//-----------------------------------------------------------------------------
// Copyright 2007 Jonathan Westhues
//
// This file is part of LDmicro.
//
// LDmicro is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// LDmicro is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with LDmicro. If not, see .
//------
//
// Routines for drawing the ladder diagram as a schematic on screen. This
// includes the stuff to figure out where we should draw each leaf (coil,
// contact, timer, ...) element on screen and how we should connect them up
// with wires.
// Jonathan Westhues, Oct 2004
//-----------------------------------------------------------------------------
#include "linuxUI.h"
#include
#include
#include "ldmicro.h"
// Number of drawing columns (leaf element units) available. We want to
// know this so that we can right-justify the coils.
int ColsAvailable;
// Set when we draw the selected element in the program. If there is no
// element selected then we ought to put the cursor at the top left of
// the screen.
BOOL SelectionActive;
// Is the element currently being drawn highlighted because it is selected?
// If so we must not do further syntax highlighting.
BOOL ThisHighlighted;
#define TOO_LONG _("!!!too long!!!")
#define DM_BOUNDS(gx, gy) { \
if((gx) >= DISPLAY_MATRIX_X_SIZE || (gx) < 0) oops(); \
if((gy) >= DISPLAY_MATRIX_Y_SIZE || (gy) < 0) oops(); \
}
//-----------------------------------------------------------------------------
// The display code is the only part of the program that knows how wide a
// rung will be when it's displayed; so this is the only convenient place to
// warn the user and undo their changes if they created something too wide.
// This is not very clean.
//-----------------------------------------------------------------------------
static BOOL CheckBoundsUndoIfFails(int gx, int gy)
{
if(gx >= DISPLAY_MATRIX_X_SIZE || gx < 0 ||
gy >= DISPLAY_MATRIX_Y_SIZE || gy < 0)
{
if(CanUndo()) {
UndoUndo();
Error(_("Too many elements in subcircuit!"));
return TRUE;
}
}
return FALSE;
}
//-----------------------------------------------------------------------------
// Determine the width, in leaf element units, of a particular subcircuit.
// The width of a leaf is 1, the width of a series circuit is the sum of
// of the widths of its members, and the width of a parallel circuit is
// the maximum of the widths of its members.
//-----------------------------------------------------------------------------
static int CountWidthOfElement(int which, void *elem, int soFar)
{
switch(which) {
case ELEM_PLACEHOLDER:
case ELEM_OPEN:
case ELEM_SHORT:
case ELEM_CONTACTS:
case ELEM_TON:
case ELEM_TOF:
case ELEM_RTO:
case ELEM_CTU:
case ELEM_CTD:
case ELEM_ONE_SHOT_RISING:
case ELEM_ONE_SHOT_FALLING:
case ELEM_EQU:
case ELEM_NEQ:
case ELEM_GRT:
case ELEM_GEQ:
case ELEM_LES:
case ELEM_LEQ:
case ELEM_UART_RECV:
case ELEM_UART_SEND:
return 1;
case ELEM_FORMATTED_STRING:
return 2;
case ELEM_COMMENT: {
if(soFar != 0) oops();
ElemLeaf *l = (ElemLeaf *)elem;
char tbuf[MAX_COMMENT_LEN];
strcpy(tbuf, l->d.comment.str);
char *b = strchr(tbuf, '\n');
int len;
if(b) {
*b = '\0';
len = max(strlen(tbuf)-1, strlen(b+1));
} else {
len = strlen(tbuf);
}
// round up, and allow space for lead-in
len = (len + 7 + (POS_WIDTH-1)) / POS_WIDTH;
return max(ColsAvailable, len);
}
case ELEM_CTC:
case ELEM_RES:
case ELEM_COIL:
case ELEM_MOVE:
case ELEM_SHIFT_REGISTER:
case ELEM_LOOK_UP_TABLE:
case ELEM_PIECEWISE_LINEAR:
case ELEM_MASTER_RELAY:
case ELEM_READ_ADC:
case ELEM_SET_PWM:
case ELEM_PERSIST:
if(ColsAvailable - soFar > 1) {
return ColsAvailable - soFar;
} else {
return 1;
}
case ELEM_ADD:
case ELEM_SUB:
case ELEM_MUL:
case ELEM_DIV:
if(ColsAvailable - soFar > 2) {
return ColsAvailable - soFar;
} else {
return 2;
}
case ELEM_SERIES_SUBCKT: {
// total of the width of the members
int total = 0;
int i;
ElemSubcktSeries *s = (ElemSubcktSeries *)elem;
for(i = 0; i < s->count; i++) {
total += CountWidthOfElement(s->contents[i].which,
s->contents[i].d.any, total+soFar);
}
return total;
}
case ELEM_PARALLEL_SUBCKT: {
// greatest of the width of the members
int max = 0;
int i;
ElemSubcktParallel *p = (ElemSubcktParallel *)elem;
for(i = 0; i < p->count; i++) {
int w = CountWidthOfElement(p->contents[i].which,
p->contents[i].d.any, soFar);
if(w > max) {
max = w;
}
}
return max;
}
default:
oops();
}
}
//-----------------------------------------------------------------------------
// Determine the height, in leaf element units, of a particular subcircuit.
// The height of a leaf is 1, the height of a parallel circuit is the sum of
// of the heights of its members, and the height of a series circuit is the
// maximum of the heights of its members. (This is the dual of the width
// case.)
//-----------------------------------------------------------------------------
int CountHeightOfElement(int which, void *elem)
{
switch(which) {
CASE_LEAF
return 1;
case ELEM_PARALLEL_SUBCKT: {
// total of the height of the members
int total = 0;
int i;
ElemSubcktParallel *s = (ElemSubcktParallel *)elem;
for(i = 0; i < s->count; i++) {
total += CountHeightOfElement(s->contents[i].which,
s->contents[i].d.any);
}
return total;
}
case ELEM_SERIES_SUBCKT: {
// greatest of the height of the members
int max = 0;
int i;
ElemSubcktSeries *s = (ElemSubcktSeries *)elem;
for(i = 0; i < s->count; i++) {
int w = CountHeightOfElement(s->contents[i].which,
s->contents[i].d.any);
if(w > max) {
max = w;
}
}
return max;
}
default:
oops();
}
}
//-----------------------------------------------------------------------------
// Determine the width, in leaf element units, of the widest row of the PLC
// program (i.e. loop over all the rungs and find the widest).
//-----------------------------------------------------------------------------
int ProgCountWidestRow(void)
{
int i;
int max = 0;
int colsTemp = ColsAvailable;
ColsAvailable = 0;
for(i = 0; i < Prog.numRungs; i++) {
int w = CountWidthOfElement(ELEM_SERIES_SUBCKT, Prog.rungs[i], 0);
if(w > max) {
max = w;
}
}
ColsAvailable = colsTemp;
return max;
}
//-----------------------------------------------------------------------------
// Draw a vertical wire one leaf element unit high up from (cx, cy), where cx
// and cy are in charcter units.
//-----------------------------------------------------------------------------
static void VerticalWire(int cx, int cy)
{
int j;
for(j = 1; j < POS_HEIGHT; j++) {
DrawChars(cx, cy + (POS_HEIGHT/2 - j), "|");
}
DrawChars(cx, cy + (POS_HEIGHT/2), "+");
DrawChars(cx, cy + (POS_HEIGHT/2 - POS_HEIGHT), "+");
}
//-----------------------------------------------------------------------------
// Convenience functions for making the text colors pretty, for DrawElement.
//-----------------------------------------------------------------------------
static void NormText(void)
{
SetTextColor(Hdc, InSimulationMode ? HighlightColours.simOff :
HighlightColours.def);
SelectObject(Hdc, FixedWidthFont);
}
static void EmphText(void)
{
SetTextColor(Hdc, InSimulationMode ? HighlightColours.simOn :
HighlightColours.selected);
SelectObject(Hdc, FixedWidthFontBold);
}
static void NameText(void)
{
if(!InSimulationMode && !ThisHighlighted) {
SetTextColor(Hdc, HighlightColours.name);
}
}
static void BodyText(void)
{
if(!InSimulationMode && !ThisHighlighted) {
SetTextColor(Hdc, HighlightColours.def);
}
}
static void PoweredText(BOOL powered)
{
if(InSimulationMode) {
if(powered)
EmphText();
else
NormText();
}
}
//-----------------------------------------------------------------------------
// Count the length of a string, in characters. Nonstandard because the
// string may contain special characters to indicate formatting (syntax
// highlighting).
//-----------------------------------------------------------------------------
static int FormattedStrlen(char *str)
{
int l = 0;
while(*str) {
if(*str > 10) {
l++;
}
str++;
}
return l;
}
//-----------------------------------------------------------------------------
// Draw a string, centred in the space of a single position, with spaces on
// the left and right. Draws on the upper line of the position.
//-----------------------------------------------------------------------------
static void CenterWithSpaces(int cx, int cy, char *str, BOOL powered,
BOOL isName)
{
int extra = POS_WIDTH - FormattedStrlen(str);
PoweredText(powered);
if(isName) NameText();
DrawChars(cx + (extra/2), cy + (POS_HEIGHT/2) - 1, str);
if(isName) BodyText();
}
//-----------------------------------------------------------------------------
// Like CenterWithWires, but for an arbitrary width position (e.g. for ADD
// and SUB, which are double-width).
//-----------------------------------------------------------------------------
static void CenterWithWiresWidth(int cx, int cy, char *str, BOOL before,
BOOL after, int totalWidth)
{
int extra = totalWidth - FormattedStrlen(str);
PoweredText(after);
DrawChars(cx + (extra/2), cy + (POS_HEIGHT/2), str);
PoweredText(before);
int i;
for(i = 0; i < (extra/2); i++) {
DrawChars(cx + i, cy + (POS_HEIGHT/2), "-");
}
PoweredText(after);
for(i = FormattedStrlen(str)+(extra/2); i < totalWidth; i++) {
DrawChars(cx + i, cy + (POS_HEIGHT/2), "-");
}
}
//-----------------------------------------------------------------------------
// Draw a string, centred in the space of a single position, with en dashes on
// the left and right coloured according to the powered state. Draws on the
// middle line.
//-----------------------------------------------------------------------------
static void CenterWithWires(int cx, int cy, char *str, BOOL before, BOOL after)
{
CenterWithWiresWidth(cx, cy, str, before, after, POS_WIDTH);
}
//-----------------------------------------------------------------------------
// Draw an end of line element (coil, RES, MOV, etc.). Special things about
// an end of line element: we must right-justify it.
//-----------------------------------------------------------------------------
static BOOL DrawEndOfLine(int which, ElemLeaf *leaf, int *cx, int *cy,
BOOL poweredBefore)
{
int cx0 = *cx, cy0 = *cy;
BOOL poweredAfter = leaf->poweredAfter;
int thisWidth;
switch(which) {
case ELEM_ADD:
case ELEM_SUB:
case ELEM_MUL:
case ELEM_DIV:
thisWidth = 2;
break;
default:
thisWidth = 1;
break;
}
NormText();
PoweredText(poweredBefore);
while(*cx < (ColsAvailable-thisWidth)*POS_WIDTH) {
int gx = *cx/POS_WIDTH;
int gy = *cy/POS_HEIGHT;
if(CheckBoundsUndoIfFails(gx, gy)) return FALSE;
if(gx >= DISPLAY_MATRIX_X_SIZE) oops();
DM_BOUNDS(gx, gy);
DisplayMatrix[gx][gy] = PADDING_IN_DISPLAY_MATRIX;
DisplayMatrixWhich[gx][gy] = ELEM_PADDING;
int i;
for(i = 0; i < POS_WIDTH; i++) {
DrawChars(*cx + i, *cy + (POS_HEIGHT/2), "-");
}
*cx += POS_WIDTH;
cx0 += POS_WIDTH;
}
if(leaf == Selected && !InSimulationMode) {
EmphText();
ThisHighlighted = TRUE;
} else {
ThisHighlighted = FALSE;
}
switch(which) {
case ELEM_CTC: {
char buf[256];
ElemCounter *c = &leaf->d.counter;
sprintf(buf, "{\x01""CTC\x02 0:%d}", c->max);
CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter);
break;
}
case ELEM_RES: {
ElemReset *r = &leaf->d.reset;
CenterWithSpaces(*cx, *cy, r->name, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, "{RES}", poweredBefore, poweredAfter);
break;
}
case ELEM_READ_ADC: {
ElemReadAdc *r = &leaf->d.readAdc;
CenterWithSpaces(*cx, *cy, r->name, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, "{READ ADC}", poweredBefore,
poweredAfter);
break;
}
case ELEM_SET_PWM: {
ElemSetPwm *s = &leaf->d.setPwm;
CenterWithSpaces(*cx, *cy, s->name, poweredAfter, TRUE);
char l[50];
if(s->targetFreq >= 100000) {
sprintf(l, "{PWM %d kHz}", (s->targetFreq+500)/1000);
} else if(s->targetFreq >= 10000) {
sprintf(l, "{PWM %.1f kHz}", s->targetFreq/1000.0);
} else if(s->targetFreq >= 1000) {
sprintf(l, "{PWM %.2f kHz}", s->targetFreq/1000.0);
} else {
sprintf(l, "{PWM %d Hz}", s->targetFreq);
}
CenterWithWires(*cx, *cy, l, poweredBefore,
poweredAfter);
break;
}
case ELEM_PERSIST:
CenterWithSpaces(*cx, *cy, leaf->d.persist.var, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, "{PERSIST}", poweredBefore, poweredAfter);
break;
case ELEM_MOVE: {
char top[256];
char bot[256];
ElemMove *m = &leaf->d.move;
if((strlen(m->dest) > (POS_WIDTH - 9)) ||
(strlen(m->src) > (POS_WIDTH - 9)))
{
CenterWithWires(*cx, *cy, TOO_LONG, poweredBefore,
poweredAfter);
break;
}
strcpy(top, "{ }");
memcpy(top+1, m->dest, strlen(m->dest));
top[strlen(m->dest) + 3] = ':';
top[strlen(m->dest) + 4] = '=';
strcpy(bot, "{ \x01MOV\x02}");
memcpy(bot+2, m->src, strlen(m->src));
CenterWithSpaces(*cx, *cy, top, poweredAfter, FALSE);
CenterWithWires(*cx, *cy, bot, poweredBefore, poweredAfter);
break;
}
case ELEM_MASTER_RELAY:
CenterWithWires(*cx, *cy, "{MASTER RLY}", poweredBefore,
poweredAfter);
break;
case ELEM_SHIFT_REGISTER: {
char bot[MAX_NAME_LEN+20];
memset(bot, ' ', sizeof(bot));
bot[0] = '{';
sprintf(bot+2, "%s0..%d", leaf->d.shiftRegister.name,
leaf->d.shiftRegister.stages-1);
bot[strlen(bot)] = ' ';
bot[13] = '}';
bot[14] = '\0';
CenterWithSpaces(*cx, *cy, "{\x01SHIFT REG\x02 }",
poweredAfter, FALSE);
CenterWithWires(*cx, *cy, bot, poweredBefore, poweredAfter);
break;
}
case ELEM_PIECEWISE_LINEAR:
case ELEM_LOOK_UP_TABLE: {
char top[MAX_NAME_LEN+20], bot[MAX_NAME_LEN+20];
char *dest, *index, *str;
if(which == ELEM_PIECEWISE_LINEAR) {
dest = leaf->d.piecewiseLinear.dest;
index = leaf->d.piecewiseLinear.index;
str = "PWL";
} else {
dest = leaf->d.lookUpTable.dest;
index = leaf->d.lookUpTable.index;
str = "LUT";
}
memset(top, ' ', sizeof(top));
top[0] = '{';
sprintf(top+2, "%s :=", dest);
top[strlen(top)] = ' ';
top[13] = '}';
top[14] = '\0';
CenterWithSpaces(*cx, *cy, top, poweredAfter, FALSE);
memset(bot, ' ', sizeof(bot));
bot[0] = '{';
sprintf(bot+2, " %s[%s]", str, index);
bot[strlen(bot)] = ' ';
bot[13] = '}';
bot[14] = '\0';
CenterWithWires(*cx, *cy, bot, poweredBefore, poweredAfter);
break;
}
case ELEM_COIL: {
char buf[4];
ElemCoil *c = &leaf->d.coil;
buf[0] = '(';
if(c->negated) {
buf[1] = '/';
} else if(c->setOnly) {
buf[1] = 'S';
} else if(c->resetOnly) {
buf[1] = 'R';
} else {
buf[1] = ' ';
}
buf[2] = ')';
buf[3] = '\0';
CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter);
break;
}
case ELEM_DIV:
case ELEM_MUL:
case ELEM_SUB:
case ELEM_ADD: {
char top[POS_WIDTH*2-3+2];
char bot[POS_WIDTH*2-3];
memset(top, ' ', sizeof(top)-1);
top[0] = '{';
memset(bot, ' ', sizeof(bot)-1);
bot[0] = '{';
int lt = 1;
if(which == ELEM_ADD) {
memcpy(top+lt, "\x01""ADD\x02", 5);
} else if(which == ELEM_SUB) {
memcpy(top+lt, "\x01SUB\x02", 5);
} else if(which == ELEM_MUL) {
memcpy(top+lt, "\x01MUL\x02", 5);
} else if(which == ELEM_DIV) {
memcpy(top+lt, "\x01""DIV\x02", 5);
} else oops();
lt += 7;
memcpy(top+lt, leaf->d.math.dest, strlen(leaf->d.math.dest));
lt += strlen(leaf->d.math.dest) + 2;
top[lt++] = ':';
top[lt++] = '=';
int lb = 2;
memcpy(bot+lb, leaf->d.math.op1, strlen(leaf->d.math.op1));
lb += strlen(leaf->d.math.op1) + 1;
if(which == ELEM_ADD) {
bot[lb++] = '+';
} else if(which == ELEM_SUB) {
bot[lb++] = '-';
} else if(which == ELEM_MUL) {
bot[lb++] = '*';
} else if(which == ELEM_DIV) {
bot[lb++] = '/';
} else oops();
lb++;
memcpy(bot+lb, leaf->d.math.op2, strlen(leaf->d.math.op2));
lb += strlen(leaf->d.math.op2);
int l = max(lb, lt - 2);
top[l+2] = '}'; top[l+3] = '\0';
bot[l] = '}'; bot[l+1] = '\0';
int extra = 2*POS_WIDTH - FormattedStrlen(top);
PoweredText(poweredAfter);
DrawChars(*cx + (extra/2), *cy + (POS_HEIGHT/2) - 1, top);
CenterWithWiresWidth(*cx, *cy, bot, poweredBefore, poweredAfter,
2*POS_WIDTH);
*cx += POS_WIDTH;
break;
}
default:
oops();
break;
}
*cx += POS_WIDTH;
return poweredAfter;
}
//-----------------------------------------------------------------------------
// Draw a leaf element. Special things about a leaf: no need to recurse
// further, and we must put it into the display matrix.
//-----------------------------------------------------------------------------
static BOOL DrawLeaf(int which, ElemLeaf *leaf, int *cx, int *cy,
BOOL poweredBefore)
{
int cx0 = *cx, cy0 = *cy;
BOOL poweredAfter = leaf->poweredAfter;
switch(which) {
case ELEM_COMMENT: {
char tbuf[MAX_COMMENT_LEN];
char tlbuf[MAX_COMMENT_LEN+8];
strcpy(tbuf, leaf->d.comment.str);
char *b = strchr(tbuf, '\n');
if(b) {
if(b[-1] == '\r') b[-1] = '\0';
*b = '\0';
sprintf(tlbuf, "\x03 ; %s\x02", tbuf);
DrawChars(*cx, *cy + (POS_HEIGHT/2) - 1, tlbuf);
sprintf(tlbuf, "\x03 ; %s\x02", b+1);
DrawChars(*cx, *cy + (POS_HEIGHT/2), tlbuf);
} else {
sprintf(tlbuf, "\x03 ; %s\x02", tbuf);
DrawChars(*cx, *cy + (POS_HEIGHT/2) - 1, tlbuf);
}
*cx += ColsAvailable*POS_WIDTH;
break;
}
case ELEM_PLACEHOLDER: {
NormText();
CenterWithWiresWidth(*cx, *cy, "--", FALSE, FALSE, 2);
*cx += POS_WIDTH;
break;
}
case ELEM_CONTACTS: {
char buf[4];
ElemContacts *c = &leaf->d.contacts;
buf[0] = ']';
buf[1] = c->negated ? '/' : ' ';
buf[2] = '[';
buf[3] = '\0';
CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter);
*cx += POS_WIDTH;
break;
}
{
char *s;
case ELEM_EQU:
s = "=="; goto cmp;
case ELEM_NEQ:
s = "/="; goto cmp;
case ELEM_GRT:
s = ">"; goto cmp;
case ELEM_GEQ:
s = ">="; goto cmp;
case ELEM_LES:
s = "<"; goto cmp;
case ELEM_LEQ:
s = "<="; goto cmp;
cmp:
char s1[POS_WIDTH+10], s2[POS_WIDTH+10];
int l1, l2, lmax;
l1 = 2 + 1 + strlen(s) + strlen(leaf->d.cmp.op1);
l2 = 2 + 1 + strlen(leaf->d.cmp.op2);
lmax = max(l1, l2);
if(lmax < POS_WIDTH) {
memset(s1, ' ', sizeof(s1));
s1[0] = '[';
s1[lmax-1] = ']';
s1[lmax] = '\0';
strcpy(s2, s1);
memcpy(s1+1, leaf->d.cmp.op1, strlen(leaf->d.cmp.op1));
memcpy(s1+strlen(leaf->d.cmp.op1)+2, s, strlen(s));
memcpy(s2+2, leaf->d.cmp.op2, strlen(leaf->d.cmp.op2));
} else {
strcpy(s1, "");
strcpy(s2, TOO_LONG);
}
CenterWithSpaces(*cx, *cy, s1, poweredAfter, FALSE);
CenterWithWires(*cx, *cy, s2, poweredBefore, poweredAfter);
*cx += POS_WIDTH;
break;
}
case ELEM_OPEN:
CenterWithWires(*cx, *cy, "+ +", poweredBefore, poweredAfter);
*cx += POS_WIDTH;
break;
case ELEM_SHORT:
CenterWithWires(*cx, *cy, "+------+", poweredBefore, poweredAfter);
*cx += POS_WIDTH;
break;
case ELEM_ONE_SHOT_RISING:
case ELEM_ONE_SHOT_FALLING: {
char *s1, *s2;
if(which == ELEM_ONE_SHOT_RISING) {
s1 = " _ ";
s2 = "[\x01OSR\x02_/ ]";
} else if(which == ELEM_ONE_SHOT_FALLING) {
s1 = " _ ";
s2 = "[\x01OSF\x02 \\_]";
} else oops();
CenterWithSpaces(*cx, *cy, s1, poweredAfter, FALSE);
CenterWithWires(*cx, *cy, s2, poweredBefore, poweredAfter);
*cx += POS_WIDTH;
break;
}
case ELEM_CTU:
case ELEM_CTD: {
char *s;
if(which == ELEM_CTU)
s = "\x01""CTU\x02";
else if(which == ELEM_CTD)
s = "\x01""CTD\x02";
else oops();
char buf[256];
ElemCounter *c = &leaf->d.counter;
sprintf(buf, "[%s >=%d]", s, c->max);
CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter);
*cx += POS_WIDTH;
break;
}
case ELEM_RTO:
case ELEM_TON:
case ELEM_TOF: {
char *s;
if(which == ELEM_TON)
s = "\x01TON\x02";
else if(which == ELEM_TOF)
s = "\x01TOF\x02";
else if(which == ELEM_RTO)
s = "\x01RTO\x02";
else oops();
char buf[256];
ElemTimer *t = &leaf->d.timer;
if(t->delay >= 1000*1000) {
sprintf(buf, "[%s %.3f s]", s, t->delay/1000000.0);
} else if(t->delay >= 100*1000) {
sprintf(buf, "[%s %.1f ms]", s, t->delay/1000.0);
} else {
sprintf(buf, "[%s %.2f ms]", s, t->delay/1000.0);
}
CenterWithSpaces(*cx, *cy, t->name, poweredAfter, TRUE);
CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter);
*cx += POS_WIDTH;
break;
}
case ELEM_FORMATTED_STRING: {
// Careful, string could be longer than fits in our space.
char str[POS_WIDTH*2];
memset(str, 0, sizeof(str));
char *srcStr = leaf->d.fmtdStr.string;
memcpy(str, srcStr, min(strlen(srcStr), POS_WIDTH*2 - 7));
char bot[100];
sprintf(bot, "{\"%s\"}", str);
int extra = 2*POS_WIDTH - strlen(leaf->d.fmtdStr.var);
PoweredText(poweredAfter);
NameText();
DrawChars(*cx + (extra/2), *cy + (POS_HEIGHT/2) - 1,
leaf->d.fmtdStr.var);
BodyText();
CenterWithWiresWidth(*cx, *cy, bot, poweredBefore, poweredAfter,
2*POS_WIDTH);
*cx += 2*POS_WIDTH;
break;
}
case ELEM_UART_RECV:
case ELEM_UART_SEND:
CenterWithWires(*cx, *cy,
(which == ELEM_UART_RECV) ? "{UART RECV}" : "{UART SEND}",
poweredBefore, poweredAfter);
CenterWithSpaces(*cx, *cy, leaf->d.uart.name, poweredAfter, TRUE);
*cx += POS_WIDTH;
break;
default:
poweredAfter = DrawEndOfLine(which, leaf, cx, cy, poweredBefore);
break;
}
// And now we can enter the element into the display matrix so that the
// UI routines know what element is at position (gx, gy) when the user
// clicks there, and so that we know where to put the cursor if this
// element is selected.
// Don't use original cx0, as an end of line element might be further
// along than that.
cx0 = *cx - POS_WIDTH;
int gx = cx0/POS_WIDTH;
int gy = cy0/POS_HEIGHT;
if(CheckBoundsUndoIfFails(gx, gy)) return FALSE;
DM_BOUNDS(gx, gy);
DisplayMatrix[gx][gy] = leaf;
DisplayMatrixWhich[gx][gy] = which;
int xadj = 0;
switch(which) {
case ELEM_ADD:
case ELEM_SUB:
case ELEM_MUL:
case ELEM_DIV:
case ELEM_FORMATTED_STRING:
DM_BOUNDS(gx-1, gy);
DisplayMatrix[gx-1][gy] = leaf;
DisplayMatrixWhich[gx-1][gy] = which;
xadj = POS_WIDTH*FONT_WIDTH;
break;
}
if(which == ELEM_COMMENT) {
int i;
for(i = 0; i < ColsAvailable; i++) {
DisplayMatrix[i][gy] = leaf;
DisplayMatrixWhich[i][gy] = ELEM_COMMENT;
}
xadj = (ColsAvailable-1)*POS_WIDTH*FONT_WIDTH;
}
int x0 = X_PADDING + cx0*FONT_WIDTH;
int y0 = Y_PADDING + cy0*FONT_HEIGHT;
if(leaf->selectedState != SELECTED_NONE && leaf == Selected) {
SelectionActive = TRUE;
}
switch(leaf->selectedState) {
case SELECTED_LEFT:
Cursor.left = x0 + FONT_WIDTH - 4 - xadj;
Cursor.top = y0 - FONT_HEIGHT/2;
Cursor.width = 2;
Cursor.height = POS_HEIGHT*FONT_HEIGHT;
break;
case SELECTED_RIGHT:
Cursor.left = x0 + (POS_WIDTH-1)*FONT_WIDTH - 5;
Cursor.top = y0 - FONT_HEIGHT/2;
Cursor.width = 2;
Cursor.height = POS_HEIGHT*FONT_HEIGHT;
break;
case SELECTED_ABOVE:
Cursor.left = x0 + FONT_WIDTH/2 - xadj;
Cursor.top = y0 - 2;
Cursor.width = (POS_WIDTH-2)*FONT_WIDTH + xadj;
Cursor.height = 2;
break;
case SELECTED_BELOW:
Cursor.left = x0 + FONT_WIDTH/2 - xadj;
Cursor.top = y0 + (POS_HEIGHT-1)*FONT_HEIGHT +
FONT_HEIGHT/2 - 2;
Cursor.width = (POS_WIDTH-2)*(FONT_WIDTH) + xadj;
Cursor.height = 2;
break;
default:
break;
}
return poweredAfter;
}
//-----------------------------------------------------------------------------
// Draw a particular subcircuit with its top left corner at *cx and *cy (in
// characters). If it is a leaf element then just print it and return; else
// loop over the elements of the subcircuit and call ourselves recursively.
// At the end updates *cx and *cy.
//
// In simulation mode, returns TRUE the circuit is energized after the given
// element, else FALSE. This is needed to colour all the wires correctly,
// since the colouring indicates whether a wire is energized.
//-----------------------------------------------------------------------------
BOOL DrawElement(int which, void *elem, int *cx, int *cy, BOOL poweredBefore)
{
BOOL poweredAfter;
int cx0 = *cx, cy0 = *cy;
ElemLeaf *leaf = (ElemLeaf *)elem;
SetBkColor(Hdc, InSimulationMode ? HighlightColours.simBg :
HighlightColours.bg);
NormText();
if(elem == Selected && !InSimulationMode) {
EmphText();
ThisHighlighted = TRUE;
} else {
ThisHighlighted = FALSE;
}
switch(which) {
case ELEM_SERIES_SUBCKT: {
int i;
ElemSubcktSeries *s = (ElemSubcktSeries *)elem;
poweredAfter = poweredBefore;
for(i = 0; i < s->count; i++) {
poweredAfter = DrawElement(s->contents[i].which,
s->contents[i].d.any, cx, cy, poweredAfter);
}
break;
}
case ELEM_PARALLEL_SUBCKT: {
int i;
ElemSubcktParallel *p = (ElemSubcktParallel *)elem;
int widthMax = CountWidthOfElement(which, elem, (*cx)/POS_WIDTH);
int heightMax = CountHeightOfElement(which, elem);
poweredAfter = FALSE;
int lowestPowered = -1;
int downBy = 0;
for(i = 0; i < p->count; i++) {
BOOL poweredThis;
poweredThis = DrawElement(p->contents[i].which,
p->contents[i].d.any, cx, cy, poweredBefore);
if(InSimulationMode) {
if(poweredThis) poweredAfter = TRUE;
PoweredText(poweredThis);
}
while((*cx - cx0) < widthMax*POS_WIDTH) {
int gx = *cx/POS_WIDTH;
int gy = *cy/POS_HEIGHT;
if(CheckBoundsUndoIfFails(gx, gy)) return FALSE;
DM_BOUNDS(gx, gy);
DisplayMatrix[gx][gy] = PADDING_IN_DISPLAY_MATRIX;
DisplayMatrixWhich[gx][gy] = ELEM_PADDING;
char buf[256];
int j;
for(j = 0; j < POS_WIDTH; j++) {
buf[j] = '-';
}
buf[j] = '\0';
DrawChars(*cx, *cy + (POS_HEIGHT/2), buf);
*cx += POS_WIDTH;
}
*cx = cx0;
int justDrewHeight = CountHeightOfElement(p->contents[i].which,
p->contents[i].d.any);
*cy += POS_HEIGHT*justDrewHeight;
downBy += justDrewHeight;
if(poweredThis) {
lowestPowered = downBy - 1;
}
}
*cx = cx0 + POS_WIDTH*widthMax;
*cy = cy0;
int j;
BOOL needWire;
if(*cx/POS_WIDTH != ColsAvailable) {
needWire = FALSE;
for(j = heightMax - 1; j >= 1; j--) {
if(j <= lowestPowered) PoweredText(poweredAfter);
if(DisplayMatrix[*cx/POS_WIDTH - 1][*cy/POS_HEIGHT + j]) {
needWire = TRUE;
}
if(needWire) VerticalWire(*cx - 1, *cy + j*POS_HEIGHT);
}
// stupid special case
if(lowestPowered == 0 && InSimulationMode) {
EmphText();
DrawChars(*cx - 1, *cy + (POS_HEIGHT/2), "+");
}
}
PoweredText(poweredBefore);
needWire = FALSE;
for(j = heightMax - 1; j >= 1; j--) {
if(DisplayMatrix[cx0/POS_WIDTH][*cy/POS_HEIGHT + j]) {
needWire = TRUE;
}
if(needWire) VerticalWire(cx0 - 1, *cy + j*POS_HEIGHT);
}
break;
}
default:
poweredAfter = DrawLeaf(which, leaf, cx, cy, poweredBefore);
break;
}
NormText();
return poweredAfter;
}
//-----------------------------------------------------------------------------
// Draw the rung that signals the end of the program. Kind of useless but
// do it anyways, for convention.
//-----------------------------------------------------------------------------
void DrawEndRung(int cx, int cy)
{
int i;
char *str = "[END]";
int lead = (POS_WIDTH - strlen(str))/2;
ThisHighlighted = TRUE;
for(i = 0; i < lead; i++) {
DrawChars(cx + i, cy + (POS_HEIGHT/2), "-");
}
DrawChars(cx + i, cy + (POS_HEIGHT/2), str);
i += strlen(str);
for(; i < ColsAvailable*POS_WIDTH; i++) {
DrawChars(cx + i, cy + (POS_HEIGHT/2), "-");
}
}