Developer's Manual

Interfacing Arduino With OpenModelica

Manas Das

TABLE OF CONTENTS

Antroduction ... 1
. Building Scilab from source in Linuxc.ccoocoiiiiiiiiiiiii 2
. Downloading and Installing Arduino IDE ... i e 3
. Downloading and Installing OpenModelicacoooviiiiiiiiii, 3
. Connecting and Configuring Arduino UNO Boardccccoooiiiiininnnn. 4

S O = W N

. Interfacing Arduino with OpenModelicacccciii 6
6.1 Interfacing in WindowWsccooiiiiiiiiiiiiiiii e 7
6.2 Interfacing in LATUX c....iiiieiieiiiiiiiiit i e e e e e e e e 10
7. HOW 18 1t CT@ALEMA v 13

7.1 Help from SCIlab ..o 13
7.2 FUNCEIONIS et cee et et e ettt et ettt e ettt e e e e et ee et e e e e e eeenes 13
7.3 Creating OpenModelica Packageccccoccciiiiiiiiiiii 18
7.4 Compiling Modified Source and Creating a Shared Library 18
7.5 Testing and DebUuggingccooiiiiiiiiiiiiiiiiiii e 19
8. Interfacing Arduino with OpenModelica Using Modelica_DeviceDrivers
PACKAZE ettt ettt ettt ettt s 10 et 00 1000t s1s 00 10000t 1 10001t s 100 s st s srssns s srne s D)
8.1 Downloading Modelica_ DeviceDIiverscccoeveieeiiiiiiiiiiieeeieeieiiiee e 21
8.2 Downloading and Installing AVR packages ..., 21
8.2, 1T WINAOWS ettt ettt 21
8.2.2 LUIIUX 1ttt 23
8.3 Instructions for STMUIATION .o 23
8.3.1 WINAOWS ettt e e e e e e 23
8.4 Simulation Settings for Modelica_DeviceDrivers modelscccveenevvvrinnnn 27
8.4.1 Interfacing LEDouuiiiiiiiiiii e 29
8.4.2 Interfacing Push Button ... e 30
8.4.3 Interfacing Potentiometer...... oottt ettt ene e eeee ST
8.4.5 Interfacing ThermiStor... ..o e ot ereene e e e 42
8.4.6 Interfacing DC MOTOT ..o vvvieeieeie et e e e e eees 43

9. Experiments and Evaluation ... s s s ene. D0

10, TSSUES et et en e et et ettt et s e e et ettt s 10 11 42220 et s s 10 102 100 o0 202000 2 10 10020 wnnsns e DO

11, CONCIUSION s ettt s st ettt ettt e st et et 202020 20020 202202410 11 1 2001101 s D)

12, BIDIOGTAPIY et er ettt ettt et e s s et ettt et s s e e et e s s 10 400 20 e et e s s e e ereeree DL

Page |1

1. Introduction
OpenModelica is a free and open source environment based on the Mod-

elica modeling language for simulating, optimizing and analyzing complex
dynamic systems. OpenModelica is used in academic and industrial envi-
ronments. Industrial applications include the use of OpenModelica along
with proprietary software in the fields of power plant optimization, auto-
motive and water treatment. Models are either built through line by line
code or graphical code in OpenModelica. OpenModelica can interact with
C, Python languages and can call C, Python functions from within its
models. OpenModelica is a powerful tool that can be used to design and
simulate complete control systems. Our project tries to interface it with
Arduino by calling C functions from OpenModelica. Modelica functions
are written in OpenModelica and they call C functions which give instruc-
tions to Arduino. These codes can be run to perform operations on dc mo-
tor, servo motor, led, 1dr (light dependent resistor), thermistor and poten-
tiometer connected externally to the board. Moreover we have also used
Modelica_ DeviceDrivers library which enables the use of graphical blocks
in OpenModelica for graphical coding of the above operations.

In this project, we have developed the libraries ‘OpenModelica-Arduino’
and ‘OpenModelica-Arduino-Windows” which enable the interfacing of Ar-
duino with OpenModelica in Linux and Windows respectively. Thus using
this library, we merge the functionalities of Arduino and OpenModelica for
faster data processing and data visualisation of real-time simulations.

Page |2

2. Abstract

Growing use of electronic products and automation increases need for
softwares that can be used to program microcontrollers easily. The most
used basic open source electronic development boards or prototyping plat-
forms are Arduino platforms which are based on AVR microcontrollers
(except the ones which are based on ARM microprocessor). Although, Ar-
duino can be easily coded using Arduino software ide, python, Scilab and
Julia but still softwares that enable graphical coding of Arduino opera-
tions are very few. OpenModelica is an open source software based on
Modelica modeling language for complex physical systems, has support for
line by line as well as graphical coding. Data visualization becomes easier
and faster through the software. Also, it can interact with languages like
C and python and thus, it can be easily interfaced with Arduino. Moreo-
ver, Modelica_ DeviceDrivers library, which contains drag and drop blocks
for arduino and can be used inside OpenModelica, enables GUI support for
programing of arduino. This project interfaces OpenModelica with Ar-
duino through C code as well as explores Modelica, DeviceDrivers library.

Page |3

3. Downloading and Installing Arduino IDE

Arduino development environment is compatible with popular desktop
operating systems. In this section, we will learn to set up this tool for the
computers running Microsoft Windows or Linux. Later, we shall explore
the important menu options in the Arduino IDE.

For both Windows and Linux go to
https://www.arduino.cc/en/Main/Software and follow the instructions to

complete the setup.

4. Downloading and Installing OpenModelica

OpenModelica can be downloaded online from https://openmodelica.org.
Windows:
The setup file can be downloaded from

https://openmodelica.org /download /download-windows.Download the lat-

est release or the alpha version (preferred) of the software. After down-
loading, run the installation wizard to complete the installation.
OpenModelica Connection Editor or OMEdit can be launched by using
the desktop shortcut or OMEdit icon.

Linux:
The Debian/Ubuntu package can be downloaded from
https://openmodelica.org/download /download-linux. Follow the installa-

tion instructions given on the site for more details. OMEdit can be
launched by typing OMEdit in the terminal.

Page |4

5. Connecting and Configuring Arduino UNQO Board

Following two steps have to be followed whatever operating system is

used:
1. To begin, we need an Arduino Uno board with a USB cable.
2. Connect it to a computer and power it up.

Windows:

Attach the Arduino UNO Board and go to Device Manager->Ports
(COM & LPT) ->Arduino UNO (COM2) (Click on it) ->Port Settings ->
Advanced->COM “Port Number”. Change this to COM2 and click OK.
(Any other port can also be set but remember to change to that port
wherever COM2 is mentioned in this document.)

& Device Manager
File Action View Help
s @D Em B EX®
v A DESKTOP-GS7KSP)
i Audio inputs and outputs

[Disploy adapters
& DVD/CD-ROM drives

M Firmware

£ Intel(R) Dynamic Platform and Thermal Framework
& Jungo
3 Keyboards
® Mice and other pointing devices
@ Monitors
& Network adapters
v @ Ports (COM&LPT)
@ USB Serial Device (COM2)

Fig 1.Device Manager in Windows
Linux:
Type the command Is -1 /dev/ttyACM* in the terminal and if it re-
turns ACMO then the port to which Arduino is connected to is 0.

souradip@souradipHp: ~

45 /dev/ttyACMO

Fig 2.Checking port in Linux

@ arduino-firmware | Arduino 1.6.8 Hourly Build 2016/01/12 04:53
File Edit Sketch Tools Help

- X
| AutoFormat CtrleT
Archive Sketch
arduino-firmws Fix Encoding & Reload
~
F

Serial Monitor Ctrl+Shift«M
Serial Plotter Ctrl+Shift+L
Board: “Arduino/Genuino Uno” >

Port: "COM2 (Arduino/Genuino Uno)"

¥ COM2 (Arduino/Genuino Uno)
Programmer: "AVRISP mklI* !

Burn Bootloader

Fig3. Arduino IDE port settings
Click on File->Open and browse to the ‘path_to_OpenModelica-
Arduino’ -> tools -> arduino-firmware and select Arduino-firmware.ino
and open it. Go to tools and select the board as Arduino UNO and Port
as the port no. to which the Arduino is attached. Then click on upload

and upload the code.

Page |6

arduino-firmware | Arduino 1.8.2

File Edit Sketch Tools Help

arduino-firmware

Fig 4.Arduino-Firmware

6. Interfacing Arduino with OpenModelica

OpenModelica supports the calling of external C functions and that is

extensively used for this interfacing process. OpenModelica-Arduino li-

brary can be downloaded from GitHub from the following links:

https://github.com/manasdas17/OpenModelicaEmbedded

o& OMEdit - OpenModelica Connection Editor
File Edit View Simulation FMI Export Debug Git Tools Help

bA el

Libraries Browser 8 x

AT OMEdit - OpenModelica Connection Editor

Documentation Browser & X

AN AN AES
info rev hede

> 0
ModelicaRef -
> @ ModelicaReference Recent Files Latest News
> [[) Modelicaservices o
> [complex e £ EOOLT 2017
> 7 Modelica € May 12, 2017: OpenModelica 1.12.0-dev.alphal released

8 Prograr
D F
&) January

&) December 20,

£) November 22, 2016: OpenModelica 1.9.7 released
Clear Recent Fies Reload For more detais visit our website www.openmodelica.org
O o
Messages Browser & x

Fig 5.0MEdit

6.1 Interfacing in Windows

& wecome ot Modeling

Srottng & Debugging

1. Open OpenModelica Connection Editor or OMEdit (You can either

create a shortcut or find it in the search bar). Go to

File ->Open Model and browse to Arduino.mo in the OpenModeli-

ca-Arduino-Windows library and load it.

Open the Arduino IDE and upload arduino-firmware.ino program

into the arduino board.

2. Now load testfirmware.mo file for testing the arduino firmware.

(Refer Step 1).

3. Change the port in the open_ serial function of the code in the mod-

els according to port id to which the arduino is connected.
For example:
If arduino is connected to port ‘COM2’

Change
ok := sComm.open_ serial(1, 0, 115200);
to

ok := sComm.open__serial(1, 2, 115200);
4. Click on the green arrow to simulate the example.

Page |8

5. The simulation settings can be done by clicking on the ‘S’ symbol
(Fig 5). If serial communication is successful, status shown will be
Zero.

If it doesn’t give any error then the firmware is loaded correctly.

Similarly, any example model provided in Arduino.mo can be run.

The source code can be found in the ‘src’ directory, the header file can be
found in the Include directory and the shared object file can be found in
the Library directory. (Fig 6)
Commands to make a shared object file:
Open command prompt and go to path of OpenModelica-Arduino-
Windows->Resources->src.
After that type the following commands:
gce —c SerialComm.c (Makes a SerialComm.o file in the same
folder as SerialComm.c)
gcc —shared —o ../../SerialComm.dll SerialComm.o (Makes a dy-
namic link library from the Serial Comm.o file in OpenModeli-
ca(Windows))

= | Resources

“ Home Share View o

— v N « scilab-arduino > OpenModelica-Arduino-Windows > Resources v D Search Resources P
Name - Date modified Type Size
»# Quick access
Include 29-Jun-17 File folder
¢ OneDrive Library 29-Jun-17 File folder
[This PC src 29-Jun-17 File folder
I Desktop
=] Documents
4 Downloads
Jx Music
&/ Pictures

B videos

‘s Windows (C:)

wa RECOVERY (D)
- HP (F)

= HP(G)

- Local Disk (K:)

¥ Network

3 items |

Fig 6. Directory Structure of OpenModelica

[&Y Command Prompt - 0 X

Fig 7. Compiling Serial Comm.c on Windows

Page |10

Fig 8. Making a shared object file on Windows

A

eB8B O \PHOTH < E-QO9EH I¥9995 7 ¢1-9

Libraries Browser 8x B Idr_led
] T T T T T
Writable |M¢
*AHO 1™ & OMEdit - Simulation Setup - Idr_led 7T X B
Libraries model 1ldr_1
@ OpenModelica - o5 4
[B] opentodes - Simulation Setup - Idr_led
9 @ ModelicaReference i
i
ModelicaServices i General Output SimulationFlags Archived Simulations
Complex Simulation Interval =
%2 Modelica 1 Start Time: 0
») Idr_led 1 Stop Time: 1

@® Number of Intervals: (500
O Imnterval:
13 Integration
Method: |dassl M &
Tolerance: |1e-6
Jacobian: v
DASSL/IDA Options
[Root Finding
[Restart After Event
Initial Step Size:
Maximum Step Size: v

€ [save experiment annotation inside model
©NC [save _Openiodeica_smulationFiags annotation inside model
Smulate

Fig 9. Simulation Setup

6.2 Interfacing in Linux
1. Open OpenModelica Connection Editor or OMEdit by executing
OMEdit in terminal. Go to File -> Open Library and browse to Ar-
duino.mo from the OpenModelica-Arduino library and load it.

Open the Arduino IDE and upload arduino-firmware.ino.

Page |11

2. Now load testfirmware.mo file for testing the arduino firmware.
(Refer Step 1)

3. Change the port as necessary in the example.

For example:

If the port is ‘/dev/ttyACM2" make

ok := sComm.open_ serial(1, 0, 115200);
to

ok := sComm.open_ serial(1, 2, 115200);

4. Click on the green arrow to simulate the example.

5. The simulation settings can be by clicking on the ‘S’ symbol (Fig 5).
If serial communication is successful, status shown will be zero.If it
doesn’t give any error then the firmware is loaded correctly.
Similarly, any example model from Arduino.mo can be run.

The source code can be found in the src directory, the header files can
be found in the Include directory and the shared object files can be
found in the Library directory.(Fig 6)

Commands to make a shared object file:
Open command line and go the path of OpenModelica-Arduino ->
Resources ->Library.

After that type the following commands:

gce —c —Wall —{PIC ../src/serialComm.c (Makes a serialComm.o
file in the same folder as SerialComm.c)

gcc —shared —fPIC SerialComm.o —o libSerialComm.so (Make a
shared object from the SerialComm.o file)

Page |12

souradip@souradipHP: ~/OpenModelica/Resources/Library ¥ 5 0 (026,8%) w) 10:02PM (2

souradip@souradipHP:~$ cd OpenModelica
souradip@souradipHP:~/Opentodelica$ cd Resources/Library/
souradip@souradipHP:~/OpenModelica/Resources/Library$ gcc -c -Wall -fPIC ../src/serialComm.c
souradip@souradipHP:~/OpenModelica/Resources/Library$ gcc -shared -fPIC serialComm.o -0 libSerialComm.so
souradip@souradipHP:~/OpenModelica/Resources/Library$ gcc -c -Wall -fPIC ../src/cnd_analog.c
../src/cnd_analog.c: In function ‘cmd_analog_in:
..[src/cnd_analog.c:27:9: warning: unused variable ‘a_rd’ [-Wunused-variable]
int a_rd=read_serial(h,values,2);
A
..[src/cnd_analog.c:21:9: warning: unused variable ‘wr’ [-Wunused-variable]
int wr=write_serial(h,pin,2);
A
../src/cnd_analog.c:16:6: warning: variable ‘stat’ set but not used [-Wunused-but-set-variable]
int stat;
A

souradip@souradipHP:~/OpenModelica/Resources/Library$ gcc -shared -fPIC cnd_analog.o serialComm.o -0 libAnalog.so
souradip@souradipHP:~/Opentodelica/Resources/Library$ gcc -shared -fPIC serialComm.o -0 libAnalog.so
souradip@souradipHP:~/Opentodelica/Resources/Library$

Fig 10.Compiling serial Comm.c on Linux
NOTE:
The port to which Arduino was attached was COM2 therefore 2 is
passed in the open_ serial function of the user codes. (In Linux it was at-
tached to port 0 therefore by default 0 is passed in the open_ serial func-

tion.)

Page |13

7. How is it created?
The OpenModelica-Arduino package is based on serial communication

with Arduino using UART protocol. Basic idea behind serial communica-
tion with Arduino is to configure the port where the Arduino board is
connected to PC using USB cable and identifying the port. The infor-
mation is therefore used in establishing serial communication route with
Arduino and OpenModelica software in the system. All the configurations
of the serial port are done using external C functions which can be called
by OpenModelica.
7.1 Help from Scilab

The source code for OpenModelica-Arduino interfacing is mostly based
on the idea of establishing serial communication with Arduino as done in
Scilab-Arduino Toolbox . The same function call structure has been im-
plemented here. The five basic functionalities required in this case are:
open_ serial, close serial, read_serial, write serial & status serial. These
functions allow serial communication with the Arduino platform and used
in other interfacing functions for establishing communication.

Before using these functions, the Arduino platform must be loaded with
a firmware program present in ‘Arduino-firware.ino’ file. This program
must be uploaded in Arduino board before the start of interfacing. This
program contains specific set of identifiers to recognize instructions sent
through the serial port.
7.2. Functions:-

Basic Functions:

e open_ serial- The function ‘open_ serial’ takes in parameters an in-
teger handle and port number on which arduino is attached and
baud rate at which it has to communicate with arduino. The func-
tion opens the serial port (a file descriptor) and returns 0 if serial
port is successfully opened and in case of a bad file descriptor /failure
to open serial port returns the integer 2. It also calls function
‘set_interface attribs’ to set the baud rate and other attributes of
the serial port interface and the function ‘set_ blocking’ to disable
blocking(no blocking/0).

Page |14

e close serial- The function ‘close serial’ takes in handle to the serial
port as argument. The function closes the serial port (file descriptor)
and returns 0. If the port closes successfully then a success message
is printed else not.

e read_ serial- The function ‘read_serial’ takes in parameters handle,
a character array that will return the characters read from the file
identified by handle and the number of characters/bytes to be read
from the serial port. The function reads ‘n” number of characters
from the serial port where n is the size specified by the function call-
er. If read is successfully performed than the characters are copied to
the input argument buffer and a 0 is returned else a integer 2 is re-
turned by the function to denote error.

e write_serial- The function ‘write serial’ takes in parameters han-
dle ,character array to be written to serial port and the size of the
character array. The function sends/writes the given char array to
the serial port and on successful write, a message is printed else
nothing is printed. The function returns a 0.

e status_serial- The function ‘status_serial’ takes the parameter
handle and contains the information of the bytes of data read and

written through the serial port. It returns integer 0 on success.

Interfacing Functions:
Digital:

e cmd_ digital in: The function ‘cmd_ digital out’ takes in the han-
dle, the pin number and the value to be written as parameters. The
code sends 'Da’' (representing digital attach for configuring digital
pins) along with ASCII value of pin number and '1'(char 1) to setup
the pinMode of the corresponding pin to output. Then it converts
the value to 1 if it is greater than 0.5 else converts it to 0. The code

sends a character array containing 'Dw'(representing digital write),

Page |15

ASCII value of the pin and the value to be written to the serial port.
The firmware on receiving the values performs digitalWrite(). The
function returns a 0 that is returned if the write serial function is
successful.

e cmd_ digital out: The function ‘cmd _digital in’ takes in the han-
dle to the serial port and pin number as input. It converts the pin
number to its ASCII value and sends it to serial channel and along
with char 'Da' (representing digital attach for configuring digital
pins) and a '0". This is to set the mode of the corresponding pin to
input. Then it sends character array containing 'Dr'(representing
digital read) and ASCII value of pin for digitalRead() to occur. Af-
ter this, it reads the value received after checking the status of the

serial port.

Analog:

e cmd_analog_in: The function ‘emd_analog_in’ takes in the handle
to the serial port and pin number as input. It converts the pin num-
ber to its ASCII value and sends it to serial channel and along with
char 'A" denoting analog read. Then it reads the value received after
checking the status of the serial port. The arduino_ firmware upon
receiving 'A" and the pin number performs the analogRead() and
then serial write writes the value read. The value received serially is
converted to decimal form and returned as the result.

e cmd_analog out: The function ‘cmd_analog out’ takes in the
handle, the pin number and the value to be written as parameters.
It converts the value to 255 if it is greater than it and converts it to
0 if the value is negative. The code sends a character array contain-
ing 'W' denoting analog write, ASCII value of the pin and the value

to be written after converting it to char form. The firmware on re-

Page |16

ceiving the values performs analogWrite(). The function returns a 0
that is returned if write serial function is successful.

e cmd_analog in_volt- Reads the analog value just like the
cmd_analog in function just returns the analog value converted to
voltage.

e cmd_analog out_ volt - Writes the analog value just like the
cmd__analog out function except that the input parameter specifies
the voltage which is converted to an analog value between 0 to 255

and then written.

DC Motor:

e cmd_dcmotor_setup- Used to initialise the motor driver and mo-
tor. It takes in the handle, driver type, motor number and pins on
which the motor is attached as parameters. It sends a character ar-
ray containing 'C', motor number in ASCII form, ASCII values of
pins and a character '1' or '0" indicating the driver type to the serial
port. The firmware code performs the initialisation and return "OK"
which is read through read serial and if the read is successful the C
code prints a success message on screen else a failure message. The
function doesn't return anything.

e cmd dcmotor run- Used to rotate the motor in the desired direc-
tion and speed. The handle, motor number and speed along with
sign is passed in to the function. It decides a direction clockwise or
anticlockwise depending on the sign of the value input and if the ab-
solute value if the input is greater than 255 than it sets it to 255
else to the absolute of the ceil of the input. The function sends a
character array containing 'M', motor number in ASCII form, direc-
tion and value in ASCII form over the serial port and the function
returns nothing. The firmware code writes the value to one of the

pins of the specified motor depending on the direction.

Page | 17

e cmd_dcmotor_release- This function stops the motor and releases
it. It takes in the handle and motor number as arguments and it
sends a character array comprising 'M', ASCII value of motor num-
ber and 'r' over the serial port. The function does not return any-

thing. The firmware code writes 0 to both the pins of the motor.

Servo Motor:

e cmd_servo_ attach- This function initialises the specified servo mo-
tor. It takes in handle to the port and servo number as input argu-
ments. It sends a character array "Sal" for servo number 1 or "Sa2"
for servo number 2 else prints error. The firmware code initialises
the servo to 0

e cmd_servo move- This function is to move the servo to the de-
sired angle. It takes in handle, servo number and value to be written
to servo motor as the input parameters. If the value is greater than
180, then it is made as 180 and if it is lesser than 0, then it is made
as 0. The function writes a character array consisting of 'Sw', ASCII
value of servo number and ASCII value of input angle to the serial
port. The firmware writes the angle to the servo motor. The func-
tion does not return anything.

e cmd_servo_ detach- This function is to detach the specified servo
motor. It takes in handle to the port and servo number as input ar-
guments. It sends a character array "Sd1" for servo number 1 or
"Sd2" for servo number 2 else prints error. The firmware code de-

taches the servo. The function does not return anything.

Auxilliary Functions:

e math_floor- This function takes a real number as argument and re-

turns the greatest integer lesser than or equal to the argument pro-
vided.

Page |18

o ieeesingle2num-This is ieee745 floating point converter which takes
an integer in hexadecimal format and returns a number in decimal
format.

e delay-This function provides delay in milliseconds for a certain time

as mentioned in its argument.

7.3. Creating OpenModelica Package:

All the functions are called from within OpenModelica from a functions
package created within the Arduino Package.

Creating a New Package:

To create a new package, click on New Modelica Class from the File
menu bar and select the specialization ‘Package’ from the drop down
menu. Add a name to the package and click on Ok to create a new pack-
age. Additionally, the package can be made to extend any other packages
or can be inserted into any other package by selecting the optional param-
eters.

Here, Arduino package contains Serial Communication package under
which all the functions and examples are present.

7.4. Compiling Modified Source and Creating a Shared Library

The src directory present in the Resources directory of OpenModelica li-
brary contains the source code written in C for the various OpenModelica
functions.

Compilation of the source:-
Windows:
Commands to make a shared object file:

Open command line and go the path of OpenModelica->Resources->src.
After that type the following commands:

gcc —¢ SerialComm.c (Makes a SerialComm.o file in the same
folder as SerialComm.c)

gce —shared —o ../../libSerial Comm.dll SerialComm.o (Makes a dy-
namic link library from the SerialComm.o file in OpenModelica(Windows))

In general, for other sources, compilation can be done as follows:

gce —c path to source file

gce —shared serialComm.o filel.o file2.o0 ... -o filename.dll

Page |19

Linux:

Navigate to the Library directory within Resources in terminal.Use the
following commands to compile and create a shared library.

gce —c -Wall —fPIC ../src/serialComm.c

gce —shared —fPIC serial Comm.o —o libSerialComm.so
Thus a shared library libSerialComm is created for the source file serial-
Comm.c.

In general, for other sources, compilation can be done as follows:

gce —c —Wall PIC path to source file

gce —shared —fPIC serialComm.o filel.o file2.0 ... -o libfilename.so

souradip@souradipHP: ~/OpenModelica/Resources/Library v (0:36,75%)) 9:53PM (2

souradip@souradipHP:~$ cd OpenModelica
souradip@souradi, OpenModelica$ cd Resources/Library/
souradip@souradi, OpenModelica/Resources/Library$ gcc -c -Wall -fPIC ../src/serialComm.c
souradip@souradipHp:~/OpenModelica/Resources/Library$ gcc -shared -fPIC serialConm.o -o libserialComm.so
souradip@souradipHP:~/OpenModelica/Resources/Library$ gcc -c -Wall -fPIC ../src/cmd_analog.c
../src/cnd_analog unction ‘cmd_analog_in’:
../src/cnd_analo warning: unused variable ‘a_rd’ [-Wunused-variable]

int a_rd (h,values,2);

../src/cnd_analog warning: unused variable ‘wr’ [-Wunused-variable]
int wr=write h,pin,2);
../src/cmd_analog.c:16:6: warning: variable ‘stat’ set but not used [-Wunused-but-set-variable]
int stat;

souradip@souradipHp:~/OpenModelica/Resources/Library$ gcc -shared -fPIC cmd_analog.o serialComm.o -o libAnalog.so
souradip@souradipHP:~/OpenModelica/Resources/Library$

Fig 11. Making shared library file on Linux
7.5. Testing and Debugging
The procedures elaborated in section Interfacing Arduino with
OpenModelica(section 6) must be followed for testing the modified source
code. For debugging C source code,well known debuggers like ‘gdb’ can be

used.

Page |20

8. Interfacing Arduino with OpenModelica Using Mod-

elica DeviceDrivers Package

Modelica_ DeviceDrivers is free library for interfacing hardware drivers

to Modelica models which has support for joysticks, keyboards, UDP,
TCP/IP, LCM, shared memory, AD/DA converters, serial port and other

devices.

8.1 Downloading Modelica_ DeviceDrivers Library

1. Download Modelica Device Drivers from
https://github.com/modelica/Modelica DeviceDrivers . Go to the

Current Release section, then clone the repository using git or down-

load the zip file from there and extract the files.

2. Open OMEdit and go to File->Load Library->Browse the path
where you have extracted Modelica_ DeviceDrivers and load it.

A

bl el

Libraries Browser

oA OMEdit - Choose File(s)

<« Modelic... > Modelica_DeviceDrivers >

& X
[Fiter Classes < 4 .
2 " OMEdi *
= Organize v New folder
@ OpenModelica

x Documentation Browser & X

B AN A
info rev. bk

3 Nar Date modified T
© Modelicaeference Recent Files 8 This PC e pe
™ Modeicaservices I Desktop ClockedBlocks File folde
No recent fles found. . Communication File folder N
B complex %) Documents
— 3 bownlood EmbeddedTargets A Filefolder
el
&) Modelica ounloads Hardwarel0 1 Filefolder
b Music Incubate File folder
& Pictures InputDevices File folder
B Videos OperatingSystem File folder
‘ia Windows (C) Packaging A Filefolder
= RECOVERY (D) Resources A Filefolder
~ HP(R) Utilities File folder
eE oA packagemo Jun-17459PM OpenModelica C¢
at® oA UsersGuide.mo 23-Jun-17459PM OpenModelica Cc .
o Network v < >
Clear Recent Fies ebsite yww.openmodeica.org
File name: | “UsersGuide.mo” “package.mo” v | [Modelica Files (.mo) vl [|
Create New Modelica Class Cancel Open ModelLibrary Fie(s)
Messages Browser 8 x

[T T

Fig 12. Loading Modelica Device Drivers

& OMEdit - OpenModelica Connection Editor - 8 X
file Edit View Simulation FMI Bport Debug Git Tools Help

JeBR

LERiet R] Bix Doamentationfrowser & X
Fiter Classes 4 o4 . " . " - 2P,
. | A" OMEdit - OpenModelica Connection Editor il . b
9 [P] opentodeica

X [} Mndelf(asze.fence Recent Files Latest News
@ [: ModelicaServices No recent files found.

@ [Complex

@ 7 Mgdal

Modelica_DeviceDrivers
9 () Modelica_Synchronous

Ng) Modelica_DeviceDrivers. UsersGuig

v

Clear Recent Fies Reload site www.openmodelica.org
P

Messages Browser & x

[1] 03:32:25 Scripting Notification
Modelica S 0.92.1due to uses annotation.

@ wecome o Modeing S riottng F Debugging

Fig 13. Loaded Modelica_ DeviceDrivers package

8.2. Downloading and Installing AVR packages
We need to install avr-gee, avr-libc and avrdude packages for working

with Modelica DeviceDrivers.

8.2.1 Windows
1. Go to http://andybrown.me.uk/2015/03/08/avr-gcc-492/ and in-
stall avr-gce-4.9.2 and avr-libe-1.8.1. (Fig 5)
2. Follow the instructions till the “How to install it and use it” sec-

tion (no need to go for integration with eclipse and Arduino IDE).

For easier navigation, the paths to these builds can be added to Path
environment variable of the system in the following way:-

Go to System Settings ->Advanced System Settings -> Environment
variables ->System Variables->Path->Edit and add C:\avr-
gec\bin,C:\ WinAVR-20100110\bin etc. and click OK.

Page |22

AVR-GCC 4:9.2 AND AVR-LIBC 1.8.1 COMPILED FOR WINDOWS

POSTED ON MAR 8, 2015 IN ARDUINO

It’s been about 3 years now since I last compiled up avr-g I lows and it proved surprisingly
popular with you so I'm now bringing you the latest, as of March 2015, versions of avr-gcc and avr-libc. I've also
included avrdude 6.1 for completeness even though I didn’t build that one from source.

The binaries are 32-bit and are all built from source using mingw/msys. Here’s the version list:

ThES Tool Version Configuration
-prefix=/c/avr-gcc -target=avr -enable-languages=c,c++ -disable-nls -disable-libssp -with-
ARDUINO AVRCODE AVRCOMPILER avr-gec 4.9.2 dwarf2 -disable-shared -enable-static -with-gmp=/usr/local -with-mpfr=/usr/local -with-
mpc=/usr/local
avr-libc 1.8.1 —prefix=/c/avr-gcc -build= -host=avr -disable-shared -enable-static
RELATED POSTS
Arduino Uno R3 graphics accelerator shield DependenC]'es
uses no pins There is one dependency, 1libiconv-2.d11 .It’sincluded in the avr-gcc/bin directory so you shouldn’t need to
Reverse engineering the Sony Ericsson Vivaz know about it but if you plan to relocate any of the gec binaries then be aware of this dependent dll.
high resolution 640 x 360 cellphone LCD
Reverse engineering thi F700 480 x 240 DOWnload the pad(age
widescreen cellphone LCD Go to my downloads page and download it from the Arduino section.

Fig 14. Downloading AVR packages for Windows

3) To install avrdude go to https://sourceforge.net /projects/winavr/
and install WinAVR- 201001101.
4) To check if the installations are done correctly open the command

prompt(if it is already open, close it and open it again). Then go to C:\
and type avr-gcc —version if you get something like command recognized
then redo the installation. If it is correct it will show you the version
(Fig 15).

Fig 15. Checking for version of avr gcc

Page |23

NOTE:

Remember to download the correct versions of avr-gecc and avr-libe (In
this case avr-gee-4.9.2 and avr-libe-1.8.1) otherwise it will give errors like
“unrecognized flag std=c11”.

8.2.2 Linux
Type the following commands in the terminal for the installation.
sudo apt-get install gcc-avr
sudo apt-get install avr-libc
sudo apt-get install avrdude

For manual installation go to the site :
http://maxembedded.com/2015/06/setting-up-avr-gee-toolchain-on-

linux-and-mac-0s-x/

and follow the instructions given under Linux heading for installation of
the above mentioned packages.

8.3 Instructions for simulation
Simulation of models created using Modelica_ DeviceDrivers package
are to be done in Command Prompt(Windows)/Terminal(Linux).The ex-
ample given in this section shows how to light up the blue LED connected
to Arduino digital pin 9.
Remember to change the path in the .mos files i.e
change
loadFile("D:/Modelica_ DeviceDrivers/package.mo");
to
loadFile(“Path to ModelicaDeviceDrivers/package.mo”);
and
loadFile("D:/Arduino.mo");
to
loadFile(“ Path_to Arduino.mo/Arduino.mo”);

8.3.1 Windows:
1) Go to OMEdit and load Arduino.mo. Expand it and go to
MDD _Examples->MDD led->MDD led blue.

Page |24

2) Open Command Prompt and browse to the path where you have
stored the mos files. (Fig 6)

Fig 16. Browsing to path which contains the mos files
To run a simulation execute the following commands
« %OPENMODELICAHOME%\bin\omc --
simCodeTarget=ExperimentalEmbeddedC run_led_ blue.mos

Wait for it to return true, true, true, true.
Here “run_led blue.mos” is the name of the mos file.(Fig 7)

Fig 17. Compiling the mos file

o Then execute the following command for compilation:
avr-gce -Os -std=cl1 -ffunction-sections -fdata-sections -
mmcu=atmega328p -DF__CPU=16000000UL -W],--gc-sections
MDD led blue main.c -o MDD _led_blue -I
path_to Modelica DeviceDrivers/Modelica_ deviceDrivers/Resourc
es/Include -1 %OPENMODELICAHOME%/include/omc/c

Page |25

Here “MDD led blue” is the name of the simulation.
o Next, the following command is to be executed which generates
a .hex file:
avr-objcopy -O ihex -R .eeprom MDD _ led_ blue
MDD _ led_ blue.hex
« For loading the program into the Arduino board execute the follow-
ing command:
C:/WinAVR-20100110/bin/avrdude -F -V -c¢ arduino -p AT-
MEGA328P -P COM2 -b 115200 -U flash:w:MDD__led_ blue.hex
(Note: “C:/WinAVR-20100110/bin/avrdude” is the path to avrdude.exe
executable file. If these library path is added to Path environment vari-
able, avrdude command can be directly used.)(Refer to Fig 8)

Fig 18. Flashing hex file on Arduino

8.3.2 Linux
1) Go to OMEdit and load Arduino.mo package file. Expand it and go
to MDD_ Examples->MDD _led->MDD led blue.
2) Open Terminal and browse to the path where the Modeli-
ca_ DeviceDrivers Script files are stored (preferably MDD __build).
3) To run a simulation execute the following commands
« omc --simCodeTarget=ExperimentalEmbeddedC run-
MDD led blue.mos

Page |26

Wait for it to return true, true, true, true.
Here run_led_ blue.mos is the name of the mos file.(Fig 7)
o Then execute the following command for compilation:
avr-gcc -Os -std=cl11 -ffunction-sections -fdata-sections -
mmcu=atmega3d28p -DF__CPU=16000000UL -WI,--gc-sections
led_ blue_main.c -0 led_ blue —I
/path_to_Modelica_ DeviceDrivers/Modelica_ DeviceDrivers/Resou
rces/Include -I /usr/include/omc/c
Here “MDD _led blue” is the name of the simulation model.
o Next, the following command is to be executed which generates
a .hex file:
avr-objcopy -O ihex -R .eeprom MDD _ led_ blue
MDD _ led_ blue.hex
« For loading the program into the Arduino board execute the follow-
ing command:

avrdude -F -V -c arduino -p ATMEGA328P -P COM2 -b 115200 -U
flash:w:MDD_led_blue.hex

souradip@souradipHP: ~/OpenModelica/MDD_build/led v

(0:29,80%)) 9:59PM (=

led_blink_main.c led_blue.hex led_green_blink runMDD_led_blue_delay.mos runMDD_led_blue_red
led_blue led_blue_main.c led_green_blink.hex runMDD_led_blue_delay.mos~ runMDD_led_green_blink.mos
led_blue_delay led_blue_red led_green_blink_main.c runMDD_led_blue.mos runMDD_led_green_blink.mos~
souradip@souradipHP:~/OpenModelica/MDD_build/led$ omc --simCodeTarget=ExperimentalEmbeddedC runMDD_led_blue.mos

souradip@souradipHP:~/OpenModelica/MDD_build/led$ avr-gcc -Os -std=c11 -ffunction-sections -fdata-sections -mmcu=atmega328p -DF_CPU=16000000UL -WL,--
-sections led_blue_main.c -o led_blue -I /home/souradip/Modelica_DeviceDrivers/Modelica_DeviceDrivers/Resources/Include -I /usr/include/omc/c
souradip@souradipHp:~/OpenModelica/MDD_build/led$ avr-objcopy -0 ihex -R .eeprom led_blue led_blue.hex
souradip@souradipHP:~/OpenModelica/MDD_build/led$ avrdude -F -V -c arduino -p ATMEGA328P -P /dev/ttyACM® -b 115200 -U flash:w:led_blue.hex

avrdude: AVR device initialized and ready to accept instructions
| RURBARBURBARBARARABBRBARBARBARBRRBRBRRBBRBRRBRRBRNRN | 100% 0.00s
: Device signature = ©x1e950f
: NOTE: "flash" memory has been specified, an erase cycle will be performed
To disable this feature, specify the -D option.
: erasing chip
: reading input file "led_blue.hex"
: input file led_blue.hex auto detected as Intel Hex
: writing flash (1430 bytes):
Writing | ##SHHHBHHHRBBEHHRBRERRBRERRABEBRARBEERRBRBRARBHHRE | 100% 0.24s
avrdude: 143 bytes of flash written
avrdude: safemode: Fuses OK (H:00, E:00, L:00)

avrdude done. Thank you.

souradip@souradipHP:~/OpenModelica/MDD_build/leds [l

Fig 19. Flashing the hex file on Arduino in Linux

Page |27

8.4 Simulation Settings for MDD Models
AVR Block Settings:
Microcontroller Block Settings:

The microcontroller block designated ‘mcu’ has in-built parameters re-
garding the type of AVR platforms used in interfacing, using Modeli-
ca_ DeviceDrivers. In this project, we have used Arduino UNO board con-
taining Atmel Atmega328p chip. So the platform is set to ATmega328P.

o OMEdit - Component Parameters - mcu in Arduino.SerialCommunication.MDD_Examples.MDD_dcmotor.MDD_dcmotor_both ?

Parameters

General Real-tme Modifiers
Component
Name: mcu
Class

Path: Modelica_Devi ts.AVR Blocks.
Comment: Use as an inner block, defining the characteristics of the AVR microcontroller

Constants

platform [Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. Platform. v]

uFrequency [Constants.coufrequency[platform)] [Hz | Defouit frequency is the platform defauit (can be modified)
minADCFrequency ~[Constants.mnADCFrequency [platform)] |z~ Minimum recommended frequency to sample the ADC
maxADCFrequency [Constants.maxADCFrequency [platform)] [Hz_~ | Maximum recommended frequency to sample the ADC

[Constants.adcResolution[platform] | Bits of resolution in the ADC

o1 conce |

Fig 20. Microcontroller Block Settings

o} OMEdit - OpenModelica ection Editor - a]
File Edit e M B it Debu Git Te Hel
PeBB rEHeee \PHOTR < E- O9E 999 9[S| 7 ¢ 9
Libraries Browser 88X 4 Blink [x] Documentation Browser & x
[Frecoe] O ([AE @ [witabe |Model | Dagrom view |Moceic AVR Exampies. [Fifscab- omekmo [&] < > (22 IR
teraies [& OMEdit - Component Parameters - mcu in Modelica_DeviceDri Arduino.UNO.Blink 7% 4
@ (@) Bi
© @ o Parameters
@ [pqf
@) cd General Redtine | Modfiers
@ [H Constants
@) in [[fdesredperiod == 0 then 0 else 1/ desredperiod | he | usedtotry Select thisor
() O desredperiod [0.01 1[5 ~ usedtotry and counter
= W e
=W
=
=
g
- @
= (M
=]
!
B o [conn
@ (%) utities o I
® [EI Incubate Ancyaialsy
@ () Modelica_Synchronous
@ @ Modelica_Devic...ers.UsersGuide v
v < >

Fig 21. Synchronize Real Time Settings

Page |28

Synchronize Real Time Settings:

SynchronizeRealTime block is a pseudo realtime synchronization func-
tional block.It synchronizes the simulation time of the simulation process
with the operating system real-time clock.(If desired period =0.01,1 time
unit= 5 seconds. In this case, ‘time’ variable in OpenModelica runs faster
5 times the actual clock time. 'time' can be exactly synchronized with ac-
tual clock time by setting the desired period = 0.002)

oA OMEdit - - i in Arduino.SerialCs ication.MDD_Examples.MDD_dcmotor.MDD_dcmotor_both ? X

Parameters

General Modifiers
Component
Name: synchronizeRealtime 1
Class

Path: Modelca AVR Block
Comment: A pseudo realtime synchronization

Constants

desrredFrequency [mcu.desredFrequency | [Hz v Override the MCU global real-time settings
maxError 0.01 | Used when calculating allowed dock parameters. 0.01=1% maximum error.
timer | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. TimerSelect. Timer0 v]

prescaler [Functio v] Pre-scaler for the dock.

count] The number of counts to be made. A value of 249 counts 250 steps.

iterations] The number of times each interrupt should be executed.

o] e

Timer0 is an 8-bit timer which is used here to synchronize the platform
clock with CPU clock of the system. Further details about platform timer
can be found here http://www.atmel.com/Images/Atmel-42735-8-bit-
AVR-Microcontroller-ATmega328-328P Datasheet.pdf.

28 27 26 25 24 23 22 21 20 19 18 17 16 15
C§ C4 C3 C2 C1 Co B5 B4 B3 B2 B1
-4 <« X O p= =
O a O 9 oz = E
o “ S Saa o
j.ze ATmega328 %4
= = =
RXTX 2 s 2
RSTO 1 2 3 4 + - CLOCK 5 6 7 8
Do D1 D2 D3I D4 D5 D6 D7 BO
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Digital Input/Output

Fig 22. Arduino to ATMega328P Mapping

Page |29

The above mentioned settings are common in general for all the examples

given here.

8.4.1 Interfacing LED using Modelica Device Drivers
Example 1: MDD led blue delay

The following is an example to turn on the blue led for 5 seconds.

Double clicking on each block opens the parameter windows for it.

Change the parameters according to Fig 23.(1 time unit =5 seconds)

I

B gﬁ OMEdit - Component P. t
L.l

. Parameters
C.d
act
)D_
VD
) N Class
) N Path:

General Modifiers

Component
Name: booleanExpression1

Time varying output signal

Modelica.Blocks.Sources.BooleanExpression
Comment: Set output signal to a time varying Boolean expression

y [if time < 1 then true else false

] Value of Boolean output

s KNANTRII LGN PR _EAGTIACS UL USRI _URIE - U30Y | | U3 PR A AT

Coc]

Reakme

digitalWriteBoolean1

F - -
booleanExpression1

Cancel

booleanExpressionl

Reakime
mou CesirecFrequency

digitalWriteBoolean

+ D " r R

o OMEdit - Comp P - dig

lean1 in Ardui...

Parameters

General Modifiers

Component
Name: digitalWriteBoolean1
Class

Path:
Comment:

Constants

mcu cesirecFrequency M

" || Examples.pus

Modelica_DeviceDrivers.EmbeddedTargets.AVR .Blocks. DigitalWriteBoolean

info rev

? X

port |Modeica_DeviceDrivers.EmbeddedTargets.AVR.Types.PortAB

> |

pin IModeka_DevnceDrivers.EmbeddedTargets.AVR.Types.Pn.'1'

v]

Fig 23. MDD __led_blue_ delay

Page |30

Example 2: MDD _led_blue
The following is an example to turn on the blue led forever.
Double clicking on each block opens the parameter windows for it.

Change the parameters according to Fig 24.

‘ers

Ll

u o OMEdit - Component Parameters - booleanExp... ~ ? X

. Parameters

General Modifiers

Component
Name: booleanExpression1

| Class

Path: Modelica.Blocks.Sources.BooleanExpression

[]
A 3 .
Comment: Set output signal to a time varying Boolean expression Yol eanExpressi

onl

Time varying output signal
Yy |true] Value of Boolean output

[oc]I conce

11 DuchRuttan

o OMEdit - Component Parameters - digitalWriteBoolean1 in Ardui... ? X
Parameters
Component

Name: digitalWriteBoolean1
Class

digitalWriteBoolear path: Modelica_DeviceDrivers.EmbeddedTargets. AVR Blocks. Digital\riteBoolean
Comment:

Constants

port [Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.B v]

pin [Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Pin.'1' v]

[oc 1 conce

Fig 24. MDD __led_ blue

Page |31

Example 3: MDD _led blue red
The following is an example to turn on the both blue and red led for 5
seconds. Then turn off the blue led and after 3 seconds also turn off the
red led.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 25.

1l
¢ o& OMEdit - Component Parameters - booleanE: i ? X
a

..« Parameters

General Modifiers
Component

Rearime
Name: booleanExpression1 mou CesrecFrequency HE

DE Class
ADD Path: Modelica.Blocks. Sources.BooleanExpression
Comment: Set output signal to a time varying Boolean expression

:: Time varying output signal i digitalWriteBoolean1
M y [if tme < 1 then true else false | value of Boolean output bo;eanE D ressio.nl
:
M' o]l ew ||, :

ADD_pusn 1
MDD..ton digitalwriteBoolean2
MDD...tus booleanExpression2

/DD _ldr

ADD_pot

ADD_...stor

) | Examples.pus

& OMEdit - Component Parameters - digitalWriteBoolean1 in Ardui... ? X h

Parameters

General Modifiers

Reartme
moucesrecFreqency 2 Component
Name: digitalWriteBoolean1
Class

Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.DigitalWriteBoolean
Comment:

digitalWriteBoolean:

Constants

port | Modelica_DeviceDrivers.EmbeddedTargets. AVR.Types.Port.B v]

pin | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types.Pin.' I v]

digitalWriteBoolean: o]| conce

Page |32

|| PushButton

Parameters

& OMEdit - Component Parameters - digital

WriteBoolean2 in Ardui...

?

Reakime:
mou desirecFrequency H

General Modifiers

Component
Name: digitalWriteBoolean2

digitalwriteBoolean

Constants

port [Modeica_DeviceDrivefs.EmbeddedTargets.AVR.Types.Port.B

pin | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types.Pin.'3

digitalWriteBoolean

Modelica_DeviceDrivers.EmbeddedTargets. AVR.Blocks.DigitalWriteBoolean

ino

falC immbiam

Fur o% OMEdit - Component Parameters - booleanExpression...

"* Parameters

?

General Modifiers

Component
Name: booleanExpression2
Class

Path: Modelica.Blocks.Sources.BooleanExpression

Time varying output signal
y [if ime < 1.6 then true else false

(IOt UIVIUVIUIC)

e owowy

Fig 25.

Comment: Set output signal to a time varying Boolean expression

] Value of Boolean output

[oc] conce

MDD led blue red

Page |33

Example 4: MDD led green_blink

The following is an example to turn on and off the led inbuilt on ar-
duino board having a period of 5 seconds.

Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 26.

o OMEdit - Component Parameters - booleanExp... ? X

Parameters

General Modifiers

les
Component
- Name: booleanExpression1
3y . Class B
nk Path: Modelica.Blocks.Sources.BooleanExpression
d Comment: Set output signal to a time varying Boolean expression o n
booleanExpressionl
nk Time varying output signal
) y |mod(time, 0.4) >=0.2 | Value of Boolean output

on

us

[oc]/ conce

Page |34

o& OMEdit - Component Parameters - digitalWriteBoolean in Ardui... ? X
Parameters
Fearame -
wcu.deskredfrequency He General Modifiers
Component

Name: digitalWriteBoolean1

Class

B . | Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.DigitalWriteBoolean
digitalWriteBoolean1 o s

Constants

port | Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.B v |

v]

pin | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types.Pin.2

Fig 26. MDD __led_green_ blink

Example 5: MDD led blink
The following is an example to turn on and off the led inbuilt on ar-
duino board having a period of 5 seconds.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 27.

Page |35

| || Conrolling LED with
it - Component Parameters - digitalWriteBoolean1 in Ardui... {
& OMEdit - C P digitalWriteBoolean1 in Ardui ? X

ReaHime
mcu cesiredFrequency

Parameters

General Modifiers
Component
Name: digitalWriteBoolean1
Class

d|glm IWriteBooIean i Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR.Blocks. DigitalWriteBoolean
1 Comment:

Constants

port | Modelica_DeviceDrivers.EmbeddedTargets. AR Types.Port8 v |

pin | Modelica_DeviceDrivers,EmbeddedTargets. AVR. Types.Pin.'S'

| A

o& OMEdit - Component Parameters - booleanExp... ?

Parameters

General Modifiers

les Component
Name: booleanExpression1

Je Class

iy Path: Modelica.Blocks.Sources.BooleanExpression —

k Comment: Set output signal to a time varying Boolean expression = n
booleanExpression1

ed Time varying output signal

ak

y |mod(time, 2) >= 1 | value of Boolean output

on

us

Fig 27.MDD_ led_blink

Page |36

8.4.2 Interfacing Push Button with Modelica_ DeviceDrivers
Example 1: MDD _led push_button
The following is an example to turn on the blue led when the pushbut-
ton is pushed.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 28.

) I - . L

' | o& OMEdit - Component Parameters - digitalReadBoolean1 in Ardui... ? X

° Parameters

General Modifiers

Component
Name: digitalReadBoolean1

Class

€ Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR..Blocks.DigitalReadBoolean F
Comment:

Constants

port | Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.D v |

pin | Modelica_DeviceDrivers.EmbeddedTargets.AVR. Types.Pin.'d v |

m @ R =

Page |37

NOASERE I Rtk WEELES

PushButton

ml

o OMEdit - Component Parameters - digitalWriteBoolean1 in Ardui... ?

e Parameters

General Modifiers
Component
Name: digitalWriteBoolean1
digitalWriteBoolean Class

Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR.Blocks.DigitalWri
Comment:

Constants

port | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types.Port.B v|

pin l Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Pin.'1' v |

Fig 28. MDD __led_push_ button
8.4.3 Interfacing Potentiometer with Modelica_ DeviceDrivers
Example 1: MDD pot_ threshold
The following is an example to control the RGB led using potentiometer.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 29.

Page |38

“ Exampl|
realExpression2 I ! -
o4& OMEdit - Component Parameters - adc in Arduino.SerialCommunication.MDD_Examples.MDD_pot.MDD_pot_threshold

Parameters

General Modifiers

{ Component
Name: adc
Class

adk Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR Blocks.ADC
Comment:
N

Constants
prescaler [Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. AnalogPrescaler.'1/128' v|
voltageReference |1024 I E] The voltage of
voltageReferenceSelect |Modeica_Deviod)ﬁvus.EvbeddedTagets.AVR.Types.VRngect.mmd V|
analogPort I Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.AnalogPort.A2 v I

Here,the parameter ‘voltageReference’ is set to ‘1024’ so digital values
are in the range 0-1024.

°mr Parameters

Model General Modifiers

Model Component

Arduir Name: greaterEqualThreshold1

| Seri: Class

j Fi Path: Modelica.Blocks.Logical.GreaterEqualThreshold

B N Comment: Output y is true, if input u is greater or equal than threshold

Parameters

)
) threshold [0
(>)
()

] ’Z] Comparison with respect to threshold

' [»] MDD_thermistor
)

MDD_dcmotor

odelica \ u—
odelica_DeviceDrivers [|
o« ot OMEdit - Component Parameters - greaterfqualThreshold2i... ? X

di
. Parameters

General Modifiers
Component
Name: greaterEqualThreshold2

Class

Path: Modelica.Blocks.Logical.GreaterEqualThreshold
Comment: Output y is true, if input u is greater or equal than threshold

() () () ()

Parameters

threshold [320 | [...] Comparison with respect to threshold

[[r]

(») MDD_dcmotor_loop

Bl |

g T
. o OMEdit - Component Parameters - greaterEqualThreshold3i.. ? X >=
u

]M Parameters

.:] General Modifiers

Z] Component

>j Name: greaterEqualThreshold3

G Class

’:] Path: Modelica.Blocks.Logical. GreaterEqualThreshold

»j Comment: Output y is true, if input u is greater or equal than threshold

@ Parameters

® reshod 900 | [..] comparison with respect to threshold

J ok || Ccancel

|

Page |40

o OMEdit - Component Parameters - digitalWriteBoolean1 in Ardui...

Parameters

General Modifiers

Component
Name: digitalWriteBoolean1

Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR.Blocks.DigitalW

Constants

port IModeica_DevioeDrivers.EmbeddedTargets.AVR.Types.Port.B

pin]Modelica_DeviceDrivers.EﬂbeddedTargets.AVR.Types.Ph.'l'

[oc]

ot OMEdit - Component Parameters - digitalWriteBoolean2 in Ardui...

Reaklime
mcu cesliredFrequency H

Parameters

digmlirteBoolean] General Modifiers

Component
Name: digitalWriteBoolean2

Class

digmlV/riteBooleanz Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR.Blocks. DigitalWi
Comment:

Constants

port | Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Port.B

pin ,Modelica_DevioeDrivers.EmbeddedTargets.AVR.Types.Ph.'Z

Page |41

Ll I

digitaMriceBcoleant o& OMEdit - Component Parameters - digitalWriteBoolean3 in Ardui.

Parameters

General Modifiers
dig=lWriteBoolean2 Component
Name: digitalWriteBoolean3
Class

Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR..Blocks. Digitz
Comment:

Constants

port |Modeica_DeviceDrivefs.EmbeddedTargets.AVR.Types.Port.B

pin | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types.Pin.'3

N y—
| ‘

oﬂ OMEdit - Component Parameters - realToBoolean1 in Arduino.Serial... ? X :..\c, =

Parameters

Boolean1
General Modifiers

Component
Name: realToBoolean1

Class

Path: Modelica.Blocks.Math.RealToBoolean
i Comment: Convert Real to Boolean signal

Parameters

threshold ... | Outputsignal y is true, ifinput u >= threshold

Fig 29. MDD _ pot_ threshold

Page |42

8.4.5 Interfacing Thermistor with Modelica_DeviceDrivers
Example 1: MDD_ therm_ buzzer
The following is an example to control the buzzer based on thermistor
readings.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 30.

2 | Diagram view | ardino seriace A e e JUETPPU PP v R Vo V.
gﬂ OMEdit - Comp P - adc in Arduino.SerialC ication.MDD_Examples.MDD_thermistor.MDD_therm_buzzer
Parameters
General Modifiers
Component
Name: adc
Class
Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.ADC
adc Comment:
Constants
" prescaler [Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. AnalogPrescaler.'1/128' v|
o..»mﬁm«m P voltageReference [1024] :v v: The voltage of the ref
voltageReferenceSelect | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types.VRefSelect.Internal v]
analogPort [Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. AnalogPort.A4 v]

& OMEdit - Component Parameters - greaterEqualThreshold1i.. ? x ollin

Parameters

General Modifiers

boolesrBxpressio Component
Name: greaterEqualThreshold1

adc
Class
Path: Modelica.Blocks.Logical.GreaterEqualThreshold
Comment: Output y is true, if input u is greater or equal than threshold
ADC A4 >
0.wiageRefrence [V] y(
Parameters
- threshold ... | Comparison with respect to threshold

“ﬁ o[conce

Page |43

; |1 LONrOMNY LEU Wil
o& OMEdit - Component Parameters - digitalWriteBoolean1 in Ardui...

- Parameters

General Modifiers
Component

Name: digitalWriteBoolean1

ichl digtalVirieBoolean Class
Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR.Blocks.DigitalWri

Constants

port |Modelica_DeviceDrivers.Embeddedl’argets.AVR.Types.Port.D

pin | Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types.Pin.'3’

o 1

Fig 30. MDD _ therm_ buzzer

8.4.5 Interfacing DC Motor with Modelica_ DeviceDrivers
Example 1: MDD _dcmotor_ loop
The following is an example to rotate the demotor.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 31.

Page |44

Ll
-~
~ofl & OMEdit - Component Parameters - integerExpress... ? X
icti
o Parameters

DI

| General
01 Modifiers

a1

Component . n o
Name: integerExpression1

=

S Pl 0 e a0

Class
Path: Modelica.Blocks.Sources.IntegerExpression

- [] []
. Comment: Set output signal to a time varying Integer expression
| Time varying output signal
I e] integerExpression2
ADI y |if time < 0.6 then 100 else 0 Value of Integer output
ADD_servo

Llal

Page |45

|ICommunication

"q o4 OMEdit - Component Parameters - integerExpressio... ? X
oD

M Parameters
Ml

Ml General Modifiers

integerExpression1
MI Component

) Name: integerExpression2

) Path: Modelica.Blocks.Sources.IntegerExpression

) Comment: Set output signal to a time varying Integer expression
MI Time varying output signal

) y |if ime >= 0.6 then 100 else 0 | value of Integer output
) [] o
)|
ML

{ o& OMEdit - Component Parameters - pwm in Arduino.Serial Communication.MDD_Examples.MDD_dcmotor.MDD_dcmotor_loop ? X

, Parameters

General Modifiers
Component
Name: pwm
Class

Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.PWM
Comment:

Constants

fastPWM [true ‘|

timer | Modelica_DeviceDrivers.EmbeddedTargets.AVR. Types. TimerSelect. Timer 1 v |

prescaler | Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. TimerPrescaler.'1/1024' v | Pre-scaler for the dock.

timerNumbers | {Modelica_DeviceDrivers.EmbeddedTargets.AVR.Types. TimerNumber.A} v | Which PWM outputs on the associated timer should be used (usually {A}, {B}, or {A,B})
initialvalues ({0} | The value that is used to initialize the PWM before the first call to PWM.set

Lo J0 con

o& OMEdit - Component Parameters - pwm1 in Arduino.SerialCommunication.MDD_Examples.MDD_dcmotor.MDD_dcmotor_loop ?

Parameters

General Modifiers
Component
Name: pwm1
Class

Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR..Blocks.PWM
Comment:

i Constants

fastwM [true]

t timer [Modelica_DeviceDrivers.EmbeddedTargets. AVR Types. TimerSelect.Timer 1 v]

prescaler IModeka_DevioeDmus.EnbeddedTafoets.AVR.Types.TMescdu.'1/1024' v | Pre-scaler for the dock.

timerNumbers I {Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. TimerNumber.B} v I Which PWM outputs on the assodated timer should be used (usually {A}, {B}, or {A,B})
initialvalues ({0} | The value that is used to initialize the PWM before the first call to PWM.set

o] conce |

Fig 31.MDD __dcmotor_ loop

Example 2: MDD dcmotor clock

The following is an example to rotate the decmotor only clockwise.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 32.

Ll I

iti
ot OMEdit - Component Parameters - integerExpre... ? X

* Parameters

b General Modifiers

b Component

b Name: integerExpressionl

b o]
Class integerExpressionl1

g9 Path: Modelica.Blocks.Sources.IntegerExpression -
Comment: Set output signal to a time varying Integer expression
Time varying output signal - -

y Iiftine<1then255elseo I Value of Integer output

g& OMEdit - Component Parameters - pwm in Arduino.SerialCommunication.MDD_Examples.MDD_dcmotor.MDD_dcmotor_clock ? X

Parameters

General Modifiers
Component
Name: pwm
Class

Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.PWM
Comment:

Constants

fastPWM [true V]

timer I Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. TimerSelect. Timer 1 v |

prescaler | Modelica_DeviceDrivers.EmbeddedTargets.AVR. Types. TmerPrescaler.'1/1024 | Pre-scaler for the dock.

timerNumbers | {Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. TimerNumber.B} | Which PWM outputs on the associated timer shoud be used (usualy {A}, {8}, or {4,8))

initialvalues ({0} | The value that s used to initialize the PWM before the first call to PWM.set

Fig 32.MDD_ demotor__clock
Here, timerNumbers are the pins to which PWM values are output. ‘A’
& ‘B’ correspond to PWM pins 9 & 10 respectively in this case.
Example 3: MDD dcmotor both
The following is an example to rotate the demotor both clockwise as
well as anticlockwise.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 33.

& OMEdit - Component Parameters - integerExpressionl in Ar... ? X

Parameters

General Modifiers
Component
Name: integerExpression1
Class

Path: Modelica.Blocks.Sources. IntegerExpression
Comment: Set output signal to a time varying Integer expression

Time varying output signal

y [if mod(time, 1) >=0.5 then 100 else 0 | value of Integer output
r 1 | n
ok]| concel |

") MDD_pot_threshold ™ v integerExpression2

Page |48

{ o& OMEdit - Component Parameters - integerExpression2in... ? X

Parameters

General Modifiers

Conponent int
Name: integerExpression2

Class

Path: Modelica.Blocks.Sources.IntegerExpression
Comment: Set output signal to a time varying Integer expression

{ Time varying output signal

)

Ty |ifmod(time, 1) < 0.5 then 100 else 0 | Value of Integer output
)

)

MDD_dcmotor

A

gﬁ OMEdit - Component Parameters - pwm in Arduino.SerialCommunication.MDD_Examples.MDD_dcmotor.MDD_dcmotor_both ? X

Parameters

General Modifiers
Component
Name: pwm
Class

Path: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Blocks.PWM
Comment:

Constants

fastWM [tue v]

timer [Modelica_DeviceDrivers.EmbeddedTargets. AVR Types. TmerSelect. Timer 1 v|

prescaler IModeka_DeviceDﬁvus.EnbeddedTagets.AvR.Types.TmerPrescaler.'1/1024‘ v I Pre-scaler for the dock.

timerNumbers I(Modeica_DevioeDriver& argets.AVR. Types. ber.A} V| Which PWM outputs on the assodated timer should be used (usually {A}, {B}, or {A,B})
nitialValues ({0} | The value thatis used to initialize the PWM before the first call to PWM.set

Lol o |

d OMEdit - Component Parameters - pwm1 in Arduino.Serial Communication.MDD_Examples.MDD_dcmotor.MDD_dcmotor_both ? X
Parameters
General Modifiers
‘Component
Name: pwm1
Class
Path: Modelica_DeviceDrivers.EmbeddedTargets. AVR .Blocks.PWM
Comment:
Constants
fastWM [true v]
timer [Modelca_DeviceDrivers.Emb gets. AVR. Types. TimerSelect. Timer 1 v]
prescaler | Modelica_DeviceDrivers AVR.Types.TmerPrescaler.'1/1024 | Pre-scaler for the dock.
timerNumbers | {Modelica_DeviceDrivers.EmbeddedTargets. AVR. Types. TmerNumber.B} | Which PWM outputs on the assodiated timer shouid be used (usually {A}, {8}, or {A,8})
itialVal [0 | The value that s used to initialize the PWM before the first call to PWM.set

o] ot |

Fig 33.MDD_ demotor__both

Page |50

9. Experiments and Evaluation

The package has been tested with various examples included in the Ex-

amples package of the library. Experiments are done on LED, LDR, Po-
tentiometer, Thermistor, DC Motor, Servo Motor etc. and are tested un-
der varying parametric conditions. Testing is done on both Windows and
Linux. Modelica DeviceDrivers examples were also tested and expected
outcomes were obtained.

10. Issues

On the course of our experimentation we were faced with a number of
challenging issues some of which are still unresolved and are open for fur-
ther development. The primary unresolved issues are illustrated below:

Unresolved Issues:

1. This package has support only for UART protocol and has not yet
been extended to support Modbus protocol which has already been im-
plemented in Scilab Arduino Toolbox.

2. Perfect synchronism has not yet been established in some cases due to
difference in software structure and simulation properties of OpenModelica.
It executes an algorithm multiple times within the stipulated time interval
than the times specified by the user.

3. ‘DigitalReadBoolean’ block within AVR package in Modeli-
ca_ DeviceDrivers library still shows anomaly. It returns default value
‘false’ at all times.

4. There is no graphical block which has the functionality of initialising
a Servo Motor connected to arduino. The development of this block is still
In progress.

5. Support for graphical visualization of models which uses Modeli-
ca_ DeviceDrivers package has not been achieved due to limited function-
ality in its execution through command-line.

Page |51

11. Conclusion
The project "Interfacing OpenModelica with Arduino', is based on call-

ing C code from OpenModelica and its interaction with the firmware up-
loaded on Arduino. We also explored the embedded targets package of the
Modelica_ DeviceDrivers library. Although, there were many issues initial-
ly, most of them got resolved in the course of the project. While working
on the project with OpenModelica we came to a conclusion that
OpenModelica is an open source software based on Modelica language to
design and simulate complex physical systems through code as well as
graphical blocks which is also very useful for electronics prototyping and
real time simulations. The main drawback of the library is its lack of ap-
propriate documentation and various other hardware supports in the elec-
tronics hardware area. Such modules are open for modifications and can
be extended by future developers. Therefore we have explored OpenModel-
ica in detail and tried to provide a better insight in this open source soft-

ware which will help developers in the future.

12. Bibliography

The following sources were referred to while working on this project:
e Peter Fritzson :Principles of Object-Oriented Modeling and Simula-
tion with Modelica 3.3: A Cyber-Physical Approach
e https://stackoverflow.com/

e https://www.openmodelica.org/

e http://book.xogeny.com/

e https://eithub.com/modelica/Modelica DeviceDrivers
e http://andybrown.me.uk/2015/03/08 /avr-gcc-492/
e https://build.openmodelica.org/Documentation/Modelica.html

e https://build.openmodelica.org/Documentation/Modelica DeviceDr

ivers.html

