summaryrefslogtreecommitdiff
path: root/potrace/render.cpp
diff options
context:
space:
mode:
authorsaurabhb172020-02-26 16:40:14 +0530
committerGitHub2020-02-26 16:40:14 +0530
commit02c614b4e64b68758f223391cb5357b3eec78cac (patch)
treead18839d8b4eb1f13419d07878cc4ec4c9b70032 /potrace/render.cpp
parentb77f5d9d8097c38159c6f60917995d6af13bbe1c (diff)
parent07a8c86216b6b1f694b136ec64c281d62941952e (diff)
downloadKiCad-eSim-02c614b4e64b68758f223391cb5357b3eec78cac.tar.gz
KiCad-eSim-02c614b4e64b68758f223391cb5357b3eec78cac.tar.bz2
KiCad-eSim-02c614b4e64b68758f223391cb5357b3eec78cac.zip
Merge pull request #6 from saurabhb17/master
minor additions
Diffstat (limited to 'potrace/render.cpp')
-rw-r--r--potrace/render.cpp294
1 files changed, 294 insertions, 0 deletions
diff --git a/potrace/render.cpp b/potrace/render.cpp
new file mode 100644
index 0000000..833f6b0
--- /dev/null
+++ b/potrace/render.cpp
@@ -0,0 +1,294 @@
+/* Copyright (C) 2001-2007 Peter Selinger.
+ * This file is part of Potrace. It is free software and it is covered
+ * by the GNU General Public License. See the file COPYING for details. */
+
+/* $Id: render.c 147 2007-04-09 00:44:09Z selinger $ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <cmath>
+#include <string.h>
+
+#include <render.h>
+#include <greymap.h>
+#include <auxiliary.h>
+
+/* ---------------------------------------------------------------------- */
+/* routines for anti-aliased rendering of curves */
+
+/* we use the following method. Given a point (x,y) (with real-valued
+ * coordinates) in the plane, let (xi,yi) be the integer part of the
+ * coordinates, i.e., xi=floor(x), yi=floor(y). Define a path from
+ * (x,y) to infinity as follows: path(x,y) =
+ * (x,y)--(xi+1,y)--(xi+1,yi)--(+infty,yi). Now as the point (x,y)
+ * moves smoothly across the plane, the path path(x,y) sweeps
+ * (non-smoothly) across a certain area. We proportionately blacken
+ * the area as the path moves "downward", and we whiten the area as
+ * the path moves "upward". This way, after the point has traversed a
+ * closed curve, the interior of the curve has been darkened
+ * (counterclockwise movement) or lightened (clockwise movement). (The
+ * "grey shift" is actually proportional to the winding number). By
+ * choosing the above path with mostly integer coordinates, we achieve
+ * that only pixels close to (x,y) receive grey values and are subject
+ * to round-off errors. The grey value of pixels far away from (x,y)
+ * is always in "integer" (where 0=black, 1=white). As a special
+ * trick, we keep an accumulator rm->a1, which holds a double value to
+ * be added to the grey value to be added to the current pixel
+ * (xi,yi). Only when changing "current" pixels, we convert this
+ * double value to an integer. This way we avoid round-off errors at
+ * the meeting points of line segments. Another speedup measure is
+ * that we sometimes use the rm->incrow_buf array to postpone
+ * incrementing or decrementing an entire row. If incrow_buf[y]=x+1!=0,
+ * then all the pixels (x,y),(x+1,y),(x+2,y),... are scheduled to be
+ * incremented/decremented (which one is the case will be clear from
+ * context). This keeps the greymap operations reasonably local. */
+
+/* allocate a new rendering state */
+render_t* render_new( greymap_t* gm )
+{
+ render_t* rm;
+
+ rm = (render_t*) malloc( sizeof(render_t) );
+ if( !rm )
+ {
+ return NULL;
+ }
+ memset( rm, 0, sizeof(render_t) );
+ rm->gm = gm;
+ rm->incrow_buf = (int*) malloc( gm->h * sizeof(int) );
+ if( !rm->incrow_buf )
+ {
+ free( rm );
+ return NULL;
+ }
+ memset( rm->incrow_buf, 0, gm->h * sizeof(int) );
+ return rm;
+}
+
+
+/* free a given rendering state. Note: this does not free the
+ * underlying greymap. */
+void render_free( render_t* rm )
+{
+ free( rm->incrow_buf );
+ free( rm );
+}
+
+
+/* close path */
+void render_close( render_t* rm )
+{
+ if( rm->x0 != rm->x1 || rm->y0 != rm->y1 )
+ {
+ render_lineto( rm, rm->x0, rm->y0 );
+ }
+ GM_INC( rm->gm, rm->x0i, rm->y0i, (rm->a0 + rm->a1) * 255 );
+
+ /* assert (rm->x0i != rm->x1i || rm->y0i != rm->y1i); */
+
+ /* the persistent state is now undefined */
+}
+
+
+/* move point */
+void render_moveto( render_t* rm, double x, double y )
+{
+ /* close the previous path */
+ render_close( rm );
+
+ rm->x0 = rm->x1 = x;
+ rm->y0 = rm->y1 = y;
+ rm->x0i = (int) floor( rm->x0 );
+ rm->x1i = (int) floor( rm->x1 );
+ rm->y0i = (int) floor( rm->y0 );
+ rm->y1i = (int) floor( rm->y1 );
+ rm->a0 = rm->a1 = 0;
+}
+
+
+/* add b to pixels (x,y) and all pixels to the right of it. However,
+ * use rm->incrow_buf as a buffer to economize on multiple calls */
+static void incrow( render_t* rm, int x, int y, int b )
+{
+ int i, x0;
+
+ if( y < 0 || y >= rm->gm->h )
+ {
+ return;
+ }
+
+ if( x < 0 )
+ {
+ x = 0;
+ }
+ else if( x > rm->gm->w )
+ {
+ x = rm->gm->w;
+ }
+ if( rm->incrow_buf[y] == 0 )
+ {
+ rm->incrow_buf[y] = x + 1; /* store x+1 so that we can use 0 for "vacant" */
+ return;
+ }
+ x0 = rm->incrow_buf[y] - 1;
+ rm->incrow_buf[y] = 0;
+ if( x0 < x )
+ {
+ for( i = x0; i<x; i++ )
+ {
+ GM_INC( rm->gm, i, y, -b );
+ }
+ }
+ else
+ {
+ for( i = x; i<x0; i++ )
+ {
+ GM_INC( rm->gm, i, y, b );
+ }
+ }
+}
+
+
+/* render a straight line */
+void render_lineto( render_t* rm, double x2, double y2 )
+{
+ int x2i, y2i;
+ double t0 = 2, s0 = 2;
+ int sn, tn;
+ double ss = 2, ts = 2;
+ double r0, r1;
+ int i, j;
+ int rxi, ryi;
+ int s;
+
+ x2i = (int) floor( x2 );
+ y2i = (int) floor( y2 );
+
+ sn = abs( x2i - rm->x1i );
+ tn = abs( y2i - rm->y1i );
+
+ if( sn )
+ {
+ s0 = ( (x2>rm->x1 ? rm->x1i + 1 : rm->x1i) - rm->x1 ) / (x2 - rm->x1);
+ ss = fabs( 1.0 / (x2 - rm->x1) );
+ }
+ if( tn )
+ {
+ t0 = ( (y2>rm->y1 ? rm->y1i + 1 : rm->y1i) - rm->y1 ) / (y2 - rm->y1);
+ ts = fabs( 1.0 / (y2 - rm->y1) );
+ }
+
+ r0 = 0;
+
+ i = 0;
+ j = 0;
+
+ rxi = rm->x1i;
+ ryi = rm->y1i;
+
+ while( i<sn || j<tn )
+ {
+ if( j>=tn || (i<sn && s0 + i * ss < t0 + j * ts) )
+ {
+ r1 = s0 + i * ss;
+ i++;
+ s = 1;
+ }
+ else
+ {
+ r1 = t0 + j * ts;
+ j++;
+ s = 0;
+ }
+ /* render line from r0 to r1 segment of (rm->x1,rm->y1)..(x2,y2) */
+
+ /* move point to r1 */
+ rm->a1 +=
+ (r1 - r0) * (y2 - rm->y1) * ( rxi + 1 - ( (r0 + r1) / 2.0 * (x2 - rm->x1) + rm->x1 ) );
+
+ /* move point across pixel boundary */
+ if( s && x2>rm->x1 )
+ {
+ GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 );
+ rm->a1 = 0;
+ rxi++;
+ rm->a1 += rm->y1 + r1 * (y2 - rm->y1) - ryi;
+ }
+ else if( !s && y2>rm->y1 )
+ {
+ GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 );
+ rm->a1 = 0;
+ incrow( rm, rxi + 1, ryi, 255 );
+ ryi++;
+ }
+ else if( s && x2<=rm->x1 )
+ {
+ rm->a1 -= rm->y1 + r1 * (y2 - rm->y1) - ryi;
+ GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 );
+ rm->a1 = 0;
+ rxi--;
+ }
+ else if( !s && y2<=rm->y1 )
+ {
+ GM_INC( rm->gm, rxi, ryi, rm->a1 * 255 );
+ rm->a1 = 0;
+ ryi--;
+ incrow( rm, rxi + 1, ryi, -255 );
+ }
+
+ r0 = r1;
+ }
+
+ /* move point to (x2,y2) */
+
+ r1 = 1;
+ rm->a1 += (r1 - r0) * (y2 - rm->y1) * ( rxi + 1 - ( (r0 + r1) / 2.0 * (x2 - rm->x1) + rm->x1 ) );
+
+ rm->x1i = x2i;
+ rm->y1i = y2i;
+ rm->x1 = x2;
+ rm->y1 = y2;
+
+ /* assert (rxi != rm->x1i || ryi != rm->y1i); */
+}
+
+
+/* render a Bezier curve. */
+void render_curveto( render_t* rm,
+ double x2,
+ double y2,
+ double x3,
+ double y3,
+ double x4,
+ double y4 )
+{
+ double x1, y1, dd0, dd1, dd, delta, e2, epsilon, t;
+
+ x1 = rm->x1; /* starting point */
+ y1 = rm->y1;
+
+ /* we approximate the curve by small line segments. The interval
+ * size, epsilon, is determined on the fly so that the distance
+ * between the true curve and its approximation does not exceed the
+ * desired accuracy delta. */
+
+ delta = .1; /* desired accuracy, in pixels */
+
+ /* let dd = maximal value of 2nd derivative over curve - this must
+ * occur at an endpoint. */
+ dd0 = sq( x1 - 2 * x2 + x3 ) + sq( y1 - 2 * y2 + y3 );
+ dd1 = sq( x2 - 2 * x3 + x4 ) + sq( y2 - 2 * y3 + y4 );
+ dd = 6 * sqrt( max( dd0, dd1 ) );
+ e2 = 8 * delta <= dd ? 8 * delta / dd : 1;
+ epsilon = sqrt( e2 ); /* necessary interval size */
+
+ for( t = epsilon; t<1; t += epsilon )
+ {
+ render_lineto( rm, x1 * cu( 1 - t ) + 3 * x2 * sq( 1 - t ) * t + 3 * x3 * (1 - t) * sq(
+ t ) + x4 * cu( t ),
+ y1 * cu( 1 - t ) + 3 * y2 * sq( 1 - t ) * t + 3 * y3 * (1 - t) * sq(
+ t ) + y4 * cu( t ) );
+ }
+
+ render_lineto( rm, x4, y4 );
+}