summaryrefslogtreecommitdiff
path: root/common/geometry/hetriang.cpp
blob: e5cf26c45ca60469ddb5d2d453edd165dd25df9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
 * Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
 * Applied Mathematics, Norway.
 * Copyright (C) 2013 CERN
 * @author Maciej Suminski <maciej.suminski@cern.ch>
 *
 * Contact information: E-mail: tor.dokken@sintef.no
 * SINTEF ICT, Department of Applied Mathematics,
 * P.O. Box 124 Blindern,
 * 0314 Oslo, Norway.
 *
 * This file is part of TTL.
 *
 * TTL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * TTL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public
 * License along with TTL. If not, see
 * <http://www.gnu.org/licenses/>.
 *
 * In accordance with Section 7(b) of the GNU Affero General Public
 * License, a covered work must retain the producer line in every data
 * file that is created or manipulated using TTL.
 *
 * Other Usage
 * You can be released from the requirements of the license by purchasing
 * a commercial license. Buying such a license is mandatory as soon as you
 * develop commercial activities involving the TTL library without
 * disclosing the source code of your own applications.
 *
 * This file may be used in accordance with the terms contained in a
 * written agreement between you and SINTEF ICT.
 */

#include <ttl/halfedge/hetriang.h>
#include <ttl/halfedge/hetraits.h>
#include <ttl/ttl.h>
#include <algorithm>
#include <fstream>
#include <limits>
#include <boost/foreach.hpp>
#include <boost/make_shared.hpp>
#include <class_board_connected_item.h>

using namespace hed;

#ifdef TTL_USE_NODE_ID
  int NODE::id_count = 0;
#endif


void NODE::updateLayers()
{
    assert( m_layers.none() );

    BOOST_FOREACH( const BOARD_CONNECTED_ITEM* item, m_parents )
        m_layers |= item->GetLayerSet();
}


//#define DEBUG_HE
#ifdef DEBUG_HE
#include <iostream>
static void errorAndExit( char* aMessage )
{
    cout << "\n!!! ERROR: "<< aMessage << " !!!\n" << endl;
    exit( -1 );
}
#endif


static EDGE_PTR getLeadingEdgeInTriangle( const EDGE_PTR& aEdge )
{
    EDGE_PTR edge = aEdge;

    // Code: 3EF (assumes triangle)
    if( !edge->IsLeadingEdge() )
    {
        edge = edge->GetNextEdgeInFace();

        if( !edge->IsLeadingEdge() )
            edge = edge->GetNextEdgeInFace();
    }

    if( !edge->IsLeadingEdge() )
    {
        return EDGE_PTR();
    }

    return edge;
}


static void getLimits( NODES_CONTAINER::iterator aFirst, NODES_CONTAINER::iterator aLast,
                       int& aXmin, int& aYmin, int& aXmax, int& aYmax)
{
    aXmin = aYmin = std::numeric_limits<int>::min();
    aXmax = aYmax = std::numeric_limits<int>::max();

    NODES_CONTAINER::iterator it;

    for( it = aFirst; it != aLast; ++it )
    {
        aXmin = std::min( aXmin, ( *it )->GetX() );
        aYmin = std::min( aYmin, ( *it )->GetY() );
        aXmax = std::max( aXmax, ( *it )->GetX() );
        aYmax = std::max( aYmax, ( *it )->GetY() );
    }
}


EDGE_PTR TRIANGULATION::InitTwoEnclosingTriangles( NODES_CONTAINER::iterator aFirst,
                                                  NODES_CONTAINER::iterator aLast)
{
    int xmin, ymin, xmax, ymax;
    getLimits( aFirst, aLast, xmin, ymin, xmax, ymax );

    // Add 10% of range:
    double fac = 10.0;
    double dx = ( xmax - xmin ) / fac;
    double dy = ( ymax - ymin ) / fac;

    NODE_PTR n1 = boost::make_shared<NODE>( xmin - dx, ymin - dy );
    NODE_PTR n2 = boost::make_shared<NODE>( xmax + dx, ymin - dy );
    NODE_PTR n3 = boost::make_shared<NODE>( xmax + dx, ymax + dy );
    NODE_PTR n4 = boost::make_shared<NODE>( xmin - dx, ymax + dy );

    // diagonal
    EDGE_PTR e1d = boost::make_shared<EDGE>();
    EDGE_PTR e2d = boost::make_shared<EDGE>();

    // lower triangle
    EDGE_PTR e11 = boost::make_shared<EDGE>();
    EDGE_PTR e12 = boost::make_shared<EDGE>();

    // upper triangle
    EDGE_PTR e21 = boost::make_shared<EDGE>();
    EDGE_PTR e22 = boost::make_shared<EDGE>();

    // lower triangle
    e1d->SetSourceNode( n3 );
    e1d->SetNextEdgeInFace( e11 );
    e1d->SetTwinEdge( e2d );
    addLeadingEdge( e1d );

    e11->SetSourceNode( n1 );
    e11->SetNextEdgeInFace( e12 );

    e12->SetSourceNode( n2 );
    e12->SetNextEdgeInFace( e1d );

    // upper triangle
    e2d->SetSourceNode( n1 );
    e2d->SetNextEdgeInFace( e21 );
    e2d->SetTwinEdge( e1d );
    addLeadingEdge( e2d );

    e21->SetSourceNode( n3 );
    e21->SetNextEdgeInFace( e22 );

    e22->SetSourceNode( n4 );
    e22->SetNextEdgeInFace( e2d );

    return e11;
}


TRIANGULATION::TRIANGULATION()
{
    m_helper = new ttl::TRIANGULATION_HELPER( *this );
}


TRIANGULATION::TRIANGULATION( const TRIANGULATION& aTriangulation )
{
    m_helper = 0;   // make coverity and static analysers quiet.
    // Triangulation: Copy constructor not present
    assert( false );
}


TRIANGULATION::~TRIANGULATION()
{
    cleanAll();
    delete m_helper;
}


void TRIANGULATION::CreateDelaunay( NODES_CONTAINER::iterator aFirst,
                                    NODES_CONTAINER::iterator aLast )
{
    cleanAll();

    EDGE_PTR bedge = InitTwoEnclosingTriangles( aFirst, aLast );
    DART dc( bedge );

    DART d_iter = dc;

    NODES_CONTAINER::iterator it;
    for( it = aFirst; it != aLast; ++it )
    {
        m_helper->InsertNode<TTLtraits>( d_iter, *it );
    }

    // In general (e.g. for the triangle based data structure), the initial dart
    // may have been changed.
    // It is the users responsibility to get a valid boundary dart here.
    // The half-edge data structure preserves the initial dart.
    // (A dart at the boundary can also be found by trying to locate a
    // triangle "outside" the triangulation.)

    // Assumes rectangular domain
    m_helper->RemoveRectangularBoundary<TTLtraits>( dc );
}


void TRIANGULATION::RemoveTriangle( EDGE_PTR& aEdge )
{
  EDGE_PTR e1 = getLeadingEdgeInTriangle( aEdge );

#ifdef DEBUG_HE
    if( !e1 )
    errorAndExit( "Triangulation::removeTriangle: could not find leading aEdge" );
#endif

    removeLeadingEdgeFromList( e1 );
    // cout << "No leading edges = " << leadingEdges_.size() << endl;
    // Remove the triangle
    EDGE_PTR e2( e1->GetNextEdgeInFace() );
    EDGE_PTR e3( e2->GetNextEdgeInFace() );

    e1->Clear();
    e2->Clear();
    e3->Clear();
}


void TRIANGULATION::ReverseSplitTriangle( EDGE_PTR& aEdge )
{
    // Reverse operation of splitTriangle
    EDGE_PTR e1( aEdge->GetNextEdgeInFace() );
    EDGE_PTR le( getLeadingEdgeInTriangle( e1 ) );
#ifdef DEBUG_HE
    if (!le)
    errorAndExit("Triangulation::removeTriangle: could not find leading edge");
#endif
    removeLeadingEdgeFromList( le );

    EDGE_PTR e2( e1->GetNextEdgeInFace()->GetTwinEdge()->GetNextEdgeInFace() );
    le = getLeadingEdgeInTriangle( e2 );
#ifdef DEBUG_HE
    if (!le)
    errorAndExit("Triangulation::removeTriangle: could not find leading edge");
#endif
    removeLeadingEdgeFromList( le );

    EDGE_PTR e3( aEdge->GetTwinEdge()->GetNextEdgeInFace()->GetNextEdgeInFace() );
    le = getLeadingEdgeInTriangle( e3 );
#ifdef DEBUG_HE
    if (!le)
    errorAndExit("Triangulation::removeTriangle: could not find leading edge");
#endif
    removeLeadingEdgeFromList( le );

    // The three triangles at the node have now been removed
    // from the triangulation, but the arcs have not been deleted.
    // Next delete the 6 half edges radiating from the node
    // The node is maintained by handle and need not be deleted explicitly
    EDGE_PTR estar = aEdge;
    EDGE_PTR enext = estar->GetTwinEdge()->GetNextEdgeInFace();
    estar->GetTwinEdge()->Clear();
    estar->Clear();

    estar = enext;
    enext = estar->GetTwinEdge()->GetNextEdgeInFace();
    estar->GetTwinEdge()->Clear();
    estar->Clear();

    enext->GetTwinEdge()->Clear();
    enext->Clear();

    // Create the new triangle
    e1->SetNextEdgeInFace( e2 );
    e2->SetNextEdgeInFace( e3 );
    e3->SetNextEdgeInFace( e1 );
    addLeadingEdge( e1 );
}


DART TRIANGULATION::CreateDart()
{
  // Return an arbitrary CCW dart
    return DART( *m_leadingEdges.begin() );
}


bool TRIANGULATION::removeLeadingEdgeFromList( EDGE_PTR& aLeadingEdge )
{
    // Remove the edge from the list of leading edges,
    // but don't delete it.
    // Also set flag for leading edge to false.
    // Must search from start of list. Since edges are added to the
    // start of the list during triangulation, this operation will
    // normally be fast (when used in the triangulation algorithm)
    std::list<EDGE_PTR>::iterator it;
    for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
    {
        EDGE_PTR edge = *it;

        if( edge == aLeadingEdge )
        {
            edge->SetAsLeadingEdge( false );
            it = m_leadingEdges.erase( it );

            return true;
        }
    }

    return false;
}


void TRIANGULATION::cleanAll()
{
    BOOST_FOREACH( EDGE_PTR& edge, m_leadingEdges )
        edge->SetNextEdgeInFace( EDGE_PTR() );
}


void TRIANGULATION::swapEdge( DART& aDart )
{
    SwapEdge( aDart.GetEdge() );
}


void TRIANGULATION::splitTriangle( DART& aDart, const NODE_PTR& aPoint )
{
    EDGE_PTR edge = SplitTriangle( aDart.GetEdge(), aPoint );
    aDart.Init( edge );
}


void TRIANGULATION::reverseSplitTriangle( DART& aDart )
{
    ReverseSplitTriangle( aDart.GetEdge() );
}


void TRIANGULATION::removeBoundaryTriangle( DART& aDart )
{
    RemoveTriangle( aDart.GetEdge() );
}


#ifdef TTL_USE_NODE_FLAG
void TRIANGULATION::FlagNodes( bool aFlag ) const
{
    std::list<EDGE_PTR>::const_iterator it;
    for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
    {
        EDGE_PTR edge = *it;

        for( int i = 0; i < 3; ++i )
        {
            edge->GetSourceNode()->SetFlag( aFlag );
            edge = edge->GetNextEdgeInFace();
        }
    }
}


std::list<NODE_PTR>* TRIANGULATION::GetNodes() const
{
    FlagNodes( false );
    std::list<NODE_PTR>* nodeList = new std::list<NODE_PTR>;
    std::list<EDGE_PTR>::const_iterator it;

    for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
    {
        EDGE_PTR edge = *it;

        for( int i = 0; i < 3; ++i )
        {
            const NODE_PTR& node = edge->GetSourceNode();

            if( node->GetFlag() == false )
            {
                nodeList->push_back( node );
                node->SetFlag( true );
            }
            edge = edge->GetNextEdgeInFace();
        }
    }
    return nodeList;
}
#endif


std::list<EDGE_PTR>* TRIANGULATION::GetEdges( bool aSkipBoundaryEdges ) const
{
    // collect all arcs (one half edge for each arc)
    // (boundary edges are also collected).
    std::list<EDGE_PTR>::const_iterator it;
    std::list<EDGE_PTR>* elist = new std::list<EDGE_PTR>;

    for( it = m_leadingEdges.begin(); it != m_leadingEdges.end(); ++it )
    {
        EDGE_PTR edge = *it;
        for( int i = 0; i < 3; ++i )
        {
            EDGE_PTR twinedge = edge->GetTwinEdge();
            // only one of the half-edges

            if( ( !twinedge && !aSkipBoundaryEdges )
                    || ( twinedge && ( (size_t) edge.get() > (size_t) twinedge.get() ) ) )
                elist->push_front( edge );

            edge = edge->GetNextEdgeInFace();
        }
    }

    return elist;
}


EDGE_PTR TRIANGULATION::SplitTriangle( EDGE_PTR& aEdge, const NODE_PTR& aPoint )
{
    // Add a node by just splitting a triangle into three triangles
    // Assumes the half aEdge is located in the triangle
    // Returns a half aEdge with source node as the new node

    // e#_n are new edges
    // e# are existing edges
    // e#_n and e##_n are new twin edges
    // e##_n are edges incident to the new node

    // Add the node to the structure
    //NODE_PTR new_node(new Node(x,y,z));

    NODE_PTR n1( aEdge->GetSourceNode() );
    EDGE_PTR e1( aEdge );

    EDGE_PTR e2( aEdge->GetNextEdgeInFace() );
    NODE_PTR n2( e2->GetSourceNode() );

    EDGE_PTR e3( e2->GetNextEdgeInFace() );
    NODE_PTR n3( e3->GetSourceNode() );

    EDGE_PTR e1_n = boost::make_shared<EDGE>();
    EDGE_PTR e11_n = boost::make_shared<EDGE>();
    EDGE_PTR e2_n = boost::make_shared<EDGE>();
    EDGE_PTR e22_n = boost::make_shared<EDGE>();
    EDGE_PTR e3_n = boost::make_shared<EDGE>();
    EDGE_PTR e33_n = boost::make_shared<EDGE>();

    e1_n->SetSourceNode( n1 );
    e11_n->SetSourceNode( aPoint );
    e2_n->SetSourceNode( n2 );
    e22_n->SetSourceNode( aPoint );
    e3_n->SetSourceNode( n3 );
    e33_n->SetSourceNode( aPoint );

    e1_n->SetTwinEdge( e11_n );
    e11_n->SetTwinEdge( e1_n );
    e2_n->SetTwinEdge( e22_n );
    e22_n->SetTwinEdge( e2_n );
    e3_n->SetTwinEdge( e33_n );
    e33_n->SetTwinEdge( e3_n );

    e1_n->SetNextEdgeInFace( e33_n );
    e2_n->SetNextEdgeInFace( e11_n );
    e3_n->SetNextEdgeInFace( e22_n );

    e11_n->SetNextEdgeInFace( e1 );
    e22_n->SetNextEdgeInFace( e2 );
    e33_n->SetNextEdgeInFace( e3 );

    // and update old's next aEdge
    e1->SetNextEdgeInFace( e2_n );
    e2->SetNextEdgeInFace( e3_n );
    e3->SetNextEdgeInFace( e1_n );

    // add the three new leading edges,
    // Must remove the old leading aEdge from the list.
    // Use the field telling if an aEdge is a leading aEdge
    // NOTE: Must search in the list!!!

    if( e1->IsLeadingEdge() )
        removeLeadingEdgeFromList( e1 );
    else if( e2->IsLeadingEdge() )
        removeLeadingEdgeFromList( e2 );
    else if( e3->IsLeadingEdge() )
        removeLeadingEdgeFromList( e3 );
    else
        assert( false );        // one of the edges should be leading

    addLeadingEdge( e1_n );
    addLeadingEdge( e2_n );
    addLeadingEdge( e3_n );

    // Return a half aEdge incident to the new node (with the new node as source node)

    return e11_n;
}


void TRIANGULATION::SwapEdge( EDGE_PTR& aDiagonal )
{
    // Note that diagonal is both input and output and it is always
    // kept in counterclockwise direction (this is not required by all
    // functions in TriangulationHelper now)

    // Swap by rotating counterclockwise
    // Use the same objects - no deletion or new objects
    EDGE_PTR eL( aDiagonal );
    EDGE_PTR eR( eL->GetTwinEdge() );
    EDGE_PTR eL_1( eL->GetNextEdgeInFace() );
    EDGE_PTR eL_2( eL_1->GetNextEdgeInFace() );
    EDGE_PTR eR_1( eR->GetNextEdgeInFace() );
    EDGE_PTR eR_2( eR_1->GetNextEdgeInFace() );

    // avoid node to be dereferenced to zero and deleted
    NODE_PTR nR( eR_2->GetSourceNode() );
    NODE_PTR nL( eL_2->GetSourceNode() );

    eL->SetSourceNode( nR );
    eR->SetSourceNode( nL );

    // and now 6 1-sewings
    eL->SetNextEdgeInFace( eL_2 );
    eL_2->SetNextEdgeInFace( eR_1 );
    eR_1->SetNextEdgeInFace( eL );

    eR->SetNextEdgeInFace( eR_2 );
    eR_2->SetNextEdgeInFace( eL_1 );
    eL_1->SetNextEdgeInFace( eR );

    if( eL->IsLeadingEdge() )
        removeLeadingEdgeFromList( eL );
    else if( eL_1->IsLeadingEdge() )
        removeLeadingEdgeFromList( eL_1 );
    else if( eL_2->IsLeadingEdge() )
        removeLeadingEdgeFromList( eL_2 );

    if( eR->IsLeadingEdge() )
        removeLeadingEdgeFromList( eR );
    else if( eR_1->IsLeadingEdge() )
        removeLeadingEdgeFromList( eR_1 );
    else if( eR_2->IsLeadingEdge() )
        removeLeadingEdgeFromList( eR_2 );

    addLeadingEdge( eL );
    addLeadingEdge( eR );
}


bool TRIANGULATION::CheckDelaunay() const
{
    // ???? outputs !!!!
    // ofstream os("qweND.dat");
    const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();

    std::list<EDGE_PTR>::const_iterator it;
    bool ok = true;
    int noNotDelaunay = 0;

    for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
    {
        EDGE_PTR edge = *it;

        for( int i = 0; i < 3; ++i )
        {
            EDGE_PTR twinedge = edge->GetTwinEdge();

            // only one of the half-edges
            if( !twinedge || (size_t) edge.get() > (size_t) twinedge.get() )
            {
                DART dart( edge );
                if( m_helper->SwapTestDelaunay<TTLtraits>( dart ) )
                {
                    noNotDelaunay++;

                    //printEdge(dart,os); os << "\n";
                    ok = false;
                    //cout << "............. not Delaunay .... " << endl;
                }
            }

            edge = edge->GetNextEdgeInFace();
        }
    }

#ifdef DEBUG_HE
    cout << "!!! Triangulation is NOT Delaunay: " << noNotDelaunay << " edges\n" << endl;
#endif

    return ok;
}


void TRIANGULATION::OptimizeDelaunay()
{
    // This function is also present in ttl where it is implemented
    // generically.
    // The implementation below is tailored for the half-edge data structure,
    // and is thus more efficient

    // Collect all interior edges (one half edge for each arc)
    bool skip_boundary_edges = true;
    std::list<EDGE_PTR>* elist = GetEdges( skip_boundary_edges );

    // Assumes that elist has only one half-edge for each arc.
    bool cycling_check = true;
    bool optimal = false;
    std::list<EDGE_PTR>::const_iterator it;

    while( !optimal )
    {
        optimal = true;

        for( it = elist->begin(); it != elist->end(); ++it )
        {
            EDGE_PTR edge = *it;

            DART dart( edge );
            // Constrained edges should not be swapped
            if( m_helper->SwapTestDelaunay<TTLtraits>( dart, cycling_check ) )
            {
                optimal = false;
                SwapEdge( edge );
            }
        }
    }

    delete elist;
}


EDGE_PTR TRIANGULATION::GetInteriorNode() const
{
    const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();
    std::list<EDGE_PTR>::const_iterator it;

    for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
    {
        EDGE_PTR edge = *it;

        // multiple checks, but only until found
        for( int i = 0; i < 3; ++i )
        {
            if( edge->GetTwinEdge() )
            {
                if( !m_helper->IsBoundaryNode( DART( edge ) ) )
                    return edge;
            }

            edge = edge->GetNextEdgeInFace();
        }
    }

    return EDGE_PTR(); // no boundary nodes
}


EDGE_PTR TRIANGULATION::GetBoundaryEdgeInTriangle( const EDGE_PTR& aEdge ) const
{
    EDGE_PTR edge = aEdge;

    if( m_helper->IsBoundaryEdge( DART( edge ) ) )
        return edge;

    edge = edge->GetNextEdgeInFace();
    if( m_helper->IsBoundaryEdge( DART( edge ) ) )
        return edge;

    edge = edge->GetNextEdgeInFace();
    if( m_helper->IsBoundaryEdge( DART( edge ) ) )
        return edge;

    return EDGE_PTR();
}


EDGE_PTR TRIANGULATION::GetBoundaryEdge() const
{
    // Get an arbitrary (CCW) boundary edge
    // If the triangulation is closed, NULL is returned
    const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();
    std::list<EDGE_PTR>::const_iterator it;
    EDGE_PTR edge;

    for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
    {
        edge = GetBoundaryEdgeInTriangle( *it );

        if( edge )
            return edge;
    }
    return EDGE_PTR();
}


void TRIANGULATION::PrintEdges( std::ofstream& aOutput ) const
{
    // Print source node and target node for each edge face by face,
    // but only one of the half-edges.
    const std::list<EDGE_PTR>& leadingEdges = GetLeadingEdges();
    std::list<EDGE_PTR>::const_iterator it;

    for( it = leadingEdges.begin(); it != leadingEdges.end(); ++it )
    {
        EDGE_PTR edge = *it;

        for( int i = 0; i < 3; ++i )
        {
            EDGE_PTR twinedge = edge->GetTwinEdge();

            // Print only one edge (the highest value of the pointer)
            if( !twinedge || (size_t) edge.get() > (size_t) twinedge.get() )
            {
                // Print source node and target node
                NODE_PTR node = edge->GetSourceNode();
                aOutput << node->GetX() << " " << node->GetY() << std::endl;
                node = edge->GetTargetNode();
                aOutput << node->GetX() << " " << node->GetY() << std::endl;
                aOutput << '\n'; // blank line
            }

            edge = edge->GetNextEdgeInFace();
        }
    }
}