summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb')
-rw-r--r--[-rwxr-xr-x]Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb97
1 files changed, 85 insertions, 12 deletions
diff --git a/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb b/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb
index 3ff72a8c..7d2de00a 100755..100644
--- a/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb
+++ b/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb
@@ -40,6 +40,7 @@
}
],
"source": [
+ "import math\n",
"T1 = 35 # Air inlet temperature in degree Celsius\n",
"P1 = 0.1 # Air inlet pressure in MPa\n",
"Q1 = 2100 # Heat supply in kJ/kg\n",
@@ -92,7 +93,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"rk = 14.0 # Compression ratio\n",
"k = 6.0 # cutoff percentage ratio\n",
"rc = k/100*(rk-1)+1\n",
@@ -136,6 +137,7 @@
}
],
"source": [
+ "import math\n",
"rk = 16 # Compression ratio\n",
"T1 = 15 # Air inlet temperature in degree Celsius\n",
"P1 = 0.1 # Air inlet pressure in MPa\n",
@@ -192,6 +194,7 @@
}
],
"source": [
+ "import math\n",
"T1 = 50.0 # Temperature before compression stroke in degree Celsius\n",
"rk = 16.0 # Compression ratio\n",
"g = 1.4 # Heat capacity ratio\n",
@@ -251,6 +254,7 @@
}
],
"source": [
+ "import math\n",
"P1 = 0.1 # Air pressure at turbine inlet in MPa\n",
"T1 = 30 # Air temperature at turbine inlet in degree Celsius\n",
"T3 = 900 # Maximum cycle temperature at turbine inlet in degree Celsius\n",
@@ -289,7 +293,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"metadata": {
"collapsed": false
},
@@ -311,12 +315,12 @@
}
],
"source": [
- "\n",
+ "import math\n",
"cp = 1.005 # Constant pressure heat capacity\n",
"Tmax = 1073.0 # Maximum cycle temperature in K\n",
"Tmin = 300.0# Minimum cycle temperature in K\n",
- "Wnet_max = cp*(sqrt(Tmax)-sqrt(Tmin))**2 # maximum work\n",
- "n_cycle = 1.0-sqrt(Tmin/Tmax) # cycle efficiency\n",
+ "Wnet_max = cp*(math.sqrt(Tmax)-math.sqrt(Tmin))**2 # maximum work\n",
+ "n_cycle = 1.0-math.sqrt(Tmin/Tmax) # cycle efficiency\n",
"n_carnot = 1.0-(Tmin/Tmax) # Carnot efficiency\n",
"r = n_cycle/n_carnot # Efficiency ratio\n",
"print \"\\n Example 13.6\\n\"\n",
@@ -336,7 +340,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 10,
"metadata": {
"collapsed": false
},
@@ -360,7 +364,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"rp = 6 # pressure ratio\n",
"g = 1.4 # Heat capacity ratio\n",
"cv = 0.718 # Constant volume heat capacity\n",
@@ -378,7 +382,7 @@
"Q1 = 100 # Heat addition in MW\n",
"PO = n_cycle*Q1 # Power output\n",
"m_dot = (Q1*1e06)/(cp*(T3-T2)) # Mass flow rate\n",
- "R = m_dot*cp*T0*((T4/T0)-1-log(T4/T0)) # Exergy flow rate\n",
+ "R = m_dot*cp*T0*((T4/T0)-1-math.log(T4/T0)) # Exergy flow rate\n",
"print \"\\n Example 13.7\\n\"\n",
"print \"\\n The thermal efficiency of the cycle is \",n_cycle*100 ,\" percent\"\n",
"print \"\\n Work ratio is \",WR\n",
@@ -396,7 +400,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 11,
"metadata": {
"collapsed": false
},
@@ -414,6 +418,7 @@
}
],
"source": [
+ "import math\n",
"nc = 0.87 # Compressor efficiency \n",
"nt = 0.9 # Turbine efficiency\n",
"T1 = 311 # Compressor inlet temperature in K\n",
@@ -451,7 +456,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 12,
"metadata": {
"collapsed": false
},
@@ -469,7 +474,7 @@
}
],
"source": [
- "\n",
+ "import math\n",
"#Given that\n",
"nc = 0.85 # Compressor efficiency\n",
"nt = 0.9 # Turbine efficiency\n",
@@ -492,7 +497,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 13,
"metadata": {
"collapsed": false
},
@@ -513,6 +518,7 @@
}
],
"source": [
+ "import math\n",
"#Given that\n",
"v = 300.0 # Aircraft velocity in m/s\n",
"p1 = 0.35 # Pressure in bar\n",
@@ -542,6 +548,73 @@
"#The answers vary due to round off error\n",
"\n"
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex13.11:pg-567"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Example 13.11 \n",
+ "\n",
+ "\n",
+ " Air fuel ratio is 39.6515678976\n",
+ "\n",
+ " Overall efficiency of combined plant is 53.5993550102 percent \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "Ta = 15 # Atmospheric temperature in degree Celsius \n",
+ "rp = 8 # pressure ratio\n",
+ "g = 1.33 # heat capacity ratio for gas\n",
+ "g1 = 1.40 # heat capacity ratio for air\n",
+ "cv = 0.718 # Constant volume heat capacity\n",
+ "cpa = 1.005 # Constant pressure heat capacity for air\n",
+ "cpg = 1.11 # Constant pressure heat capacity for gas\n",
+ "R = 0.287 # Gas constant\n",
+ "Tb = (Ta+273)*(rp)**((g1-1)/g1) # Temperature after compression\n",
+ "Tc = 800 # Temperature after heat addition in degree Celsius\n",
+ "Td = (Tc+273)/((rp)**((g-1)/g)) # Temperature after expansion\n",
+ "Wgt = cpg*(Tc+273-Td)-cpa*(Tb-Ta-273)\n",
+ "Q1 = cpg*(Tc+273-Tb)\n",
+ "Q1_ = cpg*(Tc+273-Td)\n",
+ "h1 = 3775 # Enthalpy at state 1 in kJ/kg\n",
+ "h2 = 2183 # Enthalpy at state2 in kJ/kg\n",
+ "h3 = 138 # Enthalpy at state3 in kJ/kg\n",
+ "h4 = h3 # Isenthalpic process\n",
+ "Q1_st = h1-h3 # Total heat addition\n",
+ "Q_fe = cpg*(Tc-100) # Heat transfer by steam\n",
+ "was = Q1_st/Q_fe # air steam mass ratio\n",
+ "Wst = h1-h2# work done by steam turbine\n",
+ "PO = 190e03 # Power output in kW\n",
+ "ws = PO/(was*Wgt+Wst)# steam flow rate\n",
+ "wa = was*ws # Air flow rate\n",
+ "CV = 43300 # Calorific volume of fuel in kJ/kg\n",
+ "waf = CV/(Q1+Q1_) # Air fuel ratio\n",
+ "FEI = (wa/waf)*CV # Fuel energy input\n",
+ "noA = PO/FEI # combined cycle efficiency\n",
+ "\n",
+ "print \"\\n Example 13.11 \\n\"\n",
+ "print \"\\n Air fuel ratio is \",waf\n",
+ "print \"\\n Overall efficiency of combined plant is \",noA*100,\" percent \"\n",
+ "#The answers vary due to round off error\n",
+ "\n"
+ ]
}
],
"metadata": {