
FOSSEE Summer Internship Programme - 2016

Open Sky Planetarium

Vasudha Varadarajan

Dhiraj Salian

Yudhisther Bhargava

22 July, 2016

Guided by:

Prof. Kannan. M. Moudgalya

Prof. Dipankar

Prof. D.B. Phatak

Mentor:

Ms. Inderpreet Arora

Contents

Acknowledgements . 1
Declarations . 2
Abstract . 3

1 Introduction 5
1.1 Aim of the project . 5
1.2 Definitions to some terms used . 5

2 Tools for Software 9
2.1 Stellarium . 9

2.1.1 Plugins . 10
2.1.2 Scripting API . 10

2.2 Qt . 11
2.2.1 Qt Framework . 11
2.2.2 Qt Creator . 11

2.3 PyQt . 12

3 Modules 13
3.1 Hardware . 13

3.1.1 Stepper motor with Dobsonian mount 13
3.1.2 Servo motor with Pan-tilt . 13
3.1.3 Shifting Calibration code to Software 14

3.2 Software . 15
3.2.1 Python Based Software Module 17
3.2.2 Qt/C++ based software module 21

4 Calibration 27

5 ScriptEngine 29
5.1 Goto . 30
5.2 Play . 31
5.3 Wait . 32
5.4 Laser On/Off . 33

6 Future Prospects 37

Bibliography 39

i

Acknowledgements

I would like to express our heartfelt gratitude towards Prof. Kannan

M. Moudgalya and Prof. Dipankar for offering and allowing us
to carry out this project on Open Sky Planetarium which aims at

providing low-cost planetarium experience targeted at schools. I ex-
press my special thanks to our project guide Ms. Inderpreet Arora,
and team members Mr. Rupak Rokade, and Ms. Nivedita were

a great help in formulation and execution of this project. I would also
like to express my sincere thanks to the entire IDL (Integrated Devel-

opment Lab) team, who helped us with their knowledge and support.

I also thank the lab in-charges for their help without which I would
not have been able to concentrate on this project. I thank my parents
without whose support this entire venture would not have seen the
light of success.

Friday 22 July 2016

1

Declarations

I declare that this written submission represents my team’s ideas along
with mine. I have adequately cited and referenced the original sources.
I also declare that I have adhered to all principles of academic honesty
and integrity and have not misrepresented or fabricated or falsified any
idea/data/fact/source in my submission. I understand that any viola-
tion of the above will be cause for disciplinary action by the Institute
and can also evoke penal action from the sources which have thus not
been properly cited or from whom proper permission has not been
taken when needed.

Vasudha Varadarajan
BITS Pilani,Hyderabad

Dhiraj Salian
MIT, Manipal

Yudhisther Bhargava
LNMIT, Jaipur

2

Abstract

Our project aims to support a number of schools that can encourage

and motivate the students to look up and know their skies. The knowl-
edge of night sky is shockingly low among most adults, attributed to

the lack of stargazing experiences back in childhood. Planetariums in
cities are mostly once-in-a-lifetime visit, unless one is very motivated.
Clear skies can still be observed away from the cities, but with the

lack of proper knowledge base to rely on for stargazing, the experi-
ence becomes obsolete. Open Sky Planetarium is a project that seeks

out schools to provide them with an educational tool to introduce kids
to the night sky through a planetarium-like experience under an open

sky.

3

1 Introduction

Open Sky Planetarium is an open source educational tool that uses

Stellarium, a software that simulates stars in real-time and that can
be used as on-screen planetarium. The tool would consist of a laser

pointer to point at a specific object in the sky controlled by an appli-
cation supported by Stellarium.

The user needs to place the pointer in an open field/ground with
minimal obstruction on a clear night. After calibrating, the pointer

is made to point at various objects and audio clippings, which would
play in the background, describe the objects being pointed at.

1.1 Aim of the project

The primary aim of the project is to bring the planetarium experience

home to every kid who looks up at the sky in wide-eyed wonder. This is
achieved by making the equipment low-cost, thus making it affordable

and accessible to all schools to play a planetarium show in their own
locality. We also aim to keep the operation of the equipment and the

application as user-friendly as possible.

1.2 Definitions to some terms used

celestial equator is the equator around the hypothetical celestial sphere
around the sphere of the earth, parallel to the equator defined on

the earth.

5

equatorial/ra-dec coordinates is a system of coordinates to describe
the position of stars with respect to the centre of the earth, imag-

ining the entire set of visible stars to be placed on the celestial
sphere on the earth, with the coordinate ra(α) measuring the an-
gle subtended by the north-south line on a point (analogous to

longitude) and dec(δ) measuring the angle of the horizontal plane
through the centre of the earth and the celestial equator (analo-

gous to latitude). These are global as the coordinates of a point
in the night sky doesn’t change with a change in the position of

observation on the earth.

horizontal/alt-az coordinates is a system of coordinates that uses the
observer’s location as the centre and plane with respect to which

the altitude angle(h) above the plane, and the azimuth angle(A),

6

parallel to the plane but aaway from the reference line, is mea-

sured.

Dobsonian telescope mount is one that employs horizontal system of
coordinates to point the telescope to an object specified by its
horizontal coordinates.

equinox is a moment in time at which the vernal point, celestial equa-
tor, and other such elements are taken to be used in the definition

of a celestial coordinate system.

J2000 is the system where equinox is taken to be 12:00 midnight, 1st
January, 2000.

DDA or digital differential analyzer is an algorithm that moves be-
tween two points along at least two orthogonal directions (if 2D)
incrementally, so as to move linearly along the two directions.
This is done by finding the lowest common multiple between the
distances to be traversed along the two directions. The steps are
obtained by dividing the distance into smaller distances and these
are traversed iteratively.

7

2 Tools for Software

2.1 Stellarium

Figure 2.1: Stellarium software GUI-1

Stellarium is an open source software that simulates the night sky and

displays a number of stars in their position at a particular time. The
night sky simulated is specific to various locations, hence anybody can

view the sky in their location in Stellarium to refer to actual objects
in the sky while stargazing.

The database in Stellarium is comprehensive: it contains the equato-

rial coordinates of an object in the sky in reference year J2000, from
which the data is calculated to simulate the object in its position at

any particular point of time. The objects in the Stellarium sky move
just as the objects in the real sky do: the simulation mirrors the actual

sky.

9

Figure 2.2: Stellarium software GUI-2

There are also various sky cultures so that people from all parts of the
world can use the software hassle-free. [2]

2.1.1 Plugins

Stellarium offers a wide range of functional flexibility which lets us use

Stellarium for highly specific purposes through plugins, which are add-
on functionalities that let perform a certain task within the Stellarium
environment. Some plugins are installed along with Stellarium and

just need to be activated when needed. These are the static plugins.
Some other plugins will have to downloaded separately and installed

onto Stellarium: these are the dynamic plugins.

2.1.2 Scripting API

Stellarium also offers a Scripting API called StelMainScriptAPI makes
it possible to write small programs within Stellarium to produce pre-
sentations, set up custom configurations, and to automate repetitive

tasks.This feature is based on Qt Scripting Engine. The core scripting
language is ECMAScript, giving users access to all basic ECMAScript

language features such as flow control, variables string manipulation
and so on. Interaction with Stellarium-specific features is done via a

collection of objects which represent components of Stellarium itself.

10

2.2 Qt

2.2.1 Qt Framework

Qt is a cross-platform application framework that is widely used for

developing application software that can be run on various software
and hardware platforms with little or no change in the underlying

codebase, while still being a native application with the capabilities
and speed thereof. Qt is currently being developed both by the Qt

Company, a subsidiary of Digia, and the Qt Project under open-source
governance, involving individual developers and firms working to ad-

vance Qt.[10][11][12]

2.2.2 Qt Creator

Figure 2.3: Qt Creator IDE

Qt Creator is a cross-platform C++, JavaScript and QML integrated

development environment which is part of the SDK for the Qt GUI Ap-
plication development framework.[3] It includes a visual debugger and

an integrated GUI layout and forms designer. The editor’s features
include syntax highlighting and autocompletion, but purposely[4] not

tabs (although plug-ins are available[5][6]). Qt Creator uses the C++

11

compiler from the GNU Compiler Collection on Linux and FreeBSD.

On Windows it can use MinGW or MSVC with the default install and
can also use Microsoft Console Debugger when compiled from source

code.

2.3 PyQt

PyQt is a python wrapper around graphic library for C++. PyQt is a

very powerful tool as it contains various libraries for a variety of GUI
functionalities. It is cross-platform.[3]

PyQt has been used to create a sufficient GUI in the stand alone appli-

cation. The GUI initially starts up when the python file laser_control_main.py
(see below) is run. In the configuration mode, the user has to set refer-

ences for creating a transformation matrix to extract horizontal coor-
dinates and time (needed for a Dobsonian mount) from the equatorial
coordinates (obtained from Stellarium). In tracking mode, a feedback

is sent at regular intervals.

12

3 Modules

Formulating a working model of a moving laser pointer is a collabora-

tion of hardware and software modules. Taking cues from an attempt
to computerise the control of a telescope mount with Arduino through

Stellarium[1], we made slight changes to the code to test with a crude
two stepper-motor system prepared by the hardware team.

3.1 Hardware

The hardware underwent change in its structure, components and code
as the project gradually progressed. In total there were three signifi-

cant changes which are mentioned below.

3.1.1 Stepper motor with Dobsonian mount

The 1st phase of the hardware used a stepper motor system to drive
a green laser pointer on a Dobsonian mount controlled through an

Arduino board connected to the USB port of the system with Stellar-
ium installed. Since the mount requires two independent coordinates

given as altitude and azimuth in the horizontal system, two stepper
motors provide the movement along the two axes. The transformation

between the two coordinate systems viz equatorial and horizontal, is
burnt into the hardware, as the input coordinates for controlling the
movement of the laser pointer is extracted from Stellarium as equato-

rial coordinates.

3.1.2 Servo motor with Pan-tilt

The 2nd phase of the hardware is the current build of the hardware in

terms of mechanical structure and component. It uses a Servo Motor

13

system to drive a green laser pointer on a Pan-tilt controlled through

an Arduino board connected to the USB port of the sytem with Stel-
larium installed. Similar to the 1st Phase of the hardware, it requires

two coordinates for the two axes which are provided by Pan-Tilt and
Servo Motor along the two axes.The transformation between the two
coordinate systems viz equatorial and horizontal, is burnt into the

hardware, as the input coordinates for controlling the movement of
the laser pointer is extracted from Stellarium as equatorial coordi-

nates.

3.1.3 Shifting Calibration code to Software

The 3rd phase of the hardware was mainly a change in its code. Ini-
tially the calculations for calibration were done in the hardware. The

Calibration Code was shifted from hardware to software. This change
was brought into effect to better utilize the Arduino memory in its

coordinate calculation. Since CPU has more power and speed, all
mathematical calculation such as matrix transformation was shifted

to CPU in view that it can be easily improved in future if the calcu-
lations become lengthy.

14

3.2 Software

This section explains the code used to implement the Open Sky Plan-
etarium application along with Stellarium and the connected pointer
device. The flow of control between modules of the Open Sky Plane-
tarium is elucidated below:

Figure 3.1: Flow of the Software Code

The software module also underwent changes as the project gradu-

ally progressed. From a stand-alone application to dynamic plugin
integrated into Stellarium, the software evolved into more stable and
complete software as foreseen before the start of the project.

The stand-alone application was inspired from the GitHub repository

Arduino-Telescope-Control which is a python based application uti-
lizing PyQt library for its GUI. This repository acted as the base for
our project for the duration of the software phase where it was being

developed as a stand-alone application.

After successfull implementation of the python based version of the
software and few tests, it was decided to integrate it into Stellarium.
Since Stellarium is based on Qt/C++, the python based version was

slowly being converted to Qt/C++ version. Qt Framework with its
wide variety of API’s under QtCore was used for such conversions.

Serial port communication, Regular Expressions, TCP server, etc are
some of the API’s provided by Qt Framework under QtCore which are

extensively used in the Qt/C++ based implementation of the software.

15

The python based software module used to handle the instantiation

of a telescope server, and it’s communication with the other modules:
Arduino, user interface, and Stellarium. A telescope server module

was being instantiated at localhost:port and for serial communication,
serial port was specified by the user in GUI as the corresponding USB
port at which the Arduino board is connected. The server module

communicates with Stellarium through the Telescope Control Plugin
in Stellarium. A user interface is created using PyQt for the users

to control the telescope server and thus the movement of the laser
pointer.

The Qt/C++ based software module doesn’t require telescope server.

Since the telescope server was only used to locate a star in stellarium
and send the coordinates to the stand-alone application (python based

software module) , including it in dynamic plugin (qt/c++ based soft-
ware module) is no longer a necessity. The postion of stars and other

planetary bodies could be directly returned by Stellarium classes and
modules. Also the coordinates transformation functions are directly

available in Stellarium, therefore a separate class was no longer needed
for coordinate transformations.

16

3.2.1 Python Based Software Module

Figure 3.2: Python based software module gui

Python code written provides the user interface, instantiates a tele-

scope server instance, and handles communication via the USB serial
ports. The code has been split into several modules that have specific
functionalites as elucidated below.

3.2.1.1 Software Code

File Structure

Figure 3.3: File Structure of Software Code for Python Based Software Module

coords.py

This module has a lot of functions to aid in conversions in the format

used by Stellarium and the device, such as conversion of angle in
hours-minutes-seconds to degrees-minutes-seconds or radians, or vice

versa. The format of right ascension as received from stellarium is
hours-minutes-seconds, while declination is degrees-minutes-seconds,

with a precision of two points after decimal.

17

ldevice.py

Uses serial package from Python to communicate with the device at-
tached through the serial port. This is achieved through a GUI imple-

mented using QtCore and QThread. Asyncore and socket modules are
also used to implement a socket handler to handle the input/output

operations with the device. A class called Laser_Dev is derived from
QThread class which contains a set of read/write functions that have

different functionalities, such as initialization of the device, obtain-
ing/sending coordinates for moving the laser to a particular point, to
switch on/off the laser etc.

repeat_timer.py

Uses logging and threading packages of Python. It periodically exe-

cutes a function, with a particular interval period, a certain number
of times. It defines a class Repeat_Timer that derives from Thread
class and is responsible for periodic execution of functions using run()

for a specific interval and cancel() functions.

telescope_server.py

Uses logging, asyncore, socket modules and Thread class to imple-
ment a Telescope Server. It has two classes: Telescope_Channel and
Telescope_Server. This uses the modules listed above to begin a tele-

scope server that can be connected through the telescope plugin in
Stellarium.

Figure 3.4: telescope_server.py instantiates a telescope server and runs it. This
can be connected to Stellarium via the telescope control plugin.

laser_control_main.py

This module implements a GUI to bring together all the modules

18

mentioned above controlled by user input. It defines a single class
called LaserControlMain which derives from QMainWindow class of
QtGui. This starts GUI window along with a Telescope server.

Figure 3.5: Connecting the device by choosing from the list of ports

Figure 3.6: In configuration mode

19

Figure 3.7: When calibration is done once again, we choose each reference on Stel-
larium and move the laser pointer accordingly.

3.2.1.2 Arduino code

AxesLib

AxesLib.h defines a class called AxesLib which will set the axes for

the laser pointer to move about, and control the on/off state of the
laser. The movements are based on the Digital Differential Algorithm

(DDA). AxesLib.cpp defines the methods declared for the class Axes-
Lib and uses AxesLib.h header file.

CoordsLib

A class called CoordsLib is defined which contains various attributes
for storing various values essential in calculating the transformation

matrix for calculating the horizontal coordinates from the equatorial
coordinates. The calibration is explained in greater detail below.

20

Figure 3.8: When configuration mode is unchecked, references are assumed to be
set and pointing is activated.

3.2.2 Qt/C++ based software module

3.2.2.1 Plugin Code

File Structure

bt_osp_off.png/bt_osp_on.png

The png files for the icon displayed in Stellarium to start OpenSky-

Planetarium Plugin.These icons are simple png images displaying osp
text. When the icon is not clicked it is shown in the white colour else
shown in grey colour in the toolbar in Stellarium.Hence two icons with

same image and different colour was needed to display its on/off state.

OpenSkyPlanetarium.qrc

The Qt resource file for including resources such as png files in our
plugin compilation.

CMakeLists.txt

CMakeLists.txt includes commands to build the project Open Sky
Planetarium.This file is used to determine the external libraries and

path variable for successfully building the plugin.

src/

This directory includes source files for the dynamic plugin. The files

21

Figure 3.9: When tracking mode is checked in pointing, there is a feedback from
the device pointer coordinates at regular intervals.

Figure 3.10: Open Sky Planetarium Root Directory

and directories included in src/ are represented in the Fig.3.10.

Calibrate.hpp/Calibrate.cpp

All codes related to calibration are included in this class Calibrate.The

tranformation matrix is calculated in this class. The current build in-
cludes calculation using three references. This can be increased in

future for more accurate calculation of the transformation matrix. It
also includes functions for getting equatorial and horizontal coordi-

nates using transformation matrix.

22

Figure 3.11: Open Sky Planetarium src/ Directory

SerialCom.hpp/SerialCom.cpp

Serial Communication between the arduino and the plugin is facili-

tated by SerialCom class. The Serial Communication approach used
for communication is a blocking master approach.The examples in Qt

docs served helpful for development of Serial Communication between
arduino and Stellarium.

LaserDev.hpp/LaserDev.cpp

Communication with devices such as sending request and receiving
response is performed by LaserDev class. LaserDev class uses Seri-

alCom class for sending and receiving data from arduino. Different
commands such as move, movx, movy, laon, loff and post is send to

the arduino, which in turn gives back response to these commands.

OpenSkyPlanetarium.hpp/OpenSkyPlanetarium.cpp

The main file of the plugin.Links the Gui file with Stellarium. This
class has a predefined format and no changes are required to this

format to integrate the plugin with Stellarium.

23

CMakeLists.txt

CMakeLists.txt includes commands to compile the classes. This file is
used to set resources and ui files for compiling with the project.

gui/

The gui/ folder includes files for the plugin gui.This folder includes
OSPMainDialog.ui and OSPMainDialog class.

Figure 3.12: Open Sky Planetarium src/gui/ Directory

OSPMainDialog.ui

The xml file of the gui is OSPMainDialog.ui. This file is created using Qt Creator
IDE. The ScreenShots of the GUI are attached below:

OSPMainDialog.hpp/OSPMainDialog.cpp

This is the main class of the plugin. It links GUI to the various classes and its
functions. The GUI signals are connected to the respective functions in this class.
The OSPMainDialog includes linking GUI and the Script Engine Functions like
compile,open,save and execute. It also includes user defined signals that will be
called during execution of the script.

24

Figure 3.13: OpenSkyPlanetarium Calibrate Window

Figure 3.14: OpenSkyPlanetarium ScriptEngine Window

25

Figure 3.15: OpenSkyPlanetarium About Window

26

4 Calibration

Initially calibration was being done as a part of the Arduino code, i.e. the tran-
formation matrix was calculated and stored in the hardware module, as opposed to
obtaining the transformation matrix in the software, tranforming the coordinates,
and deploying to the hardware for just pointing.

But with updates to the hardware and the software code, later it was decided to go
with obtaining transformation matrix in the software. This increases the chances of
including more accuracy to the calibration by including more calculations and this
would provide more memory to arduino which can be used to obtain better accuracy
in its mechanical positioning calculations.

So now the software only sends horizontal cordinates to the arduino. These hori-
zontal coordinates are calculated using equatorial coordinates of the star and trans-
formation matrix obtained after calibration.

For calibrating, the position of the telescope is needed. The telescope positions are
calculated in arduino and sent to plugin for setting reference when the command
“post” is sent to arduino. The telescope position is obtained in the following format
“t_[x]_[y]” where [x] is azimuth and [y] is altitude of telescope.

Mathematical Explaination for Calibration:

Let us assume that, for a particular point, ra, dec, alt and az are given by α,δ, h
and A respectively. Time is also taken into consideration since the objects in the
night sky are in motion. Since we have 3 variables, we would require to measure the
coordinates at least three orthogonally independent points, or two points and their
cross product.

In Cartesian space, let [L,M,N] be the equatorial coordinates, and [l,m,n] be the
horizontal coordinates. They are thus given by:






L

M

N





=







sinδcos(α − k(t − t0))
sinδsin(α − k(t − t0))

cosδ













l

m

n





=







sin(h)cosA

sin(h)sinA

cosA







We need a transformation matrix T such that:

27







l

m

n





= T x







L

M

N





 where T is 3x3 matrix.







l1 l2 l3
m1 m2 m3

n1 n2 n3





= T x







L1 L2 L3

M1 M2 M3

N1 N2 N3







[T] =







l1 l2 l3
m1 m2 m3

n1 n2 n3













L1 L2 L3

M1 M2 M3

N1 N2 N3







−1

Thus we calculate the transformation matrix. The inverse transformation matrix
is obtained by inversing matrix T, which when multiplied by a set of horizontal
coordinates in Cartesian space gives rise to equatorial coordinates. [4]

During initial build of the hardware ,the Arduino code CoordsLib.h and Coord-
sLib.cpp defined various functions in the class CoordsLib to facilitate the calculation
of a transformation matrix with minimal error.

Instead of three references chosen, the code made transformation matrix with just
two by using the third independent point as the vector product of the first two:

P3 = P1x P2

P3 =







l3
m3

n3





 =







m1n2 − n1m2

n1l2 − l1n2

l1m2 − m1l2







The current build of the project includes calibration in software. The class Calibrate
is used for calibration. It includes three reference calculation rather than two refer-
ence calculation as in CoordsLib. The more references used increases the accuracy
of the transformation matrix.

The various matrix functions defined in Calibrate to enable calculation of
transformation matrix are:

• inverse a matrix: _inv()

• set references (for each of the two references) : _setR1(), _setR2(), _setR3()

• set equatorial coordinates and horizontal coordinates in Cartesian coordiantes:
_setEVC() and _set HVC()

• set the transformation matrix : _setT()

• get horizontal coordinates (multiplying the transformation matrix by equato-
rial coordinates): _getHCoords()

• get equatorial coordinates (multiplying the transformation matrix by horizon-
tal coordinates): _getECoords()

These functions help in deriving and storing the transformation matrix for subse-
quent pointing.

28

5 ScriptEngine

Figure 5.1: ScriptEngine

The Script Engine in Open Sky Planetarium is used to write and execute scripts in
Stellarium. Since Open Sky Planetarium is being developed to reach to common
masses and students, the scripting part of the ScriptEngine is kept very simple. It
includes only four commands :

• Goto

• Play

• Wait

• Laser on/off

It is recommended to use GUI buttons to write scripts rather than typing the scripts
manually. The GUI buttons for the above mentioned four commands have inbuilt
input dialog which takes input in the required format of the script.

29

5.1 Goto

Figure 5.2: Goto Command Success

The goto command requires an object in stellarium sky to be clicked before clicking
on goto button. A error message is shown if goto is directly clicked. The goto
command syntax is as follows:

goto [star-name];

During compilation when goto command is encountered while parsing, the plugin
finds the coordinates of the star from its name and stores it in a list which is accessed
while executing the script.

30

Figure 5.3: Goto Command Failure

5.2 Play

The play command is used to select the audio file. The audio file must be selected
from the {User-Directory}/modules/OpenSkyPlanetarium/audio folder. The cur-
rent build of the plugin uses QMediaPlayer to play audio. QMediaPlayer requires
libgstreamer for playing audio files. Also stellarium is not enabled by default to
use Media. Hence another opensource cross platform class should be found out for
better portability. The play command syntax is as follows:

play [script-audio].mp3;

31

Figure 5.4: Play Command Success

5.3 Wait

The wait command is used to insert wait time in script. This command is required
to synchronise the laser timing with the script audio. When clicked on wait button,
input dialog pops up which asks for X minutes and Y seconds for wait time. The
wait syntax is as follows:

wait [X]m[Y]s;

Here X is in minutes and Y is in seconds.

32

Figure 5.5: Play Command Failure

5.4 Laser On/Off

The Laser On/Off command button click opens an input dialog asking for “on” and
“off”. The Laser command syntax is :

turn [on / off] ;

33

Figure 5.6: Wait Command Success

Figure 5.7: Wait Command Failure

34

Figure 5.8: Laser Command Success

Figure 5.9: Laser Command Failure

35

6 Future Prospects

During the course of this project it was realized that the project is not as user-
friendly as we would like in its current form, which is rather crude. To enable
smoother user experience, calibration should be included as a part of Stellarium
itself, as a dynamic plugin which could be downloaded by anybody at will and used.
The stand alone application will have to be distributed separately along with the
pointer equipment, which could cause some hassle. Also, the calibration takes a
lot of time as the user would not know which objects to point at, or whether they
are pointing at the right object. This could be cross-checked if the application was
integrated into Stellarium.

So the project was slowly evolved to cater all the needs and a dynamic plugin was
created as a result. Most of the features such as calibration,serial communication,
script engine have been implemented in the plugin. But still some more tasks and
enhancements are needed before making it available to the end user. The tasks
remaining are :

• Implement OpenSource Cross Platform Audio Playing.

• Improve calibration by increasing number of references from three to four.

• Improve Serial Communication to make it more reliable.

Yet another improvement is regarding the movement of the laser pointer which has
been restricted to 00 to 3600 and back. This means that, in a planetarium show,
the laser beam would trace out the distance between two stars to let the audience
grasp the proximity of the objects in the night sky, but this need not be the smallest
possible path as the pointer can move either clockwise or anticlockwise, once. A
better algorithm to trace the smallest path could be used.

Time is a minor factor in astronomical calculations, especially since references are
usually taken one after another in a short time span, and thus can be eliminated. In
that case, instead of converting the horizontal/equatorial coordinates to Cartesian
system and back, we could directly use the polar system and store the transformation
matrix as a 2x2 matrix. This improves calculation speed and lowers the burden on
the Arduino microcontroller which also needs to individually calculate each of the
coordinates using a long series of arithmetic operations.

37

Bibliography

[1] Arduino-Telescope control: A blogpost on a Spanish blog

[2] Stellarium wiki

[3] PyQt reference and installation

[4] Toshimi Taki’s monograph on matrix transformations

[5] Stellarium Classes

[6] Qt Docs

39

http://yoestuveaqui.es/blog/telescope-control-with-stellarium-and-arduino/
http://www.stellarium.org/wiki/index.php/Main_Page
https://riverbankcomputing.com/software/pyqt/intro
http://www.geocities.jp/toshimi_taki/matrix/matrix.htm
http://www.stellarium.org/doc/head/index.html
http://doc.qt.io/

	Contents
	Acknowledgements
	Declarations
	Abstract
	1 Introduction
	1.1 Aim of the project
	1.2 Definitions to some terms used

	2 Tools for Software
	2.1 Stellarium
	2.1.1 Plugins
	2.1.2 Scripting API

	2.2 Qt
	2.2.1 Qt Framework
	2.2.2 Qt Creator

	2.3 PyQt

	3 Modules
	3.1 Hardware
	3.1.1 Stepper motor with Dobsonian mount
	3.1.2 Servo motor with Pan-tilt
	3.1.3 Shifting Calibration code to Software

	3.2 Software
	3.2.1 Python Based Software Module
	3.2.2 Qt/C++ based software module

	4 Calibration
	5 ScriptEngine
	5.1 Goto
	5.2 Play
	5.3 Wait
	5.4 Laser On/Off

	6 Future Prospects
	Bibliography

