1 Introduction

Automation in industries is the need of the hour. Everything is done elec-
trically and not manually, right from a really unnoticed process like moving
the conveyors to something as power intensive as running pumps. Industrial
automation is primarily necessary for high end production and also product
quality controls. Mainly, in industries, such automations are carried out by
intelligent systems called Programmable Logic Controllers with the help of
a host computer. A PLC, is in an actual sense, an electrical version of a
microcontroller unit. It’s more generic and also controls high power tools
which generally work at really high voltages, unlike the microcontroller that
merely works at considerably small voltage values. Basically, it intelligently
controls whatever is programmed onto it by the host computer. This con-
troller, being so versatile, is highly expensive, due to it’s high rising demand
and also it’s operability credits.

A PLC generally has a set of input and output ports to with the external
peripherals are connected, which are to be electrically controlled by the PLC.
Looking into the flow of working of the PLC, the processor tries to make deci-
sions in accordance to the program, generally written by the user using some
logic used to program these units. Some of these logics include Function
Block Diagram, Ladder Diagram, Structured Text, Sequential Function
Chart and Instruction List.

The objective is to create an Open Source PLC, which has the capa-
bilities of the industrial PLC, but the catch here is, it’s much cheaper and
simpler to work with. It incorporates a development board, that works on
AVR’s ATmegal6A IC, giving upto 40 pins, most of which can be used and
programmed as the Input-Output pins as it’s done on a PLC. Moreover, the
logic used here is Ladder Logic which is one of the easiest and also, robust in
terms of its efficiency. Main point here is, this device is a standalone device,
which can work without the host system being there, just being powered by
a source. HEX files to be generated according to the controller are generated
by a software called LDMicro, freely available for Windows and Linux users
alike. The programming on the board is done via a RS-232 cable by serial
communication. All the processor wants now is a code to be dumped on it
to start automating your small needs.

This prototype will be helpful for students to get the feel of working with
the PLCs, to control small automated systems. It’ll also be easy as there’s no
coding involved and it’s using a GUI that is user friendly and also efficient.
Along with the development board, which can be used as microcontroller also,
there are various hardware modules to start off with and later the students
can cone up with their own hardware setups and test their modules, with the
board. It’s really versatile as it can suit your microcontroller needs and also
work as a PLC. All you need is the HEX code for your desired usage with
hardware.

The manual covers the basics of using the associated software and also
explains the interfacing with the hardware. Certain simple experiments are
given so as to get accustomed to the software usage. Later, some modules
that can be made using the various sensors discussed in the preceding sections
are covered. Then the imagination of the student and the need can drive the
making of various other modules according to the students need.

2 Setting up the

LD Micro executable

Many softwares support PLC simulation in various logics.

The software that has been used in the subsequent sections is LDMicro
that incorporates Ladder Logic, supporting many microcontrollers, along
with the AVR’s ATmega16A. This software helps produce the HEX files ac-
cording to the microcontroller and the pin selected which can be directly

dumped onto the core.

To download the software on your Windows system, go tohttp://cq.cx/
a direct executable, there’s no need to install

ladder.pl. The download is
it.

Older

T
.
.
.
.
.
.

cq.ov/dl/Idmicro.exe

BH: ldmicro.exe

Figure 1:

Pre-built executables are available in several languages:

Idmicro.exe (English)
Idmicro-de.exe (Deutsch)
Idmicro-fr.exe (Francais)
ldmicro-es.exe (Espafiol)
ldmicro-tr.exe (Tlrkce)
ldmicro-it.exe (Italiano)
Idmicro-pt.exe (Portugués)

The source code, and various other files, are also available for dow
program may be distributed and modified under the terms of the G

ldmicro-rel2.2.zip (source, release 2.2)

Idmicro.txt (manual)

feature / bugfix history

sample: a simplified traffic light

sample: how to drive a seven-segment display
sample: ~hello, world;" it prints the string over serial

releases are also available:

Idmicro-rel2.1.zip (source, release 2.1
ldmicro-rel2.0.zip (source, release 2.0
Idmicro-rel1.9.zip (source, release 1.9
Idmicro-rel1.8.zip (source, release 1.8
ldmicro-rel1.7.zip (source, release 1.7
ldmicra-rel1.6.zip (source, release 1.6

)
)
)
)
)
)

(right-click to save any of these files)

" . This is free software, with no departn
T T A

Downloading LD Micro

http://cq.cx/ladder.pl
http://cq.cx/ladder.pl

3

3.1

Getting started with LDMicro

Understanding the instructions

A PLC is largely programmed using Ladder Logic, which is used in
this software. It allows us to select the microcontroller that we wish to
program via its HEX codes generated, ATmegal6A in this case. The naming
convention is very intuitive and is easy to get accustomed to. Some of the
naming conventions followed are:

1.

Yvar implies the component is connected to an input pin on the micro-
controller, something like a push button that is user dependent. This
generally works for the digital inputs, HIGH(+5V) or LOW(GND).

. Xvar implies the component is connected to an output pin on the mi-

crocontroller. This can be something like an LED or a Buzzer that is
used to show the outputs. It’s generally used to display digital outputs,
HIGH(+5V) or LOW(GND).

. Tvar implies, a timer. It can be a turn on, turn off or a retentive timer,

just like the ones used in the actual PLCs.

Cvar implies a counter. The arguments in this are simple logical
operands to decide the upper bound upto which the counter shall work.
There are circular counter too, which count circularly, without any

bound.

. Avar implies the values read from the Analog pins of the controller.

This can be used to take the intermediate readings say from components
like Potentiometers, IR sensors etc.

Things to remember are :

e Variable names can incorporate alphabets, numbers and underscores.

It doesn’t support the special characters.

e Do not start the name of the variable with a number.

e The variable names are case sensitive, the variable names Relayl and
relayl signify two different variables.

e The instructions such as the arithmetic ones can manipulate the vari-
ables associated with the timers, counters or input, output pins.

e The variables are 16 bit signed decimals, so the variables can also be
containing values that are negative pertaining to that range.

e As counters, timers in physical sense are internal in the microcontroller,
we can only assign the pins to the Xname, Yname and Aname objects
and not others.

Now that the basic ideas are clear, the use of certain instructions can be
discussed.

We shall understand normally open and normally closed connections. In
normally open case, the contacts are open generally, which means, giving
a high input closes the contact, hereby passing the signal over the rung.
Whereas, a normally closed connection would imply a high signal to the
connection would break the circuit hence giving low as the output.

1. Contacts are something like a prototype of a switch, which implies, if
the signal going into the contact is true, only then it’ll be reflected as
output, if false, then output is false for normally open case. These can
be used as internal relays too.

2. Coils are basically corresponding to the output devices. They can set
the output true, if the signal going into them is true for the normally
open case, else it’s the other way. They can be used with internal relays
too. There is an option of Set only (Reset-only) which are set(reset)
when the input goes from Low to High, and retain their states. Hence
they are used with Reset-Only(Set-Only) coils to change the states as
and when wanted.

3. Internal Relays are the ones that are never assigned pin numbers.
Basically, they are the ones that are used for counters or triggers, which
are not given inputs or outputs, hence no pin on the controller.

4. Turn on Delay simply means delaying turning on of any coil. This
mean the sensor, if gives a high at the input, it delays the turning on
of the next part of the rung by those many units of time

. Turn off Delay literally means turning off of any coil with some delay.
This mean the sensor, if gives a false or a low at the input, it delays the
turning off of the next part of the rung by those many units of time

. Retentive timer is used to keep track of the how much time the
module under consideration has been true, it cumulates the total time,
if the input has been on for atleast that much time, the output of the
timer is true. It will always reamin true after this, hence it should be
reset by using Reset instruction manually

. Counter is used to count upto the given value threshold.The count is
changed as the input to the counter is made high. This is used as an
up counter, down counter or a circular counter. The variables can be
manipulated and be suited for the application

. Mov is used to move any value, be it character or numeric into the
variable named under destination.

. Arithmetic operands are used to manipulate the variables values to
suit the logic, they cn be used on any kind of variables like the counters
variables.

These are the basic ones that are used. A detailed help for the more
instructions and general guidelines is provided on the Manual of the
software under the Help menu.

3.1.1 Configuration of ATmegal6A

(XCK/TO) PBO
(T1) PB1
(INT2/AIND) PBE2
(OCO/AINT) PB3
(55) PB4
(MOSI) PB5
(MISO) PB6
(SCK) PB7
RESET

vee

GND

XTAL2

XTAL1T

(RXD) PDO
(TXD) PD1
(INTO) PD2
(INT1) PD3
(OC1B) PD4
(OC1A) PD5
(ICP) PD6

PDIP
L
01 40
[39
O3 38
O o4 37
g s 36
O s 35
(m 34
Os 33
() 32
O 10 31
O 11 30
012 29
O 13 28
O 14 27
O 15 26
O 16 25
17 24
] 18 23
O 19 22
O 20 21

oo ouuuoooouUgouogougou

PAD (ADCD)
PA1 (ADC1)
FAZ (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADCS)
PAG (ADCE)
PA7 (ADCT)
AREF

GND

AVCC

PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PCO (SCL)
PD7 (OCZ)

Figure 2: ATmegal6A Pin Configuration

3.2 Creating ladders using LD Micro

LD Micro’s simple user interface is really easy to use and is self explana-
tory.

To get started working with LD Micro, just double click the LD Micro
executable present in your system. Once opened, you shall get such a GUIL

EH LDmicro - Program Editor - (not yet saved)

File Edit Seitings nstruction Simulete Compile Help

Name Type State Pin on Processor MCU Port

no MCU selected cycletime 1000 ms processor clock 4.0000 MHz

Figure 3: Startup screen of LD Micro

Before starting to make the ladder, first make the necessary changes in
the default settings, so as to generate the HEX code for your microcontroller.

Under Settings tab, select the MCU Parameters Option

HH

File Edit | Settings | Instruction Simulate Compile Help
MCU Parameters...

Microcontroller

File Edit | Settings | Instructicn Simulate Compile Help
MCL Parameters...

Microcontroller

Figure 4: Changing the controller parameters

Then after selecting, change the clock frequency to 16MHz and if using
UART change the baud rate to 9600.

HH LDmicro - Pr
Eile Edit | Settings | Instruction Simulate Compile Help

MCU Parameters...
Microcontroller Atrnel AVR ATmegal28 e4-TOFP
Atrnel AVR ATmegabd 64-TOFP
Atrmel AVE ATmegal62 40-PDIP
Atrnel AVR ATmega32 40-PDIP
Atrnel AVR ATmegalt 40-PDIP
Atrnel AVR ATmegal 28-PDIP
Microchip PIC16F628 18-PDIP or 18-501C
Microchip PIC16F88 18-PDIP or 18-501C

Microchip PIC16F819 13-PDIP or 18-501C
Microchip PIC16F877 40-PDIP

Microchip PIC16F876 28-PDIP or 28-501C
Microchip PIC16F227 40-PDIP

Microchip PIC16F886 28-PDIP or 28-501C
ANSI C Code

Interpretable Byte Code

| (no microcontraller)

Marme Type State Pin on Processor MCU Port

Figure 5: Selecting the appropriate microcontroller

10

Now that the configurations are set, the next step can be followed to
design the ladder with the appropriate logic.

It’s really easy to build up the Ladder, just a few clicks and you're good
to go.

Start off with having a look at the Instruction tab. It has a lot of
instructions that are in accordance with the Ladder logic followed for the
PLCs and work in the same way and are similar to the ones described above
under the "Understanding the Instructions’ section.

After selecting the appropriate instruction, just double click the instruc-
tion to edit the name of the variable and other parameters related to the
particular instruction.

BH LDmicro -
File

Edit Settings |nstruction Simulate Help

Compile

BH Contacts

Source
() Internal Relay AEE |

(®) Input pin [11/] Negated
() Qutput pin

Figure 6: Editing the parameters of an instruction

11

After making the appropriate ladder for the application, the digital input
and outputs should be given an appropriate pin number of the controller and
the connections should be done accordingly. This can be done by double
clicking the appropriate pin to be configured in the consolidated table just
below the ladder made.

i70 Pin |

Assign:
(no pin)
PEOQ
PEL
PBE2
PE3
PE4
PBES
PBEG
PBY
PDO
PD1 I
%2 Eg% Type State Pin on Processor MCU Port

KLIMITSWITCH1 18 PD4 digital in (not assigned)

19 PD5 . .
YLIGHT1 30 PD6 digital out (not assigned)

YMOTORT 21 PD7 digital out (not assigned)
22 PCO
23 pPCl
24 PC2
25 PC3 ¥

MName

oK

Cancel

Atrnel AVR ATmegal6 40-PDIP cycletime 10.00 ms processor clock 16.0000 MHz

Figure 7: Assigning the appropriate pin number

12

Now that the logic is set, the ladder can be simulated to verify it’s work-
ing. This is done by clicking the Simulate tab and Simulation Mode option
under it. This is then followed by a similar screen where Blue indicates LOW
and Pink indicates HIGH. To start the simulation, under Simulate tab click
Start Real-Time Simulation option. After this, to change the state, just
double click the instruction. The appropriate changes and values pertain-
ing to different variables can be seen in the consolidated instruction table
under the State column. To come out of simulation mode, click the same
Simulation Mode option.

Marme Type State Pin on Processor MCU Port
ALIMITSWITCH? digital in 0 (not assigned)
YLIGHT digital out 1 (not assigned)
YIMOTORT digital out 0 (not assigned)
Atmel AVR ATrmegalt 40-PDIP cycle time 10.00 ms processor clock 16.0000 MHz

Figure 8: Tracking the pin states from the table

After the ladder along with assigning the appropriate pin numbers, the
HEX code can be generated. This can be done by first saving the ladder
under the File tab with the Save As option. Save the file in the appropriate
destination folder with a suitable name. Remember the final destination of
the same for future. Now, to generate the HEX file, select the Compile tab
and then the option Compile As. Then save this text file in the desired
destination folder. The location shall be noted as it’d be needed to burn the

13

code onto the controller using the command line arguments later.

14

4 Programming the IC

4.1 Installing WINAVR

The IC is a standalone one without the Bootloader. One of the ways of
dumping the code, is using an In System Programmer or an ISP. So, for burn-
ing the same we use the softwares: AVRDUDHT|- AVR Downloader Uploader
- is a program for downloading and uploading the on-chip memories of Atmels
AVR microcontrollers. It can program the Flash and EEPROM, and where
supported by the serial programming protocol, it can program fuse and lock
bits. It’s available as WINAVR for Windows and can be downloaded from here.
http://softlayer-sng.dl.sourceforge.net/project/winavr/WinAVR/20100110/
WinAVR-20100110-install.exe

Instead if you have Linux system, it’s already pre-installed under the
name AVRDUDE. Just enter the below command line on your terminal

man avrdude

You would see a screen full of text, something like the one below. To
exit press q. If you don’t get a screen like that, then open Ubuntu Software
Center and on the search bar enter avrdude, then install it. Enter the same
command into the terminal again and you shall see the manual.

'AVRDUDE has once been started by Brian S. Dean as a private project of an in-
system programmer for the Atmel AVR microcontroller series, as part of the Opensource
and free software tools collection available for these controllers.

15

http://softlayer-sng.dl.sourceforge.net/project/winavr/WinAVR/20100110/WinAVR-20100110-install.exe
http://softlayer-sng.dl.sourceforge.net/project/winavr/WinAVR/20100110/WinAVR-20100110-install.exe

BSD General Commands Manual

avrdude — driver program for "“simple'' Atmel AVR MCU programmer
SYNOPSIS
avrdude -p partno [-b baudrate] [-B bitclock] [-c programmer-id] [-C config-file] [-D] [-e] [-E
exitspec[,exitspec]] [-F] [-1 delay] [-n] [-0] [-P port] [-q] [-s] [-t] [-u]
[-U memtype:op:filename:filefmt] [-v] [-x extended_param] [-V] [-y] [-Y]

DESCRIPTION
Avrdude ic a3 program for downleading code and data to Atmel AVR microcontrollers. Avrdude supports Atmel's
STK500 programmer, Atmel's AVRISP and AVRISP mkII devices, Atmel's STK600, Atmel's JTAG ICE (both mkI and mkII,
the latter also in ISP mode), programmers complying to AppNote AVR910 and AVR109 (including the Butterfly), as
well as a simple hard-wired programmer connected directly to a ppi(4) or parport(4) parallel port, or to a
standard serial port. In the simplest case, the hardware consists just of a cable connecting the respective
AVR signal lines to the parallel port.

The MCU is programmed in serial programming mode, so, for the ppi(4) based programmer, the MCU signals
f/RESET’, ‘SCK’, ‘MISO’ and ‘MOSI’ need to be connected to the parallel port. Optionally, some otherwise
unused output pins of the parallel port can be used to supply power for the MCU part, so it is also possible to
construct a passive stand-alone programming device. Some status LEDs indicating the current operating state of
the programmer can be connected, and a signal is available to control a buffer/driver IC 74LS367 (or 74HCT367).
The latter can be useful to decouple the parallel port from the MCU when in-system programming is used.

A number of equally simple bit-bang programming adapters that connect to a serial port are supported as well,
among them the popular Ponyprog serial adapter, and the DASA and DASA3 adapters that used to be supported by
uisp(1). Note that these adapters are meant to be attached to a physical serial port. Connecting to a serial
port emulated on top of USB is likely to not work at all, or to work abysmally slow.

Atmel's STK500 programmer is also supported and connects to a serial port. Beth, firmware versions 1.x and 2.x
can be handled, but require a different programmer type specification (by now). Using firmware version 2,
high-voltage programming is also supported, both parallel and serial (programmer types stk580pp and
stk506hvsp).

Wiring boards are supported, utilizing STK560 V2.x protocol, but a simple DTR/RTS toggle is used to set the
boards into programming mode. The programmer type is " ‘wiring''.

The Arduino (which is very similar to the STK580 1.x) is supported via its own programmer type specification
‘“arduino'’'.
Manual page avrdude(1) line 1 (press h for help or g to quit)

Figure 9: AVRDUDE manual on Linux

16

4.2 Setting up WINAVR on WINDOWS

Step 1: First, open up the start screen and then search : Command Prompt

Search

Everywhere ~

[<sliiliviand Prompt] E

eno) Command Prompt

‘ 5 Python 3.4 (command line - 32
@ bif)
Fun for

Dynamite Pu: n comm.exe

Figure 10: Terminal in Search screen

Step 2: Then, a screen like this shall pop up.

= Command Prompt

icrosoft Windows [Uersion 6.3.76001
Cc>» 2013 Microsoft Corporation. All rights reserved.

tsUserssHp>

Figure 11: Terminal in use

Step 3: Enter into the command prompt for windows: avrdude
You should get prompts and flags mentioned like this, which implies that
you have downloaded the software properly.

17

EX Command Prompt

icrosoft Windows [Uersion 6.3.76081]
c» 2013 Microsoft Corporation. All rights reserved.

:sUzerssHpravrdude
sage: avrdude [options]
Options:
<partnor> Required. Specify AUR device.
<haudrate> Override RS-232 baud rate.
<hitclock> Epecify JTAG/STHS5BBu2 bit clock period Cus).
<config-file> Epecify leocation of configuration file.
<programmer > Epecify programmer type.
Dizable auto erase for flash memory
i <delay> ISP Clock Delay [in microseconds]
<port> Epecify connection port.
Ouerride invalid signature check.
Perform a chip erase.
Perform RC oscillator calibration <{see AURBS3>.
<memtypeXiriwivi<filename>[:format]
Memory operation specification.
Multiple -U options are allowed. each request
iz performed in the order specified.
Do not write anything to the device.
Do not verify.
Dizable zafemode. default when running from a scrip

£ilent zafemode operation. will not ask you if
fuzesz should be changed back.

-t Enter terminal mode.

-E <exitszpec>[.<exitspec?>] List programmer exit specifications.

-x <extended_param> Pazs <extended_param> to programmer.

-y Count # erase cuyclesz in EEPROM.

¥ <number> Initialize erase cycle # in EEFPROM.

-u Uerhosze output. —v —v for more.

-q Quell progress output. —g —g for less.

-7 Dizplay this usage.

vrdude version 5.18, URL: <http:/rsavannah.nongnu.orgsprojectssavrdude>

:sUszerssHp>

Figure 12: Avrdude access via WINAVR and Terminal

IMP: If you do not get this, please download the software and
install it again.

After this, we can proceed with dumping the HEX code onto the IC.

18

4.3 Identifying the Port of the programmer

There are several programmers available to program any controller IC. They
are called as ISPs. USBASP is one of them. To identify the port at which
its connected in Linux.

Type into the Terminal: 1s /dev

nivedita@nivedita-desktop:~/Downloadss 1s /dev
loop2 ramiz stderr tty29 tty52
loop3 ramis stdin tty3 tty53
loop4d rami4 stdout tty3e tty54

bsg loop5s ramis tty tty31 tty55

btrfs-control loop6 ramz2 ttyo tty32 tty56
loop7 ram3 tty1 tty33 ttys7
loop-control ram4 ttyio tty34 ttyss
1po rams tty1l tty35 ttys59
mapper ramé ttyl2z tty36 ttyé
mcelog ram7 tty13 tty37 tty6e
mem rams ttyl4d tty38 ttysl
net ram9 ttyl5 tty39 ttyeé2
network_latency random ttyilé tty4 tty63
network_throughput rfkill ttyl7 ttyd40 tty7
null rtc ttyis tty41l ttys
oldmem rtco tty19 tty42 tty9
parporto sda tty2 tty43 ttyprintk
port sda1 tty20 tty44 ttyse
[s]3]] sda2 tty21l tty45s ttysl
psaux sdas tty22 tty46 ttysie
ptmx sda6 tty23 tty47 ttysii
pts serial tty24 tty48 ttysiz
ramo sgo tty2s tty49 ttys513
rami shm tty26 ttys ttysi4
ram10 snapshot tty27 tty50 ttysSis
ramii snd tty28 tty51 ttysis

(=T =R s e e e e I N B e e e B e e e e e e B I e I

Figure 13: Terminal in Search screen

This gives the list of connected devices on the system. After this, con-
nect the ISP to the system and then again enter the same command on the

19

terminal and then find out the new entries in the list. That shall be the
port at which the ISP is connected. To use it in the command line with the
-P flag just mention /dev/ttyUSBx where the argument trailing the /dev/
one is the port at which the device is configured. This helps in recognising
the device when programming on the terminal. For example use it in the
command line with the appropriate flag like this.

avrdude -p atmegal6 -P /dev/ttyUSBO -c ponyser -v -U flash:w:testl.hex

Note: It can also be used with the correct defined By-id path in the serial
programming ISP(RS232) by mentioning

/dev/serial/by-id/usb-FTDI_FT232R_USB_UART_XXXXX-portO

which is same as the /dev/ttyUSBx for identifying the same programmer.
So both arguments are valid in case of RS232.

20

4.4 USBASP as ISP

Step 1: We require a precompiled hex file to be burnt onto our microcon-
troller. In our case, we have generated it by doing simple ladder programming
in LDMicro and then compiling it. Before that, ensure that the proper target
controller from the drop-down menu is chosen. For input and output part,
assign a certain pin no. of the controller to that of the desired application.
Now, a certain name is given to the file(say, blink.hex) at the destination
folder.

Step 2: After being done with all the software part, one shall supply the
power from 12V SMPS to the development board. Now check whether the
controller is powered up properly with 5 Volt or not from the appropriate
Vce and GND pins of the controller.

Step 3: Now, just connect the FRC cable from USBASP to the 10 pin
shrouded header on the board.

Step 4: Now, turn on Terminal and then change the directory to the one
in which you have the saved HEX file to be dumped onto the processor.

Step 5: Now, in the terminal, enter the following command.
sudo avrdude -p atmegal6 -P usb -c usbasp -B10 -U ash:w:Blink.hex

You shall see such a process going on in the terminal like the one shown
below, which means that the process of erasing and writing the internal
memory of the ATmega IC is in the process. On correct execution you shall
get such a result. Whilst it’s burning the code, the red light on the USBASP
will be lit showing that it is communicating with the controller appropriately.

Remember, after the fuses are set (covered in the following sections in
detail), then the -B10 flag is necessary and can be deleted.

21

nivedita@nivedita-desktop:~/Downloadss sudo avrdude -p ml6 - usbasp -P USB -U flash:w:thermis
avrdude: set 5CK frequency to 93750 Hz
avrdude: AVR device initialized and ready to accept instructions

eading | FETFEEEARNSESTOEEAEAEITOSEARNRESTOEEARAEATOSRERNAESE | 106% 0,015

avrdude: Device signature = 8xX1e3483

avrdude: WOTE: FLASH memory has been specified, an erase cycle will be performed
To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: set 5CK freguency to 93750 Hz

avrdude: reading input file "thermistor.hex"
input file thermistor.hex auto detected as Intel Hex
writing flash (816 bytes):

riting | FeFssdsswERERGEsETERRTFEENEREREREENEERRTEESNNERE | 100% 9. 485

avrdude: B16 bytes of flash written

avrdude: werifying flash memory against thermistor.hex:
avrdude: load data flash data from input file thermistor.hex:
wrdude: input file thermistor.hex aute detected as Intel Hex
avrdude: input file thermistor.hex contalns Bl6 bytes
avrdude: reading on-chip flash data:

cading | FETUSNMANARIIUNNNARRRSOENNNTRRO DU AN ROSNRAARS | 100% @, 445

avrdude: wverifyin
vrdude: 816 byte

a

of flash verified

avrdude: safemode: Fuses OK

avrdude done. Thank you.

Figure 14: Using USBASP as an ISP

4.4.1 Troubleshooting

v Check if the board is powered from the SMPS, if not, power it and try
it once powered.

v Check if all the essential flags in the command line are incorporated, if
not make the appropriate changes.

22

v Check if the FRC cable of the USBASP is not stranded in the midway,
if so, replace it.

V'If all these fail, check if the appropriate MOSI, MISO, SCK, RST and
GND pins of the header are appropriately shorted with the ones of the IC
and also that the controller firmly sits on the base.

23

4.5 RS232 as a Programmer

To program the IC, we can also use DB9 connector via RS232 cable. The
DB9 connector looks like the one below.

Figure 15: DB9 connector

For programming the IC using DB9 connector via SPI protocol, we need
yo build up some external circuitry first.

The circuit connections are done as the one shown below. This involves
connecting some electrical components, which are in the end connected to
the same 10 pin shrouded headers that are used for the USBASP as a pro-
grammer. In the programmer board the connections made are like the one
shown below.

—f™ 350
5 3 — 88
< > o &
= [
\./

Figure 16: DB9 connector

Using DB-9 for the communication as per the RS-232 standard is chosen
as the protocol is the oldest, easiest and doesn’t require many hardware
resources to be incorporated on the board for the IC to be programmed. As
most of the present day systems like laptops may not have these ports, we

24

can use a USB to RS-232 cable, which can be plugged into the USB port
present on the system.

4.6 Programming using RS-232

Step 1: Connect the given RS-232 cable to the DB-9 port on the pro-
grammer board.

Step 2: You should open command line and then enter into the directory
in which you have saved the HEX file compiled using LDMicro.

Step 3: Now that all the things are ready, finally enter the following
command on Terminal.

avrdude -p atmegal6 -P /dev/ttyUSBO -c ponyser -v -U flash:w:testl.hex

ivedita@nivedita-desktop:~/Downloads$ avrdude -F -p atmegalé -P /dev/serial/by-id/usb-FTDI_FT232R_USB_UART_A6008tdX-if00-port® -v -c ponyser -U
flash:w:test.hex

pvrdude: Version 5.11.1, compiled on Oct 3@ 2011 at 10:41:10
Copyright (c) 20608-2005 Brian Dean, http://www.bdmicro.com/
Copyright (c) 2007-2009 Joerg Wunsch

System wide configuration file is "/etc/avrdude.conf"
User configuration file is "/home/nivedita/.avrduderc"
User configuration file does not exist or is not a regular file, skipping

Using Port : /dev/serial/by-id/usb-FTDI_FT232R_USB_UART_A6008tdX-if0e-porte
Using Programmer : ponyser
AVR Part : ATMEGA16
Chip Erase delay : 9000 us
PAGEL : PD7

B52 : PAB
RESET disposition : dedicated
RETRY pulse : SCK
serial program mode : yes
parallel program mode : yes
Timeout : 200
StabDelay : 100
CmdexeDelay : 25
SynclLoops 32
ByteDelay : 0
PollIndex i3
Pollvalue : @x53
Memory Detail H

Block Poll Page Polled
Memory Type Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack

0 no 9000 Oxff oxff
flash 6 0 yes 16384 128 4500 4500 oxff oxff
lock @ no 9600 9000 Ox00 Ox00
1fuse 0 no 9000 9000 0x00 0x00
hfuse 0 no 9000 9000 0x00 0x80
signature 0 no] 0 0x00 0x00

This result is obtained if all the connections are fine. If only you obtain
such a result, it means that the HEX code has been burnt onto the IC. If
you obtain any other result, please look at the troubleshooting section.

25

BINEE
calibration 0 Ox00 Oxe0

Programmer Type : SERBB
Description : design ponyprog serial, reset=!txd sck=rts mosi=dtr miso=cts

bvrdude: AVR device initialized and ready to accept instructions
Reading | ####sHEHHEE R R S HRHEHTE | 100% 0.67s

bvrdude: Device signature = 0x1e9483

e: safemode: 1lfuse reads as E1
bvrdude: safemode: hfuse reads as 99

e: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.
: erasing chip

bvrdude: reading input file "test.hex"
2 e: input file test.hex auto detected as Intel Hex
hvrdude: writing flash (320 bytes):

riting | #EdHE A | 100% 72.32s

bvrdude: 320 bytes of flash written
2 e: verifying flash memory against test.hex:
bvrdude: load data flash data from input file test.hex:
e: input file test.hex auto detected as Intel Hex
bvrdude: input file test.hex contains 320 bytes
reading on-chip flash data:

Reading | #####HEHEHEHHE AR AR | 100% 71.45s

bvrdude: verifying ...
bvrdude: 320 bytes of flash verified

bvrdude: e e: Lfuse reads as E1
hfuse reads as 99

bvrdude: safemode: Fuses OK

hvrdude done. Thank you.

ivedita@nivedita-desktop:~/Downloads$ I

Figure 17: Programming via RS-232
4.6.1 Troubleshooting

v/ Check if the board is powered from the SMPS, if not, power it and try
it once powered.

v Check if all the essential flags in the command line are incorporated, if
not make the appropriate changes.

v Check if the RS-232 cable of the is connected securely to the DB9

26

connector.

v'If all of this fails, then check if the reset pin of the microcontroller is at
+5 Volts if not then externally connect it to +5 Volts.

27

4.7 Setting up the fuse bits

Now that the programmer is installed on the system, we need to adjust the
properties of the controller IC such that it meets the necessary requirements
along with the peripherals installed on the board. Essentially, fuse bits are
the ones that decide how the controller responds, like which clock frequency
it responds to or its programming availabilities. Setting up the fuse is a
crucial task as the controller may not respond later if the fuse bits that are
set are not in accordance with the attached peripherals. Before setting the
fuses, the factory settings on the controller make sure it works on the internal
oscillator of clock speed 1IMHz. It’s mostly dependent on 2 fuses - lfuse and
hfuse. Both of these have hex 8 bit values. When working on communication
with the device, like UART, these fuse bits play a key role, if not defined, the
controller works on the internal clock that’s much slower than the external
crystal. For the controller, 16MHz external crystal was selected. This meant
the controller shall configure this external crystal and work on it.

WARNING: Fuse bits control the way the controller responds. If
any mistake is made in setting up the fuse bits, then the controller
becomes isolated from the external circuit. This means that the
controller doesn’t respond and renders useless. Hence, always triple
check before entering the fuse bits. This is the best practice,
or else you may end up wasting one IC.

Type the following command into the Terminal:

For USBASP:

sudo avrdude -p ml16 -c usbasp -U lfuse:w:0xFF:m -U hfuse:w:0xD9:m
-B10

For RS232:

avrdude -p m16 -c ponyser -P /dev/ttyUSBO -U lfuse:w:0xFF:m -U
hfuse:w:0xD9:m

28

nivedita@nivedita-desktop:~/Downloads$ sudo avrdude -p m16 -c usbasp -U flash:w:UART.hex -U 1fuse:
:m -B1@

avrdude: set SCK frequency to 93750 Hz
avrdude: AVR device initialized and ready to accept instructions

Reading | ###EHEHEEHIHEEEHE P RS | 100% 0.01s

Device signature = 0x1e9483

NOTE: FLASH memory has been specified, an erase cycle will be performed
To disable this feature, specify the -D option.

erasing chip 3
set SCK frequency to 93750 Hz

reading input file "UART. "

input file UART.hex auto detected as Intel Hex

writing flash (714 bytes):

HHH B S AR SR RS | 100% 0.41s

714 bytes of flash written

verifying flash memory against UART.hex:

load data flash data from input file UART.hex:

input file UART.hex auto detected as Intel Hex
e: input file UART.hex contains 714 bytes

reading on-chip flash data:

BB R | 100% 0.38s

verifying ...

714 bytes of flash verified
reading input file "@xFF"
writing Llfuse (1 bytes):

Writing | ##EEE e | 100% 0.01s

Figure 18: Setting the fuse bits

29

ying ...
e: 714 bytes of flash verified
reading input file "@xFF"
e: writing lfuse (1 bytes):

Writing | #HHEHEET R R R 100% 0.01s

avrdude: 1 bytes of 1fuse written

avrdude: verifying 1fuse memory against OxFF:
avrdude: load data 1fuse data from input file OxFF:
avrdude: input file OxFF contains 1 bytes

avrdude: reading on-chip 1fuse data:

Reading | #HHHHHHH TR 100% 0.00s

avrdude: verifying ...

avrdude: 1 bytes of 1lfuse verified
avrdude: reading input file "@xD9"
avrdude: writing hfuse (1 bytes):

Writing | #HHHEEHERRHHHRHHEEHEEEHH 100% ©.02s
avrdude: 1 bytes of hfuse written

avrdude: verifying hfuse memory against ©xD9:

avrdude: load data hfuse data from input file @xD9:

avrdude: input file 0xD9 contains 1 bytes

avrdude: reading on-chip hfuse data:

Reading | #HHHHHHERRHHHRHHEEHEEEHHH R 100% ©.00s

avrdude: verifying ...
avrdude: 1 bytes of hfuse verified

avrdude: safemode: Fuses OK

avrdude done. Thank you.

Figure 19: Setting the fuse bits

Try to read the fuse bits after setting it. This will help you recognize if
the IC has configured the external 16MHz crystal.

If using USBASP enter :

avrdude -p m16 -C usb -P usbasp

If using RS232 programmer enter :

avrdude -p m16 -C /dev/ttyUSBO -P ponyser

You will get a screen like this :
You can see that the fuse bits are read off. This implies that the external

30

crystal is working in sync with the controller. You can verify that the fuse
bits are the ones that you set earlier.

31

If such a reading doesn’t come up, follow these steps:

v Check that the command line is proper and you have written the correct
command line with all the necessary flags like the controller mentioned is
correct.

v'Make sure that the power supply is connected and the programmer i.e.
USBASP or RS232 is configured and the correct programmer is mentioned
in the command line

v"Make sure that the controller is firmly connected to the IC base. If not
press it so that it sits firmly.

V'If these do not work, then remove the controller IC from the base and
then remove the crystal and solder a new 16MHz crystal. Make sure that you
do not heat the crystal extensively. Due to this there’s usually a mismatch
in the clock speeds.

32

5 Using UART function

UART basically is the most basic protocol for serially transmitting and
receiving the data from the sensor. UART stands for Universal Asynchronous
Receiver Transmitter. The ladder logic allows us to program the UART
facility easily in LD Micro. The values monitored in the ladder can be used
to be displayed on the serial monitor. Say for example you have values that
change with time and are varying, that is the value is analog, which means the
values change over time and aren’t discrete. Hence, monitoring the specific
values become easy over the serial monitor.

Setting up the UART is so easy. Just connect the TX near the MAX232
IC to pin 14 of the IC and connect RX near the MAX232 IC to pin 15 of the
IC. Now in the ladder use the UART send feature. The variable associated
with UART send part will be the value that you would want to monitor.
Mostly these values being analog will be connected to analog pins i.e. pins of
Port A. So, the variables associated with the analog values have Avar kind
of a structure, when using that for UART, append the A’ in front of the
variable name. So the variable linked in the UART send part will be ’Avar’
and not ’var’.

For looking at the associated values, install a serial monitor on the system.
This is helpful to the the Raw data associated. When monitored, the values
seen are hex in nature, they start with the ’0x’ part, which implies the code
is hexadecimal. This is helpful for suggesting thresholds and creating a level
for a particular application. The hex values are assigned like 0x00 to Ox3FF
which means the values range from 0 to 1023. This means the values 0V is
mapped to 0x00 and value 5V (maximum from the controller) will be assigned
0x3FF value. This is how the mapping will be done.

33

