summaryrefslogtreecommitdiff
path: root/Introduction_To_Chemical_Engineering/ch4.ipynb
diff options
context:
space:
mode:
authordebashisdeb2014-06-20 15:42:42 +0530
committerdebashisdeb2014-06-20 15:42:42 +0530
commit83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch)
treef54eab21dd3d725d64a495fcd47c00d37abed004 /Introduction_To_Chemical_Engineering/ch4.ipynb
parenta78126bbe4443e9526a64df9d8245c4af8843044 (diff)
downloadPython-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip
removing problem statements
Diffstat (limited to 'Introduction_To_Chemical_Engineering/ch4.ipynb')
-rw-r--r--Introduction_To_Chemical_Engineering/ch4.ipynb74
1 files changed, 0 insertions, 74 deletions
diff --git a/Introduction_To_Chemical_Engineering/ch4.ipynb b/Introduction_To_Chemical_Engineering/ch4.ipynb
index 4c312cd2..3a5046ad 100644
--- a/Introduction_To_Chemical_Engineering/ch4.ipynb
+++ b/Introduction_To_Chemical_Engineering/ch4.ipynb
@@ -27,18 +27,14 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find water compressibility\n",
"\n",
"import math \n",
"\n",
- "# Variables\n",
"delta_p=70.; #in bar\n",
"Et=20680. #in bar\n",
"\n",
- "# Calculations\n",
"compressibility = delta_p/Et;\n",
"\n",
- "# Results\n",
"print \"compressibilty of water = %f\"%(compressibility)\n"
],
"language": "python",
@@ -66,14 +62,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the viscosity of oil\n",
"\n",
"import math \n",
- "# Variables\n",
"F=0.5*9.8; #in N\n",
"A=3.14*0.05*0.15; #in m2\n",
"\n",
- "# Calculations and Results\n",
"shear_stress=F/A; #in Pa\n",
"print \"shear_stress = %f Pa\"%(shear_stress)\n",
"\n",
@@ -107,17 +100,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find variation of losses with velocity\n",
"\n",
"import math \n",
- "# Variables\n",
"loss_ratio=3.6; #delta_P2/delta_P1=3.6\n",
"velocity_ratio=2.; #u2/u1=2\n",
"\n",
- "# Calculations\n",
"n=math.log(loss_ratio,2); #delta_P2/delta_P1=(u2/u1)**n\n",
"\n",
- "# Results\n",
"print \"power constant = %f flow is turbulent\"%(n)\n"
],
"language": "python",
@@ -145,16 +134,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the boundary layer properties\n",
"\n",
"import math \n",
"print ('part 1')\n",
"\n",
- "# Variables\n",
"x=0.05 #in m\n",
"density=1000. #in kg/m3\n",
"\n",
- "# Calculations and Results\n",
"viscosity=1.*10**-3 #in Pa-s\n",
"u=1. #in m/s\n",
"Re=(density*u*x)/viscosity;\n",
@@ -210,10 +196,8 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the flow properties\n",
"\n",
"import math \n",
- "# Variables\n",
"d1=0.05 #in m\n",
"A1=(3.14*d1**2)/4.;\n",
"density_1=2.1 #in kg/m3\n",
@@ -221,7 +205,6 @@
"P1=1.8; #in bar\n",
"P2=1.3; #in bar\n",
"\n",
- "# Calculations and Results\n",
"w=density_1*A1*u1;\n",
"density_2=density_1*(P2/P1);\n",
"print \"density at section 2 = %f kg/cubic meter\"%(density_2)\n",
@@ -255,19 +238,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the temperature increase\n",
"\n",
"import math \n",
- "# Variables\n",
"Q=0.001*10**5 #in J/s\n",
"w=0.001*1000 #in kg/s\n",
"density=1000. #in kg/m3\n",
"cp=4.19*10**3 #in J/kg K\n",
"\n",
- "# Calculations\n",
"delta_T=Q/(w*cp);\n",
"\n",
- "# Results\n",
"print \"Temperature increase = %f degree celcius\"%(delta_T)\n"
],
"language": "python",
@@ -295,17 +274,14 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the pressure\n",
"\n",
"import math \n",
- "# Variables\n",
"u1=0; #in m/s\n",
"ws=0;\n",
"P1=0.7*10**5 #in Pa\n",
"P3=0\n",
"density=1000 #in kg/m3\n",
"\n",
- "# Calculations and Results\n",
"u3=((2*(P1-P3))/density)**0.5;\n",
"print \"u3 = %f m/s\"%(u3)\n",
"\n",
@@ -313,7 +289,6 @@
"u2=u3/ratio_area;\n",
"print \"u2 = %f m/s\"%(u2)\n",
"\n",
- "#applying bernoulli's equation\n",
"P2=1.7*10**5-((density*u2**2)/2)\n",
"print \"P2 = %f Pa\"%(P2)\n",
"print \"this flow is physically unreal\"\n"
@@ -346,15 +321,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the power requirements\n",
"\n",
"import math \n",
"\n",
- "# Variables\n",
"Q=3800./(24*3600) #in m3/s\n",
"d=0.202 #in m\n",
"\n",
- "# Calculations\n",
"u=Q/((3.14/4)*d**2); #in m/s\n",
"delta_P=5.3*10**6 #in Pa\n",
"density=897. #in kg/m3\n",
@@ -363,7 +335,6 @@
"mass_flow_rate= Q*density;\n",
"power=(ws*mass_flow_rate)/0.6;\n",
"\n",
- "# Results\n",
"print \"power required = %f kW\"%(power/1000)\n",
"\n"
],
@@ -392,15 +363,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the tube length\n",
"\n",
"import math \n",
- "# Variables\n",
"density=1000 #in kg/m3\n",
"viscosity=1*10**-3 #in Pa s\n",
"P=100*1000 #in Pa\n",
"\n",
- "# Calculations and Results\n",
"vdP=P/density;\n",
"\n",
"Q=2.5*10**-3/(24*3600)\n",
@@ -411,7 +379,6 @@
"Re=density*u*0.0005/viscosity;\n",
"print \"Re = %f\"%(Re)\n",
"\n",
- "#F=18.86*L\n",
"L=(-u**2+vdP)/18.86;\n",
"print \"L = %f m\"%(L)\n"
],
@@ -442,16 +409,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the discharge pressure\n",
"\n",
"import math \n",
- "# Variables\n",
"d=0.025 #in m\n",
"u=3. #in m/s\n",
"density=894. #in kg/m3\n",
"viscosity=6.2*10**4 #in Pa-s\n",
"\n",
- "# Calculations and Results\n",
"Re=(u*d*density)/viscosity;\n",
"f=0.0045;\n",
"L=50.;\n",
@@ -489,15 +453,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the level difference\n",
"\n",
"import math \n",
- "# Variables\n",
"Q=0.8*10**-3; #in m3/s\n",
"d=0.026 #in m\n",
"A=(3.14*(d**2))/4 #in m2\n",
"\n",
- "# Calculations\n",
"u=Q/A; #in m/s\n",
"density=800 #in kg/m3\n",
"viscosity=0.0005 #in Pa-s\n",
@@ -507,7 +468,6 @@
"L=60\n",
"h_f=2*f*((u**2)/9.8)*(L/d);\n",
"\n",
- "# Results\n",
"print \"level difference = %f m\"%(h_f)\n"
],
"language": "python",
@@ -535,16 +495,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the engery cost\n",
"\n",
"import math \n",
- "# Variables\n",
"delta_z=50; #in m\n",
"L=290.36 #in m\n",
"d=0.18 #in m\n",
"Q=0.05 #in m3/s\n",
"\n",
- "# Calculations\n",
"A=(3.14*d**2)/4; #in m2\n",
"u=Q/A; #in m/s\n",
"density=1180; #in kg/m3\n",
@@ -558,7 +515,6 @@
"power=mass_flow_rate*ws/1000; #in KW\n",
"energy_cost=power*24*0.8;\n",
"\n",
- "# Results\n",
"print \"Energy cost = Rs %f\"%(energy_cost)\n"
],
"language": "python",
@@ -586,16 +542,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the pressure loss\n",
"\n",
"import math \n",
- "# Variables\n",
"density=998 #in kg/m3\n",
"viscosity=0.0008 #in Pa-s\n",
"d=0.03 #in m\n",
"u=1.2 #in m/s\n",
"\n",
- "# Calculations\n",
"Re=density*d*u/viscosity;\n",
"\n",
"f=0.0088;\n",
@@ -605,7 +558,6 @@
"delta_P=(2*f*u**2*L)/d; #in Pa\n",
"delta_P_coil=delta_P*(1+(3.54*(d/D)));\n",
"\n",
- "# Results\n",
"print \"frictional pressure drop = %f kPa\"%(delta_P_coil)\n"
],
"language": "python",
@@ -633,11 +585,9 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find pressure drop per unit length\n",
"\n",
"import math \n",
"\n",
- "# Variables\n",
"b=0.050 #in m\n",
"a=0.025 #in m\n",
"d_eq=b-a #in m\n",
@@ -645,14 +595,12 @@
"u=3 #in m/s\n",
"viscosity = 0.001\n",
"\n",
- "# Calculations\n",
"Re=d_eq*u*density/viscosity;\n",
"\n",
"e=40*10**6 #in m\n",
"f=0.0062;\n",
"P_perunit_length=2*f*density*u**2/d_eq; #in Pa/m\n",
"\n",
- "# Results\n",
"print \"pressure per unit length = %f Pa/m\"%(P_perunit_length)\n"
],
"language": "python",
@@ -680,17 +628,13 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the flow rate\n",
"\n",
"import math \n",
- "# Variables\n",
"d = 0.3 #in m\n",
"u = 17.63 #avg velocity in m/s\n",
"\n",
- "# Calculations\n",
"q = (3.14/4)*d**2*u;\n",
"\n",
- "# Results\n",
"print \"volumetric flow rate = %f cubic meter per second\"%(q)\n"
],
"language": "python",
@@ -718,18 +662,14 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the size of pipe required\n",
"\n",
"import math \n",
"\n",
- "# Variables\n",
"d = 0.15 #in m\n",
"\n",
- "# Calculations\n",
"u = (0.0191/0.15**2); #in m/s\n",
"q = (3.14/4)*d**2*u;\n",
"\n",
- "# Results\n",
"print \"volumetric flow rate = %f cubic meter/s\"%(q)\n"
],
"language": "python",
@@ -757,15 +697,12 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the pressure gradient\n",
"\n",
"import math \n",
- "# Variables\n",
"Q=0.0003 #in m3/s\n",
"d=0.05 #in m\n",
"A=(3.14*d**2)/4;\n",
"\n",
- "# Calculations\n",
"u=Q/A;\n",
"\n",
"density=1000; #in kg/m3\n",
@@ -778,11 +715,9 @@
"L=0.5 #in m\n",
"delta_Pf=fm*((density*L*u**2)/dp)*((1-e)/e**3); #in Pa\n",
"\n",
- "#applying bernoulli's equation, we get\n",
"delta_P=delta_Pf-(density*9.8*L);\n",
"pressure_gradient=delta_P/(L*1000); #in kPa/m\n",
"\n",
- "# Results\n",
"print \"required pressure gradient = %f kPa/m of packed height\"%(pressure_gradient)\n"
],
"language": "python",
@@ -810,18 +745,15 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find minimum fluidization velocity\n",
"\n",
"from scipy.optimize import fsolve \n",
"import math \n",
"\n",
- "# Variables\n",
"d=120*10**-6 #in m\n",
"density=2500 #particle density in kg/m3\n",
"e_min=0.45;\n",
"density_water=1000 #in kg/m3\n",
"\n",
- "# Calculations and Results\n",
"viscosity=0.9*10**-3; #in Pa-s\n",
"umf=(d**2*(density-density_water)*9.8*e_min**3)/(150*viscosity*(1-e_min));\n",
"print \"minimum fludization velocity = %f m/s\"%(umf)\n",
@@ -829,11 +761,9 @@
"Re_mf=(d*umf*density_water)/(viscosity*(1-e_min));\n",
"\n",
"\n",
- "#given that uo/umf=10\n",
"def F(e):\n",
" return e**3+1.657*e-1.675;\n",
"\n",
- "#initial guess\n",
"x = 10.;\n",
"e = fsolve(F,x)\n",
"\n",
@@ -868,21 +798,17 @@
"cell_type": "code",
"collapsed": false,
"input": [
- "#to find the power requirements\n",
"\n",
"import math \n",
- "# Variables\n",
"P=9807. #in Pa\n",
"density=1000. #in kg/m3\n",
"Q=250./(60.*density)\n",
"head=25. #in m\n",
"\n",
- "# Calculations\n",
"w= head*Q*P; #in kW\n",
"power_delivered=w/0.65;\n",
"power_taken=power_delivered/0.9;\n",
"\n",
- "# Results\n",
"print \"power_delivered = %f kW\"%(power_delivered/1000)\n",
"print \"power taken by motor = %f kW\"%(power_taken/1000)\n",
"\n"