

Interfacing Arduino With OpenModelica

Developer's Manual

Manas Das

TABLE OF CONTENTS

1. Introduction ... 1
2. Building Scilab from source in Linux ... 2
3. Downloading and Installing Arduino IDE ………………………………………………………………. 3
4. Downloading and Installing OpenModelica .. 3
5. Connecting and Configuring Arduino UNO Board .. 4
6. Interfacing Arduino with OpenModelica .. 6
 6.1 Interfacing in Windows ….. 7
 6.2 Interfacing in Linux ……..……….. 10
7. How is it created …………….. 13
 7.1 Help from Scilab ………………... 13
 7.2 Functions …………………………….. 13
 7.3 Creating OpenModelica Package .. 18
 7.4 Compiling Modified Source and Creating a Shared Library 18
 7.5 Testing and Debugging ... 19
8. Interfacing Arduino with OpenModelica Using Modelica_DeviceDrivers

 Package …….. 20
 8.1 Downloading Modelica_DeviceDrivers .. 21
 8.2 Downloading and Installing AVR packages .……………...................................... 21
 8.2.1 Windows ……………….. 21
 8.2.2 Linux ... 23
 8.3 Instructions for Simulation …………….. 23
 8.3.1 Windows ……………... 23
 8.3.2 Linux ………………………………………………………………………………………………………........ 25
 8.4 Simulation Settings for Modelica_DeviceDrivers models …………………………….... 27
 8.4.1 Interfacing LED .. 29
 8.4.2 Interfacing Push Button ………………………………………………………………………....... 36
 8.4.3 Interfacing Potentiometer………………………………………………………………………...... 37
 8.4.5 Interfacing Thermistor……………………………………………………………………………...... 42
 8.4.6 Interfacing DC Motor ……………………………………………………………………………...... 43
9. Experiments and Evaluation ……………………………………………………………………………………… 50

 10. Issues …… 50
 11. Conclusion …………..………………………………….……………………………………………………………………. 51
 12. Bibliography ………. 51

P a g e | 1

1. Introduction
OpenModelica is a free and open source environment based on the Mod-

elica modeling language for simulating, optimizing and analyzing complex
dynamic systems. OpenModelica is used in academic and industrial envi-
ronments. Industrial applications include the use of OpenModelica along
with proprietary software in the fields of power plant optimization, auto-
motive and water treatment. Models are either built through line by line
code or graphical code in OpenModelica. OpenModelica can interact with
C, Python languages and can call C, Python functions from within its
models. OpenModelica is a powerful tool that can be used to design and
simulate complete control systems. Our project tries to interface it with
Arduino by calling C functions from OpenModelica. Modelica functions
are written in OpenModelica and they call C functions which give instruc-
tions to Arduino. These codes can be run to perform operations on dc mo-
tor, servo motor, led, ldr (light dependent resistor), thermistor and poten-
tiometer connected externally to the board. Moreover we have also used
Modelica_DeviceDrivers library which enables the use of graphical blocks
in OpenModelica for graphical coding of the above operations.

In this project, we have developed the libraries ‘OpenModelica-Arduino’
and ‘OpenModelica-Arduino-Windows’ which enable the interfacing of Ar-
duino with OpenModelica in Linux and Windows respectively. Thus using
this library, we merge the functionalities of Arduino and OpenModelica for
faster data processing and data visualisation of real-time simulations.

P a g e | 2

2. Abstract
Growing use of electronic products and automation increases need for

softwares that can be used to program microcontrollers easily. The most
used basic open source electronic development boards or prototyping plat-
forms are Arduino platforms which are based on AVR microcontrollers
(except the ones which are based on ARM microprocessor). Although, Ar-
duino can be easily coded using Arduino software ide, python, Scilab and
Julia but still softwares that enable graphical coding of Arduino opera-
tions are very few. OpenModelica is an open source software based on
Modelica modeling language for complex physical systems, has support for
line by line as well as graphical coding. Data visualization becomes easier
and faster through the software. Also, it can interact with languages like
C and python and thus, it can be easily interfaced with Arduino. Moreo-
ver, Modelica_DeviceDrivers library, which contains drag and drop blocks
for arduino and can be used inside OpenModelica, enables GUI support for
programing of arduino. This project interfaces OpenModelica with Ar-
duino through C code as well as explores Modelica_DeviceDrivers library.

P a g e | 3

3. Downloading and Installing Arduino IDE
Arduino development environment is compatible with popular desktop

operating systems. In this section, we will learn to set up this tool for the
computers running Microsoft Windows or Linux. Later, we shall explore
the important menu options in the Arduino IDE.
For both Windows and Linux go to
https://www.arduino.cc/en/Main/Software and follow the instructions to
complete the setup.

4. Downloading and Installing OpenModelica

OpenModelica can be downloaded online from https://openmodelica.org.
Windows:

The setup file can be downloaded from
https://openmodelica.org/download/download-windows.Download the lat-
est release or the alpha version (preferred) of the software. After down-
loading, run the installation wizard to complete the installation.
OpenModelica Connection Editor or OMEdit can be launched by using
the desktop shortcut or OMEdit icon.

Linux:
The Debian/Ubuntu package can be downloaded from
https://openmodelica.org/download/download-linux. Follow the installa-
tion instructions given on the site for more details. OMEdit can be
launched by typing OMEdit in the terminal.

P a g e | 4

5. Connecting and Configuring Arduino UNO Board
Following two steps have to be followed whatever operating system is

used:
1. To begin, we need an Arduino Uno board with a USB cable.
2. Connect it to a computer and power it up.

Windows:
Attach the Arduino UNO Board and go to Device Manager->Ports

(COM & LPT) ->Arduino UNO (COM2) (Click on it) ->Port Settings ->
Advanced->COM “Port Number”. Change this to COM2 and click OK.
(Any other port can also be set but remember to change to that port
wherever COM2 is mentioned in this document.)

Fig 1.Device Manager in Windows

Linux:
Type the command ls -l /dev/ttyACM* in the terminal and if it re-

turns ACM0 then the port to which Arduino is connected to is 0.

P a g e | 5

Fig 2.Checking port in Linux

Fig3. Arduino IDE port settings

Click on File->Open and browse to the ‘path_to_OpenModelica-
Arduino’ -> tools -> arduino-firmware and select Arduino-firmware.ino
and open it. Go to tools and select the board as Arduino UNO and Port
as the port no. to which the Arduino is attached. Then click on upload
and upload the code.

P a g e | 6

Fig 4.Arduino-Firmware

6. Interfacing Arduino with OpenModelica
OpenModelica supports the calling of external C functions and that is

extensively used for this interfacing process. OpenModelica-Arduino li-
brary can be downloaded from GitHub from the following links:

https://github.com/manasdas17/OpenModelicaEmbedded

P a g e | 7

Fig 5.OMEdit

6.1 Interfacing in Windows
1. Open OpenModelica Connection Editor or OMEdit (You can either

create a shortcut or find it in the search bar). Go to
File ->Open Model and browse to Arduino.mo in the OpenModeli-
ca-Arduino-Windows library and load it.
Open the Arduino IDE and upload arduino-firmware.ino program
into the arduino board.

2. Now load testfirmware.mo file for testing the arduino firmware.
(Refer Step 1).

3. Change the port in the open_serial function of the code in the mod-
els according to port id to which the arduino is connected.

 For example:
If arduino is connected to port ‘COM2’
Change
ok := sComm.open_serial(1, 0, 115200);
to

 ok := sComm.open_serial(1, 2, 115200);
4. Click on the green arrow to simulate the example.

P a g e | 8

5. The simulation settings can be done by clicking on the ‘S’ symbol
(Fig 5). If serial communication is successful, status shown will be
zero.
If it doesn’t give any error then the firmware is loaded correctly.
Similarly, any example model provided in Arduino.mo can be run.

The source code can be found in the ‘src’ directory, the header file can be
found in the Include directory and the shared object file can be found in
the Library directory. (Fig 6)
Commands to make a shared object file:

Open command prompt and go to path of OpenModelica-Arduino-
Windows->Resources->src.
After that type the following commands:
gcc –c SerialComm.c (Makes a SerialComm.o file in the same
folder as SerialComm.c)
gcc –shared –o ../../SerialComm.dll SerialComm.o (Makes a dy-
namic link library from the SerialComm.o file in OpenModeli-
ca(Windows))

P a g e | 9

Fig 6. Directory Structure of OpenModelica

Fig 7. Compiling SerialComm.c on Windows

P a g e | 10

Fig 8. Making a shared object file on Windows

Fig 9. Simulation Setup

6.2 Interfacing in Linux

1. Open OpenModelica Connection Editor or OMEdit by executing
OMEdit in terminal. Go to File -> Open Library and browse to Ar-
duino.mo from the OpenModelica-Arduino library and load it.
Open the Arduino IDE and upload arduino-firmware.ino.

P a g e | 11

2. Now load testfirmware.mo file for testing the arduino firmware.
(Refer Step 1)

3. Change the port as necessary in the example.
For example:
If the port is ‘/dev/ttyACM2’ make
ok := sComm.open_serial(1, 0, 115200);
to
ok := sComm.open_serial(1, 2, 115200);

4. Click on the green arrow to simulate the example.
5. The simulation settings can be by clicking on the ‘S’ symbol (Fig 5).

If serial communication is successful, status shown will be zero.If it
doesn’t give any error then the firmware is loaded correctly.
Similarly, any example model from Arduino.mo can be run.

The source code can be found in the src directory, the header files can
be found in the Include directory and the shared object files can be
found in the Library directory.(Fig 6)

Commands to make a shared object file:

Open command line and go the path of OpenModelica-Arduino ->
Resources ->Library.
After that type the following commands:

gcc –c –Wall –fPIC ../src/serialComm.c (Makes a serialComm.o
file in the same folder as SerialComm.c)

gcc –shared –fPIC SerialComm.o –o libSerialComm.so (Make a
shared object from the SerialComm.o file)

P a g e | 12

Fig 10.Compiling serialComm.c on Linux
NOTE:
The port to which Arduino was attached was COM2 therefore 2 is
passed in the open_serial function of the user codes. (In Linux it was at-
tached to port 0 therefore by default 0 is passed in the open_serial func-
tion.)

P a g e | 13

7. How is it created?
The OpenModelica-Arduino package is based on serial communication

with Arduino using UART protocol. Basic idea behind serial communica-
tion with Arduino is to configure the port where the Arduino board is
connected to PC using USB cable and identifying the port. The infor-
mation is therefore used in establishing serial communication route with
Arduino and OpenModelica software in the system. All the configurations
of the serial port are done using external C functions which can be called
by OpenModelica.
7.1 Help from Scilab

The source code for OpenModelica-Arduino interfacing is mostly based
on the idea of establishing serial communication with Arduino as done in
Scilab-Arduino Toolbox . The same function call structure has been im-
plemented here. The five basic functionalities required in this case are:
open_serial, close_serial, read_serial, write_serial & status_serial. These
functions allow serial communication with the Arduino platform and used
in other interfacing functions for establishing communication.

Before using these functions, the Arduino platform must be loaded with
a firmware program present in ‘Arduino-firware.ino ’ file. This program
must be uploaded in Arduino board before the start of interfacing. This
program contains specific set of identifiers to recognize instructions sent
through the serial port.
7.2. Functions:-

Basic Functions:

 open_serial - The function ‘open_serial’ takes in parameters an in-
teger handle and port number on which arduino is attached and
baud rate at which it has to communicate with arduino. The func-
tion opens the serial port (a file descriptor) and returns 0 if serial
port is successfully opened and in case of a bad file descriptor/failure
to open serial port returns the integer 2. It also calls function
‘set_interface_attribs’ to set the baud rate and other attributes of
the serial port interface and the function ‘set_blocking’ to disable
blocking(no blocking/0).

P a g e | 14

 close_serial - The function ‘close_serial’ takes in handle to the serial
port as argument. The function closes the serial port (file descriptor)
and returns 0. If the port closes successfully then a success message
is printed else not.

 read_serial - The function ‘read_serial’ takes in parameters handle,
a character array that will return the characters read from the file
identified by handle and the number of characters/bytes to be read
from the serial port. The function reads ‘n’ number of characters
from the serial port where n is the size specified by the function call-
er. If read is successfully performed than the characters are copied to
the input argument buffer and a 0 is returned else a integer 2 is re-
turned by the function to denote error.

 write_serial- The function ‘write_serial’ takes in parameters han-
dle ,character array to be written to serial port and the size of the
character array. The function sends/writes the given char array to
the serial port and on successful write, a message is printed else
nothing is printed. The function returns a 0.

 status_serial - The function ‘status_serial’ takes the parameter
handle and contains the information of the bytes of data read and
written through the serial port. It returns integer 0 on success.

Interfacing Functions:
Digital:

 cmd_digital_in : The function ‘cmd_digital_out’ takes in the han-
dle, the pin number and the value to be written as parameters. The
code sends 'Da' (representing digital attach for configuring digital
pins) along with ASCII value of pin number and '1'(char 1) to setup
the pinMode of the corresponding pin to output. Then it converts
the value to 1 if it is greater than 0.5 else converts it to 0. The code
sends a character array containing 'Dw'(representing digital write),

P a g e | 15

ASCII value of the pin and the value to be written to the serial port.
The firmware on receiving the values performs digitalWrite(). The
function returns a 0 that is returned if the write_serial function is
successful.

 cmd_digital_out : The function ‘cmd_digital_in’ takes in the han-
dle to the serial port and pin number as input. It converts the pin
number to its ASCII value and sends it to serial channel and along
with char 'Da' (representing digital attach for configuring digital
pins) and a '0'. This is to set the mode of the corresponding pin to
input. Then it sends character array containing 'Dr'(representing
digital read) and ASCII value of pin for digitalRead() to occur. Af-
ter this, it reads the value received after checking the status of the
serial port.

Analog:

 cmd_analog_in : The function ‘cmd_analog_in’ takes in the handle
to the serial port and pin number as input. It converts the pin num-
ber to its ASCII value and sends it to serial channel and along with
char 'A' denoting analog read. Then it reads the value received after
checking the status of the serial port. The arduino_firmware upon
receiving 'A' and the pin number performs the analogRead() and
then serial write writes the value read. The value received serially is
converted to decimal form and returned as the result.

 cmd_analog_out : The function ‘cmd_analog_out’ takes in the
handle, the pin number and the value to be written as parameters.
It converts the value to 255 if it is greater than it and converts it to
0 if the value is negative. The code sends a character array contain-
ing 'W' denoting analog write, ASCII value of the pin and the value
to be written after converting it to char form. The firmware on re-

P a g e | 16

ceiving the values performs analogWrite(). The function returns a 0
that is returned if write_serial function is successful.

 cmd_analog_in_volt - Reads the analog value just like the
cmd_analog_in function just returns the analog value converted to
voltage.

 cmd_analog_out_volt - Writes the analog value just like the
cmd_analog_out function except that the input parameter specifies
the voltage which is converted to an analog value between 0 to 255
and then written.

DC Motor:

 cmd_dcmotor_setup - Used to initialise the motor driver and mo-
tor. It takes in the handle, driver type, motor number and pins on
which the motor is attached as parameters. It sends a character ar-
ray containing 'C', motor number in ASCII form, ASCII values of
pins and a character '1' or '0' indicating the driver type to the serial
port. The firmware code performs the initialisation and return "OK"
which is read through read_serial and if the read is successful the C
code prints a success message on screen else a failure message. The
function doesn't return anything.

 cmd_dcmotor_run - Used to rotate the motor in the desired direc-
tion and speed. The handle, motor number and speed along with
sign is passed in to the function. It decides a direction clockwise or
anticlockwise depending on the sign of the value input and if the ab-
solute value if the input is greater than 255 than it sets it to 255
else to the absolute of the ceil of the input. The function sends a
character array containing 'M', motor number in ASCII form, direc-
tion and value in ASCII form over the serial port and the function
returns nothing. The firmware code writes the value to one of the
pins of the specified motor depending on the direction.

P a g e | 17

 cmd_dcmotor_release - This function stops the motor and releases
it. It takes in the handle and motor number as arguments and it
sends a character array comprising 'M', ASCII value of motor num-
ber and 'r' over the serial port. The function does not return any-
thing. The firmware code writes 0 to both the pins of the motor.

Servo Motor:

 cmd_servo_attach - This function initialises the specified servo mo-
tor. It takes in handle to the port and servo number as input argu-
ments. It sends a character array "Sa1" for servo number 1 or "Sa2"
for servo number 2 else prints error. The firmware code initialises
the servo to 0

 cmd_servo_move - This function is to move the servo to the de-
sired angle. It takes in handle, servo number and value to be written
to servo motor as the input parameters. If the value is greater than
180, then it is made as 180 and if it is lesser than 0, then it is made
as 0. The function writes a character array consisting of 'Sw', ASCII
value of servo number and ASCII value of input angle to the serial
port. The firmware writes the angle to the servo motor. The func-
tion does not return anything.

 cmd_servo_detach - This function is to detach the specified servo
motor. It takes in handle to the port and servo number as input ar-
guments. It sends a character array "Sd1" for servo number 1 or
"Sd2" for servo number 2 else prints error. The firmware code de-
taches the servo. The function does not return anything.

Auxilliary Functions:

 math_floor - This function takes a real number as argument and re-
turns the greatest integer lesser than or equal to the argument pro-
vided.

P a g e | 18

 ieeesingle2num-This is ieee745 floating point converter which takes
an integer in hexadecimal format and returns a number in decimal
format.

 delay-This function provides delay in milliseconds for a certain time
as mentioned in its argument.

7.3. Creating OpenModelica Package:

All the functions are called from within OpenModelica from a functions
package created within the Arduino Package.

Creating a New Package:
To create a new package, click on New Modelica Class from the File

menu bar and select the specialization ‘Package’ from the drop down
menu. Add a name to the package and click on Ok to create a new pack-
age. Additionally, the package can be made to extend any other packages
or can be inserted into any other package by selecting the optional param-
eters.

Here, Arduino package contains Serial Communication package under
which all the functions and examples are present.
7.4. Compiling Modified Source and Creating a Shared Library

The src directory present in the Resources directory of OpenModelica li-
brary contains the source code written in C for the various OpenModelica
functions.
Compilation of the source:-
Windows:
Commands to make a shared object file:

Open command line and go the path of OpenModelica->Resources->src.
After that type the following commands:

gcc –c SerialComm.c (Makes a SerialComm.o file in the same
folder as SerialComm.c)

gcc –shared –o ../../libSerialComm.dll SerialComm.o (Makes a dy-
namic link library from the SerialComm.o file in OpenModelica(Windows))

In general, for other sources, compilation can be done as follows:
gcc –c path_to_source_file
gcc –shared serialComm.o file1.o file2.o … -o filename.dll

P a g e | 19

Linux:
Navigate to the Library directory within Resources in terminal.Use the

following commands to compile and create a shared library.
gcc –c -Wall –fPIC ../src/serialComm.c
gcc –shared –fPIC serialComm.o –o libSerialComm.so

Thus a shared library libSerialComm is created for the source file serial-
Comm.c.

In general, for other sources, compilation can be done as follows:
gcc –c –Wall –fPIC path_to_source_file
gcc –shared –fPIC serialComm.o file1.o file2.o … -o libfilename.so

Fig 11. Making shared library file on Linux

7.5. Testing and Debugging
 The procedures elaborated in section Interfacing Arduino with

OpenModelica(section 6) must be followed for testing the modified source
code. For debugging C source code,well known debuggers like ‘gdb’ can be
used.

P a g e | 20

8. Interfacing Arduino with OpenModelica Using Mod-
elica_DeviceDrivers Package

Modelica_DeviceDrivers is free library for interfacing hardware drivers
to Modelica models which has support for joysticks, keyboards, UDP,
TCP/IP, LCM, shared memory, AD/DA converters, serial port and other
devices.

8.1 Downloading Modelica_DeviceDrivers Library
1. Download Modelica Device Drivers from

https://github.com/modelica/Modelica_DeviceDrivers . Go to the
Current Release section, then clone the repository using git or down-
load the zip file from there and extract the files.

2. Open OMEdit and go to File->Load Library->Browse the path
where you have extracted Modelica_DeviceDrivers and load it.

Fig 12. Loading Modelica Device Drivers

P a g e | 21

Fig 13. Loaded Modelica_DeviceDrivers package

8.2. Downloading and Installing AVR packages

We need to install avr-gcc, avr-libc and avrdude packages for working
with Modelica_DeviceDrivers.

8.2.1 Windows

1. Go to http://andybrown.me.uk/2015/03/08/avr-gcc-492/ and in-
stall avr-gcc-4.9.2 and avr-libc-1.8.1. (Fig 5)

2. Follow the instructions till the “How to install it and use it” sec-
tion (no need to go for integration with eclipse and Arduino IDE).

For easier navigation, the paths to these builds can be added to Path
environment variable of the system in the following way:-
Go to System Settings ->Advanced System Settings -> Environment
variables ->System Variables->Path->Edit and add C:\avr-
gcc\bin,C:\ WinAVR-20100110\bin etc. and click OK.

P a g e | 22

Fig 14. Downloading AVR packages for Windows

3) To install avrdude go to https://sourceforge.net/projects/winavr/
and install WinAVR- 201001101.
4) To check if the installations are done correctly open the command
prompt(if it is already open, close it and open it again). Then go to C:\
and type avr-gcc –version if you get something like command recognized
then redo the installation. If it is correct it will show you the version
(Fig 15).

Fig 15. Checking for version of avr gcc

P a g e | 23

NOTE:
Remember to download the correct versions of avr-gcc and avr-libc (In

this case avr-gcc-4.9.2 and avr-libc-1.8.1) otherwise it will give errors like
“unrecognized flag std=c11”.

8.2.2 Linux

 Type the following commands in the terminal for the installation.
sudo apt-get install gcc-avr
sudo apt-get install avr-libc
sudo apt-get install avrdude

For manual installation go to the site :
http://maxembedded.com/2015/06/setting-up-avr-gcc-toolchain-on-
linux-and-mac-os-x/
and follow the instructions given under Linux heading for installation of
the above mentioned packages.

8.3 Instructions for simulation
 Simulation of models created using Modelica_DeviceDrivers package

are to be done in Command Prompt(Windows)/Terminal(Linux).The ex-
ample given in this section shows how to light up the blue LED connected
to Arduino digital pin 9.

 Remember to change the path in the .mos files i.e
 change

loadFile("D:/Modelica_DeviceDrivers/package.mo");
 to

loadFile(“Path_to_ModelicaDeviceDrivers/package.mo”);
 and

loadFile("D:/Arduino.mo");
 to

loadFile(“Path_to_Arduino.mo/Arduino.mo”);

8.3.1 Windows:
1) Go to OMEdit and load Arduino.mo. Expand it and go to
MDD_Examples->MDD_led->MDD_led_blue.

P a g e | 24

2) Open Command Prompt and browse to the path where you have
stored the mos files. (Fig 6)

Fig 16. Browsing to path which contains the mos files

 To run a simulation execute the following commands
 %OPENMODELICAHOME%\bin\omc --

simCodeTarget=ExperimentalEmbeddedC run_led_blue.mos

Wait for it to return true, true, true, true.
Here “run_led_blue.mos” is the name of the mos file.(Fig 7)

Fig 17. Compiling the mos file

 Then execute the following command for compilation:

avr-gcc -Os -std=c11 -ffunction-sections -fdata-sections -
mmcu=atmega328p -DF_CPU=16000000UL -Wl,--gc-sections
MDD_led_blue_main.c -o MDD_led_blue -I
path_to_Modelica_DeviceDrivers/Modelica_deviceDrivers/Resourc
es/Include -I %OPENMODELICAHOME%/include/omc/c

P a g e | 25

Here “MDD_led_blue” is the name of the simulation.
 Next, the following command is to be executed which generates

a .hex file:
avr-objcopy -O ihex -R .eeprom MDD_led_blue
MDD_led_blue.hex
 For loading the program into the Arduino board execute the follow-

ing command:
C:/WinAVR-20100110/bin/avrdude -F -V -c arduino -p AT-
MEGA328P -P COM2 -b 115200 -U flash:w:MDD_led_blue.hex
(Note: “C:/WinAVR-20100110/bin/avrdude” is the path to avrdude.exe
executable file. If these library path is added to Path environment vari-
able, avrdude command can be directly used.)(Refer to Fig 8)

Fig 18. Flashing hex file on Arduino
8.3.2 Linux

1) Go to OMEdit and load Arduino.mo package file. Expand it and go
to MDD_Examples->MDD_led->MDD_led_blue.
2) Open Terminal and browse to the path where the Modeli-
ca_DeviceDrivers Script files are stored (preferably MDD_build).
3) To run a simulation execute the following commands
 omc --simCodeTarget=ExperimentalEmbeddedC run-

MDD_led_blue.mos

P a g e | 26

Wait for it to return true, true, true, true.
Here run_led_blue.mos is the name of the mos file.(Fig 7)
 Then execute the following command for compilation:

avr-gcc -Os -std=c11 -ffunction-sections -fdata-sections -
mmcu=atmega328p -DF_CPU=16000000UL -Wl,--gc-sections
led_blue_main.c -o led_blue –I
/path_to_Modelica_DeviceDrivers/Modelica_DeviceDrivers/Resou
rces/Include -I /usr/include/omc/c
Here “MDD_led_blue” is the name of the simulation model.
 Next, the following command is to be executed which generates

a .hex file:
avr-objcopy -O ihex -R .eeprom MDD_led_blue
MDD_led_blue.hex
 For loading the program into the Arduino board execute the follow-

ing command:
avrdude -F -V -c arduino -p ATMEGA328P -P COM2 -b 115200 -U
flash:w:MDD_led_blue.hex

Fig 19. Flashing the hex file on Arduino in Linux

P a g e | 27

8.4 Simulation Settings for MDD Models
AVR Block Settings:
Microcontroller Block Settings:

The microcontroller block designated ‘mcu’ has in-built parameters re-
garding the type of AVR platforms used in interfacing, using Modeli-
ca_DeviceDrivers. In this project, we have used Arduino UNO board con-
taining Atmel Atmega328p chip. So the platform is set to ATmega328P.

Fig 20. Microcontroller Block Settings

Fig 21. Synchronize Real Time Settings

P a g e | 28

Synchronize Real Time Settings:
SynchronizeRealTime block is a pseudo realtime synchronization func-

tional block.It synchronizes the simulation time of the simulation process
with the operating system real-time clock.(If desired period =0.01,1 time
unit= 5 seconds. In this case, ‘time’ variable in OpenModelica runs faster
5 times the actual clock time. 'time' can be exactly synchronized with ac-
tual clock time by setting the desired period = 0.002)

Timer0 is an 8-bit timer which is used here to synchronize the platform

clock with CPU clock of the system. Further details about platform timer
can be found here http://www.atmel.com/Images/Atmel-42735-8-bit-
AVR-Microcontroller-ATmega328-328P_Datasheet.pdf.

Fig 22. Arduino to ATMega328P Mapping

P a g e | 29

The above mentioned settings are common in general for all the examples
given here.
8.4.1 Interfacing LED using Modelica Device Drivers

Example 1: MDD_led_blue_delay
The following is an example to turn on the blue led for 5 seconds.
Double clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 23.(1 time unit =5 seconds)

Fig 23. MDD_led_blue_delay

P a g e | 30

Example 2: MDD_led_blue
The following is an example to turn on the blue led forever.
Double clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 24.

Fig 24. MDD_led_blue

P a g e | 31

Example 3: MDD_led_blue_red
The following is an example to turn on the both blue and red led for 5
seconds. Then turn off the blue led and after 3 seconds also turn off the
red led.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 25.

P a g e | 32

Fig 25. MDD_led_blue_red

P a g e | 33

Example 4: MDD_led_green_blink
The following is an example to turn on and off the led inbuilt on ar-
duino board having a period of 5 seconds.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 26.

P a g e | 34

Fig 26. MDD_led_green_blink

Example 5: MDD_led_blink

The following is an example to turn on and off the led inbuilt on ar-
duino board having a period of 5 seconds.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 27.

P a g e | 35

Fig 27.MDD_led_blink

P a g e | 36

8.4.2 Interfacing Push Button with Modelica_DeviceDrivers
Example 1: MDD_led_push_button
The following is an example to turn on the blue led when the pushbut-
ton is pushed.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 28.

P a g e | 37

Fig 28. MDD_led_push_button

8.4.3 Interfacing Potentiometer with Modelica_DeviceDrivers
Example 1: MDD_pot_threshold
The following is an example to control the RGB led using potentiometer.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 29.

P a g e | 38

Here,the parameter ‘voltageReference’ is set to ‘1024’ so digital values
are in the range 0-1024.

P a g e | 39

P a g e | 40

P a g e | 41

Fig 29. MDD_pot_threshold

P a g e | 42

8.4.5 Interfacing Thermistor with Modelica_DeviceDrivers
Example 1: MDD_therm_buzzer
The following is an example to control the buzzer based on thermistor
readings.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 30.

P a g e | 43

Fig 30. MDD_therm_buzzer

8.4.5 Interfacing DC Motor with Modelica_DeviceDrivers

Example 1: MDD_dcmotor_loop
The following is an example to rotate the dcmotor.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 31.

P a g e | 44

P a g e | 45

P a g e | 46

Fig 31.MDD_dcmotor_loop

Example 2: MDD_dcmotor_clock
The following is an example to rotate the dcmotor only clockwise.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 32.

P a g e | 47

Fig 32.MDD_dcmotor_clock

Here, timerNumbers are the pins to which PWM values are output. ‘A’
& ‘B’ correspond to PWM pins 9 & 10 respectively in this case.
Example 3: MDD_dcmotor_both
The following is an example to rotate the dcmotor both clockwise as
well as anticlockwise.
Double Clicking on each block opens the parameter windows for it.
Change the parameters according to Fig 33.

P a g e | 48

P a g e | 49

Fig 33.MDD_dcmotor_both

P a g e | 50

9. Experiments and Evaluation
The package has been tested with various examples included in the Ex-

amples package of the library. Experiments are done on LED, LDR, Po-
tentiometer, Thermistor, DC Motor, Servo Motor etc. and are tested un-
der varying parametric conditions. Testing is done on both Windows and
Linux. Modelica_DeviceDrivers examples were also tested and expected
outcomes were obtained.

10. Issues
On the course of our experimentation we were faced with a number of

challenging issues some of which are still unresolved and are open for fur-
ther development. The primary unresolved issues are illustrated below:
Unresolved Issues:

1. This package has support only for UART protocol and has not yet
been extended to support Modbus protocol which has already been im-
plemented in Scilab Arduino Toolbox.

2. Perfect synchronism has not yet been established in some cases due to
difference in software structure and simulation properties of OpenModelica.
It executes an algorithm multiple times within the stipulated time interval
than the times specified by the user.

3. ‘DigitalReadBoolean’ block within AVR package in Modeli-
ca_DeviceDrivers library still shows anomaly. It returns default value
‘false’ at all times.

4. There is no graphical block which has the functionality of initialising
a Servo Motor connected to arduino. The development of this block is still
in progress.

5. Support for graphical visualization of models which uses Modeli-
ca_DeviceDrivers package has not been achieved due to limited function-
ality in its execution through command-line.

P a g e | 51

11. Conclusion
The project "Interfacing OpenModelica with Arduino", is based on call-

ing C code from OpenModelica and its interaction with the firmware up-
loaded on Arduino. We also explored the embedded targets package of the
Modelica_DeviceDrivers library. Although, there were many issues initial-
ly, most of them got resolved in the course of the project. While working
on the project with OpenModelica we came to a conclusion that
OpenModelica is an open source software based on Modelica language to
design and simulate complex physical systems through code as well as
graphical blocks which is also very useful for electronics prototyping and
real time simulations. The main drawback of the library is its lack of ap-
propriate documentation and various other hardware supports in the elec-
tronics hardware area. Such modules are open for modifications and can
be extended by future developers. Therefore we have explored OpenModel-
ica in detail and tried to provide a better insight in this open source soft-
ware which will help developers in the future.

12. Bibliography

The following sources were referred to while working on this project:
 Peter Fritzson :Principles of Object-Oriented Modeling and Simula-

tion with Modelica 3.3: A Cyber-Physical Approach
 https://stackoverflow.com/
 https://www.openmodelica.org/
 http://book.xogeny.com/
 https://github.com/modelica/Modelica_DeviceDrivers
 http://andybrown.me.uk/2015/03/08/avr-gcc-492/
 https://build.openmodelica.org/Documentation/Modelica.html
 https://build.openmodelica.org/Documentation/Modelica_DeviceDr

ivers.html

