRv3tz/2efJEbyHbGpq\nKnl5eXz44Yfk5eWRnJzsvx5++GE+/fTTkHkBDh48yA033ECrVq1ISkrivvvuK7asFA6Bbnzj4+P5\n+uuv/e0OXDYLrrsiBNcZ6Dp48eLFxWSwceNGjh07FrG6qwt2QDKQI0e8g48DBpD3218yYfntbP5o\nM48PeJzBlw9m505hyJ3QqhXs2AEBbrcNo8bSs2dP6tevz5IlSxg2bJg//sSJE6xatYqHH37YH/fR\nRx/5w+fOnePIkSNcfPHFxMXF0aFDBw4ePBiyjlCb42PHjqVLly4sXLiQRo0aMXPmTJYsWRKRPrVq\n1apYWwPD0aJt27ZkZ2czZ86cqNdV1diMxcc770Dv3hTdns1jt7TmO09fRVrjNPb/x376t7uRSZOE\ngQNhwgRYsaJ2KRU7dxFZYk2eSUlJPPjgg4wbN47Vq1dTUFBAbm4uw4cPp02bNmRnZ/vT7tixg2XL\nllFYWMjMmTNp0KABPXr04OqrryYhIYHp06dz6tQpioqK2LdvH9u3bwdCv9114sQJEhISaNiwIQcO\nHGD27NnF7rds2bKYO+Bw8NUzfPhwnn32WQ4cOMDJkyeZOnVqmXkLCgqKuQ4uLCwstY5gbrvtNl59\n9VXWrFlDUVERp0+f5o033uDjjz8uVx9iAVMsAFu2QL9+vHv3bXw3YQGrDq1i052b+P01v2fbpoZk\nZMDhw7B3L2Rnx+5BR8O4UH71q18xbdo07r33XpKSkujRowft2rVj3bp11HObiyLCjTfeyMKFC2nS\npAkLFixg6dKlxMXFERcXx2uvvcbu3btJS0ujefPmjBkzhuPHj/vzBs9YZsyYwQsvvEBiYiJjxowh\nKyurWJrJkyczcuRIkpOTeemll8p8JTjw/oABAxg/fjz9+vXjsssuo2fPngDUr1+/xPxjx471uw5u\n2LAho0ePDllnSa6aU1NTeeWVV5g2bRotWrSgbdu25OTkhFxijHXMuvGKFZwbeTt/+FkGM5sc5LH+\njzH020M5flyYOBFeew3++EfPiHFtxWxbRZaa6pp4ypQpHDp0iOeff76qm1Ju3nnnHTp16sTZs2dD\nvqRQ0zDrxlHk3HPPcTI7i4E/KuTY9zqz/+f7GXbFMA4dEq68Es6dg337ardSMYxwiTWluGzZMs6c\nOcOXX37JxIkTGTx4cK1QKpVBrd28P3z/OC6a/TQTJ2SQc9dzXNHiCv+9Dh1g0SJws+Naj81WIktN\nlWesnU6fM2cOo0aNIi4ujszMTJ588smqblKNoVYuhW2YMIwWC17m7edzuPnacTH1z2DUXGJ9KcyI\nHaK9FFYrFcuxf+yhYXwSia3bV26jYhTbY4ksNXWPxYgdoq1YauVSWMolGVXdBMMwjBpLrZyxGEZ1\nxGYsRmVhMxbDqEXYfp9RE4jqu3UiMkBEDojIeyIysYQ0/+3u7xGR75aVV0SaiMhaETkoImtEpHE0\n+2CYrbBIU5I8I2FVtjZe69evr/I2xOIVTaKmWEQkDpgFDAC+DdwqIulBaQYCHVX1UmAMMDuMvJOA\ntap6GbDOfTaiiM86qxEZTJ6RxeRZ/YjmjKUbcEhVc1W1AHgRCD5qOBiYB6CqW4HGIpJSRl5/Hvf3\npij2wQC++uqrqm5CjcLkGVlMntWPaCqWi4FAk6FHXFw4aVqXkrelqn7iwp8ALSPVYMMwDKPiRFOx\nhLuIF85upYQqT72FQnuNJsrk5uZWdRNqFCbPyGLyrH5E862wj4E2AZ/b4M08SkuT6tLUCxHvsy39\niYikqOoxEWkFfEoJ2Bs2kWPevHllJzLCxuQZWUye1YtoKpbtwKUi0h7IA34E3BqUZjnwC+BFEekB\nfKWqn4jI56XkXQ6MBB51f18OVblG4F1swzAMo/xETbGoaqGI/AJYDcQBf1bVd0Tkp+7+06q6QkQG\nisgh4GtgVGl5XdGPAItE5E4gFxgerT4YhmEY5afGnrw3DMMwqoaYcz4QjUOXtZkKyjNXRPaKyC4R\neavyWl09KUuWIvJvIrJZRE6LyITy5K2NVFCeNjaDCEOeI9z/+F4R2Sgi3wk37zeo6tOf5TwpGgcc\nAtrjbfDvBtKD0gwEVrhwd2BLuHlr21URebrPHwBNqrof1eEKU5bNga7AQ8CE8uStbVdF5Onu2dgs\nvzx7AkkuPKAiz85Ym7FE69BlbeVC5Rl4dshekvAoU5aq+pmqbgcKypu3FlIRefqwsXmecOS5WVX/\n333civc2blh5g4k1xRKtQ5e1lYrIE7wzRH8Rke0i8pOotTI2CEeW0chbU6moTGxsFqe88rwTWHGB\neWPOunEkD10aFZdnH1XNE5HmwFoROaCqGyLUtlijIm/B2Bs036SiMumtqkdtbPoJW54i0g8YDfQu\nb14fsTZjqcihy3Dy1jYuVJ4fA6hqnvv7GbAMb8pcW6nI+LKx+U0qJBNVPer+2tj0CEuebsP+T8Bg\nVf2yPHkDiTXF4j90KSIX4R2cXB6UZjlwO0Dgocsw89Y2LlieItJQRBJcfCOgP/D3ymt6taM84yt4\nBmhj85tcsDxtbIakTHmKSFtgKXCbqh4qT95gYmopTKN36LJWUhF5AinAUmc2py6wQFXXVH4vqgfh\nyNK9RLINSATOicjdwLdV9YSNzeJURJ5AC2xsFiMceQIPAMnAbCe7AlXtdiHPTjsgaRiGYUSUWFsK\nMwzDMKo5plgMwzCMiGKKxTAMw4goplgMwzCMiGKKxTAMw4goplgMwzCMiGKKxagUROQOEXkiiuWP\nF5H9IvJ8ZdYbTUSkh4jMiXCZk4NNzFcmInKiAnkH+Uy2V3U/jNKJqQOSRkwT7QNTY4FrfGZmKrHe\naPIDYGWEy6xqeVxw/ar6KvBqRcsxoo/NWIywcOYcDojIsyLyrogsEJH+ziHQQRG52qVrIiIvO4dB\nm0WkU4iymovISyLylrt6ufi+zjHTLhHZKSLfCpH3HhH5u7vudnFPAWnAKhH5ZYjmtxGR9a6dDwSU\ndZuIbHX1PSUidVz8CRF5SER2uz60cPG7Aq6TIvI9EWkkIs+4cnaKyGCX9g4RWSoiK129jwbU219E\nNonIDhFZ5MyOhOLfgb8E9T9TRP7qZPwPEXlERLKdHPeKSFrA9/W6+x7+IiJtggsXkUtc+7aLyN9E\n5PIQafaKSKJ4fC4i2S7+f0TkWhFp5/LucFdPd7+Vi9/lvqveAWV+Q7ZBdYYcQ7E8+6x1VLUDGrti\n48Jz8lMAXIFnm2k7nmkH8Hy2LHPhJ4DfunA/YJcL3wE84cIv4FmfBWgL7Hfh5UBPF24IxAW1oQuw\nF4gHGgH7gAx3L6RjJ1dvHp6pigZ4NqO6AOmuvjiX7kkg24XPAT904UeB+4LKHAT8FW/GPw0Y4eIb\nA++6tt8B/ANIAOoDuXimxpu5vPEuz0SfvILqaAa8HiI+E/gSaAlchGcgcLK7Nx74gwu/GtCfUQHf\nz4PAPS68Dujowt2BdSHqm43n7O1K4C3gaRd/0H0P8UB9F3cpsM2FJwC/ceE6wLfCkW05xtCDBDn3\nsqv6XLYUZpSHD1T1bQAReZvzv6b34Ske8ExtDwFQ1fUi0lScQcAArgXSRfy2AxPcr/aNwB9EZAGw\nVFU/DsrXx8Wfcm1YCnwf2FNGu9eos9Tq8vQBivAUzHbXjnjgmEt/VlX/z4V3ANf5ChKRS4HpQKZ6\nNpT6A4NE5F6XpD6eslS8B/U/Xb79TkbJePasNrl6LwI2hWhzfzzbTKHYpp5hVcSz4eZLtw/vQQzQ\nA7jJhee7Nvtx8u4FLA74Hi4KUdcGPBkfxlMyY0SkNfClqp4SkSRglohk4Mn0UpfvLeAZEakHvKyq\nvu+oRNkGEM4YMqoxpliM8nAmIHwOOBsQDhxLwdZ7g9fDBeiuqmeD4h8VkdeAHwIbReR6VX03qJzA\nsiVE2cGEqtsXN09VfxMiT6BHQn/f3NLcQuAu34PdMURV3ytWiUh3isuriPMyWquqPy6j3QOAnBLu\nBX8PZwLCpX0PgdTBUw7fLaMdfwN+gTfjug+4GRjq4gH+EziqqtkiEgecBlDVDSLyPeAG4DkReUxV\nn6cE2YagrDFkVGNsj8WINBuAEeDtBwCfqWrwm0Br8JZtcOmucn8vUdW3VXU6ntXa4DX/DcBNIhLv\nfnHf5OJKQ4DrRCRZROLxXKq+ibcMNFQ8R1C+df22ZZT1DPCsqm4MiFsd1BffgzrUQ12BLUBvEbnE\npW/kZkHnG+xNIb4T8Cv/QtgEZLnwCM4rAsEzPvtP4AMRGeqrUzxfHMUbrHoEb1muo6p+gCe7ewPK\nS+T8TO92POu3PhPsn6nqXODPQFkKLJBwxpA586vGmGIxykPwr0YNEZ4MdBGRPXj7DyMD7vvSjAe6\nus3Zt4ExLv5ut9G7B282VOyNKFXdBTyHt8yyBfhTwMO3pF+06tIvwVsye0lVd6pn9vt+YI2rbw2e\nK4BQ/VL3oLwFGC3nN/A7A1OBem6Tex8wJUR/A/uQj7dX8L+u3k18U4F2AXaV0p/S+uq7Nw4Y5eoY\nAdwdIs0I4E4R2Y23jDa4hHK34O2pgKdYWru/4O1NjXRlXA74FEA/YLeI7ASGAY8H1F9WXyZT9hgq\nTQ5GFWNm8w2jmiEi9wHvqeqiqm6LYVwIplgMwzCMiGJLYYZhGEZEMcViGIZhRBRTLIZhGEZEMcVi\nGIZhRBRTLIZhGEZEMcViGIZhRBRTLIZhGEZE+Rflz/wq8/SiYgAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7720e48>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Oil circulation rate is 1.79e-03 kmol/s\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FPX9+PHXO+GGQMJ9EzlUbBXUyiEi8ShGW9F6cAgU\n0HpV0daj3gXFev20tXhioYpSFRUtiiJaJOhXEQXxBhElyKmG+xKT8P79MbNhs+wms9ndzA55Px+P\neTCfmdn5vHey7Gfn8/nM5yOqijHGGONFht8BGGOMCQ4rNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhj\nPLNCwxhjjGdWaBhTRSLyiIjcnKRzbReR3GScy5hUEntOw9RUInIccA9wGFAKLAX+BPwSuEBV+/sY\nnjFpqZbfARjjBxFpDMwCLgaeA+oC/YE9Hl+foap7UxehMenJqqdMTXUwoKo6XR0/qeqbQAnwCNDX\nrTLaBCAiT7jVUa+JyA7gBHfbBHd/noisEZEbRORHEVkpIueFMnOPfVRE3hCRbSJSICIdw/bvFZHO\nYcc+JCKz3GPfD+1z9w8Uka9EZIt73HwRuaBarpqp8azQMDXVV0Cp+wWdLyI5AKq6FLgEWKCqWara\nNOw1w4AJqtoI+D9A3SWkFdAMaAuMAh4TkYPD9p8H3AY0Bz4G/lNBfEOA8UAOsAL4G4CINAeeB64D\nmrrvo29EHMakjBUapkZS1e3AcThftv8CfhCRmSLSEpBoLwH+q6oL3NeHqrEij71FVYtV9W3gVWBw\n2L5Zqvp/qvozcBPO3Uy7GHm9qKqLVLUUp3Dp6e47DfhcVf+rqntVdSKwIc63b0yVWaFhaixVXaaq\nY1S1A07jd1vgfmL/al9dySk3q+rusPQqoE0oO2BNWN47gU1untF8H7a+G2jkrrcNP48rMm1Mylih\nYQygql8BU3EKj3iqesKPzRGRBmHpTsA6d12ADqEdItIIp3ppHfFZB7QPO4+Ep41JNSs0TI0kIoeI\nyFWh6iER6YDTZrEA51d+exGpHf6SaKeJsv1WEaktIv2B3+C0P4ScJiL9RKQOMAGn3WRtjPPG8hpw\nuIicISK1gMuA1hUcb0xSWaFhaqrtQG9godsbagHwKXA18BbwBbBBRH5wj49s9I62bQOwGedu4Cng\nYlVdHnbs08A4YCNwJDAi4lyxzlu2X1WLgHNxni8pAroDi/DYVdiYRPn6cJ+I5OPUIWcCk1X17oj9\nzYFpOL+kagH3quoT1R2nMZURkTzgKbd9JNr+x4E1qnpLkvPNwGlrOU9V5yfz3MZE49udhohkAg8C\n+ThP5A4Tke4Rh10OLFHVnkAecJ97S25M0FRU5RTfiZznNLJFpC5wo7v5/WSd35iK+Fk91QtYoaqF\nqloMPAucEXHMeqCxu94Y2KiqJdUYozHxqOi2PVqVU1X1xXl240ecdpMzw7oAG5NSvlVPicg5wCmq\neqGbHgH0VtWxYcdk4NQvHwxkAYNVdbYf8RpjjPH3TsNLaXUj8LGqtsV5uOkhEclKbVjGGGNi8bN9\nYC1h/dbd9ciHlI7FHT5BVb8RkZXAITi9RcqIiA2hYIwxcVLVuNva/LzTWAR0E5Fct9/6EODliGOW\nAScDiEgrnALj22gnU9VALuPGjfM9Bovf/zgs/uAtQY5dteq/s32701DVEhG5HJiD0+V2iqouFZGL\n3f2TgDuAx0XkE5wC7i+qusmvmFOhsLDQ7xASYvH7y+L3T5BjT4Sv3VfVadSeHbFtUth6EXB6dcdl\njDEmOnsi3GejR4/2O4SEWPz+svj9E+TYE3FATPcqInogvA9jjKkuIoIGrCHcAAUFBX6HkBCL318W\nv3+CHHsirNAwxhjjmVVPGWNMDWTVU8YYY1LOCg2fBb1e1OL3l8XvnyDHnggrNIwxxnhmbRrGGFMD\nWZuGMcaYlLNCw2dBrxe1+P1l8fsnyLEnwgoNY4wxnlmbhjHG1EDWpmGMMSblrNDwWdDrRS1+f1n8\n/gly7ImwQsMYY4xnvrZpiEg+cD/OzH2TVfXuiP3XAMPdZC2gO9BcVbdEHGdtGsYYE4eqtmn4VmiI\nSCbwFc4c4GuBD4Fhqro0xvG/Bf6kqidH2WeFhjHGxCGIDeG9gBWqWqiqxcCzwBkVHH8e8Ey1RFaN\ngl4vavH7y+L3T5BjT4SfhUY7YHVYeo27bT8i0gA4BZhRDXEZY4yJwc/qqbOBfFW90E2PAHqr6tgo\nxw4BzlPVqHciIqKjRo0iNzcXgOzsbHr27EleXh6w7xeBpS1taUvX1HRovbCwEICpU6cGrk2jDzBe\nVfPd9A3A3sjGcHffS8B0VX02xrmsTcMYY+IQxDaNRUA3EckVkTrAEODlyINEpAlwPDCzmuOrFuG/\nAoLI4veXxe+fIMeeiFp+ZayqJSJyOTAHp8vtFFVdKiIXu/snuYeeCcxR1d0+hWqMMcZlY08ZY0wN\nFMTqKWOMMQFjhYbPgl4vavH7y+L3T5BjT4QVGsYYYzyzNg1jjKmBrE3DGGNMylmh4bOg14ta/P6y\n+P0T5NgTYYWGMcYYz6xNwxhjaiBr0zDGGJNylRYaInKciDRy10eKyN9FpFPqQ6sZgl4vavH7y+L3\nT5BjT4SXO41HgJ0i0gO4CvgGeDKlURljjElLlbZpiMgSVT1SRMYBa1V1soh8pKpHVU+IlbM2DWOM\niU9V2zS8jHK7XURuBEYA/d25vWvHm5Exxpjg81I9NQTYA5yvqhtwpmS9N6VR1SBBrxe1+P1l8fsn\nyLEnotI7DVVdD9wXlv4OmJrKoIwxxqQnL20afYGJQHegLs6ESTtUtXHqw/PG2jSMMSY+qXxO40Hg\nPOBroB5wAfBwvBlFIyL5IrJMRL4WketiHJMnIktE5HMRKUhGvsYYY6rG08N9qvo1kKmqpar6OJCf\naMZug/qD7rkOA4aJSPeIY7KBh4DTVfWXwDmJ5ptugl4vavH7y+L3T5BjT4SX3lM7RaQu8ImI3ANs\nAOK+pYmiF7BCVQsBRORZ4Axgadgx5wEzVHUNgKoWJSFfY4wxVeSlTSMX+B6oA/wZaAw8rKorEspY\n5BzgFFW90E2PAHqr6tiwY/6B0733F0AW8E9VfSrKuQ7YNo0FC6C0FFq3dpZGjfyOyBhzIEjZcxqh\nOwFgNzA+3gwqOrWHY2oDRwEnAQ2ABSLyvltdVs7o0aPJzc0FIDs7m549e5KXlwfsu40MYnrWLJg5\ns4BNm2DLljwyMqBJkwJycuCQQ/Jo3Rp27y6gaVMYMMBJr1xZQHY2DBzof/yWtrSl0yMdWi8sLCQR\nXu40PsP5gg+VSApsAz4EblfVjVXKWKQPMF5V8930DcBeVb077JjrgPqqOt5NTwZeV9UXIs4V2DuN\ngoKCsj9uZVRhxw7YsGHf8v335dOh5YcfnLuS0B1KrKVVK2jeHDIzUx9/OrL4/RXk+IMcO6T2ifDX\ngRLgaZyCYyjOr/7vgSeA0+PN1LUI6OZWf63DeYhwWMQxM4EH3UbzukBv4O9VzC/wRCAry1m6dav4\n2L17YdOm6AXLZ5+VT2/Z4hQcFRUsofUmTZw4jDE1k+exp6JtE5HPVPXwKmcucipwP86zH1NU9U4R\nuRhAVSe5x1wDjAH2Av9S1YlRzhPYO410UFwMP/4Y/Y4l8q5mz57KC5bQUr++3+/MGBNLVe80vBQa\nnwIXqupCN90L58u7R7QCxQ9WaFSfXbtiV4lF3tXUreutcGnZEmp5uec1xiRNKguNY4DHgVC/ne04\nD/h9AfxGVZ+LN9NkC3KhEfR60Vjxq8LWrd4Kl6IiyMmpuGAJLU2bJrd67EC9/kER5PiDHDuktvfU\nh8Av3QftUNUtYbt9LzBMehKB7GxnOfTQio8tLXUKjsiCZe1aWLy4/LYdO5xCpaKCxbonG5M6Nke4\nCZQ9e/bdpVRUTbZ+vVNwVVawhKrH6tb1+50ZU71SVj0VBFZomEjh3ZMrKly8dk8O3dkk0j3ZmHRi\nhUZA30fQ60UPhPiPPz6PzZu99R7bvDl29+TIKrPq6J58IFz/oMYf5NghhW0aIrIY+DfwtKpurkpw\nxqSzjAxo1sxZfvGLio+N1T35m2/g3XfL39VE654crS2mVSto0KB63qsxifLSe6obznMSg3EeyHsc\neCOdftoH+U7DHLhidU+Oti28e3JFjfwtWkBtm2zZJEHKq6dEJAP4LfAIzoN2/8YZQHBTvJkmmxUa\nJsiidU+O1Q4T6p7spfdYTo5zF2VMNCktNESkB87dxqnAHJwhRY4DRqhqz3gzTbYgFxpBrxe1+KtX\nePfk77+HefMKyMnJi1rA7Njh9AzzMv5Yo0b+DA8TtOsfLsixQ+rbNLYCk4HrVHWPu+t9EekXb4bG\nmKrLzNz3nApAnToQ63sr1D058q5l6VKYN6/8NvDWe6xVK+ueXNNVeKfhVkldr6p3VF9I8QvynYYx\n6SBy9ORY7TDffx+7e3JklZl1T05vqRxGZLGqHl3lyKqBFRrGVI+9e6mwe3L4XU207smx2mJs9OTq\nl8pC4y6gCJgO7AxtT4cG8JAgFxpBrxe1+P2VzvHH6p4cXrB8+20B27blleueXFEjfzp1T07na+9F\nKufTGIoz8dJlEdsPijczY0zNUbs2tG3rLLEUFDhtMpHdk0Prn3wCc+bs3z3ZS+8x656cGvZEuDEm\nMELdkysbGibUPTk721vvsaZNa1735KRXT4nI2VQwj7eqvhhvZqlihYYxJlJpKWzc6G14mO3bK+6e\nHH5n41f35GRLRaHxBE6h0RI4FnjL3XUC8J6q/rZqoZbLI599M/dNDp8f3N2fhzPl67fuphmqenuU\n8wS20Ah6vajF7y+LPzn27HEGrqysgX/9euf41q2hfv0CDjkkL2ZbTLp3T056m4aqjnZP/CZwmKqu\nd9NtgKlVjLOMO+/3g8DJwFrgQxF5WVWXRhw6X1UHJZqfMcbEUrcudOjgLJUJdU+ePRvatNlXsHz4\n4f4FTWT35FhtMUHqnuyl99QyoHvop7z77MaXqlrJ1DqVZCzSFxinqvlu+noAVb0r7Jg84GpVPb2S\ncwX2TsMYc2CK1j05VltMZPfkihr6k9U9OZW9p/4HzBGRpwEBhgBvxptRFO2A1WHpNUDviGMUOFZE\nPsG5G7lGVb9MQt7GGJNSVR09ObxgWbkSFizYl161yjk+smDp3h3+9KfUvyfwNt3r5SJyFtDf3TRJ\nVV9KQt5ebg0+Ajqo6i4RORX4L3BwtANHjx5Nbm4uANnZ2fTs2bOsrrSgoAAgLdOh9XSJx+JPr/gs\n/vRNR76HeF/fq1ceRUUwZ04BW7dCu3ZOevFiJ123bh4bN8LKlU56xw7n9VlZBdSqBVlZedSvDz/8\nUOB2La483oKCAgoLC0mEb11uRaQPMD6seuoGYG9kY3jEa1YCR0c+WBjk6qmCNGkIrCqL318Wv3/C\nY9+1y+mpVVS0bwlPR9u3d6/zLEmzZk7VVPPm5dcj082aOQ82JqvnVuBm7hORWsBXwEnAOuADYFh4\nQ7iItAJ+UFUVkV7Ac6qaG+VcgS00jDHpZffuir/so6X37o39ZR/ty7958+QWAFWRyjaNlFDVEhG5\nHGeo9UxgiqouFZGL3f2TgHOAS0WkBNiF83S6McZ4EioA4rkLCC8AIr/8u3WDvn333+d3AVCdvM6n\n0QCnbeGr1IcUvyDfaQT59hwsfr/VpPh3746/CqikJP4qoIYNvRUAQb/2qZxPYxDw/4C6QK6IHAnc\nas9OGGOqKlQArFjhfLFX9uVfVOQcF+vLvls36NNn/31eCwDjnZfnND4CTgTmqeqR7rbPVfWX1RCf\nJ0G+0zAm6H76yfsv/9B6eAHgpf7fCoDkS2WbRrGqbpHyf6298WZkjEl/P/3kvfE3tF5cHPvLv0sX\n6N17/31WAASXl0LjCxEZDtQSkW7AFcB7qQ2r5gh6vajF76+K4o8sALzcBRQXx/7l36UL9Oq1/75E\nBvAL8vUPcuyJ8FJojAVuAvYAz+D0dpqQyqCMMeWFFwDhX/iLFsFLL0UvDH7+OXa1z0EHwTHH7L/v\nQBnB1aSOzadhTDXbsye++v+NG53XVFb/H5m2AsBUJBVDo79Swes0nXpPWaFh/LJnT3xf/kVFzmu8\nNv6G0llZVgCY5EpFoZFXwetUVefHm1mqBLnQCHq96IEUf3gB4LUgiCwAvDwPkMwC4EC6/kET5Ngh\nNfNpFISdvC7OQIEKfKWqxVUJ0pjqEioAKvvy//Zbp+5/40an3SD0xR75hd+pExx99P777A7A1DRe\nntPIw5l0yR2Ul47AKLvTMNUl9KUeTxXQ7t3ef/mH1hs3tgLA1BwpG7DQfbhvWGgIERE5GHhWVY+q\nUqQpYIVGcIQXAF6HhNi9O74v/+bNrQAwpjKpfLivVviYU6q63B2h1iRBkOtFf/4ZXnnFmSfZ613A\nrl2xq4A6dIAjj9x/XyoLgCBff7D4/RTk2BPh5ct/sYhMBqbhzNw3HFiU0qhMtSsujr8KaNcup06/\nTZv9f/mHCoDIgsHuAIwJNi/VU/WAy4B+7qZ3gIdVdU+KY/PMqqfKCy8AvFYB7doFTZvG1w00WXMV\nG2OqX+AmYUqmA7nQCBUA8QwJHVkAeGkPsALAmJollQ3hpwO3Abnsq85SVW0cb2ZRzp0P3I8zCdPk\nWFO9isgxwAJgsKq+GGV/IAqN4mLYtKn8F/x77xXQrFlezLuCnTudAiCeh8EaN3Ymta8OQa/Xtfj9\nFeT4gxw7pLYh/H7gd8Dnqpq00W1FJBN4EDgZWAt8KCIvh0/3Gnbc3cDrOG0qaSG8APB6F7BzJ+Tk\nlP+C37MHjjgC2rVz/o1WBVRdBYAxxlTGy53GfOBEVS1NasYifYFxqprvpq8HUNW7Io77E/AzcAww\nS1VnRDlXQncaoQIgniqgHTuqVgVkBYAxJh2k8k7jOmC2iMzD+fIGp3rq7/FmFqEdsDosvQboHX6A\niLQDzsCZBOoYnCfSK1RSsn8VUGW9grZv31cARH75t2kDhx++/z4rAIwxNZGXQmMCsB2oB9RJYt5e\nbg3uB65XVRVnFqiYpWK3bk4hECoAov3yDxUAkfuys/0rAIJeL2rx+8vi90+QY0+El0Kjjar+OgV5\nrwU6hKU74NxthDsaeNadNbA5cKqIFKvqy5En++UvR3PwwbnUqwc5Odn07Nmz7A9aUFAAUC69Zw90\n6xZ7v6UtbWlLV5QOSZd4vMRbUFBAYWEhifDSpnEPMFdV5ySU0/7nrQV8BZwErAM+wBmuZGmM4x8H\nXgly7yljjEkXqWzT+CNwjYj8DIRGt024y62qlojI5TgzAWYCU1R1qYhc7O6flMj5jTHGJF+lNfmq\n2khVM1S1nqpmuUvCz2i4556tqoeoaldVvdPdNilagaGqY6LdZQRd5K1u0Fj8/rL4/RPk2BNh/X+M\nMcZ4ZsOIGGNMDVTVNg270zDGGONZzEJDRBaLyD9FJN8d6dakQNDrRS1+f1n8/gly7Imo6E6jD/Bf\n4ARgvojMFpEr3Zn7jDHG1ECe2zTcIT3ygVOArsD7qvrHFMbmmbVpGGNMfKp1Pg135Nk+qvpu3C9O\nASs0jDEmPtXaEK6qpelSYARd0OtFLX5/Wfz+CXLsibDeU8YYYzyz5zSMMaYGSln1lIgcIiJzReQL\nN32EiNxclSCNMcYEm5fqqX8BN7JvAqbPgGEpi6iGCXq9qMXvL4vfP0GOPRFeCo0GqrowlHDrgYor\nON4YY8wByst8GrOBscDzqnqkiJwDXKCqp1ZHgF5Ym4YxxsQnZc9piEgX4DHgWGAzsBIYrqqFVYgz\nJazQMMaY+KSsIVxVv1HVk3CmWz1EVfulU4ERdEGvF7X4/WXx+yfIsSei0pn73MEKzwZygUxxJuxW\nVb0t0cxFJB+4H2fmvsmqenfE/jOA24C97nKtqr6VaL7GGGOqxkv11BxgC7AYKA1tV9X7EsrYGYrk\nK+BkYC3wIRFzhItIQ1Xd6a4fDrykql2jnMuqp4wxJg6pnCO8naqeUoWYKtMLWBGq6hKRZ4EzgLJC\nI1RguBoBRSmIwxhjjEdeuty+JyJHpCDvdsDqsPQad1s5InKmiCwFZgNXpCAOXwW9XtTi95fF758g\nx54IL4VGf2CxiCwXkc/c5dMk5O2pPklV/6uq3YHTgaeSkK8xxpgq8tKmkRtte6I9qESkDzBeVfPd\n9A3A3sjG8IjXfAP0UtWNEdt11KhR5OY6oWZnZ9OzZ0/y8vKAfb8ILG1pS1u6pqZD64WFhQBMnTo1\ndfNpiEh/oKuqPi4iLYBGqroy3swizlkLpyH8JGAd8AH7N4R3Ab5VVRWRo3AeMOwS5VzWEG6MMXFI\n5YCF44G/ADe4m+oA0+LNKJKqlgCXA3OAL4HpqrpURC4WkYvdw84GPhORJcA/gaGJ5ptuwn8FBJHF\n7y+L3z9Bjj0RXnpP/Q44EqfLLaq6VkSykpG5qs7GaeAO3zYpbP0e4J5k5GWMMSZxXto0PlDVXiKy\nxB17qiGwQFVT0aOqSqx6yhhj4pPK6V6fF5FJQLaIXATMBSbHm5Exxpjg8zL21P8DZrjLwcAtqjox\n1YHVFEGvF7X4/WXx+yfIsSfCy9hTtwBPqOobYdsuUtXHUhqZMcaYtOOlTeMH4EdgbGiwwFD7RjXE\n54m1aRhjTHxS2aaxFjgNuEtE/hJ3ZMYYYw4YXgoNVHUVcDxwmIi8ANRPaVQ1SNDrRS1+f1n8/gly\n7InwUmiEns/4SVVHA/NwHvAzxhhTw3gaRiTdWZuGMcbEJ2XzaYjIccA4nJn7QserqnaONzNjjDHB\n5qV6agrwd+A44Bh36ZXKoGqSoNeLWvz+svj9E+TYE+Fl7Kkt7hhRxhhjajgvz2ncBWQCLwJ7QttV\n9aPUhuadtWkYY0x8qtqm4aXQKCDKLHuqekK8maWKFRrGGBOflD3cp6p5qnpC5FK1ME2koNeLWvz+\nsvj9E+TYE+FlEqbWIjJFRF5304eJyAWpD80YY0y68VI99TrwOHCTqh4hIrWBJar6y4QzF8kH7sdp\nM5kcOT+4iAzHmTVQgO3Apar6aZTzWPWUMcbEIZVjTzVX1elAKYCqFgMl8WYUSUQygQeBfOAwYJiI\ndI847FvgeHfCpwmAjaxrjDE+8lJo7BCRZqGEiPQBtiYh717AClUtdAuiZ4Ezwg9Q1QWqGsprIdA+\nCfmmlaDXi1r8/rL4/RPk2BPh5TmNq4FXgM4i8h7QAjgnCXm3A1aHpdcAvSs4/gLgtSTka4wxpoo8\njT0lIrWAQ3DaFr5y7wwSy1jkbCBfVS900yOA3qo6NsqxJwAPAf1UdXOU/Tpq1Chyc3MByM7OpmfP\nnuTl5QH7fhFY2tKWtnRNTYfWCwsLAZg6dWrKntOoD/wRZxgRBd4BHlHVn+LNLOK8fYDxqprvpm8A\n9kZpDD8C58HCfFVdEeNc1hBujDFxSGVD+JM4DdUTcRqufwE8FW9GUSwCuolIrojUAYYAL4cfICId\ncQqMEbEKjKAL/xUQRBa/vyx+/wQ59kR4adP4haoeFpZ+S0S+TDRjVS0RkcuBOThdbqeo6lIRudjd\nPwn4K5ADPCIiAMWqaoMlGmOMT7xUT00DHlLVBW66D3CZqo6shvg8seopY4yJT9Ln0xCRz8KOeVdE\nVuO0aXQEvqpSlMYYYwKtojaN093lVKAzMADIc9fzUx5ZDRH0elGL318Wv3+CHHsiYt5pqGphNcZh\njDEmAA7oOcLdxnNjqsWB8H/J1BwpmyM86Ow/sqkO9gPF1BRehkZv5A4uiIgcIiKD3JFujTE+C3q9\nepDjD3LsifDycN/bQF0RaYfzTMVI4IlUBmWMMSY9eXlOY4mqHikiY4H6qnqPiHyiqj2qJ8TKVdSm\nYdVTpjrYZ80ETSqHEUFE+gLDgVfjeZ0xxpgDi5cv/z8BNwAvqeoXItIFmJfasExVFRYWkpGRwd69\newE47bTTeOopZ6iwJ554gv79+8d1vvDX++XOO+/kwgsv9DWGdBX0evUgxx/k2BNRae8pVZ0PzBeR\nhm76G+CKVAd2oMvNzeWHH34gMzOzbNuYMWOYOHFiUvN57bXEpiBJ9PVeFRYW0rlzZ0pKSsjIKP9b\n5oYbbqiWGIwxlau00BCRY4HJQBbQQUR6Ahep6h9THdyBTESYNWsWJ554ot+hRBWqn7eupOktNGdC\nUAU5/iDHnggv1VP34wwbUgSgqh/jDCliUmTv3r1cc801tGjRgi5duvDQQw+Vq3LKzc1l7ty5ZceP\nHz+ekSOjjx+Zl5fHlClTytKqytixY8nOzqZ79+689dZb5Y69+eab6devH40aNeLbb78t9/rIfCKr\nwvLy8rjlllvo168fWVlZDBo0iKKiIoYPH06TJk3o1asXq1ativt6hOcbyvPJJ5+kU6dOtGjRgjvu\nuKPc+7vrrrvo2rUrzZs3Z8iQIWzevN+8XcaYKvLUoK2q30VsKklBLDVOrN42jz32GK+++ioff/wx\nixYt4oUXXij3i19E9kvHEnnswoUL6dq1Kxs3buTWW2/lrLPOYsuWLWX7p02bxuTJk9m+fTudOnUq\n93ovdx3Tp09n2rRprF27lm+++Ya+fftywQUXsGnTJrp3786tt95a6TmivYdI7777LsuXL2fu3Lnc\ndtttfPWVM4bmxIkTefnll3n77bdZv349OTk5XHbZZXHnGRRBr1cPcvxBjj0RXgqN70SkH4CI1BGR\na4ClqQ2reogkZ6kKVeXMM88kJyenbAn9on/uuef485//TLt27cjJyeHGG2+ssDtnPF09W7ZsyZVX\nXklmZiaDBw/mkEMOYdasWe71EEaPHk337t3JyMigVq3ytZceumczZswYDjroIBo3bsypp57KwQcf\nzIknnkhmZibnnnsuS5Ys8RxrRfmOGzeOunXrcsQRR9CjRw8++eQTAB599FFuv/122rZtS+3atRk3\nbhwvvPBC2d2QMSYxXoYRuRT4J9AOWAu8ARwQP9387FYvIsycOTNqm8b69evp0KFDWbpjx45Jy7dd\nu3bl0p06dWL9+vVl6fB8q6JVq1Zl6/Xq1aNly5bl0jt27Ejo/CGtW7cuW2/QoEHZeVetWsXvfve7\nco3ptWovjkWgAAAdIklEQVTV4vvvv6dNmzZJyTudBL1ePcjxBzn2RFR6p6GqP6rqearaUlVbqOpw\nVd2YjMxFJF9ElonI1yJyXZT9h4rIAhH5SUSuTkaeQdCmTRu++25fjWD4OkDDhg3ZuXNnWXrDhg2e\nz7127dpy6VWrVtG2bduydEVVUI0aNWLXrl2e801WI3o85+nYsSOvv/46mzdvLlt27dp1QBYYxvgh\nZqEhIg9UsCTcL9Qdz+pBnEb2w4BhItI94rCNwFjg3kTzS0exqnsGDx7MxIkTWbt2LZs3b+auu+4q\n98XZs2dPnn32WUpKSli0aBEzZszw/MX6ww8/MHHiRIqLi3n++edZtmwZp512WqUxhfJ9++23Wb16\nNVu3buXOO++s8D1V5Qnpn376qdyiqnGd55JLLuHGG28sK2h//PFHXn755UpeFVxBr1cPcvxBjj0R\nFVVPLcaZqQ8g8hspGRU7vYAVoXk7RORZ4AzC2ktU9UfgRxH5TRLySzunn356uec0Bg4cyIwZM7jw\nwgtZvnw5PXr0oEmTJlx99dXMm7fvecoJEyYwbNgwcnJyGDBgAMOHD2fTpk1l+2MVICJCnz59+Prr\nr2nRogWtW7dmxowZ5OTkVPpagJNPPpkhQ4ZwxBFH0KJFC/7yl7+UtYdEe31kI3xl5wfnbib82Dfe\neCOuhv8rr7wSVWXgwIGsW7eOli1bMnToUAYNGlRhvsYYbzzPpyEiWYCqalIqpUXkHOAUVb3QTY8A\neqvq2CjHjgN2qOp9Mc51QI89VdGDbyY9HCifNVNzpGw+DRE5HHgSaOamfwRGqerncUdZXlL/h40e\nPZrc3FwAsrOz6dmzZzJPb4xnoWqLUEOppS2dDunQemFhIYnwMsrtAuBGVZ3npvOAO1T12IQyFukD\njFfVfDd9A7BXVe+OcmyNv9Po0qULxcXFdqeRpvz6rBUUFAS6F0+Q4w9y7JDaUW4bhAoMAFUtABrG\nm1EUi4BuIpIrInWAIUCsFssaPZZFbm4upaWlVmAYY3zn5U7jvziN4k/hfHkPB45W1d8lnLnIqTjD\nlGQCU1T1ThG5GEBVJ4lIa+BDoDGwF9gOHBbZrnKg32mY9GefNRM0Vb3T8FJoNAVuBfq5m97BqVZK\nmwF9rNAwfrPPmgmalFVPqeomVR2rqke5y5XpVGAYU5MF/VmBIMcf5NgT4aX31DHAjUBu2PGqqkek\nMC5jjDFpyEv11HLgGuBznHYFAEIP5aUDq54yfrPPmgmaVPae+lFVX1bVb1W1MLTEH6KpiksvvZTb\nb7896efNyMjg22+/Tfp5051NHWtMYrwUGreKyBQRGSYiZ7vLWSmP7ACXm5tL3bp12bix/NiPRx55\nJBkZGWVjJz3yyCPcfPPNVcojLy+P+vXrk5WVVbYsXLgw4di9GD16NHXr1iUrK4umTZty0kkn8cUX\nX3h6beTkTvGq6PU33HAD//rXv6p03nQU9Hr1IMcf5NgT4aXQGAX0wBlY8Lfucnoqg6oJRITOnTvz\nzDPPlG377LPP2L17d1JHh33ooYfYvn172dK7d++knNtL3tdddx3bt29n3bp1dOzYkTFjxsR1Dqvu\nMSb9eCk0fgUco6qjVHVMaEl1YDXBiBEjePLJJ8vSU6dO5fe//325L8vRo0dzyy23AM4vm/bt2/P3\nv/+dVq1a0bZtW5544omE49i6dSu///3vadmyJbm5ufztb38ri6FTp0589NFHAPznP/8hIyODpUud\nMSWnTJnC735X+eM69erV49xzzy13p/Hqq69y5JFH0qRJEzp27FhuRr/jjz8ecIaDCb87+ve//81h\nhx1G06ZNyc/P32/IeC8OtKljg/xEMgQ7/iDHnggvhcZ7OEOXmyTr06cP27ZtY9myZZSWljJ9+nRG\njBhR7pjIEV6///57tm3bxrp165gyZQqXXXYZW7dujZmHl1/rY8eOZfv27axcuZL58+fz5JNP8vjj\njwPOf4zQbfj8+fPp0qUL8+fPL0tX9B8nlPfOnTt55plnyt3lNGrUiGnTprF161ZeffVVHnnkEWbO\nnAnAO++8AziFWejuaObMmdx555289NJLFBUV0b9/f4YNG1bpe4tkU8cak6DQfAWxFmAZUAwsBz5z\nl08re111Ls7b2F+s7WX7x5OUpSpyc3P1f//7n95+++16ww036OzZs3XgwIFaUlKiIqKrVq1SVdXR\no0frzTffrKqq8+bN0/r162tpaWnZeVq2bKkLFy6MmseAAQO0QYMGmp2drdnZ2Xr00UeX7RMR/eab\nb7SkpETr1KmjS5cuLds3adIkzcvLU1XVKVOm6KBBg1RVtXv37jplyhQdOnSoqqp26tRJlyxZEjXv\nUaNGab169TQ7O1szMjK0c+fO+uOPP8a8HldeeaX++c9/VlXVlStXqoiUe5/5+fk6ZcqUsnRpaak2\naNBAv/vuu/3OFe31IePGjdMRI0aUO27t2rVl+3v16qXTp09XVdVDDz1U586dW7Zv3bp1Wrt27ajn\nreyzlirz5s3zJd9kCXL8QY5dtewzG/f3rZfpXvNTUlqlAR3nb525iDBy5Ej69+/PypUr96uaiqZZ\ns2blxqAKn+o02vkfeOABzj///JjnKyoqori4mE6dOpVt69ixY9kMf8cffzzXXHMNGzZsoLS0lHPP\nPZfx48ezatUqtm7dGnM0YRHh2muv5bbbbmP16tWccsopPPnkk1x11VUALFy4kOuvv54vvviCn3/+\nmT179jB48OCYca5atYorr7ySq68uP4Hj2rVrE56i1qaONcY7L0+EF0ZbqiG2GqFjx4507tyZ2bNn\nc9ZZ0TulJathPJrmzZtTu3btcsMlf/fdd7Rv3x6Arl270qBBAx544AEGDBhAVlYWrVu35rHHHqN/\n//4VnjtUAHbo0IGJEycyYcIEtm/fDsB5553HmWeeyZo1a9iyZQuXXHJJWW+naO+3Y8eOPPbYY+Wm\ncd25cyd9+vSJ6/0eaFPHBr1ePcjxBzn2RNiwqWlgypQpvPXWW9SvX3+/fbqvCq5KKnttZmYmgwcP\n5qabbmLHjh2sWrWKf/zjH+XaVgYMGMCDDz7IgAEDAOc/S3jaS74nn3wyXbt25eGHHwZgx44d5OTk\nUKdOHT744AOefvrpsi/0Fi1akJGRwTfffFP2+ksuuYQ77riDL7/8EnDaO55//vkK35tNHWtM8lmh\nkQY6d+7MUUcdVZauaMrUeO86Kpr6NeSBBx6gYcOGdO7cmf79+zN8+PBy3WMHDBjAjh07yno1RaZj\nnT8y72uvvbZsfvKHH36Yv/71rzRu3JgJEyYwZMiQsuMaNGjATTfdRL9+/cjJyeGDDz7gzDPP5Lrr\nrmPo0KE0adKEww8/nDlz5lT43hs1akSDBg1o0KABDRs25K233op76thBgwYxcOBAGjduTN++ffng\ngw8qzLO6Bf1ZgSDHH+TYE+F5utd0ZsOIGL/ZJExVE+T4gxw7pHBo9CCwQsP4zT5rJmhSOfaUMcYY\nA/hcaIhIvogsE5GvReS6GMdMdPd/IiJHVneMxqSzoNerBzn+IMeeCN8KDRHJBB7EeQ7kMGCYiHSP\nOOY0oKuqdgMuAh6p9kCNMcaU8a1NQ0T6AuNUNd9NXw+gqneFHfMoME9Vp7vpZcAAVf0+4lzWpmF8\nZZ81EzRBbNNoB6wOS69xt1V2TPsUx2WMMSYGL8OIpIrXn2WRJWHU140ePZrc3FzAGR011vAWxqRa\nqK471B0zlenwevXqyM/iZ7+Y0yUeL/EWFBSUG/2hKvysnuoDjA+rnroB2Kuqd4cd8yhQoKrPummr\nnjJpyZ7TqJogxx/k2CGY1VOLgG4ikisidYAhQOQYDS8Dv4eyQmZLZIFhUuedd97h0EMPrdY8v/vu\nO7Kysqyw9yjIX1oQ7PiDHHsifCs0VLUEuByYA3wJTFfVpSJysYhc7B7zGvCtiKwAJgF/9CveVHji\niSc4/PDDadiwIW3atOGPf/xjhXNjpFrkvOH9+/dn2bJlKckrLy+PKVOm7Le9Y8eObN++PaWDNBpj\nqs7X5zRUdbaqHqKqXVX1TnfbJFWdFHbM5e7+Hqr6kX/RJtd9993H9ddfz3333ce2bdt4//33WbVq\nFb/+9a8pLi5Oen6lpaWejquuX/jRxqYy8Qv6swJBjj/IsSfCngj3wbZt2xg/fjwPPvggAwcOJDMz\nk06dOvHcc89RWFjItGnTAGdq0nPOOYehQ4fSuHFjjj76aD799NOy86xbt46zzz6bli1b0rlzZx54\n4IGyfaHXjhw5kiZNmjB16lQ+/PBD+vbtS05ODm3btmXs2LFlBVRo8MEePXqQlZXF888/T0FBQbm5\nKnJzc7nvvvvo0aMH2dnZDB06lD179pTtv+eee2jbti3t27dn8uTJ+925eBGagjU0THpeXh5//etf\nOe6442jcuDGnnHIKGzduLDv+/fff59hjjyUnJ4eePXuWzSpojEmRqszclG4LVZy5zy+zZ8/WWrVq\nRZ0BbtSoUTps2DBVdWaZq127ts6YMUNLSkr03nvv1YMOOkhLSkq0tLRUjzrqKJ0wYYIWFxfrt99+\nq507d9Y5c+aUe+3MmTNVVXX37t26ePFiXbhwoZaWlmphYaF2795d77///rK8Q7P5hcybN0/bt29f\nls7NzdXevXvr+vXrddOmTdq9e3d99NFHy95T69at9csvv9Rdu3bp8OHDNSMjo9z5wuXl5ZWbiS8k\ncta9AQMGaNeuXfXrr7/W3bt3a15enl5//fWqqrpmzRpt1qyZzp49W1VV33zzTW3WrFmFMwSmSrp+\n1oyJhSrO3Fez7zREkrPEqaioiObNm5ebES6kdevWFBUVlaV/9atfcdZZZ5GZmclVV13FTz/9xIIF\nC/jwww8pKiri5ptvplatWhx00EH84Q9/4Nlnny177bHHHsugQYMAqFevHkcddRS9evUiIyODTp06\ncdFFF8X9y/yKK66gdevW5OTkcPrpp/Pxxx8D8Nxzz3H++efTvXt36tevz6233pqUqi4RYcyYMXTt\n2pV69eoxePDgsjynTZvGaaedRn6+M7nkySefzK9+9Stee+21hPM1xkRXswsN1eQscWrevDlFRUVl\nVTDh1q9fT4sWLcrSoRn0wPkCbd++PevWreO7775j3bp15OTklC133nknP/zwQ9TXAixfvpzf/va3\ntGnThiZNmnDTTTeVq+rxInxq1Pr167Nz586yuMOrsiLzTkRknuHTsT7//PPlrsG7777Lhg0bkpZ3\nugt6vXqQ4w9y7Imo2YWGT/r27UvdunWZMWNGue07duzg9ddf56STTirbtnr1vgfi9+7dy5o1a2jX\nrh0dOnTgoIMOKjcV6bZt25g1axYQvaH50ksv5bDDDmPFihVs3bqVv/3tb1ELrqpo06ZNuVjD11Ol\nY8eOjBw5stw12L59O3/5y19SnrcxNZUVGj5o0qQJ48aNY+zYscyZM4fi4mIKCwsZPHgwHTp0YOTI\nkWXHLl68mJdeeomSkhLuv/9+6tWrR58+fTjmmGPIysrinnvuYffu3ZSWlvL555+zaNEiIHovqB07\ndpCVlUWDBg1YtmwZjzxSfvzHVq1alZti1YtQPoMHD+bxxx9n2bJl7Nq1iwkTJlT62uLi4nLTsZaU\nlFSYR6QRI0bwyiuv8MYbb1BaWspPP/1EQUEBa9eujes9BFnQnxUIcvxBjj0RVmj45Nprr+WOO+7g\nmmuuoUmTJvTp04dOnToxd+5cateuDTh3C2eccQbTp0+nadOm/Oc//+HFF18kMzOTzMxMZs2axccf\nf0znzp1p0aIFF110Edu2bSt7beSdxr333svTTz9N48aNueiiixg6dGi5Y8aPH8+oUaPIycnhhRde\nqLRbbPj+/Px8rrjiCk444QQOPvhg+vbtC0DdunVjvv7SSy8tm461QYMGnH/++VHzjDX9bfv27Zk5\ncyZ33HEHLVu2pGPHjtx3331Ju3syxuzPZu5LY7feeisrVqzgqaee8juUuC1dupTDDz+cn3/+OWqD\n/4HGhhGpmiDHH+TYIZjDiJhKBK3Ae+mll9izZw+bN2/muuuuY9CgQTWiwDCmJrH/0WksaE9NP/bY\nY7Rq1YquXbtSu3bt/dpMTPIF+ZcuBDv+IMeeCKueMiYJ7LNmgsaqp4ypgYL+rECQ4w9y7ImwQsMY\nY4xnVj1lTBLYZ80ETVWrp/yc7rVaBKkh2Rhj0p0v1VMi0lRE3hSR5SLyhohkxzju3yLyvYh8VpV8\nqjKCY3Uv8+bN8z0Giz855/JD0OvVgxx/kGNPhF9tGtcDb6rqwcBcNx3N40B+tUXlg9CIrUFl8fvL\n4vdPkGNPhF+FxiBgqrs+FTgz2kGq+g6wubqC8sOWLVv8DiEhFr+/LH7/BDn2RPhVaLRS1e/d9e+B\nVj7FYYwxJg4pawgXkTeB1lF23RSeUHVmjEtVHOmusLDQ7xASYvH7y+L3T5BjT4QvXW5FZBmQp6ob\nRKQNME9VD41xbC7wiqoeXsH5amyhY4wxVaUB6nL7MjAKuNv997+JnKwqb9wYY0z8/GrTuAv4tYgs\nB05004hIWxF5NXSQiDwDvAccLCKrRWSML9EaY4wBDpAnwo0xxlSPwIw9JSL5IrJMRL4WketiHDPR\n3f+JiBxZ3TFWpLL4RSRPRLaKyBJ3udmPOKPx8pBlml/7CuNP52sPICIdRGSeiHwhIp+LyBUxjku7\nv4GX2NP5+otIPRFZKCIfi8iXInJnjOPS7tqDt/jjvv5+P5Hr8UnbTGAFkAvUBj4Gukcccxrwmrve\nG3jf77jjjD8PeNnvWGPE3x84Evgsxv60vfYe40/ba+/G1xro6a43Ar4KyuffY+zpfv0buP/WAt4H\njgvCtY8j/riuf1DuNHoBK1S1UFWLgWeBMyKOKXtgUFUXAtkiki7Pf3iJHyAtG/S18ocs0/nae4kf\n0vTaA6jqBlX92F3fASwF2kYclpZ/A4+xQ3pf/13uah2cH4CbIg5Jy2sf4iF+iOP6B6XQaAesDkuv\ncbdVdkz7FMfllZf4FTjWvb19TUQOq7boEpfO196LwFx7twv6kcDCiF1p/zeoIPa0vv4ikiEiH+M8\niDxPVb+MOCStr72H+OO6/kEZ5dZra31kaZkurfxe4vgI6KCqu0TkVJxuyAenNqykStdr70Ugrr2I\nNAJeAK50f7Xvd0hEOm3+BpXEntbXX1X3Aj1FpAkwR0TyVLUg4rC0vfYe4o/r+gflTmMt0CEs3QGn\nNK/omPbutnRQafyquj10G6mqs4HaItK0+kJMSDpf+0oF4dqLSG1gBjBNVaM915S2f4PKYg/C9QdQ\n1a3Aq8CvInal7bUPFyv+eK9/UAqNRUA3EckVkTrAEJwHBMO9DPweQET6AFt03/hWfqs0fhFpJeJM\n/iEivXC6Q0ere0xH6XztK5Xu196NbQrwpareH+OwtPwbeIk9na+/iDQXd+oGEakP/BpYEnFYWl57\n8BZ/vNc/ENVTqloiIpcDc3Aacqao6lIRudjdP0lVXxOR00RkBbATSJsHAb3ED5wDXCoiJcAuYKhv\nAUcQ5yHLAUBzEVkNjMPpBZb21x4qj580vvaufsAI4FMRCf2HvxHoCGn/N6g0dtL7+rcBpopIBs6P\n7KdUdW5QvnvwED9xXn97uM8YY4xnQameMsYYkwas0DDGGOOZFRrGGGM8s0LDGGOMZ1ZoGGNMwIiH\nQUTDjv172GCEX4lIZUPqVHw+6z1ljDHBIiL9gR3Ak1rBrKZRXnc5zgCSf6hq3nanYZJOREaLyAMp\nPP8V7jDPT1VnvqkkIn1E5LEkn3O8iFydzHPGmX+0oU68vvZ0cacQ8Pt9pKNog3CKSBcRmS0ii0Tk\nbRE5JMpLzwOeSSTvQDzcZwIn1bevlwInqeq6as43lU4FZif5nH5fjyrnr6qvAK8kep4a5jHgYlVd\nISK9gYeBk0I7RaQTzvQMbyWSid1pmP24w50sE5HH3TrQ/4jIQBF5V0SWi8gx7nFNReS/7uiYC0Rk\nv9tkEWkhIi+IyAfucqy7fUBYPetH4gxoF/naq0TkM3e50t32KNAZeF1E/hQl/NCkP8tF5K9h5xoh\nzmQ0S0TkUfcJWURkh4jcLs4kNQtEpKW7fUnYsktE+otIQ7cueaEb8yD32NEi8qL7K2+5iNwdlu9A\nEXlPRBaLyHMi0jDGZT8R+F/E+88TkfnuNf5GRO4SkZHudfxURDqH/b3ecv8O/xORDpEn9/Ir1D1n\nY3FsFJGR7vYnReRkEenkvnaxu/R197dxty9x/1b9ws6537WNyDPqZ0gCfNfoB/f/T1/geXGevH8U\nZy6TcEOB5zXRNonqnhDElvRfcH6NFAO/wBm9cxHO0CfgzB3wkrv+AHCLu34CsMRdHw084K4/DfRz\n1zvijEEEzng9fd31BkBmRAxHA58C9YGGwOdAD3ffSqBplLhHA+uAHKAe8Jl7nu5ufpnucQ8DI931\nvcBv3PW7gZsiznk6MB/nrvwOYLi7PRtnQqEGbr7fAFlAXaAQZ7js5u5r67uvuS50vSLyaA68FWV7\nHk4VRCucuRDWAuPdfVcA/3DXXwl7P2PC/j7jgKvc9blAV3e9NzA3Sn6P4Ewo9EvgA2CSu325+3eo\nD9R1t3UDPnTXrwZudNczgEZerm0cn6FxwNV+/79ItwXn/+ln7npjYF0lx38E9Ek0X6ueMrGsVNUv\nAETkC/b9Cv4c58MKzrhCZwGo6jwRaSYiWRHnORnoLlI2cnSW+2v7XeAfIvIf4EVVjRwV9Dh3+243\nhheB44FPKon7DVXdHPaa44BSnMJjkRtHfWCDe/zPqvqqu74YZ0A33Nd3A+4B8tQZP2wgcLqIXOMe\nUhenIFScL+Ht7uu+dK9RDnAY8J6bbx3gvSgxD8QZlyyaD9Ud/E6csY1Cx32O8yUL0Ac4012f5sZc\nxr3ex+L8Cg1trhMlr3dwrvEqnALkIhFpC2xW1d3iDK39oIj0wLmm3dzXfQD8W5zRbP+rqqG/Ucxr\nG8bLZ8hUQlW3ichKETlHVV8Q5w99uKp+CiAihwI5qvp+onlZoWFi2RO2vhf4OWw9/HNT2TwCAvRW\n1Z8jtt8tIrOA3wDvisgpqvpVxHnCzy1Rzh0pWt6hbVNV9cYorykOWy97b+7t/nTgD1p+xNKzVPXr\ncpk49cfh16uUfdfoTVU9r5K484H7YuyL/DvsCVuv6O8QLgPni7+yuavfBi7HuVO6CfgdzmB2b7v7\n/wysV9WRIpIJ/AROo6w4vXl+CzwhIn9X1aeIcW2jSNu5KNKV7D8I51+B4cAj4szxXRunwftT9yVD\nSLABPMTaNEwi3sH5oCIiecCPuv8EO2/gVKXgHtfT/beLqn6hqvcAHwKRdezvAGeKSH33l/KZ7raK\nCPBrEckRZxjoM4D/w6maOUdEWrh5NxWRjpWc69/A46r6bti2ORHvJfQlHO0LW3HmY+4nIl3c4xu6\ndy/7AnZ+ER4R9uu8Kt5j38ikw9n3JS843eq3AytF5JxQniJyxH4Bq67BqSrrqqorca7dNWHna8y+\nO7Tf44zYjHstf1TVyTjDoFdWOIXz8hlK26lg/aKqw1S1rarWUdUOqvq4OtNJn6qqPVX1F6p6e9jx\nt8b40RQ3KzRMLJG/9jTK+njgaBH5BKe+f1TY/tAxVwC/chs6vwAucrdf6TaafoJzF1Ou55CqLgGe\nwKn6eB/4V9gXa6xfouoePwOnGusFVf1IVZcCNwNvuPm9wb5Gwsj3pe6X4NnA+bKvMfwoYALOBDWf\nisjnwK1R3m/4eyjCqZt/xs33PfYvHI9m//kZysXjYd9YYIybx3DgyijHDAcuEGfaz89x2qaieR+n\nDQOcQqOt+y84bUGj3HMcgvOcADjVZB+LyEfAucA/w/Kv7L2Mp/LPUEXXwVQze7jPGB+JyE3A16r6\nnN+xGOOFFRrGGGM8s+opY4wxnlmhYYwxxjMrNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhjPLNCwxhj\njGf/H4+Djc3FFZ59AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7bc4668>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Steam circulation rate is 6.81e-04 kmol/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.3: Page 292"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.3\n",
+ "# Page: 292\n",
+ "\n",
+ "print'Illustration 8.3 - Page: 292\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "# Since tower is a tray device:\n",
+ "# Following changes in notation is made:\n",
+ "# L1 to LNp\n",
+ "# L2 to L0\n",
+ "# X1 to XNp\n",
+ "# X2 to X0\n",
+ "# G1 to GNpPlus1\n",
+ "# G2 to G1\n",
+ "# Y1 to YNpPlus1\n",
+ "# Y2 to Y1\n",
+ "# x1 to xNp\n",
+ "# x2 to x0\n",
+ "# y1 to yNpPlus1\n",
+ "# y2 to y1\n",
+ "# From Illustration 8.2:\n",
+ "yNpPlus1 = 0.02;\n",
+ "Y1 = 0.00102;\n",
+ "y1 = Y1/(1+Y1);\n",
+ "GNpPlus1 = 0.01075;# [kmol/s]\n",
+ "x0 = 0.005;\n",
+ "m = 0.125;# [m = y_star/x]\n",
+ "Ls = 1.787*10**(-3);# [kmol/s]\n",
+ "Gs = 0.01051;# [kmol/s]\n",
+ "XNp = 0.1190;\n",
+ "LNp = Ls*(1+XNp);# [kmol/s]\n",
+ "ANp = LNp/(m*GNpPlus1);\n",
+ "X0 = x0/(1-x0);\n",
+ "L0 = Ls*(1+X0);# [kmol/s]\n",
+ "G1 = Gs*(1+Y1);# [kmol/s]\n",
+ "A1 = L0/(m*G1);\n",
+ "A = (ANp*A1)**0.5;\n",
+ "# From Eqn. 5.55:\n",
+ "Np = (math.log((yNpPlus1-(m*x0))/(y1-(m*x0))*(1-(1/A))+(1/A)))/math.log(A);\n",
+ "print\"Absorber\\n\"\n",
+ "print\"From Analytical Method, no. of theoretical trays required is \\n\",round(Np,4)\n",
+ "# From Fig. 8.13 (Pg292):\n",
+ "Np = 7.6;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "\n",
+ "# Stripper\n",
+ "SNp = 1/ANp;\n",
+ "S1 = 1/A1;\n",
+ "# Due to relative nonconstancy of the stripping factor,graphical method should be used.\n",
+ "print\"Stripper\\n\"\n",
+ "# From Fig. 8.11 (Pg 289):\n",
+ "Np = 6.7;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "# From Fig. 5.16 (Pg 129):\n",
+ "Np = 6.0;\n",
+ "print\"From Fig. 5.16, no. of theoretical trays required is \\n\",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.3 - Page: 292\n",
+ "\n",
+ "\n",
+ "Absorber\n",
+ "\n",
+ "From Analytical Method, no. of theoretical trays required is \n",
+ "7.7085\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "7.6\n",
+ "Stripper\n",
+ "\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "6.7\n",
+ "From Fig. 5.16, no. of theoretical trays required is \n",
+ "6.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 102
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.4: Page 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.4\n",
+ "# Page: 295\n",
+ "\n",
+ "print'Illustration 8.4 - Page: 295\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "#****Data****#\n",
+ "# a = CH4 b = C5H12\n",
+ "Tempg = 27.0;# [OC]\n",
+ "Tempo = 0.0;# [base temp,OC]\n",
+ "Templ = 35.0;# [OC]\n",
+ "xa = 0.75;# [mole fraction of CH4 in gas]\n",
+ "xb = 0.25;# [mole fraction of C5H12 in gas]\n",
+ "M_Paraffin = 200.0;# [kg/kmol]\n",
+ "hb = 1.884;# [kJ/kg K]\n",
+ "#********#\n",
+ "\n",
+ "Ha = 35.59;# [kJ/kmol K]\n",
+ "Hbv = 119.75;# [kJ/kmol K]\n",
+ "Hbl = 117.53;# [kJ/kmol K]\n",
+ "Lb = 27820;# [kJ/kmol]\n",
+ "# M = [Temp (OC) m]\n",
+ "M = numpy.array([[20 ,0.575],[25 ,0.69],[30 ,0.81],[35, 0.95],[40, 1.10],[43, 1.25]]);\n",
+ "# Basis: Unit time\n",
+ "GNpPlus1 = 1.0;# [kmol]\n",
+ "yNpPlus1 = 0.25;# [kmol]\n",
+ "HgNpPlus1 = ((1-yNpPlus1)*Ha*(Tempg-Tempo))+(yNpPlus1*(Hbv*(Tempg-Tempo)+Lb));# [kJ/kmol]\n",
+ "L0 = 2.0;# [kmol]\n",
+ "x0 = 0.0;# [kmol]\n",
+ "HL0 = ((1-x0)*hb*M_Paraffin*(Templ-Tempo))+(x0*hb*(Templ-Tempo));# [kJ/kmol]\n",
+ "C5H12_absorbed = 0.98*xb;# [kmol]\n",
+ "C5H12_remained = xb-C5H12_absorbed;\n",
+ "G1 = xa+C5H12_remained;# [kmol]\n",
+ "y1 = C5H12_remained/G1;# [kmol]\n",
+ "LNp = L0+C5H12_absorbed;# [kmol]\n",
+ "xNp = C5H12_absorbed/LNp;# [kmol]\n",
+ "# Assume:\n",
+ "Temp1 = 35.6;# [OC]\n",
+ "Hg1 = ((1-y1)*Ha*(Temp1-Tempo))+(y1*(Hbv*(Temp1-Tempo)+Lb));# [kJ/kmol]\n",
+ "\n",
+ "# Eqn. 8.11:\n",
+ "Qt = 0;\n",
+ "def f30(HlNp):\n",
+ " return ((L0*HL0)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(G1*Hg1)+Qt)\n",
+ "HlNp = fsolve(f30,2);\n",
+ "\n",
+ "def f31(TempNp):\n",
+ " return HlNp-(((1-x0)*hb*M_Paraffin*(TempNp-Tempo))+(x0*hb*(TempNp-Tempo)))\n",
+ "TempNp = fsolve(f31,35.6);\n",
+ "# At Temp = TempNp:\n",
+ "mNp = 1.21;\n",
+ "yNp = mNp*xNp;# [kmol]\n",
+ "GNp = G1/(1-yNp);# [kmol]\n",
+ "HgNp = ((1-yNp)*Ha*(TempNp-Tempo))+(yNp*(Hbv*(TempNp-Tempo)+Lb));# [kJ/kmol]\n",
+ "# Eqn. 8.13 with n = Np-1\n",
+ "def f32(LNpMinus1):\n",
+ " return LNpMinus1+GNpPlus1-(LNp+GNp)\n",
+ "LNpMinus1 = fsolve(f32,2);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.14 with n = Np-1\n",
+ "def f33(xNpMinus1):\n",
+ " return ((LNpMinus1*xNpMinus1)+(GNpPlus1*yNpPlus1))-((LNp*xNp)+(GNp*yNp))\n",
+ "xNpMinus1 = fsolve(f33,0);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.15 with n = Np-1\n",
+ "def f34(HlNpMinus1):\n",
+ " return ((LNpMinus1*HlNpMinus1)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(GNp*HgNp))\n",
+ "HlNpMinus1 = fsolve(f34,0);# [kJ/kmol]\n",
+ "def f35(TempNpMinus1):\n",
+ " return HlNpMinus1-(((1-xNpMinus1)*hb*M_Paraffin*(TempNpMinus1-Tempo))+(xNpMinus1*hb*(TempNpMinus1-Tempo)))\n",
+ "TempNpMinus1 = fsolve(f35,42);# [OC]\n",
+ "\n",
+ "# The computation are continued upward through the tower in this manner until the gas composition falls atleast to 0.00662.\n",
+ "# Results = [Tray No.(n) Tn(OC) xn yn]\n",
+ "Results = numpy.array([[4.0 ,42.3 ,0.1091 ,0.1320],[3 ,39.0, 0.0521 ,0.0568],[2 ,36.8 ,0.0184 ,0.01875],[1 ,35.5, 0.00463 ,0.00450]]);\n",
+ "\n",
+ "plt.plot(Results[:,0],Results[:,3]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('mole fraction of C5H12 in gas');\n",
+ "plt.show();\n",
+ "plt.plot(Results[:,0],Results[:,1]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('Temperature(OC)');\n",
+ "plt.show();\n",
+ "\n",
+ "# For the required y1\n",
+ "Np = 3.75;\n",
+ "print\"The No. of trays will be \",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.4 - Page: 295\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXfP9x/HXRygqYkrt21BLq5aJJVKE0VoiIlFLI9ZQ\nmiK24qe2JtTe2JeKWmKPotUgEUEmooiEjCALQUgQUZpUrEnm8/vje0ZurlnO3Dtn7j1n3s/H4z7m\nnnO/59zPx5H5zvl+z/f7NXdHRESkOcuUOgAREUkHVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrEkWmGYWXczm2Zmb5nZWQ18/lMze8HMvjaz0xv4vIOZTTKzR5OMU0REmpdYhWFmHYAbgO7AFkBf\nM/tZXrFPgZOAwY2c5hRgCqDBIiIiJZbkHUYXYIa7z3T3hcAwoHduAXf/xN0nAgvzDzaz9YAewK2A\nJRiniIjEkGSFsS4wK2d7drQvrquBM4G61gxKREQKk2SFUXAzkpn1BOa6+yR0dyEiUhaWTfDcHwDr\n52yvT7jLiGMnoJeZ9QBWADqZ2V3ufmRuITNT34aISAHcvcV/jCd5hzER2NTMKs3sB0AfYHgjZZcK\n3N3Pcff13X0j4BDgmfzKIqdsZl8DBw4seQzKT/m1x/yynJt74X9nJ3aH4e6LzGwAMAroANzm7lPN\nrH/0+RAzWwuYAHQC6szsFGALd1+Qf7qk4ixnM2fOLHUIiVJ+6Zbl/LKcWzGSbJLC3UcCI/P2Dcl5\nP4elm60aOsdYYGwiAYqISGwa6V3G+vXrV+oQEqX80i3L+WU5t2JYMe1ZpWZmnub4RURKwczwMuv0\nliLV1NSUOoREKb90y3J+Wc6tGKowREQkFjVJiYi0M2qSEhGRRKnCKGNZb0dVfumW5fyynFsxVGGI\niLQjX39d+LHqwxARaScWLYKDD4ZHHlEfhoiINKKuDo49Fr76qvBzqMIoY1lvR1V+6Zbl/LKWmzv8\n4Q/w1lvw8MOFnyfRuaRERKT0LroIxoyBmhpYaaXCz6M+DBGRDLv+erjuOhg3DtZaK+wrdByG7jBE\nRDLqnnvgiiuWriyKoT6MMpa1dtR8yi/dspxfFnJ79FE44wwYNQoqK1vnnLrDEBHJmJoa+O1v4fHH\nYYstWu+86sMQEcmQiROhRw944AHYffeGy2guKRGRdm7qVNhvP/jb3xqvLIqhCqOMZaEdtSnKL92y\nnF8ac3vvPdh7b7jsMujdO5nvUIUhIpJyH38Me+4Jp58ORx2V3PeoD0NEJMXmzQvNT717w6BB8Y4p\ntA9DFYaISEp9+WVohurcGa69FixmFaBO7wxKYztqSyi/dMtyfmnI7dtv4aCDYKON4Jpr4lcWxUi8\nwjCz7mY2zczeMrOzGvj8p2b2gpl9bWan5+xf38zGmNkbZva6mZ2cdKwiImmweDEceSQstxzcdhss\n00Z/+ifaJGVmHYDpwB7AB8AEoK+7T80pszqwIbA/8F93vzLavxawlrvXmllH4GVg/7xj1SQlIu2K\nO5xwAkybBiNHwgortPwc5dok1QWY4e4z3X0hMAxY6oEvd//E3ScCC/P2z3H32uj9AmAqsE7C8YqI\nlLXzzguD8/71r8Iqi2IkXWGsC8zK2Z4d7WsRM6sEOgPjWyWqlEhDO2oxlF+6ZTm/cs1t8GD4xz/C\nnUWnTm3//UnPJVV0e1HUHPUQcEp0p7GUfv36URnNrFVRUUFVVRXV1dXAkoue1u3a2tqyikf5Kb/2\nlF+5bZ95Zg133w0TJ1bz4x+37PiamhqGDh0K8N3vy0Ik3YfRFRjk7t2j7bOBOne/vIGyA4EF9X0Y\n0b7lgMeAke5+TQPHqA9DRDLvoYfg5JPDpIKbbVb8+cq1D2MisKmZVZrZD4A+wPBGyi4VvJkZcBsw\npaHKQkSkPXjySTjxRBgxonUqi2IkWmG4+yJgADAKmAI84O5Tzay/mfWH8DSUmc0CTgPOM7P3o2ao\nnYHDgd3NbFL06p5kvOWm/pYyq5RfumU5v3LJ7YUX4LDDwjrcVVWljqYN1sNw95HAyLx9Q3LezwHW\nb+DQ59DAQhFppyZPhv33h7vugl12KXU0gaYGEREpMzNmwG67wVVXQZ8+rX/+cu3DEBGRFvjgA9hr\nL/jTn5KpLIrRbIVhZh2jEduY2eZm1it6ekkSVi7tqElRfumW5fxKldunn4bK4ne/g/79SxJCk+Lc\nYTwLLG9m6xI6r48AhiYZlIhIe7NgQVhadd994azvzbpXHprtwzCzSe7e2cxOAlZ09yvM7FV336Zt\nQmwyNvVhiEjqff019OwZZp695ZbkZ55NtA/DzH4BHAY83pLjRESkaYsWQd++sOqqcPPNbTNNeaHi\n/OI/FTgb+Ke7v2FmPwHGJBuWQLbbiEH5pV2W82ur3Orq4LjjwkJId98NHTq0ydcWrNlxGO4+Fhib\ns/02oLUpRESK4A5nnAHTp8Po0bD88qWOqHlx+jDWAP4P2AJYMdrt7v7LhGNrlvowRCStLroI/v53\nGDsWfvSjtv3uJPsw7gWmARsDg4CZhDmiRESkADfeCEOHwqhRbV9ZFCNOhbGau98KfOvuY939aKDk\ndxftQZbbiEH5pV2W80syt3vvhcsuC81Qa6+d2NckIs5cUt9GP+eYWU/gQyBFdaKISHl49FE4/XR4\n+unwCG3axOnD2A8YR5gg8HqgE2GNi8amKW8z6sMQkbQYOxYOOggefxy6dCltLIX2YWjyQRGRhL3y\nCnTvDvffD7/6VamjSbDT28yuN7Prop/17/9sZr0LC1XiynIbMSi/tMtyfq2Z27RpYbqPIUPKo7Io\nRpxO7xWAKuBN4C1gG0Lz1G/NTCvhiYg04v33Ye+94dJL4de/LnU0xYvThzEe2DlaPQ8zW5awuNEu\nwGvu/rPEo2w8NjVJiUhZmjsXunWD44+HU08tdTRLS3IcRgXQMWe7I7BqVIF83dIvFBHJuvnzQ59F\nnz7lV1kUI06FcQUwyczuMLOhwCTgL2a2EvBUksG1d1luIwbll3ZZzq+Y3L78EvbbD3beGS64oPVi\nKgdx5pK6zcxGAl0AB8519w+ij89MMjgRkTRZuBAOPhg22ACuvba8Z54thB6rFRFpBXV1cPjhYSGk\nhx+G5cp4XdJC+zDijPQWEZEmuMOAAfDhhzByZHlXFsXQQkhlLMttxKD80i7L+bU0t/PPh/HjYfhw\nWHHF5sunVdwV9zqY2TpmtkH9K+Zx3c1smpm9ZWbfW6XWzH5qZi+Y2ddmdnpLjhURKQdXXgkPPQRP\nPAGdOpU6mmTFGYdxEjAQmAssrt/v7ls1c1wHYDqwB/ABMAHo6+5Tc8qsDmwI7A/8192vjHtsVE59\nGCJSMrffDhdeCOPGwfrrlzqa+JLswzgV2NzdP23hubsAM9x9JoCZDQN6A9/90nf3T4BPzGzflh4r\nIlJKDz8M550HNTXpqiyKEadJ6n3gfwWce11gVs727Ghf0sdmRpbbiEH5pV2W82sut9Gjwwjuxx+H\nzTZrm5jKQZw7jHeBMWb2OEvWxnB3v6qZ44ppK4p9bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1\nZRWP8lN+7Sm/xrZXWKGaQw+F88+vYf58gPKKr6Htmpoahg4dCvDd78tCxOnDGBS9rS9ohAqjyTGM\nZtaVsG5G92j7bKDO3S9voOxAYEFOH0asY9WHISJt6bXXYI894I47oEePUkdTuMT6MNx9UEERhXW/\nNzWzSsIqfX2Avo2UzQ+8JceKiCTunXdgn33gmmvSXVkUo9E+DDO7Nvr5aAOvZlfbiyYnHACMAqYA\nD7j7VDPrb2b9o3OvZWazgNOA88zsfTPr2NixxSabNvW3lFml/NIty/nl5/bhh7DnnqGTu287/tO1\nqTuMu6KfVzbwWax2IHcfCYzM2zck5/0cwtoasY4VEWlrn30W1rQ49lj4/e9LHU1paS4pEZFGLFgQ\n+iy6dYMrrsjOZIJa01tEpBV98w307Akbbgh/+1t2KgtIdgElKZEstxGD8ku7LOf39NM1HHoorLJK\nWIs7S5VFMTRbrYhIDncYPBgWL4ZHH4UOHUodUflotEkqWrv7WGA9YKS7/zvns/Pc/aK2CbFxapIS\nkdbkDmecAc8/H0Zzd+zY/DFplEST1BBgV+BT4Dozyx3ZfWBLv0hEpNxdcgk8+WSY8iOrlUUxmqow\nurj7oe5+NdAVWNnM/mFmK7RRbO1eltuIQfmlXdbyu+mmMPvsk0/C5Mk1pQ6nLDVVYXy3ZpS7L3T3\n44BXgacB1b0ikhn33RfuLkaPhrXXLnU05aupPox7gXuiAXS5+48F/uruJV+EUH0YIlKsxx+HY46B\np5+GLbcsdTRtQ+MwRERa6Nln4aCDwtNQO+5Y6mjaTpuOwzCzPQs5Tloma23E+ZRfuqU9v1deCZXF\nffd9v7JIe25JKXTg3u2tGoWISBuaPh323RduvjlM/SHxNNWH8WgTx/3K3X+YTEjxqUlKRFrq/ffD\n3FCDBsHRR5c6mtJIYj2MXYAjgAU5+5ywdkU7au0TkayYOzdMU37qqe23sihGU01S44Ev3b0m5zXW\n3WuA6W0TXvuW9XZU5Zduactv/nzo3h1+8xs47bSmy6Ytt7bS6B1G/fKojXzWLZlwRERa31dfQa9e\nsNNOcOGFpY4mvfRYrYhk2sKF8Otfh5ln774bltEc3a3fh2FmC1iysl5930U9d/dOLf0yEZG2VFcH\n/fqF90OHqrIoVqP/+dy9o7uv7O4rA2/Xv49eqizaQNbbUZVfupV7fu5w8skwezY8+CAs14K5Kco9\nt1LRehgikkl/+hO88AI88wysuGKpo8mGWH0YZjbJ3Tu3QTwtoj4MEWnIVVfBLbfAuHGw+uqljqb8\nJNGHcSBL+i5WMbMDWNKP4e7+j4IiFRFJ0B13wLXXqrJIQlNdQPtFr57Asznve0bvJWFZb0dVfulW\njvn94x9wzjlhTYsNNij8POWYWzloahxGv2JPbmbdgWuADsCt7n55A2WuA/YBvgT6ufukaP/ZwOFA\nHfAacLS7f1NsTCKSTU89Bb//PTzxBGy+eamjyabY4zDMrBvQBXjN3Z+MUb4DYUT4HsAHwASgr7tP\nzSnTAxjg7j3MbEfgWnfvamaVwDPAz9z9GzN7ABjh7nfmfYf6MESE8eOhZ094+GHYdddSR1P+Wn16\nczN7Kef9ccD1hJX2BkZ//TenCzDD3We6+0JgGNA7r0wv4E4Adx8PVJjZmsD/gIXAD81sWeCHhEpH\nRGQpr78OvXuHcRaqLJIVa4lWoD+wp7tfAOwFHBbj3OsCs3K2Z0f7mi3j7p8BVwLvAx8C89z9qRjf\nmSlZb0dVfulWDvm9806YH+rqq8N05a2lHHIrR02Nw+hgZqsSnozq4O6fALj7F2a2KMa547YVfe+2\nyMx+ApwKVALzgQfN7DB3vze/bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1ZRWP8lN+5ZTfww/X\ncNJJcP751fTtW/r/HuW8XVNTw9ChQwG++31ZiKbWw5jJ0lOD7OzuH5nZysA4d69q8sRmXYFB9ZMY\nRs1Ydbkd32Z2M1Dj7sOi7WnAbkA14Y7m2Gj/EUBXdz8x7zvUhyHSDn32Gey2GxxyCJx7bqmjSZ9W\n78Nw90p33yh6bezuH0UfLQZ+HePcE4FNzazSzH4A9AGG55UZDhwZJdCV0PT0MaGzvKuZrWhmRug4\nn9KizEQkkxYsCM1Pe+0VHqGVttNUp3eX6CmmfNXAqs2d2N0XAQOAUYRf9g+4+1Qz629m/aMyI4B3\nzGwGMAQ4IdpfC9xFqHQmR6e8JW5SWVF/S5lVyi/dSpHfN9/AAQfAFlvA4MFgLf4bOZ6sX7tCNdWH\ncTnQ0JpUU4A7gN2bO7m7jwRG5u0bkrc9oJFjrwCuaO47RKR9WLwYDjsMVl4ZhgxJrrKQxjXVhzHR\n3bdv5LPX3H2rRCOLQX0YIu2DOxx3HLz3Hjz2GCy/fKkjSrck1vSuaOIzzf0oIm3CHc48M4y3eOop\nVRal1NQ4jKfN7OKo0xkAM1vGzP5MGIUtCct6O6ryS7e2yu+yy2DUKBgxAjp2bJOvzPy1K1RTdxin\nA7cCb5tZbbRvG0JH9LFJByYicvPNcOutYebZVZt91EaS1uxcUtEgup8TxmJMcfe32yKwONSHIZJd\n998fmqKefRY23rjU0WRLoX0YsScfLEeqMESyacQIOPpoePpp2HLLUkeTPa0+cE9KL+vtqMov3ZLK\nb9w4OOoo+Ne/SldZZP3aFaqpgXsbtWUgIiKTJsGBB8J990HXrqWORvI1NQ7jZXffzsyecfdftnFc\nsahJSiQ73nwzzA91441hNLckJ4lxGB3M7FxgMzP7A0vPKuvuflVLv0xEpCGzZoW5oS6+WJVFOWuq\nD+MQwkSDHYCVo1fHnPeSsKy3oyq/dGut/D75BPbcE046CY45plVOWbSsX7tCNbWm9zTgMjObHE0S\nKCLSqv73v7AA0kEHwemnlzoaaU6ccRgVwECgfvHDGuBCd5+fbGjNUx+GSHp99RXss0+YefbGGzWZ\nYFtK8rHa2wlrbB8M/Ab4nDBbrYhIQRYuhD59YJ114IYbVFmkRZwK4yfuPtDd33H3t919EPCThOMS\nst+OqvzSrdD86upCX0VdHdx5JyxThqPBsn7tChXnUn1lZt3qN8xsF+DL5EISkaxyh1NOCdOU//3v\nsNxypY5IWiJOH0YVYfW7VaJd/wWOcvdXE46tWerDEEmXgQNh+HCoqYFVVmm2uCQk8bmkzGwVgHLo\n7K6nCkMkPa65Bv761zD1xxprlDqa9i3xuaTcfX45VRbtQdbbUZVfurUkv6FD4eqrYfTodFQWWb92\nhWpqpLeISNEeeQTOPhvGjIENNih1NFIMTW8uIol5+mno2xdGjoTttit1NFIvibmkck++M1CZU97d\n/a6WfpmItB8vvRQqiwcfVGWRFc32YZjZPcBfgJ2B7aPXDgnHJWS/HVX5pVtT+b3xBvTqBbffHmag\nTZusX7tCxbnD2A7YopC2HzPrDlxDmMDwVne/vIEy1wH7EMZ29HP3SdH+CsKa4vXLwx7j7i+2NAYR\naVvvvhvmh7rySujZs9TRSGuKMw7jQeAUd/+wRSc26wBMB/YAPgAmAH3dfWpOmR7AAHfvYWY7Ate6\ne9foszuBse5+u5ktC6yU/5SW+jBEystHH0G3bnDaaXDiiaWORhqTZB/G6sAUM3sJ+Cba5+7eq5nj\nugAz3H1mFOAwoDcwNadML+DO6ITjzazCzNYEvga6uftR0WeLAD3SK1LG/vtf2Htv6NdPlUVWxRmH\nMQjYH7gYGAxcGb2asy4wK2d7drSvuTLrARsBn5jZHWb2ipn9zcx+GOM7MyXr7ajKL91y8/viC9h3\nX9hjDzj33NLF1Fqyfu0K1ewdhrvXmNlahI5uB15y97kxzh23rSj/tsijuLYlNFdNMLNrgD8Cf8o/\nuF+/flRWVgJQUVFBVVUV1dXVwJKLntbt2trasopH+Sm/hvL7xS+qOeAA6NSphp49waw84tP2ku2a\nmhqGDh0K8N3vy0LE6cP4DeEpqbHRrl2BM939wWaO6woMcvfu0fbZQF1ux7eZ3QzUuPuwaHsasBuh\nEnnB3TeK9u8C/NHde+Z9h/owREpo8WI45JDw8+9/h2U1FDgVkuzDOA/Yof6uwsxWB54GmqwwgInA\npmZWCXwI9AH65pUZDgwAhkUVzDx3/zj6nllmtpm7v0noOH8jVkYi0ibc4fe/D30Xjz2myqI9iNOH\nYcAnOduf8v1mpO+JOqoHAKOAKcAD7j7VzPqbWf+ozAjgHTObAQwBTsg5xUnAvWb2KrA1cEmMWDOl\n/pYyq5Rfuh16aA2TJ8M//wkrrFDqaFpX1q9doeL8TfAEMMrM7iNUFH2AkXFO7u4j88u6+5C87QGN\nHPsqGiAoUnbc4dJL4cUXYeJEWHnlUkckbSVOH4YBBwC7EDqkx7n7P9sgtmapD0Okbf373/B//xee\nihoxIiyxKumT+HoY5UgVhkjbmDYtzDj78svw5z/D4YdDhw6ljkoK1errYZjZv6OfC8zs87zX/4oJ\nVuLJejuq8it/H30E/fuH0ds77QTTp8NRR4XKIgv5NSbLuRWj0T4Md985+tmx7cIRkXLwv//BX/4C\nN90ERx8dKopVVy11VFJqcfow7nb3I5rbVwpqkhJpXd9+C0OGwMUXw157heanDTcsdVTS2pIch7Fl\n3hctS5jBVkQywj2sW3HOObDJJjBqFGyzTamjknLTVB/GOWb2ObBVbv8FMJcw4E4SlvV2VOVXHmpq\nYMcd4fLLw93FE0/EqyzSkl8hspxbMZrqw7gEuMTMLnX3s9swJhFpA6+9Bn/8I0yZEpqgDjkElokz\nlFfarTh9GAcAz7j7vGi7Aqh290faIL4mqQ9DpOVmzYI//Qkefzw0QR1/PCy/fKmjkrbU6o/V5hhY\nX1kARO8HtfSLRKS05s0LdxRVVbD22vDWW3DqqaosJL64c0nl05CdNpD1dlTl1za++Qauugo22wz+\n8x+YPBkuuQRWWaW485ZLfknIcm7FiPOU1MtmdhVwI6HyOBF4OdGoRKRodXVw331w3nmw1VYwZgz8\n/OeljkrSLE4fRkfgfOBX0a7RwEXu/kXCsTVLfRgiDRs9Gs46C5ZbLgzA23XXUkck5URzSYkIkyaF\niuLdd8OMsgceCNbiXwuSdYl1epvZGmY22MxGmNmY6PVMYWFKS2S9HVX5tZ6ZM+GII2CffWD//cOj\nsgcdlGxlkeXrl+XcihGn0/teYBqwMeHpqJmE1fREpMQ+/RROPx222w423jg8+XTCCaEpSqS1xenD\neMXdtzWzye6+dbRvortv3yYRNh2bmqSkXfrqK7juOhg8ONxJDBwIa61V6qgkLZKcS+rb6OccM+tJ\nWJ/7Ry39IhEp3uLFcNddoYLYYQd47jnYfPNSRyXtRZwmqYui0d2nA2cAtwKnJRqVANlvR1V+8bmH\nFe6qquC222DYMHj44dJWFlm+flnOrRhN3mGYWQdgM3d/DJgHVLdFUCKyxIQJYVnUOXPgssugVy89\n+SSlEacPY4K779BG8bSI+jAky95+O8z19NxzMGhQWMho2TiNyCLNSHIuqefM7AYz62Zm25rZdma2\nbQExikgMc+fCSSeFKce33hrefBOOO06VhZRenAqjM/Bz4ELgSmBw9FMSlvV2VOW3tC++gIsugi22\nCE1OU6fCuefCSislE1+xsnz9spxbMZpaQOmU6O157r57/ivOyc2su5lNM7O3zOysRspcF33+qpl1\nzvusg5lNMrNHY2ckkjKLFsEtt4TJAV9/HcaPD4/Mrr56qSMTWVqjfRhm9qq7b2Nmk9y9c4OFmjpx\n6DCfDuwBfABMAPq6+9ScMj2AAe7ew8x2BK519645n/+BsBzsyu7eq4HvUB+GpJY7/OtfcPbZYQzF\nFVeER2VFkpbEOIwpZvYWsK6ZvZb3mdcP4mtCF2CGu8+MAhwG9Aam5pTpBdwZnXC8mVWY2Zru/rGZ\nrQf0AC4G/hA7I5EUeP758OTT/Plw5ZVhSg89+STlrtEmKXfvC3QDZgA9gf1yXt/7a78B6wKzcrZn\nR/vilrkaOBOoi/FdmZT1dtT2mN/06XDAAWE51GOPhdpa6NEjnZVFlq9flnMrRpPPXbj7HKC5O4lG\nD49ZLv+fikUjyue6+yQzq27q4H79+lFZWQlARUUFVVVVVFeHQ+ovelq3a2tryyoe5Vd4fh99BP37\n1zB2LJx7bjX33gvjx9cwblz5xKvrl93tmpoahg4dCvDd78tCJDa9uZl1BQa5e/do+2ygzt0vzylz\nM1Dj7sOi7WmEwYEnA0cAi4AVgE7Aw+5+ZN53qA9Dytrnn4f1KG68Efr1C+MqVlut1FFJe5fkOIxC\nTQQ2NbNKM/sB0AcYnldmOHAkfFfBzHP3Oe5+jruv7+4bAYcAz+RXFiLlbOHCUElsumlYm+Lll0Nf\nhSoLSbPYFYaZ/bAlJ3b3RcAAYBQwBXjA3aeaWX8z6x+VGQG8Y2YzgCHACY2driXfnRX1t5RZlcX8\n3OHBB8NYiqFDa3jiCbj7biiiFaBsZfH61ctybsVoduyome1EmHBwZWB9M6sCfufujf1y/467jwRG\n5u0bkrc9oJlzjAXGNvddIqU2dmx48mnhQrjpprAmRVVVqaMSaT1x5pJ6CTgI+Ff9eAwze8PdS76c\nvPowpBy8/jr88Y/wxhthpHbfvrBMko29IkVKtA/D3d/P27WopV8kkjWzZ8Nvfwu//CX86lcwbRoc\ndpgqC8muOP9rv29mOwOY2Q/M7AyWHnwnCcl6O2pa85s/P4zO3mYbWGONMDngaafB8ssvXS6t+cWV\n5fyynFsx4lQYxwMnEgbUfUCYjPDEJIMSKUfffAPXXBPmfPr4Y3j1Vbj0UqioKHVkIm0jsXEYbUF9\nGNIW6urCCnfnnReefrrsMthyy1JHJVK4Vp9Lysyub+I4d/eTW/plImnz1FNw1lnQoQPccQfstlup\nIxIpnaaapF4mDL6bGL3Pf0nCst6OWs751dbC3nvD8ceHJ6DGj295ZVHO+bWGLOeX5dyK0egdhrsP\nzd02s5XDbl+QdFAipfLee3D++fDkk6EJ6ne/gx/8oNRRiZSHOOMwtgLuAuonNfgEOMrdX084tmap\nD0Nay2efwSWXhGanE0+EM86ATp1KHZVIMpIch3EL8Ad338DdNwBOj/aJpN5XX4WFizbfHBYsCIPw\nLrxQlYVIQ+JUGD909zH1G+5eA5TpKsPZkvV21FLmt3gxDB0aKooXX4Rx4+Dmm2HttVvvO3T90ivL\nuRWj2bmkgHfN7HzgbsLaFYcB7yQalUhC3OGJJ8KTTyuvDPffDzvvXOqoRNIhTh/GqsAFQP0/q3GE\ndS7+m3BszVIfhrTExIlhcsAPPwxjKXr3TudKdyLFKrQPQwP3JPPefhvOPReefRYGDYJjjoFl49xb\ni2RUYp3eZraDmf3TzCaZ2WvRa3JhYUpLZL0dNen8PvkETj4ZunSBn/8c3norPCbbVpWFrl96ZTm3\nYsT5p3OkIHvXAAANxUlEQVQvcAbwOlCXbDgixfviizDn09VXh6nGp04NkwSKSHHi9GH8293LsltQ\nTVKSa9GiMI5i0KDQkX3JJbDJJqWOSqT8tPpcUjkuMLPbgKeAb6N97u7/aOmXiSTBHYYPD1OOr7EG\n/POfoRlKRFpXnHEYRwHbAN2BntFrvySDkiDr7aitkd8LL8Cuu4ZO7b/8BcaMKZ/KQtcvvbKcWzHi\n3GFsD/xUbT9STqZPh3POgZdeCiOzjzwyzCgrIsmJ04dxBzDY3d9om5DiUx9G+zNnDlxwATz4YJjv\n6ZRTYMUVSx2VSLok2YfxC6DWzN4Fvon2ubtv3dIvEynU55/D4MFwww1w1FHhDmO11Zo/TkRaT5w+\njO7ApsBehL6L/YBeSQYlQdbbUePkt3Ah3HRTWBb17bfh5ZfhqqvSUVno+qVXlnMrRrMVhrvPbOgV\n9wvMrLuZTTOzt8zsrEbKXBd9/qqZdY72rW9mY8zsDTN73cy0wl874g4PPRQG3D3yCIwYAffcA5WV\npY5MpP1KdGoQM+sATAf2AD4AJgB93X1qTpkewAB372FmOwLXuntXM1sLWMvda82sI2GVv/3zjlUf\nRgaNGxfmfPr6a7j8cthrr1JHJJItSa6HUYwuwIzormQhMAzonVemF3AngLuPByrMbE13n+PutdH+\nBcBUYJ2E45USmjIFevWCI44Iixi9/LIqC5FyknSFsS4wK2d7drSvuTLr5RYws0qgMzC+1SMsY1lv\nR63P74MP4Nhjobo6vKZNg8MPh2WS/r8zYe3l+mVRlnMrRtLTsMVtL8q/NfruuKg56iHglIbWE+/X\nrx+VUcN2RUUFVVVVVFdXA0suelq3a2tryyqe1t5+4YVa/vY3eOKJao47Dm6/vYaOHWGFFcojPl2/\n9p1flrZramoYOnQowHe/LwuRdB9GV8LaGd2j7bOBOne/PKfMzUCNuw+LtqcBu7n7x2a2HPAYMNLd\nr2ng/OrDSBH3cDcxcSKMHw+33w49eoSBd+uvX+roRNqPJMdhFGMisGnUpPQh0Afom1dmODAAGBZV\nMPOiysKA24ApDVUWUv7mzAmVQ+6rrg522AG23x6eegq22qrUUYpIXIm2Erv7IkJlMAqYAjzg7lPN\nrL+Z9Y/KjADeMbMZwBDghOjwnYHDgd2jtTgmmVn3JOMtN/W3lGnwn//AqFFw0UWw//6w3nrhkdjr\nrw9jKX77W5gwAT7+GB5/PIzW/vTTmlKHnag0Xb9CZDm/LOdWjMSXknH3kcDIvH1D8rYHNHDccyTf\nKS8FmDcvPMGUe+fw2Wew3XbhzuHQQ8Pguo020hKoIlmiJVqlSZ9/DpMmhbuD+sphzhzo3DlUDvWv\nTTZJ/1NNIu2F1vSWon35JdTWLn3n8N57sPXWS1cOP/2pZoYVSbNyHbgnRUiyHfWbb8Jdw1//GvoX\ntt4afvzjsAb2lCmw225w//2h+emFF0JfxFFHhX6J1qosst5OrPzSK8u5FSPxPgwpvYUL4fXXl75z\nmDo1TOi3/fbhqaXjjw9PLC2/fKmjFZFypSapjFm0KIyUrq8YJkwIlUVl5dLNSlVVWkdCpL1SH0Y7\nVFcHb7659J1DbS2su+7SlUPnztCxY6mjFZFyoT6MDMptR3UP60E88ACceSbsvjv86EdhpPTw4bDO\nOmHE9OzZYXGhe++F006Dbt3Kt7LIejux8kuvLOdWDPVhlCF3eP99GDs2DIabODGMe1hppSV9Dmef\nHcY9pGEhIRHJBjVJlYEPP/z+FBrLLLNkCo3ttw+Vw1prlTpSEckC9WGkxNy5368cvv12yZ1DfQWx\nzjoaJS0iyVAfRhn67DMYPRouvRQOPBA23DA8ynrVVWGQ3JFHwvPPwyefwBNPwJ//DL17h05rs+y3\noyq/dMtyflnOrRjqw2gl8+fDK68sfecwdy5su224Yzj44LDc6MYbawoNEUknNUkV4IsvwvxKuZXD\n7NmwzTZLP8662WaaQkNEyo/6MBLy1VcwefLSk++98w5sueXSlcMWW8Cyul8TkRRQH0Yr+Pbb8Pjq\nkCFw3HFhwNtqq4VpMyZPhp12grvuCvMrvfQS3HQTHHNMmIcpicoi6+2oyi/dspxflnMrRrv9m3jR\nojDJXu6dwxtvwE9+suSu4dhjQ2WgKTRERNpJk9TixWH0c26fw6uvhnWkcx9nraoKg+NERLJMfRiR\nurowhUb9xHsTJ4YO6jXXXLrPYdttoVOnEgUuIlJC7bbCeOcdX+rO4eWXYZVVlr5z2HZbWHXVUkfb\ncjU1NVRXV5c6jMQov3TLcn5Zzg0KrzBS34exyy5L7hrOOCNMobHGGqWOSkQke1J/h5Hm+EVESkGP\n1YqISKISrTDMrLuZTTOzt8zsrEbKXBd9/qqZdW7JsVmX9WfBlV+6ZTm/LOdWjMQqDDPrANwAdAe2\nAPqa2c/yyvQANnH3TYHfAX+Ne2x7UFtbW+oQEqX80i3L+WU5t2IkeYfRBZjh7jPdfSEwDOidV6YX\ncCeAu48HKsxsrZjHZt68efNKHUKilF+6ZTm/LOdWjCQrjHWBWTnbs6N9ccqsE+NYERFpQ0lWGHEf\nX9IyQY2YOXNmqUNIlPJLtyznl+XcipHYY7Vm1hUY5O7do+2zgTp3vzynzM1AjbsPi7anAbsBGzV3\nbLRfz9SKiBSg3AbuTQQ2NbNK4EOgD9A3r8xwYAAwLKpg5rn7x2b2aYxjC0pYREQKk1iF4e6LzGwA\nMAroANzm7lPNrH/0+RB3H2FmPcxsBvAFcHRTxyYVq4iINC/VI71FRKTtlP1IbzO73cw+NrPXmijT\n4OC/NGguPzOrNrP5ZjYpep3X1jEWw8zWN7MxZvaGmb1uZic3Ui6V1zBOfmm9hma2gpmNN7NaM5ti\nZpc2Ui6t167Z/NJ67XKZWYco9kcb+Tz+9XP3sn4B3YDOwGuNfN4DGBG93xF4sdQxt3J+1cDwUsdZ\nRH5rAVXR+47AdOBnWbmGMfNL7TUEfhj9XBZ4EdglK9cuZn6pvXY5OfwBuLehPFp6/cr+DsPdxwH/\nbaJIQ4P/1myL2FpDjPwgxY8eu/scd6+N3i8AphLG2eRK7TWMmR+k9Bq6+5fR2x8Q+hM/yyuS2msH\nsfKDlF47ADNbj1Ap3ErDebTo+pV9hRFDQ4P/1itRLElwYKfodnGEmW1R6oAKFT311hkYn/dRJq5h\nE/ml9hqa2TJmVgt8DIxx9yl5RVJ97WLkl9prF7kaOBOoa+TzFl2/LFQY8P2aM0s9+a8A67v7NsD1\nwCMljqcgZtYReAg4JfpL/HtF8rZTdQ2byS+119Dd69y9ivBLZFczq26gWGqvXYz8UnvtzKwnMNfd\nJ9H0XVLs65eFCuMDYP2c7fWifZng7p/X3za7+0hgOTNL1fqBZrYc8DBwj7s39A8u1dewufyycA3d\nfT7wOLB93kepvnb1Gssv5dduJ6CXmb0L3A/80szuyivTouuXhQpjOHAkfDe6fJ67f1zakFqPma1p\nZha970J4FLqhdtayFMV+GzDF3a9ppFhqr2Gc/NJ6Dc3sx2ZWEb1fEdgTmJRXLM3Xrtn80nrtANz9\nHHdf3903Ag4BnnH3I/OKtej6lf0SrWZ2P2G6kB+b2SxgILAcND34Ly2ayw84CDjezBYBXxIufJrs\nDBwOTDaz+n+M5wAbQCauYbP5kd5ruDZwp5ktQ/jj8m53f9piDL5NiWbzI73XriEOUMz108A9ERGJ\nJQtNUiIi0gZUYYiISCyqMEREJBZVGCIiEosqDBERiUUVhoiIxKIKQzLLzFbLmZb6IzObHb1/xcyK\nHoMUTX1dF03BUL/vMTPbrdhzR+eamaJRxdIOlP3APZFCufunhMkAMbOBwOfuflX952bWwd0XF/k1\ns4Fzgcfqv5bWm0vJKXCmVDNb1t0XtVIcIoDuMKR9MTMbamY3m9mLwOVmtoOZPR/ddfzbzDaLCo41\ns21yDnzOzLbKO58DrwLzzGyPBr7suzsEM9vezMZE7weZ2Z1m9mxU5gAzG2xmk81sZN7dz/9F+8eb\n2U+i41c3s4fM7KXotVPOee82s+eIpqwWaU2qMKS9ccJ6Fb9w9zOAaUA3d9+WMC3LJVG524B+AFEl\nsry756+KWP/X/yVAQyuxNXWnsRGwO2E9gnuA0e6+NfAVsG9OuXnR/huA+rmqrgWudvcuhKkrbs0p\n/1PgV+5+WBPfLVIQNUlJe/SgL5kTpwK4y8w2IfyCXy7a/xBwvpmdCRwD3NHYydx9nJlhZjvH/H4H\nRrr7YjN7HVjG3UdFn70GbJhT9v7o5zDC2gYAewA/i+bEA1jZzFaKzjvc3b+JGYdIi6jCkPboy5z3\nfwaedvdfm9mGQA2EldjMbDSwP3AwsG0z57wYOB9YmLNvEUvu4lfIK/9t9D11ZpZ7TB2N/7usr+QM\n2NHdv839MKpAvsw/SKS1qElK2rtOwIfR+/yZOm8FrgNeitZLaJS7jybcrWyds3smS9ZXODBnf3Md\n2Zbzs0/0vg/wfPT+SeDk7wrn9LWIJEkVhrRHuX0LVwCXmtkrhDWdv/vM3V8B5tN4c1T+E1EXs/Ty\nlhcA15rZBMLdhjdyXH5fR265H5nZq8BJwGnR/pOB7S0sG/oG0L+Jc4m0Gk1vLtIIM1uHsM7z5qWO\nRaQc6A5DpAFmdiTwImExJBFBdxgiIhKT7jBERCQWVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrH8P0wZNkRyHEDjAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7981908>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVNWZx/HvC0KAcemMkmACsdUJSUzEdomKYmjXUUYx\nEdSYiLTbuCQSA7hLDGoQcY0xJrhkGnVwiaBi3IJLIZtoRjqiojKO6DAo0SiiQhTod/44t6Fte6mu\n7lu37q3f53nqoe6tW7fe97kPdfqeU+c95u6IiEh565J0ACIikjw1BiIiosZARETUGIiICGoMREQE\nNQYiIkIRGgMz62pmC83sgWj7EjP7q5nVmdnjZtYv7hhERKR1Fvc8AzMbDewKbObuQ81sM3f/MHrt\nDGAndz8p1iBERKRVsd4ZmFlfYAhwM2AADQ1BZFPg3ThjEBGRtm0S8/mvAc4CNm+808x+BYwAVgN7\nxhyDiIi0IbY7AzM7FPibuy8kuito4O4XuPvXgFpCgyEiIgmKbczAzCYQ/vpfB/Qg3B1Mc/fjGh3z\nNeAhd/9OM+9X0SQRkQK4u7V91GfFdmfg7ue7ez933xb4IfCEux9nZl9vdNjhwMJWzpHZx0UXXZR4\nDMpN+Sm/7D0KFfeYQQMDGqK8zMy+AawHXgNOK1IMJWXp0qVJhxCbLOcGyi/tsp5foYrSGLh7DshF\nz4cX4zNFRCR/moGckJqamqRDiE2WcwPll3ZZz69QsU86K5SZeanGJiJSqswML6UBZGldLpdLOoTY\nZDk3UH5pl/X8CqXGQERE1E0kIpIl6iYSEZGCqTFISJb7LbOcGyi/tMt6foVSYyAiIhozEBHJEo0Z\niIhIwdQYJCTL/ZZZzg2UX9plPb9CqTEQERGNGYiIZInGDEREpGBqDBKS5X7LLOcGyi/tspqfO/zx\nj4W/v1iL24iISEzWrIGTToJXXin8HBozEBFJseXL4fvfh+23hz/8AXr10piBiEhZefZZ2GMPOPxw\nmDoVevYs/FxqDBKS1X5LyHZuoPzSLiv5TZ0KQ4bAb34DF1wA1u57gc+KfczAzLoCfwGWufthZnYF\ncCjwKfAacLy7fxB3HCIiWVBfDxdeCHfcAY8/DgMGdM55Yx8zMLPRwK7AZu4+1MwOBB5393ozmwjg\n7uc28z6NGYiINPLhhzBiBLz3HkybBr17f/6YkpxnYGZ9gSHAzYABuPtMd6+PDlkA9I0zBhGRLHj9\nddhrr9AAPPZY8w1BR8Q9ZnANcBZQ38LrJwAPxRxDScpKv2VzspwbKL+0S2N+s2bBwIFw8slw443Q\nvXvnf0ZsjYGZHQr8zd0XEt0VNHn9AuBTd58aVwwiIml3441w1FFw220walTHB4pbEtuYgZlNAEYA\n64AewObANHc/zsxqgJOB/d39Hy2830eOHEllZSUAFRUVVFVVUV1dDWxs3bWtbW1rO4vb69fDffdV\nM3MmXHBBjn79mj8+l8tRW1sLQGVlJePHjy9ozKAok87MbDAwNvo10cHAVcBgd3+3lfdoAFlEytJ7\n74W7gU02gTvvhIqK/N9bkgPIjRjQ8M3+G2BTYKaZLTSzG4oUQ0lpaNmzKMu5gfJLu1LP7+WXw0Sy\nAQPgT39qX0PQEUWpTeTuOSAXPf96MT5TRCRtHn4YRo6EiRPhhBOK+9mqTSQikjB3uPpquOqqUHl0\n770LP1eh3USqWioikqBPPoFTT4WFC2H+fNhmm2TiUG2ihJR6v2VHZDk3UH5pV0r5rVgB++0Hq1bB\nnDnJNQSgxkBEJBELF8Luu8MBB4SuoU03TTYejRmIiBTZPffAaafBDTfAkUd27rk1ZiAiUuLq6+GS\nS+CWW+DRR2GXXZKOaCN1EyWklPotO1uWcwPll3ZJ5ffxx3D00fDII/DMM6XVEIAaAxGR2L35Jgwa\nBL16wZNPQp8+SUf0eRozEBGJ0bx5MHw4jB4NY8bEV2iugcYMRERKTG0tnH12+HfIkKSjaZ26iRKS\n5X7ZLOcGyi/tipHf+vUwdixceinkcqXfEIDuDEREOtUHH8Axx4SZxQsWwJZbJh1RfjRmICLSSZYs\ngaFDYf/94ZproFu34sdQ6iWsRUQy7fHHwy+GzjwTrr8+mYagI9QYJCTL/bJZzg2UX9p1dn7u4cv/\nxz+Gu+6CU07p1NMXjcYMREQK9OmncMYZMHdu+AnpdtslHVHhNGYgIlKAd98N8wc23xxuvz38Wwo0\nZiAiUiSLFoWKowMHwr33lk5D0BFqDBKS5X7ZLOcGyi/tOprfjBlhDYKLL4bLLoOuXTsnrqTF3hiY\nWddo4fsHou0jzexFM1tvZiVWqklEpHnu4cv/9NPDQvXHHpt0RJ0r9jEDMxsN7Aps5u5DzeybQD0w\nGRjj7s+18D6NGYhISVizBk46CV59Fe67D7761aQjallJjhmYWV9gCHAzYADu/rK7vxrn54qIdJbl\ny2Hw4LAWwVNPlXZD0BFxdxNdA5xFuBOQRrLcL5vl3ED5pV178nv2WdhjDzj8cJg6FXr2jC+upMU2\nz8DMDgX+5u4Lzay6kHPU1NRQWVkJQEVFBVVVVVRXh1M1XNC0btfV1ZVUPNrWtrY/u/3YYzB5cjU3\n3QQVFTlmzSqt+Bq2c7kctbW1ABu+LwsR25iBmU0ARgDrgB7A5sA0dz8uev1JNGYgIiWmvh4uvBDu\nuAPuvx8GDEg6ovYpufUM3P184HwAMxsMjG1oCBqJeZkHEZH8ffghjBgB770Xlqbs3TvpiIqnmPMM\nHMDMfmBm/wvsCTxoZg8XMYaS0XCbl0VZzg2UX9q1lN/rr8Nee4UG4LHHyqshgCI1Bu4+y92HRs/v\ndfd+7t7T3fu4+yHFiEFEpCWzZoXZxCefDDfeCN27Jx1R8ak2kYiUtRtvhHHjQn2hAw9MOpqOK7kx\nAxGRUrZuHfz85zBzJsyeDf37Jx1RslSbKCFZ7pfNcm6g/NIul8vx3ntw8MFhZbKnn1ZDAGoMRKTM\nvPlmmEg2YECoMVRRkXREpUFjBiJSNh5+GEaOhIkT4YQTko4mHhozEBFpgXtYoP7KK8P6A3vvnXRE\npUfdRAnJcr9slnMD5Zc2n3wS7gJuvRXmz4e1a3NJh1SS1BiISGatWBEWolm1CubMgW22STqi0qUx\nAxHJpIUL4fvfh5oauOgi6FImf/pqzEBEJHLPPXDaaXDDDXDkkUlHkw5ttpVmVmFmh5jZaWZ2qpkd\nbGZbFCO4LMtav2xjWc4NlF8pq6+H8eNh9Gh49NHmG4I05xenFu8MzGwfwsI0lcBCYDmhyuhAYJKZ\nLQUmufuc+MMUEWndxx+HLqFly0LF0T59ko4oXVocMzCzq4HfufuSFl7vD5zq7qNjCUxjBiKSpzff\nDKuRDRgAkydDjx5JR5ScQscMNIAsIqk2bx4MHx66hsaMASvzVVIKbQxaHDMwszFmdlIz+080szPb\n+0HyWVnut8xybqD8SsmUKeEXQzffDGPH5tcQpCm/Ymrt10Q/JixA09RtwH8B18YSkYhIG9avh3PO\ngfvug1wOdtgh6YjSr7Uxg+fdvdnVP83sBXf/TqyBqZtIRJrxwQdwzDFhZvHdd8OWWyYdUWnp9G6i\ncE773Hi8mX2ZaAlLEZFiWrIE9twTttsOHnlEDUFnaq0xuIKwRnG1mW0WPfYFHgSuKk542ZXlfsss\n5wbKLymPPw6DBsGZZ8L110O3boWdp1TzS1qLYwbufquZvQNcDHw72v0iMM7d817E3sy6An8Blrn7\nYWb2z8BdwDbAUuAod19ZYPwiknHu8NvfwqWXwl13QXV10hFlU+w/LTWz0cCuwGbuPtTMJgHvuvsk\nMzsH+KK7n9vM+zRmIFLmPv0UzjgD5s6FGTNC95C0Lo4xA8xsiJk9ZWZ/jx6zzOzf2hFUX2AIcDNh\n9jLAUGBK9HwK8P32Bi0i2ffuu3DQQfDWW2EugRqCeLU2z+BkQhfRL4Htosd44CIzOyXP819DKGlR\n32jfl919RfR8BfDldsacCVnut8xybqD8imHRIth9dxg4MCxGs/nmnXfuUsivFLU2z2A0MMjd/95o\n3xNmdggwF5jc2onN7FDgb+6+0MyqmzvG3d3MWuwLqqmpobKyEoCKigqqqqqojjoMGy5oWrfr6upK\nKh5ta7tUtmfMgBEjcvz0p/CrXyUfT6lv53I5amtrATZ8XxaitXkGi939W+19rdExE4ARwDqgB7A5\nMB34LlDt7m+b2dbAk+7+zWberzEDkTLiHtYm/u1vYdq0sGi9tF8cYwarzKyqmQ/aCfiwrRO7+/nu\n3s/dtwV+CDzh7iOAGcDI6LCRwH3tDVpEsmXNGjj2WJg+HRYsUEOQhNYagzHA/Wb2SzM7zMyGmtl4\nwpf5mAI+q+HP/InAgWb2KrBftF12Gm7zsijLuYHy62zLl8PgwWEtgqeegq9+Nd7Py/r1K1SLjUG0\nTsEeQFeghvBXfBdgD3ef3Z4PcfdZ7j40ev6eux/g7v3d/SDNMRApX88+G+4CDj8cpk6Fnj2Tjqh8\nqYS1iCRi6lT42c/gpptC5VHpHHGUsH7QzI40s17NvPZPZna0mT3U3g8UkfJWXw/nnw8XXBBKTKgh\nKA2tjRkcD+wI/MXMFpnZn81sppktIpSX+BYbB4KlnbLcb5nl3ED5dcSHH8IRR8CcOWFpygHN1kWO\nV9avX6Faq030N+AXwC+i6qXbRC+94e5vFyM4EcmO11+HoUND1dG774bu3ZOOSBrLa8zAzCqBf3H3\nx6Juo67u3ubPSzsUmMYMRDJj1iz44Q/hvPNCraFyX5oyTrHUJopO/O/AH9k447gvmhsgInm68UY4\n6ii49VYYNUoNQalqszEAfgIMAlYBuPurwJfiDKocZLnfMsu5gfLL17p14cv/6qth9mw48MBOOW2H\nZf36Faq12kQNPnH3Tyxqzs1sE7TSmYi04r334OijoWtXePppqKhIOiJpS5tjBmZ2BbASOA74KXA6\n8JK7XxBrYBozEEmll1+Gww4Lj0mTYJN8/uSUTlPomEE+jUEX4CTgoGjXo8DNcX9TqzEQSZ+HH4aR\nI0PBuRNOSDqa8hTX4jabEO4CbnT34dHjJn1Ld1yW+y2znBsov+a4h7GBE08M6w+UckOQ9etXqFZv\n4Nx9nZm9YmbbuPsbxQpKRNLjk0/g1FNh4UKYPx+22abt90jpyaebaDawM/AM8HG02xsKz8UWmLqJ\nREreihVhRnGfPjBlCmy6adIRSaHdRPkM7YwrIB4RybiFC0NdoZoauOgi6JLPD9WlZLV5+dw919yj\nCLFlWpb7LbOcGyg/CCuRHXQQXHkljB+froYg69evUG3eGZjZR2ycV9Ad6AZ85O6duES1iKRBfT1c\ncgnccgs8+ijsskvSEUlnadd6BtHPTIcCe7r7ubFFhcYMRErNxx+HLqFly8Ivhvr0SToiaU5stYka\nc/d6d78POLi9HyQi6fXmm7DPPtCrFzz5pBqCLMqnUN2wRo8jzWwisKYIsWValvsts5wblF9+8+aF\nstM/+hHU1kKPHomE1Wmyfv0Klc+viQ5j45jBOmApcHhbbzKzHsAs4AuEsYb73f08M9sJ+D3wT9G5\nfhx3OWwRKcyUKXDWWaERGDIk6WgkTvnMMxjk7nOa7Nvb3ee2eXKzXu6+OprJPAcYC1wDjHb32WZ2\nPLCtu/+imfdqzEAkIevXwznnwH33wYwZsMMOSUck+YpzzOC6ZvZdn8/J3X119LQ70BV4H/i6u8+O\n9j8GDMvnXCJSHB98EIrMLVwICxaoISgXLTYGZjbQzMYAXzKz0WY2Jnr8srX3NTlHFzOrA1YAT7r7\ni8CLZtbQzXQk0K9jKaRTlvsts5wbZDu/l1+GHXfMsd128MgjsOWWSUfU+bJ8/TqitTGD7sBmhL/o\nN2u0fxUwPJ+Tu3s9UGVmWwCPmlk1cAJwnZmNA2YAn7b0/pqaGiorKwGoqKigqqqK6upqYOMFTet2\nXV1dScWj7fLevv/+HFOmwFNPVTNyJBx2WI65c0snPm23vJ3L5aitrQXY8H1ZiHzGDCrdfWnBn7Dx\nPOOANe5+ZaN9/YHb3H2PZo7XmIFIzNasgV//Gq66Co45BsaNg969k45KOiLO2kSrzexKYAegZ7TP\n3X2/NgLaCljn7ivNrCdwIDDezHq7+zvRBLYLgd+1N2gR6Zj16+H228OX/+67h5+Pfv3rSUclScqn\n7/8/gZeB7YBfEn4O+pc83rc18EQ0ZrAAeMDdHwd+ZGavAIuBZe5e2/6w06/hNi+LspwbpD+/mTNh\n111h8mS48064557PNgRpz68tWc+vUPncGWzp7jeb2Sh3nwXMMrM2GwN3XwR8rnKJu/8a+HX7QxWR\njnj+eTj7bHjttbAS2RFHgLW7M0GyKp8xg6fdfU8z+zPhZ6bLgT+6+/axBqYxA5FOsWxZ6A56+GG4\n8EI45RTo1i3pqCQucY4ZXGpmFcAY4DfA5sDP2/tBIlJcq1bB5ZfD738fGoBXXoEttkg6KilVba2B\n3BXo7+4r3X2Ru1e7+y7uPqNI8WVWlvsts5wblH5+a9fC9ddD//6wfDn89a8wYUL+DUGp59dRWc+v\nUK02Bu6+HjimSLGISAe4w/Tp8O1vwwMPhPUG/uM/oG/fpCOTNMhnzOAawoI2dxHWQDbCT0ufizUw\njRmI5G3+fBg7Fj76CK64IqxCJuWp0DGDfBqDHBurlm7g7vu298PaQ42BSNuWLIHzzgs1hC69FI49\nFrp2TToqSVJsheqicYJ9mz4KC1MaZLnfMsu5QWnk9+67MGoUDBwY5gy8+iqMHNk5DUEp5BenrOdX\nqHx+TYSZHUqYgbxhWQt3vziuoESkeWvWwLXXhvIRP/oRLF6s8hHSOfLpJppMKEOxH3ATodLoAnc/\nMdbA1E0kskHT8hGXXabyEdK8OMcMFrn7jmb2vLsPMLNNgUfcfVChweYVmBoDESCUjzjrrLD+8JVX\nwl57JR2RlLI4F7dpWO94tZl9lbD0pZbD7qAs91tmOTcoXn7PPw8HHwynnx7uCObOLU5DoOtXnvJp\nDB4wsy8CVwDPEQrV3RFnUCLlbNkyOP748PPQQw+Fl16CYcNUR0ji1WY30WcONvsC0MPdP4gvpA2f\npW4iKStNy0ecc47KR0j7xVabKFqL4HRgEGG+wWwz+527/6P9YYpIU2vXhnLSl14KhxwSykdo1rAU\nWz7dRLcSflZ6HXA98G3gtjiDKgdZ7rfMcm7QefmVavkIXb/ylM88g2+7+w6Ntp8ws5fiCkikHDQu\nH3H99SofIcnL56eltwO/dff50faewE/cfUSsgWnMQDJI5SMkbnH+tHQ3YK6ZvWFmS4F5wG5mtsjM\nnm/vB4qUozjLR4h0hnwag4MJ6x8PBqqj54cAhwFDY4ss47Lcb5nl3KB9+a1ZE2YLf/ObYXvx4nBn\n0LNnPLF1Bl2/8tTmmIG7L43mGfRrfHxbJazNrAcwC/gC0B24393PM7PdCQPR3QgT2E5392cLT0Gk\n9DQtHzF/vspHSGnLZ8zgEqAG+B+gvmF/PpVLzayXu682s02AOcBY4BJgors/amaHAGc3dy6NGUha\nqXyEJCnONZCPBrZ390/be3J3Xx097Q50Bd4H3gYaptJUAP/X3vOKlKLnnw+NwP/8D0ycCEccoVnD\nkh75jBm8CHyxkJObWRczqwNWAE+6+4vAucBVZvYmocTFeYWcO+2y3G+Z5dzg8/k1lI848EA47LD0\nl48ot+snQT53BhOAhWb2AvBJtM/dvc3BY3evB6rMbAvgUTOrBi4ERrn7vWZ2JPAH4MDm3l9TU0Nl\nZSUAFRUVVFVVUV1dDWy8oGndrqurK6l4tN3+7Y8/hrlzq5k8GQ4+OMctt8Chh5ZOfNouj+1cLkdt\nbS3Ahu/LQuQzZrAY+B3wAhvHDNzdZ7Xrg8zGESqg/sLdN4/2GbDS3T9XgUVjBlKqGpePOPhguOQS\n6Ncv6ahEgjjHDD5y9+sKCGgrYJ27r4zqGx0IXAz8t5kNjhqT/YBX23tukSS4w733wrnnwrbbhvIR\nO+2UdFQinSOfMYPZZnaZmQ00s10aHnm8b2tC6Yo6YAHwgLs/Bvw7MCnaf2m0XXYabvOyKIu5zZ8P\ngwbB+PFw8sm5TDcEWbx+jWU9v0Llc2ewC6Fa6Z5N9rf601J3XxS9t+n+vwB75BugSJKaKx8xe3bS\nUYl0vnatZ1BMGjOQJL37Llx8MUydCmPGwJlnlvasYZEGsdUmMrM+ZnaLmT0Sbe9gZicWEqRIqUtj\n+QiRzpDPmEEt8GfgK9H2EuDncQVULrLcb5nG3NavhylT4BvfgP/6rzBGcN110Lv3549NY37tofzK\nU4tjBma2ibuvA7Zy97vM7FwAd19rZuuKFqFIzBqXj7jzTpWPkPLU4piBmT3n7ruYWQ4YDsx0952j\n9Qwud/fBsQamMQOJmcpHSBbFMWbQcLIxwP3AdmY2j7Dk5aj2hyhSGrJWPkKkM7TWGPQ2s9GENQzu\nBSYBDwE3AvvHH1q2ZbnfslRzW7UKzj8/zA/YeuuwwMxPfwrdurXvPKWaX2dRfuWptXkGXYHNmtnf\nK6ZYRGLRtHxEXZ3KR4g01dqYwUJ337nI8TT+fI0ZSIc0LR8xaVJ2Zw2LNIizNpFI6sybFwaHP/oI\nrr8eDjoo6YhESltrYwYHFC2KMpTlfsskc1uyBIYPh6OPhpNPhuee6/yGIMvXDpRfuWqxMXD3vxcz\nEJGOePddGDUKBg6EXXeFV16Bmhro2jXpyETSQbWJJNXWrIFrr4WrroJjjoFf/KL5WcMi5UJjBlJW\n1q+H22+HceNg993DGEH//klHJZJe+dQmkhhkud8y7txmzgxdQZMnh/IR99xT3IYgy9cOlF+50p2B\npIbKR4jER2MGUvKWLQvdQQ89FP495ZT2zxoWKRexrWcgkpTOKh8hIm1TY5CQLPdbdjS3tWvDRLH+\n/WH58lA+YsIE2GKLzomvo7J87UD5latYxwzMrAcwC/gC0B24393PM7O7gIYhvwpgZZKlL6Q0NC4f\nUVlJphedFyk1sY8ZmFkvd19tZpsAc4Cx7j6n0etXEhqDS5u8T2MGZaRx+YgrrlD5CJFClew8A3df\nHT3tTqiE+l7Da2ZmwFHAvnHHIaVpyZKwxvCCBXDJJTBihGYNiyQh9jEDM+tiZnXACuBJd3+p0cv7\nACvc/bW44yg1We63zCe3d95Jb/mILF87UH7lqhh3BvVAlZltATxqZtXunotePgaY2tJ7a2pqqKys\nBKCiooKqqiqqq6uBjRc0rdt1dXUlFU+xtvfYo5prr4WJE3Pstx8sXlxN796lE5+2tZ227VwuR21t\nLcCG78tCFHWegZmNA9a4+5XRGMIyYBd3X97MsRozyJCm5SMmTFD5CJE4lOSYgZltBaxz95Vm1hM4\nEBgfvXwAsLi5hkCy5c9/hrPPhl69QvmIvfZKOiIRaSruMYOtgSeiMYMFwAPu/nj02tHAHTF/fslq\nuM3Loobcnn8e/vVf4Sc/CXcEc+dmoyHI8rUD5VeuYr0zcPdFwC4tvHZ8nJ8tyXnnHTj+eJWPEEkT\n1SaSTrFqFTz4IEybBk88AaeeCuecUzqzhkXKRaFjBmoMpGDvvw8zZoQGIJeDQYPCkpOHHw5bbpl0\ndCLlSYXqUiat/ZbvvAM33RTGArbZBu67D446Ct58M3QLnXACLFqUSzrMWKX12uVL+ZUnrWcgbVq+\nHKZPD3cACxeGhuCkk8L2ppsmHZ2IdAZ1E0mzli7d2AAsXgyHHgrDhoWaQT17Jh2diLREYwbSYa++\nGr78p02DN94Iff/DhsH++0P37klHJyL50JhBypRCv6U7vPACjB8PAwbA4MFhVbFJk+Ctt+Dmm+GQ\nQ9rfEJRCbnFSfumW9fwKpTGDMuMe+v2nTQsLya9ZE/76v+GGMCGsi/48EClL6iYqA/X18Mwz4ct/\n2rRQGXTYsPD47ne1qLxIlpRkbSJJzvr1MGdO+PKfPj1M/ho2LPwUdMAANQAi8lnqFEhIHP2Wa9fC\nzJmh/MNXvgJnnglf+lLY9+KLcPHFYRnJuBuCrPfJKr90y3p+hdKdQcp98kn4sp82DR54ALbfPtwB\nzJsXnouI5ENjBim0ejU88khoAB56CHbcMTQARxwB/folHZ2IJEnzDDKucSG4mTPDwO+wYfCDH0Cf\nPklHJyKlQvMMUiaffsv334cpU2DoUOjbN6wUNmQIvPYaPPYYnHZaaTYEWe+TVX7plvX8CqUxgxLz\nzjvhFz/TpsH8+bDffqEQ3K23QkVF0tGJSFapm6gENFcIbvjwMPtXheBEpD00ZpAyb7yxsQ6QCsGJ\nSGcpuTEDM+thZgvMrM7MXjKzyxq9doaZLTazF8zs8rhiKDVLlsDEibDbbjBgQI6XXoILL4S33w7d\nQIcfno2GIOt9ssov3bKeX6FiGzNw93+Y2b7uvtrMNgHmmNkgoBswFBjg7mvNrHdcMSTNPUz2argD\neOed8PPPSZPCa/vvn3SEIiJBUbqJzKwXMAuoAX4BTHb3J9p4Tyq7iVoqBDdsmArBiUj8SrI2kZl1\nAZ4Dtgd+5+4vmll/4HtmNgH4BzDW3f8SZxxxa1wIbvr08IU/bBjcdpsKwYlIOsT6d6q717t7FdCX\n0ABUExqgL7r7nsBZwN1xxhCX9eth1iwYNQq+9jU48UTo1QvuvTeMDVx+Oey+e8sNQZb7LbOcGyi/\ntMt6foUqyjwDd//AzB4EdgOWAdOj/c+aWb2Zbenuf2/6vpqaGiorKwGoqKigqqqK6upqYOMFLeb2\nunXgXs0998Ddd+fYckuoqalm5kxYsSIcv9NO+Z2vrq6u6PFrW9vazt52LpejtrYWYMP3ZSFiGzMw\ns62Ade6+0sx6Ao8C44F/Ab7i7hdFXUaPufvXmnl/SYwZNFcIbvjwMBCsQnAiUmpKccxga2BKNG7Q\nBbjN3R83s6eAP5jZIuBT4LgYYyhIS4XgLr5YheBEJJtiGzNw90Xuvou7V7n7AHe/Itq/1t1HuPuO\n7r6ru+fiiqE9Vq2CO+4If/VvvXVYBnLQoDAh7Kmn4Gc/69yGoOE2L4uynBsov7TLen6FKuvaRO+/\nDzNmhDve07Z2AAAIDklEQVSAXA722SfcAfz+97DVVklHJyJSPGVXjqK5QnDDhoVyECoEJyJpp9pE\nrVAhOBEpFyVXmyhpb7wBV18Ne+8N3/lOmBR25pnw1ltw111w5JHJNgRZ7rfMcm6g/NIu6/kVKlNj\nBkuWbCwD8cYbofDbhReGGkDduycdnYhI6Up1N1FLheCGDYPvfQ82yVRTJyLStrIZM1AhOBGRlmV6\nzKC+Hp5+GsaODbN+jzoq1Aa6/fbQHXTNNWFOQJoagiz3W2Y5N1B+aZf1/ApV0h0ps2aFO4Dp02GL\nLcJf//feCwMGqBKoiEhnKuluoqoq39AF9K1vJR2RiEjpK5sxAxERaVmmxwyyKMv9llnODZRf2mU9\nv0KpMRAREXUTiYhkibqJRESkYGoMEpLlfsss5wbKL+2ynl+h1BiIiIjGDEREskRjBiIiUrBYGwMz\n62FmC8yszsxeMrPLov2/NLNlZrYwehwcZxylKMv9llnODZRf2mU9v0LF2hi4+z+Afd29ChgA7Gtm\ngwAHrnb3naPHI3HGUYrq6uqSDiE2Wc4NlF/aZT2/QsXeTeTuq6On3YGuwPvRdlmXmlu5cmXSIcQm\ny7mB8ku7rOdXqNgbAzPrYmZ1wArgSXd/MXrpDDP7q5ndYmZail5EJEHFuDOoj7qJ+gLfM7Nq4HfA\ntkAV8BZwVdxxlJqlS5cmHUJsspwbKL+0y3p+hSrqT0vNbBywxt2vbLSvEnjA3Xdscqx+VyoiUoBC\nfloa6+I2ZrYVsM7dV5pZT+BAYLyZ9XH3t6PDfgAsavreQpIREZHCxL3S2dbAFDPrQuiSus3dHzez\nW82sivCroteBU2KOQ0REWlGyM5BFRKR4Ep2BbGZ/MLMVZva5bqJGx1xnZkuiXx7tXMz4Oqqt/Mys\n2sw+aDT57sJix1goM+tnZk+a2Ytm9oKZjWrhuFRev3zyS/n1a3ZCaDPHpfX6tZlfmq8fgJl1jeJ+\noIXX23ft3D2xB7APsDOwqIXXhwAPRc/3AJ5OMt4Y8qsGZiQdZ4G59QGqouebAq8A38rK9cszv9Re\nvyj+XtG/mwBPA4Oycv3yzC/t12808J/N5VDItUv0zsDdZ7NxElpzhgJTomMXABVm9uVixNYZ8sgP\nUjr5zt3fdve66PlHwGLgK00OS+31yzM/SOn1g2YnhL7X5JDUXj/IKz9I6fUzs76EL/ybaT6Hdl+7\nUi9U91XgfxttLyPMV8gKB/aKbuMeMrMdkg6oENHPg3cGFjR5KRPXr5X8Un39mpkQ+lKTQ1J9/fLI\nL83X7xrgLKC+hdfbfe1KvTGAz7d6WRrxfg7o5+47Ab8B7ks4nnYzs02Be4CfRX9Bf+6QJtupun5t\n5Jfq6+fNTwhtKrXXL4/8Unn9zOxQ4G/uvpDW72zade1KvTH4P6Bfo+2+0b5McPcPG25l3f1hoJuZ\n/XPCYeXNzLoB04Db3b25/0ipvn5t5Zf269fA3T8AHgR2a/JSqq9fg5byS/H12wsYamavA3cA+5nZ\nrU2Oafe1K/XGYAZwHICZ7QmsdPcVyYbUeczsy2Zm0fPdCT/1ba5fs+REcd8CvOTu17ZwWGqvXz75\npfz6bdVQE6zRhNCFTQ5L8/VrM7+0Xj93P9/d+7n7tsAPgSfc/bgmh7X72sU96axVZnYHMBjYysz+\nF7gI6Abg7pPd/SEzG2Jm/w18DByfXLTt11Z+wHDgNDNbB6wmXNi02Bs4FnjezBr+k50PfA0ycf3a\nzI90X7+WJoSeApm4fm3mR7qvX2MO0NFrp0lnIiJS8t1EIiJSBGoMREREjYGIiKgxEBER1BiIiAhq\nDEREBDUGkkJmtmWjssNvmdmy6PlzZtbhuTNRaeP6aNp/w74/mdngjp47OtfSlMx0lTKS6KQzkUK4\n+98JheMws4uAD9396obXzayru6/v4McsAy4A/tTwsXReXR6nwGqZZraJu6/rpDhENtCdgWSBmVmt\nmf3ezJ4GLjez75rZvOhuYa6Z9Y8OnGVmOzV64xwz27HJ+Rz4K7DSzA5o5sM2/GVvZruZ2ZPR81+a\n2RQzeyo65ggzu9LMnjezh5vctZwd7V9gZttH7+9tZveY2TPRY69G573NzOYQlSUW6WxqDCQrnLDe\nwEB3Hwu8DOzj7rsQyoBMiI67BagBiBqIL7h705XoGv5qnwA0t/pVa3cI2wL7EurJ3w7MdPcBwBrg\n3xodtzLafz3QUPvo18A17r47oVTCzY2O/yawv7v/uJXPFimYuokkS/7oG+urVAC3mtm/EL68u0X7\n7wHGmdlZwAnAf7R0MnefbWaY2d55fr4DD7v7ejN7Aeji7o9Gry0Ctml07B3Rv3cSatMDHAB8K6qd\nBrCZmf1TdN4Z7v5JnnGItJsaA8mS1Y2eXwI87u4/MLNtgByE1a/MbCbwfeBIYJc2zvkrYBywttG+\ndWy8q+7R5PhPo8+pN7PG76mn5f9vDQ2YAXu4+6eNX4wah9VN3yTSmdRNJFm1ObA8et60YuPNwHXA\nM1Gt+xa5+0zCXcaARruXsrE2/rBG+9saFLZG/x4dPT8amBc9/zMwasPBjcY2ROKmxkCypHFf/iTg\nMjN7jrD+7YbX3P054ANa7iJq+suhX/HZJQPHA782s2cJdwnewvuaji00Pu6LZvZX4Azg59H+UcBu\nFpZhfBE4pZVziXQqlbCWsmNmXyGsifuNpGMRKRW6M5CyYmbHAU8TFqoRkYjuDERERHcGIiKixkBE\nRFBjICIiqDEQERHUGIiICGoMREQE+H9/5tWc3xNfDQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb4f99b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The No. of trays will be 3.75\n"
+ ]
+ }
+ ],
+ "prompt_number": 164
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.5: Page 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.5\n",
+ "# Page: 299\n",
+ "\n",
+ "print'Illustration 8.5 - Page: 299\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# a = NH3 b = H2 c = N2 w = water\n",
+ "P = 2.0;# [bars]\n",
+ "Temp = 30.0;# [OC]\n",
+ "L = 6.38;# [kg/s]\n",
+ "W = 0.53;# [weir length,m]\n",
+ "pitch = 12.5/1000;# [m]\n",
+ "D = 0.75;# [Tower diameter,m]\n",
+ "hW = 0.060;# [weir height,m]\n",
+ "t = 0.5;# [tray spacing,m]\n",
+ "#*******#\n",
+ "\n",
+ "# From Geometry of Tray Arrangement:\n",
+ "At = 0.4418;# [Tower Cross section,square m]\n",
+ "Ad = 0.0403;# [Downspout Cross section,square m]\n",
+ "An = At-Ad;# [square m]\n",
+ "Ao = 0.0393;# [perforation area,square m]\n",
+ "Z = 0.5307;# [distance between downspouts,square m]\n",
+ "z = (D+W)/2.0;# [average flow width,m]\n",
+ "h1 = 0.04;# [weir crest,m]\n",
+ "# From Eqn. 6.34\n",
+ "Weff = W*(math.sqrt(((D/W)**2)-((((D/W)**2-1)**0.5)+((2*h1/D)*(D/W)))**2));# [m]\n",
+ "q = Weff*(1.839*h1**(3/2));#[cubic m/s]\n",
+ "# This is a recommended rate because it produces the liquid depth on the tray to 10 cm.\n",
+ "Density_L = 996;# [kg/s]\n",
+ "Mw = 18.02;# [kg/kmol]\n",
+ "L1 = 6.38/Mw;# [kmol/s]\n",
+ "Ma = 17.03;# [kg/kmol]\n",
+ "Mb = 28.02;# [kg/kmol]\n",
+ "Mc = 2.02;# [kg/kmol]\n",
+ "MavG = (0.03*Ma)+(0.97*(1/4)*Mb)+(0.97*(3/4)*Mc);# [kg/kmol]\n",
+ "Density_G = (MavG/22.41)*(P/0.986)*(273/(273+Temp));# [kg/cubic m]\n",
+ "G = 0.893;# [kg/s]\n",
+ "sigma = 68*10**(-3);# [N/m]\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "# From Table 6.2 (Pg169):\n",
+ "alpha = 0.04893;\n",
+ "beeta = 0.0302;\n",
+ "# From Eqn. 6.30\n",
+ "Cf = ((alpha*math.log10(1.0/abcissa))+beeta)*(sigma/0.02)**0.2;\n",
+ "# From Eqn. 6.29\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1.0/2);# [m/s]\n",
+ "# 80% of flooding value:\n",
+ "V = 0.8*Vf;# [m/s]\n",
+ "G = 0.8*G;# [kg/s]\n",
+ "G1 = G/MavG;# [kmol/s]\n",
+ "Vo = V*An/Ao;# [m/s]\n",
+ "l = 0.002;# [m]\n",
+ "Do = 0.00475;# [m]\n",
+ "# From Eqn. 6.37\n",
+ "Co = 1.09*(Do/l)**0.25;\n",
+ "viscosity_G = 1.13*10**(-5);# [kg/m.s]\n",
+ "Reo = Do*Vo*Density_G/viscosity_G;\n",
+ "# At Reynold's No. = Reo\n",
+ "fr = 0.0082;\n",
+ "g = 9.81;# [m/s^2]\n",
+ "# From Eqn. 6.36\n",
+ "def f36(hD):\n",
+ " return (2*hD*g*Density_L/(Vo**2*Density_G))-(Co*(0.40*(1.25-(Ao/An))+(4*l*fr/Do)+(1-(Ao/An))**2))\n",
+ "hD = fsolve(f36,1);\n",
+ "# From Eqn. 6.31;\n",
+ "Aa = (Ao/0.907)*(pitch/Do)**2;# [square m]\n",
+ "Va = V*An/Aa;# [m/s]\n",
+ "# From Eqn. 6.38\n",
+ "hL = 6.10*10**(-3)+(0.725*hW)-(0.238*hW*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "# From Eqn. 6.42\n",
+ "hR = 6*sigma/(Density_L*Do*g);# m\n",
+ "# From Eqn. 6.35\n",
+ "hG = hD+hL+hR;# [m]\n",
+ "Al = 0.025*W;# [square m]\n",
+ "Ada = min(Al,Ad);\n",
+ "# From Eqn. 6.43\n",
+ "h2 = (3/(2*g))*(q/Ada)**2;# [m]\n",
+ "# From Eqn.6.44\n",
+ "h3 = hG+h2;\n",
+ "# since hW+h1+h3 is essentially equal to t/2, flooding will not occur\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "V_by_Vf = V/Vf;\n",
+ "# From Fig.6.17, V/Vf = 0.8 & abcissa = 0.239\n",
+ "E = 0.009;\n",
+ "\n",
+ "# At the prevailing conditions:\n",
+ "Dg = 2.296*10**(-5);# [square m/s]\n",
+ "viscosity_G = 1.122*10**(-5);# [kg/m.s]\n",
+ "ScG = viscosity_G/(Density_G*Dg)\n",
+ "Dl = 2.421*10**(-9);# [square m/s]\n",
+ "\n",
+ "# From Henry's Law:\n",
+ "m = 0.850;\n",
+ "A = L1/(m*G1);\n",
+ "\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/(ScG**0.5);\n",
+ "# From Eqn. 6.64:\n",
+ "thetha_L = hL*z*Z/q;# [s]\n",
+ "# From Eqn. 6.62:\n",
+ "NtL = 40000*(Dl**0.5)*((0.213*Va*Density_G**0.5)+0.15)*thetha_L;\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1/((1/NtG)+(1/(A*NtL)));\n",
+ "# From Eqn. 6.51:\n",
+ "EoG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.63:\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;# [square m/s]\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thetha_L);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2.0)*((1+(4*m*G1*EoG/(L1*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EoG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+((exp(eta)-1)/(eta*(1+(eta/(eta+Pe))))));\n",
+ "# From Eqn. 6.60:\n",
+ "EMGE = EMG/((1+(EMG*(E/(1-E)))));\n",
+ "# From Eqn. 8.16:\n",
+ "EO = math.log(1+EMGE*((1.0/A)-1))/math.log(1.0/A);\n",
+ "Np = 14*EO;\n",
+ "yNpPlus1 = 0.03;\n",
+ "x0 = 0;\n",
+ "# From Eqn. 5.54(a):\n",
+ "def f37(y1):\n",
+ " return ((yNpPlus1-y1)/(yNpPlus1-m*x0))-(((A**(Np+1))-A)/((A**(Np+1))-1))\n",
+ "y1 = fsolve(f37,0.03);\n",
+ "print\"Mole Fraction Of NH3 in effluent is \",round(y1,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.5 - Page: 299\n",
+ "\n",
+ "\n",
+ "Mole Fraction Of NH3 in effluent is 0.0211\n"
+ ]
+ }
+ ],
+ "prompt_number": 159
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.6: Page 304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.6\n",
+ "# Page: 304\n",
+ "\n",
+ "print'Illustration 8.6 - Page: 304\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#****Data****# \n",
+ "# Gas:\n",
+ "# In:\n",
+ "y_prime1 = 0.02;\n",
+ "Y_prime1 = 0.0204;# [mol/mol dry gas]\n",
+ "# Out:\n",
+ "y_prime2 = 0.00102;\n",
+ "Y_prime2 = 0.00102;# [mol/mol dry gas]\n",
+ "# Non absorbed gas:\n",
+ "MavG = 11;# [kg/kmol]\n",
+ "G = 0.01051;# [kmol/s nonbenzene]\n",
+ "Gm = 0.01075;# [kmol/s]\n",
+ "T = 26;# [OC]\n",
+ "viscosity_G = 10**(-5);# [kg/m.s]\n",
+ "DaG = 1.30*10**(-5);# [square m/s]\n",
+ "\n",
+ "# Liquid:\n",
+ "# In:\n",
+ "x_prime2 = 0.005;\n",
+ "X_prime2 = 0.00503;# [mol benzene/mol oil]\n",
+ "# Out:\n",
+ "x_prime1 = 0.1063;\n",
+ "X_prime1 = 0.1190;# [mol benzene/mol oil]\n",
+ "# Benzene free oil:\n",
+ "MavL = 260.0;# [kg/kmol]\n",
+ "viscosity_L = 2*10**(-3);# [kg/kmol]\n",
+ "Density_L = 840;# [kg/cubic cm]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "DaL = 4.77*10**(-10);# [square m/s]\n",
+ "sigma = 0.03;# [N/square m]\n",
+ "m = 0.1250;\n",
+ "#*******#\n",
+ "\n",
+ "A = 0.47**2*math.pi/4;# [square m]\n",
+ "# At the bottom:\n",
+ "L_prime1 = ((L*MavL)+(X_prime1*L*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "L_prime2 = ((L*MavL)+(X_prime2*L*78))/A;# [kg/square m.s]\n",
+ "L_primeav = (L_prime1+L_prime2)/2;# [kg/square m.s]\n",
+ "# At the bottom\n",
+ "G_prime1 = ((G*MavG)+(Y_prime1*G*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "G_prime2 = ((G*MavG)+(Y_prime2*G*78))/A;# [kg/square m.s]\n",
+ "G_primeav = (G_prime1+G_prime2)/2;# [kg/square m.s]\n",
+ "\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic cm.s]\n",
+ "Fla = 0.01377;# [kmol/cubic cm.s]\n",
+ "# Operating Line:\n",
+ "X_prime = numpy.array([0.00503 ,0.02 ,0.04 ,0.06 ,0.08 ,0.10 ,0.1190]);\n",
+ "x_prime = numpy.zeros(7);\n",
+ "Y_prime = numpy.zeros(7);\n",
+ "y_prime = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " x_prime[i] = X_prime[i]/(1+X_prime[i]);\n",
+ " def f38(Y_prime):\n",
+ " return (G*(Y_prime1-Y_prime))-(L*(X_prime1-X_prime[i]))\n",
+ " Y_prime[i] = fsolve(f38,Y_prime1);\n",
+ " y_prime[i] = (Y_prime[i])/(1+Y_prime[i]);\n",
+ "\n",
+ "def f39(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "# Interface compositions are determined graphically and according to Eqn. 8.21:\n",
+ "yi = [0.000784, 0.00285, 0.00562 ,0.00830 ,0.01090 ,0.01337 ,0.01580];\n",
+ "ylog = zeros(7);\n",
+ "y_by_yDiffyi = zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ylog[i] = math.log10(yi[i]);\n",
+ " y_by_yDiffyi[i] = y_prime[i]/(y_prime[i]-yi[i]);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f39(x),label=\"Equilibrium Line\")\n",
+ "plt.plot(x_prime,yi,label=\"Interface Composition\");\n",
+ "plt.legend(loc='lower right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "plt.plot(ylog,y_by_yDiffyi);\n",
+ "plt.grid();\n",
+ "xlabel(\"log y\");\n",
+ "ylabel(\"y/(y-yi)\");\n",
+ "title(\"Graphical Integration Curve\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 6.556;\n",
+ "# Eqn. 8.28:\n",
+ "NtG = (2.303*Ac)+1.152*(math.log10((1-y_prime2)/(1-y_prime1)));\n",
+ "Gav = (Gm+(G/(1-Y_prime2)))/(2*A);# [kmol/square m.s]\n",
+ "HtG = Gav/Fga;# [m]\n",
+ "Z = HtG*NtG;# [m]\n",
+ "print\"The depth of packing required is \",round(Z,3),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.6 - Page: 304\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh98loEgHKdJBEdT7qcCl1wgoiDSlq0jz6lVR\nEVHARvAqNrgqRVSQJr1I7y1IUYELKAiIEENTUAGpQkiyvj/2JE5CJjnJ9GS/z3OezDlnl1/OzGRl\n77X3WqKqWCwWi8XiK64JtgCLxWKxZC2sYbFYLBaLT7GGxWKxWCw+xRoWi8VisfgUa1gsFovF4lOs\nYbFYLBaLT/GrYRGRFiKyT0R+EpEBHsqMcN3/TkSqua6VFZF1IvKDiOwWkWfdyhcRkVUisl9EVopI\nIX/+DhaLxWLJGH4zLCKSAxgFtABuB7qKyG0pyrQEKqnqLcDjwBjXrSvA86r6D6AO8LSI3Oq6NxBY\npaqVgTWuc4vFYrGECP4csdQCDqhqjKpeAWYAbVOUaQNMAlDVb4FCIlJCVY+r6k7X9fPAXqB0yjqu\nn+38+DtYLBaLJYP407CUBo64nR/lb+OQVpky7gVEpAJQDfjWdamEqp5wvT4BlPCNXIvFYrH4An8a\nFqexYsRTPRHJB8wBnnONXJIXNPFobEwai8ViCSFy+rHtY0BZt/OymBFJWmXKuK4hIrmAucAUVZ3v\nVuaEiNyoqsdFpCTwW2qdi4g1OBaLxZJBVDXlP/sZxp8jlm3ALSJSQUSuBToDC1OUWQg8CiAidYA/\nVfWEiAjwObBHVT9MpU531+vuwHw8oKohfQwePDjoGqxOq9NbnYsXKyVKKLt3h7bOYB/hoNNX+G3E\noqpxItIHWAHkAD5X1b0i8oTr/qequlREWorIAeAC0NNVvT7wCPC9iOxwXRukqsuBd4BZItIbiAE6\n+et38DcxMTHBluAIq9O3ZCWdGzZAz56waBH84x/+15QaWel5ZhX8ORWGqi4DlqW49mmK8z6p1NuI\nh9GUqp4CmvlQpsViyQQ7dkD79jBtGtSuHWw1llDC7rwPIj169Ai2BEdYnb4lK+jcvx/uvx8++QSa\nBfnfvKzwPLMa4st5tVBCRDSr/m4WSzA5cgQaNoTXX4devYKtxuJLRAQNcee9JR2ioqKCLcERVqdv\nCWedv/8O994Lzz4bOkYlnJ9nVsUaFovF4oizZ+G++4xfpV+/YKuxhDJ2KsxisaTLX38Zo3L77TB6\nNIjXkyWWUMRXU2HWsFgsljS5csWMUvLlgylT4Bo7z5FlsT6WLEC4zLlanb4lnHQmJEDv3hAfD5Mm\nhaZRCafnmV3w6z4Wi8USvqhC377w88+wYgXkyhVsRZZwwU6FWSyWVBkyBObPh3XroJBNp5ct8NVU\nmB2xWCyWqxgxAqZONSFbrFGxZJQQnDHNPoTLnKvV6VtCXefkyTBsGLzxRhQlwiDbUag/z0TCRacv\nsCMWi8WSxIIF8NJLZvrrxIn0y1ssqWF9LBaLBTDGpHNnWLoUatQIthpLMLDLjS0Wi8/Yts0YlZkz\nrVGxeI81LEEkXOZcrU7fEmo69+6FVq1g7Fi4++6/r4eaTk9YnaGHNSwWSzbm0CFo3hzeew/atg22\nGktWwfpYLJZsyokTJvx9nz4mWrHFYn0sFosl0/z5J7RoAQ8/bI2KxfdYwxJEwmXO1er0LcHWefEi\ntG4NjRqZZF2eCLZOp1idoYc1LBZLNiI2Fjp0gIoV4YMPbPh7i3+wPhaLJZsQHw+PPGJGLHPm2KCS\nlquxscIsFotjVOGZZ+D4cVi2zBoVi3+xU2FBJFzmXK1O3xIMna+9Blu2mJAtuXM7q2Ofp++4EHsh\nLHT6CmtYLJYszvDhMHeuGakUKBBsNdmLBE1g1JZRVBlVhQuxF4ItJ2BYH4vFkoUZPx7eeMOEvy9b\nNthqshfRp6PptaAXl+MvM6HtBG4temuwJaWL3cdisVjSZO5cePVVWLnSGpVAkjhKqTW2Fq0qt2Jj\nz41hYVR8iTUsQSRc5lytTt8SCJ2rVsGTT8KSJVC5cubasM8z40SfjqbJpCZM3TWVjb020r9ef3Jc\nkwMILZ3+xhoWiyWL8c038NBDZsRSrVqw1WQP7CglOdbHYrFkIXbvhqZNjW/l/vuDrSZ7EI6+FE8E\nzMciIvlEJIfrdRURaSMidhW8xRJiREeb+F8ffmiNSiCwoxTPOJkK+wq4TkRKAyuAbsBEf4rKLoTL\nnKvV6Vv8ofPYMbjnHnj5Zeja1TdtZufnmR5p+VI8ES7P0xc4MSyiqheBB4GPVbUj8H/+lWWxWJzy\n22/QrBk88QQ89VSw1WRt7CjFGen6WERkB/AU8AHQW1V/EJFdqnpHIARmFutjsWQHTp0yWR/btYMh\nQ4KtJmuTlXwpngjkPpa+wCBgnsuo3Ays87Zji8XiHWfPGp/KPfdAZGSw1WRdEjSB0VtG21FKBkjX\nsKjqelVto6rvus4PqqpNDeQDwmXO1er0Lb7QeeGCyVNfowa8/75/wt9np+fpiejT0TSd3JQpu6Y4\n9qV4Ilyepy9wsiqsuIgME5GlIrLOdawNhDiLxXI1ly7BAw/ATTfBqFE2p4o/cB+l3H/L/XaUkkGc\n+FhWATOB/sATQA/gd1V9ye/qvMD6WCxZkStXoH17E6F42jTIaRNf+Jzo09H0XtibS3GXsqwvxROB\n9LHcoKrjgFjXtFhPoIm3HVssloyRmKhLFaZMsUbF19hRiu9wYlhiXT+Pi0grEakOFPajpmxDuMy5\nWp2+JTM6ExKgd2+zCmz2bLj2Wt/rSklWfp4pSfSlTN01lU29NnnlS/FEuDxPX+DEsLwlIoWAFzDT\nYeOA5/2qymKxJKEKffrAwYMwf77zRF2W9EkcpdQeV5tWt7RiQ88NVClaJdiywh4bK8xiCWFU4aWX\nICoK1qyxibp8SaIv5XKc2ZdiDUoAc96LyEhAgcTOFDgDbFPVBd4KsFgsnhkyBFasMIYl5I1KQoJZ\nB50/f7CVpEmCJjBm6xgi10cysP5A+tbp6/Npr+yOk6mw3EBVYD/wE3AXUBboLSIf+lFblidc5lyt\nTt/iVOf778OMGSa3SpEi/tWUGhl6nhcuQMeO8PrrftPjiYzodPelbOy5kRfqvRAwoxIun09f4MSw\n3Ak0UdWRqjoCaArciokd1tyf4iyW7Mro0TBmDKxeDSVKBFtNOhw7Bo0aQb588M47wVaTKtaXElic\n7GP5Eaitqn+6zgsBW1S1sojsUNWQTCVkfSyWcGXCBBg8GNavh4oVg60mHbZtM4HK+vSBAQNCcrem\n9aU4J5D7WN4DdojIBBGZCOwA3heRvMBqbwVYLJa/mTkTXnnFTH+FvFGZMwfuuw9GjoSBA0POqNhR\nSvBwEivsc6A+sACYBzRQ1bGqekFVX/S3wKxMuMy5Wp2+xZPOhQvhuedg+XKoEgJ//zw+T1V46y3o\n1w9WrjTxZYJIajqD6UvxRLh8Pn2Bo5z3qvqLqs5X1QWqesxp4yLSQkT2ichPIjLAQ5kRrvvfiUg1\nt+vjReSEiOxKUT5SRI6KyA7X0cKpHoslVFm5Eh57DBYtgjvvDLaaNLh0Cbp1MxtqvvkGqoXWTLgd\npYQGftvH4kpn/CPQDDgGbAW6qupetzItgT6q2lJEagMfqWod172GwHlgsnvuFxEZDJxT1f+m07/1\nsVjCgq++MvG/5s2DBg2CrSYNTpwwo5OyZY0jKE+eYCtKhvWleE8gfSyZpRZwQFVjVPUKMANom6JM\nG2ASgKp+CxQSkRtd5xuA0x7aDq3JXIslk2zZAh06wPTpIW5Udu2C2rVN8pfp00PKqNhRSujhyLCI\nSA4RKSUi5RIPB9VKA0fczo+6rmW0TGo845o6+9y1Si0sCZc5V6vTtyTq/O47aN0axo83qYVDjaTn\nuXgxNGkCQ4eaHZvX+PP/0YwRfTqa6oOqh5QvxRPh8vn0BU523j8DDAZ+A+LdbqWXmtjpPFTK0Ud6\n9cYAb7he/wcYDvROrWCPHj2oUKECAIUKFaJq1apEREQAf7/JwTzfuXNnSOkJ9/Nwep6TJkXx/PPw\n6acRtGoVfD2pPs8dO4jYvh2GDSMqMhJKlcLcDb6+tevWsmDfAqaem0rHMh3pULEDv+7+lSoRVUJC\nX7h8PhNfx8TE4Euc7GM5CNRS1ZMZalikDhCpqi1c54OAhMRMlK5rnwBRqjrDdb4PaKyqJ1znFYBF\n7j6WFH14vG99LJZQ5eBBiIiAN9+E7t2DrcYDsbHw9NPw7bdmRUH58sFWlERi7vnY+FjrS/ExgfSx\nHAbOZqLtbcAtIlJBRK4FOgMLU5RZCDwKSYboz0Sj4gkRKel2+gCwy1NZiyXUOHLETHu9/HIIG5VT\np6B5czh+HDZtChmjkqAJjNoyilpja9G6cmvrSwlhnBiWn4F1IjJIRF5wHf3Sq6SqcUAfYAWwB5ip\nqntF5AkRecJVZikQLSIHgE+BpxLri8h0YDNQWUSOiEhP1613ReR7EfkOaEwYh/B3H46GMlanbzh+\nHJo2hfvui+LJJ4OtxgM//mic9DVqENW3b8gElIw+HU2TSU2Ytmsam3ptSuZLCfX3PZFw0ekLnOSg\nO+w6rnUdgkP/iaouA5aluPZpivM+Hup29XD9USd9WyyhxMmTZkFVt27QsGGw1Xhg9Wp4+GHjpO/d\n24RUDjIJmsDHWz8mMiqSQQ0G2UjEYYLNx2Kx+JkzZ8xIpVkzePvtkIt8YvjkE4iMNDFlGjcOthrA\n+lKCgd/zsYjIR6r6nIgsSuW2qmobbzu3WLI6589Dy5ZQr16IGpW4OHjhBbP1f+NGqFQp2IrsKCUL\nkJaPZbLr53APh8VLwmXO1erMHH/9BW3bwq23wocf/m1UQkbnmTNmI83evfD111cZlWDoTMuX4omQ\neZ7pEC46fYFHw6Kq/3P9jErlWB84iRZL+BEba3bUlygBn30WUnsKDdHRZhh1002wdCkUCu4+Y7vi\nK2thfSwWi4+Ji4MuXczP2bMhV65gK0rBhg0m2+Orr5o8KkHG+lJCh3CIFWaxZDsSEqBXL+NbmTkz\nBI3KpEkm4uWkSUE3KnaUknVxbFhEJHSizmURwmXO1ep0hio89RQcOgRffgnXXZd6uaDoTEiAQYPg\njTfMMuLm6WcV96fOzPhSPBHs990p4aLTF6RrWESknojswYTAR0SqisjHfldmsYQRqmZx1c6dJmZj\nCAX/hQsXjMNn0yYTouX224MmxY5SsgdOYoVtAToACxLz24vID6r6jwDoyzTWx2IJJK+9ZgzK2rVQ\nuHCw1bhx9KhZ+VW1qtmr4mkYFQCsLyX0CaiPRVUPp7gU523HFktW4Z13YO5csxUkpIzK1q1Qpw48\n9JCJzR8ko+I+SmlV2eZLyQ44CkIpIvUBRORaEekP7E2njsUB4TLnanV6ZsQIGDfOREMpVsxZnYDo\nnDXL7MwcPRpefDFTOzN9oTOlL6V/vf4+3+xoP5+hhxPD8iTwNCYB1zGgmuvcYsnWfPIJDB8Oa9ZA\nqVLBVuNC1TjoX3wRVq0yOzSDgPWlZG/sPhaLJROMHQv/+Y9ZYHXTTcFW4+Kvv0zwyIMHYcECuPHG\noMiwvpTwxe+xwtw6Kg78C6jgVl5VtZe3nVss4cj48WZQsG5dCBmVI0fMyq+KFY21u/76gEuwMb4s\niTiZClsAFABWAUvcDouXhMucq9X5N5Mmweuvm+mvzMZr9LnOtWuhVi2z8XH6dJ8ZlYzo9OW+lIxi\nP5+hh5N8LNer6gC/K7FYQpwpU0zmxzVroHLlYKvB+FPefx8++ACmToUmTQIuwY5SLKnhZB/Lm8DX\nqhpWoxTrY7H4kmnToH9/s/oriPsL/+bsWejRA44dgzlzoGzZgEuwvpSsRyD3sfQFFonIJRE55zrO\netuxxRIuzJz5d8qSkDAqe/ZAzZomdPJXXwXcqNgVX5b0SNewqGo+Vb1GVXOran7XUSAQ4rI64TLn\nmp11zpkDzz0HK1bA//2fb9r0SuesWSbD46BBMGaMXzc9pqYzmL4UT2Tnz2eo4iRW2DUi0k1EXned\nlxORWv6XZrEEl3nzTADg5cvhzjuDLCYx0+PAgWbo1KNHQLu3oxRLRnDiY/kESACaqOqtIlIEWKmq\nNQIhMLNYH4vFGxYuhH/9C5Ytg+rVgyzm+HGT4OX6642TvkiRgHZvfSnZh0D6WGqr6lPAXwCqegoI\ntSwTFovPWLzYGJUlS0LAqGzeDDVqQESEERZAo2JHKZbM4sSwxIpI0iSqiBTDjGAsXhIuc67ZSeey\nZSZR16JF5u+5P3CkUxVGjYJ27eDTTyEyEnIEzpcRfTqa6oOqh5QvxRPZ6fMZLjgxLCOBeUBxERkK\nbALe9qsqiyUIrFgB3bubaCi1gulFvHgRHn3URLf8+mu4//6AdZ2gCYz8diS1xtaibpm6dpRiyRSO\nYoWJyG1AU9fpGlUN+ejG1sdiyQirV0PXrjB/PtSvH0QhBw6YHfR33WWiXAYwY9jBUwfpvbC39aVk\nYwLmYxGR8UBuVR3lOvaKSKS3HVssocLatcaozJ0bZKOyaBHUqwdPPGFixwTIqCSOUmqPq219KRaf\n4GQqrDkwSUS6u10LTizuLEa4zLlmZZ3r10PnzjB7NjRq5HtNqXGVzvh4k4LyqafMPNxTT2Uqf0pm\nOHjqIE0mNWH67ulX+VKy8vseDMJFpy9wYlh+AxoCHUXkYxGxK8IsWYING0xA4JkzzaKroHDypPGh\nbNwI27ZB3boB6daOUiz+xMk+lh2qWk1EBIjE+FpKqWqoBAxPFetjsaTFpk3wwANmW8g99wRJxPbt\nxp/SoQO8/TbkdBIT1nusL8XiiUDuY1kEJgGLqg4G3gVivO3YYgkW33xjjMoXXwTRqEyYAM2bm+jE\n778fEKNiRymWQOEkVtjrKc4XqWrg43NnQcJlzjUr6dyyBdq0gYkTzd/1gHP5MlGtW8O775oAkh06\nBKTbtHwpnshK73soEC46fYGTVWHtReQnETlroxtbwplt26B1a5MBsmXLIAg4fBgaNjQh77dsgdtu\n83uXdpRiCQZOfCwHgVbhsHfFHetjsbizfTvcdx989hm0DcaaxjVr4JFHTCDJF14IyKov60uxZJRA\n+liOh5tRsVjc+e47M0IZMyYIRkUV3nnHGJXEbGF+Nip2lGIJNk4MyzYRmSkiXV3TYu1F5EG/K8sG\nhMucazjr3LXL+FJGjoQHA/2pPXvWrPqaPx+2boW77/ao01dkxpfiiXB+30ORcNHpC5wYloKYyMb3\nAq1cR2t/irJYfMEPP8C998JHH0HHjkHovGZNKFnS7MIsU8av3dlRiiWUcBQrLByxPpbszZ490KwZ\nDBsGDz0U4M5nzjQZwoYPN8Ek/Yz1pVh8RSBjhVURkTUi8oPr/E4RedXbji0Wf7Fvn9mf8u67ATYq\nV65Av37w8suwapXfjYr7KKVV5VZ2lGIJGZxMhY0FXgZiXee7gK5+U5SNCJc513DSuX+/Gam89RZ0\n6xbAzo8fh6ZN4ccfzbrmqlXT1OktKX0p/ev193m+lHB638OBcNHpC5wYljyq+m3iiWt+6Yr/JFks\nmePYMfO3fciQAKeE37TJZAVr2tREKC5c2G9dWV+KJRxwso9lGfAMMNsVM6wD0FtV7wuEwMxifSzZ\ni+hos+jqlVfg8ccD1Glilsc33zQhWvy869Lmnrf4G1/5WJwEKOoDfAbcKiK/AD8DD3vbscXiK2Ji\noEkTGDgwgEbl4kX497/h++9Nlseb/BeTNUET+Hjrx0RGRTKowSD61ukbsmmCLRZwFivsoKo2BYoC\nVVS1vqrG+F1ZNiBc5lxDWeehQ2ak0r8/3HZbVGA6jYmBBg0gIQE2b86wUcnI84w+HU2TSU2Ckns+\nlN93d6zO0MPJqrCiIjIS2AisF5GPROQG/0uzWNLmyBEzUnnuObO6NyCsXg116pgVX1984bcsjwma\nwKgto6g1tpb1pVjCDic+ltXAemAKIMBDQISqNvO/vMxjfSxZm2PHoHFjePJJE3rL76ia8PYffADT\np/s1M5j1pViCha98LE4My25V/b8U13ap6h3edu5PrGHJuvzyi/m7/thj8NJLAejw/Hno1ctMgc2d\nC2XL+qUb60uxBJtABqFc6YoTdo3r6Ays9LZjS/jMuYaSzl9/NdNfPXtebVT8ovPAATP1lT+/yZ/i\nA6OSms5g+lI8EUrve1pYnaGHR8MiIudF5BzwL2AqZoNkLDAdcLT2RkRaiMg+Vz6XAR7KjHDd/05E\nqrldHy8iJ0RkV4ryRURklYjsF5GVIlLIiRZL+HPihNkq8vDDMGhQADpcsgTq1zcOnHHjIHdun3dh\nfSmWrIjfYoWJSA7gR6AZcAzYCnR1D8EvIi2BPqraUkRqAx+pah3XvYbAeWCy+7SbiLwH/KGq77mM\nVWFVHZhK/3YqLAtx/LgZqXTqBJGRfu4sIcHsTfnsM5g9G+rW9Us30aej6b2wN5fjLltfiiUkCORU\nWGapBRxQ1RhVvQLMAFJmw2gDTAJw7e4vJCI3us43AKdTaTepjutnOz9ot4QQiT6Vrl0DYFTOnIEH\nHoCVK02oez8YlQRNYPSW0SbG1y02xpcl6+FPw1IaOOJ2ftR1LaNlUlJCVU+4Xp8ASngjMpiEy5xr\nMHUePWpWf3XvDq+9lnZZr3Xu3Qu1ahk/ytq1JuS9j4k+HU31QdWZumsqG3tuDAlfiifs59O3hItO\nX+Bx572IVFTVn71o2+k8VMphl+P5K1VVEfFYvkePHlSoUAGAQoUKUbVqVSJcy0QT3+Rgnu/cuTOk\n9ITa+fHj8MorETz5JNSoEUVUlB+f5xtvwH//S8SHH0KPHj7/fdauW8uCfQuYem4qHct0pEPFDvy6\n+1eqRFTx2/Pz9tx+PrP+80x8HRMTgy/x6GMRkf+p6j9FZK2qNslwwyJ1gEhVbeE6HwQkqOq7bmU+\nAaJUdYbrfB/QOHFEIiIVgEUpfCz7MPtojotISWCdqt6aSv/WxxLG/Pzz35sf+/b1Y0fx8WYoNHWq\nWUpco4bPu7C+FEu4EIhYYTlE5BWgsoj0I/nIQlX1v+m0vQ24xWUcfgE6c3W4/YWYWGQzXIboT7dp\nLk8sBLoD77p+zk+nvCXMOHjQGJUXX/TzjvpTp0zClthYE+q+WDGfNp+gCYzZOobI9ZEMrD/Q7kux\nZBvS8rF0AeKBHEB+15HP7XWaqGocxmisAPYAM1V1r4g8ISJPuMosBaJF5ADwKfBUYn0RmQ5sxhi2\nIyLS03XrHeAeEdkPNHGdhyXuw9FQJpA69+83jvqXX864UcmQzu++M6mD/+//jKPex0Yl+nQ0TSc3\nTdWXYt9332J1hh4eRyyqug94R0S+dxmADKOqy4BlKa59muI81T8fqppqMjFVPYVZwmzJYuzbZ5J0\nDRkCvXv7saPp0+HZZ2HECLPUzIfYUYrF4iykSyFgMNDIdSkKeENVz/hXmndYH0t48cMPcO+9MHSo\nWQHmF+LiYMAAmD8f5s2DO+/0afPWl2IJdwK5j2U8cBboCHQCzgETvO3YYklk1y4zUnn3XT8ald9/\nN5brhx/M/hQfGhW7L8ViSY4Tw3Kzqg5W1WhXbpZI4GY/68oWhMucqz917txp/t5/8AE88oh3bXnU\nuW2bWe1Vt64J01KkiHcduZGWLyXDOkMMq9O3hItOX+DEsPzlCq8CgIg0AC76T5Ilu7B9OzRvDiNH\nQpcufuokMWXwhx/CW29BDt/4O+woxWLxjBMfS1VgMlDQdek00F1Vv/OzNq+wPpbQZutWaNUKPvnE\nRFDxObGx8PzzsGaN8afcdpvPmra+FEtWJWD5WNw6LAgQ6k77RKxhCV2++QbatIHPP4fWrf3Qwa+/\nQseOcMMNMHkyFCyYfh0H2BVflqxOwINQquqZcDEq4UK4zLn6UuemTcaoTJzoe6MSFRVlctDXrGnm\n2ObN85lRyYwvJU2dYYDV6VvCRacv8GcQSoslGV99Be3awZQpxu3hU1RhwQIzr/bZZyZMyzXef7yt\nL8ViyTh+y8cSbOxUWGixdi107gwzZphkXT7l0iV46injuJk3DypV8kmz1pdiyW4EIlaYe2f1gQpu\n5VVVJ3vbuSV7sGqVCck1e7YJ1+JTjhyBBx+Em26Cr7+GfPm8btI99/zABgN5vs7z1pdisWSAdOcK\nRGQK8D5QH6jhOmr6WVe2IFzmXL3RuXy5SSX85Zd+MCpRUSZ/imsoFLVtm9dNpsw9379ef58blezw\nvgcSqzP0cDJi+Sdwu51XsmSUJUugZ08TQaVePR82rGr2pbz7rnHYNPM+dJz7KGVQg0F2xZfF4gVO\n9rHMBp5T1V8CI8k3WB9LcFmwAP71L1i0CGrX9mHDFy+ahvfuNcMgVyI3b4g+HU2vBb2IjY+1vhRL\ntiaQy42LAXtEZKWILHIdC73t2JJ1mTsXHn8cli71sVGJjjZDn5w5zbplL41KgiYwassoao2tRevK\nre2KL4vFRzgxLJFAO+AtYBgw3HVYvCRc5lwzonPWLHj6aeNb8WkyxmXLTKyv3r3NJpjrr7+qSEZ0\npvSlBDL3fFZ834OJ1Rl6pGtYVDUK2AcUwCT42qOq6/2syxKGTJtmUgmvWAHVqvmo0YQEePNNeOwx\nMxR65hmQzI/U7SjFYvE/TnwsnTCrwhKNSSPgRVWd7WdtXmF9LIFl8mQYONAkY/y///NRo2fOwKOP\nwsmTZq1yyZJeNWd9KRZL2gTSx/IqUFNVH1XVRzFLjV/ztmNL1mH8eJNKeM0aHxqVH34woVnKlTO7\nK70wKnaUYrEEFieGRYDf3c5Puq5ZvCRc5lzT0vnZZzB4sDEqPgsgPGuW2fTy6qsmpv611zqqlprO\nYPpSPJEV3vdQwuoMPZzsY1kOrBCRaRiD0pkUeewt2ZOPPzZbSdat81EUlbg4GDQI5swxc2peOGrs\nvhSLJXg48bEI8CDQAFBgg6rOC4A2r7A+Fv8yYgT8979mluqmm3zQ4G+/mWxf114LU6eakPeZxPpS\nLJbMEfB8LOGGNSz+47//hVGjjFHxwf5E2LIFOnQwjvohQzKd5dGOUiwW7/C7815ENrl+nheRcymO\ns952bAnRubScAAAgAElEQVSfOVd3ne+9Z6bA1q/3kVEZO9akkhw50iwrzqRRiT4dTfVB1UPKl+KJ\ncHzfQxmrM/Tw6GNR1fqun96Hi7VkCd56CyZNMkaldGkvG7t0yexJ2bwZNmyAKpmbrnIfpXQs05FR\nPUeFrEGxWLILTnwsX6hqt/SuhRp2Ksy3DBlicql4ufLXcOQItG8P5cubtcr582eqGetLsVh8SyD3\nsSTbmSAiOTERjy3ZAFWTjHH2bBOl3mujsnatCXXfqZNZVpwJo2L3pVgsoU1aPpaXReQccIe7fwX4\nDbBBKH1AqM+5qpqNj1OnRrFuHZQo4WVjw4aZ5CxTp0L//pkKzZLWvpRQf56JWJ2+xeoMPTwaFlUd\nqqr5gfdVNb/bUURVBwZQoyUIqMKLL5pgkh98AMWKedHYuXMmGdesWfDtt9CkSYabsKMUiyV8cOJj\neRBYq6p/us4LARGqOj8A+jKN9bFkHlV4/nnYuNHsUyxSxIvGfvzRpA6uV8+s/MqdO8NNWF+KxRIY\nAuljGZxoVABcryO97dgSmiQkmLD3X38Nq1d7aVTmz4eGDaFvX7OsOINGxY5SLJbwxGmssJTY9Zw+\nINTmXOPioEcP2L0bVq2CQoXM9QzrjI83cb6efRYWLzYZHzNIZmJ8hdrz9ITV6VusztDDiWH5n4j8\nV0RuFpFKIvIB8D9/C7MElthYE1HlxAnjVylQIJMNnTwJ999v9qds22ZWgGUAO0qxWMIfJz6WfJgw\n+U1dl1YBb6rqBT9r8wrrY3HOX3+ZbSXXXWf2qlx3XSYb2rHDNNS+Pbz9tkkhnAGsL8ViCS42Vlg6\nWMPijHPnoE0bKFXKZPzNlSuTDU2eDC+8AKNHmz0qGcDG+LJYQoOAOe9FpLiIDBORpSKyznWs9bZj\nS/DnXE+fhnvugVtuMXbBk1FJU2dsLPTpY+J8RUVl2Kj4Ml9KsJ+nU6xO32J1hh5OfCxTMTnvb8Ks\nBosBtvlPkiUQ/PYb3H23WQX86aeZjP34yy+mkSNHYOtW+Mc/HFe1vhSLJevixMeyXVWri8j3qnqn\n69o2Va0REIWZxE6FeebYMWjWzAwuIiMztQHebHLp3BmefNJsz7/Gyf8oButLsVhCk0DuY4l1/Twu\nIq1EpDpQ2NuOLcHh55/N1pJevUxgyQwbFVWz0bF9exg3ziwrdmhUEjSBkd+OtKMUiyWL4+Qvwpuu\n3fYvAP2BccDzflWVTQj0nOu+fdCokQnT9eKLzusl6bx40STj+vxzs4Pyvvsct3Hw1EGaTGrC9N3T\n/ZYvJVzmsK1O32J1hh5pGhYRyQFUVtU/VXWXqkaoanVVtUEow4ydO4075M034amnMtFAdLRxyIDZ\no+IwH3HiKKX2uNp2lGKxZBOc+Fi2qmrNAOnxGdbH8jfffANt25qVwB06ZKKBZcvMlvzXXjPxXhzO\nnx08dZDeC3tnWV+KZMo5ZbGEBqn9fQzYPhbXTvtcwEzgAibEi6rqdm879yfWsBgSVwBPnAgtW2aw\nckICDB0KY8bAzJnQoIGzaprA6C2jGbJ+SJbel+L6EgZbhsWSYTx9dn1lWJxsja4GKPBGiut3e9t5\ndicqKoqIiAi/tb90qRlozJxppsEyxJkz0K0bnDpF1IgRRDg0Ku6jlE29NgV0lOLv52mxWJyRVqKv\n51wvX1XVu1MeAdJnySRz50LPnrBwYSaMyu7dULOmSR28di3ccEO6VawvxWKxJOJxKkxEvlPVu0Rk\nh6pWC7Aur8nOU2GTJ8OAAWbEUi2j79zMmWYn/fDhZgWYA7K6L8UTdirMEq4Ecypsj4j8BJQWkV0p\n7mniZklLaDFmjHGLrF0Lt92WgYpXrhhrtGCBiZlftWq6VbKLL8VisWSMtFITdwUaAgeAVkBrt6NN\nQNRlcXy9rv39982xfn0Gjcrx49C0qcn2uG3bVUYlNZ2B2JeSUbLTPoGswoYNG7j11lsD2ufhw4fJ\nnz+/HW36kTT3sajqcVW9U1UPqWqM++GkcRFpISL7ROQnERngocwI1/3vRKRaenVFJFJEjorIDtfR\nwuHvmmVRhcGDzb7Fr75yvMXEsHkz1KhhDMuiRVA47aAK1pcSXkycOJE77riDvHnzUrJkSZ566inO\nnDkTND3XXHMN0dHRSecNGzZk3759fukrIiKCzz///Krr5cqV49y5c3a5uD9RVb8cmCyTB4AKmOXK\nO4HbUpRpCSx1va4NfJNeXWAw0M9B/5odSEhQff551TvvVD1xIoMVR45ULV5cdckSR1UOnDygjSc0\n1rrj6uq+3/dlTnAWItQ/Y8OGDdMSJUroihUrNC4uTmNiYrRly5Zas2ZNjY2N9Xl/cXFx6ZYRET1w\n4IDP+06NiIgI/fzzzwPSV7jh6bPruu7133/nkQMzTi3ggJoRzhVgBtA2RZk2wCSXFfgWKCQiNzqo\na//VwGwz+fe/YdMmWLcOihd3WDExNMu4cWbEks4GFztKCT/Onj1LZGQko0aN4t577yVHjhyUL1+e\nWbNmERMTw5QpUwCIjIykQ4cOdOnShQIFCvDPf/6T77//PqmdX375hfbt21O8eHFuuukmRo4cmXQv\nsW63bt0oWLAgkyZNYuvWrdStW5fChQtTqlQpnnnmGa5cuQJAo0aNALjrrrvInz8/s2fPJioqirJl\nyya1WaFCBYYPH85dd91FoUKF6NKlC5cvX066/95771GqVCnKlCnDuHHjrhoBOSEmJoZrrrmGhIQE\nwIxsXn/9dRo0aECBAgVo3rw5J0+eTCr/zTffUK9ePQoXLkzVqlVZv359hvrLjjg2LCKSJ4NtlwaO\nuJ0fdV1zUqZUOnWfcU2dfe6KYxaWeOMTiIuD7t2NW2T1aihSxGHFgwehbl2ze37zZrj55rSLnzpI\n9UHVQ8qX4gnrY/mbzZs3c+nSJR588MFk1/PmzUvLli1ZtWpV0rWFCxfSqVMnTp8+zUMPPUS7du2I\nj48nISGB1q1bU61aNX755RfWrFnDhx9+yMqVK5PV7dixI2fOnOGhhx4iR44cfPTRR5w8eZKvv/6a\nNWvW8PHHHwPw1VdfAfD9999z7tw5OnbseJVuEWH27NmsWLGCn3/+me+//56JEycCsHz5cj744APW\nrFnDTz/9RFRUlM+ms6ZPn87EiRP57bffiI2NZdiwYQAcO3aMVq1a8frrr3P69GmGDRtG+/bt+eOP\nP3zSb1bFSaKveiKyB/jRdV5VRD520LZTz1hGPxljgIpAVeBXYLingj169CAyMpLIyEg+/PDDZH94\noqKign6+c+fOTNW/fBnuvjuKH3+MYulSyJ/fYf233zZG5fHHierZk6gtWzyWX7tuLc9+/Cy1x9Wm\nbpm6/Kfif/h1969BfV7+ep6ZPXeCiG+OjPLHH39QtGhRrkkl8vSNN96Y7A9jjRo1ePDBB8mRIwf9\n+vXj0qVLfP3112zdupU//viDV199lZw5c1KxYkUee+wxZsyYkVS3Xr16tGlj1vLkzp2b6tWrU6tW\nLa655hrKly/P448/nuH/8J999lluvPFGChcuTOvWrZPe11mzZtGrVy9uu+02rr/+eoYMGeITB7yI\n0LNnTypVqkTu3Lnp1KlTUp9TpkyhZcuWtGhhXLnNmjWjRo0aLF261Ot+g03iZzoyMpIePXrQo0cP\n3zWe3lwZsAUoB+xwu/aDg3p1gOVu54OAASnKfAJ0cTvfB5RwUtd1vQKwy0P/mZh5DH0uXFBt3lz1\nwQdVL11yWCkuTvX111XLlFHdtCnd4taX4oxQ/owtW7ZMc+bMqfHx8Vfde/TRR/Whhx5SVdXBgwdr\nx44dk92vWbOmzpw5U2fNmqU5c+bUQoUKJR358+fX+++/P6nuww8/nKzujz/+qPfff7/eeOONWqBA\nAc2TJ482atQo6b6I6MGDB5PO161bp2XKlEk6r1Chgq5ZsybpfPDgwdqtWzdVVW3RooWOGTMm6d6l\nS5euas8dTz6Wn3/+WUUk6dmkLDdhwgRt0KCBqqo++eSTmjt37mTPIF++fPruu++m2me44OmzSyB9\nLKp6OMWlOAfVtgG3iEgFEbkW6AykjIq8EHgUQETqAH+q6om06opISbf6DwAp99hkWc6eNZHqixc3\n+xivu85BpVOnoFUrEzRs69a/IxSngvWlZB3q1q3Lddddx9y5c5NdP3/+PMuXL6dp06ZJ144c+XvW\nOSEhgaNHj1K6dGnKli1LxYoVOX36dNJx9uxZFi9eDJj/9FNORT355JPcfvvtHDhwgDNnzvDWW28l\n+TK8pWTJksm0ur/2F+XKlaNbt27JnsG5c+d46aWX/N53OOPEsBwWkfoAInKtiPQH9qZXSVXjgD7A\nCmAPMFNV94rIEyLyhKvMUiBaRA4AnwJPpVXX1fS7IvK9iHwHNCaMc8M4nU4BYx+aNYPbbzcBJXM6\nifK2Y4dZSnz77cYRc+ONHosm5p5PzZeSEZ3BJFx0BoKCBQsyePBgnnnmGVasWMGVK1eIiYmhU6dO\nlC1blm7duiWV/d///se8efOIi4vjww8/JHfu3NSpU4eaNWuSP39+3nvvPf766y/i4+PZvXs327aZ\nzOSayjTU+fPnyZ8/P3ny5GHfvn2MGTMm2f0SJUpw8ODBDP0uif106tSJCRMmsG/fPi5evMh//vOf\ndOteuXKFS5cuJR1xcan/T5za7wLwyCOPsGjRIlauXEl8fDyXLl0iKiqKY8eOZeh3yG44MSxPAk9j\nnOfHMEEpn3bSuKouU9UqqlpJVd92XftUVT91K9PHdf8udYuYnFpd1/VH1eytuUtV27lGOFmaEycg\nIgIaN4aPP3aYsHHSJLj3Xnj7bROeJVeuVIvZ3PNZlxdffJGhQ4fSv39/ChYsSJ06dShfvjxr1qwh\nl+vzICK0bduWmTNnUqRIEaZOncqXX35Jjhw5yJEjB4sXL2bnzp3cdNNNFCtWjMcff5yzZ88m1U05\nYhk2bBjTpk2jQIECPP7443Tp0iVZmcjISLp3707hwoWZM2dOqm24436/RYsWPPvss9x9991UrlyZ\nunXrAnBdGkP3J598kjx58iQdvXr1SrVP93P3+2XKlGHBggUMHTqU4sWLU65cOYYPH+6zUVhWJd2w\n+eFKVokVduSIGak8/LBJh5KuI/fyZXj+eVizBr78Ev7xD49Fbe5578gKscKGDBnCgQMH+OKLL4It\nJcPs3buXO+64g9jY2FQXKVg8E7RYYSIy0tM9jIPnWW87t6TNwYPGqPTpAy+84KDC0aMmk1fJkrBl\nCxQsmGqxBE3g460fExkVaWN8ZXPCzTDOmzePli1bcvHiRQYMGECbNm2sUQlB0npH/odxom9zvU55\nWLwkLZ/Anj1m6mvgQIdGJSoKatWCdu1MzHwPRiXRlzJt1zTH+1LCxXcRLjpDifSmokKNzz77jBIl\nSlCpUiVy5cp1lQ/HEhp4HLGo6kT3cxHJby7reX+Lyu5s3w73328CSj7ySDqFVY0PZdgwmDLFDHFS\nwY5SLKkxePDgYEvIEMuWLQu2BIsDnKQmvgOYDCRme/od6K6qu/2szSvC1ceyebMZdHzyCaTYNH01\n585B797w889mlFKuXKrFrC/FP2QFH4sle+JvH4uTycnPMEEfy6lqOeAF1zWLj1m7Ftq2NYm60jUq\n+/ZB7dpmymvDhlSNil3xZbFYgoETw5JHVdclnqhqFJDXb4qyEe4+gcWLoXNnmDMHWqSXCODLL6FR\nI+jXD8aOhdy5ryoSfTqappObZsiX4kRnKBMuOi2WrI4Tw/KziLzm2gVfUUReBTIWTtSSJrNmmRmt\nxYuNw94jcXEmy2O/fibv8GOPXVUkMatj7XG1aXVLKztKsVgsAceJj6UIMASo77q0AYhU1dN+1uYV\n4eJjmTABXnkFli2Du+5Ko+Dvv0OXLmZ35PTpULToVUWiT0fTe2FvLsddtr6UAGB9LJZwJeg+FlU9\nparPqGp11/FcqBuVcGHUKJP5cd26dIzKli0mNEvt2rB8+VVGxX2Ucv8t99tRisWvpEzt656pcerU\nqTRv3jypbEbzpaSsHwxs6mIfkF6USqAmMA/YgQn4uAv43hcRMP15EMKRZ1VV33lHtWTJdRodnUah\nhATVTz9VLVZMdd68VIscPHVQIyZG+DUS8bp16/zSrq8JtM5Q/4yVL19er7/+es2XL1/S8cwzz/i8\nn7QyNaYVfTjYNG7cWMeNGxdsGUHB02cXH0U3dhLKcCrQH9gN2AA5XqJqNj0uWgQffQQVK3oo+Ndf\nZsv9N9/Axo1QuXKy2wmawJitY4hcH8nA+gPtvhTLVYgIixcvpkmTJsGW4oj4+Hhy5AjcZzjcNoeG\nE06c97+r6kJVjVaTKjhGVWP8LSwrEh8Pjz9uNslv2AAdO0akXjAmBho0gAsX4NtvrzIqiSu+pu6a\nysaeG/2e1TEiwoPOECNcdIYCCQkJ9O/fn2LFinHzzTczevToZOl6K1SowJo1a5LKR0ZGJkVETpna\n152JEyfSsGHDZNeWLFnCzTffTLFixXjppZeSppgmTpxI/fr16devH0WLFiUyMjJZ/dT6cZ92c69f\nuHBhKlWqxObNm5kwYQLlypWjRIkSTJ48OcPPxqYu9h4nhmWIKwVwVxFp7zrS22VhScHly2Y58c8/\nm/iQN9zgoeDKlVCnDnTrZpz0+fIl3bIrviwZJfGPeEo+++wzlixZws6dO9m2bVtSpOFEUv43781/\n9vPnz+d///sf27dvZ8GCBYwfPz7p3pYtW7j55pv57bffeOWVV9JtK6WuLVu2cNddd3Hq1Cm6du1K\np06d2L59OwcPHmTKlCn06dOHixcvZlp7IjZ1ccZwMhXWHajiKuv+L8qXflGUBTl/Hh54wOxlXLLk\n7wRdUVFRf/+XnZBgQtyPHm3WHzdqlKwN9xVfG3tuDKhBSaYzhAlFnTLEN1MtOjjjjmRVpV27duR0\nS94zbNgwevfuzaxZs3j++ecpXbo0AC+//HKa/2l7MlBOGDBgAIUKFaJQoUL07duX6dOn07t3bwBK\nlSrF00+bLBy5U9mPlR4VK1ake/fugMnX8tZbb/H666+TK1cu7rnnHq699loOHDjAnXfemWn97qmL\nE/tZuNDkLEwrdfGjjz6a6T7DHSeGpQZwq3rzycrGnDwJLVvCnXeaMC2pTiH/+Sd0726WFG/dCq4v\nO1hfSriTGYPgK0SEBQsWpOpj+fXXXylbtmzSeTkP4YB8Qcp+fvnll1TvZYYSJUokvb7++usBKFas\nWLJr5897H97wRrckee5tHjp0iNmzZ7No0aKk+3FxcWHj1/IXTgzLZuB24Ac/a8lyHD1qcm21aWMG\nIylnEyIiImDXLhO/pUULmD0brr026X4wRylX6QwDwkVnKFCyZEkOH/4747j7a4C8efNy4cKFpPPj\nx49nuq/Dhw9z2223Jb0u7faPU1pTbHnzmgAfFy9eJJ9rStgbHf4gMXXxZ5/ZKFfuOPGx1AV2ish+\nEdnlOr73t7BwZ/9+aNgQevSAd97xkKBr+nRo0sRsZhk5MsmoWF+KxVd4mmjo1KkTI0aM4NixY5w+\nfZp33nkn2R/5qlWrMmPGDOLi4ti2bRtz587NtJ9l2LBh/Pnnnxw5coQRI0bQuXNnR/WKFStG6dKl\n+eKLL4iPj2f8+PEZTmucHjZ1sX9wYlhaALcA9wKtXUcbf4oKd3bsMKmEX3kFXnoplQKxsdC3L1Ev\nvGBy0bvFxg/0ii8nhEsMrnDRGUhat25N/vz5k4727dsD8K9//YvmzZtz1113UaNGDdq3b5/sj+d/\n/vMfDh48SOHChYmMjOThhx9O1q4nI5PaEt62bdvyz3/+k2rVqtGqVask/4qnFMHu18aOHcv7779P\n0aJF2bNnD/Xr1/dYNi1dnrCpi/2ELzbDhOJBkDavrV9v9jPOmeOhQEyMau3aqq1a6bqFC5MuxyfE\n66hvR2nR94rqsE3DNC4+LjCCHWA3SKZOsD5j/uDnn39WEdH4+PhgS7EEAE+fXXy0QdLmvPchixaZ\nYJLTpnnIt7V4sSnw4osmLaTrvx4b4ys8yUqxwmJiYrjpppuIi4uzqX6zAUGPFWZxxhdfwL/+ZWzH\nVUblyhUzJ/bUUzBvHvTvDyLWl2IJKewudIuvcLIqzJIOH31kMgOvXQu3357i5tGjZmdkwYIm57Ar\ngGT06WgefPdB8tySJ6grvpwQivtDUiNcdIYiFSpUID4+PtgyLFkEO2LxAlWzoGv0aBPO6yqjsny5\niUrcqpUZyhQtmiyrY90yde0oxWKxZDmsjyWTJCTAs8/Cpk2wYgUUL+52My7OWJxJk4zDxbWL3uae\nz1pkJR+LJXthfSwhyJUrZoXwrl0moGQyo/LLL9C0qdlBv307NGpkc89bLJZshTUsGeTiRWjb1sT/\nWr7cuE6SWL0a/vlP471ftgyKFyf6dDRNJjVJNfd8uOy7sDotFktGsIYlA/z5pwnRUrQozJ0LrtBE\nJh7+4MEm3tfUqfDaayRcI3aUYrFYsiXWx+KQ48eheXO4+274739N6vmkGw8/bDz506bBjTdaX0o2\nwfpYkvPXX3/RqVMnNmzYQPPmzZk5c2awJYUFb7/9NtHR0YwdOzbV+1OnTmXy5MmsWLHCZ33628cS\n9B3y/jrw4a7o6GjVm29WfeMNky04ibVrVUuVUn3tNdW4OI1PiNeR347UG969IeR2z1t8jy8/Y/6g\nfPnyunr1akdlfZGmd/LkyVqrVq2A796/fPmyDh48WG+55RbNmzevVqhQQXv16qUxMTEB1eELAhUB\nwdNnFx/tvLdTYemwe7cJJtmvH7z2mmuzfEICvPkmPPQQTJgAb7xB9NlDHn0pnggXn4DVGZ5kJPWu\nt5sj4+PjOXToEJUrVw74zv0OHTqwePFipk+fztmzZ/nuu++oUaNGsgyY4YaG+0jYF9YpFA988N/k\n5s2qxYurTpvmdvG331TvvVe1YUPVY8e8GqXYGFy+xcYKS06FChV0zZo1qqo6YcIErV+/vvbv318L\nFy6sFStW1GXLlqmq6ssvv6w5cuTQ3Llza758+fSZZ55RVdW9e/dqs2bNtEiRIlqlShWdNWtWUtvd\nu3fXf//739qyZUvNmzev1q9fX6+99lrNlSuX5suXT8ePH68HDx7Uu+++W2+44QYtWrSoPvzww/rn\nn38mtXH48GF94IEHtFixYnrDDTdonz59ku59/vnnetttt2nhwoW1efPmeujQoVR/x1WrVun111+v\nR48e9fgcjh07pq1bt9YiRYpopUqVdOzYsUn3Bg8erB06dNBHHnlE8+fPr3fccYfu379fhw4dqsWL\nF9dy5crpypUrk8o3btxYBw4cqLVq1dICBQpo27Zt9dSpU0n3FyxYoLfffrsWKlRIIyIidO/evUn3\n3nnnHS1durTmz59fq1SpkvTeDB48WB955BFVVS1btqyKiObLl0/z58+vX3/9tU6YMEEbNGiQ1M6m\nTZu0Ro0aWrBgQa1Zs6Zu3rw5mb7XXntN69evr/nz59d7771X//jjj6ueiafPLj4asQTdAPjr8PZL\nv3y5atGiqkuXul386ivVMmVUBw1SvXJFD546qI0nNNa64+rqvt/3edWfJfwIN8OSK1cuHTdunCYk\nJOiYMWO0VKlSSWUjIiL0888/Tzo/f/68lilTRidOnKjx8fG6Y8cOLVq0qO7Zs0dVjWEpWLBg0h+1\nS5cuaWRkpHbr1i2pjQMHDujq1as1NjZWf//9d23UqJH27dtXVVXj4uL0zjvv1H79+unFixf10qVL\nunHjRlVVnT9/vlaqVEn37dun8fHx+uabb2q9evVS/R0HDBigERERaT6Hhg0b6tNPP62XL1/WnTt3\narFixXTt2rWqav6o586dW1euXKlxcXH66KOPavny5XXo0KEaFxenY8eO1YoVKya11bhxYy1durT+\n8MMPeuHCBW3fvn2SUfjxxx81b968unr1ao2Li9P33ntPK1WqpLGxsbpv3z4tW7as/vrrr6qqeujQ\nIT148KCqqkZGRia1ERMTc9VUmLthOXnypBYqVEinTJmi8fHxOn36dC1cuHCScWvcuLFWqlRJf/rp\nJ/3rr780IiJCBw4ceNUzsYYlCIZl5kwzUnF9zlXj41XfeUe1RAnVpUutL8Wiqg4Ni1nW4f2RCVIa\nlkqVKiXdu3DhgoqInjhxQlWNYXH3scyYMUMbNmyYrL3HH39chwwZoqrGsHTv3j3Zfff/vFNj3rx5\nWq1aNVVV3bx5sxYrVixVX0KLFi2SGbn4+HjNkyePHj58+Kqyjz32mHbp0sVjn4cPH9YcOXLo+fPn\nk64NGjRIe/TokaT53nvvTbq3cOFCzZcvnya4nKlnz55VEdEzZ86oqnlOgwYNSiq/Z88evfbaazU+\nPl7feOMN7dy5c9K9hIQELV26tK5fv15/+uknLV68eJKhdcf9uaXmY3E3LJMnT9batWsnq1+3bl2d\nOHFikr633nor6d7HH3+sLVq0uOq5+NuwWB9LCj79FJ5/Hlatgvr1MbmFW7eGhQth61ai61TJsC/F\nE+HiE7A6vcBXpsUHuKfXzZMnD0CytL3ufpZDhw7x7bffUrhw4aRj2rRpnDhxIqlsemmFT5w4QZcu\nXShTpgwFCxakW7dunDx5EoAjR45Qvnz5VP0xhw4d4rnnnkvq94YbbgBINXlW0aJF+fXXXz1q+OWX\nXyhSpEhSNkowWR/d2yrutsP5+uuvp2jRoknPIjHdsftzSplq+cqVK/zxxx/8+uuvyVI8Jz6jY8eO\nUalSJT788EMiIyMpUaIEXbt2TVN3Wr9PyjTS5cuXT5bu2VMa5UBiDYsLVRg6FN57D776yuSo5+uv\noXp1uP12EtatZdSvC+y+FEuWJKXzvly5cjRu3JjTp08nHefOnWP06NGO23j55ZfJkSMHu3fv5syZ\nM3zxxRdJCbDKli3L4cOHUw18Wa5cOT777LNkfV+4cIE6depcVbZZs2Zs2bLFY8bGUqVKcerUqWR/\nXERgPq4AAA7bSURBVA8fPkyZMmU8P4x0SJnSOVeuXBQrVoxSpUpx6NChpHuqypEjR5JSMXft2pUN\nGzZw6NAhRIQBAwZc1XZ6iyhKly6drA8whtg93XMoYA0Lxqj0728yBW/YADffpDB8OLRrB6NGEf3y\nkzSZ1twnoxR3wiUSr9WZ9SlRokSytL+tWrVi//79TJkyhStXrnDlyhW2bt3Kvn37gNRXLaW8dv78\nefLmzUuBAgU4duwY77//ftK9WrVqUbJkSQYOHMjFixe5dOkSmzdvBuDf//43Q4cOZc+ePQCcOXOG\n2bNnp6q7adOm3HPPPTzwwANs376duLg4zp07xyeffMKECRMoW7Ys9erVY9CgQVy+fJnvv/+e8ePH\n84hb1taMoKpMmTKFvXv3cvHiRV5//XU6duyIiNCxY0eWLFnC2rVruXLlCsOHDyd37tzUq1eP/fv3\ns3btWi5fvsx1111H7ty5yZHj6r8hxYoV45prrvGYgvm+++5j//79TJ8+nbi4OGbOnMm+ffto1apV\nMo3BJtsblrg46NXLDE7Wr4dS1582BmXWLBK++ZpRJQ5Ra2wtWlW2+VIs4Ut66Xafe+455syZQ5Ei\nRejbty/58uVj5cqVzJgxg9KlS1OyZEkGDRpEbGxsmu25Xxs8eDDbt2+nYMGCtG7dmvbt2yfdz5Ej\nB4sWLeLAgQOUK1eOsmXLMmvWLADatWvHgAED6NKlCwULFuSOO+5Ic3PgnDlzaNmyJZ07d6ZQoULc\ncccdbN++nXvuuQeA6dOnExMTQ6lSpXjwwQd54403aNKkiaPnkvJcROjWrRs9evSgZMmSxMbGMmLE\nCACqVKnClClTeOaZZyhWrBhLlixh0aJF5MyZk8uXLzNo0CCKFStGyZIl+eOPP3j77bev0pAnTx5e\neeUV6tevT5EiRfj222+T3b/hhhtYvHgxw4cPp2jRogwbNozFixdTpEgRj3qDkWcnW++8v3QJunQx\nP+fOhbw/bDG5U9q1I3rgE/Ra9m+/7p4Pl/whVmfq2J332Y+7776bbt260atXr2BL8Qob3diPTJwI\nuXPDwgVK3s9HQKtWJAx7n1Fdb6bWpAbWl2KxWK7C/jORPtl6xKIKCafPkOPx3hATw+Gxw3j0u0gb\n48viCDtiyX7YEYvD9rPqF8NREMrt26FTJ7R5c8Z0rcTrm99iUINB9K3T1yfOeUvWxhoWS7hip8L8\nydmznHj5Oe6u+QNTfpzt0xVfTgjJfRepYHVaLJaMkG0NS4ImMCrPbv7xxxDrS7FYLBYfki2nwmy+\nFIsvsFNhlnDF31NhOb1tIJxI0AQ+3voxkVGR1pdi8QnB2CNgsYQ6fp0KE5EWIrJPRH4SkavjF5gy\nI1z3vxORaunVFZEiIrJKRPaLyEoRKeRES1q554NFuPgErM7UyWyAvnXr1gU9SKvVaXX6E78ZFhHJ\nAYwCWgC3A11F5LYUZVoClVT1FuBxYIyDugOBVapaGVjjOvdIgiaEbO75nTt3BluCI6xO32J1+har\nM/Tw51RYLeCAqsYAiMgMoC2w161MG2ASgKp+KyKFRORGoGIaddsAjV31JwFReDAu7r6UTb02hYxB\nSeTPP/8MtgRHWJ2+xer0LVZn6OHPqbDSwBG386Oua07KlEqjbglVPeF6fQIo4UlAKI5SLBaLJavj\nzxGL00k8J95PSa09VVUR8dhPKI5S3ImJiQm2BEdYnb7F6vQtVmcI4kfHUB1gudv5IGBAijKfAF3c\nzvdhRiAe67rK3Oh6XRLY56F/tYc97GEPe2Ts8MXff3+OWLYBt4hIBeAXoDPQNUWZhUAfYIaI1AH+\nVNUTInIyjboLge7Au66f81PrXH2wFttisVgsGcdvhkVV40SkD7ACyAF8rqp7ReQJ1/1PVXWpiLQU\nkQPABaBnWnVdTb8DzBKR3kAM0Mlfv4PFYrFYMk6W3XlvsVgsluAQdrHC/LHpMpR0ikhZEVknIj+I\nyG4ReTYUdbrdyyEiO0RkUajqdC1jnyMie0Vkj2vaNdQ0DnK957tEZJqIXOcPjU50isitIvK1iFwS\nkRcyUjcUdIbadyit5+m6HxLfoXTe94x9h4K9+zODCwJyAAeACkAuYCdwW4oyLYGlrte1gW+c1g0R\nnTcCVV2v8wE/hqJOt/v9gKnAwlB8313nk4Bertc5gYKhpNFVJxq4znU+E+gexGdZDKgBvAm8kJG6\nIaIz1L5Dqep0ux8q3yGPOjP6HQq3EUvSpktVvQIkbpx0J9mmSyBx06WTusHWWUJVj6vqTtf185hN\noaVCTSeAiJTB/LEch7Nl4wHXKSIFgYaqOt51L05Vz4SSRuAscAXIIyI5gTzAMT9odKRTVX9X1W0u\nTRmqGwo6Q+07lMbzDKnvkCedmfkOhZth8demS1+TWZ1l3Au4VsVVA771uULPGpw+T4APgBeBBD/p\nc6IhrTJlMFEcfheRCSKyXUTGikieENJYWlVPAcOBw5hVkH+q6mo/aHSq0x91M4pP+gqR71BahNJ3\nyBMZ/g6Fm2FxutIg2EuNM6szqZ6I5APmAM+5/uvyB5nVKSLSCvhNVXekct/XePM8cwLVgY9VtTpm\n9WGa8eUySaY/myJyM9AXM01RCsgnIg/7TloyvFmtE8iVPl73FWLfoasI0e9QamT4OxRuhuUYUNbt\nvCzG8qZVpoyrjJO6viKzOo8BiEguYC4wRVVT3acTAjrrAW1E5GdgOtBERCaHoM6jwFFV3eq6Pgfz\nJQkljTWAzap6UlXjgC8xz9cfePM9CLXvkEdC7DvkiVD7Dnki498hfzmL/OSAygkcxPxndy3pO0jr\n8LeDNN26IaJTgMnAB6H8PFOUaQwsClWdwFdAZdfrSODdUNIIVAV2A9e73v9JwNPBepZuZSNJ7hQP\nqe9QGjpD6jvkSWeKe0H/DqWlM6PfIb8+dD89oPswqzwOAINc154AnnArM8p1/zugelp1Q00n0AAz\n37oT2OE6WoSazhRtNMaPK1p88L7fBWx1Xf8SP6wK84HGl4AfgF0Yw5IrWM8Ss6rqCHAGOI3x/eTz\nVDfUdIbadyit5+nWRtC/Q+m87xn6DtkNkhaLxWLxKeHmY/n/9s49xKoqisPfbwrpbdmbyJKKiiiS\nmRJKyujxR2WQWfZEoQjKUgqC6EFTWBGWISMRQalkRUkPTAnGzMrMmkbUKY0S0YIeaKEwGaTl6o+9\nrrO73Tv3Xj3DjLo+ONx199ln77XXuXPW2WefWSsIgiAY4IRjCYIgCAolHEsQBEFQKOFYgiAIgkIJ\nxxIEQRAUSjiWIAiCoFDCsQR9jqQJktoaPOYNDy0/uYD+Hyr7vnR326zR3xmSVkpaLmlY2b6+Ci3S\nZ0hqljS9wWM2SBri8i7bW9LoXlIQ7HG23FeI/2MJ+hxJ44EWM7u3zvrHAUvM7LQK+/Yzs38a7L/b\nzA5t5JjdQdKDwH5m9mR/69JfeJiSZksBNvuqj33ClnsiMWMJaiLpZE8QNFPSd5Jek3SFpKWSvpd0\nntcbIuk9n2ksk3R2hbaO9oRBHb5VionVDpzgyY9GSvpY0vOSvgImS7pa0hceaXWhpGO87UNcxy7X\nYYykp4EDva1Xvd4f/ilJU5WSa3VJusHLR3mfcz2x0ZwqdjnX9Vgl6R1PhnQlMBm4S9JHVY6bppSA\n6kNJR3nZKZI+kNQp6VNJp3v5LEnT3dbrJF3n5U/4mFZI+knSK15+q6QvvfxFSU2lMUua4jOpZZnN\nap4Pt8f7LrdKekUpkdY6STVvFsrsPcN/SwslLcjGk89wWiQtdnnnbFfSMNe9S9KUWv0G/UhfhhCI\nbe/YSPGFtgNnkeIwdQIv+75rgHddbgMedfkSYIXLE4A2l18HLnR5KLCmQn8nAV9n3xcDM7Lvh2fy\nHcCzLj8DTCuvB3SXtd/tn9eRnJiAY4AfSGEtRgFbSJGGBXxe0rmsnS5SngqAx/HYVMBjwP1VbLkD\nuMnlRzO7LAJOdXkEsMjlWcCbLp8JrC1rb7DrMdz3zyPNlgBeAG7L+r0qs9PDDZyPUXgcK1KcqM9I\nyaKOBH4r9Vd2zHpgSJm9x2T2Pp4UNmRMhfotwOIKv515wK0u311+XmMbONv+BEF9rDez1QCSVgOl\nfCHfkBwPwIWkiwdmtljSkZLKH1VcBpwp7YwSfqikg8zsz6xOpRDib2byiZLeIjmBQaTsiwCXAuNK\nlcxsS40xjQRet3Sl2ijpE+A8UuKtDjP72ce70se4c61AKfnRYDNb4kWzgbmZ/tXCoO/IxjIHeEfS\nwaRIt3MzuwwqDQN4z8fzrTzJmusgUubB58xshaR7gGag09s5EPjVq28zswUuLwcud7me85FjwAJL\nyaJ+l7QROJaUR6YWF9Fj71+qzeh64QLgWpfnkBxkMAAJxxLUy1+ZvAPYlsn576hqjpls/wgz20Zj\nbM3kNtIsZb6ki0l30dX67w2rUL+kbz7ef6j9t5K3U+/CpbxuE7DZzIZXqZfbKu+nFfjRzGZnZbPN\n7D8vKzh5VsD8nO3K+cjr1mObEuX2zuW/6Xk0f0ADugQDkFhjCYpkCXALpOfywCb7f4KldmBS6Yuk\nc+tsO78IHUbPHfKErHwhMDFr+3AXtyul/K2k7zhJTZKOJt1Rd1CHc7KUmnWzpJFedBvwcQVdy2kC\nrnf5ZtJLCt3AekljXW9JOqe3/iWNJs3Q8rfmFgFjfSylNa+hNYbS6PnYnYRUn9Jj7+NJj9hKbCA9\nAoP0iLISS4EbXe6rRGhBAYRjCeql/C7cKsitQLOkVcBTwPhsf6nOJKDFF7xXA3fuQn+tpMdGncCm\nbN8U4AhfjF9Jz4XrJaBLvnhfqm9m75LWJ1aRLsoPmNnGMn2r6YOPb6qP9xzgiQrjLWcrcL6kr12/\n0jG3ALe73t+Q1q4q9V2S7yOtAXX4Qn2rmX0LPAK0u07tpMeFldpo5Hzk9XsbWzVye68F1pAeHS6j\nx1E9DkxXekHj7yr9TQYmSurysccrrQOUeN04CIJ+QdJMYL6Zvd3fugTFEjOWIAj6k7iz3QuJGUsQ\nBEFQKDFjCYIgCAolHEsQBEFQKOFYgiAIgkIJxxIEQRAUSjiWIAiCoFDCsQRBEASF8i+/adytZvs2\n2QAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb202fd0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFGXWxuHfARXFhC7KmgDzrgnUhRXjmBUVc9hlQdR1\nMWLYNazuimHNAfQzg4oBxYABUJE4qKgoCuaACgoqCgoKRmDO98dbo83QM9PDdFd1dT/3dc3F9HR1\n10PNdJ+u81a9Ze6OiIhIbZokHUBERIqbCoWIiNRJhUJEROqkQiEiInVSoRARkTqpUIiISJ1UKCQ2\nZnahmd1bx/1vmdnOhVxHmplZazObZ2aWdBYpLyoUZczMjjKzCWY238y+NLOXzOzEAq6yzpN23H0L\nd3+2UOswswozm57Lk5hZWzOrMrPEXiNmNs3Mdqu+7e6fuvvKXoCTnyzoZWZvRn8P083sITPbIt/r\nkvRRoShTZvZPoC9wJdDK3VsBJwA7mNlytTymsX8vcXwSzvc6CpLZzJrmsJgXav1ZXA/0Ak4FVgM2\nAR4H9mvoE5nZMvmNJklToShDZrYqcBFwors/6u7fA7j7ZHf/m7v/Ei03wMxuMbOnzGw+UGFm+5nZ\nJDP71sw+NbPeGc9b/Sn8eDP7zMw+jwpSNQeWM7O7zey7qNW0bcbjp5nZ7tH3Tc3sPDP7MFp2opmt\nE913fbTub6Of77iU26HSzC42s+ejdTxjZr+L7q7es5kbtXv+HD3mWDN7x8y+MbPhZtY64/n2MrP3\nzWyumd1kZuPM7Ljovh5mNt7MrjOz2UBvM9vAzMaY2Wwzm2Vm90W/G6L2WWtgaLT+f9XcyzGztc1s\niJl9bWZTzOzvGVkujPYIsm7rGtthY+Ak4Ch3r3T3Be7+o7vf7+5XZmyr4zIe08PMnsu4XWVmJ5nZ\nB8AHZnazmV1dYz1PmNkZGdkHm9lXZvaxmZ3a8N+gxEWFojx1ApoBT+Sw7F+AS9x9JWA8MB/4m7uv\nSvi0eaKZHVjjMRXARsBewDnVb/6ET8ddgAeAVYEhwI0Zj3N+ax2dCRwF7OvuqwDHAD9G970MtCN8\n8r0feLi2vaAc/389gDWB5YB/RT/fKfp31ajdMyH6f/4bOBhoCTwX/V8ws5bAw8A5wOrA+4TtnNkm\n6gh8FK3rsmh7XAqsBfwRWA+4EMDduwGfAvtH678mS/ZB0TJrAYcBl5nZrhn3H0Dt2zrT7sB0d59Y\ny/2w+O+mNgdG/8c/Rus9svoOM1sN2BN4ICp0Q4FJwNrR+k83s73qeX5JiApFeWoJzHb3quofmNkL\nZjbHzH6o8Qn9cXd/EcDdf3b3ce7+dnT7TcKb1S41nv+i6BPpW8BdhDfjas+5+/Coz34f4Q0/m78D\n57v7lOp1ufs30fcD3X2Ou1e5+3WEorfpUmwHB+5y9w/d/SfgIaB99SbJsvwJwOXu/n607S4H2kd7\nFZ2Bt9z98SjXDcDMGo//3N1viu7/yd0/cvfR0Sf42UAfltyWWZnZesD2wDnu/ou7vw70B7pnLJbr\ntv5dlqxL43J3n+vuPwPPA25m1QX3MOAFd58JdABauvv/3H2hu0+Nsh+VhwxSACoU5elroGXmmIO7\nb+/uq0X3Vf/cgcUGf83sz2Y2NmoZzAV6Et5oMmU+5lPCp8ZqX2Z8/wOwfC1jH+sSPn0vIWrDvBO1\neOYQPjG3rOX/Wp/MN8gfgZXqWLYNcH1UUOcQthXAOoRP9TNqLF/zds1t2crMBpnZDDP7FriXJbdl\nbdYGvqluG0Y+jbJUy3Vbfx3lb6xf/39RcRrEbx8S/goMjL5vA6xdvR2jbflvwp6WFCEVivL0IvAz\ncNBSPPZ+wiDnuu7eAriVJf+OWtf4/rOlWM90QvtqMdEn1LOAw929RVTcviX/g77Z2iyfAv9w99Uy\nvlaM9ri+IBS36pyWebuW57wMWARsEbXyurH4tqyr1fM5sLqZZRa21ixZnHIxGli3tjGMyPfAihm3\nf59lmZp5HwAOM7M2hJbU4OjnnwJTa2zHVdx9/6XILjFQoShD7j6XMJh9s5kdamYrm1kTM2vP4m8G\n2d58VwLmuPsvZtaR8Emx5hvEf8xsBTPbnND/f3ApYvYHLjGzjSzYysxWj9a/EJhtZsuZ2QXAKkvx\n/NVqKzCzgCpgw4yf3QqcZ2abQTgowMwOj+57CtjSzA60cNTPyWR/M820EuEN+DsLA/Vn1bj/yxrr\n/5W7TwdeAC43s2ZmthVwLKHF1CBRe+9mwvjBLtF2Xd7C4dPnRItNBg6Jfq8bAcfV+oS/Pe9kYDbh\ndznc3b+L7noZmGdmZ0fP19TMtjCzPzU0u8RDhaJMufvVhAHjswntl5mEN8KzCXsckH0A8yTgYjP7\nDvgv2YvAOOBDYBRwtbuPquP5avvUfB1hzGAEYY+hH7A88AwwHPgAmEZoF31a4/nq+iRe1/p/fay7\n/0AYaB4ftUc6uvvjhMOJB0WtojeBvaPlZwOHA1cR3hz/CEwk7LnVlusiYJvo/zeU8Ik7c5nLCUV3\njpmdmSXvX4C2hL2LR4EL3H1MHeurdbu4ey/CYPdNwBzC7+9AwiA4hPGTXwjF6y5CQaq57bK5H9gt\n+rd6XVXA/oTxoI8JRfl2GlfwpYCs0BcuMrNpwHeEXewF7t6xluU6EN6gjnD3RwsaSgrCzNoSXvjL\nZA6Ul6NoLGA68Fd3H5d0HpHGiOPEGAcqqo9YycbCyUdXEj4panoCSaXo8M6XCXs51W2kl5JLJJIf\ncbWe6nvzPxV4hLALKulWztfW7URo2cwinGNyUHSoqEiqxdF6+pjQg10E3Obu/Wrcvw6h37kbcCcw\nVK0nEZHiEUfraQd3/8LM1gBGmtl77v5cxv19gXPd3aNDCtV6EhEpIgXfo1hsZWFeoPnufm3Gzz7m\nt+LQknBi0PHuPiRjmXJuZ4iILDV3b/SH74KOUZhZczNbOfp+RcLcP29mLuPuG7j7+u6+PmGc4sTM\nIpGxXGq/evfunXgG5U8+R7llV/7kv/Kl0K2nVsBjoaPEMsBAdx9hZj0B3P22Aq+/KEybNi3pCI2i\n/MlJc3ZQ/lJR0ELhYbKv9ll+nrVAuPsxhcwjIiINpzOzY9CjR4+kIzSK8icnzdlB+UtFrIPZS8vM\nPA05RUSKiZnhxT6YLUFlZWXSERpF+ZOT5uyg/KVChUJEROqk1pOISIlS60lERGKhQhGDtPc5lT85\nac4Oyl8qVChERKROGqMQESlRGqMQkdhUVcF118GOO0L//vDjj0knkjipUMQg7X1O5U9OMWSfNQsO\nOAAefhhOPx2eeALatIF//xumT6/7scWQvzHSnj9fVChEpFaVlbD11rDllvDss3DYYTB0KLzwQtir\naNcOjjgCxo8HdYdLl8YoRGQJixbBxRfD7bfDgAGw997Zl/vuO7j7brjhBlh1VejVC448Epo1izWu\n1CJfYxQqFCKymBkzoGtXWHZZuPdeWGut+h9TVQVPPx0KxuuvQ8+ecMIJuT1WCkeD2SmS9j6n8icn\n7uzDhsGf/hT2IJ55Jvc3+iZNYL/9wmPGjAnjGpttBnvuWckrrxQ2cyGl+W8nn1QoRIRffoEzzoCT\nT4ZHHoHzzoOmTZfuuTbbDG6+GT7+GDbaCA4/HLbfHgYNggUL8ptb4qHWk0iZ+/BDOOooWG89uOMO\nWH31/D7/okUwZEhoS02ZAieeCP/4B6yxRn7XI0tS60lEGu2BB6BTJ+jRAx59NP9FAsKeycEHw9ix\n8OSTMHUqbLIJHHdcGM+Q4qdCEYO09zmVPzmFyv799+GNundvGDECTjkFrNGfO5dUM3+7duGEvSlT\nYMMNw7hGRUUoUosW5X/9jZXmv518UqEQKTNvvgkdOoTxgldfDedJxK1lyzAOMnVqaEVde20oHNdc\nA3PmxJ9H6qYxCpEy4R7Oi/jPf8Ibc/fuSSda3CuvhHGMYcPCmMmpp4aBcVl6Oo9CRHI2d24YQP7g\nA3jwQdh006QT1W7mTLj11vC11VbhJL7OncMhuNIwGsxOkbT3OZU/OfnIPmECbLMNrLkmvPRSvEVi\nafL//vdw4YXwySfQrVv4ftNNw97Gd9/lO2Hd0vy3k08qFCIlqqoKrr4aunQJraYbb4Tll086Ve6a\nNQuF4pVXwjQh48dD27Zw2mlhMFzio9aTSAn66is4+mj49ttwCGybNkknyo/p0+GWW8KRUx07hqKx\nxx6FOWKrFKj1JCJZjRkTWk1bbw3jxpVOkYBwUuBll4W21MEHwz//CZtvHsYzvv8+6XSlS4UiBmnv\ncyp/chqSfeFC+O9/4W9/g7vuCm+oyy5buGy5KNS2X2GF307Yu+mmMMdUmzZw1llhLypf0vy3k08q\nFCIlYPp02HXXMHD92muw555JJ4qHWfh/P/ZYGMv44oswJqMr8OVXwccozGwa8B2wCFjg7h1r3N8V\nOBswYB5woru/UWMZjVGI1GLIEDj++DCp39lnl/dhpFVVYY/qhx/C5IbLLJN0omSl5jwKM5sKbOvu\n39RyfyfgHXf/1sz2AS509+1qLKNCIVLDzz+HwvDEE7/N2SRhJtwuXWCddcKgdzkPdKdtMLvWoO7+\nortXdxUnAOvGEyk+ae9zKn9yass+ZUooDNOnw6RJxVskktj2yy0HgwfD22+H63o3Rpr/dvIpjkLh\nwCgzm2hmx9ez7HHAUzFkEkmtgQPD9R3+/vfwhrjaakknKj4rrhhmqh0yJJxDIo0TR+tpLXf/wszW\nAEYCp7r7c1mW2xW4CdjB3efUuE+tJyl7338fZnl98cVwEaD27ZNOVPymT4cdd4RLLim+ua3ikK/W\nU8GHetz9i+jfWWb2GNARWKxQmNlWQD9gn5pFolqPHj1o27YtAC1atKB9+/ZUVFQAv+0e6rZul+rt\njz6Cq6+uoFMn6NOnkrlzAYonX7HeXm89uOSSSk4/HVZfvYL99y+ufPm+XVlZyYABAwB+fb/MC3cv\n2BfQHFg5+n5FYDywV41lWgMfAtvV8TyeZmPHjk06QqMof3LGjBnrN9/s3rKl+733Jp2m4Ypl20+Y\nELbhc8817HHFkn9pRe+djX4vL/QeRSvgMQuHHSwDDHT3EWbWM3r3vw24AFgNuCVabolDaEXK0Zw5\nYUK8774L8xxtsknSidKrY8cwtnPooTBqFGy5ZdKJ0kVzPYkUoRdfhL/8BQ48EK66KkyQJ4334INh\n2o/nnoP11086TeGlZoxCRHJXPePrddeFiwwdeGDSiUrLkUfCrFmw115hL23NNZNOlA5lfA5nfKoH\nm9JK+ePx5Zew774wdGiYjuLAA9OTvTbFmP+UU+Cvf4V99qn/+hbFmD8JKhQiRWDUqDDja8eOUFkJ\nrVsnnai0XXghbLcdHHQQ/PRT0mmKn8YoRBK0cCH07g0DBsA998DuuyedqHwsWhTGgRYtgocegqZN\nk06Uf2mbwkNEavj0U9hlF3j11TDjq4pEvJo2hXvvDe2nE08EfRatnQpFDNLe51T+/Hv8cejQIbQ+\nnnoKWrXKvlwxZm+IYs/frBk8+miYL+u//13y/mLPHxcd9SQSo59+ChfXGTYszPq63Xb1P0YKa+WV\nQ7HecUdYY41weVVZnMYoRGLy/vtw1FGw4YZh+usWLZJOJJk++SQUiyuugK5dk06THxqjEEmRe+4J\nb0InnAAPP6wiUYzatIHhw+HMM+Hpp5NOU1xUKGKQ9j6n8i+9+fPh6KPh8sthzBjo2bNhF9LRto/X\n5puH8aPu3cPZ8WnLXygqFCIFMnkybLttuBznxImaXygtOnUKe4AHHQRTpyadpjhojEIkz9zhppvg\noovg+uvDWcCSPgMHwrnnwvPPh7ZUGmmuJ5Ei9M03cNxx4RyJF1+EjTZKOpEsra5dYfbsMC/U88+H\nI6LKlVpPMUh7n1P5czN+PGy9NbRtCy+8kJ8ioW2frHbtKjnsMOjcGebNSzpNclQoRBqpqgouuyxc\n6+DGG6FPH00LXkr+97/wAeDgg+Hnn5NOkwyNUYg0wsyZ0K1beAO5/35Yd92kE0khLFoERxwRpv14\n4IH0zAul8yhEEjZiRJjxdfvtw6GvKhKlq2nTMLg9axacemr5zQulQhGDtPdplX9xCxaEo2GOPTa8\neVx0UTgEthC07ZOVmX/55cO0Ky+9FH7n5URHPYk0wLRpYWrq1VYLE8mV85Ew5WiVVcJZ29XzQp18\nctKJ4qExCpEcDR4cpqM+5xw44wxoov3xsjV1Kuy0E1xzTZi/q1jpPAqRmPz0U5j/55lnwqyvHTsm\nnUiStv76YcbZPfYI193ebbekExWWPhPFoJT6tGnUmPzvvQd//jN8/XW4uFDcRaKct30xqCv/VltB\nv37hQ0SpNzxUKESycA+XJ91pJzjlFBg0CFZdNelUUmy6dAkHN4wZk3SSwtIYhUgN8+aFsYhJk+DB\nB2GLLZJOJMWsf3947DF48smkkyxJ51GIFMBXX4XZQ1dYAV55RUVC6ve3v4Xrnr/7btJJCkeFIgal\n3KdNg1zzz54Nu+8epuLo1w+aNy9srlyUy7YvVrnkX355OOkkuO66wudJigqFCGHW1z32gAMOgAsv\nTDqNpM2JJ8Ijj4Q90lKkMQope3PmhCKx225w1VUNuwKdSLWePWGttYrrg0a+xihUKKSsffst7Lkn\n7LBDaB2oSMjSeu892GWXcPb+CisknSZIzWC2mU0zszfMbJKZvVzLMjeY2RQze93Mti50priVQ5+2\nmNWWf9482HffcJ5EsRaJUt32adGQ/H/4A3ToAPfdV7g8SYljjMKBCnff2t2XOF3JzDoDG7n7xsA/\ngFtiyCRlbv78cDGarbaCG24oziIh6XPmmeF6JFVVSSfJr4K3nsxsKvAnd/+6lvtvBca6+4PR7feA\nXdz9y4xl1HqSvPnhB9hvP9hwQ7j9ds3ZJPnjHqaev/TS8EEkaalpPRH2KEaZ2UQzOz7L/esA0zNu\nzwA0s78UxI8/hrNpW7dWkZD8M4N//hOuvTbpJPkVx6SAO7j7F2a2BjDSzN5z9+dqLFOz4i2x+9Cj\nRw/atm0LQIsWLWjfvj0VFRXAb33EYr3dt2/fVOUt1fzbbVfBQQcBVNK9OzRpUhz56rqd2SMvhjzK\nX//jW7Wq5I03YPLkCtq3jz/vgAEDAH59v8yHWI96MrPewHx3vzbjZ7cCle4+KLpdcq2nysrKX3+p\naVQK+Tt1quCQQ2CllcLFhgp1oaF8K4VtX475r7wS3n4b7rkn/5kaIhWHx5pZc6Cpu88zsxWBEcBF\n7j4iY5nOwCnu3tnMtgP6uvt2NZ4n1YVCkvXLL3D44aE4DBoEyy6bdCIpdXPmhDGwN9+EddZJLkda\nxihaAc+Z2WRgAjDM3UeYWU8z6wng7k8BH5vZh8BtwEkFziRlZMGCcEU6gAceUJGQeKy2WpgD6sYb\nk06SHwUtFO4+1d3bR19buPvl0c9vc/fbMpY7xd03cvd27v5aITMlIbPPmUZpzb9wYXixfvZZJQ89\nBMstl3Sihkvrtq9WzvlPPz3MGTZ/fv7yJEXHfEhJWrQIjj4a5s6Fiy+GZs2STiTlZoMNwpna0dhy\nqmkKDyk5VVVw7LEwYwYMHVo80ylI+XnhBejWDT74AJo2jX/9aRmjEIlVVRX84x9hvp0hQ1QkJFmd\nOsEaa4S/xTRToYhBOfdp4+Qergvw/vswbNhv15NIS/5s0pwdlL9UTsBToZCS4A6nngqvvw5PPRXO\nlxApBgcfDJ99BhMmJJ1k6WmMQlLPPUzGNn48jBwJq66adCKRxfXtCy++GK7BHqdUnHCXLyoUUht3\nOOccGD0aRo0Kx6+LFJt586Bt23Bt7TzOrFEvDWanSLn3aQvFHf7zHxgxInzVViSKNX8u0pwdlL/a\nyiuHI/FuuCEvTxc7FQpJrYsuCkeTjBoFv/td0mlE6tarVzin4ttvk07ScGo9SSpdemmY3K+yEtZc\nM+k0Irn5619h223DkVBx0BiFlK2rroI77ghFYq21kk4jkrtXXw1HQX30UTzzjmmMIkXUp82f664L\n8+eMGZN7kSim/A2V5uyg/DVtu22Y2mPw4Lw+bcGpUEhq3HBDmI1zzJhkp24WaYwzzwwn4KWpSaLW\nk6TCLbeEi8FUVsZ7eKFIvlVVwR/+AP37w847F3Zdaj1J2ejXDy6/POxJqEhI2jVpAmecEdqoaaFC\nEQP1aZfegAFhmvDRo0Nvd2mkefunOTsof22OPjrMLDtlSkGePu9UKKRo3XcfnH9+OE9i442TTiOS\nP82bh1mO+/ZNOkluchqjiK53vR7gwAx3/77QwWqsX2MUZWbQoDDoN2oUbLZZ0mlE8m/mzPC3PWVK\n4U4YLfh5FGa2MnA8cBTQEvgSMMJ1sL8GBgL93L3gF/pToSgvjzwSZoIdORK22CLpNCKFc+yxsNFG\ncN55hXn+OAazHwfmAQe4+wbu3sndt3P39YH9ge+BJxoboByoT5u7J56AU06Bp5/OX5FI8/ZPc3ZQ\n/vqccUY45Pvnnwu6mkartVC4++7u3s/dv8xy30x3v93ddy9sPCknw4aFvu2TT0L79kmnESm8LbcM\nXw88kHSSutXVevqDu79nZtsSxiZ+vQtwd38tjoBRFrWeStzw4dC9eygWHTsmnUYkPs88A2edFS66\nZY1uEi0ujjGKfu5+vJlVsnihAMDdd23synOlQlHaRo6Erl1D26lTp6TTiMTLPexV9OkDe+6Z3+cu\n+BiFux8f/Vvh7rvW/GrsisuJ+rS1Gzs2zKg5eHDhikSat3+as4Py58IsHOFXzCfg1XsehZm9amYn\nm5muHSZ59eyzcOSR8PDDsNNOSacRSU7XrjB5Mrz9dtJJsqv3PAoz2xg4BjgCeBW4ExgRZy9IrafS\n88ILcNBBYRBvdx0SIcL//gfTpoU5oPIl9utRmFkTwmGxtwBVhIJxvbt/09gQOaxbhaKETJgABxwA\n994Le++ddBqR4jB7NmyyCbz7LrRqlZ/njHVSQDNrB1wHXA0MBg4nnGMxprEByoH6tL+ZOBG6dAlz\nOMVVJNK8/dOcHZS/IVq2DK3Ym26KbZU5y2mMAugDvAy0c/de7v6Su18DTM3h8U3NbJKZDc1yX0sz\nG25mk83sLTPrsRT/B0mJSZNgv/3CbLCdOyedRqT4nH463Hor/Phj0kkWl8sYxYbu/tFSr8DsTGBb\nYGV371LjvguBZu7+bzNrCbwPtHL3hTWWU+sp5d54A/baK3xaOvTQpNOIFK8uXcIHqp49G/9csbWe\nMouEmTXoJDszWxfoDPQnnKhX0xfAKtH3qwBf1ywSkn5vvx3aTNdfryIhUp9zzw1fJ58M77+fdJqg\nodOMN7Qy9QHOIgx+Z9MP2NzMPgdeB05r4POnQjn3ad97L5xEdM01of+ahDRv/zRnB+VfGttvHz5c\nrb56uAJe587h7O0kmyrLNHD5p3Jd0Mz2B75y90lmVlHLYucBk929wsw2BEaaWTt3n1dzwR49etA2\nurxZixYtaN++PRUV4Wmrf5nFenvy5MlFlSeu/OusU8Eee0D37pXRNa7TlV+3dTvJ25dcUsH558MF\nF1Ry0knQrFkFvXpBmzaVrLBC9sdXVlYyYMAAgF/fL/MhlzGK64A73L1Bp4KY2WVAN2AhsDyhtTTY\n3btnLPMUcKm7j49ujwbOcfeJNZ5LYxQp89FHsOuu0Ls3HHdc0mlE0s09XC/++uvh+efDa+rkk6F1\n67ofF+fhse8Ct5vZy2Z2gpmtmssTu/t57r5eNC35UcCYzCIReQ/YA8DMWgGbAh/nHl+K0bRp4SS6\n889XkRDJB7Pwwevxx+Hll+GXX2DrreHww0PhKPTn6FwGs/u5+w5Ad6At8KaZ3W9mDZ3vyQHMrKeZ\nVY/nXwb8ycxeB0YBZ8dxAl/cqncN06oh+T/9FHbbLcyGmY+jNvIhzds/zdlB+Qthgw3CBILTpoUx\njB49oEOHcALrL78UZp25nnDXFPgD8EdgFmHg+UwzezCXx7v7uOpDY939Nne/Lfp+trsf4O7t3H1L\nd79/qf4XUhQ++ywUiV69wm6xiBTOyiuHK0F+8AFceCHcfTe0bQsXXwxffZXfdeUyRtEHOIBwFnZ/\nd38547733X3T/EbKmkFjFEXuiy+gogL+/vewNyEi8XvrLbjhhjDR5kEHwYABMc31ZGbHAg+6+/dZ\n7mvh7nMbG6I+KhTF7csvQ5Ho1q1w1/4VkdzNnh2myTnrrAIPZkeHq+Lud2YrEpHVGxugHBRjn7Mh\n6so/a1ZoNx11VPEWiTRv/zRnB+VPSsuW8K9/5e/56jqP4jIzWxEYAkwknEVtwFrAn4AuhIkBj8pf\nHEmTr7+GPfaAgw+GCy5IOo2IFEqdrScz24hQCHYA2kQ//gR4HnjA3WM5lFWtp+IzZ044BHavveDy\ny/N/rV8Rabw4rpm9trt/3tgV5IMKRXGZOzdMy7HzzmFqDhUJkeIUxwl3d5jZBDO7wswqzKyh031I\nJK19zmqZ+b/7DvbZJ8xHk5Yikebtn+bsoPylotY3f3ff18xWAHYBDgGuMbPpwNPAcHf/NKaMUiTm\nzw8TlG2zDfTtm44iISKNl8vhsb2Ae919jpltAOwL7A383t07xpBRraci8P33oUhssgncdhs0aei8\nwyISuzjnemoFvGJmDwGbALdEZ1nv1NiVSzr88EO4xvUGG6hIiJSjXOZ6Op9QIO4EegAfRDPDrlvY\naKUjzX3On36CnXcO04T375/OIpHm7Z/m7KD8pSKnl727VwEzgS+BRcBqwCNmdnUBs0nCfv45nCOx\nyipw113QtGnSiUQkCbmMUZxGmDn2a8IlTR9z9wVm1gSY4u4bFjykxihi98sv4bKlzZrBoEGwjI55\nE0mdfI1R5PLyXx04xN0/yfyhu1eZ2QGNDSDFZ8GCMCXHMsvAAw+oSIiUu1zGKHrXLBIZ972T/0il\nJ019zoULoWvXUCwefBCWXTZd+bNJc/40ZwflLxX6rCi/WrQIuneHefPClbSWWy7pRCJSDOodoygG\nGqMovEWL4JhjwnUlhgyBFVZIOpGINFacYxRS4qqq4PjjYcYMGDZMRUJEFpfCo+LTp5j7nFVVcMIJ\n8OGHMHT07/V/AAAPLklEQVQoNG++5DLFnD8Xac6f5uyg/KVCexRlzB1OOQXefhuGD4cVV0w6kYgU\nI41RlCl3OP10eOklGDkynFQnIqVFYxSy1NzhrLNg/HgYNUpFQkTqpjGKGBRTn9M9XNt69GgYMQJa\ntKj/McWUf2mkOX+as4PylwrtUZSZ3r3hySdh7FhYffWk04hIGmiMooxcckmYt2nsWFhzzaTTiEih\naYxCGuSKK2DgQKisVJEQkYbRGEUMku5zXnMN3HknjBkDv/99wx+fdP7GSnP+NGcH5S8V2qMocX37\nwi23wLhxsPbaSacRkTQq+BiFmTUFJgIz3H2JacnNrALoAywLzHb3iizLaIxiKdx0U9ibqKyENm2S\nTiMicUvTGMVpwDvAyjXvMLMWwE3A3u4+w8xaxpCnLNx+O1x1lYqEiDReQccozGxdoDPhynjZqtpf\ngcHuPgPA3WcXMk9S4u5z3nlnOMJp9GhYf/3GP1/a+7Rpzp/m7KD8paLQg9l9gLOAqlru3xhY3czG\nmtlEM+tW4Dwl75574IILQpHYaKOk04hIKShY68nM9ge+cvdJ0ThENssC2wC7A82BF83sJXefUnPB\nHj160LZtWwBatGhB+/btqagIT1td9Yv1dvXPCr2+zz+v4Nxz4YorKvn8c9hkk3TlT/v2L8TtioqK\nosqj/MWVr+btyspKBgwYAPDr+2U+FGww28wuA7oBC4HlgVUIbabuGcucA6zg7hdGt/sDw939kRrP\npcHsejz8MPTqFeZu2nzzpNOISDHI12B2wVpP7n6eu6/n7usDRwFjMotE5AlgRzNrambNgT8TBr5L\nSnXFL5RHH4VTTw1ThReiSBQ6f6GlOX+as4Pyl4o4z6NwADPrCeDut7n7e2Y2HHiDMI7Rz91LrlAU\n0pAhcOKJ8PTT0K5d0mlEpBRprqcUe+op6NEjTPLXoUPSaUSk2BR960kKa8SIUCSGDFGREJHCUqGI\nQb77nKNHQ9eu8NhjsN12eX3qrNLep01z/jRnB+UvFSoUKTNuHPzlLzB4MOywQ9JpRKQcaIwiRZ5/\nHg45JFxTYrfdkk4jIsVOYxRl5qWXQpEYOFBFQkTipUIRg8b2OV95Bbp0gbvvhj33zE+mhkh7nzbN\n+dOcHZS/VKhQFLnXXoP994c77oB99006jYiUI41RFLHXX4e99oJbb4WDD046jYikjcYoStxbb8E+\n+8CNN6pIiEiyVChi0NA+57vvhj2J666Dww8vTKaGSHufNs3505wdlL9UqFAUmfffhz32gCuvDOdL\niIgkTWMUReTDD2HXXeHii+GYY5JOIyJppzGKEjN1Kuy+e7g6nYqEiBQTFYoY1Nfn/OSTcBLdOefA\n8cfHk6kh0t6nTXP+NGcH5S8VKhQJmz49FIkzzoCTTko6jYjIkjRGkaDPPoOKCjjhBPjnP5NOIyKl\nRmMUKTdzZhiTOO44FQkRKW4qFDGo2ef86qvQburaFc49N5lMDZH2Pm2a86c5Oyh/qVChiNns2eE8\nicMOg//+N+k0IiL10xhFjL75JrSb9t0XLr0UrNGdQxGR2uVrjEKFIiZz54Y9iV13hauuUpEQkcLT\nYHaKDBtWyd57w447prNIpL1Pm+b8ac4Oyl8qVCgKbN68cCJdhw7Qp0/6ioSIiFpPBTR/fhiP2Gwz\nuOUWaKKyLCIx0hhFkfvhB9hvP9hgA+jXT0VCROKnMYoi9uOP4RrX660Ht98Ozz5bmXSkRkl7nzbN\n+dOcHZS/VKhQ5NlPP4Ur0q25Jtx1FzRtmnQiEZHGUespj37+GQ49FJo3h/vvh2WWSTqRiJSz1LSe\nzKypmU0ys6F1LNPBzBaa2SGFzlMoCxbAkUfCcsvBwIEqEiJSOuJoPZ0GvANk3SUws6bAlcBwIJUH\njy5YEC5bWlUFgwbBsssufn/a+5zKn5w0ZwflLxUFLRRmti7QGehP7UXgVOARYFYhsxTKwoXQrVsY\nwH744bBHISJSSgo6RmFmDwOXAasA/3L3A2rcvw5wH7AbcCcw1N0fzfI8RTlGsWgRHH00zJoFTzwB\nyy+fdCIRkd8U/RiFme0PfOXuk6h9b6IvcG5UBayO5YpOVVW4lsQXX8Djj6tIiEjpKuSQ6/ZAFzPr\nDCwPrGJm97h794xltgUGWZjXoiWwr5ktcPchNZ+sR48etG3bFoAWLVrQvn17KioqgN/6iHHdHjOm\nkmuvhfnzK3jqKZgwoe7l+/btm2jext5W/uRuZ/bIiyGP8hdXvmx5BwwYAPDr+2U+xHJ4rJntQpbW\nU41l7iIFrSf3cG3rN9+E4cNhpZXqf0xlZeWvv9Q0Uv7kpDk7KH/SUjWFR1Qo/unuXcysJ4C731Zj\nmaIvFO7QqxdMnAjPPAOrrJJ0IhGR2qWqUDRWMRQK93Bt6+efh5EjYdVVE40jIlKvoh/MLiXu4drW\n48aFPYmGFonMPmcaKX9y0pwdlL9U6PzheriHa1s/8wyMHg2rrZZ0IhGReKn1VI+LLgon0o0dC2us\nkUgEEZGlkq/Wk/Yo6nDppWFKjspKFQkRKV8ao6jFVVfBPffAmDHQqlXjnivtfU7lT06as4Pylwrt\nUWTRp0+44NC4cbDWWkmnERFJlsYoavi//wuForISWreOZZUiIgWhMYoCuPVWuPZaFQkRkUwao4j0\n7w+XXRYOgc3jFClA+vucyp+cNGcH5S8V2qMA7r47HAY7ZgxsuGHSaUREikvZj1EMHAhnnx2KxKab\nFmQVIiKJ0BhFHjz4IJx1FowapSIhIlKbsh2jcA8F4plnYLPNCruutPc5lT85ac4Oyl8qynaPwgz6\n9Us6hYhI8Sv7MQoRkVKlacZFRCQWKhQxSHufU/mTk+bsoPylQoVCRETqpDEKEZESpTEKERGJhQpF\nDNLe51T+5KQ5Oyh/qVChEBGROmmMQkSkRGmMQkREYqFCEYO09zmVPzlpzg7KXypUKEREpE4aoxAR\nKVEaoxARkVjEUijMrKmZTTKzoVnu62pmr5vZG2Y23sy2iiNTnNLe51T+5KQ5Oyh/qYhrj+I04B0g\nW//oY2Bnd98KuAS4PaZMsZk8eXLSERpF+ZOT5uyg/KWi4IXCzNYFOgP9gSV6Ze7+ort/G92cAKxb\n6Exxmzt3btIRGkX5k5Pm7KD8pSKOPYo+wFlAVQ7LHgc8Vdg4IiLSEAUtFGa2P/CVu08iy95EjWV3\nBY4FzilkpiRMmzYt6QiNovzJSXN2UP5SUdDDY83sMqAbsBBYHlgFGOzu3WsstxXwKLCPu3+Y5Xl0\nbKyIyFLIx+GxsZ1HYWa7AP9y9wNq/Lw1MAb4m7u/FEsYERHJ2TIxr88BzKwngLvfBlwArAbcYmYA\nC9y9Y8y5RESkFqk4M1tERJJTlGdmm9kl0Ul4k81stJmtl2WZ9cxsrJm9bWZvmVmvJLJmk0v+aLl9\nzOw9M5tiZkUziG9mV5vZu9H/4VEzW7WW5f4dbf83zex+M2sWd9YsmXLN3sLMHomWfcfMtos7aza5\n5o+WrfVE1qTkkr/IX7u5/v0U62v38Gi7LjKzbepYrmGvXXcvui9g5YzvTwX6Z1nm90D76PuVgPeB\nPyadvQH5mwIfAm2BZYHJRZR/T6BJ9P0VwBVZlmlLOFmyWXT7QeDoNGSP7rsbODb6fhlg1aSzNyR/\ndP+ZwEBgSNK5G/i3U8yv3VzyF/Nr9w/AJsBYYJtalmnwa7co9yjcfV7GzZWA2VmWmenuk6Pv5wPv\nAmvHk7BuueQHOgIfuvs0d18ADAIOjCNffdx9pLtXn/dS20mQ3wELgOZmtgzQHPgspoi1yiV79Clx\nJ3e/M3rMQv/tpM9E5bjt6z2RNSm55C/y124u27+YX7vvufsH9SzW4NduURYKADO71Mw+BY4mVPa6\nlm0LbE34xRaFHPKvA0zPuD0j+lmxOZYsJ0G6+zfAtcCnwOfAXHcfFXO2+mTNDqwPzDKzu8zsNTPr\nZ2bNY86Wi9ryQ8NOZE1KXfmB4nztZqgtf1peu1ktzWs3sUJhZiOj/ljNrwMA3P18d28NDCC8KGp7\nnpWAR4DTok8nschD/kSPIqgvf7TM+cAv7n5/lsdvCJxO2I1dG1jJzLqmITuh1bQNcLO7bwN8D5wb\nR/YoW2O3fc4nshZCHrZ/9TJF+dqNlqkrf9G/dut5fINfu3EfHvsrd98zx0Xvp5ZPJWa2LDAYuM/d\nH89XtlzkIf9nQOYg93qETyaxqC+/mfUgtDZ2r2WRPwEvuPvX0fKPAtsTeuYFlYfsM4AZ7v5KdPsR\nYiwUeci/PdDFzDoTnchqZvd4jRNZCyUP+Yv6tZtD/qJ+7eagwa/domw9mdnGGTcPBCZlWcaAO4B3\n3L1vXNlykUt+YCKwsZm1NbPlgCOBIXHkq4+Z7UNoaxzo7j/Vsth7wHZmtkL0u9iDMENwonLJ7u4z\ngelmtkn0oz2At2OKWKcc85/n7uu5+/rAUcCYuIpEfXLJX+Sv3Vz+9ov2tVtDbXubDX/tJj1KX8uo\n/CPAm4SjCQYDa0Y/Xxt4Mvp+R0J/djLhjXgSYQqQVOSPbu9LOOLjQ+DfSefOyDUF+CRju95cS/6z\nCW+wbxKOIlo2RdnbAa8ArxOmjymWo55yyp+x/C4U11FP9eYv8tdurn8/xfraPZgwfvIjMBN4upb8\nDXrt6oQ7ERGpU1G2nkREpHioUIiISJ1UKEREpE4qFCIiUicVChERqZMKhYiI1EmFQiQLM4ttSgmR\nYqdCIZKdTjASiahQiNTBgqujSdfeMLMjop83MbObLVzkZoSZPWlmh9Z47IZm9mrG7Y0zb4ukRWKT\nAoqkxCGE6T62AtYAXjGzZwnTULRx9z+aWSvCNRXuyHygu39kZt+aWTt3fx04Brgz3vgijac9CpG6\n7Qjc78FXwDigA7AD8BCAu39JuKJYNv2BY8ysCXAEYTZhkVRRoRCpm1P7LJy5XAtiMGECuf2Bie4+\nJ1/BROKiQiFSt+eAI6MxiTWAnQlXYxsPHBqNYbQCKrI92N1/Bp4BbgHuiieySH6pUIhk5wDu/hjw\nBmE68tHAWVELajDhYjXvAPcCrwG1XXf7fsK02iMKnFmkIDTNuMhSMrMV3f17M/sdYS9j+6iI1Fzu\nX8DK7t479pAieaCjnkSW3jAzawEsB1xcS5F4DFgf2C3ucCL5oj0KERGpk8YoRESkTioUIiJSJxUK\nERGpkwqFiIjUSYVCRETqpEIhIiJ1+n+KRsAkmp26rwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7999ac8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The depth of packing required is 12.881 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 154
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.7: Page 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.7\n",
+ "# Page: 312\n",
+ "\n",
+ "print'Illustration 8.7 - Page: 312\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "# Fom Illustration 8.6:\n",
+ "y1 = 0.02;\n",
+ "y2 = 0.00102;\n",
+ "m = 0.125;\n",
+ "x2 = 0.005;\n",
+ "x1 = 0.1063;\n",
+ "\n",
+ "# Number of transfer units:\n",
+ "# Method a:\n",
+ "y1_star = m*x1;\n",
+ "y2_star = m*x2;\n",
+ "yDiffy_star1 = y1-y1_star;\n",
+ "yDiffy_star2 = y2-y2_star;\n",
+ "yDiffy_starm = (yDiffy_star1-yDiffy_star2)/math.log(yDiffy_star1/yDiffy_star2);\n",
+ "# From Eqn. 8.48:\n",
+ "NtoG = (y1-y2)/yDiffy_starm;\n",
+ "print\"NtoG according to Eqn. 8.48:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Mehod b:\n",
+ "# From Illustration 8.3:\n",
+ "A = 1.424;\n",
+ "NtoG = (math.log((((y1-(m*x2))/(y2-(m*x2)))*(1-(1/A)))+(1/A)))/(1-(1/A));\n",
+ "print\"NtoG according to Eqn. 8.50:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Method c:\n",
+ "# Operating Line:\n",
+ "# From Illustration 8.3:\n",
+ "X_prime = [0.00503, 0.02, 0.04 ,0.06 ,0.08 ,0.10 ,0.1190];\n",
+ "x_prime = [0.00502 ,0.01961, 0.0385, 0.0566, 0.0741, 0.0909 ,0.1063]\n",
+ "Y_prime = [0.00102 ,0.00357 ,0.00697 ,0.01036 ,0.01376 ,0.01714 ,0.0204];\n",
+ "y_prime = [0.00102 ,0.00356, 0.00692 ,0.01025 ,0.01356 ,0.01685, 0.0200];\n",
+ "def f2(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f2(x),label=\"Equilibrium Line\");\n",
+ "plt.legend(loc='upper right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "# From graph:\n",
+ "NtoG = 8.7;\n",
+ "print\"NtoG from graph:\",round(NtoG,2),\" \\n\",\n",
+ "\n",
+ "# Method d:\n",
+ "# from Fig 8.10:\n",
+ "Y_star = [0.000625, 0.00245, 0.00483, 0.00712 ,0.00935 ,0.01149, 0.01347];\n",
+ "ordinate = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ordinate[i] = 1/(Y_prime[i]-Y_star[i]);\n",
+ "\n",
+ "plt.plot(Y_prime,ordinate);\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Y\");\n",
+ "ylabel(\"1/(Y-Y*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 8.63;\n",
+ "# From Eqn. 8.36:\n",
+ "NtoG = Ac+(1.0/2)*math.log((1+y2)/(1+y1));\n",
+ "print\"NtoG from graphical integration:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Height of transfer units:\n",
+ "NtoG = 9.16;\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic m.s]\n",
+ "Fla = 0.01377;# [kmol/cubic m.s]\n",
+ "Gav = 0.0609;# [kmol/square m.s]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "X1 = x1/(1-x1);\n",
+ "X2 = x2/(1-x2);\n",
+ "Area = 0.1746;# [square m]\n",
+ "Lav = L*((1+X1)+(1+X2))/(2*Area);\n",
+ "# From Eqn. 8.24:\n",
+ "Htg = Gav/Fga;# [m]\n",
+ "# From Eqn. 8.31:\n",
+ "Htl = Lav/Fla;# [m]\n",
+ "# since Solutions are dilute:\n",
+ "HtoG = Htg+Htl/A;# [m]\n",
+ "print\"HtoG: \",round(HtoG,2),\" m\\n\",\n",
+ "Z = HtoG*NtoG;# [m]\n",
+ "print\"The depth of packing recquired is \",round(Z,2),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.7 - Page: 312\n",
+ "\n",
+ "\n",
+ "NtoG according to Eqn. 8.48: 8.51 \n",
+ "\n",
+ "NtoG according to Eqn. 8.50: 9.16 \n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucTfX6x9+PiaTcOoQGETnp/BQluVXOKSW/qBONbk6k\nqBNdpKI6mu506MavC7mVQkJJFyKkK+NaIUkTmaI0LqGYmef3x1oztmkua2avvffae57367Vesy7f\n7/p+9nfP3s9e3+f7fB9RVQzDMAzDL8rFWoBhGIaRWJhhMQzDMHzFDIthGIbhK2ZYDMMwDF8xw2IY\nhmH4ihkWwzAMw1cialhEpJOIrBeRb0Tk7kLKPONeXy0iLdxz9URkoYh8JSJfisgtIeVTReQHEVnp\nbp0i+RoMwzCMknFEpG4sIknAaOB8YCuwTERmq+q6kDKdgcaqepKInAU8B7QGDgK3q+oqETkGWC4i\n81R1PaDAE6r6RKS0G4ZhGKUnkk8srYCNqpquqgeBqcAl+cp0BSYBqOrnQDURqaWqP6nqKvf8b8A6\nIDmknkRQt2EYhhEGkTQsycCWkOMfONw4FFambmgBEWkAtAA+Dzk9wB06Gyci1fwSbBiGYYRPJA2L\n17Vi8j995NVzh8FeB251n1zAGS5rCDQHfgRGhqnTMAzD8JGI+Vhw/Cr1Qo7r4TyRFFWmrnsOESkP\nzAAmq+obuQVUdXvuvoi8CLxVUOMiYougGYZhlBBVDdvVEMknljTgJBFpICIVgB7A7HxlZgP/AhCR\n1sBOVd0mIgKMA9aq6lOhFUSkTsjhP4EvChOgqoHe7r///phrMJ2m03SaztzNLyL2xKKqWSLSH5gL\nJAHjVHWdiPRzr7+gqu+ISGcR2QjsBXq71dsB1wBrRGSle26Iqr4HDBeR5jhDZt8B/SL1GiJNenp6\nrCV4wnT6i+n0F9MZPCI5FIaqvgu8m+/cC/mO+xdQ7yMKeZpS1X/5qdEwDMPwF4u8jyG9evWKtQRP\nmE5/MZ3+YjqDh/g5rhYkREQT9bUZhmFEAhFBA+68N4ph0aJFsZbgCdPpL5HSKSK22eZ5iyQR9bEY\nhhFd7Cnd8EKkDYsNhRlGgiAiZlgMTxT2v+Ket6EwwzAMI1iYYYkhZd0n4Dem0zCCgRkWwzAMYMmS\nJZx88slRbXPz5s1Urlw54YYwzcdiGAlC0H0sEydOZOTIkWzatIkqVarwz3/+k8cee4yqVavGRE+5\ncuXYuHEjJ554YsTb6tChAz179qRPnz4Rb8sL5mMxDCPuGTlyJIMHD2bkyJHs3r2bzz77jO+//56O\nHTty8OBB39vLzs72VC5ahjgaU3yDhBmWGBIvY+2m01/iRadf7N69m9TUVEaPHs0FF1xAUlISJ5xw\nAq+99hrp6elMnjwZgNTUVLp3784VV1xBlSpVOOOMM1izZk3efTIyMujWrRvHHXccJ554IqNGjcq7\nllu3Z8+eVK1alUmTJrFs2TLatGlD9erVOf744xkwYECeETvnnHMAOO2006hcuTLTp09n0aJF1Kt3\naLH1Bg0aMHLkSE477TSqVavGFVdcwR9//JF3/fHHH+f444+nbt26vPjii5QrV45NmzaVqG/S09Mp\nV64cOTk5gPNkM3ToUNq3b0+VKlW48MIL2bFjR175zz77jLZt21K9enWaN2/O4sWLS9RetDDDYhhG\nRPnkk0/4/fffueyyyw47f/TRR9O5c2fef//9vHOzZ88mJSWFzMxMrrrqKi699FKys7PJycmhS5cu\ntGjRgoyMDBYsWMBTTz3FvHnzDqt7+eWXs2vXLq666iqSkpJ4+umn2bFjB59++ikLFizg2WefBeDD\nDz8EYM2aNezZs4fLL7/8T7pFhOnTpzN37ly+++471qxZw8SJEwF47733ePLJJ1mwYAHffPMNixYt\n8u2JZMqUKUycOJHt27dz4MABRowYAcDWrVu5+OKLGTp0KJmZmYwYMYJu3brxyy+/+NKun5hhiSEd\nOnSItQRPmE5/iZVOEX+2kvLLL79Qo0YNypX789dN7dq1D/tibNmyJZdddhlJSUkMHDiQ33//nU8/\n/ZRly5bxyy+/cN9993HEEUfQsGFDrr/+eqZOnZpXt23btnTt2hWAihUrcvrpp9OqVSvKlSvHCSec\nQN++fUv8C/+WW26hdu3aVK9enS5durBq1SoAXnvtNa677jqaNm3KUUcdxQMPPODLsJqI0Lt3bxo3\nbkzFihVJSUnJa3Py5Ml07tyZTp06AXD++efTsmVL3nnnnbDb9RuLvDeMMkKs/Po1atTgl19+IScn\n50/G5ccff6RmzZp5x3XrHspMLiLUrVuXjIwMRISMjAyqV6+edz07OztvSCt/XYANGzYwcOBAli9f\nzr59+8jKyqJly5Yl0l67du28/aOOOooff/wxT3erVq0KbTsc8rf5229O8tzvv/+e6dOn89Zbh3Ib\nZmVl8Y9//MO3tv3CnlhiSLyMtZtOf4kXnX7Rpk0bjjzySGbMmHHY+d9++4333nuP8847L+/cli1b\n8vZzcnL44YcfSE5Opl69ejRs2JDMzMy8bffu3cyZMwco2Dl+0003ccopp7Bx40Z27drFI488kufL\nCJc6deocpjV0P1LUr1+fnj17HtYHe/bs4a677op42yXFDIthGBGlatWq3H///QwYMIC5c+dy8OBB\n0tPTSUlJoV69evTs2TOv7PLly5k1axZZWVk89dRTVKxYkdatW3PmmWdSuXJlHn/8cfbv3092djZf\nfvklaWlpQMGzu3777TcqV65MpUqVWL9+Pc8999xh12vVqsW3335boteS205KSgoTJkxg/fr17Nu3\nj4ceeqjYugcPHuT333/P27KysopsIz/XXHMNb731FvPmzSM7O5vff/+dRYsWsXXr1hK9hmhghiWG\nmE/AX0xncLnzzjt59NFHGTRoEFWrVqV169accMIJLFiwgPLlywPOU8cll1zCtGnTOPbYY3nllVeY\nOXMmSUlJJCUlMWfOHFatWsWJJ55IzZo16du3L7t3786rm/+JZcSIEbz66qtUqVKFvn37csUVVxxW\nJjU1lWuvvZbq1avz+uuvFzslOPR6p06duOWWW/j73/9OkyZNaNOmDQBHHnlkofVvuukmKlWqlLdd\nd911BbYZehx6vW7durz55ps8+uijHHfccdSvX5+RI0f69hTmJxYgaRgJQtADJIvjgQceYOPGjbz8\n8suxllJi1q1bR7NmzThw4ECBkxSChgVIJjDxMtZuOv0lXnRGm3gzirNmzeKPP/4gMzOTu+++m65d\nu8aFUYkG1guGYQSCeItOHzNmDLVq1aJx48aUL1/+Tz6csowNhRlGghDvQ2FG9LChMMMwDCOuMMMS\nQ+JlrN10+ku86DSM0mKGxTAMw/AV87EYRoJgPhbDK+ZjMQzDMOIKMywxJF7G2k2nv8SLznggf2rf\nDh06MG7cOABeeeUVLrzwwryyJc2Xkr9+LIjX1MVmWAzDiDgNGjSgUqVKVK5cOW+75ZZbwr5v/fr1\n2bNnT178S2gszNVXX83cuXNLfe9w65eEUIMYSv7XFy/YsvkxJF7WjDKd/hIvOv1ERJgzZ04gl3gv\niOzsbJKSkqLWXrwFhxZHsU8sInKMiCS5+38Vka4iUj7y0gzDKAvk5OQwaNAgatasSaNGjfi///u/\nw9L1NmjQgAULFuSVT01NzVsROX9q31AmTpzI2Weffdi5t99+m0aNGlGzZk3uuuuuvCGmiRMn0q5d\nOwYOHEiNGjVITU09rH5B7YQ+ZYTWr169Oo0bN+aTTz5hwoQJ1K9fn1q1avHSSy+VuG/iNXWxl6Gw\nD4EjRSQZmAv0BCZGUlRZIV7G2k2nv8SLTr8pzE8wZswY3n77bVatWkVaWlreSsO55P81H84v+zfe\neIPly5ezYsUK3nzzTcaPH593benSpTRq1Ijt27dz7733Fnuv/LqWLl3Kaaedxq+//sqVV15JSkoK\nK1as4Ntvv2Xy5Mn079+fffv2lVp7LvGQutjLUJio6j4R6QM8q6qPi8jqSAszDMNf5AF/hlr0/pI7\nklWVSy+9lCOOOPSVM2LECPr06cNrr73G7bffTnJyMgD33HNPkb+0w3Fk33333VSrVo1q1apx2223\nMWXKFPr06QPA8ccfz8033ww4qY1LSsOGDbn22msBJ1/LI488wtChQylfvjwdO3akQoUKbNy4kVNP\nPbXU+kNTF+e2M3v2bKDo1MX/+te/St1mafDkYxGRNsDVQB/3lDn9fSBextpNp7/ESmdpDIJfiAhv\nvvlmgT6WH3/8kXr16uUd169fP2I68reTkZFR4LXSUKtWrbz9o446CuCwtMuhaYbDIR5SF3sxLLcB\nQ4BZqvqViDQCFkZWlmEYZYU6deqwefPmvOPQfYCjjz6avXv35h3/9NNPpW5r8+bNNG3aNG8/9ykJ\nih5iO/roowHYt28fxxxzTNg6IkFu6uIxY8bEWkrxTx6qulhVu6rqcPf4W1UNf56gETdj7abTX+JF\np98UNoSVkpLCM888w9atW8nMzGTYsGGHfck3b96cqVOnkpWVRVpaGjNmzCi1n2XEiBHs3LmTLVu2\n8Mwzz9CjRw9P9WrWrElycjIvv/wy2dnZjB8/vsRpjYsjkVIXe5kVdpyIjBCRd0Rkobt9EA1xhmEk\nDl26dDksjqVbt24A3HDDDVx44YWcdtpptGzZkm7duh325fnQQw/x7bffUr16dVJTU7n66qsPu29h\nRqagKbyXXHIJZ5xxBi1atODiiy/O868UliI49NzYsWP573//S40aNVi7di3t2rUrsq2SGr9ESl1c\n7FphIvI+MA0YBPQDegE/q+pdxd5cpBPwFJAEvJj71JOvzDPARcA+oJeqrhSResBLwHGAAmNU9Rm3\n/LGunhOAdCBFVXcWcF9bK8woUyTKWmHp6emceOKJZGVlWUbGCBGEtcL+oqovAgfcYbHeQLHeIDf2\nZTTQCTgFuFJEmuYr0xlorKonAX2B3BRsB4HbVfVvQGvgZhE52b02GHhfVZsAC9xjwzAMIyB4MSwH\n3L8/icjFInI6UN1DvVbARlVNV9WDwFTgknxlugKTAFT1c6CaiNRS1Z9UdZV7/jdgHZCcv47791IP\nWgJJvIy1m05/iRedsSSRotDLIl5mhT0iItWAO4BRQBXgdg/1koEtIcc/AGd5KFMX2JZ7QkQaAC2A\nz91TtVQ19/o2oBaGYSQMDRo0IDs7O9YyjDAo1rCoau6k6J1AhxLc2+tgb/6fJnn1ROQY4HXgVvfJ\nJb82FZFC2+nVqxcNGjQAoFq1ajRv3jwvhiD3V2Osj3MJip6Cjjt06BAoPUUd5xIUPdHuT8PwSu7/\nzKJFi0hPT/f13l6c96NwvuxzDYACu4A0VX2ziHqtgVRV7eQeDwFyQh34IvI8sEhVp7rH64FzVXWb\nux7ZHOBdVX0qpM56oIOq/iQidYCFqnoy+TDnvVHWSBTnvRF5guC8rwg0BzYA3wCnAfWAPiLyVBH1\n0oCTRKSBiFQAegCz85WZDfwL8gzRTteoCDAOWBtqVELqXOvuXwu84eE1BJJ4+ZVpOv0lXnQaRmnx\n4mM5FWinqlkAIvIs8BHQHviisEqqmiUi/XEWrkwCxqnqOhHp515/QVXfEZHOIrIR2Av0dqu3A64B\n1ojISvfcEFV9DxgGvOauXZYOpJToFRtGAmNObyMIeBkK+xo4KzdWxHXkL1XVJiKyUlVbREFnibGh\nMMOIDAcOQL9+8MUXMGcOhCxdZcQ5fg2FeXlieRxYKSKLcPws5wKPisjRwPxwBRiGET/s2gXdu0PF\nirBoEbjLZhnGYXhZK2wcztDUm8AsoL2qjlXVvap6Z6QFJjLxMtZuOv0lXnX+8AOcfTacdBLMmhUc\noxKv/ZnIeFo2X1UziGMnuWEY4bF6NVx8MdxyCwwaBObKMYqiWB9LvGI+FsPwh7lzoWdPGD0aUmyq\nTEITzenGhmGUUcaNg2uvhZkzzagY3vFkWEQkSUSOF5H6uVukhZUF4mXM1XT6SzzoVIWePRfx6KOw\neDG0bx9rRYUTD/0J8aPTD4r1sYjIAOB+YDsQuoBPs0iJMgwjdhw4AH36wPLl8OmncNxxsVZkxBte\n4li+BVqp6o7oSPIH87EYRsnZuRMuuwyqVoVXXoFKlWKtyIgm0fSxbAZ2h9uQYRjB5vvvoV07aNYM\nXn/djIpRerwYlu+AhSIyRETucLeBkRZWFoiXMVfT6S9B1LlihWNUbrgBnn4akpKCqbMgTGfw8BLH\nstndKrib4H1JfMMwAs477zgzv154wRkGM4xwsTgWwyjDvPACpKY604nbtIm1GiPWRHytMBF5WlVv\nFZG3Crisqto13MYNw4gNOTlwzz2OQVmyBBo3jrUiI5Eoysfykvt3ZCGbESbxMuZqOv0l1jr/+AOu\nvtoxKJ98UrhRibVOr5jO4FHoE4uqLnf/LoqaGsMwIsqvv8Kll0KtWjB/Phx1VKwVGYmI+VgMo4yw\naRN07gxdusDw4VDOFnQy8mFrhRmG4Zlly5xlWQYMgP/+14xKtDmYfTDWEqKK538vEbFwKZ+JlzFX\n0+kv0dY5e7bzpPL883Dzzd7rWX+Gz76D+xj+0XAaj2rMO/PeibWcqFGsYRGRtiKyFvjaPW7u5r03\nDCPgjB4NN97oxKp0tXmcUeNg9kHGLB9Dk1FNWJaxjLnXzKVShbLz29zLWmFLge7Am7n57UXkK1X9\nWxT0lRrzsRhlmZwcuOsuJyf9u+9Cw4axVlQ2UFVeX/s69y28j+TKyQw7fxitklvFWpZnopnzHlXd\nLIenjMsKt2HDMCLD/v3wr3/B9u3OdOJjj421orLB/E3zGTx/MDmaw6iLRtHxxI5IGU216WkRShFp\nByAiFURkELAusrLKBkEeGw7FdPpLJHX+8gucfz4ccQTMmxeeUbH+9EZaRhodX+7ITW/fxJ1t7ySt\nbxoXNLrgT0Yl1jqjiRfDchNwM5AMbAVauMeGYQSIjRuhbVs45xxnyfsjj4y1osRmw44NpExPoeuU\nrnRr2o21/15Lj//pQTmxKXcWx2IYCcDixdCjBzzwAPTrF2s1ic3W3Vt5cPGDzFg3gzva3MEtZ93C\n0RWOjrUsX4iaj0VEjgNuABqElFdVvS7cxg3DCJ9x45x1vyZPho4dY60mccncn8nwj4czdsVY+rTo\nw4YBGzj2KHNgFYSXZ7Y3gSrA+8DbIZsRJvEy5mo6/cUvndnZMGiQE0X/4Yf+G5Wy1p+FkRuL0mR0\nE3bs28HqG1fzeMfHS2xU4qU//cDLrLCjVPXuiCsxDMMzu3fDVVc5M8A++8xmfkWCg9kHmbBqAg8u\nfpDWdVuzpPcSTq5xcqxlxQVe4lgeBj5V1bh6SjEfi5GofPeds95X+/YwahSULx9rRYlFaCxK3Sp1\nGXbeMM5MPjPWsqKCXz4WL4blN6AScADIXfBGVbVKuI1HEjMsRiLy0Udw+eWOT6V/fyijYRIRY/6m\n+QxZMIQczWHYecM4/8Tzy1QsStQWoVTVY1S1nKpWVNXK7hZooxIvxMuYq+n0l9LqnDTJSR08caKz\nmGSkv+8SvT9DCY1FGdRmEMtuWEbHRv4GOMZLf/qBl1lh5YCrgYaq+qCI1Adqq+rSiKszDIPsbOcJ\nZcYMZ1px06axVpQ4bNixgfs+uI+Pt3zM0HOGcl2L6yifZGOL4eJlKOx5IAf4h6qeLCLHAvNUtWU0\nBJYWGwozEoE9e+Caa2DXLsew/OUvsVaUGOTGosxcPzMvFqVS+bKzSGRhRDMfy1mq+m9gP4Cq/gqY\nSTeMCPP9946D/rjjnOVZzKiET+b+TAbPH8ypz59KtYrV+Lr/1wxuP9iMis94MSwHRCQp90BEauI8\nwRhhEi9jrqbTX7zo/PRTaNMGeveGMWOgQoXI68pPIvVnaCzKr/t/ZfWNqxnecXhUAxzjpT/9wEsc\nyyhgFnCciDyKs4T+fRFVZRhlmMmTYeBAx0nfuXOs1cQ3FosSGzytFSYiTYHz3MMFquppdWMR6QQ8\nBSQBL6rq8ALKPANcBOwDeqnqSvf8eOB/ge2q2iykfCpwPfCze2qIqr5XwH3Nx2LEFTk5cN99MHUq\nvPUW/C3QGY+CTVmORQmHaK4VNh4YpaqjQ86lqmpqMfWSgNHA+TirIi8TkdmhRklEOgONVfUkETkL\neA5o7V6egPO09FK+WyvwhKo+UZx2w4gX9u6Fnj2dZe8//xxq1oy1ovglNy+Kooy+aHSZi0UJAl58\nLBcCk0Tk2pBzl3io1wrYqKrpqnoQmFpAva7AJABV/RyoJiK13eMlQGYh906I/5J4GXM1nf6SX+eW\nLY6Tvlo1eP/94BiVeOvP0FiUu9rdFZFYlHCIl/70Ay+GZTtwNnC5iDwrIl5nhCUDW0KOf3DPlbRM\nQQwQkdUiMk5EqnnUYxiB4/PPoXVruPpqZ5Viy6FScrbs2kLK9BQumXoJ3Zt2Z+2/15LytxTLixJD\nPPW8qu4CuuD4NRYCVb1U86gh/8+J4uo9BzQEmgM/AiM9thM4OnToEGsJnjCd/pKrc8oUZ82vF15w\nVikOyA/rPILenxl7Muj3Vj8GbhjI6XVO55sB39CvZb/ABjgGvT/9xMussLfAWRwMuF9E0oDbPdTb\nCtQLOa6H80RSVJm67rlCUdXtufsi8mKuvoLo1asXDRo0AKBatWo0b948783NfSy1YzuO9nFODvTq\ntYh582DBgg40axYsfUE/ztyfyc3P3sycDXO4sfuNfN3/a9Z8voalHy8NhL54Os7dT09Px1dUNSIb\njtH6FidBWAVgFdA0X5nOwDvufmvgs3zXGwBf5DtXJ2T/duDVQtrXoLNw4cJYS/CE6fSPvXtVzzln\nobZtq7ptW6zVFE3Q+nPvgb06bMkwrfF4Db1h9g26ZdcWVQ2ezsKIB53u92bY3/9eZoV1A4YBtTg0\nbKVazEKUqpolIv2BuTjTjcep6joR6edef0FV3xGRziKyEdgL9A5pdwpwLvAXEdkCDFXVCcBwEWmO\nM2T2HWCJWI24YOtWuOQSJ4J+9mzzp3jFYlHiDy9rhX0LXKweY1eCgsWxGEEiLQ0uvdRZlfiuu4Ln\nTwkiarEoUSdqcSzAT/FmVAwjSLz2Gtx8M4wd6xgXo3gsFiW+8TIrLE1EponIlSLSzd0ui7iyMkCo\nAy3ImM7SoQoPPOA8ocyff8ioBE1nYcRCZ2liUaw/g4eXJ5aqOCsbX5Dv/Ez/5RhGYrB/v7OA5Pff\nOznpa9eOtaJgY3lREgtPa4XFI+ZjMWLFjz86TvomTeDFF6FixVgrCi6WFyVYRC0fi4j8VUQWiMhX\n7vGpImKrGxtGAaxYAWed5Qx7vfyyGZXCsLwoiY0XH8tY4B7ggHv8BXBlxBSVIeJlzNV0emPGDLjw\nQnjqKSeVcGFugVjr9EokdEYiL0pZ7s+g4sXHUklVP891nqmqisjByMoyjPhBFR591FmaZe5cOP30\nWCsKHlk5WYxfOd5iUcoIXuJY3gUGANNVtYWIdAf6qOpF0RBYWszHYkSD33+H66+Hb76BN96AOnVi\nrShYWCxKfBHNOJb+wBjgZBHJwIl2vzrchg0j3snIgMsugwYNYNEiOOqoWCsKFhaLUnYp1seiqt+q\n6nlADeCvqtpOVdMjrqwMEC9jrqbzz3z2GbRq5axOPGVKyYxKovdntPOiJHp/xiNe1gqrAdwPtAdU\nRJYAD6rqjkiLM4wgMn48DB7s/L344lirCQ4Wi2Lk4sXHMh9YDEzGWYTyKqCDqp4feXmlx3wsht8c\nPAi33+5E0b/xBpxsvmfAYlESiWj6WGqr6kMhxw+LSI9wGzaMeOLnn+Hyy6FyZSfrY1Uvqe4SnMz9\nmQz/eDhjV4zl+hbX83X/r8OaNmwkDl7iWOa564SVc7cewLxICysLxMuYa1nXuWIFnHmmk5f+zTfD\nNyrx3p+RiEUJh3jvz0Sk0CcWEfmNQ2mCbwNedvfL4eROuSOy0gwj9rz6Ktx2Gzz7LHTvHms1scXy\nohhesbXCDKMAsrMdB/3MmY4/pVmzWCuKHRaLUnaIpo/FMMoUv/4KV14JOTmwdKmT8bGsYrEoRmnw\n4mMxIkS8jLmWJZ1ffunEpzRrBu++GxmjEg/9mZaRxhn3nBG1WJRwiIf+hPjR6QdF+Vgaqup30RRj\nGLFk1izo1w+eeAKuuSbWamJDaCxKjxN6MPz64RaLYpSYQn0sIrJcVc8QkQ9U9R9R1hU25mMxvJKT\n42R6nDjR8amccUasFUUfi0UxIDo+liQRuRdoIiIDcYIjc1FVfSLcxg0j1uze7TydZGY6/pRatWKt\nKLpYLIoRCYrysVwBZANJQGV3OyZk3wiTeBlzTVSdGzY4Sbnq1YMFC6JnVILQn15iUYKg0wumM3gU\n+sSiquuBYSKyRlXfiaImw4g477zj5KR/5BFn2fuygsWiGNHAy1ph1XAWoTzHPbUIZxHKXZGVFh7m\nYzEKQhWGD4dRo2D6dGjbNtaKooPFohheiGYcy3icdMSX4/hZegITgMvCbdwwosnevc5TyvffO/6U\n5ORYK4oOFotiRBsvcSyNVPV+Vd3k5mZJBRpFWFeZIF7GXBNB53ffOU8nRx8NixfH1qhEqz/DzYuS\nCO97kIgXnX7gxbDsF5Gzcw9EpD2wL3KSDMNfPvgA2rRxfCnjx0PFirFWFFk27NhAyvQUuk7pSrem\n3Vj777Wk/C2FcmLx0EZ08OJjaQ68BOSu6ZoJXKuqqyOsLSzMx2KowtNPOz6VV1+Fv/891ooiS24s\nyox1M/JiUY6ucHSsZRlxRNR8LKq6CjhVRKq6x4F22hsGwP79cOONsGYNfPqpk5c+UQmNRenTog8b\nBmywWBQjpnh+NlbVXWZU/CVexlzjTecPP8A558Aff8DHHwfPqPjVn6GxKL/s+4XVN67m8Y6P+2ZU\n4u19DzrxotMPbNDVSCg+/tgJeuzeHaZMgUoJuCrJweyDjFk+hiajmrAsYxlLei/hxa4vUrdK3VhL\nMwzA8rEYCcQLL8DQoTBpEnTqFGs1/hMai5JcOZlh5w+jVXKrWMsyEoio5mMRkXZAg5Dyqqovhdu4\nYfjBgQNY3IN6AAAeOklEQVRwyy2wZAl89BGcdFKsFflPbixKjuYw6qJRdDwxmEvYGwZ4GAoTkcnA\nf4F2QEt3s5BdH4iXMdcg6/zpJ/jHP5y///3vorgwKiXpz9BYlDvb3kla3zQuaHRBVIxKkN/3UExn\n8PDyxHIGcIqNKxlBY9ky6NYN+vSB//wHPvww1or8IzcvykebP2LouUPp06KP5UUx4gYvcSzTgVtV\nNSM6kvzBfCyJzUsvwaBBMGYMXHpprNX4h8WiGLEkmj6WmsBaEVkK/OGeU1XtWlxFEekEPIWz9P6L\nqjq8gDLPABfhRPP3UtWV7vnxwP8C21W1WUj5Y4FpwAlAOpCiqjs9vA4jAcjKgjvvhDlzYNEiOOWU\nWCvyB4tFMRIJL9ONU4FLgUeAEcBIdysSEUkCRgOdgFOAK0Wkab4ynYHGqnoS0Bd4LuTyBLdufgYD\n76tqE2CBexyXxMuYa1B0/vILXHghrF/vLCKZ36gERWdxhOoMjUXZsW+H77Eo4RCP/Rlk4kWnHxRr\nWFR1EbAeqIKT4Gutqi72cO9WwEZVTVfVg8BU4JJ8ZboCk9x2PgeqiUht93gJzvIx+cmr4/5NoIEQ\nozCWL4eWLZ1tzhyoXj3WisKjoFiUsV3HWiyKkRAUOxQmIik4s8JyjcloEblTVacXUzUZ2BJy/ANw\nlocyycBPRdy3lqpuc/e3AXGbTLZDhw6xluCJWOscPx7uvhuef95x1hdGrHV6QVX5uebP/M9z/0Ny\n5WRm9pgZ2FiUeOhPMJ1BxIuP5T7gTFXdDiAiNXGGoIozLF495/kdRZ497qqqImIe+gTljz+c+JTF\ni50ZX02bFl8nyMzfNJ8hC4aQnZNtsShGQuPFsAjwc8jxDv5sDApiK1Av5LgezhNJUWXquueKYpuI\n1FbVn0SkDrC9sIK9evWigbtQVLVq1WjevHner4bc8c5YHq9atYrbbrstMHoKOw4dG45W+6+9toj7\n74dTTunA0qWwYsUitm2Lz/5My0ij3+h+/PTbTzzR9wlq/lyTclvKsXjL4kDoK+w4qP2Z/zgW/5+J\n0p+5++np6fiKqha54QyDzQN6Ab2B94DHPdQ7AvgWJ2K/ArAKaJqvTGfgHXe/NfBZvusNgC/ynXsc\nuNvdHwwMK6R9DToLFy6MtQRPRFvnBx+o1q6tOmyYak6O93pB68+vf/laL3/tcq0zoo4+t+w5PZB1\nQFWDp7MwTKe/xINO93uzWLtQ3OYljkVw0hC3xxmmWqKqs7wYLRG5iEPTjcep6mMi0s/91n/BLZM7\nc2wv0FtVV7jnpwDnAn/BeSoZqqoT3OnGrwH1KWK6scWxxB+qMGIEPPEETJ4M550Xa0Wlw2JRjHjF\nrzgWW4TSCAR79sB11zn56F9/HerXj7WikpM/FmVw+8GBmDZsGF7xy7AUOt1YRD52//4mInvybbvD\nbdiIn3ntkda5fr2z1H316o6TvrRGJVb9WdJYFHvf/cV0Bo9Cnfeq2s79e0z05BhljZkznUyPjz3m\nrPkVT2TlZDF+5XgeXPwgreu2ZknvJZxc4+RYyzKMmOPFx/KyqvYs7lzQsKGwYJOVBffdB1OnOkNf\nLVvGWpF3VJUZ62Zw7wf3Wl4UI6GI5lph/5Ov4SNwVjw2jFLx889w5ZUgAmlpUKNGrBV5Z8GmBQxe\nMNhiUQyjCIrysdwjInuAZqH+FZwZWrOjpjCBiZcxVz91LlvmPJ2ceSa8956/RiWS/bk8YzkdX+7I\njW/fyKA2g8LKi1IW3/dIYjqDR1E+lkeBR0XkMVUdEkVNRoLy4otwzz1OCuF//jPWarxheVEMo+R4\n8bFcBnyQGysiItWADqr6RhT0lRrzsQSH33+H/v3hk08cZ/3JceDfztiTwQOLHrBYFKNMEfHpxiHc\nHxqA6O6nhtuwUTbYvBnOPht273aWug+6Ucncn8ng+YNp9lwzqlasyoYBGxhy9hAzKoZRArwYloKs\nV5LfQsoi8TLmWlqd8+dDq1ZwxRUwbRocE+GJ6+H0ZzTzoiT6+x5tTGfw8DIrbLmIPAH8H46RuRlY\nHlFVRlyjCsOHw9NPw5Qp8Pe/x1pR4VgsimH4jxcfyzHAf4DclZveBx5W1b0R1hYW5mOJDbt3Q69e\nsHUrzJgBdQOat8piUQzjz9haYcVghiX6rFvnzPbq0MF5WjnyyFgrKpjQWJRh5w+zWBTDcIma815E\njhORESLyjogsdLcPwm3YiJ8xVy86p0+Hc845lOkxFkalOJ1+xqKEQyK970HAdAYPLz6WV4BpwMVA\nP5y8LD8XVcEoO2RlwZAhzrIs770HZwRwTQaLRTGM6OLFx7JCVU8XkTWqeqp7Lk1VA726kw2FRZ7t\n250ZX0cc4Tjp//KXWCs6HItFMYySEc04lgPu359E5GIROR2oHm7DRnzz+efO0ixt28K77wbLqFgs\nimHEFi+G5WE32v4OYBDwInB7RFWVEeJlzDVUp6qzJEuXLjBqFDz8MCQFJKrpvfnvRS0WJRzi8X0P\nMqYzeBTpYxGRJKCJqs4BdgIdoiHKCCb798PNNzsR9B99BE2axFqRQ1ZOFhNWTuCemfdwbodzLRbF\nMGKMFx/LMlU9M0p6fMN8LP6Sng7dusFJJzmLSUY6it4LobEodavU5bHzHrNYFMMIg6jFsYjIk0B5\nnJlhe3Gi71VVV4TbeCQxw+If8+bBv/7lTCW+7TYnj0qsyY1FydEchp03jPNPPN9iUQwjTKLpvG8B\n/A14EBgJjHD/GmES9DHXnBx45BG48spFTJsGt98ee6MSGotyZ9s7WXbDMjo2cgIcg96fuZhOfzGd\nwaNQH4uI3KqqTwP3qepHUdRkBIBdu+Daa2HbNifg8dxzY6snNxbl4y0fM/ScoVzX4jqLRTGMgFLo\nUJiIrFbV00Rkpaq2iLKusLGhsNLz5Zdw2WXQsSM8+SRUqBA7LbmxKDPXz8yLRalUvlLsBBlGAhON\nnPdrReQbIFlEvsh3TXODJY3EYtIkGDQIRo50/CqxInN/JsM/Hs7YFWO5vsX1fN3/68BNGzYMo2AK\n9bGo6pXA2cBGnOVcuoRsXaOiLsEJ0pjrvn3Qpw8MGwYLFx5uVKKpMzQvyq/7f2X1jasZ3nG4J6MS\npP4sCtPpL6YzeBQZx6KqPwH2ZJLgbNgA3btDs2awbFlsphJbXhTDSBxs2fwyzrRpTj76hx+Gvn2j\nP+srfyzKsPOGcWZy3IVNGUZCEA0fi5HA/PEH3HGHs87X3Llw+unR1xAaizL6otEWi2IYCYKXOBYA\nRMSm4vhMrMZcv/sO2reHjAxYvrx4o+K3zqJiUcIhXsawTae/mM7g4SXRV1sRWQt87R43F5FnI67M\niAizZ0Pr1nD11U7q4GrVotf2hh0bSJmeQtepXenWtBtr/72WlL+lUE48/74xDCMO8LKky1KgO/Bm\nbjyLiHylqn+Lgr5SYz6Wwzl4EO691/GpTJ0KbdpEr22LRTGM+CCqPhZV3ZxvmCIr3IaN6PHDD05C\nripVnKGvGjWi025oLEqfFn0sFsUwyghexiA2i0g7ABGpICKDgHWRlVU2iMaY67x5cOaZ8L//C3Pm\nlM6olFRnaCxKNPOixMsYtun0F9MZPLw8sdwEPA0kA1uBecDNkRRlhE92Njz4oLPE/ZQp0KFD5Nu0\nWBTDMMDiWBKSbdvgqqucbI+vvgq1a0e2vdBYlOTKyQw7f5jlRTGMOCTiPhYRGVVEPVXVW8Jt3PCf\nDz90jErv3pCaGvm0wbmxKNk52Yy6aBQdTwx/2rBhGPFNUT6W5UCauy0vYCsWEekkIutF5BsRubuQ\nMs+411eLSIvi6opIqoj8ICIr3a2TFy1BxM8x15wcZ52vlBRn+Ouhh/wzKgXpDI1FGdRmEGl907ig\n0QUxNSrxMoZtOv3FdAaPQp9YVHVi6LGIVHZO629ebiwiScBo4Hwc38wyEZmtqutCynQGGqvqSSJy\nFvAc0LqYugo8oapPlOB1JjQ7djiLRu7c6az1Va9e5NrKzYvy0eaPGHruUPq06GN5UQzDOAwvcSzN\ngJeAv7infgauVdUvi6nXBrhfVTu5x4MBVHVYSJnngYWqOs09Xg90ABoWVldE7gd+U9Uis1iWFR/L\n559Djx7OIpKPPQblI/QdnxuLMmPdjLxYlKMrHB2ZxgzDiAnRTE08BhioqvVVtT5wh3uuOJKBLSHH\nP7jnvJQ5vpi6A9yhs3EiEsXY8eCgCk8/DV26wFNPwYgRkTEqmfszGTx/MM2ea0bVilXZMGADQ84e\nYkbFMIxC8TLduJKqLsw9UNVFIuLlW8Xr40JJreNzwIPu/kPASKBPQQV79epFgwYNAKhWrRrNmzen\ngzvvNne8M5bHq1at4rbbbitx/V27oEuXRWzbBp991oETT/Rf33vz32PmupnM+n0WrQ604vnmz1Oz\nfM28WJQg9F/+49L2Z7SPQ8fag6CnsGPrz8Tvz9z99PR0fEVVi9yAN4D/AA1whqjuA2Z5qNcaeC/k\neAhwd74yzwNXhByvB2p5qeuebwB8UUj7GnQWLlxY4jorVqg2aqT673+r7t/vv6YDWQf0hbQXNHlk\nsnab1k3X/byuVDpjgen0F9PpL/Gg0/3eLNYuFLd58bEcCzwAtHNPLQFSVTWzmHpH4CxceR6QASwF\nrtQ/O+/7q2pnEWkNPKWqrYuqKyJ1VPVHt/7twJmqelUB7Wtxry2eUIWxY531vkaNcpZo8ff+yutr\nX+e+hfdZLIphlFGitlaYqv4KDCjpjVU1S0T6A3OBJGCcaxj6uddfUNV3RKSziGwE9gK9i6rr3nq4\niDTHGWr7DuhXUm3xxm+/wY03wurV8NFH8Ne/+nv/+ZvmM3i+kxfFYlEMwwib4h5pgDOBWcBK4At3\nW+PH41IkNxJkKOyrr1SbNlXt1Ut1715/21+2dZme/9L52viZxjr1i6manZNdap1BwHT6i+n0l3jQ\niU9DYV6c968Ag4AvgZxIGDejYF5+GQYOhMcfdyLp/cJiUQzDiCRefCwfq2q7IgsFkHj2sezfD7fe\nCosXw/TpcOqp/tx36+6tPLj4QYtFMQyjQKKZj+UBERkHzAcOuOdUVWeG27jxZ775Bi6/HE4+GdLS\noHLl8O+ZPy/KhgEbLC+KYRgRw0uA5LXAaUAn4GJ36xJJUWWF0LnkAK+/Dm3bQt++zlL34RoVv/Ki\n5NcZVEynv5hOf4kXnX7g5YmlJXBy3I4rxQEHDsCdd8Jbb8G770LLluHd72D2QSasmmB5UQzDiAle\nfCwTgBGq+lV0JPlDvPhYvv/eWZG4Th2YMAGqVy/9vdRiUQzDCINo+ljaAKtE5DvgD/ecqqpPLuWy\ny5w50KcP3HWXM/srnNARi0UxDCMoePGxdAJOAi7A8a10AbpGUlSic/AgDB4M1123iJkz4Y47Sm9U\n0jLS6PhyR256+ybubHtnRPKixMvYsOn0F9PpL/Gi0w+8RN6nR0FHmWHzZrjySscxP2YMtCvlRG6L\nRTEMI6hYzvsoMns23HCD84QyaBCU8/K8mA/Li2IYRqSIpo/FCJMDB+Duu2HmTJg1y5lSXFIsFsUw\njHihFL+ZjZKwaZMz3LVpE6xcebhR8TLm6lcsSjjEy9iw6fQX0+kv8aLTD8ywRJDp06F1a7jmGnjj\nDTi2BLYgKyeLMcvH0GRUE5ZlLGNJ7yWM7TqWulXqRk6wYRiGD5iPJQL8/rszfXjuXJg2rWQBj6rK\njHUzuPeDey0WxTCMqGI+loDy9dfQowc0aQIrVkDVqt7rLti0gMELBpOdk22xKIZhxC02FOYjkydD\n+/Zw003Ok0pxRiV3zHV5xnI6vtyRG9++kUFtBkUkFiUc4mVs2HT6i+n0l3jR6Qf2xOIDe/fCgAHw\n8ccwfz6cdpq3elt2bSFleorFohiGkVCYjyVMvvrKWevr9NPhuefgmGOKr5OxJyMvL8rA1gMtFsUw\njEDgl4/FhsJKiSqMGwcdOjgrE7/0UvFGJXN/JoPnD6bZc82ocmQVvu7/NUPOHmJGxTCMhMIMSynY\ns8eZQvzkk06Wx169il7rq7BYlDWfr4ma5nCIl7Fh0+kvptNf4kWnH5iPpYSsXOnM+jr3XFi6FCpV\nKrxsVk4W41eOt7wohmGUKczH4hFVePZZSE2Fp5+Gq64qqqzFohiGEX9YHEsU2bnTyZuyaRN88gmc\ndFLhZS0WxTCMso75WIph6VJnxtfxx8OnnxZuVEoTixIvY66m019Mp7+YzuBhTyyFoOo454cNg+ef\nh8suK7ic5UUxDMM4HPOxFMCOHc5Mr+3bYepUaNjwz2UsL4phGImGxbFEiI8+ghYt4K9/hSVL/mxU\nQmNRqlasyoYBGywWxTAMIwQzLC45OfDYY9C9uzP7a8QIqFDh0PVI5EWJlzFX0+kvptNfTGfwMB8L\nsG0b9OwJ+/dDWhrUDUl5kpWTxYSVE3hg8QMWi2IYhuGBMu9j+eADx6j07u3EqBzhmlqLRTEMo6xh\ncSw+MG0a3H47TJoEHTseOm+xKIZhGKWnTPtYOnaE5csPGZVo50WJlzFX0+kvptNfTGfwKNNPLLk5\n6C0WxTAMwz/KtI/FYlEMwzAOYT6WMMjcn8nwj4czdsVY+rTow4YBG8KaNmwYhmEcIqI+FhHpJCLr\nReQbEbm7kDLPuNdXi0iL4uqKyLEi8r6IbBCReSJSzaueSMSihEO8jLmaTn8xnf5iOoNHxAyLiCQB\no4FOwCnAlSLSNF+ZzkBjVT0J6As856HuYOB9VW0CLHCPiyQrJ4sxy8fQZFQTlmUsY0nvJYztOpa6\nVeoWVzWirFq1Kqbte8V0+ovp9BfTGTwiORTWCtioqukAIjIVuARYF1KmKzAJQFU/F5FqIlIbaFhE\n3a7AuW79ScAiCjEu+WNRZvaYGahYlJ07d8ZagidMp7+YTn8xncEjkoYlGdgScvwDcJaHMsnA8UXU\nraWq29z9bUCtwgS0erGVxaIYhmFEmUgaFq/Tzbx820tB91NVFZFC2xnUZhCX/+1yykkww3XS09Nj\nLcETptNfTKe/mM4AoqoR2YDWwHshx0OAu/OVeR64IuR4Pc4TSKF13TK13f06wPpC2lfbbLPNNttK\ntvnx/R/JJ5Y04CQRaQBkAD2AK/OVmQ30B6aKSGtgp6puE5EdRdSdDVwLDHf/vlFQ437MxTYMwzBK\nTsQMi6pmiUh/YC6QBIxT1XUi0s+9/oKqviMinUVkI7AX6F1UXffWw4DXRKQPkA6kROo1GIZhGCUn\nYSPvDcMwjNgQTK92EUQi6DJIOkWknogsFJGvRORLEbkliDpDriWJyEoReSuoOt1p7K+LyDoRWesO\nuwZN4xD3Pf9CRF4VkSMjodGLThE5WUQ+FZHfReSOktQNgs6gfYaK6k/3eiA+Q8W87yX7DEXKeR+h\nCQFJwEagAVAeWAU0zVemM/COu38W8JnXugHRWRto7u4fA3wdRJ0h1wcCrwCzg/i+u8eTgOvc/SOA\nqkHS6NbZBBzpHk8Dro1hX9YEWgIPA3eUpG5AdAbtM1SgzpDrQfkMFaqzpJ+heHtiyQu6VNWDQG7g\nZCiHBV0CuUGXXurGWmctVf1JVVe553/DCQo9Pmg6AUSkLs6X5Yt4mzYedZ0iUhU4W1XHu9eyVHVX\nkDQCu4GDQCUROQKoBGyNgEZPOlX1Z1VNczWVqG4QdAbtM1REfwbqM1SYztJ8huLNsBQWUOmlTEFB\nl/nr+kVpdR62xow7K64F8LnvCgvX4LU/AZ4E7gRyIqTPi4aiytTFWcXhZxGZICIrRGSsiFQKkMZk\nVf0VGAlsxpkFuVNV50dAo1edkahbUnxpKyCfoaII0meoMEr8GYo3w+J1pkGspxqXVmdePRE5Bngd\nuNX91RUJSqtTRORiYLuqrizgut+E059HAKcDz6rq6TizD4tdX64UlPp/U0QaAbfhDFMcDxwjIlf7\nJ+0wwpmtE82ZPmG3FbDP0J8I6GeoIEr8GYo3w7IVqBdyXA/H8hZVpq5bxktdvyitzq0AIlIemAFM\nVtUC43QCoLMt0FVEvgOmAP8QkZcCqPMH4AdVXeaefx3nQxIkjS2BT1R1h6pmATNx+jcShPM5CNpn\nqFAC9hkqjKB9hgqj5J+hSDmLIuSAOgL4FueXXQWKd5C25pCDtNi6AdEpwEvAk0Huz3xlzgXeCqpO\n4EOgibufCgwPkkagOfAlcJT7/k8Cbo5VX4aUTeVwp3igPkNF6AzUZ6gwnfmuxfwzVJTOkn6GItrp\nEeqgi3BmeWwEhrjn+gH9QsqMdq+vBk4vqm7QdALtccZbVwEr3a1T0HTmu8e5RHBGiw/v+2nAMvf8\nTCIwK8wHjXcBXwFf4BiW8rHqS5xZVVuAXUAmju/nmMLqBk1n0D5DRfVnyD1i/hkq5n0v0WfIAiQN\nwzAMX4k3H4thGIYRcMywGIZhGL5ihsUwDMPwFTMshmEYhq+YYTEMwzB8xQyLYRiG4StmWIyIIyK9\nRGRUCetMcZeWv9WH9u/Jd/xxuPcspr2TRWSViCwXkYb5rkVqaZGIISJniMjTJayTLiLHuvul7m8R\n6VJECoK468uygsWxGBFHRK4FWqrqAI/lawNLVPWkAq4lqWp2Cdvfo6qVS1InHERkMJCkqo/EWkus\ncJcpOUOdBTYj1UaZ6Mt4xJ5YjGIRkQZugqAJIvK1iLwiIheIyMciskFEznTLHSsib7hPGp+KSLMC\n7lXTTRi01N0KWhNrHpDsJj9qLyKLRORJEVkG3CoiF4vIZ+5Kq++LyHHuvY9xNa5xNVwmIo8BR7n3\netkt95v7V0Tkv+Ik11ojIinu+Q5um9PdxEaTC+mX5q6O1SIy002G1Bm4FbhJRD4opN4T4iSgmi8i\nNdxzjUTkXRFJE5EPReSv7vmJIvK029ffikg39/yD7mtaKSJbRWS8e/4aEfncPf+8iJTLfc0i8rD7\nJPVpSJ8V+364/fGWu58qIuPFSaT1rYgU+2MhX3+Pdv+X3heRt0NeT+gTTksRWeju5z3tikhDV/sa\nEXm4uHaNGBLJJQRsS4wNZ32hg8DfcNZhSgPGude6ArPc/VHAf9z9vwMr3f1ewCh3/1WgnbtfH1hb\nQHsnAF+EHC8ERoccVwvZvx4Y4e4PB57IXw7Yk+/+e9y/3XCMmADHAd/jLGvRAdiJs9KwAJ/kas53\nnzU4eSoAHsBdmwq4HxhYSF/mAFe6+/8J6ZcFQGN3/yxggbs/EZjm7jcFvsl3v6qujhbu9dk4T0sA\nzwI9Q9r935B+urcE70cH3HWscNaJ+ggnWdRfgF9y28tX5zvg2Hz9fVlIf9fBWTbksgLKtwQWFvC/\nMxu4xt3/d/731bbgbEdgGN74TlW/AhCRr4DcfCFf4hgegHY4Xx6o6kIR+YuI5B+qOB9oKpK3Snhl\nEamkqvtCyhS0hPi0kP16IvIajhGogJN9EeA8oEduIVXdWcxrag+8qs431XYRWQyciZN4a6mqZriv\nd5X7GvN8BeIkP6qqqkvcU5OA6SH6C1sGPSfktUwGZorI0Tgr3U4P6ZcKuS8DeMN9PevETbLmahCc\nzIMjVXWliPQHzgDS3PscBfzkFj+gqm+7+8uBju6+l/cjFAXeVidZ1A4R2Q7UwskjUxzncKi/fyzs\nia4I2gL/dPcn4xhII4CYYTG88kfIfg5wIGQ/9P+o0BwzIdfPUtUDlIy9IfujcJ5S5ojIuTi/ogtr\nvyi0gPK5ekNfbzbFf1ZC7+PVcSlu2XJApqq2KKRcaF+FtpMKbFbVSSHnJqnqYZMVXEKzAoa+Z6V5\nP0LLeumbXPL3d+h+FoeG5iuWQIsRQMzHYvjJEuBqcMblgZ/1zwmW5gG35B6ISHOP9w79EqrCoV/I\nvULOvw/cHHLvau7uQXFS/hakt4eIlBORmji/qJfiwTipk5o1U0Tau6d6AosK0JqfcsDl7v5VOJMU\n9gDfiUh3V7eIyKlFtS8iXXCe0EJnzS0AuruvJdfnVb+Yl1LS9yOchFQfcqi/6+AMseWSjjMEBs4Q\nZUF8DFzh7kcqEZrhA2ZYDK/k/xWuBeynAmeIyGrgUeDakOu5ZW4BWroO76+AvqVoLxVn2CgN+Dnk\n2sNAddcZv4pDX1xjgDXiOu9zy6vqLBz/xGqcL+U7VXV7Pr2F6cF9ff91X++pwIMFvN787AVaicgX\nrr7cOlcDfVzdX+L4rgpqO3f/dhwf0FLXUZ+qquuA+4B5rqZ5OMOFBd2jJO9HaPmiXlthhPb3N8Ba\nnKHDTzlkqB4AnhZngkZWIe3dCtwsImvc125TWgOKTTc2DCMmiMgEYI6qzoi1FsNf7InFMIxYYr9s\nExB7YjEMwzB8xZ5YDMMwDF8xw2IYhmH4ihkWwzAMw1fMsBiGYRi+YobFMAzD8BUzLIZhGIav/D8C\nvT7hM9J+mQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb4fd5f8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graph: 8.7 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYHHWV//H3h4QQMMAQgVwIOEAAAYEBFuIqkQnXiLsC\nzy4oXpYIugthRVFZiC43L1zcXUVk1d8aIEEFxPUnlxVCEmCQ5ZYfSsIliyS4AySQkEAIAY2Q5Pz+\nqJpUZ5hLZtLVVT39eT1PP3RVV3d9+1DpM3VOXRQRmJmZVcNmRQ/AzMwGDicVMzOrGicVMzOrGicV\nMzOrGicVMzOrGicVMzOrGicVG9AkXSzpJz28/qSkD+W5jnomaRdJqySp6LFYfXBSsZqS9HFJj0h6\nQ9JSSQ9LOjPHVfZ4IlZEvC8ifpPXOiS1SnphYz5EUrOkdZIK+3cpqV3SER3TEfF8RGwdPqHNNpKT\nitWMpC8DVwJXACMiYgRwBvBBSUO6ec+mbqO1+Au72uvIZcySBm3EYpHX+q0xOKlYTUjaFrgEODMi\n/m9EvAkQEXMj4lMR8Va63DRJP5R0h6Q3gFZJH5H0mKSVkp6XdFHF53b8df85SYslvZgmrw4BDJE0\nXdLrabnr4Ir3t0s6Mn0+SNJXJS1Ml31U0k7pa99L170ynX9YP+PQJunrkv47Xcddkt6dvtyxx/Ra\nWnIal77nNEnzJb0qaYakXSo+7xhJv5f0mqR/l3SfpNPT1yZJekDSdyQtBy6StJukeyQtl7RM0k/T\n/zekJbxdgNvT9X+l896TpNGSbpP0iqQFkj5bMZaLJd3cXaytMTipWK38JbAFcOtGLHsK8I2IGAY8\nALwBfCoitgU+Apwp6fhO72kFxgLHAOd1JAqSv7o/CtwIbAvcBlxd8b4gK199Cfg48OGI2Ab4DPCn\n9LU5wAHAdsANwC+627vayO83CdgRGAJ8JZ0/Pv3vtmnJ6ZH0e04BTgS2B+5PvwuStgd+AZwHDAd+\nTxLnylLVocCz6bouTePxLWAUsDewM3AxQER8Gnge+Kt0/f/axdhvSpcZBfwtcKmkCRWv/zXdx9oa\ngJOK1cr2wPKIWNcxQ9KDklZI+mOnv/xviYiHACLizxFxX0Q8lU4/QfLDdninz78kIv4UEU8C15H8\ncHe4PyJmpH2Bn5Ikh658FvhaRCzoWFdEvJo+/1lErIiIdRHxHZIEuVc/4hDAdRGxMCJWAzcDLR0h\n6WL5M4DLIuL3aewuA1rSvZXjgCcj4pZ0XFcBSzq9/8WI+Pf09dUR8WxE3B0Rb0fEcuC7vDOWXZK0\nM/AB4LyIeCsi5gFTgb+rWGxjY20DlJOK1corwPaVPZKI+EBEbJe+1jE/gA0a25LGSbpX0suSXgP+\nAXg3G6p8z/PA6IrppRXP/wgM7aZXM4bkr/p3SEtB89My0wqSv8S37+a79qbyh/9PwLAeln0P8L00\n+a4giRXATiR7C4s6Ld95unMsR0i6SdIiSSuBn/DOWHZnNPBqR+ky9Xw6lg4bG2sboPw/22rlIeDP\nwAn9eO8NwC3AmIhoAn7EO7fdXTo9X9yP9bxAUkLbgKTxwLnASRHRlCbClVS/od3VEVbPA38fEdtV\nPN6V7sm9RJIIO8apyuluPvNSYC3wvrSc+Gk2jGVPR3m9CAyXVJkEd+GdicwamJOK1UREvEbSqP+B\npL+RtLWkzSS1AO+qWLSrH+phwIqIeEvSocAneOeP3z9L2lLSviT9ip/3Y5hTgW9IGqvE/pKGp+tf\nAyyXNETShcA2/fj8Dt0lo2XAOmD3ink/Ar4qaR9IDniQdFL62h3AfpKOlzQYOAsY2cu6hwFvAq+n\nByGc2+n1pZ3Wv15EvAA8CFwmaQtJ+wOnkZS5zAAnFauhiPgXkmb4P5GUgJaQ/Gj+E8meDGzYOO8w\nGfi6pNeBC+g6YdwHLARmA/8SEbN7+Lzu/hr/DkmPYybJnsiPgaHAXcAM4BmgnaRk9Xynz+vpL/ye\n1r/+vRHxR5Im+gNpuevQiLiF5BDsm9Jy1RPAsenyy4GTgG8Dy0ka74+S7BF2N65LgIPS73c78MtO\ny1xGkqBXSPpSF+M9BWgm2Wv5v8CFEXFPD+vz+S0NRnmd0yRpKMk/9C1IjnC5NSKmpH/5/ZykVtwO\nnJz+FYukKSR/+awFzo6Imen8g4FpJP/A74iIL+QyaKs7kpqBPwCDKw8CaERp7+IF4BMRcV/R47HG\nlNueSnpky4SIaAH2ByakR/icD8yKiD2Bu9Np0t37jwH7ABNJyiQdZYIfAqdHxB7AHpIm5jVus3qS\nnqfSJGkL4Kvp7IeLHJM1tlzLX+nuPCR7KoOAFSTnDExP508na9weD9yYHurYTlLKGCdpFLB1RMxJ\nl7ue/jV7beBq5BLLX5L8W1lGcg7PCRHx557fYpafXJNK2oidS9L8uzc912BERHQcdrgUGJE+H82G\nR5EsIjlUsfP8xWx4CKM1sIhoj4hBjVr6iohLImL7iNgmIv4yIv5f0WOyxjY4zw9P/6G3pJeBuKvT\nmbdEREhq5L8yzcwGlFyTSoeIWCnp18DBwFJJIyNiSVraejldbDHJJSM6jCHZQ1nMhsfej6GLcxCc\nnMzM+iciqnbOVW7lL0nbS2pKn28JHA08RnI9oFPTxU4lOamNdP7H0/MAdgX2AOZExBKSY+rHpY37\nT1e8ZwMR4UcEF110UeFjKMvDsXAsHIueH9WW557KKGB6epjjZsBPIuJuSY8BN6dXUm0HTgaIiPmS\nbgbmk5xoNjmybzyZ5JDiLUkOKZ6R47jrXnt7e9FDKA3HIuNYZByL/OSWVCK58N9BXcx/FTiqm/dc\nSnIZic7zfwvsV+0xmplZdfmM+gFo0qRJRQ+hNByLjGORcSzyk9sZ9bUmKQbKdzEzqxVJRD006q04\nbW1tRQ+hNByLjGORcSzy46RiZmZV4/KXmVkDc/nLzMxKy0llAHK9OONYZByLjGORHycVMzOrGvdU\nzMwamHsqZmZWWk4qA5DrxRnHIuNYZByL/DipmJlZ1binYmbWwNxTMTOz0nJSGYBcL844FhnHIuNY\n5MdJxczMqsY9FTOzBuaeipmZlZaTygDkenHGscg4FhnHIj9OKmZmVjXuqZiZNTD3VMzMrLScVAYg\n14szjkXGscg4FvlxUjEzs6pxT8XMrIG5p2JmZqXlpDIAuV6ccSwyjkXGsciPk4qZmVVNbj0VSTsD\n1wM7AgH8R0RcJeli4LPAsnTRr0bEnel7pgCnAWuBsyNiZjr/YGAaMBS4IyK+0MX63FMxM+ujavdU\n8kwqI4GRETFX0jDgt8AJwMnAqoj4Tqfl9wFuAA4BdgJmA3tEREiaA/xjRMyRdAdwVUTM6PT+PieV\nt96CNWtgq636+SXNzOpc3TTqI2JJRMxNn78B/A9JsgDo6gscD9wYEW9HRDuwEBgnaRSwdUTMSZe7\nniQ5bbIzz4Tp06vxSeXienHGscg4FhnHIj816alIagYOBB5OZ31e0jxJ10hqSueNBhZVvG0RSRLq\nPH8xWXLaJEceCTNm9L6cmZltnNyTSlr6+k/gC+keyw+BXYEW4CXg3/IeQ3eOPhra2pIy2EDS2tpa\n9BBKw7HIOBYZxyI/g/P8cEmbA78EfhoRtwBExMsVr08Fbk8nFwM7V7x9DMkeyuL0eeX8xV2tb9Kk\nSTQ3NwPQ1NRES0vL+o2nY3e38/See7by4IMAXb/uaU972tMDabqtrY1p06YBrP+9rKY8G/UCpgOv\nRMQ5FfNHRcRL6fNzgEMi4hMVjfpDyRr1Y9NG/SPA2cAc4NdUqVEPcMEF8PbbcPnl/fqapdTW1rZ+\nY2p0jkXGscg4Fpm6adQDHwQ+BUyQ9Fj6+DBwhaTHJc0DDgfOAYiI+cDNwHzgTmByRZaYDEwFFgAL\nOyeUTTFxItx1V7U+zcyssTX8tb/WrIEddoD582HUqBwGZmZWYvW0p1IXBg9OjgKbObPokZiZ1b+G\nTyow8EpgHU05cywqORYZxyI/TirAsccmeypr1xY9EjOz+tbwPZUO++4L110Hhx5axUGZmZWceyo5\nmTjRZ9ebmW0qJ5XUQOqruF6ccSwyjkXGsciPk0pq/Hh4/HFYsaLokZiZ1S/3VCocdxx85jNw0klV\nGpSZWcm5p5KjgVQCMzMrgpNKhWOPTZr19b7z5npxxrHIOBYZxyI/TioV9twTNt8cnnqq6JGYmdUn\n91Q6OfNMGDsWvvzlKgzKzKzk3FPJmc9XMTPrPyeVTiZMgIcfhjffLHok/ed6ccaxyDgWGcciP04q\nnWyzDRx8MNx3X9EjMTOrP+6pdOHyy+HFF+Gqq6rycWZmpeWeSg10HFpsZmZ946TShQMOgNdfhz/8\noeiR9I/rxRnHIuNYZByL/DipdGGzzZK9FZ9db2bWN+6pdOOGG+DnP4dbb63aR5qZlU61eypOKt1Y\ntiw5CXLZMhgypGofa2ZWKm7U18gOO8Bee8GDDxY9kr5zvTjjWGQci4xjkR8nlR747Hozs75x+asH\nDzwAZ50Fc+dW9WPNzErDPZVu5JFU1qxJymDz58OoUVX9aDOzUnBPpYYGD4ajjoKZM4seSd+4Xpxx\nLDKORcaxyI+TSi98dr2Z2cZz+asXL7wABx4IS5fCoEFV/3gzs0K5/FVjO+8MI0fCb39b9EjMzMov\nt6QiaWdJ90p6StKTks5O5w+XNEvSM5JmSmqqeM8USQskPS3pmIr5B0t6In3te3mNuTv1VgJzvTjj\nWGQci4xjkZ8891TeBs6JiH2B9wNnSdobOB+YFRF7Anen00jaB/gYsA8wEfiBpI5dsh8Cp0fEHsAe\nkibmOO538PkqZmYbp2Y9FUm3AFenj8MjYqmkkUBbRLxX0hRgXURckS4/A7gYeA64JyL2Tud/HGiN\niDM6fX4uPRWA1athxx3huedgu+1yWYWZWSHqsqciqRk4EHgEGBERS9OXlgIj0uejgUUVb1sE7NTF\n/MXp/JoZOhTGj4fZs2u5VjOz+jM47xVIGgb8EvhCRKzKKloQESGparsXkyZNorm5GYCmpiZaWlpo\nbW0Fshpqf6d3262N666Dk06qzuflOV1ZLy7DeIqc7phXlvEUOT137ly++MUvlmY8RU5feeWVVf19\nqKfptrY2pk2bBrD+97Kaci1/Sdoc+C/gzoi4Mp33NEn5aomkUcC9afnrfICIuDxdbgZwEUn5696K\n8tcpJOWzmpW/AJ55Bo44IjnEWFXbUcxHW1vb+o2p0TkWGcci41hk6uYyLWmTfTrwSkScUzH/2+m8\nK9JE0hQR56eN+huAQ0nKW7OBsenezCPA2cAc4NfAVRExo9P6ck0qEbD77nDbbfC+9+W2GjOzmqqn\nnsoHgU8BEyQ9lj4mApcDR0t6BjginSYi5gM3A/OBO4HJFVliMjAVWAAs7JxQakGqv0OLzcxqzWfU\n98Gtt8L3v1/+hr137TOORcaxyDgWmXraUxlwjjgCHnkE3nyz6JGYmZWT91T6qLUVzj0XPvKR3Fdl\nZpY776kUzGfXm5l1z0mljyZOhLvuKnoUPas8R6PRORYZxyLjWOTHSaWPDjgAVq2CZ58teiRmZuXj\nnko/nHoqjBsHkyfXZHVmZrlxT6UE6qEEZmZWBCeVfjj6aGhrg7feKnokXXO9OONYZByLjGORHyeV\nfth+e9hrL3jggaJHYmZWLu6p9NOFF8Kf/wxXXFGzVZqZVZ17KiXhvoqZ2Ts5qfTToYcmd4J88cWi\nR/JOrhdnHIuMY5FxLPLjpNJPgwfDUUfBzJlFj8TMrDzcU9kE11yTXLH4xhtrulozs6qpm5t01VoR\nSWXRImhpgaVLYdCgmq7azKwq3KgvkTFjYORIePTRokeyIdeLM45FxrHIOBb5cVLZRD4KzMwss9Hl\nL0lDgYiIP+c7pP4povwFSU/lwgvhwQdrvmozs01Ws56KpM2AE4BTgA+Q7NUIWAs8BPwMuKWQX/Iu\nFJVUVq+GHXeE9nYYPrzmqzcz2yS17Km0AQcD/wrsFhGjImIksFs67xDgvmoNpF4NHQrjx5frvvWu\nF2cci4xjkXEs8jO4h9eO7qrUlc57GHhY0ha5jayOdPRVTj656JGYmRWrx56KpE9GxM8knRIRpT4b\no6jyF8CCBcm96xctAlVtJ9LMLH+1PqR4tKSTgTHVWuFANHYsbLEFPPlk0SMxMytWt0lF0kXAcOAG\nYHg6bV2QynVosevFGcci41hkHIv8dJtUIuIS4BXg08Ar6bR1Y+JEmDGj6FGYmRXLPZUqWbUKRo+G\nJUvgXe8qbBhmZn1Ss56KpDuBBwHKnlDKYOut4S/+IrnNsJlZo+qpUX8tcJekr0navFYDqmdlKYG5\nXpxxLDKORcaxyE9PPZVfAAcB2wKPSvqKpC+njy9tzIdLulbSUklPVMy7WNIiSY+ljw9XvDZF0gJJ\nT0s6pmL+wZKeSF/7Xr++aQ0ce2w5koqZWVF666lsAZwHfBK4CVjX8drGNO4ljQfeAK6PiP3SeRcB\nqyLiO52W3YfkSLNDgJ2A2cAeERGS5gD/GBFzJN0BXBURMzq9v/ArxkQkfZX//m/YffdCh2JmtlGq\n3VPp9ox6SROB7wC3AwdGxB/7+uERcb+k5q4+vot5xwM3RsTbQLukhcA4Sc8BW0fEnHS560muSVa6\nfQIp2Vu56y6YPLno0ZiZ1V5PPZWvASdFxHkdCUXSxVVa7+clzZN0jaSmdN5oYFHFMotI9lg6z1+c\nzi+lMvRVXC/OOBYZxyLjWOSn2z2ViBjfxezjgYs3cZ0/BL6ePv8G8G/A6Zv4mQBMmjSJ5uZmAJqa\nmmhpaaG1tRXINqK8p48+upW//3uYNauNzTfPf32e7nm6Q1nGU+T03LlzSzWeIqfnzp1bqvHUcrqt\nrY1p06YBrP+9rKaeLn3/sYj4ead5cyOipU8rSMpft3f0VLp7TdL5ABFxefraDOAi4Dng3ojYO51/\nCnB4RJzR6bMK76l0GDcOLr8cJkwoeiRmZj2r5bW//k7SDEmVLeeDN3WFkkZVTJ4IdBwZdhvwcUlD\nJO0K7AHMiYglwOuSxkkSyRn+t2zqOPJUhhKYmVkRejqk+CPAj4D/knShpO2BbSUNl7RRt6OSdCPJ\nCZR7SXpB0mnAFZIelzQPOBw4J13ffOBmYD5wJzC5YtdjMjAVWAAs7HzkV9kUfWhx59JPI3MsMo5F\nxrHIT0/3UyEibpHUDvyGpO/RcUhxkNysq0cRcUoXs6/tYflLgUu7mP9b4B3ls7I69FB44QV48cXk\nEGMzs0bRU09lKOkRYMBXIuK/ajmwvipTTwWSG3YddxxMmlT0SMzMulfLnso8kj2ZA8ueUMqo6BKY\nmVkRekoqJ0bElIj4U81GM4Ace2xy3/q1a2u/bteLM45FxrHIOBb56SmpfEXSId29mB6NdV0OYxoQ\nxoyBUaPg0UeLHomZWe301FPZDzgXeD/we+AlksurjAT2Ijmq618johQ30S1bTwXg3HNh2DC4yPfM\nNLOSqnZPpccLSqYr3AI4EHgPyVFfzwHzImJ1tQZRDWVMKrNnwwUXwEMPFT0SM7Ou1fImXf8h6URg\nSEQ8HBE/j4ibI+KRsiWUsjrsMHjqKXj11dqu1/XijGORcSwyjkV+ertJVwtwh6R7JJ0n6YAajWtA\nGDoUPvShZI/FzKwR9Fr+AkjPpj8GmAjsD/wOmBERN+c7vI1XxvIXwPe/D489Btd2e8qnmVlxat5T\n6WIAImngbx4R36rWQDZVWZPKggXQ2gqLFiX3WzEzK5NanvzYpfSX+/NlSihlNnZsUgZ7sobHyLle\nnHEsMo5FxrHIT093fnyiu9eAETmMZUDquBvkjBmwX91cvczMrH96Ok9lKUkPZUUXLz8YEaW6VGJZ\ny18At90GV13lhr2ZlU/N7lEP/BoYFhGPdTGI+6o1gEYwYQJ88pPwxhvJyZBmZgNVT/dTOS0i7u/m\nta4uaW/d2HprOOQQqFUZ1/XijGORcSwyjkV++tyot/7xVYvNrBH0+ZDisipzTwVg3jz4279NDjE2\nMyuLwg8ptv7Zf/+kp7JwYdEjMTPLj5NKjXQcWnzXXfmvy/XijGORcSwyjkV+nFRqaOLE2iQVM7Oi\nuKdSQ6+8ArvtBi+/DFtsUfRozMzcU6lr7343vPe98MADRY/EzCwfTio1VosSmOvFGcci41hkHIv8\nOKnU2MSJPl/FzAYu91RqbM0a2HHH5KrFo0t19TQza0TuqdS5wYPhqKN8FJiZDUxOKgXIu6/ienHG\nscg4FhnHIj9OKgU49liYNQvWri16JGZm1ZVrT0XStcBHgJcjYr903nDg58B7gHbg5Ih4LX1tCnAa\nsBY4OyJmpvMPBqYBQ4E7IuILXayrLnoqHfbbD378Y3j/+4seiZk1snrrqVxHcqOvSucDsyJiT+Du\ndBpJ+wAfA/ZJ3/MDaf1d3X8InB4RewB7SOr8mXXHZ9eb2UCUa1JJ78fS+c6RHwWmp8+nAyekz48H\nboyItyOiHVgIjJM0Ctg6Iuaky11f8Z66leehxa4XZxyLjGORcSzyU0RPZURELE2fLyW73/1oYFHF\ncouAnbqYvzidX9cOOwyeegpefbXokZiZVU9PtxPOXUSEpKo1QiZNmkRzczMATU1NtLS00NraCmR/\nmZRl+qGH2th3X5g9u5WTT67u57e2thb+/TxdzukOZRlPUdMd88oynlpOt7W1MW3aNID1v5fVlPvJ\nj5KagdsrGvVPA60RsSQtbd0bEe+VdD5ARFyeLjcDuAh4Ll1m73T+KcDhEXFGp/XUVaMe4Oqr4Xe/\ng2uvLXokZtao6q1R35XbgFPT56cCt1TM/7ikIZJ2BfYA5kTEEuB1SePSxv2nK95T1zr6KtXOhZ3/\nKm1kjkXGscg4FvnJNalIuhF4ENhL0guSPgNcDhwt6RngiHSaiJgP3AzMB+4EJlfsekwGpgILgIUR\nMSCunjV2LGy5JTzxRNEjMTOrDl/7q2BnnQXNzXDuuUWPxMwa0UAof1kFX7XYzAYSJ5WCTZgAc+bA\nG29U7zNdL844FhnHIuNY5MdJpWDDhsEhh4C3cTMbCNxTKYGpU+Gyy+AnP4EPfKDo0ZhZI6l2T8VJ\npSR+9Ss480w4/XS46CIYMqToEZlZI3CjfoA68USYOxfmzUuuXDx/fv8/y/XijGORcSwyjkV+nFRK\nZORIuP12OOMM+NCH4KqrYN26okdlZrbxXP4qqYUL4dOfThr5110HY8YUPSIzG4hc/moQY8fC/fdD\nayscdBDcdFPRIzIz652TSokNHgxf+xrceSdccgmccgqs6Hx3mi64XpxxLDKORcaxyI+TSh04+GD4\n7W9hhx1g//1h9uyiR2Rm1jX3VOrMzJlw2mnwN38Dl1+eXJDSzKy/3FNpcMccA48/DkuWJHswv/td\n0SMyM8s4qdSh4cOTxv0//3NyQcpLL4U1a7LXXS/OOBYZxyLjWOTHSaVOSfCJTyS9lrvvhsMPh2ef\nLXpUZtbo3FMZANatS06U/Na3kr2Wz342STpmZr3xtb+60chJpcNTT8GnPpWcKDl1KowYUfSIzKzs\n3Ki3bu27LzzyCGyzTRstLXDrrUWPqHiunWcci4xjkR8nlQFmyBD43OfgF7+Ac85JSmGrVhU9KjNr\nFC5/DWCrViWJ5d574frr4YMfLHpEZlY27ql0w0mle7femlz5+DOfgYsv9r1azCzjnor1qnO9+Pjj\nk3u1PPkkjBuXNPQbhWvnGcci41jkx0mlQYwYkeyxnHVWck7Ld7/re7WYWfW5/NWAnn02uVfLllvC\ntGmw885Fj8jMiuLyl22y3XeH3/wGjjwyuX7YDTeA87GZVYOTygC0MfXiwYPhq1+FGTPgm99M7tXy\n6qv5j63WXDvPOBYZxyI/TioN7qCDkuuHjRwJBxwAs2YVPSIzq2fuqdh6s2cnhx2feGJyr5attip6\nRGaWtwHTU5HULulxSY9JmpPOGy5plqRnJM2U1FSx/BRJCyQ9LemYosY9kB11VHKvluXLk17Lo48W\nPSIzqzdFlr8CaI2IAyPi0HTe+cCsiNgTuDudRtI+wMeAfYCJwA8kuXTXjU2pF2+3XdK4v/BCOO64\npN9Sea+WeuPaecaxyDgW+Sn6h7nzLtdHgenp8+nACenz44EbI+LtiGgHFgKHYrk55ZTkrpJtbTB+\nPCxcWPSIzKweFNZTkfQHYCWwFvg/EfFjSSsiYrv0dQGvRsR2kr4PPBwRP0tfmwrcGRG/rPg891Ry\nsG4dXH01fP3ryb1aPvc536vFbCAZMD0V4IMRcSDwYeAsSeMrX0wzRE9ZwhmkBjbbDM4+Ozmv5Uc/\ngr/+a1iypOhRmVlZDS5qxRHxUvrfZZJ+RVLOWippZEQskTQKeDldfDFQed73mHTeBiZNmkRzczMA\nTU1NtLS00NraCmQ11EaYrqwXV+vzX365jSuugPvua6WlBc46q43x48vxfXua7hyTosdT5PTcuXP5\n4he/WJrxFDl95ZVXNvTvw7Rp0wDW/15WUyHlL0lbAYMiYpWkdwEzgUuAo4BXIuIKSecDTRFxftqo\nv4Ek8ewEzAbGVta7XP7KtLW1rd+Y8vDgg8llXg47DE4/PblI5RZb5La6TZJ3LOqJY5FxLDID4tL3\nknYFfpVODgZ+FhGXSRoO3AzsArQDJ0fEa+l7vgqcBqwBvhARd3X6TCeVGnrjDfj2t+HOO+Hpp+ED\nH0gu+3LEEXDggTBoUNEjNLONMSCSSh6cVIqzYgXcdx/cfTfccw+89FJyJeSOJLP33m7um5XVQGrU\nW04q+wm1sN12cMIJ8P3vJ/dqeeopOOkkeOyx5FyX0aPhk5+Ea6+F556r6dBqHosycywyjkV+CmvU\n28A1ahR84hPJIwL+93+TvZhZs2DKFBg2LNuLOeII2HHHokdsZtXi8pfVVESyJ9NRKrvvvuR+Lkce\nmTw+9CHYdtuiR2nWONxT6YaTSn1asya5SvI99ySJ5pFHYN99kz2YI49MDgDYcsuiR2k2cLmnYr2q\np3rx4MHJIclTpiRXSV62DC67LDl67IILYIcdkgTzzW/CQw/1/Tpk9RSLvDkWGcciP04qVipDh8KE\nCfCNbySmrGgiAAAHo0lEQVTnw7z0Enz5y8kNxM48E979bvirv4LvfhfmzUsuI2Nm5eHyl9WVZcuS\ni1x29GRWrEiSUEfjf+xYH75s1hfuqXTDSaUxPf98klw6ejKDBm14ZNlOOxU9QrNyc0/FetVI9eJd\ndoFJk+D662HRouSw5UMOgVtvhf33h112aeOss+CXv0xKaI2skbaL3jgW+fF5KjZgSLDXXslj8uSk\n33LNNbByJUydmtwqeezYJOnstlvy2H335L9NTb1/vpn1zuUvaxhvvQVz5iS3TP7DH7LHs8/C5ptv\nmGQqk86YMclRamYDkXsq3XBSsf6KgOXLN0wylUln6dLkBM3OSafj+TbbFP0NzPrPSaUbTioZX9Y7\nU41YrF6dXLOsu6QzdGj3ezk77VSeKzZ7u8g4FplqJxXv1Jv1YujQrFfTWQS8/PKGSeb++2H69OT5\n8uXJwQRdJZxdd4Wtt6799zHLk/dUzHK0enVyQc3OPZyO58OGdZ1wdtstubrzZj4+03Lm8lc3nFSs\n3kQk/ZrO5bSO6RUr4D3vSZJMczOMGJFctqbzY/jw8pTYrP44qXTDSSXjenGmnmPxxz9Ce3uSZNrb\nkzLbsmXvfKxcmRwSvcMOsP32XSeeHXaA9vY2jjuule23hyFDiv52xarn7aLa3FMxaxBbbQX77JM8\nerJ2LbzyyjuTzfLlsGBBcg21ZcuSMtwFFyTLbrXVO5NOTwlpq61q852t/nlPxazBRMBrr3W919M5\nKXU832yz7hNOV8lom218DbZ64fJXN5xUzPIRAW++2XsSqny89VaSbLbbLkkwHY9tt+1+uvNrw4Y5\nMdWCk0o3nFQyrhdnHItMLWOxenWyp/Paa/D668lj5crseW/TK1fCn/6UHHLdn4RUOf2ud70zOXm7\nyLinYmalN3RocnmbMWP6/xlr18KqVb0noPb2nl9fvXrD5LTNNsnN3nbddcMEtMMOcMYZVQtBw/Ke\nipkNaGvWZMmppwQlwde/XvRoa8/lr244qZiZ9Z3vp2K98r0iMo5FxrHIOBb5cVIxM7OqcfnLzKyB\nufxlZmalVTdJRdJESU9LWiDpvKLHU2auF2cci4xjkXEs8lMXSUXSIOBqYCKwD3CKpL2LHVV5zZ07\nt+ghlIZjkXEsMo5FfuoiqQCHAgsjoj0i3gZuAo4veEyl9dprrxU9hNJwLDKORcaxyE+9JJWdgBcq\nphel88zMrETqJan4sK4+aG9vL3oIpeFYZByLjGORn7o4pFjS+4GLI2JiOj0FWBcRV1QsU/4vYmZW\nQg13mRZJg4HfA0cCLwJzgFMi4n8KHZiZmW2gLq5SHBFrJP0jcBcwCLjGCcXMrHzqYk/FzMzqQ2kb\n9RtzsqOkq9LX50k6sLf3ShouaZakZyTNlNRUi++yqXKKxcWSFkl6LH1MrMV32RSbGIdrJS2V9ESn\n5Rtxm+guFnW3TUD/YyFpZ0n3SnpK0pOSzq5YvqG2i15i0bftIiJK9yApcS0EmoHNgbnA3p2WOQ64\nI30+Dni4t/cC3wb+KX1+HnB50d+1wFhcBHyp6O9Xizik0+OBA4EnOr2nobaJXmJRV9vEpsYCGAm0\npM+HkfRt39uI20UvsejTdlHWPZWNOdnxo8B0gIh4BGiSNLKX965/T/rfE/L9GlWRVywA6ukO4JsS\nByLifmBFF5/baNtET7GA+tomoP+xGBERSyJibjr/DeB/yM5/a6TtordYQB+2i7ImlY052bG7ZUb3\n8N4REbE0fb4UGFGtAecor1gAfD7dBb6mDnbvNyUOPWm0baI39bRNQP9jscGNjiU1k+y9PZLOaqTt\nordYQB+2i7ImlY09emBjsqe6+rxI9uvq4SiFasai0g+BXYEW4CXg3/r4/lrrbxw2+v9xA2wTvb2v\n3rYJqEIsJA0D/hP4QvpX+oYLNtB20U0s+rRdlDWpLAZ2rpjemSSj9rTMmHSZruYvTp8v7SgBSBoF\nvFzFMeelmrFY/96IeDlSwFSSXecy628cFtOzRtomeoxFHW4TsImxkLQ58EvgpxFxS8UyDbdddBeL\nvm4XZU0qjwJ7SGqWNAT4GHBbp2VuA/4O1p9x/1q6u9rTe28DTk2fnwrcQvnlEov0H0qHE4EnKLdN\niUNPGm2b6FYdbhOwCbGQJOAaYH5EXNnFexpmu+gpFn3eLoo+YqGHIxk+THIEwkJgSjrvH4B/qFjm\n6vT1ecBBPb03nT8cmA08A8wEmor+ngXG4nrg8XT5W0hqyIV/1xzjcCPJ1Rj+TFJT/kwDbxPdxaLu\ntolNiQVwGLCO5Cipx9LHxEbcLnqJRZ+2C5/8aGZmVVPW8peZmdUhJxUzM6saJxUzM6saJxUzM6sa\nJxUzM6saJxUzM6saJxWznChxf+WlwiWdJOnOIsdlliefp2KWI0n7Ar8guUDf5sDvgGMj4n8LHZhZ\nTpxUzHIm6QrgTZL7VKyMiG8VPCSz3DipmOVM0lYkl71YDfxFJPe6MBuQBhc9ALOBLiL+KOkmYJUT\nig10btSb1cY66uOeHGabxEnFzMyqxknFrHa8p2IDnhv1ZmZWNd5TMTOzqnFSMTOzqnFSMTOzqnFS\nMTOzqnFSMTOzqnFSMTOzqnFSMTOzqnFSMTOzqvn/ShJ1sw8tyPEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb1dab70>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graphical integration: 8.62 \n",
+ "\n",
+ "HtoG: 1.4 m\n",
+ "The depth of packing recquired is 12.84 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 140
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.8: Page 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.8\n",
+ "# Page: 317\n",
+ "\n",
+ "print'Illustration 8.8 - Page: 317\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#***Data***\n",
+ "# a:NH3 b:air c:H2O\n",
+ "ya = 0.416;# [mole fraction]\n",
+ "yb = 0.584;# [mole fraction]\n",
+ "G1 = 0.0339;# [kmol/square m.s]\n",
+ "L1 = 0.271;# [kmol/square m.s]\n",
+ "TempG1 = 20;# [OC]\n",
+ "#********#\n",
+ "\n",
+ "# At 20 OC\n",
+ "Ca = 36390;# [J/kmol]\n",
+ "Cb = 29100;# [J/kmol]\n",
+ "Cc = 33960;# [J/kmol]\n",
+ "lambda_c = 44.24*10**6;# [J/kmol]\n",
+ "# Enthalpy base = NH3 gas, H2O liquid, air at 1 std atm.\n",
+ "Tempo = 20;# [OC]\n",
+ "lambda_Ao = 0;# [J/kmol]\n",
+ "lambda_Co = 44.24*10**6;# [J/kmol]\n",
+ "\n",
+ "# Gas in:\n",
+ "Gb = G1*yb;# [kmol air/square m.s]\n",
+ "Ya1 = ya/(1-ya);# [kmol NH3/kmol air]\n",
+ "yc1 = 0;# [mole fraction]\n",
+ "Yc1 = yc1/(1-yc1);# [kmol air/kmol NH]\n",
+ "# By Eqn 8.58:\n",
+ "Hg1 = (Cb*(TempG1-Tempo))+(Ya1*(Ca*(TempG1-Tempo))+lambda_Ao)+(Yc1*(Cc*(TempG1-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid in:\n",
+ "xa1 = 0;# [mole fraction]\n",
+ "xc1 = 1;# [mole fraction]\n",
+ "Hl1 = 0;# [J/kmol air]\n",
+ "\n",
+ "#Gas out:\n",
+ "Ya2 = Ya1*(1-0.99);# [kmol NH3/kmol air]\n",
+ "# Assume:\n",
+ "TempG2 = 23.9;# [OC]\n",
+ "yc2 = 0.0293;\n",
+ "def f(Yc2):\n",
+ " return yc2-(Yc2/(Yc2+Ya2+1))\n",
+ "Yc2 = fsolve(f,0.002);# [kmol H2O/kmol air]\n",
+ "Hg2 = (Cb*(TempG2-Tempo))+(Ya2*(Ca*(TempG2-Tempo))+lambda_Ao)+(Yc2*(Cc*(TempG2-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid out:\n",
+ "Lc = L1-(Yc1*Gb);# [kmol/square m.s]\n",
+ "La = Gb*(Ya1-Ya2);# [kmol/square m.s]\n",
+ "L2 = La+Lc;# [kmol/square m.s]\n",
+ "xa = La/L2;\n",
+ "xc = Lc/L2;\n",
+ "# At xa & tempo = 20 OC\n",
+ "delta_Hs = -1709.6*1000;# [J/kmol soln]\n",
+ "\n",
+ "# Condition at the bottom of the tower:\n",
+ "# Assume:\n",
+ "TempL = 41.3;# {OC}\n",
+ "# At(TempL+TempG1)/2:\n",
+ "Cl = 75481.0;# [J/kmol]\n",
+ "def f40(Cl):\n",
+ " return Hl1+Hg1-((Gb*Hg2)+(L2*(Cl*(TempL-Tempo)+delta_Hs)))\n",
+ "Cl = fsolve(f40,7);# [J/kmol.K]\n",
+ "\n",
+ "# For the Gas:\n",
+ "MavG = 24.02;# [kg/kmol]\n",
+ "Density_G = 0.999;# [kg/cubic m]\n",
+ "viscosity_G = 1.517*10**(-5);# [kg/m.s]\n",
+ "kG = 0.0261;# [W/m.K]\n",
+ "CpG = 1336;# [J/kg.K]\n",
+ "Dab = 2.297*10**(-5);# [square m/s]\n",
+ "Dac = 3.084*10**(-5);# [square m/s]\n",
+ "Dcb = 2.488*10**(-5);# [square m/s]\n",
+ "PrG = CpG*viscosity_G/kG;\n",
+ "\n",
+ "# For the liquid:\n",
+ "MavL = 17.97;# [kg/kmol]\n",
+ "Density_L = 953.1;# [kg/cubic m]\n",
+ "viscosity_L = 6.408*10**(-4);# [kg/m.s]\n",
+ "Dal = 3.317*10**(-9);# [square m/s]\n",
+ "kl = 0.4777;# [W/m.K]\n",
+ "ScL = viscosity_L/(Density_L*Dal);\n",
+ "PrL = 5.72;\n",
+ "sigma = 3*10**(-4);\n",
+ "G_prime = G1*MavG;# [kg/square m.s]\n",
+ "L_prime = L2*MavL;# [kg/square m.s]\n",
+ "# From data of Chapter 6:\n",
+ "Ds = 0.0472;# [m]\n",
+ "a = 57.57;# [square m/cubic m]\n",
+ "shiLt = 0.054;\n",
+ "e = 0.75;\n",
+ "# By Eqn. 6.71:\n",
+ "eLo = e-shiLt;\n",
+ "# By Eqn. 6.72:\n",
+ "kL = (25.1*Dal/Ds)*(Ds*L_prime/viscosity_L)**0.45*ScL**0.5;# [m/s]\n",
+ "c = Density_L/MavL;# [kmol/cubic m]\n",
+ "Fl = kL*c;# [kmol/cubic m]\n",
+ "# The heat mass transfer analogy of Eqn. 6.72:\n",
+ "hL = (25.1*kl/Ds)*(Ds*L_prime/viscosity_L)**0.45*PrL**0.5;# [m/s]\n",
+ "# The heat transfer analogy of Eqn. 6.69:\n",
+ "hG = (1.195*G_prime*CpG/PrG**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [W/square m.K]\n",
+ "# To obtain the mass transfer coeffecients:\n",
+ "Ra = 1.4;\n",
+ "Rc = 1-Ra;\n",
+ "# From Eqn. 8.83:\n",
+ "Dam = (Ra-ya)/(Ra*((yb/Dab)+((ya+yc1)/Dac))-(ya/Dac));# [square m/s]\n",
+ "Dcm = (Rc-yc1)/(Rc*((yb/Dcb)+((ya+yc1)/Dac))-(yc1/Dac));# [square m/s]\n",
+ "ScGa = viscosity_G/(Density_G*Dam);\n",
+ "ScGc = viscosity_G/(Density_G*Dcm);\n",
+ "# By Eqn. 6.69:\n",
+ "FGa = (1.195*G1/ScGa**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "FGc = (1.195*G1/ScGc**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "Ra = Ra-0.1;\n",
+ "# From Eqn. 8.80:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f41(xai):\n",
+ " return Ra-(Ra-ya)*((Ra-xa)/(Ra-xai))**(Fl/FGa)\n",
+ " xai = numpy.arange(xa,0.10,0.01)\n",
+ " plt.plot(xai,f41(xai))\n",
+ " Ra = Ra+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction NH3 in the liquid, xa\");\n",
+ "ylabel(\"Mole fraction NH3 in the gas ya\");\n",
+ "title(\"Operating Line curves\");\n",
+ "plt.show()\n",
+ "Rc = Rc-0.1;\n",
+ "# From Eqn. 8.81:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f42(xci):\n",
+ " return Rc-(Rc-yc1)*((Rc-xc)/(Rc-xci))**(Fl/FGc)\n",
+ " xci = numpy.arange(xc,0.85,-0.01);\n",
+ " plot(xci,f42(xci))\n",
+ " Rc = Rc+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction H2O in the liquid, xc\");\n",
+ "ylabel(\"Mole fraction H2O in the gas, yc\");\n",
+ "title(\"Operating line Curves\");\n",
+ "plt.show()\n",
+ "# Assume:\n",
+ "Tempi = 42.7;# [OC]\n",
+ "# The data of Fig. 8.2 (Pg 279) & Fig 8.4 (Pg 319) are used to draw the eqb curve of Fig 8.25 (Pg 320).\n",
+ "# By interpolation of operating line curves with eqb line and the condition: xai+xci = 1;\n",
+ "Ra = 1.38;\n",
+ "Rc = 1-Ra;\n",
+ "xai = 0.0786;\n",
+ "yai = f41(xai);\n",
+ "xci = 1-xai;\n",
+ "yci = f42(xci);\n",
+ "# From Eqn. 8.77:\n",
+ "dYa_By_dZ = -(Ra*FGa*a/Gb)*math.log((Ra-yai)/(Ra-ya));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.78:\n",
+ "dYc_By_dZ = -(Rc*FGc*a/Gb)*math.log((Rc-yci)/(Rc-yc1));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.82:\n",
+ "hGa_prime = -(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ)))/(1-exp(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ))/(hG*a)));# [W/cubic m.K]\n",
+ "# From Eqn. 8.79:\n",
+ "dtG_By_dZ = -(hGa_prime*(TempG1-Tempi))/(Gb*(Cb+(Ya1*Ca)+(Yc1*Cc)));# [K/m]\n",
+ "# When the curves of Fig. 8.2 (pg 279) & 8.24 (Pg 319) are interpolated for concentration xai and xci, the slopes are:\n",
+ "mar = 0.771;\n",
+ "mcr = 1.02;\n",
+ "lambda_c = 43.33*10**6;# [J/kmol]\n",
+ "# From Eqn. 8.3:\n",
+ "Hai = Ca*(Tempi-Tempo)+lambda_Ao-(mar*lambda_c);# [J/kmol]\n",
+ "Hci = Cc*(Tempi-Tempo)+lambda_Co-(mcr*lambda_c);# [J/kmol]\n",
+ "# From Eqn. 8.76\n",
+ "Tempi2 = TempL+(Gb/(hL*a))*(((Hai-Ca*(TempG1-Tempo)-lambda_Ao)*dYa_By_dZ)+((Hci-Cc*(TempG1-Tempo)-lambda_Co)*dYc_By_dZ)-((Cb+(Ya1*Ca)+(Yc1*Cc))*dtG_By_dZ));# [OC]\n",
+ "# The value of Tempi obtained is sufficiently close to the value assumed earlier.\n",
+ "\n",
+ "deltaYa=-0.05;\n",
+ "# An interval of deltaYa up the tower\n",
+ "deltaZ = deltaYa/(dYa_By_dZ);# [m]\n",
+ "deltaYc = (dYc_By_dZ*deltaZ);\n",
+ "# At this level:\n",
+ "Ya_next = Ya1+deltaYa;# [kmol/kmol air]\n",
+ "Yc_next = Yc1+deltaYc;# [kmol H2O/kmol air]\n",
+ "tG_next = TempG1+(dtG_By_dZ*deltaZ);# [OC]\n",
+ "L_next = L1+Gb*(deltaYa+deltaYc);# [kmol/square m.s]\n",
+ "xa_next = ((Gb*deltaYa)+(L1*xa))/L_next;# [mole fraction NH3]\n",
+ "Hg_next = (Cb*(tG_next-Tempo))+(Ya_next*(Ca*(tG_next-Tempo))+lambda_Ao)+(Yc_next*(Cc*(tG_next-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "Hl_next = (L1*Hl1)+(Gb*(Hg_next-Hg2)/L_next);# [J/kmol]\n",
+ "# The calculation are continued where the specified gas outlet composition are reached.\n",
+ "# The packed depth is sum of all deltaZ\n",
+ "Z = 1.58;# [m]\n",
+ "print\"The packed depth is: \",Z,\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.8 - Page: 317\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcTfUbwPHPYyv7EirCJFsLBpFIRpYk7T+VKFqkZEmU\npKLV2mJLlqhIlspaSgll35csFRprikqoLGOe3x/nTN2mmXHNXc69d57363Vfc7Z7vs9zz535zvl+\nz/keUVWMMcaYzMjmdQDGGGOil1UixhhjMs0qEWOMMZlmlYgxxphMs0rEGGNMplklYowxJtOsEjFZ\nmojUE5GtYS6ztIgcEREJZ7nGhIJVIiakRKStiGwUkT9E5EcReUNECnoYT7KIlE2ZV9WvVbVSiMpa\nICL3p16uqrtUNb/aTVomBlglYkJGRLoB/YBuQAGgNlAG+FxEcoagvOz+bhrsstOh7iuqiMvrOEx0\nsErEhISIFAD6AB1Vda6qnlLVncDtQBzQ2t2uj4h8ICKTROSwiKwWkSo++ykhIh+KyM8iskNEOvms\nS3nveBH5HWgjIjVFZKmI/CYi+0RkaEqFJSJfuW9d7zYntRCRBBHZ7bPPRBHpJiLrReSQG9dZPuuf\ncPe7R0QeSH1m4+dnE+e+L5s7v0BEnheRRe5n8JmInOOzfW0RWeLmtE5E6mew71Ii8pH7eR0UkaE+\nn9X408TwoogsBv4AHheRlan23VVEZrjTZ4nIIBHZKSL7RWSEiJztrisqIrPdeH8Rka+sUopdVomY\nUKkDnA185LtQVf8APgEa+yy+EZgCFAYmAtNFJLv7B24WsBYoATQEHhWRJqneO1VVC7rvPQV0Ac4B\nrnTf08Et+2r3PVXc5qSpacStQAvgWuBCoArQFkBEmgJd3X2WBxII3plGS7ec4kAuoLtbZklgNvC8\nqhZ2l38oIkVT78A9E5sN/IBzxlcSeN8nr9NpDTwA5APeBCqKSDmf9XcB77nT/YByQFX3Z0ngWXdd\nN2A3UNTNp6c13cUuq0RMqBQFDqpqchrr9rvrU6xS1Y9U9RTwKk7lcyVQEyiqqi+qapKq/gCMAe70\nee8SVZ0JoKrHVHWNqq5Q1WT3zGcUkO5/7ukYoqr7VfU3nEos3l1+OzBWVbeo6l9Ab4LTNKbAOFXd\npqrHcCrUlDJbA5+o6qcAqvoFsApolsZ+agHnA4+r6l+qelxVl7jrThenAm+7uSWr6mFgBk7lhoiU\nByoCM92zinbAY6p6SFWPAn3557iccOOIc89AF5/Zx2GiiVUiJlQOAkVTmktSOR844DO/J2XC/Y91\nD86ZR2mghNss8puI/Ab0xPnv9j/vBRCRCm5Tyo9uE9dLOGclZ2K/z/RfQF6fuHf7rPtX2QFKXWY+\nd7oM0CLVZ1AXOC+NfZQCdqZTcftjd6r5ibiVCM5ZyDS3kisG5AFW+8Q0h3/+MRgIbAPmish2EemR\nyXhMFLBKxITKUuA4cJvvQhHJBzQF5vksLuWzPhtwAbAX54/aD6pa2OdVQFWbu5un1XE9AtgMlHOb\nuHoRvO/5j76xppoOlV3A+FSfQX5VHZDGtruB0ulcYHAU5w9/irQqodSf5RdAMRGpinOWMdFdfhCn\norvEJ6ZCqloAQFWPqmp3Vb0Ip7nxMRG5xt+ETXSxSsSEhKr+DjwHDBWRa0Ukp4jE4TTV7AbG+2xe\nQ0RuEZEcwKPAMWAZsBI44nZm53b7SS4Tkcvd96XVRJMPOAL8KSKVgIdTrf8JuOgM00kpZwpwr4hU\nEpE8wDN+vDeniJzt88pxmjJSmwDcICJN3PzPdi8GKJnGtstxKrp+IpLH3baOu24dcLXb8V4Q54wu\nwxhU9SQwFRiE01/1ubs8GRgNvC4ixcDpu0npqxKR60WknNvsdRinn+pUOvmZKGeViAkZVR0IPIXz\nR+h3nIphJ9DQ/QMFzn+/M4A7gF+BVsCtblv6KaA5Tv/ADpwmsFE4lwunvDf1f8/dcZpeDrvbTkq1\nTR/gHbcZ5n/p7ONfaaSsd/slhgDzge9wzrbAOeNKzwjgT5/X2HTK1FTTKWXuAW7C+Rx/xjkz6UYa\nv7vuH/cbcDq6d+FU1re7674AJgMbcCrnWaeJIcVEnAsJpqZqJuuB02S1zG02/Byo4K4r784fAZYA\nw1V1YRr7NjFAvLxowr3a5XUgOzBGVfunWp+A8wdmh7voQ1V9MaxBmpASkd44TU93ex3LmRKRi4GN\nQK4A+iGMiWrpnVqHnNtuOwxohNP+vVJEZqrqllSbLlTVG8MeoAmXqLp/QERuwblEOQ/QH5hpFYjJ\nyrxszqoFbFPVRLdpYxLOaXtqUfVHxpyxaLur+0GcfpVtwEn+2+diTJbi2ZkIzs1JqS+XvCLVNgrU\nEZH1OGcr3VV1c5jiM2Ggqs95HcOZUNXrvI7BmEjiZSXiz3+fa4BSqvqniFwHTOefzjtjjDEe87IS\n2ct/r7n/181bqnrEZ3qOOCPAFlHVX323E5Foag4xxpiIoKoBdxd42SeyCijvDgSXC+cSz5m+G4jI\nuSkDt4lILZyryX79765AVWPy1bt3b89jsPwsP8sv9l7B4tmZiKomiUhH4DOcS3zfUtUtItLeXT8S\n+B/wsIgk4Vxjf2e6O4xRiYmJXocQUpZfdLP8jJfNWajqHJwxd3yXjfSZHg4MD3dcxhhj/GN3rEe4\ntm3beh1CSFl+0c3yM57esR4sIqKxkIcxxoSLiKBR3rFu/LBgwQKvQwgpyy+6WX7GKhFjjDGZZs1Z\nxhiTBVlzljHGGM9ZJRLhYr1N1vKLbpafsUrEGGNMplmfiDHGZEHWJ2KMMcZzVolEuFhvk7X8opvl\nZ6wSMcYYk2nWJ2KMMVmQ9YkYY4zxnFUiES7W22Qtv+hm+RmrRIwxxmSa9YkYY0wWZH0ixhhjPGeV\nSISL9TZZyy+6WX7GKhFjjDGZZn0ixhiTBVmfSIzZ8PUqkk8lex2GMcacEatEIsSBu69jSZnCTBk4\n+l/LY71N1vKLbpaf8bQSEZGmIrJVRL4XkR4ZbFdTRJJE5NZwxhdO9bbuZXvC/6jz/MNMr1CS2RPm\neB2SMcaclmd9IiKSHfgWaATsBVYCLVV1SxrbfQ78CYxT1Q/T2FfM9Ikc+eVXZt19N00WzGFmhUqU\nHTCRhCbxXodljIkxsdAnUgvYpqqJqnoSmATclMZ2nYAPgAPhDM4r+c8pwl2ffMypDd9TJHdeLru5\nOq/WrcfqVbu9Ds0YY/7Dy0qkJOD7l3GPu+xvIlISp2IZ4S6KjdMNP5xb7iJuXrqSL/oPpuqhfRS/\nJo7nr72Vb78/7HVoQRXrbc6WX3SL9fyCIYeHZftTIbwOPKmqKiICpHvq1bZtW+Li4gAoVKgQ8fHx\nJCQkAP98EaJx/rzKlWH4W3y5cAHN3hrO8Trn0PKS5tzaqQMt/tfY8/hs3uZtPjrmU6YTExMJJi/7\nRGoDfVS1qTvfE0hW1f4+2+zgn4qjKE6/SDtVnZlqXzHTJ5IhVdYMeZUCzz9LYl7l02uf5akBT1Ck\nsF1kZ4w5M8HqE/GyEsmB07HeENgHrCCNjnWf7ccBs1T1ozTWZY1KJEVSEst7PU6ZN4Yz7/x8rL9p\nML373E3evF4HZoyJFmHrWBeR4iIySETmiMh89/VloAWrahLQEfgM2AxMVtUtItJeRNoHuv9Y4Xsq\n+rccObii/2ucu+8XLrqiIU8Oa8uoK8vw7IvzOH487CEGJM38YojlF91iPb9g8Kcd5D1gK3Ah0AdI\nBFYFo3BVnaOqFVW1nKr2dZeNVNWRaWx7b1pnIVmZ5M9P7fFTyf/9D9Q9vwydXm7Cc3WrMmDYNyQl\neR2dMSYrOG1zloisUdXqIrJBVau4y1ap6uVhidAPWa45Kx1/rl/Nd/ffTaFt3/LSpQnUeOhdHmxV\nkmzWZWKMSSWc94mccH/uF5HmIlIdKBxowSb48lStQfyqzRSaMoPHf9xCrcfLcHuju5g843esjjXG\nhII/lchLIlII6AZ0B8YAXUMalflbZtpkCzVpToXteynVfyiDN86m4GPFaNqsG5/NOxb8AAMU623O\nll90i/X8gsGfSmSJqh5S1Y2qmqCq1VNfYmsikAjF2jxMyb0HqXz/47y3aDj7Hz2Ha25+hSXLTnkd\nnTEmRvjTJ/I9sA4YB8yJxM4H6xPxw+HD7HqqM/nHvseoSwvy6UVDGPxUS6pUCbhJ1BgThcJ2n4iI\nZMMZJPE+oCYwBWcgxO8CLTxYrBLxn+7Zw87O95F37nxerlqKLeXHMLTXNZQv73VkxphwClvHuqom\nq+pcVb0TaAe0AVaKyEIRqRNoACZjwW6TlQsuIO6juRRZvJKuFGDEzGvp3a46tz20gd0ejPEY623O\nll90i/X8gsGfmw2LikgXEVmN07HeEWcIkm7AxBDHZ0Ike9V4Si9eR8nJs3hl3wF6zqrBvW2u5b7H\nEvn5Z6+jM8ZEC3+as74DJgBjVXVPqnVPqmq/EMbnF2vOClByMn9OeJu/Hu/G0kJ/8HTJO2lw5as8\n270ohe1ibmNiUlj7RFQ1oh/+bZVIkBw/zpHX+qN9+zH1omReLtiZ1o2e5fEu+ciXz+vgjDHBFNY+\nkUALMZkX1jbZs84i/5PPUiBxL7dddQ9rVw7mrE/Po0LzV3jl9RMcC8FtJrHe5mz5RbdYzy8YbEAM\n81+FC1NoyCgKbPqOh85LYMPap9g9pyRlmoxn9JhkG5fLGPM3z4aCDyZrzgqxtWv5tVM7fv9uE72u\nPJ+Fv73BoIev5Y47xMblMiZKhXMo+IEiUkBEcorIPBE5KCJ3B1qwiSLVqlFk0Srixk/nja3JTN91\nC2M/upyK16xg1ixsXC5jsjB//o9soqqHgeY4w8BfBDweyqDMPyKpTVauvZZCm7dTvc8bTPv6B149\nWJ/e468lvtG3fJnJJ8xEUn6hYPlFt1jPLxj8qURSnsPeHPhAVX/Hv+ejm1iUPTvZ295Lvh/2cu1d\nT7Fo7iI6Ho3nweGtueq6vSxb5nWAxphw8ucS337AzcAxoBZQCOcxtVeEPjz/WJ+Ihw4e5Nhzz3Dq\n3Xd4tQYMz/cw1bI/Q//nClGlitfBGWPSE9ZnrIvIOcAhVT0lInmB/Kq6P9DCg8UqkQiwYwd/PtGV\n4/O/4Nm62ZhwrBeNinbhpT65qVDB6+CMMamF86FUACWA20SkDXAb0CTQgo1/oqZNtmxZ8nwwg8Kf\nLqD/LxezfvPLZKMUNe4fw30PJLFrV9pvi5r8Msnyi26xnl8w+HN1Vh9gCDAMSAAGADeGNCoTvWrW\nJM+i5ZQe+T7jVhfgq5+7s1vKc+lt0+j5lHL0qNcBGmOCyZ8+kW+AqsAaVa0qIucC76lqo3AE6A9r\nzopQSUnouHEcf7on80om0fuKS9m9aBSDnriUVq2we0yM8VA4m7P+UtVTQJKIFAR+BkoFWrDJAnLk\nQNq14+wdO7nuhs58/f56HilRi16fdeKK+r+zcqXXARpjAuVPJbJSRAoDo4FVwFpgSUijMn+LiTbZ\nvHnJ9tzz5F6zgR456rFi/nhKXVSWxo+/TdOmX7I/Yi7RCL6YOH4ZsPyMPwMwdlDV31T1TZwO9Taq\nem8wCheRpiKyVUS+F5Eeaay/SUTWi8haEVktItcEo1zjkbJlOevjTzlv5AQmLsjNh4cf44e87al0\nzSoGDIDjx70O0BhzpvzpE6nBf28u/B3YqaqZHopPRLID3+I8encvsBJoqapbfLbJq6p/uNOVgWmq\nWi6NfVmfSLT56y+S+/fnxOBXGHQFvHPh7Zz6uh+D+xajeXMQe/S7MSEVzj6R4cBynOas0cAy4APg\nOxG5NoCyawHbVDVRVU8Ck4CbfDdIqUBc+YCDAZRnIknu3GTr04ezV6+nR46rWDxrGlUvL0+70cO4\n9roktmw5/S6MMd7zpxLZB8Srag1VrQHEAzuAxjiX+2ZWScD3qd573GX/IiI3i8gWYA7QOYDyolKs\nt8ku2LWLnLPnUPzNd5m8ID+Tf3ye3y6tzJV3fkXXrnDokNcRBibmj5/ll+XlOP0mVFTVTSkzqrpZ\nRCqp6nYRCaQNya/3qup0YLqI1APGAxXT2q5t27bExcUBUKhQIeLj40lISAD++SLYfATP58tHwpbv\nuLp/f14aNICplzbjs2zXM6HGq9xz8/c0awYNG0ZQvDZv81E2nzKdmJhIMPnTJzIF+AWnuUmA24Fi\nQGtgkarWzFTBIrWBPqra1J3vCSSrav8M3rMdqKWqv6Rabn0isWTHDpI6d+K39cto3/gka0/2osDm\nRxn62llcfbXXwRkTG8L5jPU8QAegrrtoMfAGzoCMeVX1SKYKFsmB07HeEKfJbAX/7Vi/CNihqioi\n1YGpqnpRGvuySiQWzZ7NyU4dWFE8iS71z2Ln1yO4pnRTBg6E0qW9Ds6Y6BbOZ6z/qaqDVPUW9zXI\nXZac2QrE3W8S0BH4DNgMTFbVLSLSXkTau5vdBmwUkbXAYODOzJYXrXxPRWNRhvk1b07Ozd9St1l7\nloz+lR7ntGJz+eZUqb+D556DP/8MW5iZlqWPXwyI9fyCwdOBJ1R1jqpWVNVyqtrXXTZSVUe60wNU\n9TJVraaq9VTV7nHOanLnht69ybV6LV3lSha8u5yGDeKZfOAZKl72J1Om2JMVjfGSPWPdRJfZs0nq\n9Airz0umQ/1kftkwmNJ/3MaQwUJ8vNfBGRM9wj0UfErfiDHeat6cHJu3ckXTB1g26ihdc3bkt0bX\n0KjlZh56CA4c8DpAY7IWf4aCryMim3E6wRGReBF5I+SRGSD222QzlZ/bxJVz1Vo6JdfkqzGbaVC3\nDisKP0al+N8ZPBhOngx6qJlixy+6xXp+weDPmcjrQFPcu8VVdR1QP5RBGeOXsmXJNmsWhYe/xaQv\nCzF64TRK31OB0SvfpkrVZObO9TpAY2KfP5f4rlDVWiKyVlWrucvWq2rVsEToB+sTMfz1FwwYwMnB\nrzE6IT8japbgt2nDqX7e5bz6KpT7z4hrxmRt4ewT2SUidd1Cc4lId8BGNjKR5e8mrjU8nBTPopE7\nuapqE36q9SC1Eg7SowccyfQF6caY9PhTiTwMPIIzrtVeoJo7b8Ig1ttkg55f2bLIzFkUHDaG9+YV\nZNSn8yl1d0UW/jWcihcn8c47kJwc3CIzYscvusV6fsHgz82GB1T1LlUtrqrFVLVV6mFHjIk4zZuT\nfdNmqjZuzepRydz/46sU7lyN/pO+5sorYdkyrwM0Jjb40ydSHGgHxPHPgI2qqveFNjT/WZ+IydCO\nHeijj3Jk4yoevjaJHeUa8cPIgTS5siT9+kGJEl4HaEz4hXPsrKXAV8BqIKUhQFX1w0ALDxarRIxf\nZs8muXNnNl9wFnfV3c85OZ5kw8hH6d71LLp2hbPP9jpAY8InnB3ruVW1h6pOUdUP3FfEVCCxLtbb\nZMOaX/PmZNu0icsa3snaUULb79+maPdLmbn5Uy69FKZPD/4QKnb8olus5xcM/lQis0Xk+pBHYkw4\nuFdxZV+5ijZ/lmfNiL+olP9+zu1yE4+/vIMmTWDTptPvxhjjSLc5S0SO8s+Do/ICJ4CU+4BVVQuE\nPjz/WHOWybTZs9Eunfm2VF7uuHIP5xfqxKrXn+SuFnl47jkoXNjrAI0JjZA3Z6lqPlXN776yqerZ\nPvMRU4EYE5DmzZFvNlGpwf9YM0pou2EGBR+txNZsH1CxkjJiBCQleR2kMZHLn7Gz5vmzzIRGrLfJ\nRkR+Pk1cdx4pw8Y3lbhT3SnbuzFjZ22mRg3IbJgRkV8IWX4m3UpERHKLyDlAMREp4vOKw7nx0JjY\nUrYszJxJnqEjGPlJdiZ8cJCk+HqUavcY97T7nRYtIMiPpzYm6mXUJ/Io0AUogfP42hRHgFGqOiz0\n4fnH+kRM0LljcSUPGcL068vS9ZI91DjRjwWD76bjI9no0QPy5vU6SGMyL5z3iXRW1SGBFhRKVomY\nkNmxAx59lGPfrOOJG3OzuEIRiq0cxuZ5NejfH+68EyTgX0Njwi+cz1iP6Aok1sV6m2zE5+c2cZ09\n5A0Gz0riw49OcrDkdVR7pj19Bx+kXj1Ysyb9t0d8fgGy/Iynz1g3Jmo0b4588w1x9W5gxZunaLfk\nG3696WLK/G84112fxIMPwm+/eR2kMeFnz1g35ky5TVzHN23gmVsK8smFUP77YayYWo+hQ+HWW70O\n0JjTC1ufiFtYSZwBGLMDgnOz4VeBFh4sVokYT8yejXbpwt6yRbm19k5KlrmVb17vR5WKBRg2DM4/\n3+sAjUlf2PpERKQ/sBjoBTwOdHd/mjCI9TbZqM7PbeK64KpmLBtxkhYr13Hi3svIefGnVK0KY8fC\n/PkLvI4ypKL6+Pkh1vMLBn/6RG4BKqpqM1W9IeUVjMJFpKmIbBWR70WkRxrrW4nIehHZICKLRaRK\nMMo1JmjcGxWzLVrMXRth3eRC/MQDXNGvDYNH/Ur37k7rlzGxyp9LfOcAt6tqUB8uKiLZgW+BRjhP\nTFwJtFTVLT7bXAlsVtXfRaQp0EdVa6exL2vOMt47dQqGDkVffIHpt1xCpwrbuCZpGJ+8chu9ekHn\nzpA9u9dBGuMI530iHwFVgXnAcXexqmrngAp2KojeqtrUnX/S3XG/dLYvDGxU1QvSWGeViIkc27bB\nAw9w+PBB7mz2B8lla3B40jBO/X4eb70Fl13mdYDGhPd5IjOBF4AlOA+mSnkFqiSw22d+DxkPp3I/\n8EkQyo0qsd4mG5P5lSsHX35JgQc68PjQX+m6+CCJDatwSct3SWig9O4Nx4+ffjfRICaPn49Yzy8Y\ncpxuA1V9O0Rl+33qICINgPuAuult07ZtW+Li4gAoVKgQ8fHxJCQkAP98EWze5sM636EDUqQIZw0a\nxFsLcjO25UtU6TeJj99ty9tvF2fSpASuvDKC4rX5mJ5PmU4M8gBwGY2dNVVVW4jIxjRWq6oG1Mkt\nIrVx+jhSmrN6Asmq2j/VdlWAj4CmqrotnX1Zc5aJXKowdiz65JN8dUNlWpbfwPVFXmRWnwe54/Zs\nvPQS5MvndZAmqwl5n4iIlFDVfe6ovf+hqokBFSySA6djvSHOAI8r+G/HemngS6C1qi7LYF9WiZjI\nt2cPtG/PscRttL81F9tKn0PxZWNY92U5Ro6EJk28DtBkJeF4KNU+92diWq9AC1bVJKAj8BmwGZis\nqltEpL2ItHc3exYoDIwQkbUisiLQcqON76loLMpS+V1wAcyezdlPPs3bI3/itUU5WFH2Cho/+wrt\n2p+ibVv49VevIs2cLHX8TJo8HTtLVeeoakVVLaeqfd1lI1V1pDv9gKqeo6rV3FctL+M1JmAicPfd\nyIYN1DpSgB/eLUzOHRMp/mQdkops4tJLYepUpwXMmGhgY2cZ4xVVmDoV7dyZDY2rcEOlNVxbpjOL\n+j1JxXK5GD4cStrj30yIhPMSX2NMKIjA7bcjGzdSNekcto8rQOHv5pCzQ02KVV1NfDyMGgXJyV4H\nakz6Mno8bikRGSMi/USkkIiME5FvRGS8iBQPZ5BZWay3yVp+QLFi8P775Bz0Kv3f2sWUr8/li1xN\nuXHIk4wa+xcNGzr3L0YiO34mozORt4H1wO/AMpwrqZrhXEU1IuSRGZPV3HwzsnEjlc4qwbbRuSmz\nZSlHWsVz6XWLqF0bBg6EpCSvgzTm3zK6xHedqsa707tUtXRa6yKB9YmYmPPJJ/DQQ/xQuxJNq2zg\ninIt2PlWX/74LR9vvQVVq3odoIl24egT8d35+FTrbBg5Y0KpWTPYuJELC8WxeWQO4jdvZVfzytS/\n73MaN4ZeveDYMa+DNCbjSmSmiOQHUNVeKQtFpDxO05YJg1hvk7X8MlCwIIwaRfZxb/PY+G0sWliO\nuYfuo+GQ+9nw3SHi42HRoqCFmil2/ExGNxs+k9bw76r6var+L7RhGWP+1qgRbNxIyZKVWD/8FAmb\nfmTtlZdx85MzuOMOeOQROHzY6yBNVpVRn0g3n1nl381bqqqvhjKwM2F9IibL+OoruP9+fr64NDdc\nmUjJMjU5e/5QFs8txogRTiuYMf4IR59IfiCf+/NxdzqfzzJjTLhdfTWsX0/x8vEsG/IHt2z5iy8r\nVqZVv4k80lFp3RoOHvQ6SJOV+HXHuoisVdVqYYgnU2L5TGTBggV/D+kciyy/ACxbBvfey69lS3Dr\n1fvIU6IcF6x/k5kTSvLaa3Dnnc79jKFkxy962R3rxmR1tWvD2rUUqXoF81/9lQe25mRa8arcP3wM\nL72s3HAD7N59+t0YEwg7EzEmFqxeDffey+HzCnNno0McO7cYVRNHM2HYhTz/PLRvD9nsX0bjIxzP\nE/F9GNVFwHaf+YAfShVMVokYA5w4AX37osOH8+n9CdxdaB7tKj3Lgv4dyZkjO6NHQ8WKXgdpIkU4\nmrNu8Hldkmr+xkALNv6J9evULb8gypULevdGvviC6+ZuZ+dnl7Dtu/eQ+6/mqlu2ULcu9O0LJ08G\nr0g7fiaj+0TSfBhVsB5KZYwJkSpVYPly8jZuxpQBP9D3u1KMPn4V9459mS8XnqRWLVizxusgTazI\nqDnrhwzep6paNjQhnTlrzjImHVu2wH33cSwHPHRzDjbk+4Nbso1l2NPxtG0LffpA7txeB2m8EI7m\nrJo+r8uBWsArODcdrg20YGNMGFx8MSxaxNm3tGBc3y2M2F6J4b825q4xT7N953GqVoWFC70O0kSz\njJqzDqrqQeBXnH6QBcCVQDNVvS084ZlYb5O1/MIge3Z47DFk6VKuWLaHXdPiOLltOZvrVeOBPsto\n1Qoeegh+//3Mdx0R+YVQrOcXDBk9lCqXiDwEbAHqATepaitV3Ry26IwxwVO+PCxYQK7WbRj60lom\n7ajOkD03c+MbXTnBH1x2Gcyc6XWQJtpk1CeyB0gCBgO7cMbPAqc5S1X1o7BE6AfrEzHmDP3wA7Rr\nx8lDv/JM6xJMzbaFjqXG8MYTDahRA4YMgeL2/NKYFo77RN52J9PcQFXvDbTwYLFKxJhMUIUxY+Cp\np/i2VVOaXjCfa8pdT/6lA3j/7YIMGgStW4d+6BTjjZB3rKtqW/d1b1qvQAs2/on1NlnLz0Mi0K4d\nrFlDxe+6mT1zAAAgAElEQVR+YduEIlyYeJAPz7uMnuNm88orcN11sHNn+ruI6PyCINbzCwZPB0IQ\nkaYislVEvheRHmmsryQiS0XkWKqh6Y0xwVKqFHz8Mdm7duPpl7/m6x0JjNzamUuebk2NegepUQNG\njHBOXIxJza+xs0JSsEh2nCckNgL2AiuBlqq6xWebYkAZ4GbgN1V9JZ19WXOWMcHw44/w8MMkf/8d\nQ9rH0//kfJ6oPJgJT7WgZAlh7FgoWtTrIE0wxMIovrWAbe4d8CeBScBNvhuo6gFVXQUEcaAGY0y6\nzj8fpk0j2zPP8ujLX7Lq+4a8u+lZ4h6/nTKVfiU+Hr74wusgTSTxqxIRkboi0kpE2rive4JQdknA\nd6DqPe4y4yPW22Qtvwgk4jyMZMMGSv52ktUjlXr7sjGzRDUeG/wVbdpAjx7OeI9Rmd8ZiPX8giHH\n6TYQkQlAWWAdcMpn1bsBlh3U9qe2bdsSFxcHQKFChYiPj//7YTIpXwSbt3mbP8P5yZP56vnniX/h\ndT6/uxkNTt5O3Y6NWTizLXXqNOTRRyMsXptPdz5lOjExkWA6bZ+IiGwBLgl2p4OI1Ab6qGpTd74n\nkKyq/dPYtjdw1PpEjPHIvn1wzz2c+Oso97XIxY78STT9YyJDX4hj4EBo08YuBY424ewT+QY4P9CC\n0rAKKC8icSKSC7gDSO9+Wft6GuOlEiVg7lxy3XgL4/t+S8+fKjDseC0ef2cSgwZBy5Zw6JDXQRov\n+FOJFAM2i8hcEZnlvgIeHEFVk4COwGfAZmCyqm4RkfYi0h5ARM4Tkd1AV+BpEdklIvkCLTua+J6K\nxiLLL4pkywY9eiCzZnHD2EVsXn8Vo2Z1o9pz91Kg2BGqVYPFi70OMrhi6viFyGn7RIA+7s9/DXsS\njMJVdQ4wJ9WykT7T+4FSwSjLGBMktWrB2rUU7diRUR9nY2HF35hYoTod+77PbbddzsMPQ69ekMOf\nvy4m6vn7jPXzcIaEV2CFqv4c6sDOhPWJGOORiRPh0UdZe18zri3yMe0rP8GSV7px4ng2JkyAMmW8\nDtCkJ2x9IiJyO7AcaAHcDqwQkRaBFmyMiQF33QXLllFt/hYSv6jM2m+nIvdcS8INP1KzJkyZ4nWA\nJtT86RN5Gqipqveo6j04ZyTPhDYskyLW22Qtv+i2YMECKFsWFi0iT80rmTVwL21+Oo8x2avTc9xs\nevWC+++Ho0e9jjRzYv34BYM/lYgAB3zmf8GuljLG+MqZE156CZkwgbuHLGDldwm8seURGg7qzAk9\nRvXqsHq110GaUPDnPpGBQFVgIk7lcQewQVWfCH14/rE+EWMiyC+/wP33k7QzkW5tz2d+rr3ck2cS\nAx6/hCeegMcecy70Mt4K+fNEfAoS4FbgKpyO9a9VdVqgBQeTVSLGRBhVePNN9Nln+fqRG7gtz0we\nrfoiHz/fnrx5hHffdYbpMt4JW8e6Oj5U1a6q+likVSCxLtbbZC2/6JZufiLw8MPI/Plc/eFKti+7\ngs82v0HxjrdSre4vVK8Os2eHNdRMifXjFwwZPWN9sfvzqIgcSfU6HL4QjTFR67LLYMUKCpS4kIVD\nDtNw/9m8XzCeniMX8Mgj0KkT/PWX10GaQHj2PJFgsuYsY6LAzJnw4IN8f2cTGpT8nDsuuY+d7/Th\n2y05mTQJLr3U6wCzlnDeJzLen2XGGJOhG2+E1aspv3EvO2bEcWD7EvY0qUfrTjtISIA33rCnJ0Yj\nf66RuMx3RkRyADVCE45JLdbbZC2/6HbG+ZUs6Qzk2Pwm3nlpM70OXsKg36+gx4T3eOstuPlmOHgw\nJKFmSqwfv2DIqE/kKRE5AlT27Q8Bfib90XaNMSZj2bPDk086AzmO+YotG+ozYdNzXPzUPcRVOEJ8\nPMyb53WQxl/+XOLbV1V7himeTLE+EWOi1OHD8MgjJK9ayYsPX8q7rKdzyYn071yLu++G55+HXLm8\nDjI2hfN5IitFpJBPwYVE5OZACzbGGAoUgPHjydbraZ594Ss+2H81L+1ozr1v9WPjN8nUrQvff+91\nkCYj/lQivVX178fNuNN9QhaR+ZdYb5O1/KJb0PJr3RqWLSN+3iYS51Vm/bfTOdaiMTe23kudOvDO\nO950usf68QsGf8fOSi17sAMxxmRxF10EixaRu/oVzBywm3sPXsDwkzV4ZsJMBgxwBgy2pydGHn/6\nRMYBvwHDcSqUR4DCqto25NH5yfpEjIkxX34J99zD3ub1aVB+MQ3KX49+OojP5+TmvfegTh2vA4x+\n4ewT6QScBCYDk4BjOBWJMcaExjXXwLp1lPzxKJsnFibPrp0srVyLrn2/4ZZbnA73pCSvgzTg39hZ\nR1W1h6pe7r56quof4QjOxH6brOUX3UKaX9GiMH06Oe5vx6vPLWfEgSt4YVcCnScMZ8FCpUED2LUr\ndMVD7B+/YPDnjvXiIjJIRD4Rkfnu68twBGeMyeJEoEMH5MsvuWrKMrYvq83czWPI98DNNLj+IJdf\nDlOneh1k1uZPn8jnOE1Z3YH2QFvggD1PxBgTVn/9Bd27o3M+YXiXOvQ7tZCnLn6XVztdQ/36MGQI\n5M3rdZDRI5zPE1mjqtVFZIOqVnGXrVLVywMtPFisEjEmC5kxA9q3Z9tdTWlQYi4tLrmHg1NeYPnS\nnLz/PlSv7nWA0SGcHesn3J/7RaS5iFQHCgdasPFPrLfJWn7RzZP8broJVq+m3LpdbJ9xIb9sX8nW\nunV5+KntXHstvPIKJCcHp6hYP37B4E8l8qJ7x3o3nCatMUDXYBQuIk1FZKuIfC8iPdLZZoi7fr2I\nVAtGucaYKFeyJHz+ObmaNeftF7+h969VeOnn2vR8fzwffgjXXQf793sdZNaQYXOWiGQHuqjqq0Ev\n2Nn3t0AjYC+wEmipqlt8tmkGdFTVZiJyBTBYVWunsS9rzjImq1q+HO66i1+uqk7j+I1UKn05pda/\nwbujCzBmDFx/vdcBRqawNGep6imgZaCFpKMWsE1VE1X1JM49KDel2uZG4B03luVAIRE5N0TxGGOi\n0RVXwNq1nHPqLFaNzsYl+07wQdFqPDtqGR06QOfOcOyY10HGLn+asxaJyDARqSci1UWkhtsvEqiS\nwG6f+T3ustNtc0EQyo4asd4ma/lFt4jJr0ABmDCBbD178vTz8/nopwb02Xoj94x+mX0/nqJWLdi0\n6cx3GzH5RbAcfmxTDVDg+VTLGwRYtr/tT6lPt9J8X9u2bYmLiwOgUKFCxMfHk5CQAPzzRbB5m7f5\nGJ+/+24WZMsGL7xA4oVVufOs2ey8aAp1SvWifv0WvPACVKq0AJEIiTeM8ynTiYmJBFO6fSIi0kVV\nB4vIVaq6KKilOvuvDfRR1abufE8gWVX7+2zzJrBAVSe581uB+qr6U6p9WZ+IMeYfJ07As8+iEybw\nfrcmdD31Mc/Ej2TsEzdTujSMGePcEJ+VhaNP5D7359BAC0nHKqC8iMSJSC7gDv77xMSZwD3wd6Vz\nKHUFYowx/5ErF/Trh7zzDne9Mpe12xszdH1XLu/zMGXK/Ul8vDPGowlcRpXIZhH5HqgoIhtTvTYE\nWrCqJgEdgc+AzcBkVd0iIu1FpL27zSfADhHZBowEOgRabrTxPRWNRZZfdIv4/Bo2hHXrKLH3MJsm\nFibf7r18UbYmvYZsoHVr6NkTTp5M/+0Rn18ESLdPRFVbish5wFzgBtJ+rkhAVHUOMCfVspGp5jsG\nu1xjTBZStCjMmEGO4cN5pc9z3Nr5Fm45eg1dx/dm0asdqVtXmDQJypb1OtDodNphT6KB9YkYY/yy\nYQO0bMmRi8tyY7295C1Wgtr7xzG0fzHGj4cmTbwOMHzCOeyJMcbEhipVYNUq8hcvxZeDf6PZwSKM\nIJ6eI+fTpg0MHOjNY3ijmVUiES7W22Qtv+gWlfnlzg1vvIG8+hodXvqMhXubMOC7O2k39jUmTVbu\nugv+cJ+YFJX5hZnflYiI5AllIMYYE1Y33+wM5Lj6B7Z/WpGvN4+jQo+7Ieef1K0LQb6dImb5MxR8\nHZxBF/OraikRiQceVNWIuVLK+kSMMZmWlAQ9e5L8wVSe7ngJc/L9yA1/TGPUgDjee8+5wCsWhbNP\n5HWgKXAQQFXXAfUDLdgYYyJCjhwwcCDZ+vXnpX4r6bv/MkYl16bb8Hm0agWvv279JBnxqzlLVVM/\nyTgpBLGYNMR6m6zlF91iKr877kC+/JKm45eyclNdhmxvRaMuDzPubeWee5wHK5r/8qcS2SUidQFE\nJJeIdAe2nOY9xhgTfSpXhpUrKfXzMb6feSFbdn1GxadacezUn1x1FexK/e+08atPpBgwGOe5H4Jz\n82FnVf0l9OH5x/pEjDFBlZwMffqQ/PY4XuhYhWkF9tLs8DTGvXYhkyZB/Rho0A/bM9ajgVUixpiQ\nmDEDbdeOee0a0rrwfLqUHs/rnRrzzDPwyCMgQR/HI3xC3rEuIkMzeA0JtGDjn5hqc06D5RfdYj6/\nggWRr76i0UfrWLO2Fm/+cDf3jh7IyFHKfffZw64g4z6R1Tgj7a5yp1O/jDEm9lWqBMuXU+KvHHz3\nYUk2bJ1AxadacuiPP7j6atizx+sAveV3c5aI5AdUVY+GNqQzZ81ZxpiQS06Gfv3Q4cPo2zGeSYX2\ncO1v03lvWFmmTIGrrvI6wDMTtvtERKSyiKwFNuEMD79aRC4LtGBjjIkq2bLBU08hb42l5+urGbaj\nEu/mrE2HVz7j1lvhzTe9DtAb/lziOwp4TFVLq2ppoJu7zIRBzLc5W35RLUvm17QpsnQpV8/9lg3L\nqjN2Z1vajO7P4CHKgw/C8eNhD9NT/lQieVR1fsqMqi4A8oYsImOMiXRly8KSJZx7VhG2TirGt1sm\ncvEzd/DjL0dp0AD27fM6wPDx5z6R6Tgd6eNx7hNpBdRQ1VtCH55/rE/EGOMJVXj9dbR/fwZ1iOfd\nontpeHAaH4wqxwcfQO3aXgeYvnCOnXUfUBz4CPgQKMY/z183xpisSwS6dkXef5/uI9Yzamt53s9d\nhwf6fcoNN8CYMV4HGHqnrURU9VdV7aSq1d1XF1X9LRzBmSza5hxDLL/o5nd+DRogy5dz5dLdfPNV\nZSbsvpe7R/Zl4CClQwc4cSKkYXoqo5sNZ4nITPdn6tfMcAZpjDERr3Rp+PprihUrw5YJBdm1dTKV\nnmnBD3uP0LAh/PST1wGGRrp9IiJyANgDvA8sT1ns/lRVXRj68PxjfSLGmIihCm++ifbpw5D21Rh1\n7m4SfprOrLfL8+GHULOm1wE6Qj52lojkABoDLYHKwMfA+6q6KdBCg80qEWNMxFmyBG6/nZXNq9P8\nwqW0O+8dRnZvxsCB0Lat18GFoWNdVZNUdY6q3gPUBrYBC0WkY6CFGv9Zm3N0s/yiW0D51akDK1dS\nc+MvbP7yYj7c8wAtR7zEiy8l06ULnDwZtDA9lWHHuoicLSK3AROAR3CGhJ8WaKEiUkREPheR70Rk\nrogUSme7sSLyk4hsDLRMY4wJu/PPh/nzOeeiy9jwTh4ObJnKxb3/x5btR2jcGA4c8DrAwGXUnDUe\nuBT4BJisqkH7Qy4iA4CDqjpARHoAhVX1yTS2qwccBd5V1coZ7M+as4wxkW3cOLRHD958IJ6hJfdQ\nb990Pp1QgWnToHr18IcTjj6RZOCPdN6nqlog04WKbAXqq+pPInIesEBVK6WzbRwwyyoRY0zUW7kS\n/vc/1ja8lOsqrqRtsXG81aM5r78OrVqFN5Rw9IlkU9X86bwyXYG4zlXVlAvefgLODXB/McvanKOb\n5Rfdgp5fzZqwciXVfviLrXMuYva+B2kx/HmeeTaZbt0gKSm4xYVDjlDtWEQ+B85LY1Uv3xlVVREJ\n+DSibdu2xMXFAVCoUCHi4+NJSEgA/vki2LzN27zNez6/eTM8/TQJn3zCurf2c339dyl2+1zWrvuE\npk0L0KnTAgoWDH75KdOJiYkEkyePx3WbsxJUdb+InA/Mt+YsY0yWM3Ei2qUL4+6NZ2DpPVy5axoL\nPqjEtGlQtWpoiw7n2FmhMBNo4063AaZ7FIcxxnjnrruQL77gvg93MGVZKeYUqcetPWfSqBFMnux1\ncP7xqhLpBzQWke+Aa9x5RKSEiHycspGIvA8sASqIyG4RudeTaD3keyoaiyy/6Gb5BUHVqrByJZUP\nZmPrrDJ8vv8hbhvahx5PJtOjB5w6FfoQAuFJJeIO6thIVSuoahNVPeQu36eq1/ts11JVS6jqWapa\nSlXHeRGvMcaEVJEi8PHHFEy4ljWjs3Fq83Qq9bmZpWt+5/rr4ddfvQ4wfZ70iQSb9YkYY2LGRx+h\n7dszoVVlXrxoL7UTp7N4xsVMnw6XBfHB5NHeJ2KMMSYtt96KLFzI3XP2Mv3rEnxR9Gqad59Ogwbw\n4YdeB/dfVolEOGtzjm6WX3TzLL9LLoEVK7j4eAG2flSCxfsf4abXn6XrY8k8/XRk9ZNYJWKMMZGo\nYEGYNo38N/6PZaOSybVpBhWfu5H5Sw9x001w6JDXATqsT8QYYyLdJ5+gbdsytcUl9Kq4l1o7ZrDy\nk0uYMQMuvjhzu7Q+EWOMySqaNUOWLOH2r35hzrzz+Kp4fZp0+Yirr4YZM7wNzSqRCGdtztHN8otu\nEZVfuXKwdCnlzi7B1inFWP1zJ5q/+jSPdDpFnz6QnOxNWFaJGGNMtMiXDyZNIm/r+1g0MomC38yi\nYp8bmDP/ELfcAocPhz8k6xMxxpho9MUXaOvWzLixAt0v3UeNbdPZ8MVlTJ8OFSue/u3WJ2KMMVlZ\no0bIsmXcvOoon39ajGXnJXD1Qx9Qrx58/PHp3x4sVolEuIhqkw0Byy+6WX4ei4uDxYu5sHgFtrxX\nhC0HutB04FO0a3+KF18MTz+JVSLGGBPNcueGt98mT4fOLBh1gvM3fEyl55oz/dPfaNECjhwJbfHW\nJ2KMMbHi66/RO+/kkyYX0rnqj1TZOp3vF1Xm44+hTJl/b2p9IsYYY/6tXj1kxQqu35LE/FlFWFcy\ngfodplCoUOiKtEokwkV8m2yALL/oZvlFoJIlYeFCSperzpZ3C7B1z2PsPLYhZMVZJWKMMbHmrLNg\n5EjO7tGLL8acoMqB0P2ptz4RY4yJZd984wywlT37vxYHq0/EKhFjjMmCrGM9i4jKNtkzYPlFN8vP\nWCVijDEm06w5yxhjsiBrzjLGGOM5TyoRESkiIp+LyHciMldE/nMrjIiUEpH5IrJJRL4Rkc5exOq1\nWG+Ttfyim+VnvDoTeRL4XFUrAPPc+dROAl1V9VKgNvCIiGTyQZDRa926dV6HEFKWX3Sz/IxXlciN\nwDvu9DvAzak3UNX9qrrOnT4KbAFKhC3CCHHo0CGvQwgpyy+6WX7Gq0rkXFX9yZ3+CTg3o41FJA6o\nBiwPbVjGGGPORI5Q7VhEPgfOS2NVL98ZVVURSffSKhHJB3wAdHHPSLKUxMREr0MIKcsvull+xpNL\nfEVkK5CgqvtF5HxgvqpWSmO7nMBsYI6qvp7B/uz6XmOMOUPBuMQ3ZGcipzETaAP0d39OT72BiAjw\nFrA5owoEgvNBGGOMOXNenYkUAaYApYFE4HZVPSQiJYDRqnq9iFwFfAVsAFKC7Kmqn4Y9YGOMMWmK\niTvWjTHGeCOi71gXkaYislVEvheRHulsM8Rdv15EqqVal11E1orIrPBEfGYCyU9EEkVkg5vfivBF\n7b8A8yskIh+IyBYR2SwitcMX+ellNjcRqeges5TX75F4I22Ax66ne5PwRhGZKCJnhS9y/wSYXxc3\nt29EpEv4ovbf6fITkUoislREjolItzN573+oakS+gOzANiAOyAmsAy5OtU0z4BN3+gpgWar1jwHv\nATO9zifY+QE/AEW8ziOE+b0D3OdO5wAKep1TML+b7vJswI9AKa9zClZ+7nt2AGe585OBNl7nFMT8\nLgM2Ame7+/kcuMjrnDKRXzHgcuBFoNuZvDf1K5LPRGoB21Q1UVVPApOAm1Jt8/dNi6q6HCgkIucC\niMgFOF+EMUAkdrwHlJ8rEvNKken8RKQgUE9Vx7rrklT19zDGfjrBOHYAjYDtqro71AGfoUDyO4wz\n2kQeEckB5AH2hi1y/2Q2v/OAi4HlqnpMVU8BC4Fbwxe6X06bn6oeUNVVOMfqjN6bWiRXIiUB31+u\nPe4yf7d5DXgcSA5VgAEKND8FvhCRVSLSLmRRZl5m87sAuBA4ICLjRGSNiIwWkTwhjfbMBJKbrzuB\niUGPLnCZ/m6q6q/AK8AuYB9wSFW/CGGsmZHZ/ErgnIXUc8f/ywNcz3+Pq9f8yS9o743kSsTfHv/U\n/42LiDQHflbVtWmsjxSZzS/FVapaDbgOZ1yxesEJK2gym5/iNF9VB95Q1erAH6Q9vppXAsnNWSGS\nC7gBmBqsoIIo099NEbkIeBSnOaQEkE9EWgUvtKDIdH6quhXn1oS5wBxgLZH3j2ogV0ud8XsjuRLZ\nC5TymS+FUytmtM0F7rI6wI0i8gPwPnCNiLwbwlgzI5D8UNV97s8DwDSc09BIEkh+e4A9qrrSXf4B\nTqUSKQI6dq7rgNXu8Ys0geR3ObBEVX9R1STgI5zfx0gS6O/eWFW9XFXrA4eAb0MYa2b4k1/w3ut1\nJ1AGnUM5gO04/9Hk4vSdX7VJu/OyPjDL63yCmR9OO3N+dzovsBho4nVOwTx+OPcIVXCn+wD9vc4p\nmN9NnLbmNl7nEoLvZjzwDZAb5z/5d4BHvM4pyN/N4u7P0jgDwxbwOqczzc9n2z78u2Pd7/f+/R6v\nEz7Nh3EdTi2/DedGQ4D2QHufbYa569cD1dPYR30i8OqsQPIDyroHd537C9vT61yCffyAqsBKd/lH\nRNDVWUHILS9wEPcfgUh8BZjfE8AmnP6Dd4CcXucT5Py+cvNbBzTwOpfM5IczruFu4HfgN5w+rHzp\nvTejl91saIwxJtMiuU/EGGNMhLNKxBhjTKZZJWKMMSbTrBIxxhiTaVaJGGOMyTSrRIwxxmSaVSLm\nX0QkWUTG+8znEJEDpxtOX0TaisjQMyzrfXeY7YCH0xaRp1LNLw50n+5+3haRPe4wJYhIUXckBEQk\nTkQ2ptq+T8rQ2iLygpvfOhGZJyKl0th/CRE5o6FPRORREcntM380M7m5701IObYicoNfQ3+nv6/R\nInJxGsvP+LthoodVIia1P4BLReRsd74xzrAHp7uh6IxuOHJHRL1cVauq6uBU67Kfyb5cPf8VjGrd\nTOwjPUnAfX5u6/s5DHDzi8d5BHTv/2ysuk9VW5xhPF1wRi1Iq8xMU9VZqto/gPe3U9UtwYjFRA+r\nRExaPsEZnRSgJc74YwLOo41FZLr7H/ZSEamc+s0iUsx9oNQK95XW2ElzgZLug5muEpEFIvKaiKwE\nuohIcxFZ5o7i+7mIFHf3nc8d3XeDG8OtItIXyO3ua7y73VH3p4jIQPchQhtE5HZ3eYJb5lRxHnw1\nIZ3PQoHBQFcR8ef35e9B+1T1iM/yfDh3qaf+rP4+m3H/Y/9IROaIyHci8p8/6OI8wKoEMF9E5vks\nf9E941nq81n5cxx89/33GYOIXOjua4O77yPu8r/PXNz5YSLSxp1eICI13Ol7ReRbEVmOH2NnuWdX\nb7nTld3jdbaI1BKRJe73YLGIVDjdvkyYeX17vr0i6wUcASrjjC57Fs4opX+PPwYMBZ5xpxsAa93p\ntsBQd3oiUNedLg1sTqOcMsBGn/n5wDCf+UI+0w8Ag9zp/sCrqbcDjqTOw/15G06FJUBxYCfOkA8J\nOIPnlXDXLUmJOdV+xrn7eMvN8RzgB3ddHPCn+xmlvH4EHvN5/0s4Q0ps9c3JZ31cyufg7n87kN/9\n7BNxhldP/Z4f8HkgGc4ostf7fD69zuA4JPgcW99jOBNo7U538Pk8/97e5/twj88xrA6c737O5+A8\n2GgRMOQ03zvBeTbHLTjD3VzpLs8PZHenGwEfeP07Yq9/v3JgTCqqulFE4nDOQj5Otbou7kN4VHW+\niJwjIvlTbdMIuFjk73/K84tIHlX902ebtIa4n+wzXUpEpuD8wc+F87Q8gIbAHT6xHjpNOlcBE9X5\nK/SziCwEauI8PGmFuqMhi8g6nD/oafWlKNAXmMF/P4/t6gzJj7uf3vz7bKQX0EtEnsR5xs29p4l3\nnrpnMCKy2Y3pdA91OqGqKXGtxmmCBP+OQ3rq4PxBB5iAUzn5Q3CeBLhAVX8BEJHJQIZnEKqqItIW\nZ7ytEaq61F1VCHhXRMrhHIecfsZhwsQqEZOemcAgnLOQYqnWpfucDJ/1V6jqiTMs8w+f6aE4Zx+z\nRaQ+zmij6ZWfEU1j+5R4j/ssO0UGvw+qus2taO5Ib5vTmIjTTHg6qWPyp3/I9+l0yfyTR2aPQ0aS\n+HczeO40tknr++CPCjhnwr4PQXoBp2K9RUTKAAv83JcJE+sTMekZC/RR1U2pln8NtAKnfRw4oKqp\nrw6aC3ROmRGReD/L9P1jUwDnyXjgNLOk+Bx4xGffhdzJk+I8jjW1r4E7RCSbiBQDrgZWcGYVUcq2\nLwHd/X6TSHmf2ZtwmrvOVFpxHsH5fE4ns8cBnDOyO91p34dK7QQuEZFc7md/Tar3KbAcqO/2n+UE\nWrjLEZFbROTl1IWJ80jkwUA94BwRuc1d5fs9ON1ZnPGAVSImNQVQ1b2qOsxnWcp/l32AGiKyHngZ\naJPGNp2By92O703AgxmVlc58H2CqiKwCDvisexEo7Ha8rsNpowcYBWyQfy5PTsljGrABZzjvecDj\nqvpzqnjTi+dfy1V1M05zkaZel85++qaKs1tG+z+DmEYBn/p0rKeO50yOg+/2vtNdcJ6YuQGn38jZ\nwHke/BScRxBMBtb8Z4eq+3GO31Kc/hDff0Quwhl+PLVXcfrEtgH3A/1EpCgwAOdzXINzVmbDjkcY\nGwreGHNaInJEVVP3fWVmP+OBR1P6S0z0s0rEGHNaInJYVf1pQjNZjFUixhhjMs36RIwxxmSaVSLG\nGPOup/0AAAAkSURBVGMyzSoRY4wxmWaViDHGmEyzSsQYY0ymWSVijDEm0/4PcKKwK+beCCUAAAAA\nSUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xbb73940>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczeX3wN9nxr4TWoSRfcuSfWuEQrbsoowtyZb4KVpQ\nX6RFi1QKEaLsJGuMELKG0EqJ9qxld35/PHdqGmPmztx7Z7lz3q/Xfc39fO7zOc85bn2e+znnOeeI\nqmIYhmEYsRGS3AoYhmEYKRdbJAzDMIxrYouEYRiGcU1skTAMwzCuiS0ShmEYxjWxRcIwDMO4JrZI\nGEGPiNQVkYMBkh0pIj087zuLyMpAzGMYyYUtEobPiEiEiOwVkb9E5CcReV1EciajPldE5JaoY1Xd\noKqlAjSdel6o6ixVvSsQk4hIBhEZKSJficgZETkkIlNEpHAg5jOMKGyRMHxCRAYDzwKDgRxADaAw\nsFpE0gdgvlBvh/p77mRmHtAM6IT7d64AbAcaJFSQiKTzr2pGMGOLhJFoRCQHMBLop6qrVPWyqn4P\ntAfCgC6ecSNFZJ6IzBGRUyKyQ0RujSbnJhGZLyK/ish3ItI/2mdR184QkZNAVxGpKiKbReS4iBwT\nkQlRC5KIfOK59HMROS0i7UQkXESORJN5WEQGi8jnInLCo1fGaJ8P9cj9UUR6xnwyiePfI0JENkQ7\nviIivT2//o+LyGsxxncXkf0i8qeIrBCRQteQ2xBoCLRU1R2qekVVT6nqG6o6NZpNDaJdM1JEZnje\nh3l06S4i3wMfi8hHItI3xjyfi0grz/tSIrJaRP4QkYMi0i7auKYi8oXnu/zR80PBCFJskTB8oRaQ\nCVgQ/aSq/gV8BDSKdroF8AGQG3gPWCQioSISAiwFdgE34X4ZPywid8a4dq6q5vRcexkYCFwH1PRc\n85Bn7nqea25V1eyqOjcWvRVoB9wFFAFuBSIARKQxMMgjszgQ7hmfWO4GqnjmaC8id3nmaQkMA+4B\n8gIbgNnXkNEQ2KqqR+OY5x+3V7TjmNQDSuHsno17KsGjTxmgELBMRLICq4GZQD6gI/C6iES57KYA\nD6hqDqAssDYOvYxUji0Shi/kBX5X1SuxfPaz5/MotqvqAlW9DIzHLS41gapAXlX9n6peUtVDwGTc\njSmKT1V1CYCqnlPVnar6mecX9ffAW8DtCdT9VVX9WVWP4xapip7z7YGpqnpAVc8CI/DNdfWs51f/\nEWAdzk0E8CAwVlW/9Pz7jQUqikjBWGRch/v3TAix6TxSVc+q6jlgUYz5OgPzVfUizq11SFWne/6N\nd+N+CLT3jL0AlBWRHKp6UlV3JVA3IxVhi4ThC78DeT1PAzG5Efgt2vGPUW/UVZX8EffkUAi4yeOO\nOS4ix3G/sPPHdi2AiJQQkQ89QfKTwGjcjTQhRL/pngWyRtP7SLTP/jN3Iog+z99ANs/7wsAr0Wz+\nw3O+QCwyfvfo5Sv/2KWqp4Fl/Ps00RGYFU236jG+k3uB6z2ftwGaAoc9u7tq+EE3I4Vii4ThC5uB\n87ibxj+ISDagMfBxtNMFo30eAtwMHMXduA6pau5orxyq2swzPKYbBeANYD9QzOOCehz//bf8U3Rd\nY7z3Jz/gXDbR7c6qqltiGbsGqCYisS0gUfzFvwsdwA2xjIn57zgb6CQiNYFMqroumm7rY+iWXVX7\nAqjqdlVthXNFLcK5EY0gxRYJI9Go6klgFDBBRO4SkfQiEoa7aRwBZkQbfpuI3OPZWfMwcA7YAmwD\nTnuCxZk9cYpyIlLFc11sbpNswGngb4+fvE+Mz38BiibQnKh5PgC6eQK3WYAnEygnvjmi5nkTGO6J\nBSAiOaMHh6Ojqh/jYgQLRaSyiKQTkewi8qCIdPMM2w109HxWBbdwxxdL+Qj31DAKmBPt/IdACRHp\n4vlO03s2C5TyvO8sIjk9rsPTuBiREaTYImH4hKo+DwwHXgBO4m783wMNPP5tcDerxUAH4E+c/7u1\nZzfUZZwPvCLwHc5F9RZum2fUtTFvdkNw7o9TnrFzYowZCUz3uEraXkPGf8zg31yHFcCruPjBV7in\nJXBPTPERX/A4+jyLgHHAHI/LbC8uoHwt2uJu6u8DJzzjK+MWD3CLWVHgOM7+WTGuv8p+Vb2AizU0\nwG0IiDp/BrgT54I6inu6Ggtk8AzpAhzy6P0A7vs0ghQJZNMhz06Rl4FQYLKqjovx+RD+/Q8sHVAa\nF8Q8ETCljCRHREbgXEP3JbcuCUVESuNuyBmuEaA3jKAmYE8S4pKeXsP5psvgfJ+lo49R1RdUtZKq\nVsIFKyNtgQhKUlVim8ctllFEcuN+7S+xBcJIqwTS3VQN+EZVD3vcDnOAlnGMv5dr7xM3UjfxuXtS\nGg/g4hrfABe5OuZhGGmGQKbnF+DqrYTVYxvoCRDehSchygguVHVUcuuQEFS1SXLrYBgphUA+SSTk\nl2NzYKO5mgzDMFIWgXySOMrV+82vlZjUkThcTSKSmlwVhmEYKQZV9SkmGMgnie1AcU9xsQy47Y9L\nYg4SV1K6Hm6L5DVR1SR/nT2r1KqlPP54YOcZMWJEstiXVK9gti+YbTP7Uv/LHwTsSUJVL4lIP2Al\nbgvsFFU9ICK9PZ9P8gxtBaxUVycnRZEpEyxcCDVqQMmScF+ANnAePnw4MIJTCMFsXzDbBmafEVh3\nE6q6HFge49ykGMfTgemB1MMX8ueHpUuhfn0oUgTq1ElujQzDMJIOy7j2grJlYcYMaNsWvv3W//Ij\nIiL8LzQFEcz2BbNtYPYZAc649hcioilBz9dfhwkTYPNmyJUrubUxDMOIGxFBU3DgOuh46CFo1Aja\nt4eLF+Mf7y2RkZH+E5YCCWb7gtk2MPsMWyQSzPjxkC4dDBgAKeDhxjAMI6CYuykRnDoFtWtDz54w\ncGBya2MYhhE7/nA3BXR3U7CSI4fb8VSrFhQrBnffndwaGYZhBAZzNyWSsDCYPx8iImDPHt9kBbtf\nNJjtC2bbwOwzbJHwiZo13W6n5s3h54S2qTcMw0gFWEzCD4waBR99BJGRkDlzcmtjGIbh8EdMwhYJ\nP6AKnTvD5cswezaE2POZYRgpAMuTSCGIwNSpcOQIjByZ8OuD3S8azPYFs21g9hm2SPiNTJlg0SJX\nvmPmzOTWxjAMwz+Yu8nP7NsHd9zhqsfWrp3c2hiGkZYxd1MKpFw5ePddVwzwu++SWxvDMAzfsEUi\nADRuDI8/Ds2awcmT8Y8Pdr9oMNsXzLaB2WfYIhEw+vWDBg1cMcBLl5JbG8MwjMRhMYkAcumSS7Qr\nUgQmTnS7oAzDMJIKi0mkcNKlgzlz4JNPXGa2YRhGasMWiTg4dPyQz83Ec+Z0xQDHjnVZ2bER7H7R\nYLYvmG0Ds8+wReKaqCqd5nfi2Y3P+iyrSJF/iwHu3eu7boZhGEmFxSTi4NjpY9SZWodhdYbR67Ze\nPst77z0YPhy2boXrr/eDgoZhGHFg/SQCzE3Zb2LVfauo90498mTOQ5sybXySd++98OWX0LIlrFtn\nxQANw0j5mLspHorlKcaye5fRZ1kf1h5a67O8kSOd+6lbt3/bnwa7XzSY7Qtm28DsMwK8SIhIYxE5\nKCJfi8ij1xgTLiK7RGSfiEQGUp/EUunGSsxtN5eO8zqy/dh2n2RFFQP8/vvEFQM0DMNISgIWkxCR\nUOBLoCFwFNgGdFLVA9HG5AI2AXep6o8ikldVf49FVorIk1h0cBF9lvUhsmskJfOW9EnWL79A9eow\nerQrM24YhuFvUnpMohrwjaoeBhCROUBL4EC0MfcC81X1R4DYFoiURKtSrfjz7J/cNfMuNnbfyM05\nbk60rOuvd1tjGzRw7qdatfyoqGEYhp8IpLupAHAk2vGPnnPRKQ7kEZF1IrJdRO4LoD5+oXul7vSt\n2pc7Z9zJH3//4ZOs8uVh2jRo1iySQ4f8o19KJJj9vsFsG5h9RmCfJLzxD6UHKgMNgCzAZhHZoqpf\nxxwYERFBWFgYALly5aJixYqEh4cD/37RSXVc9WJVdpzdwd3v3c2a+9ew/dPtiZbXtCncfvtu6teH\nzz8PJ2fOpLcn0Me7d+9OUfrYsR0H63FkZCTTpk0D+Od+6SuBjEnUAEaqamPP8TDgiqqOizbmUSCz\nqo70HE8GVqjqvBiyUkRMIjqqSo8lPTh6+ihLOy0lQ2gGH2S5goDffutcUOnT+1FRwzDSLElSu0lE\nxopI7mjHuUXkf17I3g4UF5EwEckAdACWxBizGKgjIqEikgWoDuz3Xv3kQ0R4q/lbZE6Xma6LunJF\nr/ggC155BUJDoXt3uJJ4UYZhGH7Fm5hEE1U9HnXgeX93fBep6iWgH7ASd+N/X1UPiEhvEentGXMQ\nWAHsAbYCb6tqqlgkANKFpGN2m9kcO32MAcsHJLrOU2RkJOnSwdy5bmvswIH/5lAEA1GPw8FIMNsG\nZp/h3SIRIiKZog5EJDPglW9FVZeraklVLaaqYz3nJqnqpGhjXlDVsqpaXlVfTagByU3m9JlZ0nEJ\nm45sYtT6UT7JypLFuZs2boQRI/ykoGEYhg/EG5PwxA1aAFMBAboBS6LHFgJNSoxJxOSXM79Q5506\nDKw+kH7V+vkk69dfoW5dePBBGDTITwoahpHmSJI8CVUdJyJ7cElxCjytqit9mTQYuT7b9azqsoq6\n79TluszX0al8p0TLyp8fVq92C0WuXK6Eh2EYRnLgTeB6ALBFVQer6hBbIK5NkdxFWN55OQ+vfJiV\n33j/zxSbX7RQIVi1ylWNXbDAj0omA8Hs9w1m28DsM7yLSVwPbBORDzy1mKwJZxyUv748C9ovoMvC\nLmz5cYtPskqWhGXLnNtpzRo/KWgYhpEAvMqTEJEQ4E4gAqgCfABMUdVvA6rdv/On+JhETD76+iO6\nLe7G2vvXUjZ/WZ9kffIJtGnjgto1avhJQcMwgp4k63GtqleAn4FfgMtAbmCeiDzvy+TBTNPiTRl/\n53gaz2rM9ye+90lWvXqufEfLlrBvn3/0MwzD8AZvYhIDRWQH8ByuYms5Ve0D3Aa0DrB+qZrOt3Zm\nSM0h3DnzTn7767drjvPGL3r33fDyy9C4MXz3nR+VTAKC2e8bzLaB2Wd4V7spD9BaVf/zc1hVr4hI\n88CoFTwMrDGQ3/7+jSazmrCu6zqyZ8yeaFmdOsGJE9CoEWzYADfd5EdFDcMwYsF6XCcBqkqfZX34\n+s+vWXbvMjKlyxT/RXEwZozrl/3JJ5Anj5+UNAwj6PBHTMIWiSTi8pXLdJzfkSt6hQ/afkBoSGii\nZanC0KHuaWLNGsiWzY+KGoYRNCRZ4NrwndCQUGbeM5OT507y4IcP/qfOU0L9oiLw3HNQrhy0agXn\nzvlZWT8TzH7fYLYNzD7DFokkJWO6jCzssJDPf/mcx9c+7pMsEZg0CXLndrGKS5f8pKRhGEY0Euxu\nEpE1wCXgNVX9MCBaXT1nqnc3Ref3v3+nztQ69L6tN4Nq+lac6fx5aNHCBbGnTIEQW/YNw/CQXO6m\nrsATQGFfJk7L5M2Sl1X3reKlLS/x7ufv+iQrY0ZXtuPLL2Hw4OAqMW4YRvKToEVCRPIA16nqdlWd\nGCCd0gSFchZiZZeVDF09lDHvjvFJVtasrnzHxx/D/7xpB5XEBLPfN5htA7PP8C6Zbr2I5PAsEDuA\nySLyUuBVC35K5yvN4o6LGffpODZ8v8EnWblzu4KA06fDhAl+UtAwjDSPN/0kdqtqRRHpCRRU1REi\nsldVyyeNiskYk1i3ztXrTudNzmHiWf3tajov6Mzq+1ZT4YYKPsk6fNipPHYsdOniH/0Mw0idJFVM\nIlREbgTaA8s854Lf860K48dD+/YuOhxAGhVtxGtNX6Ppe005+PtBn2SFhcHKlTBkCCyJ2VHcMAwj\ngXizSDyN61P9rap+JiJFga8Dq1YKQATmzXN/W7WCv/8O2FSRkZG0L9ue0XeM5o7pd/DFr1/4JK9M\nGVcxtkcP9zCU3ASz3zeYbQOzz/BikVDVuap6q6eoH6r6raq2CbxqKYCMGeH99yFvXmjaFE6fDuh0\nERUjeK7RczSc0ZA9v+zxSVbVqvDBB+5BaPt2PyloGEaaw5uYRGagB1AGyOw5raraPcC6RdchefMk\nrlyBPn1gzx746CMXJQ4g7+97n4ErBrKiywoq3lDRJ1mLF0Pv3rB2rXvCMAwj7ZBUMYkZuO50jYFI\n4GbgjC+TpjpCQuDNN13HnzvugN+uXfbbH3Qo14GJTSdy18y72H7Mt8eAli1dCY+77nJBbcMwjITg\nzSJRTFWfBM6o6nSgKVA9sGqlQERcILtZM7j9djh2zG+iY/OLtinThreavUXTWU3Z+uNWn+Tffz/8\n3/+5EuM//+yTqEQRzH7fYLYNzD7Du0XigufvSREpD+QC8nkj3NMT+6CIfC0ij8byebiInBSRXZ7X\nE96rngyIwDPPuLtuvXoB/2neslRLpracSvPZzdn0wyafZA0Y4LbE3nUXHD/uJwUNwwh6vIlJ9ALm\nA+WBaUA24ElVfTOe60KBL4GGwFFgG9BJVQ9EGxMOPKKqLeKRlfJqN02YAC+8AKtXQ4kSAZ1q5Tcr\n6bKwC/Pbz6de4XqJlqMKgwbBtm0u8S5rVj8qaRhGiiNJYhKq+raq/qmq61W1iKrmi2+B8FAN+EZV\nD6vqRWAO0DKWcT4ZkGz07w8jRkD9+gFvPH1XsbuY02YObT5ow9pDaxMtJ8pjVrw4tGkDFy7Ef41h\nGGkbb8pyDBaRR6L9fUREeohIfNtuCgBHoh3/6DkXHQVqicjnIvKRiKSu/Tfdu8OLL0LDhrBjR6LF\neOMXbXBLA+a2m0uHeR1Y9e2qRM8VEgKTJ0PmzNC5c9KUGA9mv28w2wZmn+Fdj+vbgCrAUtyv/ruB\nvcCDIjJPVcdd4zpv/EM7caU+/haRJsAiIFbfTUREBGFhYQDkypWLihUrEh4eDvz7RSfLcceORH7z\nDTRoQPiyZVC7doLl7d692+vxCzss5O4xdzOszjAe6/JYovTfuDGSPn1g/PhwOnWC3r0jSZcucP9e\nCbHPju3YjhN/HBkZybRp0wD+uV/6ijcxiQ1AE1U94znOBnyE2xK7Q1VLX+O6GsBIVW3sOR4GXIlj\nUUFEDgG3qeqfMc6nvJhETFatcpHh2bOhQYOATrX5yGZazmnJlBZTaF6yeaLlnDsH7dpBaKjLGcyY\n0Y9KGoaR7CRVnkQ+/t3hBHARuF5V/wbiapy5HSguImEikgHoAPynmpCIXC8i4nlfDbdo/Xm1qFTA\nnXe6Mh6dOsGHge3FVLNgTZbdu4yeS3uy8MDCRMvJlAnmz3eLROvWKb8NqmEYSY83i8QsYKuIjBCR\nkcCnwHsikhXYf62LVPUS0A9X92k/8L6qHhCR3iLS2zOsLbBXRHYDLwMdE29KCqBePbdA9OgBc+d6\nfVnU42JCqFqgKss7L6fPsj7M/cL7uWKSIQPMmQPZs0Pz5oEpUZUY+1ILwWwbmH2GFzEJVX1GRFYA\ntXFxht6qGpUG3Dmea5cDy2OcmxTt/UQguJoXVavmXE9Nmrg7bteuAZuq8o2VWdllJY1nNebilYvc\nW/7eRMlJnx5mznRx+LvvdsUBs2Xzs7KGYaRKEtzjOjlIFTGJmBw86FKchw2Dhx4K6FT7ft3HnTPu\n5NmGz3J/hfsTLefyZXjgAdcK9aOPIEcOPyppGEaSk1w9rg1vKFUK1q93CXcvvBDQqcrlL8fH93/M\n8I+HM3XX1ETLCQ2Ft9+GW29165tlZhuGYYtEILnlFvjkE5eYMGqUS3mOBX/4RUvnK83armsZETmC\nSdsnxX/BNQgJgYkToWZNl/7xxx8+qxbUft9gtg3MPsPLRcKzQ6mh530WETFHhLfcfLN7opg/Hx59\n9JoLhT8ocV0JIrtGMmbjGCZ+lvhQjwi89JJbJO64A3791Y9KGoaRqvAmT+IBoBeQR1WLikgJ4A1V\nDWwywH91SH0xiZj8+Sc0buy6AU2Y4H6yB4hDxw9xx7t3MKDaAAbVHJRoOarw1FOwYAGsWQM33uhH\nJQ3DCDhJFZPoC9QBTgGo6ldAfl8mTZPkyePutHv2uG1EAayHUSR3EdZHrGfitok8t+m5RMuJKnrb\nsSOEh8PRo/7T0TCM1IE3i8R5VT0fdSAi6fCu5IYRkxw5YMUK14vi3nv/qbAXCL9ooZyFWB+xnsk7\nJzP6k9E+yXrySZf6Ua8efP99wq8PZr9vMNsGZp/h3SKxXkQeB7KISCNgLq6Ok5EYsmaFJUvg/HlX\nijWAac4FchRgfcR6Zu6dyajIUfjishs61BW+DQ+H777zn46GYaRsvIlJhOJ6XN/pObUSmJyUQYKg\niEnE5OJFuO8++P1314g6gM0dfjnzCw3ebUCrUq14pv4zeCqhJIo33oCxY+Hjj13JccMwUi7+iElY\nMl1ycvky9OoFX30Fy5ZBzpwBm+q3v36j4YyGNC7amGcbPuvTQjFlimulsXo1lI61vKNhGCmBJAlc\ni0gdEVntaUF6yPMyh4M/CA2FyZOJzJfPVY71R1LCNciXNR9r71/L6u9WM3jVYJ9cTz16uKeJBg1g\n7974xwez3zeYbQOzz/AuJjEFGI/b4VTV86oWSKXSFCEhrgF1w4bO4f/jjwGb6ros1/Hx/R+z8YeN\nDFg+wKeF4r77XJe7Ro1g1y4/KmkYRorCm5jEVlWtnkT6XEuH4HQ3RUfVdbl7+WUXo7jttoBNdfLc\nSRrPakyF6yswselEQkNCEy1r/nxXmurDD10KiGEYKYeAxiREJOou1Q4IBRYA/2yFVdWdvkycENLE\nIhHFggXQu7cr5dEytpbg/uH0+dO0mNOCPJnzMPOemWROnznRspYudS6oRYugVi0/KmkYhk8EOibx\nIvACUB3XvnSM51zUy/AT//GLtm4Ny5dD377uySJAi2P2jNlZ0XkFGUMz0nBGQ/74O/HxkObN4d13\noVUrV6oqJsHs9w1m28DsM+JYJFQ1XFXrAz1UtX70F25LrBEoqlSBzZvdnbdPH7ddNgBkTJeRma1n\nUrdQXWpNrcWh44cSLatxY9e5tU0btz3WMIzgwJuYxE5VrRzj3A5VDZzT/God0o67KTqnT0OHDq6E\nx9y5Ad0iO/GziYzeMJolnZZQ5aYqiZbzySfQtq1b3xo39qOChmEkmIC6m0SktIi0AXKJSGsRaeP5\nGwFk8mVSw0uyZ3fZ2aVKOWf/ocT/0o+PvtX68vrdr9NkVhM++vqjRMupV8/FJu6/38UqDMNI3cQV\nkygBNAdyev428/ytjKsKa/iJOP2i6dLBq6/Cgw9C7drODRUgWpVqxZKOS+i+uDuTd05OtJxatVxu\nYM+ebvdTMPt9g9k2MPuMOHpcq+piYLGI1FLVT5NQJyM2+vd3TYxatnSlxjt0CMg0NQvW5JNun9Bk\nVhOOnDzCyPCRicrOrlrV1TJs0sS1RA0P97+uhmEEHivLkdr4/HNo0cLdeYcPd/W8A8AvZ36h2exm\nlMtfjreavUX60PSJkrN3L9x1Fzz7rHNBGYaRdFjtprTKTz+5faflysGkSZAxY0Cm+evCX3SY14GL\nVy4yr908smfMnig5Bw64zOyRI50LyjCMpCGpmg4ZASbBftEbb3QtUU+dgjvvDFjNp6wZsrKo4yIK\n5yzM7dNu56fTPyVKzi+/RLJuHfzvfzB6dEA7uCY5we7TNvsMbwr8ZRKRziLyuIiM8Lye8ka4iDQW\nkYOe4oCPxjGuqohcEpHWCVE+TZM1K8ybBzVqQM2a8PXXAZkmXUg6JjWbRJvSbag5pSYHfjuQKDnF\ni7uY+7x5LvUjgI35DMPwI97kSawETgA7gMtR51U1zqxrTx+KL4GGwFFgG9BJVQ/EMm418DfwjqrO\nj0WWuZvi4u23Xfu499+H228P2DTTd09n6JqhzGs3j7qF6yZKxqlTLo8iUyaXfBfANhqGkeZJkpiE\niOxT1XIJFixSExihqo09x48BqOqzMcY9DFzAVZf90BaJRLJmjWuJ+sILAY0Qr/52NZ0XdGZi04m0\nK9suUTIuXnRtNA4ccLkU+a1jumEEhKSKSXwqIrcmQnYB4Ei04x895/5BRAoALYE3PKfS5ErgF79o\nw4YuTjFqlHuquHLFd5mx0KhoI1bdt4pBKwfx0uaXvLompn3p08M777hwSu3a8M03AVA0iQh2n7bZ\nZ1wzTyIadYFuInKIf6vAqqrGt3B4c8N/GXhMVVXcZvxrrngRERGEhYUBkCtXLipWrEi4Z/N91Bed\nWo93797tP3lbthBZvz5s2kT4smWQObPf9T1x8AQvlniRp3c9zQ8nf6B5xuaESEiC7XvmmXBuvhmq\nVYtk9Gjo08c/+tmxHafV48jISKZNmwbwz/3SV7xxN8U6k6oejue6GsDIaO6mYcAVVR0Xbcx3/Lsw\n5MXFJXqp6pIYsszdlBDOnYNu3eDwYdebIkD+nONnj9Pq/Vbkz5qfGffMIFO6xFVrWboUuneHqVPd\nzl7DMPxDoGs35fC8PXWNV3xsB4qLSJiIZAA6AP+5+avqLapaRFWLAPOAPjEXCCMRZMoE773n/Dk1\nasD+/QGZJnfm3KzqsooQCaHRjEb8efbPRMlp3tyV8XjgAZf2YRhGyiGumMRsz9+duJ1N0V/b4xOs\nqpeAfsBKYD/wvqoeEJHeItLbJ62DjKjHRb8i4uITTz/tamKsXu3/OXDlxme3mU31AtWpPbU2h08c\nvmqMN/ZVqwYbNri4+xNPpJ5cioB8dykIs8+Iq3bT3Z6/YYkVrqrLgeUxzsX6W1FVuyV2HiMOunSB\nwoWhXTu3YDzwgN+nCJEQXrjzBQrmKEjtqbVZ2mkplW+sHP+FMShWDD79FJo1gyNH3M7eDBn8rq5h\nGAnAynKkFb75Bu6+2/l2xo2D0MT3tY6L+fvn8+CyB5lxzwwaF0tcQ4m//oKOHeH8eZd8lyNH/NcY\nhnE1VpbD8J5ixVzK844dLpvtr78CMk2bMm1Y1GERXRd1ZequqYmSkTUrLFzoit7efjscO+ZnJQ3D\n8BpbJFIASeYXzZMHVq6EXLlcd6AA3X1rF6rN+oj1PPPJM4yKHMW6desSLCNdOnjjDeclq1XLJd6l\nRILdp22eVxLvAAAgAElEQVT2Gd7UbrpDRPqLSD8RqZ8UShkBJEMGt9e0XTuoXj1gTYxK5S3F5h6b\nWfLVEp7f9DwXLye8T7eIq4YeFXvfsMH/ehqGETfXjEl4sqEX4BLoonYz3QZkBu5R1aNJoiEWkwgY\nH34IPXrAY4/Bww8HpDfFmQtnaDfXle+Y224u2TJkS5ScVaugc2f3dNG2rT81NIzgJaC1m0RkEbBI\nVafFOH8/0EZVW/oycUKwRSKAHD7snioKFnRPGLly+X2Ki5cv0mdZH3b+tJNFHRdRKGehRMnZvdvt\nfBoyxK1phmHETaAD12ViLhAAqvouUNqXSY3/kqx+0bAw2LgRChSAKlVg1y6/T7Fpwybebv4295a/\nl+qTq7PuUMJjFAAVK8KmTfDWWzB4cMDKUyWIYPdpm31GXIuESCzNjUUkJJ7rjNRGxoyub/bo0a7X\n6Ftv+T2bTUQYUmsIM+6ZQaf5nXhp80sk5umwcGG3pm3bBp06uQokhmEEjrjcTS8DWYFBqnrGcy4b\nMB44p6oDkkxJczclHV9+6Zz+FSvCm28GpOHD4ROHuef9eyiTrwxvN3+bLOmzJFjGuXNw333w66+w\naBHkzu13NQ0j1RNod9NQ4CRwWER2ishO4DBwGhjiy6RGCqZkSdi61e1BrVYtIHtPw3KFsan7JgSh\n1pRaHDp+KMEyMmVyPZYqV4Y6deCHH/yupmEYxLFIqOoFVR0CFAIiPK/CqjpYVS8kjXppgxTnF82S\nxTV8GDzY5VO8955P4mKzL0v6LMy4ZwbdKnaj5pSarP424bWlQkLgpZegZ0/Xl+Lzz31SM1GkuO/O\nz5h9RpyxBU8l2BtVdY/n9ZfnfIUk0c5IXrp3dx3vRo50jan9HAAQEQbWGMictnO4f9H9PLfpuUTF\nKQYNghdfhEaNnLqGYfiPuGIS7XFNgX4F0gPdVPUzz2e7VLVSkilpMYnk5dQpl0/x3Xcwd66rl+Fn\njpw8QusPWnNL7luY0mJKovIpPvnE7eZ98UVX19Aw0jqBjkk8DtymqhWBbsC7ItLal8mMVEqOHPDB\nB9C1q+tPsWiR36comLMgG7ptIEv6LNScUpNv/kx4T9N69WDtWnj8cXj22dRTbtwwUjJxLRKhqvoT\ngOcJoj7wuIgMTBLN0hCpwi8qAgMGuDZyDz/sMtoueldqw1v7MqXLxNQWU+lTpQ+1p9Zm+dfL478o\nBmXLukojs2c7D9mFAEfPUsV35wNmnxHXInFKRIpGHXgWjPpAC6BsoBUzUijVq7tKsgcOQP368OOP\nfhUvIjxU9SHmt59Pz6U9GbNhTILjFDfd5Oo8HT0KDRu6bbKGYSSOuGISFYG/VPXrGOczAO1VdWYS\n6Bc1p8UkUhpXrri+FK++Cu++66LGfuboqaO0nduWm7LfxLSW08ieMXuCVRwxwqm3YAHcdpvfVTSM\nFE1AazelJGyRSMFERrrKe716wZNP+r2Z0flL5xmwfAAbftjAwg4LKZm3ZIJlLFgAvXvD+PEuAc8w\n0goBDVyLyBkROe15nYr2/rSInPJlUuO/pGq/aHi4cz+tXw+NG8fq2/HFvozpMjKp+SQervEwdd+p\ny9IvlyZYRuvWsG6da/n9yCNw6VKi1bmKVP3deYHZZ8SVTJdNVbOranbg26j3npc1lDT+5YYbYPVq\nl6F9222uuJKfeeC2B1jccTF9lvVhVOQormjCqvuVK+fqPe3f78pT/f6731U0jKDEK3dTUudFxDK/\nuZtSCx99BN26ud1PQ4b4vUfFz2d+pu0HbcmTOQ8z7plBzkw5E3T95ctui+wHH7gWqRUsLdQIYqzH\ntZHyaNrU/WSfPx9atYLjx/0q/oZsN7C261oK5SxEtcnVOPBbwmpLhYa6HIoxY9zOpzlz/KqeYQQd\nccUk2ohIaxFpA+SMeh91Pgl1DHqCzi9aqJBLfy5SBG67jchJk/wqPkNoBl5r+hqP1X6MetPqsfDA\nwgTL6NjReciGDYNHH3VPGIkh6L67GJh9Rro4PmsORPl4PvEcR2dBfMJFpDGutEcoMFlVx8X4vCXw\nNHDF8/o/VV3rnepGiiZDBnj5ZVeitWdPtx/1wQf96n7qVqkb5fKXo80Hbdj5005Gho8kNMT73VUV\nK7qHng4d4O67XQKelRw3jP8SsC2wIhIKfAk0BI4C24BOqnog2pis0YoGlgcWqmqxWGRZTCI18/XX\nrkdFmTLw+ut+vxP/+tevtJ/bnizpszCr9SxyZ06Y/EuXYOhQl0y+aJHL2jaMYCClxySqAd+o6mFV\nvQjMAf7TFztqgfCQDbA9J8FI8eKwZQvkzQu33gorVvhVfP6s+Vl932pKXFeCqm9XZd+v+xJ0fbp0\nLofiqafcjt4F8T4jG0baIZCLRAHgSLTjHz3n/oOItBKRA8ByIMm63aUkgt0vGhkZCZkzuxap06a5\nzLYHH4TTp/02R/rQ9Lzc+GVGho+k/vT6zP1iboJl3HcfLF/uSlM9+aR3PbTTxHcXxAS7ff4grpiE\nr3jlH1LVRcAiEakLzABiTamNiIggLCwMgFy5clGxYkXCw8OBf7/o1Hq8e/fuFKVPQO1r0IDIiRPh\n9dcJr1ABpk0j0nM39sd8XW7twt9f/03/N/qzreU2Rt8xmk0bNnl9fZUq8PLLkYwcCbt3hzNzJuza\nlbz/fnZsx94eR0ZGMm3aNIB/7pe+4m2eRG0gjH8XFVXVd+O5pgYwUlUbe46HAVdiBq9jXPMtUE1V\n/4hx3mISwciHH7qnig4dYPRo97ThJ37/+3ciFkXw61+/8l6b9yiW56pQV5xcvOiaGa1Z4+IUpUr5\nTTXDSDKSJCYhIjOB54HaQBXPq6oXsrcDxUUkzFMUsAOwJIbsoiJuu4uIVAaIuUAYQUyzZrBnDxw7\nBpUqwWef+U103ix5WdppKfdXuJ+aU2oyfff0BFWTTZ8eXnsN/u//XJ+KpQmvBmIYwYGqxvkCDuB5\n4kjoC2iC2+H0DTDMc6430NvzfiiwD9gFbACqXkOOBjPr1q1LbhUCilf2zZmjmj+/6hNPqJ4/79f5\n9/y8R8tOLKsd53XU42ePJ/j6zZtVCxRQffpp1cuX//uZfXepm2C3z3PvTPC9O/rLm8D1PuDGRC5A\ny1W1pKoWU9WxnnOTVHWS5/1zqlpOVSupal1V3ZaYeYwgoEMH+Pxz2L3b1YDas8dvostfX55tvbZx\nXebrqDSpEpt+2JSg62vUcPkUy5e7nbx+jLcbRoon3piEiEQCFYHPgPOe06qqLQKr2n900Pj0NIIE\nVbcDauhQGDzY1X9K57/9FUu/XEqvpb3oU6UPj9d7nHQh3ss+fx769YNPP4XFi6FYwsIchpHkJEk/\nCREJ97yNGii4RWK9LxMnBFsk0iDffw/du8Pff8P06VCihN9EHzt9jK6LunL24llmtZ5F4VyFvb5W\nFSZNcs2Mpk931dENI6WSJIFrVY0EDgI5gOzA/qRcINICUVvYgpVE2Ve4sCuu1KUL1K7tOuB5k7jg\nBTdlv4mVXVZyT6l7qPp2Vebs877Kn4hL8Zg/361hDzwQSTD/frH/Ng1vdje1B7YC7YD2wGci0i7Q\nihkGISHQt6/z78yZAw0awOHD/hEtIQyuNZgVXVYwInIE3RZ34/R574MNdeq4zVjr17tigX/9Ff81\nhpEa8cbdtAdoqKq/eo7zAR+r6q1JoF+UDuZuSutcvgwvvgjPP+9qfXfv7rdigWcunOHhFQ+z/vv1\nvNf6PaoW8GaHt+PcOfdksWuXy6coUsQvKhmGX0iq2k0C/Bbt+A/POcNIOkJDXTB73TqYONHlWBw7\n5hfR2TJkY3KLyYxtMJZms5sxbuM4rzvfZcoE77wDPXpA9erODWUYwYQ3i8QKYKWIRIhIN+AjXJ0l\nw08Eu1/Ur/aVK+eKBVap4hLw5szBX0GBtmXasr3Xdj765iMazWjE0VNH470mMjISERgwwCWQDx3q\nnizOnvWLSsmO/bdpeLNIDAUmARWA8sAkVR0aUK0MIy4yZIBRo2DZMnj6aZdj4aem1QVzFmTt/Wu5\nI+wOKr9VmUUHF3l9bbVqsHMnnDzp3n/xhV9UMoxkJWD9JPyJxSSMa3LunCvZOmsWvPkmtPBf+s6W\nH7dw7/x7ubPonYy/azxZ0mfx6jpV54J69FHXJrVnT7+3+jYMrwhonoSIbFLV2iJyhqsruqqq5vBl\n4oRgi4QRLxs2QEQE1K3rOuLlyuUXsafOn+KhZQ+x86edzG4zmwo3VPD62gMH3M6nkiXhrbf8ppJh\neE1AA9eqWtvzN5uqZo/xSrIFIi0Q7H7RJLGvbl1X1iNLFtfYaM0av4jNkTEHM1vPZHjd4TSa0YhX\ntrzyn0KBcdlWujRs3Qr587vwyZYtflEpSbH/Ng1v8iRmeHPOMJKdbNlce9TJk90W2QcfhBMn/CK6\ny61d2NJzC7P3zabpe0355cwvXl2XKZOrJjt+PLRsCePG+S0n0DCSBG/yJHapaqVox+mAPapaJtDK\nRZvT3E1GwjhxAoYNc8kLzz3nMrf9EBi4ePkiT69/mim7pjClxRSaFG/i9bU//ACdO7u2Ge++Czfc\n4LM6hhEnAXU3ichwETkNlBeR01Ev4Fdi9IUwjBRHrlzwxhuuEt/LL0P9+n7ZbpQ+ND3P3PEMs9vM\npveHvXl4xcOcu3TOq2sLFXJpHjVqQOXKsHKlz+oYRsCJKyYxRlWzA8/HiEfkUdXHklDHoCfY/aLJ\nal+1aq5+Rrt2EB7uthydOeOz2NvDbmf3g7vZtWUXNSbXYP9v+726Ll06t2t31iyXgDd0KFy44LM6\nAcP+2zS8yZPYJiL/7MsQkVwi0iqAOhmGfwkNdTWg9u51Wdply8KCBT4n4eXJnIeRt4+kf7X+3D7t\ndiZ+NtHrTO369V3rjAMHXMz9u+98UsUwAoY3MYnPVbVCjHO7VbViQDX773wWkzD8R2QkPPQQhIXB\nhAlQtKjPIr/8/Uu6Le5GupB0TG4xmRLXeVfaXNUVuP3f/5wqHTv6rIph/ENS1m6KSagvkxpGshIe\n7n7Gh4e7gkvPPOOS8nygZN6SbOi2gbZl2lJrSi2e2/Qcl65civc6ERg40MUnnnrKuaCsoqyRkvBm\nkdghIuNFpKiIFBORl4AdgVYsLRHsftEUaV+GDC4gsHOnK+FavjysWpVgMdFtCw0JZUD1AWzrtY01\n362h+uTqfP7z517JqVwZduyAixddWSo/dm/1iRT53fmRYLfPH3izSPQHLgLvA3OAc0DfQCplGElG\noUIuPvHyyy6von17OBp/Yb+4KJK7CCu7rKR/tf40mtGIJ9Y+4dUOqOzZ3dbYYcNc64zXX/db7ULD\nSDRWu8kwojh7FsaOdXfn4cOhf39In94nkT+d/om+H/XlwO8HmNJiCrUK1vLquq++cvGJsDCXG5gn\nj09qGGmUpOpxnR9XCbYMkNlzWlX1Dl8mTgi2SBhJyldfQb9+8PPPbsGoU8dnkfP3z6f/8v60LdOW\nMQ3GkC1DtnivOX8eHnvMPejMmuUXNYw0RlIFrmfhelzfAowEDgPbfZnU+C/B7hdNdfaVKOEiyU8+\n6X7Od+8Ov/0W61BvbWtTpg37HtrHqfOnKP9GeVZ9G3/8I2NGeOkl12OpbVsXX798OSGG+E6q++4S\nSLDb5w+8WSSuU9XJwAVVXa+q3QCvnyJEpLGIHBSRr0Xk0Vg+7ywin4vIHhHZJCJJ1hbVMK6JiEvA\n27/fZW+XLQuTJvlUeClP5jxMazWNN+9+kweWPkC3xd348+yf8V7XrJkLan/8MTRs6HPIxDAShDfu\npi2qWkNEVgGvAseAuaoa7+ZyEQkFvgQaAkeBbUAnVT0QbUxNYL+qnhSRxsBIVa0RQ465m4zkZc8e\n6NMHLl1y5T4qV/ZJ3Onzpxn+8XDmH5jPhCYTaFOmTbzXXL7s+lNMnOjiFM2a+aSCkQZIqphEM2Aj\nUBCYAOTA3cjjrd/kWQBGqGpjz/FjAKr67DXG5wb2qurNMc7bImEkP1euwPTpbvtRu3bO/+Njk4hN\nP2yix5IelMtfjteavsYN2eKv+rdxoysU2KIFPPssZM3qkwpGEBPwmITnSaCEqp5Q1b2qGq6qlb1Z\nIDwUAI5EO/7Rc+5a9MD10E5TBLtfNGjsCwmBbt1cocALF6BMGSIff9ynfaq1C9Vm94O7KXldSW59\n41am7Z5GfD+I6tRxqR0nTrjWGevXJ3r6eAma7+4aBLt9/iBdXB+q6mUR6QSMT6R8r//vEZH6QHeg\ndmyfR0REEBYWBkCuXLmoWLEi4eHhwL9fdGo93r17d4rSx+yL53jvXujUifBu3eC++4hctgwGDSK8\na9dEyduycQuNQhvR7r52dF/cndc+eI0htYbQsVnHOK+fMSOcJUugTZtI6tVzx1mzpoB/HztOtuPI\nyEimTZsG8M/90le8cTe9BKTHJdP9hSvToaq6M17hIjVwrqkod9Mw4Iqqjosx7lZgAdBYVb+JRY65\nm4yUSVSM4umnXfvU4cMhd+5Ei7t4+SLjN4/n+U+f56nbn6Jv1b6EhsRdBefPP11pj08/halT4fbb\nEz29EWQkVUwiklieCFS1frzCXYOiL4EGuID3Z1wduC4ErAW6qGqsDR5tkTBSPD/95IovLV7skhv6\n9nV7WBPJl79/Sc+lPbmiV5jcfDKl85WO95olS1xsvU0blxNosQoj0E2HBnrePqGq9WO+vBGuqpeA\nfsBKYD/wvqoeEJHeItLbM+wpIDfwhojsEpHPEm9O6iTqcTFYCWb7/rHtxhvh7bddhdnISChVymXA\nJXLLbMm8JVkfsZ7O5TtT9526jP5kNBcvX4zzmhYtXDX048f9F6sI5u8Ogt8+fxBX4Lq75+8EXyZQ\n1eWqWlJVi6nqWM+5Sao6yfO+p6pep6qVPK9qvsxnGMlKmTLuJ/306a4GeJUqsGZNokSFSAgPVX2I\nnb13svHIRqq8XYUdx+KurZknD8yY4ZLw7r0XBgywqrKGb1zT3SQis4EquN1I38b4WFU1yZLezN1k\npEpUYd48F6coWhTGjYMKFeK/LlZRysw9MxmyeggRFSIYGT6SzOkzx3mNxSqMgMckROQGYBXQnBh9\nJVT1sC8TJwRbJIxUzYUL8NZbrrPQXXe5/IpChRIl6pczvzBgxQB2/bSLSc0mUb9I/J7fqFhF69aW\nV5HWCHiehKr+rKq3qur3qno4+suXSY3/Eux+0WC2zyvbMmRwBQO/+sotDpUquV4Wx48neL7rs13P\n+23f57lGzxGxOIIO8zrww8kf4rwmKlZx8mTCYxXB/N1B8NvnD7yp3WQYhj/IkcM9Rezd6zLhSpaE\nF19MVFe8VqVacaDvAUrnLU2lSZV4Zv0znL149prj8+RxvSpeftnFKvr3t1iF4R3WT8Iwkov9+12J\nj88/h9GjoVMnl9WdQA6fOMyQVUPY8dMOxt85nlalWiFybQ/Dn3/Cww/Dpk0Wqwh2kiRPItpkWVT1\nb18mSyy2SBhBzYYN8H//52IXzz3nSr0mgjXfrWHgioEUyF6AVxq/Em9uxdKlrhmfxSqClyTpJyEi\ntURkPy4pDhGpKCKv+zKp8V+C3S8azPb5xba6dWHzZrcLqk8fF9z+3Lve2NFpeEtDdvfezd3F76be\ntHo8svIRTp47ec3xzZvHH6sI5u8Ogt8+f+DNs+3LQGPgdwBV3Q3YA6ph+BMR11lo/34Xab7rLuja\nFX6IOygdk/Sh6RlYYyBfPPQFp8+fptTEUkzdNZUrGntSn8UqjPjwpizHZ6paTUR2qWolz7nPVTVx\nG74TgbmbjDTHqVPwwguueUSPHi52kYiaUNuObmPAigFcvnKZCU0mUP3m6tccGz1WMWUKeOrHGamY\npGpf+oOI1PZMmEFEhgAH4rnGMAxfyJHDFQ3ct8/5gxK5E6pqgaps6r6JftX6cc/799BtcTd+PvNz\nrGOjP1V06eKeKs6c8YcxRmrGm0WiD9AXl3l9FKjkOTb8RLD7RYPZvoDbduONrm3q+vUuwF2qFMyc\nmaCaUCESwv0V7udgv4Pky5KPcq+X48VPX+TC5Quxjo+KVZw6BSVKRBLEX19Q/7fpL+JdJFT1N1W9\nV1Xzq2o+Ve2sqn8khXKGYXgoXRoWLXKFmV57zdWEWrEiQQ2PcmTMwXONnmNT902s/m41Fd6swKpv\nV8U6NnduV36qXz/XBa9fP3uqSKvEVbsprsJ+qqoDAqNSrLpYTMIwolCFBQtgxAjIkgWeeML9/I8j\nN+JqEcqHX33IoJWDKJe/HOPvGs8tuW+Jdezx4zBoEKxb5woH3nNPgqYykpGA5kmISAT/9pGIOYmq\n6nRfJk4ItkgYRixcuQILF7qaUOAWi3vuSVBC3rlL53hp80u8sPkF+lTpw7A6w8iaIfaEiXXrXJuM\nsDCYMMHVLDRSNv5YJFBVr15AdiCbt+P9+XJqBi/r1q1LbhUCSjDblyJsu3JFdckS1apVVcuWVX3v\nPdVLlxIk4sjJI3rv/Hu14PiCOmfvHL1y5YqqXm3f+fOq48apXned6siRqmfP+suI5CFFfH8BxHPv\n9On+600yXXkR2QV8AewXkR0iUs6nlckwDP8h4txNW7e6HVATJ7q+FtOnu/aqXnBzjpuZ1XoWs1rP\nYuzGsYRPD+fzn69O6MuQwdUm3LkT9uyBcuVg+XJ/G2SkJLzJk9gMDFfVdZ7jcGCMqtYKvHr/6KDx\n6WkYhgdV1x3v6afh++9djkXXru4O7wWXr1zm7Z1vMyJyBG1Lt+WZO54hT+Y8sY5dvtxtla1QwW2d\nLVjQj3YYPpNUeRJZohYIAFWNBKzKi2GkVESgfn0XRHj3Xdf4qHhxeP11r/IsQkNCebDKgxzoewAR\nofTE0ry5/U0uX7l81dgmTVwqx623ugrozz3nSlAZwYM3i8QhEXlSRMJEpIiIPAF8F2jF0hLBvlc7\nmO1L8bbVqQMrV8Lcue5nf9Gi7if/3/HX6syTOQ9ts7Rl9X2rmbNvDhXerMDig4uJ+VSfKZPbaLV1\nq1uXKlYk1eRWpPjvLwXgzSLRHcgPLADmA/n4t/+1YRipgWrVXNnXDz90SXm33OJ+9nuR/HDr9bey\nrus6xjUcx5PrnqTW1FqsP3x1NcCiReGjj9xmq/vvd1nbP8ee3G2kIqyfhGGkRfbudT0s1q6FAQNc\nYCFnzngvu3zlMnP2zeHJdU9SMm9Jxtwxhko3Vrpq3F9/uf5KU6bAU0+54rbp0gXCECMuAp0nsRSX\nJxHbBKqqLXyZOCHYImEYAeLgQRgzxj0C9O0LAwe6Ik7xcOHyBd7e8Tb/2/A/wsPCeab+MxTLU+yq\ncfv3O7EnTsAbb0CNGoEwwrgWgQ5c1wAKAhuAFzyvF6O9DD8R7H7RYLYv1dtWqpQLbm/dCkePugD3\nsGHw22/Ate3LEJqBvtX68nX/rymXrxw1Jtegz4d9OHb62H/GlSnjHlaGDHHNjXr1gj9SUFGfVP/9\nJQFxLRI3AsOBcrieEo2A31Q1UlW9bqUuIo1F5KCIfC0ij8byeSkR2Swi50RkcEINMAzDDxQtCpMn\nuwSIqP7bgwfHe0fPliEbj9d7nC/7fUm2DNko/0Z5hq0ZxvGzx/8ZI+LqPx044KqIlCnjpkpAjUIj\nGfEqJiEiGYFOuKeJkar6mlfCRUJxHe0a4irIbgM6qeqBaGPyAYWBVsBxVb3qKcXcTYaRxPz4Izz/\nvCso2LkzPPoo3Hxz/Jed+pGn1z/NwoMLGVxzMAOqDyBL+iz/GbNrFzz0kHv/xhtuN5QRGAKeJyEi\nmUSkDTATVx78FWBhAuRXA75R1cOqehGYA7SMPkBdldntwMUEaW4YRuC4+WZ45RUXVMiUySVC9Ojh\nAt5xXZbjZt5q/hYbu21k5087KT6hOG9uf5OLl//937tSJdfYqEcP14Bv4EDXMsNImVxzkRCRGcCn\nuP4RT6tqVVV9RlWPJkB+AeBItOMfPeeMaAS7XzSY7Qtm2wAiDx50TxRffQVFiri7esOGsGxZnP6i\nknlL8kG7D1jScQkLDy6k9MTSzNk35582qiEh0LMnfPGFS9koXRpmzUpQ5XO/EOzfnz+Ia1NaZ+Av\nYCAwUP5bG1hVNYcX8v32lUdERBAWFgZArly5qFixIuGe/opRX3RqPd69e3eK0sfss+NYj594AoYO\nJXLUKBg0iPBBg2DgQCJvuQUyZ471+ttuuo1hNw9jZ+hOXtryEuM2jaNTtk5Uvakq9evXJ29e6Nw5\nkkqV4IUXwpk8GSIiIilcOAXYmwqPIyMjmTZtGsA/90tfCWiehIjUwMUwGnuOhwFXVHVcLGNHAGcs\nJmEYqQBV2LjRZW+vXw/du7vORIUKxXGJsujgIh5f+zj5suZjbIOx1Cr4bwm4S5dcjOLpp50r6okn\nIFu2pDAmeEmq2k2+sB0o7inpkQHoACy5xlhrY2IYqQURqFsX5s+HbdvcHb5SJWjfHj79NFa/kYhw\nT+l72NNnDxEVIug4ryMt57Rk36/7AJds17+/C3scPQolSrhdUJevLhllJCEBXSRU9RLQD1gJ7Afe\nV9UDItJbRHoDiMgNInIEGAQ8ISI/iEia+v0Q9bgYrASzfcFsG3hpX5EiMH48HDrkakXdd5/Lmps9\nGy5evR8lXUg6ulXqxlf9vyK8cDgN3m1A10VdOXziMAA33OA2VS1Z4v5WqODKTgXCmRDs358/CPST\nBKq6XFVLqmoxVR3rOTdJVSd53v+sqgVVNaeq5lbVQqpq3XQNI7WRI4cr8fHVVzB8OLz1lltAxo6N\nNd8iU7pMDKo5iK/7f02RXEWo8lYVBi4fyK9//Qq4Nt6RkS4hfNAguPNO8IS3jCTEajcZhhE4du92\ncYvFi6FDB7fftXTpWIf++tevjNkwhhl7ZtC3al8G1xxMzkyuntTFi871NGoUNG7sigh6kbaR5kkN\nMQnDMNIyFSvCtGku3fqGG1yfiyZNXPnyGD/88mfNz8uNX2bHAzv44eQPFH21KE+sfYLf//6d9Old\nkWGoK4gAABGNSURBVMCvvoICBZwL6okn4NSp5DErLWGLRAog2P2iwWxfMNsGfrTvhhtg5Eg4fNgF\nt4cOhbJlYdKkq3pbhOUKY1qraXzW6zN+//t3SkwowSMrH+HY6WPkyOGK1+7e7ZLCS5RwO6JiCX14\nRbB/f/7AFgnDMJKOTJmgWzd3l5840SXlFS7sYhhH/5une0vuW3iz2Zvs7eOyvMu9Xo4HP3yQQ8cP\nUbCge0BZvtxtsLr1VhfoNq+0/7GYhGEYycvXX8OECTBzpgs4PPywa5IUg9/++o1Xtr7Cm9vfpGnx\npgyrM4zS+UqjCitWuEqz+fLBCy+4oLcR4H4SKQlbJAwjDXDihOtSNGGCCzw89BC0aeOePqJx8txJ\nJm6byCtbX6FuoboMrzucyjdW5tIleOcd10q1fn23K6pw4WSyJYVggesgIdj9osFsXzDbBklsX65c\nrjz5N9/AI4/A9OluC9PAgbBv3z/DcmbKyfC6w/luwHfUKVSHFrNb0GRWE7Yc20ivXi64Xbw4VK7s\niteeOHHtKYP9+/MHtkgYhpGySJfOPUGsWuWyubNnd4UFa9aEqVNdb1Qga4asPFzjYb4d8C33lLqH\nrou6cvu02/n0l1WMGKHs3evSM0qWhFdfhQsXktmuVIq5mwzDSPlcuuRarE6eDBs2uB1SvXrBbbe5\nEiHApSuXmLNvDmM2jCFbhmwMrzucFiVb8MW+EIYOdQ8ozz7rOuRJGikCZDEJwzDSHkePuuDDlCnO\nRdWrl2uMlNMl3l3RKyw6uIjRG0Zz4fIFhtUZRvuy7Vn3cTqGDHFFA198MW3027aYRJAQ7H7RYLYv\nmG2DFGpfgQIuk+7bb2HcOFe7o3BhiIiATZsIQWhdujXbe23n+UbP88b2Nyj1Wim+v24yW7ZdoFcv\naNvWJYC/915k8tqSCrBFwjCM1ElIiCvo9MEHLlpdrpyrMV62LIwfj/zxB42LNWZDtw1MbTmVufvn\nUmJiUU6VfpXdX/xN+fIui/uRR+DPP5PbmJSLuZsMwwgeovpcvP22y65r3Ni5o+rXh5AQth3dxpiN\nY9h8ZDMP13iYtoUf4sUxOZg3zy0W/fq5OHmwYO4mwzCM6ET1uXj33X9Llz/yiNsTO3YsVUNuZmGH\nhay5fw17f91Ljdm3kK/9UyxZ8wd790KxYs6DdcbqUP+DLRIpgBTp9/UjwWxfMNsGqdy+3Lndo8Hu\n3TBnjls0ypSBVq0ot+17ZrV8l1dKvcJPp3/i7hXFyXvfAN5Z/DU7d7rF4oUXriorlSaxRcIwjOBG\nBKpWdf0tfvgBmjVzPVLDwigwfxVvV3iCPX32kC1DNiI21ObvVs3533sfs2WrUrQovPQSnD2b3EYk\nHxaTMAwjbbJnj8u7eO89V+wpIoK/mzRk1jcLeWXrK4gIbQoMZNf0zmzbnJlHH4UHHoDMmZNbce+x\nPAnDMAxfOXsWFixwBQa3bIFmzdB772Vt0RBe3vEaW3/cSvMCPflxYV/2fVqAYcOgZ8+rSkqlSCxw\nHSSkar+vFwSzfcFsG6QR+zJndsl4y5fDwYNQrRry9NM0qHs/Sz8NY0f518ia6zTbqpSn3MhOzNm4\nleLF4fXX4fz55LYg8NgiYRiGEcX110P//rB5M3z6KVx/PQUHjeDV/h9x7EQP7s1WmGM1O5FrSA3e\n3jyHYiUu8uabwV0XytxNhmEYcaEKu3a52MXs2ej11/NFw1sZddNXrD/3A7m+6svfGx9gxP9dR0QE\npE+f3Ar/i8UkDMMwkpLLl2H9erdgLFjA6TLFmFcxA//f3plHWVFccfj7OYigbCpERTEkcQFXcI9L\n3GIO4hbcCHpUNIlEJZq4JOLRSDyu0YjGhbii4AIR0aNo3DGKRkGZAWRRQUejuB2VqCQakZs/qp4+\nm9fztnnz3szc75x3qO6q6rq/7qFud1X3rXN7zGXFh0Ox507mvJFbcPTRteEsan5OQtIgSQslvSrp\n9yll/hLzZ0saWEl7apV2Me7bRmnL2sD1rURdHey1V3graskSup56Jse+uy6NVxmPvTSdffrvxtn1\ne9Jn76ncPG4Fy5dXxOwWpWJOQlIdcDUwCNgMGCapf6LMYGAjM9sYOB4YWyl7apmGhoZqm1BR2rK+\ntqwNXF+TdOoU4o5Pnswqb7xJv2NP5+b3BtI4fgbXfj6cux/qw/oHXcl1t3zaqp1FJZ8kdgAWmVmj\nmX0JTAQOSpQ5ELgVwMyeB3pIWqeCNtUkS5taOqsN0Jb1tWVt4PoKpkcPOO44Vnn8CVZb+CpDfnYW\nkxZ0Zd70M/l8bC/22e8IxoxbzFdfNU9zLUklncT6wL+ytt+K+/KV2aCCNjmO41SW3r3RqafSZc5C\nej5fzzF7/Io76//O4NM34eId+jPmwttYvrz1zLFW0kkUehaSkyqt5+w1E42NjdU2oaK0ZX1tWRu4\nvrLp148el1zBuu99RJ97H2eXtddj2AXDqd9gDWY+8kxl224mKvZ2k6SdgNFmNihujwJWmNklWWX+\nCjxpZhPj9kJgdzN7L3Gsduc4HMdxmoNy327q0FyG5OAFYGNJfYElwFBgWKLMfcBIYGJ0KkuTDgLK\nF+k4juOURsWchJktlzQSeBioA24yswWSRsT868zsQUmDJS0ClgHHVsoex3Ecp3haxcd0juM4TnWo\nauymfB/bSeop6SFJDZJekjQ8kV8nqV7S/S1mdBGUo09SD0mTJS2QND8Ox9UUZeobJWmepLmS7pC0\nWosaXwAF6FtT0j3xQ9DnJW1eaN1aoFR9kvpImhav30uSTm5565umnGsX81t739LU32ZxfYuZVeVH\nGIJaBPQFVgUagP6JMqOBi2K6J/Ah0CEr/1TgduC+aumolD7C9yPHxXQHoHu1NTWXvljnNWC1mDcJ\nOKbamkrQdylwTkxvCjxWaN1q/8rUty4wIKa7AC/Xkr5ytGXlt/a+JVVfsX1LNZ8kCvnY7h2gW0x3\nAz40s+UAkjYABgM3svJrtLVAyfokdQd2M7ObIczvmNm/W8rwAinn+n0CfAmsLqkDsDrwdsuYXTCF\n6OsPTAMws5eBvpK+U2DdalOqvl5m9q6ZNcT9nwELgN4tZ3peStYGbaZvyamvlL6lmk6ikI/tbgA2\nl7QEmA2ckpU3BjgDWFFJI8ugHH3fAz6QNE7SLEk3SFq94hYXR8n6zOwj4M/Am4Q335aa2WMVt7g4\nCtE3GzgYQNIOwHcJH4MWUrfalKPva+LbiwOB5ytkZymUq60t9C1p+oruW6rpJAqZMT8LaDCz3sAA\n4BpJXSXtD7xvZvXUpqeHMvQRHgG3Aa41s20Ib36dWTFLS6NUfV0k/QD4DeFxuTfQRdKRFbO0NArR\ndzEhlEw94VXueuCrAutWm3L0ASCpCzAZOCU+UdQKpWpb0Yb6lrRrV3TfUsnvJPLxNtAna7sPwSNm\nszNwAYCZLZb0OtAv7j9QIUBgJ6CbpPFmdnTlzS6YUvVtGsu9ZWYzY7nJ1J6TKFVff8LdzLNm9iGA\npCmx7O2VNroI8uozs0+B4zLbUd9ioHO+ujVAqfpei+lVgbuB28zs3opbWxzlaBtKG+hbmtDXhWL7\nlipOvnQg/IfqC3Qk9+TL5cC5Mb1OPBFrJcrsDtxfLR2V0gc8BWwS06OBS6qtqbn0AVsDLxE6UxEm\n0k6qtqYS9HUHOsb0L4FbCq1b7V+Z+gSMB8ZUW0dza0uUac19S6q+YvuWaovdl/BmxCJgVNw3AhgR\n0z2B+wnja3OBI1IuZM29gVCuvtiRzox5U6ixt5uaQd/vgHlx/63AqtXWU4K+H8b8hYQ7su5N1a21\nX6n6gF0J4/UNhGGMemBQtfU017XLOkZr7lua+tssqm/xj+kcx3GcVKr6MZ3jOI5T27iTcBzHcVJx\nJ+E4juOk4k7CcRzHScWdhOM4jpOKOwnHcRwnFXcS7RBJKyRNyNruIOmDfGGRJQ2XdFWRbd0ZwxWf\nkr903mOdldhulkWCJd0i6ZDEvs/ivwMkPRtDYs+WdHhWmY6Srojhml+RdK+knDGaJD0gqVuuvJTy\nB0nqn7X9pKRti1e3kp7eku4q4zgjJB2VY39fSXNLPa5Tu1QzLIdTPZYRAu91MrPPgX0IX0Pn+2im\nqI9qJK0LbGdmG+fIqzOzr3JUa4pRwIVfG2O2S5H10zBW1pbZXgYcZSGsyHrAi5IeMrNPoi1rEL5e\nNYX1MqYAO67UgNl+Rdo0hPAh4oKEPaVi0Y4lwGElH8TsujLtcFoZ/iTRfnkQyHRcw4A7iQHNJK0V\n74pnS/qnpC2TlWPY4cmSZsTfzjnaeARYPy7esmu8Gx4jaSZwiqT9JT0Xo1E+GsNsE4MAjpM0J9pw\nsKSLgM7xWBNiuczdsSRdqrCA0ZzM3b6kPWKbdykssHJbE+cjZzA3M3vVzBbH9DvA+0CvGDlzOPBb\ni1+kmtktwBeS9spxvhrjee0bbbk+Pp08LKlTouzOwAHApfHcfD9mHaawgMzLknaNZeui9hnxXB3f\nhMZv3fFL6ixposLCM1Pitdgm+9zG9KGSxsX0aEmnxfS2sc0G4MSm2o3lt4/lV5O0RtS/maRVJF0W\nr99shWWPnRrBnyTaL5OAP0iaCmwJ3ATsFvP+CLxoZj+VtCchTs9Avt2RXkmI3fOMpA2Bh4DNEm0c\nAEw1s4EAkowQfmP7uN3DzHaK6V8QQnWcDpwDfGxmW2WVmyJpZOZYkczd9cGEUANbAb2AmZKeinkD\nol3vAM9I2sXMksNUInTIZ+c49jeFQsjlVeNTxVbAm7Zy9NMXgM2BJxL7s4+3ETDUzI6XNAk4hKzg\nhmb2rKT7CHGDpsS2AerMbEdJ+wLnEp4Af04Itb6Dwup+0yU9YmaNSftzcALwmZltFm8EZqXYm0xn\ntscBJ5rZdEl/yteYmc2Mus4nxO2aYGbzJZ0AbAhsbWYrJK1ZgO1OC+FOop1iZnMV1gIYBjyQyN6F\nGIvezKZJWlshhHk2Pwb6x84LoKuk1c3sP1llct2dT8pK95H0N8JKZx2JEUaBvQnRODO2Ls0jZ1fg\njnhH/76kfwDbExY3mhGHWIh3vH2BpJMw4PRMhxzLfppdIA41jQcKiQaab2jodTObE9MvRptykTx/\nGftmZdX5CbClpEPjdjeCE2oswM7dCM4+8/cwJ0/5bwwLi9d0N7PpcdcEQjyhfJxHcKT/BX4d9+0N\njDWzFdGWjwu1w6k87iTaN/cBlxECmfVK5CU7qGTHJ2BHM/tfkW0uy0pfBVxmZlMl7U6ISJnWflNY\njvIZe7/I2peJp5+L1PYUJpynAmeZ2Yy4ezGwoaQuiaeJbQlzCU2RtKlzSrnkOc/US+oYaWaP5mkz\njTTd2W2n2VfIcZL0JMzj1MXjZm4qanXthnaPz0m0b24GRpvZvMT+p4EjIYzrAx/kGFZ5BDg5syFp\nQIFtZncG3Qgr00EY38/wKHBS1rF7xOSXCsudJnkaGBrHtnsBPwJm0Awdj6SOwD3A+OwnDTNbRohe\ne7mkVWLZo4HOZjat3HaBT/lm6demeBg4MXNeJG2iwlcxfAo4ItbbgjBcl+E9Sf2itiFZ+wXIwpKX\nSyVlXh74etEoSetLSltp8DrgbOAO4JK471FghKS6WN+Hm2oIdxLtk8xE69tmdnXWvszd42hgW0mz\nCW/wHJOjzMnAdnGicR6QNmGa9tZQpp27JL0AfJCVdz6wZpzIbAD2iPuvB+bom9d3MzruAeYQQh8/\nDpxhZu8n7E2zJ5+dhxOGZYYrTJrXS9o65o0CPgdekfQKYW5hCLlJG+NPs2kicIakF7MmrnPVuRGY\nD8yKE9Jjyf20lKv9sYRVAecT56GyypxJeHp6huDILatuJn0sYbXB+sRx1wOWJw2ITvQLM5tIWDlt\n+3gTciNhKds58XoPy2G/UyU8VLjjOABImgacZmaz8hZu+jgnAW+Y2dTmscypJj4n4ThOs2Jm11Tb\nBqf58CcJx3EcJxWfk3Acx3FScSfhOI7jpOJOwnEcx0nFnYTjOI6TijsJx3EcJxV3Eo7jOE4q/wft\njXxqolkTOQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb54be80>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The packed depth is: 1.58 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 135
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.9: Page 327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.9\n",
+ "# Page: 327\n",
+ "\n",
+ "print'Illustration 8.9 - Page: 327\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# C1=CH4 C2=C2H6 C3=n-C3H8 C4=C4H10\n",
+ "Abs=0.15;# [Tot\n",
+ "\n",
+ "# Illustration 10.8\n",
+ "# Page: 539\n",
+ "\n",
+ "print'Illustration 10.8 - Page: 539\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:acetic acid c:Water d:Isopropylether layer\n",
+ "# Water solution (continuous):\n",
+ "C = 8000.0;# [kg/h]\n",
+ "xCn = 0.175;# [mass fraction]\n",
+ "Density_c = 1009;# [kg/cubic m]\n",
+ "viscosity_c = 3.1*10**(-3);# [kg/m.s]\n",
+ "Dc = 1.24*10**(-9);# [square m/s]\n",
+ "\n",
+ "# Isopropyl Ethr Layer:\n",
+ "D = 20000.0;# [kg/h]\n",
+ "xDnPlus1 = 0.05;# [mass fraction]\n",
+ "Density_d = 730;# [kg/cubic m]\n",
+ "viscosity_d = 0.9*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.96*10**(-9);# [square m/s]\n",
+ "\n",
+ "sigma = 0.013;# [/N/m]\n",
+ "m = 2.68;# [Distributon coeffecient]\n",
+ "#*******#\n",
+ "\n",
+ "Ma = 60.1;\n",
+ "g = 9.81;# [m/square s]\n",
+ "cCn = xCn*Density_c/Ma;# [kmol/cubic m]\n",
+ "cDnPlus1 = xDnPlus1*Density_d/Ma;# [kmol/cubic m]\n",
+ "mCD = m*(Density_c/Density_d);# [(kmol/cubic min ether)/(kmol/cubic m in water)]\n",
+ "\n",
+ "# Perforations:\n",
+ "Do = 0.006;# [m]\n",
+ "pitch = 0.015;# [m]\n",
+ "qD = D/(3600.0*Density_d);# [cubic m/s]\n",
+ "delta_Density = Density_c-Density_d;# [kg/cubic m]\n",
+ "Value1 = Do/(sigma/(delta_Density*g))**0.5;\n",
+ "if Value1<0.1785:\n",
+ " # From Eqn. 10.74(a):\n",
+ " doBydj = (0.485*Value1**2)+1;\n",
+ "else:\n",
+ " # From Eqn. 10.74(b)\n",
+ " doBydj = (1.51*Value1)+0.12;\n",
+ "\n",
+ "dj = Do/doBydj;# [m]\n",
+ "Vomax = 2.69*((dj/Do)**2)*(sigma/(dj*((0.5137*Density_d)+(0.4719*Density_c))))**0.5;# [m/s]\n",
+ "# Since Vomax is less than 0.1:\n",
+ "Vo = 0.1;# [m/s]\n",
+ "Ao = qD/Vo;# [square m]\n",
+ "No = Ao/(math.pi*Do**2.0/4);# [square m]\n",
+ "# From Eqn. 6.30:\n",
+ "# Plate area for perforation:\n",
+ "Aa = Ao/(0.907*(Do/pitch)**2);# [square m]\n",
+ "\n",
+ "# Downspout:\n",
+ "dp = 0.0007;# [m]\n",
+ "# From Eqn. 10.75:\n",
+ "U = Density_c**2*sigma**3/(g*viscosity_c**4*delta_Density);\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 1.515;\n",
+ "abcissa = 0.62;\n",
+ "def f74(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vt = fsolve(f74,7);# [m/s]\n",
+ "Vd = Vt;# [m/s]\n",
+ "qC = C/(Density_c*3600);# [cubic m/s]\n",
+ "Ad = qC/Vd;# [square m]\n",
+ "# From Table 6.2 (Pg 169):\n",
+ "# Allowing for supports and unperforated area:\n",
+ "At = Aa/0.65;# [square m]\n",
+ "T = (At*4/math.pi)**0.5;# [m]\n",
+ "An = At-Ad;# [square m]\n",
+ "\n",
+ "\n",
+ "# Drop Size:\n",
+ "alpha1 = 10.76;\n",
+ "alpha2 = 52560;\n",
+ "alpha3 = 1.24*10**6;\n",
+ "alpha4 = 3.281;\n",
+ "abcissa = (alpha2*sigma*Do/delta_Density)+(alpha3*Do**1.12*Vo**0.547*viscosity_c**0.279/delta_Density**1.5);\n",
+ "Parameter = alpha1*Density_d*Vo**2/(delta_Density);\n",
+ "ordinate = 0.024;\n",
+ "dp = ordinate/alpha4;\n",
+ "\n",
+ "# Coalesced layer:\n",
+ "Vn = qD/An;# [m/s]\n",
+ "# From Eqn. 10.80:\n",
+ "ho = (Vo**2-Vn**2)*Density_d/(2*g*0.67**2*delta_Density);# [m]\n",
+ "hD = ho;\n",
+ "# From Eqn. 10.82:\n",
+ "hC = 4.5*Vd**2*Density_c/(2*g*delta_Density);# [m]\n",
+ "# From Eqn. 10.78:\n",
+ "h = hC+hD;\n",
+ "# Since this is very shallow, increase it by placing an orifice at the bottom of the downspout.\n",
+ "# VR: Velocity through the restriction.\n",
+ "# hR: Corresponding depth of the coalesced layer.\n",
+ "# Assume:\n",
+ "Vr = 0.332;# [m/s]\n",
+ "hr = (Vr**2-Vd**2)*Density_c/(2*0.67**2*delta_Density);\n",
+ "Ar = qC/Vr;# [square m]\n",
+ "dr = (4*Ar/math.pi)**0.5;# [m]\n",
+ "h = h+hr;# [m]\n",
+ "# The above results are satisfacyory.\n",
+ "Z = 0.35;# [m]\n",
+ "# Lead the downspout apron to within 0.1 m of the tray below.\n",
+ "\n",
+ "# Dispersed-phase holdup:\n",
+ "# From Eqn. 10.48:\n",
+ "Vsphi_D = Vn;\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 165.2;\n",
+ "abcissa = 30.0;\n",
+ "def f75(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vtl = fsolve(f75,7);# [m/s]\n",
+ "# For solids:\n",
+ "# From Fig. 10.48 (Pg 536):\n",
+ "abcissa = dp/(3*viscosity_c**2/(4*Density_c*delta_Density*g))**(1.0/3);\n",
+ "phi_D = [0, 0.1 ,0.2 ,0.3];\n",
+ "# Corresponding ordinates, from Fig. 10.48 (Pg 536):\n",
+ "ordinate1 = [8.8, 5.9 ,4.3 ,3.0];\n",
+ "Value1 = 1.0/(4*viscosity_c*delta_Density*g/(3*Density_c**2))**(1.0/3);\n",
+ "Val = numpy.zeros((size=(4,6));\n",
+ "# Val = [phi_D ordinate Vs(1-phi_D) (Vs for solids) Vs/Vt (Vs for liquids) (Vs*phi_D (for liquids))]\n",
+ "for i in range(1,4):\n",
+ " Val[i,0] = phi_D[i];\n",
+ " Val[i,1] = ordinate1[i];\n",
+ " Val[i,2] = Val[i,1)/Value1;\n",
+ " Val[i,3] = Val[i,2)/(1-Val[i,0]);\n",
+ " Val[i,4] = Val[i,3]/Val[0,3];\n",
+ " Val[i,5] = Vtl*Val[i,4];\n",
+ " Val[i,6] = Val[i,5]*Val[i,0];\n",
+ "\n",
+ "\n",
+ "# By Interpolation:\n",
+ "Phi_D = 0.1;\n",
+ "# Mass transfer:\n",
+ "thetha_f = (math.pi*(dp**3)/6.0)/(qD/No);# [s]\n",
+ "# From Eqn. 10.87:\n",
+ "const = 1.5;\n",
+ "kLDf = const*(Dd/(math.pi*thetha_f))**0.5;# [m/s]\n",
+ "# From Eqn. 10.86\n",
+ "KLDf = 1.0/((1/kLDf)*(1+((1/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# The ordinate of Fig. 10.47 for the drops larger than 70. Hence mass transfer coeffecient during drop rise is given by Eqn. 10.89:\n",
+ "# From Eqn. 10.91:\n",
+ "b = 1.052*dp**0.225;\n",
+ "# From Eqn. 10.90:\n",
+ "omega = (1.0/(2*math.pi))*math.sqrt(192*sigma*b/(dp**3*((3*Density_d)+(2*Density_c))));# [1/s]\n",
+ "del = 0.2;\n",
+ "kLDr = sqrt((4*Dd*omega/%pi)*(1+del+(1/2)*del**2));\n",
+ "KLDr = 1.0/1/((1/kLDr)*(1+((1/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# From Eqn. 10.98:\n",
+ "EMD = ((4.4*KLDf/Vo)*(dp/Do)**2)+(6*KLDr*Phi_D*(Z-h)/(dp*Vn))/(1+((0.4*KLDf/Vo)*(dp/Do)**2)+(3*KLDr*Phi_D*(Z-h)/(dp*Vn)));\n",
+ "print\"Stage Efficiency: \",EMDal absorption,kmol]\n",
+ "T=25;# [OC]\n",
+ "y1=0.7;# [mol fraction]\n",
+ "y2=0.15;# [mol fraction]\n",
+ "y3=0.10;# [mol fraction]\n",
+ "y4=0.05;# [mol fraction]\n",
+ "x1=0.01;# [mol fraction]\n",
+ "x_involatile=0.99;# [mol fraction]\n",
+ "L_by_G=3.5;# [mol liquid/mol entering gas]\n",
+ "#******#\n",
+ "\n",
+ "LbyG_top=L_by_G/(1-y2);\n",
+ "LbyG_bottom=(L_by_G+y2)/1;\n",
+ "LbyG_av=(LbyG_top+LbyG_bottom)/2;\n",
+ "# The number of eqb. trays is fixed by C3 absorption:\n",
+ "# For C3 at 25 OC;\n",
+ "m=4.10;\n",
+ "A=LbyG_av/m;\n",
+ "Frabs=0.7;# [Fractional absorption]\n",
+ "X0=0;\n",
+ "# From Eqn. 8.109:\n",
+ "def f43(Np):\n",
+ " return Frabs-((A**Np)-A)/((A**Np)-1)\n",
+ "Np=fsolve(f43,2);\n",
+ "print\"Number of trays required is \\n\",round(Np,2)\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.9 - Page: 327\n",
+ "\n",
+ "\n",
+ "Number of trays required is \n",
+ "3.57\n"
+ ]
+ }
+ ],
+ "prompt_number": 105
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file