/* The MIT License (MIT) Copyright (c) 2012 Juan Ramón Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "Calibrate.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include Calibrate::Calibrate(){ _t0 = 0; _k = 1.002737908; // Constant.. Relationship between the solar time (M) and the sidereal time (S): (S = M * 1.002737908) _isSetR1 = false; _isSetR2 = false; _isSetR3 = false; } /* * Calculates the inverse of the m[3x3] matrix and returns it in the second parameter. */ void Calibrate::_inv(double m[3][3], double res[3][3]){ double idet; //Inverse of the determinant idet = 1/( (m[0][0]*m[1][1]*m[2][2]) + (m[0][1]*m[1][2]*m[2][0]) + (m[0][2]*m[1][0]*m[2][1]) - (m[0][2]*m[1][1]*m[2][0]) - (m[0][1]*m[1][0]*m[2][2]) - (m[0][0]*m[1][2]*m[2][1]) ); res[0][0] = ((m[1][1]*m[2][2]) - (m[2][1]*m[1][2]))*idet; res[0][1] = ((m[2][1]*m[0][2]) - (m[0][1]*m[2][2]))*idet; res[0][2] = ((m[0][1]*m[1][2]) - (m[1][1]*m[0][2]))*idet; res[1][0] = ((m[1][2]*m[2][0]) - (m[2][2]*m[1][0]))*idet; res[1][1] = ((m[2][2]*m[0][0]) - (m[0][2]*m[2][0]))*idet; res[1][2] = ((m[0][2]*m[1][0]) - (m[1][2]*m[0][0]))*idet; res[2][0] = ((m[1][0]*m[2][1]) - (m[2][0]*m[1][1]))*idet; res[2][1] = ((m[2][0]*m[0][1]) - (m[0][0]*m[2][1]))*idet; res[2][2] = ((m[0][0]*m[1][1]) - (m[1][0]*m[0][1]))*idet; } /* * Multiplies two matrices, m1[3x3] and m2[3x3], and returns the result in * the third parameter. */ void Calibrate::_m_prod(double m1[3][3], double m2[3][3], double res[3][3]){ for(int i=0; i<3; i++) for(int j=0; j<3; j++){ res[i][j] = 0.0; for(int k=0; k<3; k++) //multiplying row by column res[i][j] += m1[i][k] * m2[k][j]; } } /* * Calculates the Vector cosines (EVC) from the equatorial coordinates (ar, dec, t). */ void Calibrate::_setEVC(double ar, double dec, double t, double* EVC){ EVC[0] = cos(dec)*cos(ar - _k*(t-_t0)); EVC[1] = cos(dec)*sin(ar - _k*(t-_t0)); EVC[2] = sin(dec); qDebug() << "ardec = ["<