//----------------------------------------------------------------------------- // Copyright 2007 Jonathan Westhues // // This file is part of LDmicro. // // LDmicro is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // LDmicro is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with LDmicro. If not, see . //------ // // Routines for drawing the ladder diagram as a schematic on screen. This // includes the stuff to figure out where we should draw each leaf (coil, // contact, timer, ...) element on screen and how we should connect them up // with wires. // Jonathan Westhues, Oct 2004 //----------------------------------------------------------------------------- #include "linuxUI.h" #include #include #include "ldmicro.h" // Number of drawing columns (leaf element units) available. We want to // know this so that we can right-justify the coils. int ColsAvailable; // Set when we draw the selected element in the program. If there is no // element selected then we ought to put the cursor at the top left of // the screen. BOOL SelectionActive; // Is the element currently being drawn highlighted because it is selected? // If so we must not do further syntax highlighting. BOOL ThisHighlighted; #define TOO_LONG _("!!!too long!!!") #define DM_BOUNDS(gx, gy) { \ if((gx) >= DISPLAY_MATRIX_X_SIZE || (gx) < 0) oops(); \ if((gy) >= DISPLAY_MATRIX_Y_SIZE || (gy) < 0) oops(); \ } //----------------------------------------------------------------------------- // The display code is the only part of the program that knows how wide a // rung will be when it's displayed; so this is the only convenient place to // warn the user and undo their changes if they created something too wide. // This is not very clean. //----------------------------------------------------------------------------- // static BOOL CheckBoundsUndoIfFails(int gx, int gy) // { // if(gx >= DISPLAY_MATRIX_X_SIZE || gx < 0 || // gy >= DISPLAY_MATRIX_Y_SIZE || gy < 0) // { // if(CanUndo()) { // UndoUndo(); // Error(_("Too many elements in subcircuit!")); // return TRUE; // } // } // return FALSE; // } //----------------------------------------------------------------------------- // Determine the width, in leaf element units, of a particular subcircuit. // The width of a leaf is 1, the width of a series circuit is the sum of // of the widths of its members, and the width of a parallel circuit is // the maximum of the widths of its members. //----------------------------------------------------------------------------- // static int CountWidthOfElement(int which, void *elem, int soFar) // { // switch(which) { // case ELEM_PLACEHOLDER: // case ELEM_OPEN: // case ELEM_SHORT: // case ELEM_CONTACTS: // case ELEM_TON: // case ELEM_TOF: // case ELEM_RTO: // case ELEM_CTU: // case ELEM_CTD: // case ELEM_ONE_SHOT_RISING: // case ELEM_ONE_SHOT_FALLING: // case ELEM_EQU: // case ELEM_NEQ: // case ELEM_GRT: // case ELEM_GEQ: // case ELEM_LES: // case ELEM_LEQ: // case ELEM_UART_RECV: // case ELEM_UART_SEND: // return 1; // case ELEM_FORMATTED_STRING: // return 2; // case ELEM_COMMENT: { // if(soFar != 0) oops(); // ElemLeaf *l = (ElemLeaf *)elem; // char tbuf[MAX_COMMENT_LEN]; // strcpy(tbuf, l->d.comment.str); // char *b = strchr(tbuf, '\n'); // int len; // if(b) { // *b = '\0'; // len = max(strlen(tbuf)-1, strlen(b+1)); // } else { // len = strlen(tbuf); // } // // round up, and allow space for lead-in // len = (len + 7 + (POS_WIDTH-1)) / POS_WIDTH; // return max(ColsAvailable, len); // } // case ELEM_CTC: // case ELEM_RES: // case ELEM_COIL: // case ELEM_MOVE: // case ELEM_SHIFT_REGISTER: // case ELEM_LOOK_UP_TABLE: // case ELEM_PIECEWISE_LINEAR: // case ELEM_MASTER_RELAY: // case ELEM_READ_ADC: // case ELEM_SET_PWM: // case ELEM_PERSIST: // if(ColsAvailable - soFar > 1) { // return ColsAvailable - soFar; // } else { // return 1; // } // case ELEM_ADD: // case ELEM_SUB: // case ELEM_MUL: // case ELEM_DIV: // if(ColsAvailable - soFar > 2) { // return ColsAvailable - soFar; // } else { // return 2; // } // case ELEM_SERIES_SUBCKT: { // // total of the width of the members // int total = 0; // int i; // ElemSubcktSeries *s = (ElemSubcktSeries *)elem; // for(i = 0; i < s->count; i++) { // total += CountWidthOfElement(s->contents[i].which, // s->contents[i].d.any, total+soFar); // } // return total; // } // case ELEM_PARALLEL_SUBCKT: { // // greatest of the width of the members // int max = 0; // int i; // ElemSubcktParallel *p = (ElemSubcktParallel *)elem; // for(i = 0; i < p->count; i++) { // int w = CountWidthOfElement(p->contents[i].which, // p->contents[i].d.any, soFar); // if(w > max) { // max = w; // } // } // return max; // } // default: // oops(); // } // } //----------------------------------------------------------------------------- // Determine the height, in leaf element units, of a particular subcircuit. // The height of a leaf is 1, the height of a parallel circuit is the sum of // of the heights of its members, and the height of a series circuit is the // maximum of the heights of its members. (This is the dual of the width // case.) //----------------------------------------------------------------------------- // int CountHeightOfElement(int which, void *elem) // { // switch(which) { // CASE_LEAF // return 1; // case ELEM_PARALLEL_SUBCKT: { // // total of the height of the members // int total = 0; // int i; // ElemSubcktParallel *s = (ElemSubcktParallel *)elem; // for(i = 0; i < s->count; i++) { // total += CountHeightOfElement(s->contents[i].which, // s->contents[i].d.any); // } // return total; // } // case ELEM_SERIES_SUBCKT: { // // greatest of the height of the members // int max = 0; // int i; // ElemSubcktSeries *s = (ElemSubcktSeries *)elem; // for(i = 0; i < s->count; i++) { // int w = CountHeightOfElement(s->contents[i].which, // s->contents[i].d.any); // if(w > max) { // max = w; // } // } // return max; // } // default: // oops(); // } // } //----------------------------------------------------------------------------- // Determine the width, in leaf element units, of the widest row of the PLC // program (i.e. loop over all the rungs and find the widest). //----------------------------------------------------------------------------- // int ProgCountWidestRow(void) // { // int i; // int max = 0; // int colsTemp = ColsAvailable; // ColsAvailable = 0; // for(i = 0; i < Prog.numRungs; i++) { // int w = CountWidthOfElement(ELEM_SERIES_SUBCKT, Prog.rungs[i], 0); // if(w > max) { // max = w; // } // } // ColsAvailable = colsTemp; // return max; // } //----------------------------------------------------------------------------- // Draw a vertical wire one leaf element unit high up from (cx, cy), where cx // and cy are in charcter units. //----------------------------------------------------------------------------- // static void VerticalWire(int cx, int cy) // { // int j; // for(j = 1; j < POS_HEIGHT; j++) { // DrawChars(cx, cy + (POS_HEIGHT/2 - j), "|"); // } // DrawChars(cx, cy + (POS_HEIGHT/2), "+"); // DrawChars(cx, cy + (POS_HEIGHT/2 - POS_HEIGHT), "+"); // } //----------------------------------------------------------------------------- // Convenience functions for making the text colors pretty, for DrawElement. //----------------------------------------------------------------------------- // static void NormText(void) // { // SetTextColor(Hdc, InSimulationMode ? HighlightColours.simOff : // HighlightColours.def); // SelectObject(Hdc, FixedWidthFont); // } // static void EmphText(void) // { // SetTextColor(Hdc, InSimulationMode ? HighlightColours.simOn : // HighlightColours.selected); // SelectObject(Hdc, FixedWidthFontBold); // } // static void NameText(void) // { // if(!InSimulationMode && !ThisHighlighted) { // SetTextColor(Hdc, HighlightColours.name); // } // } // static void BodyText(void) // { // if(!InSimulationMode && !ThisHighlighted) { // SetTextColor(Hdc, HighlightColours.def); // } // } // static void PoweredText(BOOL powered) // { // if(InSimulationMode) { // if(powered) // EmphText(); // else // NormText(); // } // } //----------------------------------------------------------------------------- // Count the length of a string, in characters. Nonstandard because the // string may contain special characters to indicate formatting (syntax // highlighting). //----------------------------------------------------------------------------- // static int FormattedStrlen(char *str) // { // int l = 0; // while(*str) { // if(*str > 10) { // l++; // } // str++; // } // return l; // } //----------------------------------------------------------------------------- // Draw a string, centred in the space of a single position, with spaces on // the left and right. Draws on the upper line of the position. //----------------------------------------------------------------------------- // static void CenterWithSpaces(int cx, int cy, char *str, BOOL powered, // BOOL isName) // { // int extra = POS_WIDTH - FormattedStrlen(str); // PoweredText(powered); // if(isName) NameText(); // DrawChars(cx + (extra/2), cy + (POS_HEIGHT/2) - 1, str); // if(isName) BodyText(); // } //----------------------------------------------------------------------------- // Like CenterWithWires, but for an arbitrary width position (e.g. for ADD // and SUB, which are double-width). //----------------------------------------------------------------------------- // static void CenterWithWiresWidth(int cx, int cy, char *str, BOOL before, // BOOL after, int totalWidth) // { // int extra = totalWidth - FormattedStrlen(str); // PoweredText(after); // DrawChars(cx + (extra/2), cy + (POS_HEIGHT/2), str); // PoweredText(before); // int i; // for(i = 0; i < (extra/2); i++) { // DrawChars(cx + i, cy + (POS_HEIGHT/2), "-"); // } // PoweredText(after); // for(i = FormattedStrlen(str)+(extra/2); i < totalWidth; i++) { // DrawChars(cx + i, cy + (POS_HEIGHT/2), "-"); // } // } //----------------------------------------------------------------------------- // Draw a string, centred in the space of a single position, with en dashes on // the left and right coloured according to the powered state. Draws on the // middle line. //----------------------------------------------------------------------------- // static void CenterWithWires(int cx, int cy, char *str, BOOL before, BOOL after) // { // CenterWithWiresWidth(cx, cy, str, before, after, POS_WIDTH); // } //----------------------------------------------------------------------------- // Draw an end of line element (coil, RES, MOV, etc.). Special things about // an end of line element: we must right-justify it. //----------------------------------------------------------------------------- // static BOOL DrawEndOfLine(int which, ElemLeaf *leaf, int *cx, int *cy, // BOOL poweredBefore) // { // int cx0 = *cx, cy0 = *cy; // BOOL poweredAfter = leaf->poweredAfter; // int thisWidth; // switch(which) { // case ELEM_ADD: // case ELEM_SUB: // case ELEM_MUL: // case ELEM_DIV: // thisWidth = 2; // break; // default: // thisWidth = 1; // break; // } // NormText(); // PoweredText(poweredBefore); // while(*cx < (ColsAvailable-thisWidth)*POS_WIDTH) { // int gx = *cx/POS_WIDTH; // int gy = *cy/POS_HEIGHT; // if(CheckBoundsUndoIfFails(gx, gy)) return FALSE; // if(gx >= DISPLAY_MATRIX_X_SIZE) oops(); // DM_BOUNDS(gx, gy); // DisplayMatrix[gx][gy] = PADDING_IN_DISPLAY_MATRIX; // DisplayMatrixWhich[gx][gy] = ELEM_PADDING; // int i; // for(i = 0; i < POS_WIDTH; i++) { // DrawChars(*cx + i, *cy + (POS_HEIGHT/2), "-"); // } // *cx += POS_WIDTH; // cx0 += POS_WIDTH; // } // if(leaf == Selected && !InSimulationMode) { // EmphText(); // ThisHighlighted = TRUE; // } else { // ThisHighlighted = FALSE; // } // switch(which) { // case ELEM_CTC: { // char buf[256]; // ElemCounter *c = &leaf->d.counter; // sprintf(buf, "{\x01""CTC\x02 0:%d}", c->max); // CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter); // break; // } // case ELEM_RES: { // ElemReset *r = &leaf->d.reset; // CenterWithSpaces(*cx, *cy, r->name, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, "{RES}", poweredBefore, poweredAfter); // break; // } // case ELEM_READ_ADC: { // ElemReadAdc *r = &leaf->d.readAdc; // CenterWithSpaces(*cx, *cy, r->name, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, "{READ ADC}", poweredBefore, // poweredAfter); // break; // } // case ELEM_SET_PWM: { // ElemSetPwm *s = &leaf->d.setPwm; // CenterWithSpaces(*cx, *cy, s->name, poweredAfter, TRUE); // char l[50]; // if(s->targetFreq >= 100000) { // sprintf(l, "{PWM %d kHz}", (s->targetFreq+500)/1000); // } else if(s->targetFreq >= 10000) { // sprintf(l, "{PWM %.1f kHz}", s->targetFreq/1000.0); // } else if(s->targetFreq >= 1000) { // sprintf(l, "{PWM %.2f kHz}", s->targetFreq/1000.0); // } else { // sprintf(l, "{PWM %d Hz}", s->targetFreq); // } // CenterWithWires(*cx, *cy, l, poweredBefore, // poweredAfter); // break; // } // case ELEM_PERSIST: // CenterWithSpaces(*cx, *cy, leaf->d.persist.var, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, "{PERSIST}", poweredBefore, poweredAfter); // break; // case ELEM_MOVE: { // char top[256]; // char bot[256]; // ElemMove *m = &leaf->d.move; // if((strlen(m->dest) > (POS_WIDTH - 9)) || // (strlen(m->src) > (POS_WIDTH - 9))) // { // CenterWithWires(*cx, *cy, TOO_LONG, poweredBefore, // poweredAfter); // break; // } // strcpy(top, "{ }"); // memcpy(top+1, m->dest, strlen(m->dest)); // top[strlen(m->dest) + 3] = ':'; // top[strlen(m->dest) + 4] = '='; // strcpy(bot, "{ \x01MOV\x02}"); // memcpy(bot+2, m->src, strlen(m->src)); // CenterWithSpaces(*cx, *cy, top, poweredAfter, FALSE); // CenterWithWires(*cx, *cy, bot, poweredBefore, poweredAfter); // break; // } // case ELEM_MASTER_RELAY: // CenterWithWires(*cx, *cy, "{MASTER RLY}", poweredBefore, // poweredAfter); // break; // case ELEM_SHIFT_REGISTER: { // char bot[MAX_NAME_LEN+20]; // memset(bot, ' ', sizeof(bot)); // bot[0] = '{'; // sprintf(bot+2, "%s0..%d", leaf->d.shiftRegister.name, // leaf->d.shiftRegister.stages-1); // bot[strlen(bot)] = ' '; // bot[13] = '}'; // bot[14] = '\0'; // CenterWithSpaces(*cx, *cy, "{\x01SHIFT REG\x02 }", // poweredAfter, FALSE); // CenterWithWires(*cx, *cy, bot, poweredBefore, poweredAfter); // break; // } // case ELEM_PIECEWISE_LINEAR: // case ELEM_LOOK_UP_TABLE: { // char top[MAX_NAME_LEN+20], bot[MAX_NAME_LEN+20]; // char *dest, *index, *str; // if(which == ELEM_PIECEWISE_LINEAR) { // dest = leaf->d.piecewiseLinear.dest; // index = leaf->d.piecewiseLinear.index; // str = "PWL"; // } else { // dest = leaf->d.lookUpTable.dest; // index = leaf->d.lookUpTable.index; // str = "LUT"; // } // memset(top, ' ', sizeof(top)); // top[0] = '{'; // sprintf(top+2, "%s :=", dest); // top[strlen(top)] = ' '; // top[13] = '}'; // top[14] = '\0'; // CenterWithSpaces(*cx, *cy, top, poweredAfter, FALSE); // memset(bot, ' ', sizeof(bot)); // bot[0] = '{'; // sprintf(bot+2, " %s[%s]", str, index); // bot[strlen(bot)] = ' '; // bot[13] = '}'; // bot[14] = '\0'; // CenterWithWires(*cx, *cy, bot, poweredBefore, poweredAfter); // break; // } // case ELEM_COIL: { // char buf[4]; // ElemCoil *c = &leaf->d.coil; // buf[0] = '('; // if(c->negated) { // buf[1] = '/'; // } else if(c->setOnly) { // buf[1] = 'S'; // } else if(c->resetOnly) { // buf[1] = 'R'; // } else { // buf[1] = ' '; // } // buf[2] = ')'; // buf[3] = '\0'; // CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter); // break; // } // case ELEM_DIV: // case ELEM_MUL: // case ELEM_SUB: // case ELEM_ADD: { // char top[POS_WIDTH*2-3+2]; // char bot[POS_WIDTH*2-3]; // memset(top, ' ', sizeof(top)-1); // top[0] = '{'; // memset(bot, ' ', sizeof(bot)-1); // bot[0] = '{'; // int lt = 1; // if(which == ELEM_ADD) { // memcpy(top+lt, "\x01""ADD\x02", 5); // } else if(which == ELEM_SUB) { // memcpy(top+lt, "\x01SUB\x02", 5); // } else if(which == ELEM_MUL) { // memcpy(top+lt, "\x01MUL\x02", 5); // } else if(which == ELEM_DIV) { // memcpy(top+lt, "\x01""DIV\x02", 5); // } else oops(); // lt += 7; // memcpy(top+lt, leaf->d.math.dest, strlen(leaf->d.math.dest)); // lt += strlen(leaf->d.math.dest) + 2; // top[lt++] = ':'; // top[lt++] = '='; // int lb = 2; // memcpy(bot+lb, leaf->d.math.op1, strlen(leaf->d.math.op1)); // lb += strlen(leaf->d.math.op1) + 1; // if(which == ELEM_ADD) { // bot[lb++] = '+'; // } else if(which == ELEM_SUB) { // bot[lb++] = '-'; // } else if(which == ELEM_MUL) { // bot[lb++] = '*'; // } else if(which == ELEM_DIV) { // bot[lb++] = '/'; // } else oops(); // lb++; // memcpy(bot+lb, leaf->d.math.op2, strlen(leaf->d.math.op2)); // lb += strlen(leaf->d.math.op2); // int l = max(lb, lt - 2); // top[l+2] = '}'; top[l+3] = '\0'; // bot[l] = '}'; bot[l+1] = '\0'; // int extra = 2*POS_WIDTH - FormattedStrlen(top); // PoweredText(poweredAfter); // DrawChars(*cx + (extra/2), *cy + (POS_HEIGHT/2) - 1, top); // CenterWithWiresWidth(*cx, *cy, bot, poweredBefore, poweredAfter, // 2*POS_WIDTH); // *cx += POS_WIDTH; // break; // } // default: // oops(); // break; // } // *cx += POS_WIDTH; // return poweredAfter; // } //----------------------------------------------------------------------------- // Draw a leaf element. Special things about a leaf: no need to recurse // further, and we must put it into the display matrix. //----------------------------------------------------------------------------- // static BOOL DrawLeaf(int which, ElemLeaf *leaf, int *cx, int *cy, // BOOL poweredBefore) // { // int cx0 = *cx, cy0 = *cy; // BOOL poweredAfter = leaf->poweredAfter; // switch(which) { // case ELEM_COMMENT: { // char tbuf[MAX_COMMENT_LEN]; // char tlbuf[MAX_COMMENT_LEN+8]; // strcpy(tbuf, leaf->d.comment.str); // char *b = strchr(tbuf, '\n'); // if(b) { // if(b[-1] == '\r') b[-1] = '\0'; // *b = '\0'; // sprintf(tlbuf, "\x03 ; %s\x02", tbuf); // DrawChars(*cx, *cy + (POS_HEIGHT/2) - 1, tlbuf); // sprintf(tlbuf, "\x03 ; %s\x02", b+1); // DrawChars(*cx, *cy + (POS_HEIGHT/2), tlbuf); // } else { // sprintf(tlbuf, "\x03 ; %s\x02", tbuf); // DrawChars(*cx, *cy + (POS_HEIGHT/2) - 1, tlbuf); // } // *cx += ColsAvailable*POS_WIDTH; // break; // } // case ELEM_PLACEHOLDER: { // NormText(); // CenterWithWiresWidth(*cx, *cy, "--", FALSE, FALSE, 2); // *cx += POS_WIDTH; // break; // } // case ELEM_CONTACTS: { // char buf[4]; // ElemContacts *c = &leaf->d.contacts; // buf[0] = ']'; // buf[1] = c->negated ? '/' : ' '; // buf[2] = '['; // buf[3] = '\0'; // CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter); // *cx += POS_WIDTH; // break; // } // { // char *s; // case ELEM_EQU: // s = "=="; goto cmp; // case ELEM_NEQ: // s = "/="; goto cmp; // case ELEM_GRT: // s = ">"; goto cmp; // case ELEM_GEQ: // s = ">="; goto cmp; // case ELEM_LES: // s = "<"; goto cmp; // case ELEM_LEQ: // s = "<="; goto cmp; // cmp: // char s1[POS_WIDTH+10], s2[POS_WIDTH+10]; // int l1, l2, lmax; // l1 = 2 + 1 + strlen(s) + strlen(leaf->d.cmp.op1); // l2 = 2 + 1 + strlen(leaf->d.cmp.op2); // lmax = max(l1, l2); // if(lmax < POS_WIDTH) { // memset(s1, ' ', sizeof(s1)); // s1[0] = '['; // s1[lmax-1] = ']'; // s1[lmax] = '\0'; // strcpy(s2, s1); // memcpy(s1+1, leaf->d.cmp.op1, strlen(leaf->d.cmp.op1)); // memcpy(s1+strlen(leaf->d.cmp.op1)+2, s, strlen(s)); // memcpy(s2+2, leaf->d.cmp.op2, strlen(leaf->d.cmp.op2)); // } else { // strcpy(s1, ""); // strcpy(s2, TOO_LONG); // } // CenterWithSpaces(*cx, *cy, s1, poweredAfter, FALSE); // CenterWithWires(*cx, *cy, s2, poweredBefore, poweredAfter); // *cx += POS_WIDTH; // break; // } // case ELEM_OPEN: // CenterWithWires(*cx, *cy, "+ +", poweredBefore, poweredAfter); // *cx += POS_WIDTH; // break; // case ELEM_SHORT: // CenterWithWires(*cx, *cy, "+------+", poweredBefore, poweredAfter); // *cx += POS_WIDTH; // break; // case ELEM_ONE_SHOT_RISING: // case ELEM_ONE_SHOT_FALLING: { // char *s1, *s2; // if(which == ELEM_ONE_SHOT_RISING) { // s1 = " _ "; // s2 = "[\x01OSR\x02_/ ]"; // } else if(which == ELEM_ONE_SHOT_FALLING) { // s1 = " _ "; // s2 = "[\x01OSF\x02 \\_]"; // } else oops(); // CenterWithSpaces(*cx, *cy, s1, poweredAfter, FALSE); // CenterWithWires(*cx, *cy, s2, poweredBefore, poweredAfter); // *cx += POS_WIDTH; // break; // } // case ELEM_CTU: // case ELEM_CTD: { // char *s; // if(which == ELEM_CTU) // s = "\x01""CTU\x02"; // else if(which == ELEM_CTD) // s = "\x01""CTD\x02"; // else oops(); // char buf[256]; // ElemCounter *c = &leaf->d.counter; // sprintf(buf, "[%s >=%d]", s, c->max); // CenterWithSpaces(*cx, *cy, c->name, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter); // *cx += POS_WIDTH; // break; // } // case ELEM_RTO: // case ELEM_TON: // case ELEM_TOF: { // char *s; // if(which == ELEM_TON) // s = "\x01TON\x02"; // else if(which == ELEM_TOF) // s = "\x01TOF\x02"; // else if(which == ELEM_RTO) // s = "\x01RTO\x02"; // else oops(); // char buf[256]; // ElemTimer *t = &leaf->d.timer; // if(t->delay >= 1000*1000) { // sprintf(buf, "[%s %.3f s]", s, t->delay/1000000.0); // } else if(t->delay >= 100*1000) { // sprintf(buf, "[%s %.1f ms]", s, t->delay/1000.0); // } else { // sprintf(buf, "[%s %.2f ms]", s, t->delay/1000.0); // } // CenterWithSpaces(*cx, *cy, t->name, poweredAfter, TRUE); // CenterWithWires(*cx, *cy, buf, poweredBefore, poweredAfter); // *cx += POS_WIDTH; // break; // } // case ELEM_FORMATTED_STRING: { // // Careful, string could be longer than fits in our space. // char str[POS_WIDTH*2]; // memset(str, 0, sizeof(str)); // char *srcStr = leaf->d.fmtdStr.string; // memcpy(str, srcStr, min(strlen(srcStr), POS_WIDTH*2 - 7)); // char bot[100]; // sprintf(bot, "{\"%s\"}", str); // int extra = 2*POS_WIDTH - strlen(leaf->d.fmtdStr.var); // PoweredText(poweredAfter); // NameText(); // DrawChars(*cx + (extra/2), *cy + (POS_HEIGHT/2) - 1, // leaf->d.fmtdStr.var); // BodyText(); // CenterWithWiresWidth(*cx, *cy, bot, poweredBefore, poweredAfter, // 2*POS_WIDTH); // *cx += 2*POS_WIDTH; // break; // } // case ELEM_UART_RECV: // case ELEM_UART_SEND: // CenterWithWires(*cx, *cy, // (which == ELEM_UART_RECV) ? "{UART RECV}" : "{UART SEND}", // poweredBefore, poweredAfter); // CenterWithSpaces(*cx, *cy, leaf->d.uart.name, poweredAfter, TRUE); // *cx += POS_WIDTH; // break; // default: // poweredAfter = DrawEndOfLine(which, leaf, cx, cy, poweredBefore); // break; // } // // And now we can enter the element into the display matrix so that the // // UI routines know what element is at position (gx, gy) when the user // // clicks there, and so that we know where to put the cursor if this // // element is selected. // // Don't use original cx0, as an end of line element might be further // // along than that. // cx0 = *cx - POS_WIDTH; // int gx = cx0/POS_WIDTH; // int gy = cy0/POS_HEIGHT; // if(CheckBoundsUndoIfFails(gx, gy)) return FALSE; // DM_BOUNDS(gx, gy); // DisplayMatrix[gx][gy] = leaf; // DisplayMatrixWhich[gx][gy] = which; // int xadj = 0; // switch(which) { // case ELEM_ADD: // case ELEM_SUB: // case ELEM_MUL: // case ELEM_DIV: // case ELEM_FORMATTED_STRING: // DM_BOUNDS(gx-1, gy); // DisplayMatrix[gx-1][gy] = leaf; // DisplayMatrixWhich[gx-1][gy] = which; // xadj = POS_WIDTH*FONT_WIDTH; // break; // } // if(which == ELEM_COMMENT) { // int i; // for(i = 0; i < ColsAvailable; i++) { // DisplayMatrix[i][gy] = leaf; // DisplayMatrixWhich[i][gy] = ELEM_COMMENT; // } // xadj = (ColsAvailable-1)*POS_WIDTH*FONT_WIDTH; // } // int x0 = X_PADDING + cx0*FONT_WIDTH; // int y0 = Y_PADDING + cy0*FONT_HEIGHT; // if(leaf->selectedState != SELECTED_NONE && leaf == Selected) { // SelectionActive = TRUE; // } // switch(leaf->selectedState) { // case SELECTED_LEFT: // Cursor.left = x0 + FONT_WIDTH - 4 - xadj; // Cursor.top = y0 - FONT_HEIGHT/2; // Cursor.width = 2; // Cursor.height = POS_HEIGHT*FONT_HEIGHT; // break; // case SELECTED_RIGHT: // Cursor.left = x0 + (POS_WIDTH-1)*FONT_WIDTH - 5; // Cursor.top = y0 - FONT_HEIGHT/2; // Cursor.width = 2; // Cursor.height = POS_HEIGHT*FONT_HEIGHT; // break; // case SELECTED_ABOVE: // Cursor.left = x0 + FONT_WIDTH/2 - xadj; // Cursor.top = y0 - 2; // Cursor.width = (POS_WIDTH-2)*FONT_WIDTH + xadj; // Cursor.height = 2; // break; // case SELECTED_BELOW: // Cursor.left = x0 + FONT_WIDTH/2 - xadj; // Cursor.top = y0 + (POS_HEIGHT-1)*FONT_HEIGHT + // FONT_HEIGHT/2 - 2; // Cursor.width = (POS_WIDTH-2)*(FONT_WIDTH) + xadj; // Cursor.height = 2; // break; // default: // break; // } // return poweredAfter; // } //----------------------------------------------------------------------------- // Draw a particular subcircuit with its top left corner at *cx and *cy (in // characters). If it is a leaf element then just print it and return; else // loop over the elements of the subcircuit and call ourselves recursively. // At the end updates *cx and *cy. // // In simulation mode, returns TRUE the circuit is energized after the given // element, else FALSE. This is needed to colour all the wires correctly, // since the colouring indicates whether a wire is energized. //----------------------------------------------------------------------------- // BOOL DrawElement(int which, void *elem, int *cx, int *cy, BOOL poweredBefore) // { // BOOL poweredAfter; // int cx0 = *cx, cy0 = *cy; // ElemLeaf *leaf = (ElemLeaf *)elem; // SetBkColor(Hdc, InSimulationMode ? HighlightColours.simBg : // HighlightColours.bg); // NormText(); // if(elem == Selected && !InSimulationMode) { // EmphText(); // ThisHighlighted = TRUE; // } else { // ThisHighlighted = FALSE; // } // switch(which) { // case ELEM_SERIES_SUBCKT: { // int i; // ElemSubcktSeries *s = (ElemSubcktSeries *)elem; // poweredAfter = poweredBefore; // for(i = 0; i < s->count; i++) { // poweredAfter = DrawElement(s->contents[i].which, // s->contents[i].d.any, cx, cy, poweredAfter); // } // break; // } // case ELEM_PARALLEL_SUBCKT: { // int i; // ElemSubcktParallel *p = (ElemSubcktParallel *)elem; // int widthMax = CountWidthOfElement(which, elem, (*cx)/POS_WIDTH); // int heightMax = CountHeightOfElement(which, elem); // poweredAfter = FALSE; // int lowestPowered = -1; // int downBy = 0; // for(i = 0; i < p->count; i++) { // BOOL poweredThis; // poweredThis = DrawElement(p->contents[i].which, // p->contents[i].d.any, cx, cy, poweredBefore); // if(InSimulationMode) { // if(poweredThis) poweredAfter = TRUE; // PoweredText(poweredThis); // } // while((*cx - cx0) < widthMax*POS_WIDTH) { // int gx = *cx/POS_WIDTH; // int gy = *cy/POS_HEIGHT; // if(CheckBoundsUndoIfFails(gx, gy)) return FALSE; // DM_BOUNDS(gx, gy); // DisplayMatrix[gx][gy] = PADDING_IN_DISPLAY_MATRIX; // DisplayMatrixWhich[gx][gy] = ELEM_PADDING; // char buf[256]; // int j; // for(j = 0; j < POS_WIDTH; j++) { // buf[j] = '-'; // } // buf[j] = '\0'; // DrawChars(*cx, *cy + (POS_HEIGHT/2), buf); // *cx += POS_WIDTH; // } // *cx = cx0; // int justDrewHeight = CountHeightOfElement(p->contents[i].which, // p->contents[i].d.any); // *cy += POS_HEIGHT*justDrewHeight; // downBy += justDrewHeight; // if(poweredThis) { // lowestPowered = downBy - 1; // } // } // *cx = cx0 + POS_WIDTH*widthMax; // *cy = cy0; // int j; // BOOL needWire; // if(*cx/POS_WIDTH != ColsAvailable) { // needWire = FALSE; // for(j = heightMax - 1; j >= 1; j--) { // if(j <= lowestPowered) PoweredText(poweredAfter); // if(DisplayMatrix[*cx/POS_WIDTH - 1][*cy/POS_HEIGHT + j]) { // needWire = TRUE; // } // if(needWire) VerticalWire(*cx - 1, *cy + j*POS_HEIGHT); // } // // stupid special case // if(lowestPowered == 0 && InSimulationMode) { // EmphText(); // DrawChars(*cx - 1, *cy + (POS_HEIGHT/2), "+"); // } // } // PoweredText(poweredBefore); // needWire = FALSE; // for(j = heightMax - 1; j >= 1; j--) { // if(DisplayMatrix[cx0/POS_WIDTH][*cy/POS_HEIGHT + j]) { // needWire = TRUE; // } // if(needWire) VerticalWire(cx0 - 1, *cy + j*POS_HEIGHT); // } // break; // } // default: // poweredAfter = DrawLeaf(which, leaf, cx, cy, poweredBefore); // break; // } // NormText(); // return poweredAfter; // } //----------------------------------------------------------------------------- // Draw the rung that signals the end of the program. Kind of useless but // do it anyways, for convention. //----------------------------------------------------------------------------- // void DrawEndRung(int cx, int cy) // { // int i; // char *str = "[END]"; // int lead = (POS_WIDTH - strlen(str))/2; // ThisHighlighted = TRUE; // for(i = 0; i < lead; i++) { // DrawChars(cx + i, cy + (POS_HEIGHT/2), "-"); // } // DrawChars(cx + i, cy + (POS_HEIGHT/2), str); // i += strlen(str); // for(; i < ColsAvailable*POS_WIDTH; i++) { // DrawChars(cx + i, cy + (POS_HEIGHT/2), "-"); // } // }