
Flashing Modelica Code to and Arduino using MDD

FOSSEE, IIT Bombay

April 27, 2018

1 Introduction
This document has been written with the intent of familiarising a user with the aspects
of the Modelica Device Drivers (MDD) package that allow one to flash OpenModelica
code directly to an Arduino.

This article will briefly cover the usage of the Embedded Targets subpackage within
Modelica Device Drivers package and will then detail a specific example.

2 Usage
MDD consists of a variety of ways of communicating with external devices, but one of
its most powerful utilities is the ability to create flashable C files for AVR and STM
microcontrollers. This allows users with little experience in AVR C to code instructions
to the microcontroller. While the steps for this haven’t entirely been integrated within
OpenModelica itself, they are fairly straightforward and with the usage of an example,
we will explain them below.
Before we begin, we will need the following tools. This doc assumes that the user
is using a linux based system. If the user has Ubuntu installed, they should run the
following commands to install the relevant tools for the task.

• sudo apt-get install gcc-avr

• sudo apt-get install avr-libc

• sudo apt-get install avrdude

The experiment being done is that of turning an LED on with two different colours
within a 10 second interval. The shield being used for this looks as given below:



FOSSEE, IIT Bombay

The model that will be uploaded looks as given below:

The model consists of an embedded block with pre-defined parameters for the AT-
mega328P microcontroller. It can be modified to suit any ATMel controller, provided
the user knows its characteristics. This block is unconnected to any other in the model.

Now we look at the blocks that specify the task to be done. The boolean expres-
sion blocks have fairly simple utility here. They are just modifying their state based
on the time. The Digital Write Boolean pins communicate the state of the Boolean
expression blocks to the pins specified, which are in turn connected to the shield and
allow for the LED light colour to change.

Next, we create a .mos file for the problem at hand. As we mentioned before, we
can’t directly flash the model to the arduino, so we will be doing it via the terminal.
The first step involves creating a .mos file that will load the relevant files in memory

Flashing Modelica Code to and Arduino using MDD 2



FOSSEE, IIT Bombay

and then translate the model into a C file. A generic .mos script is shown below

loadModel ( Modelica ) ;
g e tEr ro rS t r i ng ( ) ;

l o adF i l e ( " /home/ [ path to Model ica_DeviceDrivers ] / Model ica_DeviceDrivers /package .mo " ) ;
g e tEr ro rS t r i ng ( ) ;

l o adF i l e ( " /home/ [ path to the package conta in ing the example ] / package .mo " ) ;
g e tEr ro rS t r i ng ( ) ;

t rans la teMode l ( package . subpackage . example , f i l eNamePre f i x ="[ f i l e_pr e f i x_o f_cho i c e ] " ) ;
g e tEr ro rS t r i ng ( ) ;

After the file is created, execute the following steps. Since the example we are using
here is called led_ blue _red, that is the name we are going with in the steps.

• omc –simCodeTarget=ExperimentalEmbeddedC runMDD_ led_ blue_ red.mos

• avr-gcc -Os -std=c11 -ffunction-sections -fdata-sections -mmcu=atmega328p -
DF_ CPU=16000000UL -Wl,–gc-sections led_ blue_ red_ main.c -o led_ blue_
red -I /path_ to_MDD/Modelica_ DeviceDrivers/Resources/Include -I /usr/in-
clude/omc/c

• avr-objcopy -O ihex -R .eeprom led_ blue_ red led_ blue_ red.hex

• avrdude -F -V -c arduino -p ATMEGA328P -P /dev/ttyACM0 -b 115200 -U
flash:w:led_ blue_ red.hex

On doing so, the LED on the shield will light up, first with a bluish colour and then
with a red colour as shown in the images below.

Flashing Modelica Code to and Arduino using MDD 3



FOSSEE, IIT Bombay

Flashing Modelica Code to and Arduino using MDD 4


	Introduction
	Usage

