From 3d033cbd21e8827b4e71a73094dee7bb852ed29f Mon Sep 17 00:00:00 2001 From: bansodanurag Date: Thu, 20 Jun 2019 11:36:28 +0530 Subject: Delete a.mo --- a.mo | 5043 ------------------------------------------------------------------ 1 file changed, 5043 deletions(-) delete mode 100644 a.mo diff --git a/a.mo b/a.mo deleted file mode 100644 index c1b03c1..0000000 --- a/a.mo +++ /dev/null @@ -1,5043 +0,0 @@ -package gsl - package data_types - model gsl_permutation - extends ExternalObject; - - function constructor - input Integer N; - output gsl_permutation p; - - external "C" p = gsl_permutation_alloc(N) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end constructor; - - function destructor "Release storage of p" - input gsl_permutation p; - - external "C" gsl_permutation_free(p) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end destructor; - end gsl_permutation; - - record gsl_sf_result - Real val; - Real err; - end gsl_sf_result; - - record gsl_sf_result_e10 - Real val; - Real err; - Integer e10; - end gsl_sf_result_e10; - end data_types; - - package mathematical - function gsl_log1p - //This function computes the value of log(1 + x) in a way that is accurate for small x - input Real x; - output Real y; - - external "C" y = log1p(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_log1p; - - function gsl_expm1 - //this function computes the value of exp(x)-1 - input Real x; - output Real y; - - external "C" y = gsl_expm1(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_expm1; - - function gsl_hypot - //this function computes the value of sqrt(x^2+y^2) in a way which avoids overflow - input Real x; - input Real y; - output Real z; - - external "C" z = gsl_hypot(x, y) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_hypot; - - function gsl_hypot3 - //This function calculates the value of sqrt(x^2+y^2+z^2) - input Real x; - input Real y; - input Real z; - output Real o; - - external "C" o = gsl_hypot3(x, y, z) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_hypot3; - - function gsl_acosh - // this function calculates the value of arccosh(x) - input Real x; - output Real y; - - external "C" y = acosh(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_acosh; - - function gsl_asinh - // this function calculates the value of arcsinh(x) - input Real x; - output Real y; - - external "C" y = asinh(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_asinh; - - function gsl_atanh - // this function calculates the value of arctanh(x) - input Real x; - output Real y; - - external "C" y = atanh(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_atanh; - - function gsl_ldexp - //this function computes the value of x*2^e - input Real x; - // y should be given the value e - output Real z; - protected - constant Real y = Modelica.Constants.e; - - external "C" z = gsl_ldexp(x, y) annotation( - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end gsl_ldexp; - - function gsl_frexp - //This function splits the number x into its normalized fraction f and exponent e, such that x = f ∗ 2^e - // and 0.5 <= f < 1. The function returns f and stores the exponent in e. - input Real x; - output Integer e; - // it stores the exponent in y - output Real z; - - external "C" z = gsl_frexp(x, e) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_frexp; - - function gsl_pow_int - //this function computes x^n - input Real x; - input Integer n; - output Real y; - - external "C" y = gsl_pow_int(x, n) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_int; - - function gsl_pow_2 - //This function calculates square fo the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_2(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_2; - - function gsl_pow_3 - //This function calculates cube of the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_3(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_3; - - function gsl_pow_4 - //This function calculates number to the power of 4 of the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_4(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_4; - - function gsl_pow_5 - //This function calculates number to the power of 5 of the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_5(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_5; - - function gsl_pow_6 - //This function calculates number to the power of 6 of the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_6(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_6; - - function gsl_pow_7 - //This function calculates number to the power of 6 of the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_7(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_7; - - function gsl_pow_8 - //This function calculates number to the power of 6 of the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_8(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_8; - - function gsl_pow_9 - //This function calculates number to the power of 6 of the given number - input Real x; - output Real y; - - external "C" y = gsl_pow_9(x) annotation( - Library = "gsl", - Library = "gslcblas"); - end gsl_pow_9; - - function GSL_SIGN - //This function outputs -1 for negative number and +1 if the number is positive - input Real x; - output Integer y; - - external "C" y = GSL_SIGN(x) annotation( - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_SIGN; - - function GSL_IS_ODD - //This function outputs 1 if number is odd else if number is even it returns zero - input Integer x; - output Integer y; - - external "C" y = GSL_IS_ODD(x) annotation( - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_IS_ODD; - - function GSL_IS_EVEN - //This function outputs 0 if number is odd else if number is even it returns 1 - input Integer x; - output Integer y; - - external "C" y = GSL_IS_EVEN(x) annotation( - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_IS_EVEN; - - function GSL_MAX - // This function calculates the maximum of two numbers - input Real a; - input Real b; - output Real c; - - external "C" c = GSL_MAX(a, b) annotation( - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_MAX; - - function GSL_MAX_DBL - // This function calculates the maximum of the given two floating point numbers - input Real a; - input Real b; - output Real c; - - external "C" c = GSL_MAX_DBL(a, b) annotation( - Inline = true, - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_MAX_DBL; - - function GSL_MIN_DBL - //This function calculates the minimum of two given floating point numbers - input Real a; - input Real b; - output Real c; - - external "C" c = GSL_MIN_DBL(a, b) annotation( - Inline = true, - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_MIN_DBL; - - function GSL_MAX_INT - // This function calculates the maximum of two given integers - input Real a; - input Real b; - output Real c; - - external "C" c = GSL_MAX_INT(a, b) annotation( - Inline = true, - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_MAX_INT; - - function GSL_MIN_INT - // This function calculates the minimum of the two numbers - input Real a; - input Real b; - output Real c; - - external "C" c = GSL_MIN_INT(a, b) annotation( - Inline = true, - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_MIN_INT; - - function GSL_MAX_LDBL - // This function calculates the maximum of two long double numbers - input Real a; - input Real b; - output Real c; - - external "C" c = GSL_MAX_LDBL(a, b) annotation( - Inline = true, - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_MAX_LDBL; - - function GSL_MIN_LDBL - // This function calculates the minimum of two long double numbers - input Real a; - input Real b; - output Real c; - - external "C" c = GSL_MIN_LDBL(a, b) annotation( - Inline = true, - Library = "gsl", - Library = "gslcblas", - Include = "#include"); - end GSL_MIN_LDBL; - - function gsl_fcmp - //This function determines whether x and y are approximately equal if they are equal within the range of epsilon it returns zero,if a>b it returns -1 and if b-1/2 - output gsl.data_types.gsl_sf_result F; - //coulomb wave function - output gsl.data_types.gsl_sf_result Fp; - //derivative of wave function - output gsl.data_types.gsl_sf_result G; - //coulomb wave function - output gsl.data_types.gsl_sf_result Gp; - //derivative of wave function - output Real exp_F; - //out of bound error exponenet stored here - output Real exp_G; - //out of bound error exponent stored here - output Integer y; - - external "C" y = gsl_sf_coulomb_wave_FG_e(eta, x, L_F, k, F, Fp, G, Gp, exp_F, exp_G) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coulomb_wave_FG_e; - - /* - int gsl_sf_coulomb_wave_F_array(double L_min, int kmax, double eta, double x, double fc_array[], - double * F_exponent) - */ - - function gsl_sf_coulomb_wave_F_array - input Real L_min; - input Integer kmax; - input Real eta; - input Real x; - output Real fc_array[kmax]; - output Real F_exponent; - output Integer y; - - external "C" y = gsl_sf_coulomb_wave_F_array(L_min, kmax, eta, x, fc_array, F_exponent) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coulomb_wave_F_array; - - /* - - int gsl_sf_coulomb_wave_FG_array(double L_min, int kmax, double eta, double x, double fc_array[], - double gc_array[], double * F_exponent, double * G_exponent)*/ - - function gsl_sf_coulomb_wave_FG_array - input Real L_min; - input Integer kmax; - input Real eta; - input Real x; - output Real fc_array[kmax]; - output Real gc_array[kmax]; - output Real F_exponent; - output Real G_exponent; - output Integer y; - - external "C" y = gsl_sf_coulomb_wave_FG_array(L_min, kmax, eta, x, fc_array, gc_array, F_exponent, G_exponent) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coulomb_wave_FG_array; - - function gsl_sf_coulomb_wave_FGp_array - input Real L_min; - input Integer kmax; - input Real eta; - input Real x; - output Real fc_array[kmax]; - output Real fcp_array[kmax]; - output Real gc_array[kmax]; - output Real gcp_array[kmax]; - output Real F_exponent; - output Real G_exponent; - output Integer y; - - external "C" y = gsl_sf_coulomb_wave_FGp_array(L_min, kmax, eta, x, fc_array, fcp_array, gc_array, gcp_array, F_exponent, G_exponent) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coulomb_wave_FGp_array; - - function gsl_sf_coulomb_wave_sphF_array - input Real L_min; - input Integer kmax; - input Real eta; - input Real x; - output Real fc_array[kmax]; - output Real F_exponent; - output Integer y; - - external "C" y = gsl_sf_coulomb_wave_sphF_array(L_min, kmax, eta, x, fc_array, F_exponent) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coulomb_wave_sphF_array; - end chap_7_7_2; - - package chap_7_7_3 - function gsl_sf_coulomb_CL_e - input Real L; - input Real eta; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_coulomb_CL_e(L, eta, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coulomb_CL_e; - - function gsl_sf_coulomb_CL_array - input Real Lmin; - input Integer kmax; - input Real eta; - output Real cl[kmax]; - output Integer y; - - external "C" y = gsl_sf_coulomb_CL_array(Lmin, kmax, eta, cl) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coulomb_CL_array; - end chap_7_7_3; - - package chap_7_8_1 - /* - - double - int gsl_sf_coupling_3j_e(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc, - gsl_sf_result * result) - These routines compute the Wigner 3-j coefficient,*/ - - function gsl_sf_coupling_3j - input Integer two_ja; - input Integer two_jb; - input Integer two_jc; - input Integer two_ma; - input Integer two_mb; - input Integer two_mc; - output Real y; - - external "C" y = gsl_sf_coupling_3j(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coupling_3j; - - function gsl_sf_coupling_3j_e - input Integer two_ja; - input Integer two_jb; - input Integer two_jc; - input Integer two_ma; - input Integer two_mb; - input Integer two_mc; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_coupling_3j_e(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coupling_3j_e; - end chap_7_8_1; - - package chap_7_8_2 - function gsl_sf_coupling_6j - input Integer two_ja; - input Integer two_jb; - input Integer two_jc; - input Integer two_ma; - input Integer two_mb; - input Integer two_mc; - output Real y; - - external "C" y = gsl_sf_coupling_6j(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coupling_6j; - - function gsl_sf_coupling_6j_e - input Integer two_ja; - input Integer two_jb; - input Integer two_jc; - input Integer two_ma; - input Integer two_mb; - input Integer two_mc; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_coupling_6j_e(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coupling_6j_e; - end chap_7_8_2; - - /* - - double gsl_sf_coupling_9j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, - int two_jg, int two_jh, int two_ji) - int gsl_sf_coupling_9j_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, - int two_jh, int two_ji, gsl_sf_result * result) - These routines compute the Wigner 9-j coeffici - - */ - - package chap_7_8_3 - function gsl_sf_coupling_9j - input Integer two_ja; - input Integer two_jb; - input Integer two_jc; - input Integer two_jd; - input Integer two_je; - input Integer two_jf; - input Integer two_jg; - input Integer two_jh; - input Integer two_ji; - output Real y; - - external "C" y = gsl_sf_coupling_9j(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, two_jg, two_jh, two_ji) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coupling_9j; - - function gsl_sf_coupling_9j_e - input Integer two_ja; - input Integer two_jb; - input Integer two_jc; - input Integer two_jd; - input Integer two_je; - input Integer two_jf; - input Integer two_jg; - input Integer two_jh; - input Integer two_ji; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_coupling_9j_e(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, two_jg, two_jh, two_ji, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_coupling_9j_e; - end chap_7_8_3; - - package chap_7_9 - function gsl_sf_dawson - input Real x; - output Real y; - - external "C" y = gsl_sf_dawson(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_dawson; - - function gsl_sf_dawson_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_dawson_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_dawson_e; - end chap_7_9; - - package chap_7_10 - // double gsl_sf_debye_1(double x) - - function gsl_sf_debye_1 - input Real x; - output Real y; - - external "C" y = gsl_sf_debye_1(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_1; - - function gsl_sf_debye_1_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_debye_1_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_1_e; - - function gsl_sf_debye_2 - input Real x; - output Real y; - - external "C" y = gsl_sf_debye_2(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_2; - - function gsl_sf_debye_2_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_debye_2_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_2_e; - - function gsl_sf_debye_3 - input Real x; - output Real y; - - external "C" y = gsl_sf_debye_3(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_3; - - function gsl_sf_debye_3_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_debye_3_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_3_e; - - function gsl_sf_debye_4 - input Real x; - output Real y; - - external "C" y = gsl_sf_debye_4(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_4; - - function gsl_sf_debye_4_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_debye_4_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_4_e; - - function gsl_sf_debye_5 - input Real x; - output Real y; - - external "C" y = gsl_sf_debye_5(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_5; - - function gsl_sf_debye_5_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_debye_5_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_5_e; - - function gsl_sf_debye_6 - input Real x; - output Real y; - - external "C" y = gsl_sf_debye_6(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_6; - - function gsl_sf_debye_6_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_debye_6_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_debye_6_e; - end chap_7_10; - - package chap_7_11_1 - function gsl_sf_dilog - input Real x; - output Real y; - - external "C" y = gsl_sf_dilog(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_dilog; - - function gsl_sf_dilog_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_dilog_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_dilog_e; - end chap_7_11_1; - - package chap_7_11_2 - function gsl_sf_complex_dilog_e - input Real r; - input Real theta; - output gsl.data_types.gsl_sf_result result_re; - output gsl.data_types.gsl_sf_result result_im; - output Integer y; - - external "C" y = gsl_sf_complex_dilog_e(r, theta, result_re, result_im) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_complex_dilog_e; - - /* int gsl_sf_complex_dilog_e(double r, double theta, gsl_sf_result * result_re, gsl_sf_result * re- - sult_im)*/ - end chap_7_11_2; - - package chap_7_12 - function gsl_sf_multiply - input Real x; - input Real y; - output Real z; - - external "C" z = gsl_sf_multiply(x, y) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_multiply; - - function gsl_sf_multiply_e - input Real x; - input Real y; - output gsl.data_types.gsl_sf_result result; - output Integer z; - - external "C" z = gsl_sf_multiply_e(x, y, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_multiply_e; - - function gsl_sf_multiply_err_e - input Real x; - input Real dx; - input Real y; - input Real dy; - output gsl.data_types.gsl_sf_result result; - output Integer z; - - external "C" z = gsl_sf_multiply_err_e(x, dx, y, dy, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_multiply_err_e; - end chap_7_12; - - package chap_7_15_1 - //double gsl_sf_erf(double x) - //int gsl_sf_erf_e(double x, gsl_sf_result * result) - - function gsl_sf_erf - input Real x; - output Real y; - - external "C" y = gsl_sf_erf(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erf; - - function gsl_sf_erf_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_erf_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erf_e; - end chap_7_15_1; - - package chap_7_15_2 - function gsl_sf_erfc - input Real x; - output Real y; - - external "C" y = gsl_sf_erfc(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erfc; - - function gsl_sf_erfc_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_erfc_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erfc_e; - end chap_7_15_2; - - package chap_7_15_3 - function gsl_sf_log_erfc - input Real x; - output Real y; - - external "C" y = gsl_sf_log_erfc(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_log_erfc; - - function gsl_sf_log_erfc_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_log_erfc_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_log_erfc_e; - end chap_7_15_3; - - package chap_7_15_4 - /* - double gsl_sf_hazard(double x) - int gsl_sf_erf_Z_e(double x, gsl_sf_result * result) - double gsl_sf_erf_Q(double x) - int gsl_sf_erf_Q_e(double x, gsl_sf_result * result)*/ - - function gsl_sf_erf_Z - input Real x; - output Real y; - - external "C" y = gsl_sf_erf_Z(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erf_Z; - - function gsl_sf_erf_Z_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_erf_Z_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erf_Z_e; - - function gsl_sf_erf_Q - input Real x; - output Real y; - - external "C" y = gsl_sf_erf_Q(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erf_Q; - - function gsl_sf_erf_Q_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_erf_Q_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_erf_Q_e; - - /*double gsl_sf_hazard(double x) - int gsl_sf_hazard_e(double x, gsl_sf_result * result)*/ - - function gsl_sf_hazard - input Real x; - output Real y; - - external "C" y = gsl_sf_hazard(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_hazard; - - function gsl_sf_hazard_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_hazard_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_hazard_e; - end chap_7_15_4; - - package chap_7_16_1 - /*double gsl_sf_exp(double x) - int gsl_sf_exp_e(double x, gsl_sf_result * result) - These routines provide an exponential function exp(x) using GSL semantics and error checking. - int gsl_sf_exp_e10_e(double x, gsl_sf_result_e10 * result) - This function computes the exponential exp(x) using the gsl_sf_result_e10 type to return a result with - extended range. This function may be useful if the value of exp(x) would overflow the numeric range of - double. - double gsl_sf_exp_mult(double x, double y) - - These routines exponentiate x and multiply by the factor y to return the product y exp(x). - int gsl_sf_exp_mult_e10_e(const double x, const double y, gsl_sf_result_e10 * result)*/ - - function gsl_sf_exp - input Real x; - //input to the exp function - output Real y; - - external "C" y = gsl_sf_exp(x) annotation( - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp; - - function gsl_sf_exp_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_exp_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_e; - - function gsl_sf_exp_e10_e - input Real x; - output gsl.data_types.gsl_sf_result_e10 result; - output Integer y; - - external "C" y = gsl_sf_exp_e10_e(x, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_e10_e; - - function gsl_sf_exp_mult - input Real x; - input Real y; - output Real z; - - external "C" z = gsl_sf_exp_mult(x, y) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcbla)"); - end gsl_sf_exp_mult; - - function gsl_sf_exp_mult_e - input Real x; - input Real y; - output gsl.data_types.gsl_sf_result result; - output Integer z; - - external "C" z = gsl_sf_exp_mult_e(x, y, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_mult_e; - - function gsl_sf_exp_mult_e10_e - input Real x; - input Real y; - output gsl.data_types.gsl_sf_result_e10 result; - output Integer z; - - external "C" z = gsl_sf_exp_mult_e10_e(x, y, result) annotation( - Include = "#include ", - Include = "#include ", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_mult_e10_e; - end chap_7_16_1; - - package chap_7_16_2 - function gsl_sf_expm1 - //This routines compute the quantity exp(x) − 1 using an algorithm that is accurate for small x. - input Real x; - output Real y; - - external "C" y = gsl_sf_expm1(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expm1; - - function gsl_sf_expm1_e - //This routines compute the quantity exp(x) − 1 using an algorithm that is accurate for small x. - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_expm1_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expm1_e; - - function gsl_sf_exprel - //These routines compute the quantity (exp(x) − 1)/x using an algorithm that is accurate for small x - input Real x; - output Real y; - - external "C" y = gsl_sf_exprel(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exprel; - - function gsl_sf_exprel_e - //These routines compute the quantity (exp(x) − 1)/x using an algorithm that is accurate for small x - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_exprel_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exprel_e; - - function gsl_sf_exprel_2 - //This routines compute the quantity 2(exp(x) − 1 − x)/x^2 using an algorithm that is accurate for small x - input Real x; - output Real y; - - external "C" y = gsl_sf_exprel_2(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exprel_2; - - function gsl_sf_exprel_2_e - //This routines compute the quantity 2(exp(x) − 1 − x)/x^2 using an algorithm that is accurate for small x - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_exprel_2_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exprel_2_e; - - function gsl_sf_exprel_n - input Integer n; - input Real x; - output Real z; - - external "C" z = gsl_sf_exprel_n(n, x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exprel_n; - - function gsl_sf_exprel_n_e - input Integer n; - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_exprel_n_e(n, x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exprel_n_e; - end chap_7_16_2; - - package chap_7_16_3 - function gsl_sf_exp_err_e - //This function exponentiates x with an associated absolute error dx - input Real x; - input Real dx; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_exp_err_e(x, dx, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_err_e; - - function gsl_sf_exp_err_e10_e - //This function exponentiates a quantity x with an associated absolute error dx using the gsl_sf_result_e10 - input Real x; - input Real dx; - output gsl.data_types.gsl_sf_result_e10 result; - output Integer y; - - external "C" y = gsl_sf_exp_err_e10_e(x, dx, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_err_e10_e; - - function gsl_sf_exp_mult_err_e - //This routine computes the product y exp(x) for the quantities x, y with associated absolute errors dx, dy. - input Real x; - input Real dx; - input Real y; - input Real dy; - output gsl.data_types.gsl_sf_result result; - output Integer z; - - external "C" z = gsl_sf_exp_mult_err_e(x, dx, y, dy, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_mult_err_e; - - function gsl_sf_exp_mult_err_e10_e - //This routine computes the product y exp(x) for the quantities x, y with associated absolute errors dx, dy usingthe gsl_sf_result_e10 type to return a result with extended range - input Real x; - input Real dx; - input Real y; - input Real dy; - output gsl.data_types.gsl_sf_result_e10 result; - output Integer z; - - external "C" z = gsl_sf_exp_mult_err_e10_e(x, dx, y, dy, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_exp_mult_err_e10_e; - end chap_7_16_3; - - package chap_7_17_1 - function gsl_sf_expint_E1 - //These routines compute the exponential integral E 1 (x), - input Real x; - output Real y; - - external "C" y = gsl_sf_expint_E1(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_E1; - - function gsl_sf_expint_E1_e - //These routines compute the exponential integral E 1 (x), - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_expint_E1_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_E1_e; - - function gsl_sf_expint_E2 - //These routines compute the exponential integral E 2 (x), - input Real x; - output Real y; - - external "C" y = gsl_sf_expint_E2(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_E2; - - function gsl_sf_expint_E2_e - //These routines compute the exponential integral E 2 (x), - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_expint_E2_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_E2_e; - - function gsl_sf_expint_En - //These routines compute the exponential integral E n (x), - input Integer n; - input Real x; - output Real y; - - external "C" y = gsl_sf_expint_En(n, x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_En; - - function gsl_sf_expint_En_e - //These routines compute the exponential integral E 2 (x), - input Integer n; - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_expint_En_e(n, x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_En_e; - end chap_7_17_1; - - package chap_7_17_2 - function gsl_sf_expint_Ei - //These routines compute the exponential integral Ei(x) - input Real x; - output Real y; - - external "C" y = gsl_sf_expint_Ei(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_Ei; - - function gsl_sf_expint_Ei_e - //These routines compute the exponential integral Ei(x) - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_expint_Ei_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_expint_Ei_e; - end chap_7_17_2; - - package chap_7_17_3 - function gsl_sf_Shi - //hyperbolic integrals - input Real x; - output Real y; - - external "C" y = gsl_sf_Shi(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_Shi; - - function gsl_sf_Shi_e - //hyperbolic integral - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_Shi_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_Shi_e; - - - - function gsl_sf_Chi - //hyperbolic integrals - input Real x; - output Real y; - - external "C" y = gsl_sf_Chi(x) annotation( - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_Chi; - - function gsl_sf_Chi_e - //hyperbolic integral - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - - external "C" y = gsl_sf_Chi_e(x, result) annotation( - Include = "#include", - Include = "#include", - Library = "gsl", - Library = "gslcblas"); - end gsl_sf_Chi_e; - end chap_7_17_3; - - package chap_7_17_4 - function gsl_sf_expint_3 - input Real x; - output Real y; - external "C" y=gsl_sf_expint_3(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_expint_3; - - function gsl_sf_expint_3_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_expint_3_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_expint_3_e; - end chap_7_17_4; - - package chap_7_17_5 - function gsl_sf_Si - input Real x; - output Real y; - external "C" y=gsl_sf_Si(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_Si; - - function gsl_sf_Si_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_Si_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcbas"); - end gsl_sf_Si_e; - - function gsl_sf_Ci - input Real x; - output Real y; - external "C" y=gsl_sf_Ci(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_Ci; - - function gsl_sf_Ci_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_Ci_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_Ci_e; - end chap_7_17_5; - - package chap_7_18_1 - - - function gsl_sf_fermi_dirac_m1 - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_m1(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_m1; - - - //int gsl_sf_fermi_dirac_m1_e(double x, gsl_sf_result * result) - function gsl_sf_fermi_dirac_m1_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_fermi_dirac_m1_e(x,result)annotation(Include="#include",Library="gsl",Library="gslcblas",Include="#include"); - end gsl_sf_fermi_dirac_m1_e; - - //double gsl_sf_fermi_dirac_0(double x) - function gsl_sf_fermi_dirac_0 - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_0(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_0; - - function gsl_sf_fermi_dirac_0_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_fermi_dirac_0_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_0_e; - - - //double gsl_sf_fermi_dirac_1(double x) - function gsl_sf_fermi_dirac_1 - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_1(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_1; - - //int gsl_sf_fermi_dirac_1_e(double x, gsl_sf_result * result) - function gsl_sf_fermi_dirac_1_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_fermi_dirac_1_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_1_e; - - - - //double gsl_sf_fermi_dirac_2(double x) - function gsl_sf_fermi_dirac_2 - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_2(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_2; - - //int gsl_sf_fermi_dirac_2_e(double x, gsl_sf_result * result) - function gsl_sf_fermi_dirac_2_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_fermi_dirac_2_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_2_e; - - - - - - - //double gsl_sf_fermi_dirac_int(int j, double x) - function gsl_sf_fermi_dirac_int - input Integer j; - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_int(j,x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_int; - - function gsl_sf_fermi_dirac_int_e - input Integer j; - input Real x; - output gsl.data_types.gsl_sf_result result; - output Real y; - external "C" y=gsl_sf_fermi_dirac_int_e(j,x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_int_e; - - - - - - - - - - - - - - function gsl_sf_fermi_dirac_mhalf - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_mhalf(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_mhalf; - - - - function gsl_sf_fermi_dirac_mhalf_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_fermi_dirac_mhalf_e(x,result)annotation(Include="#include",Library="gsl",Library="gslcblas",Include="#include"); - end gsl_sf_fermi_dirac_mhalf_e; - - - function gsl_sf_fermi_dirac_half - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_half(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_half; - - function gsl_sf_fermi_dirac_half_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_fermi_dirac_half_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_half_e; - - - - function gsl_sf_fermi_dirac_3half - input Real x; - output Real y; - external "C" y=gsl_sf_fermi_dirac_3half(x)annotation(Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_3half; - - - function gsl_sf_fermi_dirac_3half_e - input Real x; - output gsl.data_types.gsl_sf_result result; - output Integer y; - external "C" y=gsl_sf_fermi_dirac_3half_e(x,result)annotation(Include="#include",Include="#include",Library="gsl",Library="gslcblas"); - end gsl_sf_fermi_dirac_3half_e; - - - end chap_7_18_1; - end Special_functions; - - package Examples - package Mathematical - model gsl_log1p - //This model computes the value of log(1 + x) in a way that is accurate for small x by calling the function gsl_log1p(x) - parameter Real x = -2; - Real y; - algorithm - y := gsl.mathematical.gsl_log1p(x); - end gsl_log1p; - - model gsl_expm1 - //This model computes the value of exp(x)-1 in a way that is accurate for small x by calling the function gsl_expm1 - parameter Real x = 0.01; - Real y; - algorithm - y := gsl.mathematical.gsl_expm1(x); - end gsl_expm1; - - model gsl_hypot - //it calculates the value of sqrt(x^2+y^2) - parameter Real x = 2; - parameter Real y = 2.1; - Real z; - algorithm - z := gsl.mathematical.gsl_hypot(x, y); - end gsl_hypot; - - model gsl_hypot3 - //this example calculates the value of sqrt(x^2+y^2+z^2) by calling the function gsl_hypot3 - parameter Real x = 2.0; - parameter Real y = 2.1; - parameter Real z = 2.2; - Real o; - algorithm - o := gsl.mathematical.gsl_hypot3(x, y, z); - end gsl_hypot3; - - model gsl_acosh - //this example calls gsl_acosh to calculate the inverse of cosh - parameter Real x = 2; - Real y; - algorithm - y := gsl.mathematical.gsl_acosh(x); - end gsl_acosh; - - model gsl_asinh - //this example calls gsl_asinh to calculate the inverse of sinh - parameter Real x = 2; - Real y; - algorithm - y := gsl.mathematical.gsl_asinh(x); - end gsl_asinh; - - model gsl_atanh - //this example calls gsl_atanh to calculate the inverse of tanh - parameter Real x = 0.5; - Real y; - algorithm - y := gsl.mathematical.gsl_atanh(x); - end gsl_atanh; - - model gsl_ldexp - //this function computes the value of x*2^e by calling the function gsl_ldexp - parameter Real x = 2.0; - // constant Real y = Modelica.Constants.e; - // y should be given the value e - Real z; - algorithm - z := gsl.mathematical.gsl_ldexp(x); - end gsl_ldexp; - - model gsl_frexp - //This model calls the function gsl_frexp and splits the number x into its normalized fraction f and exponent e, such that x = f ∗ 2^e - // and 0.5 <= f < 1. The function returns f and stores the exponent in e. - parameter Real x = 2; - Integer e; - // it stores the exponent in y - output Real z; - algorithm - (e, z) := gsl.mathematical.gsl_frexp(x); - end gsl_frexp; - - model gsl_pow_int - //this function computes x^n - parameter Real x = 0; - parameter Integer n = 0; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_int(x, n); - end gsl_pow_int; - - model gsl_pow_2 - //This function calculates square fo the given number - parameter Real x = 2.2; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_2(x); - end gsl_pow_2; - - model gsl_pow_3 - //This function calculates cube of the given number - parameter Real x = 2.02; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_3(x); - end gsl_pow_3; - - model gsl_pow_4 - //This function calculates number to the power of 4 of the given number - parameter Real x = 0.02; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_4(x); - end gsl_pow_4; - - model gsl_pow_5 - //This model calculates number to the power of 5 of the given number by calling the function gsl_pow_5(x) - parameter Real x = 0.2; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_5(x); - end gsl_pow_5; - - model gsl_pow_6 - //This model calculates number to the power of 6 of the given number by calling the the function gsl_pow_6(x) - parameter Real x = 2.0; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_6(x); - end gsl_pow_6; - - model gsl_pow_7 - //This function calculates number to the power of 7 by calling the function gsl_pow_7(x) - parameter Real x = 2.0; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_7(x); - end gsl_pow_7; - - model gsl_pow_8 - //This model calculates number to the power of 8 by calling the function gsl_pow_8 - parameter Real x = 2.2; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_8(x); - end gsl_pow_8; - - model gsl_pow_9 - //This function calculates number to the power of 9 of the given number - parameter Real x = 2.2; - Real y; - algorithm - y := gsl.mathematical.gsl_pow_9(x); - end gsl_pow_9; - - model GSL_SIGN - //This model calculates the sign of the number by calling the function GSL_SIGN(x) - parameter Real x = -4; - Integer y; - algorithm - y := gsl.mathematical.GSL_SIGN(x); - end GSL_SIGN; - - model GSL_IS_ODD - //This model outputs 1 for odd number and 0 if the number is even by calling the function GSL_IS_ODD(x) - parameter Integer x = 2; - Real y(start = 0); - algorithm - y := gsl.mathematical.GSL_IS_ODD(x); - end GSL_IS_ODD; - - model GSL_IS_EVEN - //This model outputs 1 for odd number and 0 if the number is even by calling the function GSL_IS_EVEN(x) - parameter Integer x = 2; - Real y; - algorithm - y := gsl.mathematical.GSL_IS_EVEN(x); - end GSL_IS_EVEN; - - model GSL_MAX - //This model calls the function GSL_MAX(a,b) which return the maximum of a and b - parameter Real a = 1.0; - parameter Real b = 2.0; - Real c; - algorithm - c := gsl.mathematical.GSL_MAX(a, b); - end GSL_MAX; - - model GSL_MAX_DBL - // This model gives the maximum of two double numbers by calling the function GSL_MAX_DBL - parameter Real a = 2.0; - parameter Real b = 3.0; - Real c; - algorithm - c := gsl.mathematical.GSL_MAX_DBL(a, b); - end GSL_MAX_DBL; - - model GSL_MIN_DBL - // This model gives the minimum of two double numbers by calling the function GSL_MIN_DBL - parameter Real a = 2.0; - parameter Real b = 3.0; - Real c; - algorithm - c := gsl.mathematical.GSL_MIN_DBL(a, b); - end GSL_MIN_DBL; - - model GSL_MAX_INT - // This model gives the maximum of two integers by calling the function GSL_MAX_INT - parameter Real a = 2; - parameter Real b = 3; - Real c; - algorithm - c := gsl.mathematical.GSL_MAX_INT(a, b); - end GSL_MAX_INT; - - model GSL_MIN_INT - // This model gives the minimum of two integers by calling the function GSL_MIN_INT - parameter Real a = 2.5; - parameter Real b = 3; - Real c; - algorithm - c := gsl.mathematical.GSL_MIN_INT(a, b); - end GSL_MIN_INT; - - model GSL_MAX_LDBL - // This model gives the maximum of two Real numbers by calling the function GSL_MAX_LDBL - parameter Real a = 2.00001; - parameter Real b = 3.00001; - Real c; - algorithm - c := gsl.mathematical.GSL_MAX_LDBL(a, b); - end GSL_MAX_LDBL; - - model GSL_MIN_LDBL - // This model gives the minimum of two Real by calling the function GSL_MAX_DBL - parameter Real a = 2.00001; - parameter Real b = 3.00001; - Real c; - algorithm - c := gsl.mathematical.GSL_MIN_LDBL(a, b); - end GSL_MIN_LDBL; - - model gsl_fcmp - //This model calls the function gsl_fcmp(a,b) and returns zero if they are equal in given range and -1 if ab - parameter Real a = 4.0; - parameter Real b = 2.2; - Real c; - algorithm - c := gsl.mathematical.gsl_fcmp(a, b); - end gsl_fcmp; - - /**/ - end Mathematical; - - package Permutation - /*this model initialise the permutation with 10 elements to {0,1,2,3,4,5,6,7,8,9}*/ - //this model calls the function gsl_permutation_init(p) to initialize the permutation to {0,1,2,3,4,5,6,7,8,9} - //this model calls the function gsl_permutation_init(p) to initialize the permutation to {0,1,2,3,4,5,6,7,8,9} - //this model calls the function gsl_permutation_init(p) to initialize the permutation to {0,1,2,3,4,, - - model gsl_per_init - /*this model initializes the permutation p to{0,1,2,3,4,5,6,7,8,9}*/ - parameter Integer N = 10; - gsl.data_types.gsl_permutation p = gsl.data_types.gsl_permutation(N); - Integer y[10]; - algorithm - gsl.Permutation.gsl_permutation_init(p); - for i in 1:10 loop - y[i] := gsl.Permutation.gsl_permutation_get(p, i - 1); - end for; - end gsl_per_init; - end Permutation; - - package COMPLEX - model gsl_complex_rect - /*this model calls the function gsl_complex_rect*/ - parameter Real a = 10; - parameter Real b = 4; - Real z[2]; - algorithm - z := gsl.COMPLEX.gsl_complex_rect(a, b); - end gsl_complex_rect; - end COMPLEX; - - package special_functions - package chap_7_5_1 - model gsl_sf_bessel_J0 - //this model calls the function gsl_sf_bessel_J0 by taking value of x as input and returning y as output - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_1.gsl_sf_bessel_J0(x); - end gsl_sf_bessel_J0; - - model gsl_sf_bessel_J0_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_1.gsl_sf_bessel_J0_e(x); - end gsl_sf_bessel_J0_e; - - model gsl_sf_bessel_J1 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_1.gsl_sf_bessel_J1(x); - end gsl_sf_bessel_J1; - - model gsl_sf_bessel_J1_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_1.gsl_sf_bessel_J1_e(x); - end gsl_sf_bessel_J1_e; - - model gsl_sf_bessel_Jn - parameter Real x = 10; - parameter Integer n = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_1.gsl_sf_bessel_Jn(x, n); - end gsl_sf_bessel_Jn; - - model gsl_sf_bessel_Jn_e - parameter Real x = 10; - parameter Integer n = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_1.gsl_sf_bessel_Jn_e(x, n); - end gsl_sf_bessel_Jn_e; - - model gsl_sf_bessel_Jn_array - parameter Integer nmin = 2; - parameter Integer nmax = 10; - parameter Real x = 4; - Real result_array[nmax - nmin]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_1.gsl_sf_bessel_Jn_array(nmin, nmax, x); - end gsl_sf_bessel_Jn_array; - end chap_7_5_1; - - package chap_7_5_2 - model gsl_sf_bessel_Y0 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_2.gsl_sf_bessel_Y0(x); - end gsl_sf_bessel_Y0; - - model gsl_sf_bessel_Y0_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_2.gsl_sf_bessel_Y0_e(x); - end gsl_sf_bessel_Y0_e; - - model gsl_sf_bessel_Y1 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_2.gsl_sf_bessel_Y1(x); - end gsl_sf_bessel_Y1; - - model gsl_sf_bessel_Y1_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_2.gsl_sf_bessel_Y1_e(x); - end gsl_sf_bessel_Y1_e; - - model gsl_sf_bessel_Yn - parameter Real x = 10; - parameter Integer n = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_2.gsl_sf_bessel_Yn(x, n); - end gsl_sf_bessel_Yn; - - model gsl_sf_bessel_Yn_e - parameter Real x = 10; - parameter Integer n = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_2.gsl_sf_bessel_Yn_e(x, n); - end gsl_sf_bessel_Yn_e; - - model gsl_sf_bessel_Yn_array - parameter Integer nmin = 2; - parameter Integer nmax = 10; - parameter Real x = 4; - Real result_array[nmax - nmin]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_2.gsl_sf_bessel_Yn_array(nmin, nmax, x); - end gsl_sf_bessel_Yn_array; - end chap_7_5_2; - - package chap_7_5_3 - model gsl_sf_bessel_I0 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I0(x); - end gsl_sf_bessel_I0; - - model gsl_sf_bessel_I0_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I0_e(x); - end gsl_sf_bessel_I0_e; - - model gsl_sf_bessel_I1 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I1(x); - end gsl_sf_bessel_I1; - - model gsl_sf_bessel_I1_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I1_e(x); - end gsl_sf_bessel_I1_e; - - model gsl_sf_bessel_In - parameter Real x = 10; - parameter Integer n = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_In(x, n); - end gsl_sf_bessel_In; - - model gsl_sf_bessel_In_e - parameter Real x = 10; - parameter Integer n = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_In_e(x, n); - end gsl_sf_bessel_In_e; - - model gsl_sf_bessel_In_array - parameter Integer nmin = 2; - parameter Integer nmax = 10; - parameter Real x = 4; - Real result_array[nmax - nmin]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_In_array(nmin, nmax, x); - end gsl_sf_bessel_In_array; - - model gsl_sf_bessel_I0_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I0_scaled(x); - end gsl_sf_bessel_I0_scaled; - - model gsl_sf_bessel_I0_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I0_scaled_e(x); - end gsl_sf_bessel_I0_scaled_e; - - model gsl_sf_bessel_I1_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I1_scaled(x); - end gsl_sf_bessel_I1_scaled; - - model gsl_sf_bessel_I1_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_I1_scaled_e(x); - end gsl_sf_bessel_I1_scaled_e; - - model gsl_sf_bessel_In_scaled - parameter Real x = 10; - parameter Integer n = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_In_scaled(x, n); - end gsl_sf_bessel_In_scaled; - - model gsl_sf_bessel_In_scaled_e - parameter Real x = 10; - parameter Integer n = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_In_scaled_e(x, n); - end gsl_sf_bessel_In_scaled_e; - - model gsl_sf_bessel_In_scaled_array - parameter Integer nmin = 2; - parameter Integer nmax = 10; - parameter Real x = 4; - Real result_array[nmax - nmin]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_3.gsl_sf_bessel_In_scaled_array(nmin, nmax, x); - end gsl_sf_bessel_In_scaled_array; - end chap_7_5_3; - - package chap_7_5_4 - model gsl_sf_bessel_K0 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K0(x); - end gsl_sf_bessel_K0; - - model gsl_sf_bessel_K0_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K0_e(x); - end gsl_sf_bessel_K0_e; - - model gsl_sf_bessel_K1 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K1(x); - end gsl_sf_bessel_K1; - - model gsl_sf_bessel_K1_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K1_e(x); - end gsl_sf_bessel_K1_e; - - model gsl_sf_bessel_Kn - parameter Real x = 10; - parameter Integer n = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_Kn(x, n); - end gsl_sf_bessel_Kn; - - model gsl_sf_bessel_Kn_e - parameter Real x = 10; - parameter Integer n = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_Kn_e(x, n); - end gsl_sf_bessel_Kn_e; - - model gsl_sf_bessel_Kn_array - parameter Integer nmin = 2; - parameter Integer nmax = 10; - parameter Real x = 4; - Real result_array[nmax - nmin]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_Kn_array(nmin, nmax, x); - end gsl_sf_bessel_Kn_array; - - model gsl_sf_bessel_K0_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K0_scaled(x); - end gsl_sf_bessel_K0_scaled; - - model gsl_sf_bessel_K0_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K0_scaled_e(x); - end gsl_sf_bessel_K0_scaled_e; - - model gsl_sf_bessel_K1_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K1_scaled(x); - end gsl_sf_bessel_K1_scaled; - - model gsl_sf_bessel_K1_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_K1_scaled_e(x); - end gsl_sf_bessel_K1_scaled_e; - - model gsl_sf_bessel_Kn_scaled - parameter Real x = 10; - parameter Integer n = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_Kn_scaled(x, n); - end gsl_sf_bessel_Kn_scaled; - - model gsl_sf_bessel_Kn_scaled_e - parameter Real x = 10; - parameter Integer n = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_Kn_scaled_e(x, n); - end gsl_sf_bessel_Kn_scaled_e; - - model gsl_sf_bessel_Kn_scaled_array - parameter Integer nmin = 2; - parameter Integer nmax = 10; - parameter Real x = 4; - Real result_array[nmax - nmin]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_4.gsl_sf_bessel_Kn_scaled_array(nmin, nmax, x); - end gsl_sf_bessel_Kn_scaled_array; - end chap_7_5_4; - - package chap_7_5_5 - model gsl_sf_bessel_j0 - //This model calls the function gsl_sf_bessel_j0 to calculate the value of spherical bessel function j0(x)=sin(x)/x - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j0(x); - end gsl_sf_bessel_j0; - - model gsl_sf_bessel_j0_e - //This model calls the function gsl_sf_bessel_j0 to calculate the value of spherical bessel function j0(x)=sin(x)/x - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j0_e(x); - end gsl_sf_bessel_j0_e; - - model gsl_sf_bessel_j1 - //This model calls the function gsl_sf_bessel_j1 to calculate the value of spherical bessel function j1(x)=(sin(x)/x - cos(x))/x - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j1(x); - end gsl_sf_bessel_j1; - - model gsl_sf_bessel_j1_e - //This model calls the function gsl_sf_bessel_j1 to calculate the value of spherical bessel function j1(x)=(sin(x)/x -cos(x))/x - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j1_e(x); - end gsl_sf_bessel_j1_e; - - model gsl_sf_bessel_j2 - //These routines compute the regular spherical Bessel function of second order, j 2 (x) = ((3/x 2 − 1) sin(x) −3 cos(x)/x)/x - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j2(x); - end gsl_sf_bessel_j2; - - model gsl_sf_bessel_j2_e - //These routines compute the regular spherical Bessel function of second order, j 2 (x) = ((3/x 2 − 1) sin(x) −3 cos(x)/x)/x - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j2_e(x); - end gsl_sf_bessel_j2_e; - - model gsl_sf_bessel_jl - //These routines compute the regular spherical Bessel function of order l, j1(x), for l ≥ 0 and x ≥ 0. - parameter Integer l = 10; - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_jl(l, x); - end gsl_sf_bessel_jl; - - model gsl_sf_bessel_jl_e - parameter Integer l = 10; - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_jl_e(l, x); - end gsl_sf_bessel_jl_e; - - model gsl_sf_bessel_jl_array - // parameter Integer nmin; - parameter Integer lmax = 10; - parameter Real x = 10; - Real result_array[lmax]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_jl_array(lmax, x); - end gsl_sf_bessel_jl_array; - - model gsl_sf_bessel_jl_steed_array - // parameter Integer nmin; - parameter Integer lmax = 10; - parameter Real x = 10; - Real result_array[lmax]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_jl_steed_array(lmax, x); - end gsl_sf_bessel_jl_steed_array; - end chap_7_5_5; - - package chap_7_5_6 - model gsl_sf_bessel_j0 - //This model calls the function gsl_sf_bessel_j0 to calculate the value of irregular spherical irregular spherical bessel function j0(x)=sin(x)/x - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j0(x); - end gsl_sf_bessel_j0; - - model gsl_sf_bessel_j0_e - //This model calls the function gsl_sf_bessel_j0 to calculate the value of irregular spherical bessel function j0(x)=sin(x)/x - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j0_e(x); - end gsl_sf_bessel_j0_e; - - model gsl_sf_bessel_j1 - //This model calls the function gsl_sf_bessel_j1 to calculate the value of irregular spherical bessel function j1(x)=(sin(x)/x - cos(x))/x - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j1(x); - end gsl_sf_bessel_j1; - - model gsl_sf_bessel_j1_e - //This model calls the function gsl_sf_bessel_j1 to calculate the value of irregular spherical bessel function j1(x)=(sin(x)/x -cos(x))/x - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j1_e(x); - end gsl_sf_bessel_j1_e; - - model gsl_sf_bessel_j2 - //These routines compute the regular irregular spherical Bessel function of second order, j 2 (x) = ((3/x 2 − 1) sin(x) −3 cos(x)/x)/x - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j2(x); - end gsl_sf_bessel_j2; - - model gsl_sf_bessel_j2_e - //These routines compute the irregular spherical Bessel function of second order, j 2 (x) = ((3/x 2 − 1) sin(x) −3 cos(x)/x)/x - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_j2_e(x); - end gsl_sf_bessel_j2_e; - - model gsl_sf_bessel_jl - //These routines compute the irregular spherical Bessel function of order l, j1(x), for l ≥ 0 and x ≥ 0. - parameter Integer l = 10; - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_jl(l, x); - end gsl_sf_bessel_jl; - - model gsl_sf_bessel_jl_e - parameter Integer l = 10; - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_jl_e(l, x); - end gsl_sf_bessel_jl_e; - - model gsl_sf_bessel_jl_array - // parameter Integer nmin; - parameter Integer lmax = 10; - parameter Real x = 10; - Real result_array[lmax]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_5.gsl_sf_bessel_jl_array(lmax, x); - end gsl_sf_bessel_jl_array; - end chap_7_5_6; - - package chap_7_5_7 - model gsl_sf_bessel_i0_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_i0_scaled(x); - end gsl_sf_bessel_i0_scaled; - - model gsl_sf_bessel_i0_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_i0_scaled_e(x); - end gsl_sf_bessel_i0_scaled_e; - - model gsl_sf_bessel_i1_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_i1_scaled(x); - end gsl_sf_bessel_i1_scaled; - - model gsl_sf_bessel_i1_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_i1_scaled_e(x); - end gsl_sf_bessel_i1_scaled_e; - - model gsl_sf_bessel_i2_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_i2_scaled(x); - end gsl_sf_bessel_i2_scaled; - - model gsl_sf_bessel_i2_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_i2_scaled_e(x); - end gsl_sf_bessel_i2_scaled_e; - - model gsl_sf_bessel_il_scaled - parameter Real x = 10; - parameter Integer l = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_il_scaled(x, l); - end gsl_sf_bessel_il_scaled; - - model gsl_sf_bessel_il_scaled_e - parameter Real x = 10; - parameter Integer l = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_il_scaled_e(x, l); - end gsl_sf_bessel_il_scaled_e; - - model gsl_sf_bessel_il_scaled_array - parameter Integer lmax = 10; - parameter Real x = 4; - Real result_array[lmax]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_7.gsl_sf_bessel_il_scaled_array(lmax, x); - end gsl_sf_bessel_il_scaled_array; - end chap_7_5_7; - - package chap_7_5_8 - model gsl_sf_bessel_k0_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_k0_scaled(x); - end gsl_sf_bessel_k0_scaled; - - model gsl_sf_bessel_k0_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_k0_scaled_e(x); - end gsl_sf_bessel_k0_scaled_e; - - model gsl_sf_bessel_k1_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_k1_scaled(x); - end gsl_sf_bessel_k1_scaled; - - model gsl_sf_bessel_k1_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_k1_scaled_e(x); - end gsl_sf_bessel_k1_scaled_e; - - model gsl_sf_bessel_k2_scaled - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_k2_scaled(x); - end gsl_sf_bessel_k2_scaled; - - model gsl_sf_bessel_k2_scaled_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_k2_scaled_e(x); - end gsl_sf_bessel_k2_scaled_e; - - model gsl_sf_bessel_kl_scaled - parameter Real x = 10; - parameter Integer l = 1; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_kl_scaled(x, l); - end gsl_sf_bessel_kl_scaled; - - model gsl_sf_bessel_kl_scaled_e - parameter Real x = 10; - parameter Integer l = 1; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_kl_scaled_e(x, l); - end gsl_sf_bessel_kl_scaled_e; - - model gsl_sf_bessel_kl_scaled_array - parameter Integer lmax = 10; - parameter Real x = 4; - Real result_array[lmax]; - Integer y; - algorithm - (result_array, y) := gsl.Special_functions.chap_7_5_8.gsl_sf_bessel_kl_scaled_array(lmax, x); - end gsl_sf_bessel_kl_scaled_array; - end chap_7_5_8; - - package chap_7_5_9 - model gsl_sf_bessel_Jnu - parameter Real x = 10; - parameter Real nu = 1.5; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_9.gsl_sf_bessel_Jnu(nu, x); - end gsl_sf_bessel_Jnu; - - model gsl_sf_bessel_Jnu_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_9.gsl_sf_bessel_Jnu_e(x, nu); - end gsl_sf_bessel_Jnu_e; - end chap_7_5_9; - - package chap_7_5_10 - model gsl_sf_bessel_Ynu - parameter Real x = 10; - parameter Real nu = 1.5; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_10.gsl_sf_bessel_Ynu(nu, x); - end gsl_sf_bessel_Ynu; - - model gsl_sf_bessel_Ynu_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_10.gsl_sf_bessel_Ynu_e(x, nu); - end gsl_sf_bessel_Ynu_e; - end chap_7_5_10; - - package chap_7_5_11 - model gsl_sf_bessel_Inu - parameter Real x = 10; - parameter Real nu = 1.5; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_11.gsl_sf_bessel_Inu(nu, x); - end gsl_sf_bessel_Inu; - - model gsl_sf_bessel_Inu_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_11.gsl_sf_bessel_Inu_e(x, nu); - end gsl_sf_bessel_Inu_e; - - model gsl_sf_bessel_Inu_scaled - parameter Real x = 10; - parameter Real nu = 1.5; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_11.gsl_sf_bessel_Inu_scaled(x, nu); - end gsl_sf_bessel_Inu_scaled; - - model gsl_sf_bessel_Inu_scaled_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_11.gsl_sf_bessel_Inu_scaled_e(x, nu); - end gsl_sf_bessel_Inu_scaled_e; - end chap_7_5_11; - - package chap_7_5_12 - model gsl_sf_bessel_Knu - parameter Real x = 10; - parameter Real nu = 1.5; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_12.gsl_sf_bessel_Knu(nu, x); - end gsl_sf_bessel_Knu; - - model gsl_sf_bessel_Knu_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_12.gsl_sf_bessel_Knu_e(x, nu); - end gsl_sf_bessel_Knu_e; - - model gsl_sf_bessel_lnKnu - parameter Real x = 10; - parameter Real nu = 1.5; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_12.gsl_sf_bessel_lnKnu(nu, x); - end gsl_sf_bessel_lnKnu; - - model gsl_sf_bessel_lnKnu_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_12.gsl_sf_bessel_lnKnu_e(x, nu); - end gsl_sf_bessel_lnKnu_e; - - model gsl_sf_bessel_Knu_scaled - parameter Real x = 10; - parameter Real nu = 1.5; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_5_12.gsl_sf_bessel_Knu_scaled(x, nu); - end gsl_sf_bessel_Knu_scaled; - - model gsl_sf_bessel_Knu_scaled_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_12.gsl_sf_bessel_Knu_scaled_e(x, nu); - end gsl_sf_bessel_Knu_scaled_e; - end chap_7_5_12; - - package chap_7_5_13 - model gsl_sf_bessel_zero_J0 - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_13.gsl_sf_bessel_zero_J0(x); - end gsl_sf_bessel_zero_J0; - - model gsl_sf_bessel_zero_J0_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_13.gsl_sf_bessel_zero_J0_e(x); - end gsl_sf_bessel_zero_J0_e; - - model gsl_sf_bessel_zero_J1 - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_5_13.gsl_sf_bessel_zero_J1(x); - end gsl_sf_bessel_zero_J1; - - model gsl_sf_bessel_zero_J1_e - parameter Real x = 10; - output gsl.data_types.gsl_sf_result result; - output Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_13.gsl_sf_bessel_zero_J1_e(x); - end gsl_sf_bessel_zero_J1_e; - - model gsl_sf_bessel_zero_Jnu - parameter Real x = 10; - parameter Real nu = 1.5; - output Real y; - algorithm - y := gsl.Special_functions.chap_7_5_13.gsl_sf_bessel_zero_Jnu(nu, x); - end gsl_sf_bessel_zero_Jnu; - - model gsl_sf_bessel_zero_Jnu_e - parameter Real x = 10; - parameter Real nu = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_5_13.gsl_sf_bessel_zero_Jnu_e(nu, x); - end gsl_sf_bessel_zero_Jnu_e; - end chap_7_5_13; - - package chap_7_6 - model gsl_sf_clausen - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_6.gsl_sf_clausen(x); - end gsl_sf_clausen; - - model gsl_sf_clausen_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_6.gsl_sf_clausen_e(x); - end gsl_sf_clausen_e; - end chap_7_6; - - package chap_7_7_1 - model gsl_sf_hydrogenicR_1 - parameter Real Z = 10; - parameter Real r = 10; - Real R; - algorithm - R := gsl.Special_functions.chap_7_7_1.gsl_sf_hydrogenicR_1(Z, r); - end gsl_sf_hydrogenicR_1; - - model gsl_sf_hydrogenicR_1_e - parameter Real Z = 10; - parameter Real r = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_7_1.gsl_sf_hydrogenicR_1_e(Z, r); - end gsl_sf_hydrogenicR_1_e; - - model gsl_sf_hydrogenicR - parameter Integer n = 1; - parameter Integer l = 0; - parameter Real Z = 10; - parameter Real r = 0.1; - Real R; - algorithm - R := gsl.Special_functions.chap_7_7_1.gsl_sf_hydrogenicR(n, l, Z, r); - end gsl_sf_hydrogenicR; - - model gsl_sf_hydrogenicR_e - parameter Integer n = 1; - parameter Integer l = 0; - parameter Real Z = 10; - parameter Real r = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_7_1.gsl_sf_hydrogenicR_e(n, l, Z, r); - end gsl_sf_hydrogenicR_e; - end chap_7_7_1; - - package chap_7_7_2 - model gsl_sf_coulomb_wave_FG_e - parameter Real eta = 1; - // eta=Z/k,where Z is atomic number - parameter Real x = 0.1; - parameter Real L_F = 1; - parameter Integer k = 1; - //L_F-k>-1/2 - gsl.data_types.gsl_sf_result F; - //coulomb wave function - gsl.data_types.gsl_sf_result Fp; - //derivative of wave function - gsl.data_types.gsl_sf_result G; - //coulomb wave function - gsl.data_types.gsl_sf_result Gp; - //derivative of wave function - Real exp_F; - //out of bound error exponenet stored here - Real exp_G; - //out of bound error exponent stored here - Integer y; - algorithm - (F, Fp, G, Gp, exp_F, exp_G, y) := gsl.Special_functions.chap_7_7_2.gsl_sf_coulomb_wave_FG_e(eta, x, L_F, k); - end gsl_sf_coulomb_wave_FG_e; - - model gsl_sf_coulomb_wave_F_array - parameter Real L_min = 1; - parameter Integer kmax = 2; - parameter Real eta = 1; - parameter Real x = 1; - Real fc_array[kmax]; - Real F_exponent; - Integer y; - algorithm - (fc_array, F_exponent, y) := gsl.Special_functions.chap_7_7_2.gsl_sf_coulomb_wave_F_array(L_min, kmax, eta, x); - end gsl_sf_coulomb_wave_F_array; - - model gsl_sf_coulomb_wave_FG_array - parameter Real L_min = 1; - parameter Integer kmax = 2; - parameter Real eta = 1; - parameter Real x = 1.5; - Real fc_array[kmax]; - Real gc_array[kmax]; - Real F_exponent; - Real G_exponent; - Integer y; - algorithm - (fc_array, gc_array, F_exponent, G_exponent, y) := gsl.Special_functions.chap_7_7_2.gsl_sf_coulomb_wave_FG_array(L_min, kmax, eta, x); - end gsl_sf_coulomb_wave_FG_array; - - model gsl_sf_coulomb_wave_FGp_array - parameter Real L_min = 1; - parameter Integer kmax = 2; - parameter Real eta = 1; - parameter Real x = 1.5; - Real fc_array[kmax]; - Real fcp_array[kmax]; - Real gc_array[kmax]; - Real gcp_array[kmax]; - Real F_exponent; - Real G_exponent; - Integer y; - algorithm - (fc_array, fcp_array, gc_array, gcp_array, F_exponent, G_exponent, y) := gsl.Special_functions.chap_7_7_2.gsl_sf_coulomb_wave_FGp_array(L_min, kmax, eta, x); - end gsl_sf_coulomb_wave_FGp_array; - - model gsl_sf_coulomb_wave_sphF_array - parameter Real L_min = 1; - parameter Integer kmax = 2; - parameter Real eta = 1; - parameter Real x = 1.5; - Real fc_array[kmax]; - Real F_exponent; - Integer y; - algorithm - (fc_array, F_exponent, y) := gsl.Special_functions.chap_7_7_2.gsl_sf_coulomb_wave_sphF_array(L_min, kmax, eta, x); - end gsl_sf_coulomb_wave_sphF_array; - end chap_7_7_2; - - package chap_7_7_3 - model gsl_sf_coulomb_CL_e - parameter Real L = 1; - parameter Real eta = 1.5; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_7_3.gsl_sf_coulomb_CL_e(L, eta); - end gsl_sf_coulomb_CL_e; - - model gsl_sf_coulomb_CL_array - parameter Real Lmin = 1; - parameter Integer kmax = 2; - parameter Real eta = 1.5; - Real cl[kmax]; - Integer y; - algorithm - (cl, y) := gsl.Special_functions.chap_7_7_3.gsl_sf_coulomb_CL_array(Lmin, kmax, eta); - end gsl_sf_coulomb_CL_array; - end chap_7_7_3; - - package chap_7_8_1 - model gsl_sf_coupling_3j - parameter Integer two_ja = 0; - parameter Integer two_jb = 0; - parameter Integer two_jc = 0; - parameter Integer two_ma = 0; - parameter Integer two_mb = 0; - parameter Integer two_mc = 0; - Real y; - algorithm - y := gsl.Special_functions.chap_7_8_1.gsl_sf_coupling_3j(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc); - end gsl_sf_coupling_3j; - - model gsl_sf_coupling_3j_e - parameter Integer two_ja = 0; - parameter Integer two_jb = 0; - parameter Integer two_jc = 0; - parameter Integer two_ma = 0; - parameter Integer two_mb = 0; - parameter Integer two_mc = 0; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_8_1.gsl_sf_coupling_3j_e(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc); - end gsl_sf_coupling_3j_e; - end chap_7_8_1; - - package chap_7_8_2 - model gsl_sf_coupling_6j - parameter Integer two_ja = 0; - parameter Integer two_jb = 0; - parameter Integer two_jc = 0; - parameter Integer two_ma = 0; - parameter Integer two_mb = 0; - parameter Integer two_mc = 0; - Real y; - algorithm - y := gsl.Special_functions.chap_7_8_2.gsl_sf_coupling_6j(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc); - end gsl_sf_coupling_6j; - - model gsl_sf_coupling_6j_e - parameter Integer two_ja = 0; - parameter Integer two_jb = 0; - parameter Integer two_jc = 0; - parameter Integer two_ma = 0; - parameter Integer two_mb = 0; - parameter Integer two_mc = 0; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_8_2.gsl_sf_coupling_6j_e(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc); - end gsl_sf_coupling_6j_e; - end chap_7_8_2; - - package chap_7_8_3 - model gsl_sf_coupling_9j - parameter Integer two_ja = 0; - parameter Integer two_jb = 0; - parameter Integer two_jc = 0; - parameter Integer two_jd = 0; - parameter Integer two_je = 0; - parameter Integer two_jf = 0; - parameter Integer two_jg = 0; - parameter Integer two_jh = 0; - parameter Integer two_ji = 0; - Real y; - algorithm - y := gsl.Special_functions.chap_7_8_3.gsl_sf_coupling_9j(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, two_jg, two_jh, two_ji); - end gsl_sf_coupling_9j; - - model gsl_sf_coupling_9j_e - parameter Integer two_ja = 0; - parameter Integer two_jb = 0; - parameter Integer two_jc = 0; - parameter Integer two_jd = 0; - parameter Integer two_je = 0; - parameter Integer two_jf = 0; - parameter Integer two_jg = 0; - parameter Integer two_jh = 0; - parameter Integer two_ji = 0; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_8_3.gsl_sf_coupling_9j_e(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, two_jg, two_jh, two_ji); - end gsl_sf_coupling_9j_e; - end chap_7_8_3; - - package chap_7_9 - model gsl_sf_dawson - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_9.gsl_sf_dawson(x); - end gsl_sf_dawson; - - model gsl_sf_dawson_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_9.gsl_sf_dawson_e(x); - end gsl_sf_dawson_e; - end chap_7_9; - - package chap_7_10 - model gsl_sf_debye_1 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_10.gsl_sf_debye_1(x); - end gsl_sf_debye_1; - - model gsl_sf_debye_1_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_10.gsl_sf_debye_1_e(x); - end gsl_sf_debye_1_e; - - model gsl_sf_debye_2 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_10.gsl_sf_debye_2(x); - end gsl_sf_debye_2; - - model gsl_sf_debye_2_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_10.gsl_sf_debye_2_e(x); - end gsl_sf_debye_2_e; - - model gsl_sf_debye_3 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_10.gsl_sf_debye_3(x); - end gsl_sf_debye_3; - - model gsl_sf_debye_3_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_10.gsl_sf_debye_3_e(x); - end gsl_sf_debye_3_e; - - model gsl_sf_debye_4 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_10.gsl_sf_debye_4(x); - end gsl_sf_debye_4; - - model gsl_sf_debye_4_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_10.gsl_sf_debye_4_e(x); - end gsl_sf_debye_4_e; - - model gsl_sf_debye_5 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_10.gsl_sf_debye_5(x); - end gsl_sf_debye_5; - - model gsl_sf_debye_5_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_10.gsl_sf_debye_5_e(x); - end gsl_sf_debye_5_e; - - model gsl_sf_debye_6 - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_10.gsl_sf_debye_6(x); - end gsl_sf_debye_6; - - model gsl_sf_debye_6_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_10.gsl_sf_debye_6_e(x); - end gsl_sf_debye_6_e; - end chap_7_10; - - package chap_7_11_1 - model gsl_sf_dilog - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_11_1.gsl_sf_dilog(x); - end gsl_sf_dilog; - - model gsl_sf_dilog_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_11_1.gsl_sf_dilog_e(x); - end gsl_sf_dilog_e; - end chap_7_11_1; - - package chap_7_11_2 - model gsl_sf_complex_dilog_e - parameter Real r = 10; - parameter Real theta = 1; - gsl.data_types.gsl_sf_result result_re; - gsl.data_types.gsl_sf_result result_im; - Integer y; - algorithm - (result_re, result_im, y) := gsl.Special_functions.chap_7_11_2.gsl_sf_complex_dilog_e(r, theta); - end gsl_sf_complex_dilog_e; - end chap_7_11_2; - - package chap_7_12 - model gsl_sf_multiply - parameter Real x = 2.5; - parameter Real y = 2.5; - Real z; - algorithm - z := gsl.Special_functions.chap_7_12.gsl_sf_multiply(x, y); - end gsl_sf_multiply; - - model gsl_sf_multiply_e - parameter Real x = 2.5; - parameter Real y = 2.5; - gsl.data_types.gsl_sf_result result; - Integer z; - algorithm - (result, z) := gsl.Special_functions.chap_7_12.gsl_sf_multiply_e(x, y); - end gsl_sf_multiply_e; - - model gsl_sf_multiply_err_e - parameter Real x = 2; - parameter Real dx = 0.5; - parameter Real y = 2; - parameter Real dy = 0.2; - gsl.data_types.gsl_sf_result result; - Integer z; - algorithm - (result, z) := gsl.Special_functions.chap_7_12.gsl_sf_multiply_err_e(x, dx, y, dy); - end gsl_sf_multiply_err_e; - end chap_7_12; - - package chap_7_15_1 - model gsl_sf_erf - parameter Real x = 2; - Real y; - algorithm - y := gsl.Special_functions.chap_7_15_1.gsl_sf_erf(x); - end gsl_sf_erf; - - model gsl_sf_erf_e - parameter Real x = 2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_15_1.gsl_sf_erf_e(x); - end gsl_sf_erf_e; - end chap_7_15_1; - - package chap_7_15_2 - model gsl_sf_erfc - parameter Real x = 2; - Real y; - algorithm - y := gsl.Special_functions.chap_7_15_2.gsl_sf_erfc(x); - end gsl_sf_erfc; - - model gsl_sf_erfc_e - parameter Real x = 2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_15_2.gsl_sf_erfc_e(x); - end gsl_sf_erfc_e; - end chap_7_15_2; - - package chap_7_15_3 - model gsl_sf_log_erfc - parameter Real x = 2; - Real y; - algorithm - y := gsl.Special_functions.chap_7_15_3.gsl_sf_log_erfc(x); - end gsl_sf_log_erfc; - - model gsl_sf_log_erfc_e - parameter Real x = 2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_15_3.gsl_sf_log_erfc_e(x); - end gsl_sf_log_erfc_e; - end chap_7_15_3; - - package chap_7_15_4 - model gsl_sf_erf_Z - parameter Real x = 2; - Real y; - algorithm - y := gsl.Special_functions.chap_7_15_4.gsl_sf_erf_Z(x); - end gsl_sf_erf_Z; - - model gsl_sf_erf_Z_e - parameter Real x = 2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_15_4.gsl_sf_erf_Z_e(x); - end gsl_sf_erf_Z_e; - - model gsl_sf_erf_Q - parameter Real x = 2; - Real y; - algorithm - y := gsl.Special_functions.chap_7_15_4.gsl_sf_erf_Q(x); - end gsl_sf_erf_Q; - - model gsl_sf_erf_Q_e - parameter Real x = 2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_15_4.gsl_sf_erf_Q_e(x); - end gsl_sf_erf_Q_e; - - model gsl_sf_hazard - parameter Real x = 2; - Real y; - algorithm - y := gsl.Special_functions.chap_7_15_4.gsl_sf_hazard(x); - end gsl_sf_hazard; - - model gsl_sf_hazard_e - parameter Real x = 2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_15_4.gsl_sf_hazard_e(x); - end gsl_sf_hazard_e; - end chap_7_15_4; - - package chap_7_16_1 - model gsl_sf_exp - //this model calls the function gsl_sf_exp by taking value of x as input and returning y as output - parameter Real x = 10; - Real y(start = 1); - algorithm - y := gsl.Special_functions.chap_7_16_1.gsl_sf_exp(x); - end gsl_sf_exp; - - model gsl_sf_exp_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_1.gsl_sf_exp_e(x); - end gsl_sf_exp_e; - - model gsl_sf_exp_e10_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result_e10 result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_1.gsl_sf_exp_e10_e(x); - end gsl_sf_exp_e10_e; - - model gsl_sf_exp_mult - //this model calls the function gsl_sf_exp by taking value of x as input and returning y as output - parameter Real x = 10; - parameter Real y = 10; - Real z; - algorithm - z := gsl.Special_functions.chap_7_16_1.gsl_sf_exp_mult(x, y); - end gsl_sf_exp_mult; - - model gsl_sf_exp_mult_e - parameter Real x = 10; - parameter Real y = 10; - gsl.data_types.gsl_sf_result result; - Integer z; - algorithm - (result, z) := gsl.Special_functions.chap_7_16_1.gsl_sf_exp_mult_e(x, y); - end gsl_sf_exp_mult_e; - - model gsl_sf_exp_mult_e10_e - parameter Real x = 10; - parameter Real y = 10; - gsl.data_types.gsl_sf_result_e10 result; - Integer z; - algorithm - (result, z) := gsl.Special_functions.chap_7_16_1.gsl_sf_exp_mult_e10_e(x, y); - end gsl_sf_exp_mult_e10_e; - end chap_7_16_1; - - package chap_7_16_2 - model gsl_sf_expm1 - parameter Real x = 0.00034; - Real y; - algorithm - y := gsl.Special_functions.chap_7_16_2.gsl_sf_expm1(x); - end gsl_sf_expm1; - - model gsl_sf_expm1_e - parameter Real x = 0.000002; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_2.gsl_sf_expm1_e(x); - end gsl_sf_expm1_e; - - model gsl_sf_exprel - parameter Real x = 0.000002; - Real y; - algorithm - y := gsl.Special_functions.chap_7_16_2.gsl_sf_exprel(x); - end gsl_sf_exprel; - - model gsl_sf_exprel_e - parameter Real x = 0.002; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_2.gsl_sf_exprel_e(x); - end gsl_sf_exprel_e; - - model gsl_sf_exprel_2 - parameter Real x = 0.002; - Real y; - algorithm - y := gsl.Special_functions.chap_7_16_2.gsl_sf_exprel_2(x); - end gsl_sf_exprel_2; - - model gsl_sf_exprel_2_e - parameter Real x = 0.002; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_2.gsl_sf_exprel_2_e(x); - end gsl_sf_exprel_2_e; - - model gsl_sf_exprel_n - parameter Integer n = 2; - parameter Real x = 0.002; - Real z; - algorithm - z := gsl.Special_functions.chap_7_16_2.gsl_sf_exprel_n(n, x); - end gsl_sf_exprel_n; - - model gsl_sf_exprel_n_e - parameter Integer n = 2; - parameter Real x = 0.2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_2.gsl_sf_exprel_n_e(n, x); - end gsl_sf_exprel_n_e; - end chap_7_16_2; - - package chap_7_16_3 - model gsl_sf_exp_err_e - //This model calls the function gsl_sf_exp_err_e which exponentiates x with an associated absolute error dx - parameter Real x = 0.15; - parameter Real dx = 0.00015; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_3.gsl_sf_exp_err_e(x, dx); - end gsl_sf_exp_err_e; - - model gsl_sf_exp_err_e10_e - //this model calls the function gsl_sf_exp_err_e10_e which exponentiates x with an associated absolute error dx - parameter Real x = 0.15; - parameter Real dx = 0.000015; - gsl.data_types.gsl_sf_result_e10 result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_16_3.gsl_sf_exp_err_e10_e(x, dx); - end gsl_sf_exp_err_e10_e; - - model gsl_sf_exp_mult_err_e - parameter Real x = 0.15; - parameter Real dx = 0.0000000015; - parameter Real y = 1; - parameter Real dy = 0.00000001; - gsl.data_types.gsl_sf_result result; - Integer z; - algorithm - (result, z) := gsl.Special_functions.chap_7_16_3.gsl_sf_exp_mult_err_e(x, dx, y, dy); - end gsl_sf_exp_mult_err_e; - - model gsl_sf_exp_mult_err_e10_e - parameter Real x = 0.15; - parameter Real dx = 0.0000000015; - parameter Real y = 1; - parameter Real dy = 0.000000001; - gsl.data_types.gsl_sf_result_e10 result; - Integer z; - algorithm - (result, z) := gsl.Special_functions.chap_7_16_3.gsl_sf_exp_mult_err_e10_e(x, dx, y, dy); - end gsl_sf_exp_mult_err_e10_e; - end chap_7_16_3; - - package chap_7_17_1 - model gsl_sf_expint_E1 - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_17_1.gsl_sf_expint_E1(x); - end gsl_sf_expint_E1; - - model gsl_sf_expint_E1_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_17_1.gsl_sf_expint_E1_e(x); - end gsl_sf_expint_E1_e; - - model gsl_sf_expint_E2 - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_17_1.gsl_sf_expint_E2(x); - end gsl_sf_expint_E2; - - model gsl_sf_expint_E2_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_17_1.gsl_sf_expint_E2_e(x); - end gsl_sf_expint_E2_e; - - model gsl_sf_expint_En - parameter Integer n = 2; - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_17_1.gsl_sf_expint_En(n, x); - end gsl_sf_expint_En; - - model gsl_sf_expint_En_e - parameter Integer n = 4; - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_17_1.gsl_sf_expint_En_e(n, x); - end gsl_sf_expint_En_e; - end chap_7_17_1; - - package chap_7_17_2 - model gsl_sf_expint_Ei - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_17_2.gsl_sf_expint_Ei(x); - end gsl_sf_expint_Ei; - - model gsl_sf_expint_Ei_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_17_2.gsl_sf_expint_Ei_e(x); - end gsl_sf_expint_Ei_e; - end chap_7_17_2; - - package chap_7_17_3 - model gsl_sf_Shi - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_17_3.gsl_sf_Shi(x); - end gsl_sf_Shi; - - model gsl_sf_Shi_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_17_3.gsl_sf_Shi_e(x); - end gsl_sf_Shi_e; - - - model gsl_sf_Chi - parameter Real x = 10; - Real y; - algorithm - y := gsl.Special_functions.chap_7_17_3.gsl_sf_Chi(x); - end gsl_sf_Chi; - - model gsl_sf_Chi_e - parameter Real x = 10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result, y) := gsl.Special_functions.chap_7_17_3.gsl_sf_Chi_e(x); - end gsl_sf_Chi_e; - end chap_7_17_3; - - package chap_7_17_4 - model gsl_sf_expint_3 - parameter Real x=10; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_17_4.gsl_sf_expint_3(x); - end gsl_sf_expint_3; - - model gsl_sf_expint_3_e - parameter Real x=10; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_17_4.gsl_sf_expint_3_e(x); - end gsl_sf_expint_3_e; - end chap_7_17_4; - - package chap_7_17_5 - - model gsl_sf_Si - parameter Real x=10; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_17_5.gsl_sf_Si(x); - end gsl_sf_Si; - - model gsl_sf_Si_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_17_5.gsl_sf_Si_e(x); - end gsl_sf_Si_e; - - model gsl_sf_Ci - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_17_5.gsl_sf_Ci(x); - end gsl_sf_Ci; - - model gsl_sf_Ci_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_17_5.gsl_sf_Ci_e(x); - end gsl_sf_Ci_e; - end chap_7_17_5; - - package chap_7_18_1 - - - model gsl_sf_fermi_dirac_m1 - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_m1(x); - end gsl_sf_fermi_dirac_m1; - - - model gsl_sf_fermi_dirac_m1_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_m1_e(x); - end gsl_sf_fermi_dirac_m1_e; - - model gsl_sf_fermi_dirac_0 - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_0(x); - end gsl_sf_fermi_dirac_0; - - model gsl_sf_fermi_dirac_0_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_0_e(x); - end gsl_sf_fermi_dirac_0_e; - - model gsl_sf_fermi_dirac_1 - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_1(x); - end gsl_sf_fermi_dirac_1; - - model gsl_sf_fermi_dirac_1_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_1_e(x); - end gsl_sf_fermi_dirac_1_e; - - - - model gsl_sf_fermi_dirac_2 - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_2(x); - end gsl_sf_fermi_dirac_2; - - model gsl_sf_fermi_dirac_2_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_2_e(x); - end gsl_sf_fermi_dirac_2_e; - - - model gsl_sf_fermi_dirac_int - parameter Integer j=2; - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_int(j,x); - end gsl_sf_fermi_dirac_int; - - model gsl_sf_fermi_dirac_int_e - parameter Integer j=2; - parameter Real x=3; - gsl.data_types.gsl_sf_result result; - Real y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_int_e(j,x); - end gsl_sf_fermi_dirac_int_e; - - - model gsl_sf_fermi_dirac_mhalf - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_mhalf(x); - end gsl_sf_fermi_dirac_mhalf; - - - model gsl_sf_fermi_dirac_mhalf_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_mhalf_e(x); - end gsl_sf_fermi_dirac_mhalf_e; - - model gsl_sf_fermi_dirac_half - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_half(x); - end gsl_sf_fermi_dirac_half; - - model gsl_sf_fermi_dirac_half_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_half_e(x); - end gsl_sf_fermi_dirac_half_e; - - model gsl_sf_fermi_dirac_3half - parameter Real x=2; - Real y; - algorithm - y:=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_3half(x); - end gsl_sf_fermi_dirac_3half; - - model gsl_sf_fermi_dirac_3half_e - parameter Real x=2; - gsl.data_types.gsl_sf_result result; - Integer y; - algorithm - (result,y):=gsl.Special_functions.chap_7_18_1.gsl_sf_fermi_dirac_3half_e(x); - end gsl_sf_fermi_dirac_3half_e; - - - - - end chap_7_18_1; - - - end special_functions; - end Examples; -end gsl; \ No newline at end of file -- cgit