summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-11-03 23:30:59 +0600
committerTrupti Kini2016-11-03 23:30:59 +0600
commite5af489d177d5304b9fbcb803e7611577903ef9e (patch)
tree50d76900ac0e172bca200df49e4c4585af10a3e1 /Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb
parent130b8ed6a6148ddc918d38fefc8ae6964f27ae52 (diff)
downloadPython-Textbook-Companions-e5af489d177d5304b9fbcb803e7611577903ef9e.tar.gz
Python-Textbook-Companions-e5af489d177d5304b9fbcb803e7611577903ef9e.tar.bz2
Python-Textbook-Companions-e5af489d177d5304b9fbcb803e7611577903ef9e.zip
Added(A)/Deleted(D) following books
A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter1.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter10_qYi9AAs.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter11_EZtJ7kK.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter12_KsTKwv5.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13_DZJQwFk.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter14_GYUnehZ.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter15_teB3fFs.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter16_fpjEDzx.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter17_szOwhWr.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18_TVmT3rf.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter19_5sx3l6T.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter2.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter20_6AjJCXE.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter21_iYkzq89.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter22_OEH4UuY.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter3.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter4.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter6_s6H0KKG.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter7_dQdnyuw.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter8_oFmkmxA.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter9_8b0ahS6.ipynb A Basic_And_Applied_Thermodynamics_by_P._K._Nag/screenshots/16.11_yr7v4ev.png A Basic_And_Applied_Thermodynamics_by_P._K._Nag/screenshots/3.3_3S1AvbP.png A Basic_And_Applied_Thermodynamics_by_P._K._Nag/screenshots/7.10_BFuA7JB.png A Digital_Communications_by_S._Haykin/README.txt A Modern_Digital_And_Analog_Communication_System_by_B._P._Lathi/README.txt A sample_notebooks/SPANDANAARROJU/Chapter4_J3M7PEz.ipynb A "sample_notebooks/Sadananda CharyArroju/Chapter2.ipynb"
Diffstat (limited to 'Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb')
-rw-r--r--Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb465
1 files changed, 465 insertions, 0 deletions
diff --git a/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb b/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb
new file mode 100644
index 00000000..ce4f45c9
--- /dev/null
+++ b/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter5.ipynb
@@ -0,0 +1,465 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 05:First law applied to Flow Processes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.1:pg-97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 5.1\n",
+ "\n",
+ " The rate of work input is 116.0 kW\n",
+ "\n",
+ " The ratio of the inlet pipe diameter and outet pipe diameter is 0.0 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Part(a)\n",
+ "import math\n",
+ "V1 = 0.95 # Inlet volume flow rate in m**3/kg\n",
+ "\n",
+ "P1 = 100 # Pressure at inlet in kPa\n",
+ "\n",
+ "v1 = 7 # velocity of flow at inlet in m/s\n",
+ "\n",
+ "V2 = 0.19 # Exit volume flow rate in m**3/kg\n",
+ "\n",
+ "P2 = 700 # Pressure at exit in kPa \n",
+ "\n",
+ "v2 = 5 # velocity of flow at exit in m/s\n",
+ "\n",
+ "w = 0.5 # mass flow rate in kg/s\n",
+ "\n",
+ "u21 = 90 # change in internal energy in kJ/kg\n",
+ "\n",
+ "Q = -58 # Heat transfer in kW\n",
+ "\n",
+ "W = - w*( u21 + (P2*V2-P1*V1) + ((v2**2-v1**2)/2) ) + Q # W = dW/dt \n",
+ "\n",
+ "print \"\\n Example 5.1\"\n",
+ "\n",
+ "print \"\\n The rate of work input is \",abs(W) ,\" kW\"\n",
+ "\n",
+ "#The answers given in textbook is wrong\n",
+ "\n",
+ "# Part (b)\n",
+ "\n",
+ "A = (v2/v1)*(V1/V2) # A = A1/A2\n",
+ "\n",
+ "d_ratio = math.sqrt(A) # d = d1/d2\n",
+ "\n",
+ "print \"\\n The ratio of the inlet pipe diameter and outet pipe diameter is \",d_ratio ,\" \"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.2:pg-98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 5.2\n",
+ "\n",
+ " The internal energy decreases by 20.0 kJ\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "V1 = 0.37 # volume flow rate at inlet in m**3/kg\n",
+ "\n",
+ "P1 = 600# Inlet pressure in kPa\n",
+ "\n",
+ "v1 = 16 # Inlet velocity of flow in m/s\n",
+ "\n",
+ "V2 = 0.62 # volume flow rate at exit in m**3/kg \n",
+ "\n",
+ "P2 = 100# Exit pressure in kPa\n",
+ "\n",
+ "v2 = 270 # Exit velocity of flow in m/s\n",
+ "\n",
+ "Z1 = 32 # Height of inlet port from datum in m\n",
+ "\n",
+ "Z2 = 0 #Height of exit port from datum in m\n",
+ "\n",
+ "g = 9.81 # Acceleration due to gravity\n",
+ "\n",
+ "Q = -9 # Heat transfer in kJ/kg\n",
+ "\n",
+ "W = 135 # Work transfer in kJ/kg\n",
+ "\n",
+ "U12 = (P2*V2-P1*V1) + ((v2**2-v1**2)/2000) + (Z2-Z1)*g*1e-3 + W - Q # Change in internal energy in kJ\n",
+ "\n",
+ "\n",
+ "\n",
+ "print \"\\n Example 5.2\"\n",
+ "\n",
+ "print \"\\n The internal energy decreases by \",round(U12) ,\" kJ\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.3:pg-99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 5.3\n",
+ "\n",
+ " The steam flow rate is 53.5854836932 Kg/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "P1 = 4 # Boiler pressure in MPa\n",
+ "\n",
+ "t1 = 400 # Exit temperature at boiler in degree Celsius\n",
+ "\n",
+ "h1 = 3213 # Enthalpy at boiler exit in kJ/kg\n",
+ "\n",
+ "V1 = 0.073 # specific volume at boiler exit in m**3/kg\n",
+ "\n",
+ "P2 = 3.5 # Pressure at turbine end in MPa\n",
+ "\n",
+ "t2 = 392 # Turbine exit temperature in degree Celsius\n",
+ "\n",
+ "h2 = 3202 # Enthalpy at turbine exit in kJ/kg\n",
+ "\n",
+ "V2 = 0.084 # specific volume at turbine exit in m**3/kg\n",
+ "\n",
+ "Q = -8.5 # Heat loss from pipeline in kJ/kg\n",
+ "\n",
+ "v1 = math.sqrt((2*(h1-h2+Q)*1e3)/(1.15**2-1)) # velocity of flow in m/s\n",
+ "\n",
+ "A1 = (math.pi/4)*0.2**2 # Area of pipe in m**2\n",
+ "\n",
+ "w = (A1*v1)/V1 # steam flow rate in Kg/s\n",
+ "\n",
+ "\n",
+ "\n",
+ "print \"\\n Example 5.3\"\n",
+ "\n",
+ "print \"\\n The steam flow rate is \",w ,\" Kg/s\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.4:pg-100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 5.4\n",
+ "\n",
+ " The amount of heat that should be supplied is 703.880549402 Kg/h\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "h1 = 313.93 # Enthalpy of water at heater inlet in kJ/kg\n",
+ "\n",
+ "h2 = 2676 # Enthalpy of hot water at temperature 100.2 degree Celsius\n",
+ "\n",
+ "h3 = 419 #Enthalpy of water at heater inlet in kJ/kg\n",
+ "\n",
+ "w1 = 4.2 # mass flow rate in kg/s\n",
+ "\n",
+ "\n",
+ "\n",
+ "print \"\\n Example 5.4\"\n",
+ "\n",
+ "w2 = w1*(h3-h1)/(h2-h3)# Steam rate \n",
+ "\n",
+ "print \"\\n The amount of heat that should be supplied is \",w2*3600 ,\" Kg/h\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.5:pg-100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 5.5\n",
+ "\n",
+ " The rate of heat transfer to the air in the heat exchanger is 1577.85 kJ/s\n",
+ "\n",
+ " The power output from the turbine assuming no heat loss is 298 kW\n",
+ "\n",
+ " The velocity at the exit of the nozzle is 552.358579186 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "t1 = 15 # Heat exchanger inlet temperature in degree Celsius\n",
+ "\n",
+ "t2 = 800 # Heat exchanger exit temperature in degree Celsius\n",
+ "\n",
+ "t3 = 650 # Turbine exit temperature in degree Celsius\n",
+ "\n",
+ "t4 = 500 # Nozzle exit temperature in degree Celsius\n",
+ "\n",
+ "v1 = 30 # Velocity of steam at heat exchanger inlet in m/s\n",
+ "\n",
+ "v2 = 30# Velocity of steam at turbine inlet in m/s\n",
+ "\n",
+ "v3 = 60 # Velocity of steam at nozzle inlet in m/s\n",
+ "\n",
+ "w = 2 # mass flow rate in kg/s\n",
+ "\n",
+ "cp = 1005 # Specific heat capacity of air in kJ/kgK\n",
+ "\n",
+ "\n",
+ "\n",
+ "print \"\\n Example 5.5\"\n",
+ "\n",
+ "Q1_2 = w*cp*(t2-t1) # rate of heat transfer\n",
+ "\n",
+ "print \"\\n The rate of heat transfer to the air in the heat exchanger is \",Q1_2/1e3 ,\" kJ/s\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "W_T = w*( ((v2**2-v3**2)/2) + cp*(t2-t3)) # power output from the turbine\n",
+ "\n",
+ "print \"\\n The power output from the turbine assuming no heat loss is \",W_T/1000 ,\" kW\"\n",
+ "\n",
+ "v4 = math.sqrt( (v3**2) + (2*cp*(t3-t4)) ) # velocity at the exit of the nozzle\n",
+ "\n",
+ "print \"\\n The velocity at the exit of the nozzle is \",v4 ,\" m/s\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.6:pg-102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 5.6\n",
+ "\n",
+ " Velocity of exhaust gas is 541.409855832 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "ha = 260 # Enthalpy of air in kJ/kg\n",
+ "\n",
+ "hg = 912 # Enthalpy of gas in kJ/kg\n",
+ "\n",
+ "Va = 270 # Velocity of air in m/s\n",
+ "\n",
+ "wf = 0.0190 # mass of fuel in Kg\n",
+ "\n",
+ "wa = 1 # mass of air in Kg\n",
+ "\n",
+ "Ef = 44500 # Chemical energy of fuel in kJ/kg\n",
+ "\n",
+ "Q = 21 # Heat loss from the engine in kJ/kg\n",
+ "\n",
+ "\n",
+ "\n",
+ "print \"\\n Example 5.6\"\n",
+ "\n",
+ "Eg = 0.05*wf*Ef/(1+wf) # As 5% of chemical energy is not released in reaction\n",
+ "\n",
+ "wg = wa+wf # mass of flue gas\n",
+ "\n",
+ "Vg = math.sqrt(2000*(((ha+(Va**2*0.001)/2+(wf*Ef)-Q)/(1+wf))-hg-Eg)) \n",
+ "\n",
+ "\n",
+ "\n",
+ "print \"\\n Velocity of exhaust gas is \",Vg ,\" m/s\"\n",
+ "\n",
+ "#Answer given in textbook is wrong\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.8:pg-103"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 5.8\n",
+ "\n",
+ " The rate at which air flows out of the tank is 0.85 kg/h\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "# Given that\n",
+ "\n",
+ "V = 0.12 # Volume of tank in m**3\n",
+ "\n",
+ "p = 1 # Pressure in MPa\n",
+ "\n",
+ "T = 150 # Temperature in degree centigrade\n",
+ "\n",
+ "P = 0.1 # Power to peddle wheel in kW\n",
+ "\n",
+ "print \"\\n Example 5.8\"\n",
+ "\n",
+ "u0 = 0.718*273 # Internal energy at 0 degree Celsius\n",
+ "\n",
+ "# Function for internal energy of gas\n",
+ "\n",
+ "def f1(t):\n",
+ " u = u0+(0.718*t)\n",
+ " pv = 0.287*(273+t)\n",
+ " return (u,pv)\n",
+ " \n",
+ "U,PV=f1(T)\n",
+ " \n",
+ " \n",
+ "hp = U+PV # At 150 degree centigrade\n",
+ "m_a = P/hp\n",
+ " \n",
+ "print \"\\n The rate at which air flows out of the tank is \",round(m_a*3600,2) ,\" kg/h\"\n",
+ "\n",
+ "#The answers vary due to round off error\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}