
Open Sky Planetarium

Summer Internship Project Report

Submitted by

Saloni Mundra

DA-IICT, Gandhinagar

FOSSEE Group

Indian Institute of Technology Bombay

July 2017

Mentors: Supervisor:

Ms. Inderpreet Arora Prof. Kannan M. Moudgalya

Mr. Rupak Rokade IIT Bombay

CERTIFICATE

\\·e IH•n•l,y cl1•dan' that tl1is projt�d rcp\lrt entit.led. 'Develupment of Open Sky Plan­
t:tari11111·· is IJl'i11g s1ilm1itLcd IJ_v us i11 fullil111c11t of the rcquire111cnts for the cornplct.ion
of S1u11111er I11ternship 2017 at Iutegrate<l Develop111e11t Lab. FOSSEE Group, Indian

Instit.ute uf Tedmulogy Bombay. This repurt is an authentic rernrcl uf the aforesaid
project carried out during the period of !\fay 2017-June 2017.

Jaideep Mishra
NIT Dmgapm

Ram Mohan Kumar

IIT BHU
Saloni M undra

DA-IICT

This is to certify that Jaideep Mishra, Ram Mohan Kumar, and Saloni l\Iundra have
worked siucerely for the above 111e11tio11ed project under my supervision and guidance
during r,heir smnmer internship. Their performance a.nd conduct during the project
was satisfactor_v.

Prof. Kannan M. Moudgalya

Professor, IIT Bombay

�
��­

.. �--¥(��,.
Profeaor

[)epertmelit d Chemical Engineering
Indian lnslilule of Technology, Bombay

Powal, MumbaMOO 076.

Mr. Rupak Rokade
Assistant Project Manager, IIT Bombay

Acknowledgement

First of all, I would like to express my heartfelt gratitude to our project supervisor
Prof. Kannan M. Moudgalya for offering and allowing me to work on this
novel project to develop an affordable Open Sky Plane-tarium.

I further express our special thanks to my mentors, Ms. Inderpreet Arora
and Mr. Rupak Rokade whose valuable contribution in stimulating
suggestions and encouragement helped me in coming with the best solutions.

I would like to thank Mr. Rajesh Kushalkar, Senior Project Manager of
Integrated Development Lab (IDL) for providing resources and constant
support for the development of the project. I would also like to express my
sincere thanks to the entire IDL team, who helped me with their knowledge
and support.

I express my deepest gratitude to Mr. Sudhakar Kumar, who has invested his
full efforts in guiding the team and achieving the goal.

i

Abstract

The project aims to provide low cost access to planetariums, especially

to the schools of the country. The purpose is to educate and motivate the

youth to explore and know about the night sky. Visit to a planetarium is

expensive and seldom do we get a chance to see one. On the contrary,

clear skies can still be observed away from the cities, but with the lack of

proper knowledge base to rely on for stargazing, the experience becomes

obsolete. Open Sky Planetarium is a project that seeks out schools to

provide them with an educational tool to introduce kids to the night

sky through a planetarium-like experience under an open sky. This is

achieved by making the equipment low-cost, thus making it affordable

and accessible to all schools to play a planetarium show in their own

locality. It also aims to keep the operation of the equipment and the

application as user-friendly as possible.

ii

List of Figures

2.1 Stellarium software GUI .. 3

2.2 Qt Creator IDE.. 4

4.1 LASER intensity control .. 9

4.2 Code snippets for LASER intensity control 10

4.3 Reset functionality in the plug-in 10

4.4 Code snippets for reset functionality in the plugin 11

4.5 Current coordinates (in degrees).. 11

4.6 Code snippets for current coordinates (in degrees)............ 12

4.7 Motor speed control ... 12

4.8 Code snippets for motor speed control 13

4.9 Instant help on mouse hover .. 13

4.10 Success message after setting first reference 15

4.11 Success message after setting second reference 15

5.1 Code snippet in SerialCom.cpp.. 16

5.2 Reference setting section.. 17

5.3 Message on successful reference set up............................... 17

5.4 Code snippet for the move function................................... 18

5.5 Increased timeout in plugin.. 18

5.6 Code snippets for releasing handle..................................... 19

iii

Contents

Acknowledgement i

Abstract ii

List of Figures iii

1 Introduction 1

2 Tools for Plug-in Development 2

2.1 Stellarium... 2

2.1.1 Plugins .. 3

2.2 Qt .. 3

2.2.1 Qt Framework.. 3

2.2.2 Qt Creator.. 4

2.3 CMake .. 5

3 Qt based Software module 6

4 Functions added to the Plugin 9

5 Problems Resolved 16

6 Future prospects 20

Bibliography 21

Chapter 1

Introduction

Open Sky Planetarium (OSP) makes use of Stellarium- an open source

software that simulates stars in real-time and can be used as an on-

screen planetarium. The tool has a LASER pointing device that guides

the user through the stars and is controlled by an application supported

by Stellarium. The idea is to calibrate the device by setting at least two

stars as references and then any star can be guided to by the means

of Stellarium and the OSP plugin built for it. The OSP plugin also

provides the user with a script engine that can be used to write scripts

with background audio to be played during the planetarium show.

1

Chapter 2

Tools for Plug-in Development

2.1 Stellarium

Stellarium is an open source software that simulates the night sky and

displays a number of stars in their position at a particular time. The

night sky simulated is specific to various locations, hence anybody can

view the sky in their location in Stellarium to refer to actual objects

in the sky while stargazing. The database in Stellarium is comprehen-

sive: it contains the equatorial coordinates of an object in the sky in

reference year J2000, from which the data is calculated to simulate the

object in its position at any particular point of time. The objects in

the Stellarium sky move just as the objects in the real sky do: the sim-

ulation mirrors the actual sky. There are also various sky cultures so

that people from all parts of the world can use the software hassle-free.

2

Figure 2.1: Stellarium software GUI

2.1.1 Plugins

Stellarium offers a wide range of functional flexibility which lets us use

Stellarium for highly specific purposes through plugins, which are addon

functionalities that let perform a certain task within the Stellarium

environment. Some plugins are installed along with Stellarium and

just need to be activated when needed. These are the static plugins.

Some other plugins will have to downloaded separately and installed

onto Stellarium: these are the dynamic plugins.

2.2 Qt

2.2.1 Qt Framework

Qt is a cross-platform application framework that is widely used for

developing application software that can be run on various software and

hardware platforms with little or no change in the underlying codebase,

while still being a native application with the capabilities and speed

3

thereof. Qt is currently being developed both by the Qt Company, a

subsidiary of Digia, and the Qt Project under open-source governance,

involving individual developers and firms working to advance Qt.

2.2.2 Qt Creator

Qt Creator is a cross-platform C++, JavaScript and QML integrated

development environment which is part of the SDK for the Qt GUI

Application development framework. It includes a visual debugger and

an integrated GUI layout and forms designer. The editor’s features in-

clude syntax highlighting and autocompletion, but purposely not tabs

(although plug-ins are available). Qt Creator uses the C++ 11 com-

piler from the GNU Compiler Collection on Linux and FreeBSD. On

Windows it can use MinGW or MSVC with the default install and can

also use Microsoft Console Debugger when compiled from source code.

Figure 2.2: Qt Creator IDE

4

2.3 CMake

CMake is an open-source, cross-platform family of tools designed to

build, test and package software. CMake is used to control the software

compilation process using simple platform and compiler independent

configuration files, and generate native makefiles and workspaces that

can be used in the compiler environment of one’s choice.

5

Chapter 3

Qt based Software module

bt osp off.png/bt osp on.png

The png files for the icon displayed in Stellarium to start OpenSky-

Planetarium Plugin.These icons are simple png images displaying osp

text. When the icon is not clicked it is shown in the white colour else

shown in grey colour in the toolbar in Stellarium.Hence two icons with

same image and different colour was needed to display its on/off state.

OpenSkyPlanetarium.qrc

The Qt resource file for including resources such as png files in our

plugin compilation.

CMakeLists.txt

CMakeLists.txt includes commands to build the project Open Sky

Planetarium. This file is used to determine the external libraries and

path variable for successfully building the plugin.

src/

This directory includes source files for the dynamic plugin.

6

Calibrate.hpp/Calibrate.cpp

All codes related to calibration are included in this class Calibrate. The

transformation matrix is calculated in this class. The current build

includes calculation using three references. This can be increased in

future for more accurate calculation of the transformation matrix. It

also includes functions for getting equatorial and horizontal coordinates

using transformation matrix.

SerialCom.hpp/SerialCom.cpp

Serial Communication between the Arduino and the plugin is facili-

tated by SerialCom class. The examples in Qt docs served helpful for

development of Serial Communication between Arduino and Stellarium.

LaserDev.hpp/LaserDev.cpp

Communication with devices such as sending request and receiving re-

sponse is performed by LaserDev class. LaserDev class uses Seri- alCom

class for sending and receiving data from Arduino. Different commands

such as move, movx, movy, laon, loff, post etc. is sent to the Arduino,

which in turn gives back response to these commands.

7

OpenSkyPlanetarium.hpp/OpenSkyPlanetarium.cpp

The main file of the plugin. Links the GUI file with Stellarium. This

class has a predefined format and no changes are required to this format

to integrate the plugin with Stellarium.

CMakeLists.txt

CMakeLists.txt includes commands to compile the classes. This file is

used to set resources and ui files for compiling with the project.

gui/

The gui/ folder includes files for the plugin gui. This folder includes

OSPMainDialog.ui and OSPMainDialog class.

OSPMainDialog.ui

The xml file of the gui is OSPMainDialog.ui. This file is created using

Qt Creator IDE.

OSPMainDialog.hpp/OSPMainDialog.cpp

This is the main class of the plugin. It links GUI to the various classes

and its functions. The GUI signals are connected to the respective

functions in this class. The OSPMainDialog includes linking GUI and

the Script Engine Functions like compile, open, save and execute. It

also includes user defined signals that will be called during execution

of the script.

8

Chapter 4

Functions added to the Plugin

1. Laser Intensity Control

The slider allows you to control the intensity of the laser by drag-

ging it. It has a maximum value of 255 and a minimum of 50. The

slider has a step size of 1. On dragging the slider, the setIntensity()

function is called. The returned integer value is converted into a

string and sent to the Arduino after “lase” command is sent to

it. The Arduino writes the value sent by the plugin into the laser

pin and sends back the command “done lase.” Thus, hand-shake

is established. The slider is only enabled when the laser is turned

on. On turning off the laser, the slider comes back to its initial

position.

Figure 4.1: LASER intensity control

9

Figure 4.2: Code snippets for LASER intensity control

2. Reset

The reset button on being clicked takes the motor to the initial

position from which the movement started, or in other words, takes

it to the coordinates (0,0). This button is available all the time to

the user except before selecting the device. The reset button issues

the move(0,0) command to the Arduino, which then takes it to the

initial coordinates. Calibration related data is not lost during the

reset operation. It makes use of the original goto command code.

Figure 4.3: Reset functionality in the plug-in

10

Figure 4.4: Code snippets for reset functionality in the plugin

3. Current Coordinates (in degrees)

This section gives the current position of the laser. It shows how

many degrees the motor has moved in the X and Y direction. After

every motor movement command, the getPos() function is called

which sends the “post” string to the Arduino. The Arduino then

sends the current position of the laser to the plugin, which is then

displayed in the Current Coordinates section.

Figure 4.5: Current coordinates (in degrees)

11

Figure 4.6: Code snippets for current coordinates (in degrees)

4. Motor Speed Controls

It allows you to select whether you want to move the motor on high

speed or low. The default action is fine adjustment (low speed).

On selecting the required checkbox, “coad” is sent to theArduino

for coarse adjustment (high speed) and “fiad” for fine adjustment

(low speed).

Figure 4.7: Motor speed control

12

Figure 4.8: Code snippets for motor speed control

5. Help Over Mouse Hover

A brief instant help is displayed on mouse hover over different but-

tons and sections. This is done to make the plugin as user friendly

as possible. This is implemented by using the tooltip feature of the

QT Creator.

Figure 4.9: Instant help on mouse hover

13

6. Enable/Disable Hierarchy

For making the controls more user friendly and to avoid mistakes,

the plugin has been designed such that the user is directed to follow

a certain path that will take him to the correct output.

� Initially, on startup, only the Select button is enabled. Rest are

all disabled.

� On Selecting the device, apart from Laser Direction Controls,

GoTo and Set Ref, everything else is enabled.

� The Laser Direction Controls and Set Ref gets enabled on click-

ing Start Calibration.

� The GoTo button gets enabled when at least two references are

correctly set.

� After three references have been set and calibration done, Set

Ref is disabled along with Laser Direction Controls (except re-

set).

� Clicking on Select Device, the plugin reverts to its original state.

7. Reference Message Pop ups

To make the application more user friendly and check for its cor-

rectness, message pop ups have been added. On successful reference

set up, a dialog box opens which displays the success message along

with the current az and alt coordinates(in radians) of the reference

star.

14

Figure 4.10: Success message after setting first reference

Figure 4.11: Success message after setting second reference

15

Chapter 5

Problems Resolved

1. The system of Laser Direction Control was designed in such a way

that the motor moves when the button is clicked and stops on its

release. But it did not work as it was expected because of the

inclusion of mutex. Mutex are programming objects that help in

synchronization. Earlier, if a new command was given when the

motor was executing a command, the new command was enter-

tained only after the old one was finished. If the old command

did not get executed because of any reason, the program would

hang. Removal of mutex code solved these undesired behaviours

and solved some problems of Serial Communication.

In SerialCom::run(), the lines mutex.lock() and mutex.unlock() have

been removed.

Figure 5.1: Code snippet in SerialCom.cpp

16

2. The problem with the reference counter has been fixed and a mes-

sage is displayed on successful reference set up with the current

az and alt coordinates. Earlier, there was no upper bound to the

reference counter and could be incremented indefinitely. Also, a

message box is now displayed on successful reference set up speci-

fying the coordinates of the reference star. This will help the user

to ensure that he is going the right way.

Figure 5.2: Reference setting section

Figure 5.3: Message on successful reference set up

3. When two or more simultaneous GoTo commands were sent by the

plugin, the Arduino used to hang. This has been solved by the

usage of flags which now discard any new GoTo commands sent in

mid of execution of one. The plugin accepts the GoTo request if the

flag is true and further changes it to false. So, if any new request

is sent in mid of execution of one, then the new GoTo request gets

rejected. This solves the problem of Arduino hang which otherwise

had to use the mechanism of hard reset.

17

Figure 5.4: Code snippet for the move function

4. Initially the Arduino used to send the string done move before the

completion of the goto step. This was done in order to protect

it from the timeout code of 1s. We changed the timeout for the

move command from 1s to 20s so that a proper handshake can be

established.

Figure 5.5: Increased timeout in plugin

5. Earlier, closing the plugin wouldn’t release the serial port or reset

the hardware state. Now, an additional function has been made

that is called on clicking the close button on the gui that releases

the handle and sends the “clos” string to the Arduino which then

resets the hardware.

18

Figure 5.6: Code snippets for releasing handle

19

Chapter 6

Future prospects

Most of the features in the plugin have been implemented and been

made as user friendly as possible. But still some more tasks and en-

hancements are needed before making it available to the end user. The

tasks remaining are:

� Implement Open Source Cross Platform Audio Playing.

� Solve the problem of multiple goto in the script engine.

� Improve calibration by increasing number of references from three

to four.

� Write a script to automate installation of required packages for

stellarium and the plugin.

Another improvement that can be made is to change the serial com-

munication approach from synchronous to asynchronous. This can

make it more user friendly and robust.

20

Bibliography

[1] http://www.stellarium.org/

[2] https://www.qt.io/

21

