'''
Created on 25-May-2015
@author: subhrajit
'''
'''
Example 5.18 Page 412 N. Subramanium
Design of steel structures
Design of fin-plate:
Design a web side plate connection (welded to the column and site bolted to the beam) for ISMB 400 in Fe 410 grade steel and to carry a reaction of 140 kN due
to factored loads. The connection is to the flange of an ISSC 200 column.
'''
import cmath;
import math
import sys;
from model import *
from PyQt4.Qt import QString
import logging
flag = 1
logger = None
def module_setup():
global logger
logger = logging.getLogger("osdag.finPlateCalc")
module_setup()
# def set_designlogger():
# global logger
# logger = logging.getLogger("Designlogger")
# logger.setLevel(logging.DEBUG)
#
# # create the logging file handler
# fh = logging.FileHandler("fin.log", mode="w")
#
# #,datefmt='%a, %d %b %Y %H:%M:%S'
# #formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
#
# formatter = logging.Formatter('''
#
# %(asctime)s
# %(levelname)s
# %(message)s
#
''')
# formatter.datefmt = '%a, %d %b %Y %H:%M:%S'
# fh.setFormatter(formatter)
#
# # add handler to logger object
# logger.addHandler(fh)
#
#FUNCTION DEFINITIONS---------------
#BOLT: determination of shear capacity = fu * n * A / (root(3) * Y)
def bolt_shear(dia, n, fu):
A = cmath.pi * dia * dia * 0.25 * 0.78; #threaded area = 0.78 x shank area
root3 = cmath.sqrt(3);
Vs = fu * n * A / (root3 * 1.25 * 1000);
Vs = round(Vs.real,3);
return Vs
#BOLT: determination of bearing capacity = 2.5 * kb * d * t * fu / Y
def bolt_bearing(dia, t, fu):
#add code to determine kb if pitch, gauge, edge distance known
kb = 0.5; #assumption
Vb = 2.5 * kb * dia * t * fu / (1.25 * 1000);
Vb = round(Vb.real,3);
return Vb;
# PLATE: minimum thickness of web plate for eccentricity
def web_min_h(shear, fy, thk):
min_plate_ht = 5*shear*1000/(fy*thk);
return min_plate_ht;
def finConn(uiObj):
global logger
beam_sec = uiObj['Member']['BeamSection']
column_sec = uiObj['Member']['ColumSection']
connectivity = uiObj['Member']['Connectivity']
beam_fu = uiObj['Member']['fu (MPa)']
beam_fy = uiObj['Member']['fy (MPa)']
shear_load = uiObj['Load']['ShearForce (kN)']
bolt_dia = uiObj['Bolt']['Diameter (mm)']
bolt_type = uiObj["Bolt"]["Type"]
bolt_grade = uiObj['Bolt']['Grade']
web_plate_t = uiObj['Plate']['Thickness (mm)']
web_plate_w = uiObj['Plate']['Width (mm)']
web_plate_l = uiObj['Plate']['Height (mm)']
web_plate_fu = uiObj['Member']['fu (MPa)']
web_plate_fy = uiObj['Member']['fy (MPa)']
weld_t = uiObj["Weld"]['Size (mm)']
weld_fu = 410
bolt_planes = 1
dictbeamdata = get_beamdata(beam_sec)
beam_w_t = float(dictbeamdata[QString("tw")])
beam_f_t = float(dictbeamdata[QString("T")])
beam_d = float(dictbeamdata[QString("D")])
# ############### Need to discuss with sir ########################
# #Bolt grade chosen from drop down list
#
# #Bolt dia chosen from list of standard sizes between 12 and 36
#
# # web_plate_t lies between (5, 63)
# if web_plate_t < 5 | web_plate_t > 63:
# sys.exit();
#
# #weld_fu lies between (410, 610)
# if weld_fu <= 410 | weld_fu >= 610:
# sys.exit();
########################################################################
# INPUT FOR PLATE DIMENSIONS (FOR OPTIONAL INPUTS) AND VALIDATION
# Plate thickness check
if web_plate_t < beam_w_t:
web_plate_t = beam_w_t
#logger.error("The length of the plate is more than the available depth of %2.2f mm " % (plate_len))
logger.error(": Chosen web plate thickness is not sufficient" )
logger.warning(" : Minimum required thickness %2.2f mm" % (beam_w_t))
# Plate height check
# Maximum/minimum plate height
max_plate_height = beam_d - 2 * beam_f_t - 40;
min_plate_height = web_min_h(shear_load,web_plate_fy,web_plate_t);
min_plate_height = int(min_plate_height) /10 * 10 +10;
min_plate_height = round(min_plate_height,3)
# Height input and check
if web_plate_l != 0:
if web_plate_l > max_plate_height :
logger.error(": Height of plate is more than the clear depth of the beam")
logger.warning(": Maximum plate height allowed is %2.2f mm " % (max_plate_height))
web_plate_l = max_plate_height ;
elif min_plate_height > max_plate_height:
logger.error(": Minimum required plate height is more than the clear depth of the beam")
logger.warning(": Plate height required should be more than %2.2f mm " % (min_plate_height))
logger.warning(": Maximum plate height allowed is %2.2f mm " % (max_plate_height))
logger.info(": Increase the plate thickness")
web_plate_l = max_plate_height;
elif min_plate_height >= web_plate_l:
logger.error(": Plate height provided is less than the minimum required ")
logger.warning(": Plate height required should be more than %2.2f mm " % (min_plate_height))
web_plate_l = min_plate_height
else:
if min_plate_height < max_plate_height:
web_plate_l = min_plate_height +10
elif min_plate_height >= max_plate_height:
web_plate_l = (max_plate_height-10)//10*10 ;
########################################################################
# Bolt design:
# I: Check for number of bolts -------------------
bolt_fu = int(bolt_grade) * 100
bolt_fy = (bolt_grade - int(bolt_grade))*bolt_fu;
t_thinner = min(beam_w_t.real,web_plate_t.real);
bolt_shear_capacity = bolt_shear(bolt_dia,bolt_planes,bolt_fu).real;
bolt_bearing_capacity = bolt_bearing(bolt_dia,t_thinner,beam_fu).real;
bolt_capacity = min(bolt_shear_capacity, bolt_bearing_capacity);
bolts_required = int(shear_load/bolt_capacity) + 1;
if bolts_required <= 2:
bolts_required = 3;
bolt_group_capacity = bolts_required * bolt_capacity;
# Spacing of bolts for web plate -------------------
if bolt_dia == 12 or bolt_dia == 14:
dia_hole = bolt_dia + 1
elif bolt_dia == 16 or bolt_dia == 18 or bolt_dia == 20 or bolt_dia == 22 or bolt_dia == 24:
dia_hole = bolt_dia + 2
else:
dia_hole = bolt_dia + 3
# Minimum/maximum pitch and gauge
min_pitch = int(2.5 * bolt_dia);
min_gauge = int(2.5 * bolt_dia);
if min_pitch%10 != 0 or min_gauge%10 != 0:
min_pitch = (min_pitch/10)*10 + 10;
min_gauge = (min_gauge/10)*10 + 10;
else:
min_pitch = min_pitch;
min_gauge = min_gauge;
#clause 10.2.2 is800
max_spacing = int(min(100 + 4 * t_thinner, 200)); #clause 10.2.3.3 is800
min_edge_dist = int(1.5 * (dia_hole)) + 10; # 10 mm added than min. value
if min_edge_dist%10 != 0:
min_edge_dist = (min_edge_dist/10)*10 + 10;
else:
min_edge_dist = min_edge_dist;
max_edge_dist = int((12 * t_thinner * cmath.sqrt(250/beam_fy)).real)-1;
# Determine single or double line of bolts
length_avail = (web_plate_l-2*min_edge_dist);
pitch = round(length_avail/(bolts_required-1),3);
## Calculation of moment demand
M1 = bolt_shear_capacity * (20+min_edge_dist/2);
# Single line of bolts
if pitch >= min_pitch:
bolt_line =1;
gauge = 0;
bolts_one_line = bolts_required;
K = bolts_one_line / 2;
M2=0;
if bolts_required % 2 ==0 or bolts_required % 2 !=0:
for k in range (0,K):
M2 = M2 + 2*(bolt_shear_capacity * ((length_avail/2 - k * pitch)**2/(length_avail/2 - k * pitch)));
moment_demand = max(M1,M2);
moment_demand = round(moment_demand * 0.001,3)
# Multi-line of bolts
if pitch < min_pitch:
bolt_line = 2;
if bolts_required % 2 == 0:
bolts_one_line = bolts_required/2;
else:
bolts_one_line = (bolts_required/2) + 1;
pitch = round(length_avail/(bolts_one_line-1),3);
gauge = min_gauge;
M1 = bolt_shear_capacity * (20+ min_edge_dist + gauge/2);
if pitch >= min_pitch:
K = bolts_one_line / 2;
M2=0;
if bolts_required % 2 ==0 or bolts_required % 2 !=0:
for k in range (0,K):
V = length_avail/2 - k * pitch
H = gauge/2;
d = math.sqrt(V**2 + H**2);
M2 = M2 + 2*(bolt_shear_capacity * (d**2/d));
M2=M2*2;
moment_demand = max(M1,M2);
moment_demand = round(moment_demand * 0.001,3)
# Needs discussion with Sir
else:
logger.error(": Bolt strength is insufficient to carry the shear force")
logger.warning (": Increase bolt diameter and/or bolt grade")
moment_demand=0.0
####################################################################################
# Design of plate:
# Width input (optional) and validation
if web_plate_w != 0:
if bolt_line == 1:
web_plate_w_req = 2 * min_edge_dist
end_dist = web_plate_w/2
if bolt_line == 2:
web_plate_w_req = gauge + 2 * min_edge_dist
end_dist = (web_plate_w - gauge)/2
if web_plate_w == 0:
if bolt_line == 1:
web_plate_w_req = 2 * min_edge_dist;
web_plate_w = web_plate_w_req
end_dist = web_plate_w /2
if bolt_line == 2:
web_plate_w_req = gauge + 2 * min_edge_dist;
web_plate_w = web_plate_w_req;
end_dist = (web_plate_w - gauge)/2
# if web_plate_w < web_plate_w_req:
# web_plate_w = web_plate_w_req;
# Moment capacity of web plate
moment_capacity = 1.2 * (web_plate_fy/1.1) * (web_plate_t * web_plate_l * web_plate_l)/6 * 0.001;
moment_capacity = round(moment_capacity * 0.001,3);
if moment_capacity > moment_demand:
pass
else:
logger.error(": Plate moment capacity is less than the moment demand")
logger.warning(": Re-design with increased plate dimensions")
# Plate dimension optimisation
web_plate_l_req1 = math.sqrt((moment_demand*1000*6*1.1)/(1.2*beam_fy*web_plate_t));
# Single line of bolts
if bolt_line == 1:
web_plate_l_req2 = (bolts_required-1) * min_pitch + 2 * min_edge_dist;
if web_plate_l == 0 or web_plate_l == min_plate_height or web_plate_l == max_plate_height:
web_plate_l_req = max(web_plate_l_req1, web_plate_l_req2, web_plate_l);
else:
web_plate_l_req = max(web_plate_l_req1, web_plate_l_req2,min_plate_height);
# Multi line of bolts
if bolt_line == 2:
web_plate_l_req2 = (bolts_one_line-1) * min_pitch + 2 * min_edge_dist;
if web_plate_l == 0 or web_plate_l == min_plate_height or web_plate_l == max_plate_height:
web_plate_l_req = max(web_plate_l_req1, web_plate_l_req2, web_plate_l);
elif web_plate_l > min_plate_height or web_plate_l < max_plate_height:
web_plate_l_req = max(web_plate_l_req1, web_plate_l_req2, min_plate_height);
if web_plate_l != min_plate_height +10 or web_plate_l != (max_plate_height-10)//10*10 :
pass
else:
if web_plate_l < web_plate_l_req:
logger.error(": Plate height provided is less than the minimum required")
if web_plate_w < web_plate_w_req:
logger.error(": Plate width provided is less than the minimum required")
logger.warning(": Minimum plate width required is %2.2f mm " %(web_plate_w_req))
##################################################################################
## Weld design
# V: Weld shear strength -------------------
weld_l = web_plate_l - weld_t * 2;
#direct shear
Vy1 = shear_load *1000 /float(2*weld_l);
#shear due to moment
xCritical = 0; #single line weld
yCritical = weld_l * 0.5; #single line weld
Ip = weld_l * weld_l * weld_l / 12;
Vx = moment_demand * yCritical *1000000 / (2 * Ip);
Vy2 = moment_demand * xCritical * 1000000 / (2 * Ip);
Vr = math.sqrt(Vx ** 2 + (Vy1 + Vy2) ** 2);
Vr = round(Vr,3);
weld_strength = 0.7 * weld_t * weld_fu / (math.sqrt(3) * 1.25);
weld_strength = round(weld_strength,3);
weld_t_req = (Vr * (math.sqrt(3) * 1.25))/(0.7 * weld_fu) ;
if weld_t_req != int(weld_t_req):
weld_t_req = int(weld_t_req) + 1;
else:
weld_t_req = weld_t_req;
if weld_t >= weld_t_req:
pass
else:
logger.error(": Weld thickness is not sufficient")
logger.warning(": Minimum weld thickness is required is %2.2f mm " % (weld_t_req))
# End of calculation
outputObj = {}
outputObj['Bolt'] ={}
outputObj['Bolt']['status'] = True
outputObj['Bolt']['shearcapacity'] = bolt_shear_capacity
outputObj['Bolt']['bearingcapacity'] = bolt_bearing_capacity
outputObj['Bolt']['boltcapacity'] = bolt_capacity
outputObj['Bolt']['numofbolts'] = bolts_required
outputObj['Bolt']['boltgrpcapacity'] = bolt_group_capacity
outputObj['Bolt']['numofrow'] = bolts_one_line
outputObj['Bolt']['numofcol'] = bolt_line
outputObj['Bolt']['pitch'] = pitch
outputObj['Bolt']['enddist'] = float(end_dist)
outputObj['Bolt']['edge'] = float(min_edge_dist)
outputObj['Bolt']['gauge'] = float(gauge)
outputObj['Weld'] = {}
outputObj['Weld']['thickness'] = weld_t_req
outputObj['Weld']['resultantshear'] = Vr
outputObj['Weld']['weldstrength'] = weld_strength
outputObj['Plate'] = {}
outputObj['Plate']['minHeight'] = web_plate_l_req
outputObj['Plate']['minWidth'] = web_plate_w_req
outputObj['Plate']['externalmoment'] = moment_demand
outputObj['Plate']['momentcapacity'] = moment_capacity
outputObj['Plate']['height'] = web_plate_l
outputObj['Plate']['width'] = web_plate_w
#return outputObj
if web_plate_l == (min_plate_height+10) or web_plate_l == ((max_plate_height-10)//10*10):
if bolt_line==1:
if web_plate_l == min_plate_height or web_plate_l == max_plate_height or web_plate_l < web_plate_l_req or web_plate_w < web_plate_w_req or weld_t_req > weld_t:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
elif moment_capacity < moment_demand:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
if bolt_line==2:
if pitch < min_pitch:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
elif web_plate_l == min_plate_height or web_plate_l == max_plate_height or web_plate_l < web_plate_l_req or web_plate_w < web_plate_w_req or weld_t_req > weld_t:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
elif moment_capacity < moment_demand:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
else:
pass
else:
if web_plate_l == min_plate_height or web_plate_l == max_plate_height or web_plate_l < web_plate_l_req or web_plate_w < web_plate_w_req or weld_t_req > weld_t:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
elif moment_capacity < moment_demand:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
elif bolt_line==2:
if pitch < min_pitch:
for k in outputObj.keys():
for key in outputObj[k].keys():
outputObj[k][key] = ""
# outputObj = {}
if outputObj['Bolt']['status'] == True:
logger.info(": Overall finplate connection design is safe \n")
logger.debug(" :=========End Of design===========")
else:
logger.error(": Design is not safe \n ")
logger.debug(" :=========End Of design===========")
return outputObj