summaryrefslogtreecommitdiff
path: root/include/trigo.h
blob: c48d76391aedc9b5c63a6417888dfe9adae78d0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/**
 * @file trigo.h
 */

/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2013 KiCad Developers, see change_log.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */


#ifndef TRIGO_H
#define TRIGO_H
#include <math.h>
#include <wx/gdicmn.h> // For wxPoint

/**
 * Function IsPointOnSegment
 * @param aSegStart The first point of the segment S.
 * @param aSegEnd The second point of the segment S.
 * @param aTestPoint The point P to test.
 * @return true if the point P is on the segment S.
 * faster than TestSegmentHit() because P should be exactly on S
 * therefore works fine only for H, V and 45 deg segm.
 * suitable for busses and wires in eeschema, otherwise use TestSegmentHit()
 */
bool IsPointOnSegment( const wxPoint& aSegStart, const wxPoint& aSegEnd,
                       const wxPoint& aTestPoint );

/**
 * Function SegmentIntersectsSegment
 *
 * @param a_p1_l1 The first point of the first line.
 * @param a_p2_l1 The second point of the first line.
 * @param a_p1_l2 The first point of the second line.
 * @param a_p2_l2 The second point of the second line.
 * @return bool - true if the two segments defined by four points intersect.
 * (i.e. if the 2 segments have at least a common point)
 */
bool SegmentIntersectsSegment( const wxPoint &a_p1_l1, const wxPoint &a_p2_l1,
                               const wxPoint &a_p1_l2, const wxPoint &a_p2_l2 );

/*
 * Calculate the new point of coord coord pX, pY,
 * for a rotation center 0, 0, and angle in (1 / 10 degree)
 */
void RotatePoint( int *pX, int *pY, double angle );

/*
 * Calculate the new point of coord coord pX, pY,
 * for a rotation center cx, cy, and angle in (1 / 10 degree)
 */
void RotatePoint( int *pX, int *pY, int cx, int cy, double angle );

/*
 * Calculates the new coord point point
 * for a rotation angle in (1 / 10 degree)
 */
inline void RotatePoint( wxPoint* point, double angle )
{
    RotatePoint( &point->x, &point->y, angle );
}

/*
 * Calculates the new coord point point
 * for a center rotation center and angle in (1 / 10 degree)
 */
void RotatePoint( wxPoint *point, const wxPoint & centre, double angle );

void RotatePoint( double *pX, double *pY, double angle );

void RotatePoint( double *pX, double *pY, double cx, double cy, double angle );

/* Return the arc tangent of 0.1 degrees coord vector dx, dy
 * between -1800 and 1800
 * Equivalent to atan2 (but faster for calculations if
 * the angle is 0 to -1800, or + - 900)
 * Lorenzo: In fact usually atan2 already has to do these optimizations
 * (due to the discontinuity in tan) but this function also returns
 * in decidegrees instead of radians, so it's handier
 */
double ArcTangente( int dy, int dx );

//! @brief Euclidean norm of a 2D vector
//! @param vector Two-dimensional vector
//! @return Euclidean norm of the vector
inline double EuclideanNorm( const wxPoint &vector )
{
    // this is working with doubles
    return hypot( vector.x, vector.y );
}

inline double EuclideanNorm( const wxSize &vector )
{
    // this is working with doubles, too
    return hypot( vector.x, vector.y );
}

//! @brief Compute the distance between a line and a reference point
//! Reference: http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
//! @param linePointA Point on line
//! @param linePointB Point on line
//! @param referencePoint Reference point
inline double DistanceLinePoint( const wxPoint &linePointA,
                                 const wxPoint &linePointB,
                                 const wxPoint &referencePoint )
{
    // Some of the multiple double casts are redundant. However in the previous
    // definition the cast was (implicitly) done too late, just before
    // the division (EuclideanNorm gives a double so from int it would
    // be promoted); that means that the whole expression were
    // vulnerable to overflow during int multiplications
    return fabs( ( double(linePointB.x - linePointA.x) *
                   double(linePointA.y - referencePoint.y) -
                   double(linePointA.x - referencePoint.x ) *
                   double(linePointB.y - linePointA.y) )
            / EuclideanNorm( linePointB - linePointA ) );
}

//! @brief Test, if two points are near each other
//! @param pointA First point
//! @param pointB Second point
//! @param threshold The maximum distance
//! @return True or false
inline bool HitTestPoints( const wxPoint &pointA, const wxPoint &pointB,
                           double threshold )
{
    wxPoint vectorAB = pointB - pointA;

    // Compare the distances squared. The double is needed to avoid
    // overflow during int multiplication
    double sqdistance = (double)vectorAB.x * vectorAB.x +
                        (double)vectorAB.y * vectorAB.y;

    return sqdistance < threshold * threshold;
}

//! @brief Determine the cross product
//! @param vectorA Two-dimensional vector
//! @param vectorB Two-dimensional vector
inline double CrossProduct( const wxPoint &vectorA, const wxPoint &vectorB )
{
    // As before the cast is to avoid int overflow
    return (double)vectorA.x * vectorB.y - (double)vectorA.y * vectorB.x;
}

/**
 * Function TestSegmentHit
 * test for hit on line segment
 * i.e. a reference point is within a given distance from segment
 * @param aRefPoint = reference point to test
 * @param aStart is the first end-point of the line segment
 * @param aEnd is the second end-point of the line segment
 * @param aDist = maximum distance for hit
*/
bool TestSegmentHit( const wxPoint &aRefPoint, wxPoint aStart,
                     wxPoint aEnd, int aDist );

/**
 * Function GetLineLength
 * returns the length of a line segment defined by \a aPointA and \a aPointB.
 * See also EuclideanNorm and Distance for the single vector or four
 * scalar versions
 * @return Length of a line (as double)
 */
inline double GetLineLength( const wxPoint& aPointA, const wxPoint& aPointB )
{
    // Implicitly casted to double
    return hypot( aPointA.x - aPointB.x,
                  aPointA.y - aPointB.y );
}

// These are the usual degrees <-> radians conversion routines
inline double DEG2RAD( double deg ) { return deg * M_PI / 180.0; }
inline double RAD2DEG( double rad ) { return rad * 180.0 / M_PI; }

// These are the same *but* work with the internal 'decidegrees' unit
inline double DECIDEG2RAD( double deg ) { return deg * M_PI / 1800.0; }
inline double RAD2DECIDEG( double rad ) { return rad * 1800.0 / M_PI; }

/* These are templated over T (and not simply double) because eeschema
   is still using int for angles in some place */

/// Normalize angle to be in the -360.0 .. 360.0:
template <class T> inline void NORMALIZE_ANGLE_360( T &Angle )
{
    while( Angle < -3600 )
        Angle += 3600;
    while( Angle > 3600 )
        Angle -= 3600;
}

/// Normalize angle to be in the 0.0 .. 360.0 range:
template <class T> inline void NORMALIZE_ANGLE_POS( T &Angle )
{
    while( Angle < 0 )
        Angle += 3600;
    while( Angle >= 3600 )
        Angle -= 3600;
}

/// Add two angles (keeping the result normalized). T2 is here
// because most of the time it's an int (and templates don't promote in
// that way)
template <class T, class T2> inline T AddAngles( T a1, T2 a2 )
{
    a1 += a2;
    NORMALIZE_ANGLE_POS( a1 );
    return a1;
}

template <class T> inline void NEGATE_AND_NORMALIZE_ANGLE_POS( T &Angle )
{
    Angle = -Angle;
    while( Angle < 0 )
        Angle += 3600;
    while( Angle >= 3600 )
        Angle -= 3600;
}

/// Normalize angle to be in the -90.0 .. 90.0 range
template <class T> inline void NORMALIZE_ANGLE_90( T &Angle )
{
    while( Angle < -900 )
        Angle += 1800;
    while( Angle > 900 )
        Angle -= 1800;
}

/// Normalize angle to be in the -180.0 .. 180.0 range
template <class T> inline void NORMALIZE_ANGLE_180( T &Angle )
{
    while( Angle <= -1800 )
        Angle += 3600;
    while( Angle > 1800 )
        Angle -= 3600;
}

/**
 * Circle generation utility: computes r * sin(a)
 * Where a is in decidegrees, not in radians.
 */
inline double sindecideg( double r, double a )
{
    return r * sin( DECIDEG2RAD( a ) );
}

/**
 * Circle generation utility: computes r * cos(a)
 * Where a is in decidegrees, not in radians.
 */
inline double cosdecideg( double r, double a )
{
    return r * cos( DECIDEG2RAD( a ) );
}

#endif