diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch) | |
tree | 725a7d43dc1687edf95bc36d39bebc3000f1de8f /Engineering_Thermodynamics/ch12.ipynb | |
parent | 62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff) | |
download | Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2 Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip |
added books
Diffstat (limited to 'Engineering_Thermodynamics/ch12.ipynb')
-rwxr-xr-x | Engineering_Thermodynamics/ch12.ipynb | 805 |
1 files changed, 805 insertions, 0 deletions
diff --git a/Engineering_Thermodynamics/ch12.ipynb b/Engineering_Thermodynamics/ch12.ipynb new file mode 100755 index 00000000..9036d55c --- /dev/null +++ b/Engineering_Thermodynamics/ch12.ipynb @@ -0,0 +1,805 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:abd75e2d0144cfdf6dd59935ddb4f9b5824ec80059ba3e73a72bf780292d0a06" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12 : Vapour Power Cycles" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.1 Page No : 475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "# Part (a)\n", + "P1 = 1e05;\n", + "P2 = 10e05;\n", + "vf = 0.001043;\n", + "\n", + "# Calculation and Results\n", + "Wrev = vf*(P1-P2);\n", + "print \"The work required in saturated liquid form is\",Wrev/1000,\"kJ/kg\"\n", + "\n", + "# Part (b)\n", + "h1 = 2675.5; \n", + "s1 = 7.3594;\n", + "s2 = s1;\n", + "h2 = 3195.5;\n", + "Wrev1 = h1-h2;\n", + "print \"The work required in saturated vapour form is\",Wrev1,\"kJ/kg\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The work required in saturated liquid form is -0.9387 kJ/kg\n", + "The work required in saturated vapour form is -520.0 kJ/kg\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.2 Page No : 476" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "h1 = 3159.3;\n", + "s1 = 6.9917;\n", + "h3 = 173.88; \n", + "s3 = 0.5926; \n", + "sfp2 = s3; \n", + "hfp2 = h3;\n", + "hfgp2 = 2403.1; \n", + "sgp2 = 8.2287;\n", + "vfp2 = 0.001008; \n", + "sfgp2 = 7.6361;\n", + "\n", + "# Calculation and Results\n", + "x2s = (s1-sfp2)/(sfgp2);\n", + "h2s = hfp2+(x2s*hfgp2);\n", + "\n", + "# Part (a)\n", + "P1 = 20e02; \n", + "P2 = 0.08e02;\n", + "h4s = vfp2*(P1-P2)+h3 ; \n", + "Wp = h4s-h3;\n", + "Wt = h1-h2s;\n", + "Wnet = Wt-Wp;\n", + "Q1 = h1-h4s;\n", + "n_cycle = Wnet/Q1;\n", + "print \"Net work per kg of steam is %.2f kJ/Kg\"%Wnet\n", + "print \"Cycle efficiency is %.3f\"%n_cycle\n", + "\n", + "# Part (b)\n", + "n_p = 0.8; \n", + "n_t = 0.8;\n", + "Wp_ = Wp/n_p;\n", + "Wt_ = Wt*n_t;\n", + "Wnet_ = Wt_-Wp_;\n", + "P = 100*((Wnet-Wnet_)/Wnet) ;\n", + "n_cycle_ = Wnet_/Q1;\n", + "P_ = 100*((n_cycle-n_cycle_)/n_cycle);\n", + "print \"Percentage reduction in net work per kg of steam is %.1f %%\"%P\n", + "print \"Percentage reduction in cycle efficiency is %.1f %%\"%P_\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net work per kg of steam is 969.60 kJ/Kg\n", + "Cycle efficiency is 0.325\n", + "Percentage reduction in net work per kg of steam is 20.1 %\n", + "Percentage reduction in cycle efficiency is 20.1 %\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.3 Page No : 477" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "P1 = 0.08; \t\t\t# in bar\n", + "sf = 0.5926; \n", + "x2s = 0.85; \n", + "sg = 8.2287; \n", + "\n", + "# Calculation\n", + "s2s = sf+(x2s*(sg-sf));\n", + "s1 = s2s;\n", + "P2 = 16.832; \t\t\t# by steam table opposite to s1 in bar\n", + "h1 = 3165.54;\n", + "h2s = 173.88 + (0.85*2403.1);\n", + "h3 = 173.88;\n", + "vfp2 = 0.001;\n", + "h4s = h3 + (vfp2*(P2-P1)*100);\n", + "Q1 = h1-h4s;\n", + "Wt = h1-h2s;\n", + "Wp = h4s-h3;\n", + "n_cycle = 100*((Wt-Wp)/Q1);\n", + "Tm = (h1-h4s)/(s2s-sf);\n", + "\n", + "# Results\n", + "print \"The greatest allowable steam pressure at the turbine inlet is\",P2,\"bar\"\n", + "print \"Rankine cycle efficiency is %.2f %%\"%n_cycle\n", + "print \"Mean temperature of heat addition is %.2f K\"%Tm\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The greatest allowable steam pressure at the turbine inlet is 16.832 bar\n", + "Rankine cycle efficiency is 31.68 %\n", + "Mean temperature of heat addition is 460.66 K\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.4 Page No : 478" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "h1 = 3465.;\n", + "h2s = 3065.; \n", + "h3 = 3565.;\n", + "h4s = 2300.; \n", + "x4s = 0.88; \n", + "h5 = 191.83;\n", + "v = 0.001;\n", + "P = 150.; \t\t\t# in bar\n", + "\n", + "# Calculation\n", + "Wp = v*P*100;\n", + "h6s = 206.83;\n", + "Q1 = (h1-h6s)+(h3-h2s);\n", + "Wt = (h1-h2s)+(h3-h4s);\n", + "Wnet = Wt-Wp;\n", + "n_cycle = 100*Wnet/Q1;\n", + "sr = 3600/Wnet;\n", + "\n", + "# Results\n", + "print \"Quality at turbine exhaust is\",0.88\n", + "print \"Cycle efficiency is %.1f %%\"%n_cycle\n", + "print \"steam rate is %.2f Kg/kW h\"%sr\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Quality at turbine exhaust is 0.88\n", + "Cycle efficiency is 43.9 %\n", + "steam rate is 2.18 Kg/kW h\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.5 Page No : 479" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "h1 = 3230.9; \n", + "s1 = 6.9212; \n", + "s2 = s1; \n", + "s3 = s1;\n", + "h2 = 2796; \n", + "sf = 0.6493; \n", + "sfg = 7.5009;\n", + "\n", + "# Calculation\n", + "x3 = (s3-sf)/sfg;\n", + "h3 = 191.83 + x3*2392.8;\n", + "h4 = 191.83; h5 = h4;\n", + "h6 = 640.23; h7 = h6;\n", + "m = (h6-h5)/(h2-h5);\n", + "Wt = (h1-h2)+(1-m)*(h2-h3);\n", + "Q1 = h1-h6;\n", + "n_cycle = 100*Wt/Q1;\n", + "sr = 3600/Wt;\n", + "s7 = 1.8607; s4 = 0.6493;\n", + "Tm = (h1-h7)/(s1-s7);\n", + "Tm1 = (h1-h4)/(s1-s4); \t\t\t# With out regeneration\n", + "dT = Tm-Tm1;\n", + "Wt_ = h1-h3;\n", + "sr_ = 3600/Wt_;\n", + "dsr = sr-sr_;\n", + "n_cycle_ = 100*(h1-h3)/(h1-h4);\n", + "dn = n_cycle-n_cycle_;\n", + "\n", + "# Results\n", + "print \"Efficiency of the cycle is %.2f %%\"%n_cycle\n", + "print \"Steam rate of the cycle is %.2f kg/kW h\"%sr\n", + "print \"Increase in temperature due to regeneration is %.1f degree centigrade\"%dT\n", + "print \"Increase in steam rate due to regeneration is %.1f kg/kW h\"%dsr\n", + "print \"Increase in Efficiency of the cycle due to regeneration is %.2f %%\"%dn\n", + "\n", + "# note: rounding error is there because of decimal points." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency of the cycle is 36.07 %\n", + "Steam rate of the cycle is 3.85 kg/kW h\n", + "Increase in temperature due to regeneration is 27.4 degree centigrade\n", + "Increase in steam rate due to regeneration is 0.4 kg/kW h\n", + "Increase in Efficiency of the cycle due to regeneration is 1.90 %\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.6 Page No : 481" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "h1 = 3023.5; \n", + "s1 = 6.7664; \n", + "s2 = s1; \n", + "s3 = s1; \n", + "s4 = s1;\n", + "t_sat_20 = 212.;\n", + "t_sat_1 = 46.;\n", + "\n", + "# Calculation\n", + "dt = t_sat_20-t_sat_1;\n", + "n =3; \t\t\t# number of heaters\n", + "t = dt/n;\n", + "t1 = t_sat_20-t;\n", + "t2 = t1-t;\n", + "\n", + "# 0.1 bar\n", + "hf = 191.83; \n", + "hfg = 2392.8; \n", + "sf = 0.6493;\n", + "sg = 8.1502;\n", + "# At 100 degree\n", + "hf100 = 419.04; \n", + "hfg100 = 2257.0; \n", + "sf100 = 1.3069; \n", + "sg100 = 7.3549;\n", + "# At 150 degree\n", + "hf150 = 632.20; \n", + "hfg150 = 2114.3; \n", + "sf150 = 1.8418; \n", + "sg150 = 6.8379;\n", + "x2 = (s1-sf150)/4.9961;\n", + "h2 = hf150+(x2*hfg150);\n", + "x3 = (s1-sf100)/6.0480;\n", + "h3 = hf100+(x3*hfg100);\n", + "x4 = (s1-sf)/7.5010;\n", + "h4 = hf+(x4*hfg);\n", + "h5 = hf; h6 = h5;\n", + "h7 = hf100; h8 = h7;\n", + "h9 = 632.2; h10 = h9;\n", + "m1 = (h9-h7)/(h2-h7);\n", + "m2 = ((1-m1)*(h7-h6))/(h3-h6);\n", + "Wt = 1*(h1-h2)+(1-m1)*(h2-h3)+(1-m1-m2)*(h3-h4);\n", + "Q1 = h1-h9;\n", + "Wp = 0 ; \t\t\t# Pump work is neglected\n", + "n_cycle = 100*(Wt-Wp)/Q1;\n", + "sr = 3600/(Wt-Wp);\n", + "\n", + "# Results \n", + "print \"Net work per kg of stem is %.2f kJ/Kg\"%Wt\n", + "print \"Cycle efficiency is %.2f %%\"%n_cycle\n", + "print \"Stream rate is %.2f Kg/kW h\"%sr\n", + "\n", + "# rounding off error would be there." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Net work per kg of stem is 798.64 kJ/Kg\n", + "Cycle efficiency is 33.40 %\n", + "Stream rate is 4.51 Kg/kW h\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.7 Page No : 483" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables\n", + "Ti = 2000.;\n", + "Te = 450.;\n", + "T0 = 300.;\n", + "Q1_dot = 100e03; \t\t\t# in kW\n", + "cpg = 1.1;\n", + "\n", + "# Calculation\n", + "wg = Q1_dot/(cpg*(Ti-Te));\n", + "af1 = wg*cpg*T0*((Ti/T0)-1-math.log(Ti/T0));\n", + "af2 = wg*cpg*T0*((Te/T0)-1-math.log(Te/T0));\n", + "afi = af1-af2;\n", + "h1 = 2801; h3 = 169; h4 = 172.8; h2 = 1890.2;\n", + "s1 = 6.068; s2 = s1; s3 = 0.576; s4 = s3;\n", + "Wt = h1-h2;\n", + "Wp = h4-h3;\n", + "Q1 = h1-h4;\n", + "Q2 = h2-h3;\n", + "Wnet = Wt-Wp;\n", + "ws = Q1_dot/2628;\n", + "afu = 38*(h1-h4-T0*(s1-s3));\n", + "I_dot = afi-afu;\n", + "Wnet_dot = ws*Wnet;\n", + "afc = ws*(h2-h3-T0*(s2-s3));\n", + "n2 = 100*Wnet_dot/af1;\n", + "\n", + "# Results\n", + "print \"The second law efficiency is %.1f %%\"%n2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The second law efficiency is 47.3 %\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.8 Page No : 485" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "\n", + "# Variables\n", + "h1 = 2758.; # kJ/kg\n", + "h2 = 1817.; \n", + "h3 = 192.\n", + "h4 = 200.;\n", + "cpg = 1.1\n", + "\n", + "# Calculation and Results\n", + "Wt = h1-h2; \n", + "Wp = h4-h3;\n", + "Q1 = h1-h4; \n", + "Wnet = Wt-Wp;\n", + "n1 = Wnet/Q1;\n", + "WR = Wnet/Wt;\n", + "Q1_ = 100.;\n", + "PO = n1*Q1_;\n", + "cp = 1000.;\n", + "wg = (Q1_/(833.-450));\n", + "EIR = 59.3\n", + "n2 = PO/EIR ;\n", + "print (\"Part (a)\")\n", + "print \"n1 is %.1f %%\"%(n1*100)\n", + "print \"n2 is %.1f %%\"%(n2*100)\n", + "print \"Work ratio is %.3f\"%WR\n", + "\n", + "# Part (b)\n", + "h1b = 3398.; \n", + "h2b = 2130.\n", + "h3b = 192.; \n", + "h4b = 200.;\n", + "Wtb = 1268.; \n", + "Wpb = 8.; \n", + "Q1b = 3198.;\n", + "Wt = 1268.\n", + "Wp = 8.\n", + "n1b = (Wt-Wp)/Q1b;\n", + "WRb = (Wt-Wp)/Wtb;\n", + "EIRb = 59.3;\n", + "Wnetb = Q1b*n1b;\n", + "n2b = 36.5/EIRb;\n", + "print (\"\\nPart (b)\")\n", + "print \"n1 is %.1f %%\"%(n1b*100)\n", + "print \"n2 is %.1f %%\"%(n2b*100)\n", + "print \"Work ratio is %.3f\"%WRb\n", + "\n", + "# Part (c)\n", + "h1c = 3398.; \n", + "h2c = 2761.; \n", + "h3c = 3482.; \n", + "h4c = 2522.; \n", + "h5c = 192.; \n", + "h6c = 200.;\n", + "Wt1 = 637.; \n", + "Wt2 = 960.; \n", + "Wtc = Wt1+Wt2; Wpc = 8.;\n", + "Wnetc = 1589.; \n", + "Q1c = 3198+721.;\n", + "n1c = Wnetc/Q1c;\n", + "WRc = Wnetc/Wtc;\n", + "POc = Q1_*n1c;\n", + "EIRc = 59.3;\n", + "n2c = POc/EIRc;\n", + "print (\"\\nPart (c)\")\n", + "print \"n1 is %.1f %%\"%(n1c*100)\n", + "print \"n2 is %.1f %%\"%(n2c*100)\n", + "print \"Work ratio is %.3f\"%WRc\n", + "\n", + "# Part (d)\n", + "T3 = 318.8; T1 = 568.;\n", + "n1d = 1-(T3/T1);\n", + "Q1d = 2758-1316.;\n", + "Wnet = Q1d*n1d;\n", + "Wpd = 8.; \n", + "Wtd = 641.;\n", + "WRd = (Wtd-Wpd)/Wtd;\n", + "POd = Q1_*0.439;\n", + "EIRd = (Q1_/(833-593.))*cpg*((833.-300)-300*(math.log(833./300)));\n", + "n2d = POd/94.6;\n", + "print (\"\\nPart (d)\")\n", + "print \"n1 is %.1f %%\"%(n1d*100)\n", + "print \"n2 is %.1f %%\"%(n2d*100)\n", + "print \"Work ratio is %.3f\"%WRd\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a)\n", + "n1 is 36.5 %\n", + "n2 is 61.5 %\n", + "Work ratio is 0.991\n", + "\n", + "Part (b)\n", + "n1 is 39.4 %\n", + "n2 is 61.6 %\n", + "Work ratio is 0.994\n", + "\n", + "Part (c)\n", + "n1 is 40.5 %\n", + "n2 is 68.4 %\n", + "Work ratio is 0.995\n", + "\n", + "Part (d)\n", + "n1 is 43.9 %\n", + "n2 is 46.4 %\n", + "Work ratio is 0.988\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.9 Page No : 488" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "hfg = 2202.6;\n", + "Qh = 5.83;\n", + "ws = Qh/hfg;\n", + "eg = 0.9; \t\t\t# efficiency of generator\n", + "P = 1000;\n", + "Wnet = 1000/0.9;\n", + "nbrake = 0.8;\n", + "\n", + "# Calculation\n", + "h1_2s = Wnet/(ws*nbrake); \t\t\t# h1-h2s\n", + "n_internal = 0.85;\n", + "h12 = n_internal*h1_2s;\n", + "hg = 2706.3; \n", + "h2 = hg;\n", + "h1 = h12+h2;\n", + "h2s = h1-h1_2s;\n", + "hf = 503.71;\n", + "x2s = (h2s-hf)/hfg;\n", + "sf = 1.5276; \n", + "sfg = 5.6020;\n", + "s2s = sf+(x2s*sfg);\n", + "s1 = s2s;\n", + "P1 = 22.5; \t\t\t# in bar from Moiller chart\n", + "t1 = 360;\n", + "\n", + "# Results\n", + "print \"Temperature of the steam is\",t1,\"degree\"\n", + "print \"Pressure of the steam is \",P1,\"bar\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temperature of the steam is 360 degree\n", + "Pressure of the steam is 22.5 bar\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.10 Page No : 489" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "h1 = 3037.3; h2 = 561+(0.96*2163.8);\n", + "s2 = 1.6718+(0.96*5.3201);\n", + "s3s = s2;\n", + "\n", + "# Calculation\n", + "x3s = (s3s-0.6493)/7.5009;\n", + "h3s = 191.83+(x3s*2392.8);\n", + "h23 = 0.8*(h2-h3s); \t\t\t# h2-h3\n", + "h3 = h2-h23;\n", + "h5 = 561.47; h4 = 191.83;\n", + "Qh = 3500.; \t\t\t# in kJ/s\n", + "w = Qh/(h2-h5);\n", + "Wt = 1500.;\n", + "ws = (Wt+w*(h2-h3))/(h1-h3); \n", + "ws_ = 3600.*ws ; \t\t\t# in kg/h\n", + "h6 = ((ws-w)*h4+w*h5)/ws;\n", + "h7 = h6;\n", + "n_boiler = 0.85;\n", + "CV = 44000.; \t\t\t# in kJ/kg\n", + "wf = (1.1*ws_*(h1-h7))/(n_boiler*CV);\n", + "\n", + "# Results\n", + "print \"Fuel buring rate is %.2f Kg/h\"%wf\n", + "print \"Wf = %.2f tonnes/day\"%(wf*24/1000)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Fuel buring rate is 756.64 Kg/h\n", + "Wf = 18.16 tonnes/day\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.11 Page No : 491" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "# Variables\n", + "h1 = 3285.; \n", + "h2s = 3010.\n", + "h3 = 3280.; \n", + "h4s = 3030.;\n", + "\n", + "# Calculation\n", + "h4 = h3-0.83*(h3-h4s);\n", + "h5s = 2225;\n", + "h5 = h4-0.83*(h4-h5s);\n", + "h6 = 162.7; h7 = h6;\n", + "h8 = 762.81;\n", + "h2 = h1-0.785*(h1-h2s);\n", + "m = (h8-h7)/(h4-h7);\n", + "n_cycle = ((h1-h2)+(h3-h4)+(1-m)*(h4-h5))/((h1-h8)+(h3-h2))\n", + "\n", + "# Results\n", + "print \"Steam flow at turbine inlet is %.3f Kg/s\"%m\n", + "print \"cycle efficiency is %.2f %%\"%(n_cycle*100)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Steam flow at turbine inlet is 0.206 Kg/s\n", + "cycle efficiency is 35.92 %\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.12 Page No : 493" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# From table and graph \n", + "\n", + "# Variables\n", + "h1 = 2792.2;\n", + "h4 = 122.96;\n", + "hb = 254.88;\n", + "hc = 29.98;\n", + "ha = 355.98;\n", + "hd = hc;\n", + "h2 = 1949.27;\n", + "\n", + "# Calculation and Results\n", + "m = (h1-h4)/(hb-hc); \t\t\t# Amount of mercury circulating\n", + "Q1t = m*(ha-hd);\n", + "W1t = m*(ha-hb) + (h1-h2);\n", + "Nov = W1t/Q1t ;\n", + "print \"Overall efficiency of the cycle %.2f %%\"%(Nov*100)\n", + "\n", + "S = 50000.; \t\t\t# Stem flow rate through turbine in kg/h\n", + "wm = S*m;\n", + "print \"Flow through the mercury turbine is %.2e Kg/h\"%wm\n", + "\n", + "Wt = W1t*S/3600;\n", + "print \"Useful work done in binary vapour cycle is %.2e kW\"%Wt\n", + "\n", + "nm = 0.85; \t\t\t# Internal efficiency of mercury turbine\n", + "ns = 0.87; \t\t\t# Internal efficiency of steam turbine\n", + "WTm = nm*(ha-hb);\n", + "hb_ = ha-WTm; \t\t\t# hb'\n", + "m_ = (h1-h4)/(hb_-hc); \t\t\t# m'\n", + "h1_ = 3037.3; \t\t\t# h'\n", + "Q1t = m_*(ha-hd)+(h1_-h1);\n", + "x2_ = (6.9160-0.4226)/(8.47-0.4226);\n", + "h2_ = 121+(0.806*2432.9);\n", + "WTst = ns*(h1_-h2_);\n", + "WTt = m_*(ha-hb_)+WTst;\n", + "Nov = WTt/Q1t;\n", + "\n", + "print \"Overall efficiency is %.1f %%\"%(Nov*100)\n", + "\n", + "# note : rounding off error." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Overall efficiency of the cycle 52.80 %\n", + "Flow through the mercury turbine is 5.93e+05 Kg/h\n", + "Useful work done in binary vapour cycle is 2.84e+04 kW\n", + "Overall efficiency is 46.2 %\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |