diff options
author | saurabhb17 | 2020-02-26 16:37:17 +0530 |
---|---|---|
committer | GitHub | 2020-02-26 16:37:17 +0530 |
commit | 07a8c86216b6b1f694b136ec64c281d62941952e (patch) | |
tree | ad18839d8b4eb1f13419d07878cc4ec4c9b70032 /polygon | |
parent | e255d0622297488c1c52755be670733418c994cf (diff) | |
parent | 1fa449fed953fa11f6bd0ea82cc2d3b115ee0781 (diff) | |
download | KiCad-eSim-07a8c86216b6b1f694b136ec64c281d62941952e.tar.gz KiCad-eSim-07a8c86216b6b1f694b136ec64c281d62941952e.tar.bz2 KiCad-eSim-07a8c86216b6b1f694b136ec64c281d62941952e.zip |
Merge pull request #2 from saurabhb17/develop
Remaining files transfered
Diffstat (limited to 'polygon')
24 files changed, 11040 insertions, 0 deletions
diff --git a/polygon/CMakeLists.txt b/polygon/CMakeLists.txt new file mode 100644 index 0000000..2f09cbe --- /dev/null +++ b/polygon/CMakeLists.txt @@ -0,0 +1,17 @@ + +include_directories(BEFORE ${INC_BEFORE}) +include_directories( + ${INC_AFTER} + ) + +set(POLYGON_SRCS + math_for_graphics.cpp + PolyLine.cpp + polygon_test_point_inside.cpp + clipper.cpp +) + +add_library(polygon STATIC ${POLYGON_SRCS}) + +add_dependencies( polygon lib-dependencies ) + diff --git a/polygon/PolyLine.cpp b/polygon/PolyLine.cpp new file mode 100644 index 0000000..1b99845 --- /dev/null +++ b/polygon/PolyLine.cpp @@ -0,0 +1,1374 @@ +/* + * This program source code file is part of KiCad, a free EDA CAD application. + * + * Few parts of this code come from FreePCB, released under the GNU General Public License V2. + * (see http://www.freepcb.com/ ) + * + * Copyright (C) 2012-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr + * Copyright (C) 2012-2014 KiCad Developers, see CHANGELOG.TXT for contributors. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, you may find one here: + * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * or you may search the http://www.gnu.org website for the version 2 license, + * or you may write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA + */ + +/** + * @file PolyLine.cpp + * @note implementation of CPolyLine class + */ + +// +// implementation for kicad, using clipper polygon clipping library +// for transformations not handled (at least for Kicad) by boost::polygon +// +#include <cmath> +#include <vector> +#include <algorithm> + +#include <fctsys.h> +#include <common.h> // KiROUND + +#include <PolyLine.h> +#include <bezier_curves.h> +#include <polygon_test_point_inside.h> +#include <math_for_graphics.h> +#include <polygon_test_point_inside.h> + + +CPolyLine::CPolyLine() +{ + m_hatchStyle = NO_HATCH; + m_hatchPitch = 0; + m_layer = F_Cu; + m_flags = 0; +} + +CPolyLine::CPolyLine( const CPolyLine& aCPolyLine) +{ + Copy( &aCPolyLine ); + m_HatchLines = aCPolyLine.m_HatchLines; // vector <> copy +} + + +// destructor, removes display elements +// +CPolyLine::~CPolyLine() +{ + UnHatch(); +} + +/* Removes corners which create a null segment edge + * (i.e. when 2 successive corners are at the same location) + * returns the count of removed corners. + */ + int CPolyLine::RemoveNullSegments() +{ + int removed = 0; + unsigned startcountour = 0; + + for( unsigned icnt = 1; icnt < m_CornersList.GetCornersCount(); icnt ++ ) + { + unsigned last = icnt-1; + if( m_CornersList[icnt].end_contour ) + { + last = startcountour; + startcountour = icnt+1; + } + + if( ( m_CornersList[last].x == m_CornersList[icnt].x ) && + ( m_CornersList[last].y == m_CornersList[icnt].y ) ) + { + DeleteCorner( icnt ); + icnt--; + removed ++; + } + + if( m_CornersList[icnt].end_contour ) + { + startcountour = icnt+1; + icnt++; + } + } + + return removed; +} + + +/* Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s) + * and removes null segments. + * param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine + * needed by the normalization + * return the polygon count (always >= 1, because there is at least one polygon) + * There are new polygons only if the polygon count is > 1 + */ +int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList ) +{ + SHAPE_POLY_SET polySet = ConvertPolyListToPolySet( m_CornersList ); + + // We are expecting only one main outline, but this main outline can have holes + // if holes: combine holes and remove them from the main outline. + SHAPE_POLY_SET::POLYGON& outline = polySet.Polygon( 0 ); + SHAPE_POLY_SET holesBuffer; + + // Move holes stored in outline to holesBuffer: + // The first SHAPE_LINE_CHAIN is the main outline, others are holes + while( outline.size() > 1 ) + { + holesBuffer.AddOutline( outline.back() ); + outline.pop_back(); + } + + polySet.Simplify(); + + // If any hole, substract it to main outline + if( holesBuffer.OutlineCount() ) + { + holesBuffer.Simplify(); + polySet.BooleanSubtract( holesBuffer ); + } + + RemoveAllContours(); + + // Note: we can have more than outline, because a self intersecting outline will be + // broken to non intersecting polygons, and removing holes can also create a few polygons + for( int ii = 0; ii < polySet.OutlineCount(); ii++ ) + { + CPolyLine* polyline = this; + + if( ii > 0 ) + { + polyline = new CPolyLine; + polyline->ImportSettings( this ); + aNewPolygonList->push_back( polyline ); + } + + SHAPE_POLY_SET pnew; + pnew.NewOutline(); + pnew.Polygon( 0 ) = polySet.CPolygon( ii ); + + polyline->m_CornersList = ConvertPolySetToPolyList( pnew ); + polyline->RemoveNullSegments(); + } + + return polySet.OutlineCount(); +} + +/** + * Function ImportSettings + * Copy settings (layer, hatch styles) from aPoly + */ +void CPolyLine::ImportSettings( const CPolyLine * aPoly ) +{ + SetLayer( aPoly->GetLayer() ); + SetHatchStyle( aPoly->GetHatchStyle() ); + SetHatchPitch( aPoly->GetHatchPitch() ); +} + +/* initialize a contour + * set layer, hatch style, and starting point + */ +void CPolyLine::Start( LAYER_NUM layer, int x, int y, int hatch ) +{ + m_layer = layer; + SetHatchStyle( (enum HATCH_STYLE) hatch ); + CPolyPt poly_pt( x, y ); + poly_pt.end_contour = false; + + m_CornersList.Append( poly_pt ); +} + + +// add a corner to unclosed polyline +// +void CPolyLine::AppendCorner( int x, int y ) +{ + UnHatch(); + CPolyPt poly_pt( x, y ); + poly_pt.end_contour = false; + + // add entries for new corner + m_CornersList.Append( poly_pt ); +} + +// move corner of polyline +// +void CPolyLine::MoveCorner( int ic, int x, int y ) +{ + UnHatch(); + m_CornersList[ic].x = x; + m_CornersList[ic].y = y; + Hatch(); +} + + +// delete corner and adjust arrays +// +void CPolyLine::DeleteCorner( int ic ) +{ + UnHatch(); + int icont = GetContour( ic ); + int iend = GetContourEnd( icont ); + bool closed = icont < GetContoursCount() - 1 || GetClosed(); + + if( !closed ) + { + // open contour, must be last contour + m_CornersList.DeleteCorner( ic ); + } + else + { + // closed contour + m_CornersList.DeleteCorner( ic ); + + if( ic == iend ) + m_CornersList[ic - 1].end_contour = true; + } + + if( closed && GetContourSize( icont ) < 3 ) + { + // delete the entire contour + RemoveContour( icont ); + } +} + + +/******************************************/ +void CPolyLine::RemoveContour( int icont ) +/******************************************/ + +/** + * Function RemoveContour + * @param icont = contour number to remove + * remove a contour only if there is more than 1 contour + */ +{ + UnHatch(); + int istart = GetContourStart( icont ); + int iend = GetContourEnd( icont ); + + int polycount = GetContoursCount(); + + if( icont == 0 && polycount == 1 ) + { + // remove the only contour + wxASSERT( 0 ); + } + else + { + // remove closed contour + for( int ic = iend; ic>=istart; ic-- ) + { + m_CornersList.DeleteCorner( ic ); + } + } + + Hatch(); +} + + +CPolyLine* CPolyLine::Chamfer( unsigned int aDistance ) +{ + // Null segments create serious issues in calculations. + // remove them: + RemoveNullSegments(); + + CPolyLine* newPoly = new CPolyLine; + + if( !aDistance ) + { + newPoly->Copy( this ); + return newPoly; + } + + int polycount = GetContoursCount(); + + for( int contour = 0; contour < polycount; contour++ ) + { + unsigned int startIndex = GetContourStart( contour ); + unsigned int endIndex = GetContourEnd( contour ); + + for( unsigned int index = startIndex; index <= endIndex; index++ ) + { + // Current vertex + int x1 = m_CornersList[index].x; + int y1 = m_CornersList[index].y; + double xa, ya; // Previous vertex + double xb, yb; // Next vertex + + if( index == startIndex ) + { + xa = m_CornersList[endIndex].x - x1; + ya = m_CornersList[endIndex].y - y1; + } + else + { + xa = m_CornersList[index - 1].x - x1; + ya = m_CornersList[index - 1].y - y1; + } + + if( index == endIndex ) + { + xb = m_CornersList[startIndex].x - x1; + yb = m_CornersList[startIndex].y - y1; + } + else + { + xb = m_CornersList[index + 1].x - x1; + yb = m_CornersList[index + 1].y - y1; + } + + double lena = hypot( xa, ya ); + double lenb = hypot( xb, yb ); + double distance = aDistance; + + // Chamfer one half of an edge at most + if( 0.5 * lena < distance ) + distance = 0.5 * lena; + + if( 0.5 * lenb < distance ) + distance = 0.5 * lenb; + + int nx1 = KiROUND( distance * xa / lena ); + int ny1 = KiROUND( distance * ya / lena ); + + if( index == startIndex ) + newPoly->Start( GetLayer(), x1 + nx1, y1 + ny1, GetHatchStyle() ); + else + newPoly->AppendCorner( x1 + nx1, y1 + ny1 ); + + int nx2 = KiROUND( distance * xb / lenb ); + int ny2 = KiROUND( distance * yb / lenb ); + newPoly->AppendCorner( x1 + nx2, y1 + ny2 ); + } + + newPoly->CloseLastContour(); + } + + return newPoly; +} + + +CPolyLine* CPolyLine::Fillet( unsigned int aRadius, unsigned int aSegments ) +{ + // Null segments create serious issues in calculations. + // remove them: + RemoveNullSegments(); + + CPolyLine* newPoly = new CPolyLine; + + if( !aRadius ) + { + newPoly->Copy( this ); + return newPoly; + } + + int polycount = GetContoursCount(); + + for( int contour = 0; contour < polycount; contour++ ) + { + unsigned int startIndex = GetContourStart( contour ); + unsigned int endIndex = GetContourEnd( contour ); + + for( unsigned int index = startIndex; index <= endIndex; index++ ) + { + // Current vertex + int x1 = m_CornersList[index].x; + int y1 = m_CornersList[index].y; + double xa, ya; // Previous vertex + double xb, yb; // Next vertex + + if( index == startIndex ) + { + xa = m_CornersList[endIndex].x - x1; + ya = m_CornersList[endIndex].y - y1; + } + else + { + xa = m_CornersList[index - 1].x - x1; + ya = m_CornersList[index - 1].y - y1; + } + + if( index == endIndex ) + { + xb = m_CornersList[startIndex].x - x1; + yb = m_CornersList[startIndex].y - y1; + } + else + { + xb = m_CornersList[index + 1].x - x1; + yb = m_CornersList[index + 1].y - y1; + } + + double lena = hypot( xa, ya ); + double lenb = hypot( xb, yb ); + double cosine = ( xa * xb + ya * yb ) / ( lena * lenb ); + + double radius = aRadius; + double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 ); + + // Do nothing in case of parallel edges + if( !std::isfinite( denom ) ) + continue; + + // Limit rounding distance to one half of an edge + if( 0.5 * lena * denom < radius ) + radius = 0.5 * lena * denom; + + if( 0.5 * lenb * denom < radius ) + radius = 0.5 * lenb * denom; + + // Calculate fillet arc absolute center point (xc, yx) + double k = radius / sqrt( .5 * ( 1 - cosine ) ); + double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) + + ( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) ); + double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab; + double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab; + + // Calculate arc start and end vectors + k = radius / sqrt( 2 / ( 1 + cosine ) - 1 ); + double xs = x1 + k * xa / lena - xc; + double ys = y1 + k * ya / lena - yc; + double xe = x1 + k * xb / lenb - xc; + double ye = y1 + k * yb / lenb - yc; + + // Cosine of arc angle + double argument = ( xs * xe + ys * ye ) / ( radius * radius ); + + if( argument < -1 ) // Just in case... + argument = -1; + else if( argument > 1 ) + argument = 1; + + double arcAngle = acos( argument ); + + // Calculate the number of segments + double tempSegments = (double) aSegments * ( arcAngle / ( 2 * M_PI ) ); + + if( tempSegments - (int) tempSegments > 0 ) + tempSegments++; + + unsigned int segments = (unsigned int) tempSegments; + + double deltaAngle = arcAngle / segments; + double startAngle = atan2( -ys, xs ); + + // Flip arc for inner corners + if( xa * yb - ya * xb <= 0 ) + deltaAngle *= -1; + + double nx = xc + xs; + double ny = yc + ys; + + if( index == startIndex ) + newPoly->Start( GetLayer(), KiROUND( nx ), KiROUND( ny ), GetHatchStyle() ); + else + newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) ); + + for( unsigned int j = 0; j < segments; j++ ) + { + nx = xc + cos( startAngle + (j + 1) * deltaAngle ) * radius; + ny = yc - sin( startAngle + (j + 1) * deltaAngle ) * radius; + newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) ); + } + } + + newPoly->CloseLastContour(); + } + + return newPoly; +} + + +/******************************************/ +void CPolyLine::RemoveAllContours( void ) +/******************************************/ + +/** + * function RemoveAllContours + * removes all corners from the list. + * Others params are not changed + */ +{ + m_CornersList.RemoveAllContours(); +} + + +/** + * Function InsertCorner + * insert a new corner between two existing corners + * @param ic = index for the insertion point: the corner is inserted AFTER ic + * @param x, y = coordinates corner to insert + */ +void CPolyLine::InsertCorner( int ic, int x, int y ) +{ + UnHatch(); + + if( (unsigned) (ic) >= m_CornersList.GetCornersCount() ) + { + m_CornersList.Append( CPolyPt( x, y ) ); + } + else + { + m_CornersList.InsertCorner(ic, CPolyPt( x, y ) ); + } + + if( (unsigned) (ic + 1) < m_CornersList.GetCornersCount() ) + { + if( m_CornersList[ic].end_contour ) + { + m_CornersList[ic + 1].end_contour = true; + m_CornersList[ic].end_contour = false; + } + } + + Hatch(); +} + + +// undraw polyline by removing all graphic elements from display list +void CPolyLine::UnHatch() +{ + m_HatchLines.clear(); +} + + +const EDA_RECT CPolyLine::GetBoundingBox() +{ + int xmin = INT_MAX; + int ymin = INT_MAX; + int xmax = INT_MIN; + int ymax = INT_MIN; + + for( unsigned i = 0; i< m_CornersList.GetCornersCount(); i++ ) + { + xmin = std::min( xmin, m_CornersList[i].x ); + xmax = std::max( xmax, m_CornersList[i].x ); + ymin = std::min( ymin, m_CornersList[i].y ); + ymax = std::max( ymax, m_CornersList[i].y ); + } + + EDA_RECT r; + r.SetOrigin( wxPoint( xmin, ymin ) ); + r.SetEnd( wxPoint( xmax, ymax ) ); + + return r; +} + + +const EDA_RECT CPolyLine::GetBoundingBox( int icont ) +{ + int xmin = INT_MAX; + int ymin = INT_MAX; + int xmax = INT_MIN; + int ymax = INT_MIN; + int istart = GetContourStart( icont ); + int iend = GetContourEnd( icont ); + + for( int i = istart; i<=iend; i++ ) + { + xmin = std::min( xmin, m_CornersList[i].x ); + xmax = std::max( xmax, m_CornersList[i].x ); + ymin = std::min( ymin, m_CornersList[i].y ); + ymax = std::max( ymax, m_CornersList[i].y ); + } + + EDA_RECT r; + r.SetOrigin( wxPoint( xmin, ymin ) ); + r.SetEnd( wxPoint( xmax, ymax ) ); + + return r; +} + + +int CPolyLine::GetContoursCount() const +{ + return m_CornersList.GetContoursCount(); +} + + + +int CPOLYGONS_LIST::GetContoursCount() const +{ + if( !m_cornersList.size() ) + return 0; + + // count the number of corners flagged end_contour + int ncont = 0; + + for( unsigned ic = 0; ic < m_cornersList.size(); ic++ ) + if( m_cornersList[ic].end_contour ) + ncont++; + + // The last corner can be not yet flagged end_contour. + // It was not counted, but the polygon exists, so count it + if( !m_cornersList[m_cornersList.size() - 1].end_contour ) + ncont++; + + return ncont; +} + + +int CPolyLine::GetContour( int ic ) +{ + int ncont = 0; + + for( int i = 0; i<ic; i++ ) + { + if( m_CornersList[i].end_contour ) + ncont++; + } + + return ncont; +} + + +int CPolyLine::GetContourStart( int icont ) +{ + if( icont == 0 ) + return 0; + + int ncont = 0; + + for( unsigned i = 0; i<m_CornersList.GetCornersCount(); i++ ) + { + if( m_CornersList[i].end_contour ) + { + ncont++; + + if( ncont == icont ) + return i + 1; + } + } + + wxASSERT( 0 ); + return 0; +} + + +int CPolyLine::GetContourEnd( int icont ) +{ + if( icont < 0 ) + return 0; + + if( icont == GetContoursCount() - 1 ) + return m_CornersList.GetCornersCount() - 1; + + int ncont = 0; + + for( unsigned i = 0; i<m_CornersList.GetCornersCount(); i++ ) + { + if( m_CornersList[i].end_contour ) + { + if( ncont == icont ) + return i; + + ncont++; + } + } + + wxASSERT( 0 ); + return 0; +} + + +int CPolyLine::GetContourSize( int icont ) +{ + return GetContourEnd( icont ) - GetContourStart( icont ) + 1; +} + + +bool CPolyLine::GetClosed() +{ + if( m_CornersList.GetCornersCount() == 0 ) + return false; + else + return m_CornersList[m_CornersList.GetCornersCount() - 1].end_contour; +} + + +// Creates hatch lines inside the outline of the complex polygon +// +// sort function used in ::Hatch to sort points by descending wxPoint.x values +bool sort_ends_by_descending_X( const wxPoint& ref, const wxPoint& tst ) +{ + return tst.x < ref.x; +} + + +void CPolyLine::Hatch() +{ + m_HatchLines.clear(); + + if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 ) + return; + + if( !GetClosed() ) // If not closed, the poly is beeing created and not finalised. Not not hatch + return; + + // define range for hatch lines + int min_x = m_CornersList[0].x; + int max_x = m_CornersList[0].x; + int min_y = m_CornersList[0].y; + int max_y = m_CornersList[0].y; + + for( unsigned ic = 1; ic < m_CornersList.GetCornersCount(); ic++ ) + { + if( m_CornersList[ic].x < min_x ) + min_x = m_CornersList[ic].x; + + if( m_CornersList[ic].x > max_x ) + max_x = m_CornersList[ic].x; + + if( m_CornersList[ic].y < min_y ) + min_y = m_CornersList[ic].y; + + if( m_CornersList[ic].y > max_y ) + max_y = m_CornersList[ic].y; + } + + // Calculate spacing between 2 hatch lines + int spacing; + + if( m_hatchStyle == DIAGONAL_EDGE ) + spacing = m_hatchPitch; + else + spacing = m_hatchPitch * 2; + + // set the "length" of hatch lines (the lenght on horizontal axis) + double hatch_line_len = m_hatchPitch; + + // To have a better look, give a slope depending on the layer + LAYER_NUM layer = GetLayer(); + int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1 + double slope = 0.707106 * slope_flag; // 45 degrees slope + int max_a, min_a; + + if( slope_flag == 1 ) + { + max_a = KiROUND( max_y - slope * min_x ); + min_a = KiROUND( min_y - slope * max_x ); + } + else + { + max_a = KiROUND( max_y - slope * max_x ); + min_a = KiROUND( min_y - slope * min_x ); + } + + min_a = (min_a / spacing) * spacing; + + // calculate an offset depending on layer number, + // for a better look of hatches on a multilayer board + int offset = (layer * 7) / 8; + min_a += offset; + + // now calculate and draw hatch lines + int nc = m_CornersList.GetCornersCount(); + + // loop through hatch lines + #define MAXPTS 200 // Usually we store only few values per one hatch line + // depending on the compexity of the zone outline + + static std::vector <wxPoint> pointbuffer; + pointbuffer.clear(); + pointbuffer.reserve( MAXPTS + 2 ); + + for( int a = min_a; a < max_a; a += spacing ) + { + // get intersection points for this hatch line + + // Note: because we should have an even number of intersections with the + // current hatch line and the zone outline (a closed polygon, + // or a set of closed polygons), if an odd count is found + // we skip this line (should not occur) + pointbuffer.clear(); + int i_start_contour = 0; + + for( int ic = 0; ic<nc; ic++ ) + { + double x, y, x2, y2; + int ok; + + if( m_CornersList[ic].end_contour || + ( ic == (int) (m_CornersList.GetCornersCount() - 1) ) ) + { + ok = FindLineSegmentIntersection( a, slope, + m_CornersList[ic].x, m_CornersList[ic].y, + m_CornersList[i_start_contour].x, + m_CornersList[i_start_contour].y, + &x, &y, &x2, &y2 ); + i_start_contour = ic + 1; + } + else + { + ok = FindLineSegmentIntersection( a, slope, + m_CornersList[ic].x, m_CornersList[ic].y, + m_CornersList[ic + 1].x, m_CornersList[ic + 1].y, + &x, &y, &x2, &y2 ); + } + + if( ok ) + { + wxPoint point( KiROUND( x ), KiROUND( y ) ); + pointbuffer.push_back( point ); + } + + if( ok == 2 ) + { + wxPoint point( KiROUND( x2 ), KiROUND( y2 ) ); + pointbuffer.push_back( point ); + } + + if( pointbuffer.size() >= MAXPTS ) // overflow + { + wxASSERT( 0 ); + break; + } + } + + // ensure we have found an even intersection points count + // because intersections are the ends of segments + // inside the polygon(s) and a segment has 2 ends. + // if not, this is a strange case (a bug ?) so skip this hatch + if( pointbuffer.size() % 2 != 0 ) + continue; + + // sort points in order of descending x (if more than 2) to + // ensure the starting point and the ending point of the same segment + // are stored one just after the other. + if( pointbuffer.size() > 2 ) + sort( pointbuffer.begin(), pointbuffer.end(), sort_ends_by_descending_X ); + + // creates lines or short segments inside the complex polygon + for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 ) + { + double dx = pointbuffer[ip + 1].x - pointbuffer[ip].x; + + // Push only one line for diagonal hatch, + // or for small lines < twice the line len + // else push 2 small lines + if( m_hatchStyle == DIAGONAL_FULL || fabs( dx ) < 2 * hatch_line_len ) + { + m_HatchLines.push_back( CSegment( pointbuffer[ip], pointbuffer[ip + 1] ) ); + } + else + { + double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y; + double slope = dy / dx; + + if( dx > 0 ) + dx = hatch_line_len; + else + dx = -hatch_line_len; + + double x1 = pointbuffer[ip].x + dx; + double x2 = pointbuffer[ip + 1].x - dx; + double y1 = pointbuffer[ip].y + dx * slope; + double y2 = pointbuffer[ip + 1].y - dx * slope; + + m_HatchLines.push_back( CSegment( pointbuffer[ip].x, + pointbuffer[ip].y, + KiROUND( x1 ), KiROUND( y1 ) ) ); + + m_HatchLines.push_back( CSegment( pointbuffer[ip + 1].x, + pointbuffer[ip + 1].y, + KiROUND( x2 ), KiROUND( y2 ) ) ); + } + } + } +} + + +// test to see if a point is inside polyline +// +bool CPolyLine::TestPointInside( int px, int py ) +{ + if( !GetClosed() ) + { + wxASSERT( 0 ); + } + + // Test all polygons. + // Since the first is the main outline, and other are holes, + // if the tested point is inside only one contour, it is inside the whole polygon + // (in fact inside the main outline, and outside all holes). + // if inside 2 contours (the main outline + an hole), it is outside the poly. + int polycount = GetContoursCount(); + bool inside = false; + + for( int icont = 0; icont < polycount; icont++ ) + { + int istart = GetContourStart( icont ); + int iend = GetContourEnd( icont ); + + // test point inside the current polygon + if( TestPointInsidePolygon( m_CornersList, istart, iend, px, py ) ) + inside = not inside; + } + + return inside; +} + + +// copy data from another CPolyLine, but don't draw it +void CPolyLine::Copy( const CPolyLine* src ) +{ + UnHatch(); + m_layer = src->m_layer; + m_hatchStyle = src->m_hatchStyle; + m_hatchPitch = src->m_hatchPitch; + m_flags = src->m_flags; + m_CornersList.RemoveAllContours(); + m_CornersList.Append( src->m_CornersList ); +} + + +/* + * return true if the corner aCornerIdx is on a hole inside the main outline + * and false if it is on the main outline + */ +bool CPolyLine::IsCutoutContour( int aCornerIdx ) +{ + int ncont = GetContour( aCornerIdx ); + + if( ncont == 0 ) // the first contour is the main outline, not an hole + return false; + + return true; +} + + +void CPolyLine::MoveOrigin( int x_off, int y_off ) +{ + UnHatch(); + + for( int ic = 0; ic < GetCornersCount(); ic++ ) + { + SetX( ic, GetX( ic ) + x_off ); + SetY( ic, GetY( ic ) + y_off ); + } + + Hatch(); +} + +/* + * AppendArc: + * adds segments to current contour to approximate the given arc + */ +void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num ) +{ + // get radius + double radius = ::Distance( xi, yi, xf, yf ); + + // get angles of start pint and end point + double th_i = atan2( (double) (yi - yc), (double) (xi - xc) ); + double th_f = atan2( (double) (yf - yc), (double) (xf - xc) ); + double th_d = (th_f - th_i) / (num - 1); + double theta = th_i; + + // generate arc + for( int ic = 0; ic < num; ic++ ) + { + int x = xc + KiROUND( radius * cos( theta ) ); + int y = yc + KiROUND( radius * sin( theta ) ); + AppendCorner( x, y ); + theta += th_d; + } + + CloseLastContour(); +} + + +// Bezier Support +void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3 ) +{ + std::vector<wxPoint> bezier_points; + + bezier_points = Bezier2Poly( x1, y1, x2, y2, x3, y3 ); + + for( unsigned int i = 0; i < bezier_points.size(); i++ ) + AppendCorner( bezier_points[i].x, bezier_points[i].y ); +} + + +void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 ) +{ + std::vector<wxPoint> bezier_points; + + bezier_points = Bezier2Poly( x1, y1, x2, y2, x3, y3, x4, y4 ); + + for( unsigned int i = 0; i < bezier_points.size(); i++ ) + AppendCorner( bezier_points[i].x, bezier_points[i].y ); +} + + +/* + * Function Distance + * Calculates the distance between a segment and a polygon (with holes): + * param aStart is the starting point of the segment. + * param aEnd is the ending point of the segment. + * param aWidth is the width of the segment. + * return distance between the segment and outline. + * 0 if segment intersects or is inside + */ +int CPolyLine::Distance( wxPoint aStart, wxPoint aEnd, int aWidth ) +{ + // We calculate the min dist between the segment and each outline segment + // However, if the segment to test is inside the outline, and does not cross + // any edge, it can be seen outside the polygon. + // Therefore test if a segment end is inside ( testing only one end is enough ) + if( TestPointInside( aStart.x, aStart.y ) ) + return 0; + + int distance = INT_MAX; + int polycount = GetContoursCount(); + + for( int icont = 0; icont < polycount; icont++ ) + { + int ic_start = GetContourStart( icont ); + int ic_end = GetContourEnd( icont ); + + // now test spacing between area outline and segment + for( int ic2 = ic_start; ic2 <= ic_end; ic2++ ) + { + int bx1 = GetX( ic2 ); + int by1 = GetY( ic2 ); + int bx2, by2; + + if( ic2 == ic_end ) + { + bx2 = GetX( ic_start ); + by2 = GetY( ic_start ); + } + else + { + bx2 = GetX( ic2 + 1 ); + by2 = GetY( ic2 + 1 ); + } + + int d = GetClearanceBetweenSegments( bx1, by1, bx2, by2, 0, + aStart.x, aStart.y, aEnd.x, aEnd.y, + aWidth, + 1, // min clearance, should be > 0 + NULL, NULL ); + + if( distance > d ) + distance = d; + + if( distance <= 0 ) + return 0; + } + } + + return distance; +} + + +/* + * Function Distance + * Calculates the distance between a point and polygon (with holes): + * param aPoint is the coordinate of the point. + * return distance between the point and outline. + * 0 if the point is inside + */ +int CPolyLine::Distance( const wxPoint& aPoint ) +{ + // We calculate the dist between the point and each outline segment + // If the point is inside the outline, the dist is 0. + if( TestPointInside( aPoint.x, aPoint.y ) ) + return 0; + + int distance = INT_MAX; + int polycount = GetContoursCount(); + + for( int icont = 0; icont < polycount; icont++ ) + { + int ic_start = GetContourStart( icont ); + int ic_end = GetContourEnd( icont ); + + // now test spacing between area outline and segment + for( int ic2 = ic_start; ic2 <= ic_end; ic2++ ) + { + int bx1 = GetX( ic2 ); + int by1 = GetY( ic2 ); + int bx2, by2; + + if( ic2 == ic_end ) + { + bx2 = GetX( ic_start ); + by2 = GetY( ic_start ); + } + else + { + bx2 = GetX( ic2 + 1 ); + by2 = GetY( ic2 + 1 ); + } + + int d = KiROUND( GetPointToLineSegmentDistance( aPoint.x, aPoint.y, + bx1, by1, bx2, by2 ) ); + + if( distance > d ) + distance = d; + + if( distance <= 0 ) + return 0; + } + } + + return distance; +} + + +/* test is the point aPos is near (< aDistMax ) a vertex + * return int = the index of the first corner of the vertex, or -1 if not found. + */ +int CPolyLine::HitTestForEdge( const wxPoint& aPos, int aDistMax ) const +{ + unsigned lim = m_CornersList.GetCornersCount(); + int corner = -1; // Set to not found + unsigned first_corner_pos = 0; + + for( unsigned item_pos = 0; item_pos < lim; item_pos++ ) + { + unsigned end_segm = item_pos + 1; + + /* the last corner of the current outline is tested + * the last segment of the current outline starts at current corner, and ends + * at the first corner of the outline + */ + if( m_CornersList.IsEndContour ( item_pos ) || end_segm >= lim ) + { + unsigned tmp = first_corner_pos; + first_corner_pos = end_segm; // first_corner_pos is now the beginning of the next outline + end_segm = tmp; // end_segm is the beginning of the current outline + } + + // test the dist between segment and ref point + int dist = KiROUND( GetPointToLineSegmentDistance( + aPos.x, aPos.y, + m_CornersList.GetX( item_pos ), + m_CornersList.GetY( item_pos ), + m_CornersList.GetX( end_segm ), + m_CornersList.GetY( end_segm ) ) ); + + if( dist < aDistMax ) + { + corner = item_pos; + aDistMax = dist; + } + } + + return corner; +} + +/* test is the point aPos is near (< aDistMax ) a corner + * return int = the index of corner of the, or -1 if not found. + */ +int CPolyLine::HitTestForCorner( const wxPoint& aPos, int aDistMax ) const +{ + int corner = -1; // Set to not found + wxPoint delta; + unsigned lim = m_CornersList.GetCornersCount(); + + for( unsigned item_pos = 0; item_pos < lim; item_pos++ ) + { + delta.x = aPos.x - m_CornersList.GetX( item_pos ); + delta.y = aPos.y - m_CornersList.GetY( item_pos ); + + // Calculate a distance: + int dist = std::max( abs( delta.x ), abs( delta.y ) ); + + if( dist < aDistMax ) // this corner is a candidate: + { + corner = item_pos; + aDistMax = dist; + } + } + + return corner; +} + + +/** + * Function IsPolygonSelfIntersecting + * Test a CPolyLine for self-intersection of vertex (all contours). + * + * @return : + * false if no intersecting sides + * true if intersecting sides + * When a CPolyLine is self intersectic, it need to be normalized. + * (converted to non intersecting polygons) + */ +bool CPolyLine::IsPolygonSelfIntersecting() +{ + // first, check for sides intersecting other sides + int n_cont = GetContoursCount(); + + // make bounding rect for each contour + std::vector<EDA_RECT> cr; + cr.reserve( n_cont ); + + for( int icont = 0; icont<n_cont; icont++ ) + cr.push_back( GetBoundingBox( icont ) ); + + for( int icont = 0; icont<n_cont; icont++ ) + { + int is_start = GetContourStart( icont ); + int is_end = GetContourEnd( icont ); + + for( int is = is_start; is<=is_end; is++ ) + { + int is_prev = is - 1; + + if( is_prev < is_start ) + is_prev = is_end; + + int is_next = is + 1; + + if( is_next > is_end ) + is_next = is_start; + + int x1i = GetX( is ); + int y1i = GetY( is ); + int x1f = GetX( is_next ); + int y1f = GetY( is_next ); + + // check for intersection with any other sides + for( int icont2 = icont; icont2 < n_cont; icont2++ ) + { + if( !cr[icont].Intersects( cr[icont2] ) ) + { + // rectangles don't overlap, do nothing + } + else + { + int is2_start = GetContourStart( icont2 ); + int is2_end = GetContourEnd( icont2 ); + + for( int is2 = is2_start; is2<=is2_end; is2++ ) + { + int is2_prev = is2 - 1; + + if( is2_prev < is2_start ) + is2_prev = is2_end; + + int is2_next = is2 + 1; + + if( is2_next > is2_end ) + is2_next = is2_start; + + if( icont != icont2 + || ( is2 != is && is2 != is_prev && is2 != is_next && + is != is2_prev && is != is2_next ) + ) + { + int x2i = GetX( is2 ); + int y2i = GetY( is2 ); + int x2f = GetX( is2_next ); + int y2f = GetY( is2_next ); + int ret = FindSegmentIntersections( x1i, y1i, x1f, y1f, + x2i, y2i, x2f, y2f ); + if( ret ) + { + // intersection between non-adjacent sides + return true; + } + } + } + } + } + } + } + + return false; +} + +const SHAPE_POLY_SET ConvertPolyListToPolySet( const CPOLYGONS_LIST& aList ) +{ + SHAPE_POLY_SET rv; + + unsigned corners_count = aList.GetCornersCount(); + + // Enter main outline: this is the first contour + unsigned ic = 0; + + if( !corners_count ) + return rv; + + int index = 0; + + while( ic < corners_count ) + { + int hole = -1; + + if( index == 0 ) + { + rv.NewOutline(); + hole = -1; + } + else + { + hole = rv.NewHole(); + } + + while( ic < corners_count ) + { + rv.Append( aList.GetX( ic ), aList.GetY( ic ), 0, hole ); + + if( aList.IsEndContour( ic ) ) + break; + + ic++; + } + ic++; + + index++; + } + + return rv; +} + + +const CPOLYGONS_LIST ConvertPolySetToPolyList(const SHAPE_POLY_SET& aPolyset) +{ + CPOLYGONS_LIST list; + CPolyPt corner, firstCorner; + + const SHAPE_POLY_SET::POLYGON& poly = aPolyset.CPolygon( 0 ); + + for( unsigned int jj = 0; jj < poly.size() ; jj++ ) + { + const SHAPE_LINE_CHAIN& path = poly[jj]; + + for( int i = 0; i < path.PointCount(); i++ ) + { + const VECTOR2I &v = path.CPoint( i ); + + corner.x = v.x; + corner.y = v.y; + corner.end_contour = false; + + if( i == 0 ) + firstCorner = corner; + + list.AddCorner( corner ); + } + + firstCorner.end_contour = true; + list.AddCorner( firstCorner ); + } + + return list; +} diff --git a/polygon/PolyLine.h b/polygon/PolyLine.h new file mode 100644 index 0000000..b60cd37 --- /dev/null +++ b/polygon/PolyLine.h @@ -0,0 +1,490 @@ +/* + * This program source code file is part of KiCad, a free EDA CAD application. + * + * Few parts of this code come from FreePCB, released under the GNU General Public License V2. + * (see http://www.freepcb.com/ ) + * + * Copyright (C) 2012-2015 Jean-Pierre Charras, jp.charras at wanadoo.fr + * Copyright (C) 2008-2013 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com> + * Copyright (C) 2008-2013 Wayne Stambaugh <stambaughw@verizon.net> + * Copyright (C) 2012-2015 KiCad Developers, see CHANGELOG.TXT for contributors. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, you may find one here: + * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * or you may search the http://www.gnu.org website for the version 2 license, + * or you may write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA + */ + + +/** + * @file PolyLine.h + * @note definition of CPolyLine class + */ + +// +// A polyline contains one or more contours, where each contour +// is defined by a list of corners and side-styles +// There may be multiple contours in a polyline. +// The last contour may be open or closed, any others must be closed. +// All of the corners and side-styles are concatenated into 2 arrays, +// separated by setting the end_contour flag of the last corner of +// each contour. +// +// When used for copper (or technical layers) areas, the first contour is the outer edge +// of the area, subsequent ones are "holes" in the copper. + +#ifndef POLYLINE_H +#define POLYLINE_H + +#include <vector> + +#include <wx/gdicmn.h> // for wxPoint definition +#include <layers_id_colors_and_visibility.h> // for LAYER_NUM definition +#include <class_eda_rect.h> // for EDA_RECT definition + +#include <geometry/shape_poly_set.h> // fixme + +class CSegment +{ +public: + wxPoint m_Start; + wxPoint m_End; + + CSegment() { }; + CSegment( const wxPoint& aStart, const wxPoint& aEnd ) + { + m_Start = aStart; + m_End = aEnd; + } + + CSegment( int x0, int y0, int x1, int y1 ) + { + m_Start.x = x0; m_Start.y = y0; + m_End.x = x1; m_End.y = y1; + } +}; + +class CPolyPt : public wxPoint +{ +public: + CPolyPt( int aX = 0, int aY = 0, bool aEnd = false, int aUtility = 0 ) : + wxPoint( aX, aY ), end_contour( aEnd ), m_flags( aUtility ) + {} + + // / Pure copy constructor is here to dis-ambiguate from the + // / specialized CPolyPt( const wxPoint& ) constructor version below. + CPolyPt( const CPolyPt& aPt ) : + wxPoint( aPt.x, aPt.y ), end_contour( aPt.end_contour ), m_flags( aPt.m_flags ) + {} + + CPolyPt( const wxPoint& aPoint ) : + wxPoint( aPoint ), end_contour( false ), m_flags( 0 ) + {} + + + bool end_contour; + int m_flags; + + bool operator ==( const CPolyPt& cpt2 ) const + { return (x == cpt2.x) && (y == cpt2.y) && (end_contour == cpt2.end_contour); } + + bool operator !=( CPolyPt& cpt2 ) const + { return (x != cpt2.x) || (y != cpt2.y) || (end_contour != cpt2.end_contour); } +}; + +/** + * CPOLYGONS_LIST handle a list of contours (polygons corners). + * Each corner is a CPolyPt item. + * The last cornet of each contour has its end_contour member = true + */ +class CPOLYGONS_LIST +{ +private: + std::vector <CPolyPt> m_cornersList; // array of points for corners +public: + CPOLYGONS_LIST() {}; + + CPolyPt& operator [](int aIdx) { return m_cornersList[aIdx]; } + + // Accessor: + const std::vector <CPolyPt>& GetList() const {return m_cornersList;} + + int GetX( int ic ) const { return m_cornersList[ic].x; } + void SetX( int ic, int aValue ) { m_cornersList[ic].x = aValue; } + int GetY( int ic ) const { return m_cornersList[ic].y; } + void SetY( int ic, int aValue ) { m_cornersList[ic].y = aValue; } + + bool IsEndContour( int ic ) const + { + return m_cornersList[ic].end_contour; + } + + const wxPoint& GetPos( int ic ) const { return m_cornersList[ic]; } + const CPolyPt& GetCorner( int ic ) const { return m_cornersList[ic]; } + + // vector <> methods + void reserve( int aSize ) { m_cornersList.reserve( aSize ); } + + + void RemoveAllContours( void ) { m_cornersList.clear(); } + CPolyPt& GetLastCorner() { return m_cornersList.back(); } + + unsigned GetCornersCount() const { return m_cornersList.size(); } + + void DeleteCorner( int aIdx ) + { + m_cornersList.erase( m_cornersList.begin() + aIdx ); + } + + // used only to erase an entire polygon + void DeleteCorners( int aIdFirstCorner, int aIdLastCorner ) + { + m_cornersList.erase( m_cornersList.begin() + aIdFirstCorner, + m_cornersList.begin() + aIdLastCorner + 1 ); + } + + void Append( const CPOLYGONS_LIST& aList ) + { + m_cornersList.insert( m_cornersList.end(), + aList.m_cornersList.begin(), + aList.m_cornersList.end() ); + } + + void Append( const CPolyPt& aItem ) + { + m_cornersList.push_back( aItem ); + } + + void Append( const wxPoint& aItem ) + { + CPolyPt item( aItem ); + + m_cornersList.push_back( aItem ); + } + + void InsertCorner( int aPosition, const CPolyPt& aItem ) + { + m_cornersList.insert( m_cornersList.begin() + aPosition + 1, aItem ); + } + + /** + * function AddCorner + * add a corner to the list + */ + void AddCorner( const CPolyPt& aCorner ) + { + m_cornersList.push_back( aCorner ); + } + + /** + * function CloseLastContour + * Set the .end_contour member of the last corner in list to true + */ + void CloseLastContour() + { + if( m_cornersList.size() > 0 ) + m_cornersList.back().end_contour = true; + } + + /** + * Function GetContoursCount. + * @return the number of polygons stored in list + * (number of corners flagged "end_contour" + */ + int GetContoursCount() const; +}; + +class CPolyLine +{ +public: + enum HATCH_STYLE { NO_HATCH, DIAGONAL_FULL, DIAGONAL_EDGE }; // hatch styles + + // constructors/destructor + CPolyLine(); + CPolyLine( const CPolyLine& aCPolyLine); + ~CPolyLine(); + + /** + * Function ImportSettings + * Copy settings (layer, hatch styles) from aPoly + * @param aPoly is the CPolyLine to import settings + */ + void ImportSettings( const CPolyLine* aPoly ); + + // functions for modifying the CPolyLine contours + + /* initialize a contour + * set layer, hatch style, and starting point + */ + void Start( LAYER_NUM layer, int x, int y, int hatch ); + + void AppendCorner( int x, int y ); + void InsertCorner( int ic, int x, int y ); + + /** + * Function DeleteCorner + * remove the given corner. if it is the last point of a contour + * keep the controur closed by modifying the previous corner + * @param ic = the index of the corner to delete + */ + void DeleteCorner( int ic ); + void MoveCorner( int ic, int x, int y ); + + /** + * function CloseLastContour + * Set the .end_contour member of the last corner + * of the last contour to true + */ + void CloseLastContour() + { + m_CornersList.CloseLastContour(); + } + + void RemoveContour( int icont ); + + /** + * Function IsPolygonSelfIntersecting + * Test a CPolyLine for self-intersection of vertex (all contours). + * + * @return : + * false if no intersecting sides + * true if intersecting sides + * When a CPolyLine is self intersectic, it need to be normalized. + * (converted to non intersecting polygons) + */ + bool IsPolygonSelfIntersecting(); + + /** + * Function Chamfer + * returns a chamfered version of a polygon. + * @param aDistance is the chamfering distance. + * @return CPolyLine* - Pointer to new polygon. + */ + CPolyLine* Chamfer( unsigned int aDistance ); + + /** + * Function Fillet + * returns a filleted version of a polygon. + * @param aRadius is the fillet radius. + * @param aSegments is the number of segments / fillet. + * @return CPolyLine* - Pointer to new polygon. + */ + CPolyLine* Fillet( unsigned int aRadius, unsigned int aSegments ); + + /** + * Function RemoveNullSegments + * Removes corners which create a null segment edge + * (i.e. when 2 successive corners are at the same location) + * @return the count of removed corners. + */ + int RemoveNullSegments(); + + void RemoveAllContours( void ); + + // Remove or create hatch + void UnHatch(); + void Hatch(); + + // Transform functions + void MoveOrigin( int x_off, int y_off ); + + // misc. functions + /** + * @return the full bounding box of polygons + */ + const EDA_RECT GetBoundingBox(); + + /** + * @return the bounding box of a given polygon + * @param icont = the index of the polygon contour + * (0 = main contour, 1 ... n = other contours, usually holes) + */ + const EDA_RECT GetBoundingBox( int icont ); + + void Copy( const CPolyLine* src ); + bool TestPointInside( int x, int y ); + + /** + * @return true if the corner aCornerIdx is on a hole inside the main outline + * and false if it is on the main outline + */ + bool IsCutoutContour( int aCornerIdx ); + + /** + * Function AppendArc. + * Adds segments to current contour to approximate the given arc + */ + void AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num ); + + // access functions + void SetLayer( LAYER_NUM aLayer ) { m_layer = aLayer; } + LAYER_NUM GetLayer() const { return m_layer; } + + int GetCornersCount() const + { + return m_CornersList.GetCornersCount(); + } + + /** + * @return true if the last corner in corners list is flagged end_contour + */ + bool GetClosed(); + + /** + * Function GetContoursCount. + * @return the number of polygons stored in list + * (number of corners flagged "end_contour" + */ + int GetContoursCount() const; + + /** + * Function GetContour. + * @return the contour number containing the corner ic + * @param ic = the index of the corner in the corner list + */ + int GetContour( int ic ); + + /** + * Function GetContourStart. + * @return the index of the first corner (in corners list) of a contour + * @param icont = the index of the contour + */ + int GetContourStart( int icont ); + + /** + * Function GetContourEnd. + * @return the index of the last corner (in corners list) of a contour + * @param icont = the index of the contour + */ + int GetContourEnd( int icont ); + + /** + * Function GetContourSize. + * @return the corners count of a contour + * @param icont = the index of the contour + */ + int GetContourSize( int icont ); + + int GetX( int ic ) const { return m_CornersList.GetX( ic ); } + int GetY( int ic ) const { return m_CornersList.GetY( ic ); } + + /** + * Function IsEndContour. + * @return true if a corner is flagged end_contour + * @param ic= the index (in corners list) of the corner + */ + bool IsEndContour( int ic ) const { return m_CornersList.IsEndContour( ic ); } + + const wxPoint& GetPos( int ic ) const { return m_CornersList.GetPos( ic ); } + + int GetHatchPitch() const { return m_hatchPitch; } + static int GetDefaultHatchPitchMils() { return 20; } // default hatch pitch value in mils + + enum HATCH_STYLE GetHatchStyle() const { return m_hatchStyle; } + void SetHatch( int aHatchStyle, int aHatchPitch, bool aRebuildHatch ) + { + SetHatchPitch( aHatchPitch ); + m_hatchStyle = (enum HATCH_STYLE) aHatchStyle; + + if( aRebuildHatch ) + Hatch(); + } + + void SetX( int ic, int x ) + { + m_CornersList.SetX( ic, x ); + } + + void SetY( int ic, int y ) + { + m_CornersList.SetY( ic, y ); + } + + void SetHatchStyle( enum HATCH_STYLE style ) + { + m_hatchStyle = style; + } + + void SetHatchPitch( int pitch ) { m_hatchPitch = pitch; } + + /** + * Function NormalizeAreaOutlines + * Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s) + * Removes null segments. + * @param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine + * needed by the normalization + * @return the polygon count (always >= 1, because there is at least one polygon) + * There are new polygons only if the polygon count is > 1 + */ + int NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList ); + + // Bezier Support + void AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3 ); + void AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 ); + + /** + * Function Distance + * Calculates the distance between a point and the zone: + * @param aPoint the coordinate of the point. + * @return int = distance between the point and outline. + * 0 if the point is inside + */ + int Distance( const wxPoint& aPoint ); + + /** + * Function Distance + * Calculates the distance between a segment and the zone: + * @param aStart the starting point of the segment. + * @param aEnd the ending point of the segment. + * @param aWidth the width of the segment. + * @return int = distance between the segment and outline. + * 0 if segment intersects or is inside + */ + int Distance( wxPoint aStart, wxPoint aEnd, int aWidth ); + + /** + * Function HitTestForEdge + * test is the point aPos is near (< aDistMax ) a vertex + * @param aPos = the reference point + * @param aDistMax = the max distance between a vertex and the reference point + * @return int = the index of the first corner of the vertex, or -1 if not found. + */ + int HitTestForEdge( const wxPoint& aPos, int aDistMax ) const; + + /** + * Function HitTestForCorner + * test is the point aPos is near (< aDistMax ) a corner + * @param aPos = the reference point + * @param aDistMax = the max distance between a vertex and the corner + * @return int = the index of corner of the, or -1 if not found. + */ + int HitTestForCorner( const wxPoint& aPos, int aDistMax ) const; + +private: + LAYER_NUM m_layer; // layer to draw on + enum HATCH_STYLE m_hatchStyle; // hatch style, see enum above + int m_hatchPitch; // for DIAGONAL_EDGE hatched outlines, basic distance between 2 hatch lines + // and the len of eacvh segment + // for DIAGONAL_FULL, the pitch is twice this value + int m_flags; // a flag used in some calculations +public: + CPOLYGONS_LIST m_CornersList; // array of points for corners + std::vector <CSegment> m_HatchLines; // hatch lines showing the polygon area +}; + +const SHAPE_POLY_SET ConvertPolyListToPolySet( const CPOLYGONS_LIST& aList ); +const CPOLYGONS_LIST ConvertPolySetToPolyList( const SHAPE_POLY_SET& aPolyset ); + +#endif // #ifndef POLYLINE_H diff --git a/polygon/SutherlandHodgmanClipPoly.h b/polygon/SutherlandHodgmanClipPoly.h new file mode 100644 index 0000000..506ee0f --- /dev/null +++ b/polygon/SutherlandHodgmanClipPoly.h @@ -0,0 +1,273 @@ +/******************************************************************************** +* Copyright (C) 2004 Sjaak Priester +* +* This is free software; you can redistribute it and/or modify +* it under the terms of the GNU General Public License as published by +* the Free Software Foundation; either version 2 of the License, or +* (at your option) any later version. +* +* This file is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU General Public License for more details. +* +* You should have received a copy of the GNU General Public License +* along with Tinter; if not, write to the Free Software +* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +********************************************************************************/ + +// SutherlandHodgman +// Class to perform polygon clipping against an upright rectangular boundary window. +// Implementation of Sutherland-Hodgman algorithm (1974). +// +// Version 1.0 (C) 2004, Sjaak Priester, Amsterdam. +// mailto:sjaak@sjaakpriester.nl +// http://www.sjaakpriester.nl + +#ifndef __SUTHERLAND_HODGMAN_H__ +#define __SUTHERLAND_HODGMAN_H__ + + +#include <vector> +#include <functional> + +#ifndef _GDIPLUS_H + +// I designed this with GDI+ in mind. However, this particular code doesn't +// use GDI+ at all, only some of it's variable types. +// These definitions are substitutes for those of GDI+. +typedef double REAL; +class PointF +{ +public: + REAL X; + REAL Y; + + PointF() : X( 0 ) + , Y( 0 ) { } + PointF( const PointF& p ) : X( p.X ) + , Y( p.Y ) { } + PointF( REAL x, REAL y ) : X( x ) + , Y( y ) { } + PointF operator+( const PointF& p ) const { return PointF( X + p.X, Y + p.Y ); } + PointF operator-( const PointF& p ) const { return PointF( X - p.X, Y - p.Y ); } + bool Equals( const PointF& p ) { return (X == p.X) && (Y == p.Y); } +}; + +class RectF +{ +public: + REAL X; + REAL Y; + REAL Width; + REAL Height; + + RectF() { X = 0, Y = 0, Height = 0, Width = 0; } + RectF( const RectF& r ) + { + X = r.X; Y = r.Y; Height = r.Height, Width = r.Width; + } + + + RectF( REAL x, REAL y, REAL w, REAL h ) : X( x ), Y( y ),Width( w ), Height( h ) + { } + REAL GetLeft() const { return X; } + REAL GetTop() const { return Y; } + REAL GetRight() const { return X + Width; } + REAL GetBottom() const { return Y + Height; } +}; + +#endif // _GDIPLUS_H + +typedef std::vector<PointF> pointVector; +typedef std::vector<PointF>::iterator pointIterator; +typedef std::vector<PointF>::const_iterator cpointIterator; + +class SutherlandHodgman +{ +public: + + // Constructor. Parameter is the boundary rectangle. + // SutherlandHodgman expects a 'normalized' boundary rectangle, meaning + // that boundaries.GetRight() > boundaries.GetLeft() and + // boundaries.GetBottom() > boundaries.GetTop(). + // In other words: boundary.Width > 0 and boundaries.Height > 0. + // If this is violated, nothing will be output. + SutherlandHodgman( RectF& boundaries ) : + m_stageBottom( m_stageOut, boundaries.GetBottom() ) + , /* Initialize each stage */ m_stageLeft( m_stageBottom, boundaries.GetLeft() ) + , /* with its next stage and */ m_stageTop( m_stageLeft, boundaries.GetTop() ) + , /* the boundary position. */ m_stageRight( m_stageTop, boundaries.GetRight() ) + { + } + + + void Clip( pointVector& input, pointVector& clipped ) + { + clipped.clear(); + m_stageOut.SetDestination( &clipped ); + + // Clip each input vertex. + for( cpointIterator it = input.begin(); it != input.end(); ++it ) + m_stageRight.HandleVertex( *it ); + + // Do the final step. + m_stageRight.Finalize(); + } + + +private: + + // Implementation of a horizontal boundary (top or bottom). + // Comp is a std::binary_function object, comparing its two parameters, f.i. std::less. + + template <class Comp> + + class BoundaryHor + { +public: + BoundaryHor( REAL y ) : m_Y( y ) { } + bool IsInside( const PointF& pnt ) const + { + return Comp ()( pnt.Y, m_Y ); + } // return true if pnt.Y is at the inside of the boundary + PointF Intersect( const PointF& p0, const PointF& p1 ) const // return intersection point of line p0...p1 with boundary + { // assumes p0...p1 is not strictly horizontal + PointF d = p1 - p0; + REAL xslope = d.X / d.Y; + + PointF r; + + r.Y = m_Y; + r.X = p0.X + xslope * (m_Y - p0.Y); + return r; + } + + +private: + REAL m_Y; + }; + + // Implementation of a vertical boundary (left or right). + template <class Comp> + class BoundaryVert + { +public: + BoundaryVert( REAL x ) : m_X( x ) + { } + bool IsInside( const PointF& pnt ) const + { + return Comp() ( pnt.X, m_X ); + } + PointF Intersect( const PointF& p0, const PointF& p1 ) const // assumes p0...p1 is not strictly vertical + { + PointF d = p1 - p0; + REAL yslope = d.Y / d.X; + + PointF r; + + r.X = m_X; + r.Y = p0.Y + yslope * (m_X - p0.X); + return r; + } + + +private: + REAL m_X; + }; + + // This template class is the workhorse of the algorithm. It handles the clipping against one boundary. + // Boundary is either BoundaryHor or BoundaryVert, Stage is the next ClipStage, or the output stage. + template <class Boundary, class Stage> + class ClipStage : private Boundary + { +public: + ClipStage( Stage& nextStage, REAL position ) : + Boundary( position ) , m_NextStage( nextStage ), m_bFirst( true ), m_bPreviousInside( false ) + { } + + // Function to handle one vertex + void HandleVertex( const PointF& pntCurrent ) + { + bool bCurrentInside = this->IsInside( pntCurrent ); // See if vertex is inside the boundary. + + if( m_bFirst ) // If this is the first vertex... + { + m_pntFirst = pntCurrent; // ... just remember it,... + + m_bFirst = false; + } + else // Common cases, not the first vertex. + { + if( bCurrentInside ) // If this vertex is inside... + { + if( !m_bPreviousInside ) // ... and the previous one was outside + m_NextStage.HandleVertex( this->Intersect( m_pntPrevious, pntCurrent ) ); + + // ... first output the intersection point. + + m_NextStage.HandleVertex( pntCurrent ); // Output the current vertex. + } + else if( m_bPreviousInside ) // If this vertex is outside, and the previous one was inside... + m_NextStage.HandleVertex( this->Intersect( m_pntPrevious, pntCurrent ) ); + + // ... output the intersection point. + + // If neither current vertex nor the previous one are inside, output nothing. + } + m_pntPrevious = pntCurrent; // Be prepared for next vertex. + m_bPreviousInside = bCurrentInside; + } + + + void Finalize() + { + HandleVertex( m_pntFirst ); // Close the polygon. + m_NextStage.Finalize(); // Delegate to the next stage. + } + + +private: + Stage& m_NextStage; // the next stage + bool m_bFirst; // true if no vertices have been handled + PointF m_pntFirst; // the first vertex + PointF m_pntPrevious; // the previous vertex + bool m_bPreviousInside; // true if the previous vertex was inside the Boundary + }; + + class OutputStage + { +public: + OutputStage() : m_pDest( 0 ) { } + void SetDestination( pointVector* pDest ) { m_pDest = pDest; } + void HandleVertex( const PointF& pnt ) { m_pDest->push_back( pnt ); } // Append the vertex to the output container. + void Finalize() { } // Do nothing. +private: + pointVector* m_pDest; + }; + + // These typedefs define the four boundaries. In keeping up with the GDI/GDI+ interpretation of + // rectangles, we include the left and top boundaries, but not the right and bottom boundaries. + // In other words: a vertex on the left boundary is considered to be inside, but a vertex + // on the right boundary is considered to be outside. + typedef BoundaryVert<std::less<REAL> > BoundaryRight; + typedef BoundaryHor<std::greater_equal<REAL> > BoundaryTop; + typedef BoundaryVert<std::greater_equal<REAL> > BoundaryLeft; + typedef BoundaryHor<std::less<REAL> > BoundaryBottom; + + // Next typedefs define the four stages. First template parameter is the boundary, + // second template parameter is the next stage. + typedef ClipStage<BoundaryBottom, OutputStage> ClipBottom; + typedef ClipStage<BoundaryLeft, ClipBottom> ClipLeft; + typedef ClipStage<BoundaryTop, ClipLeft> ClipTop; + typedef ClipStage<BoundaryRight, ClipTop> ClipRight; + + // Our data members. + OutputStage m_stageOut; + ClipBottom m_stageBottom; + ClipLeft m_stageLeft; + ClipTop m_stageTop; + ClipRight m_stageRight; +}; + +#endif diff --git a/polygon/clipper.cpp b/polygon/clipper.cpp new file mode 100644 index 0000000..6d6ce6e --- /dev/null +++ b/polygon/clipper.cpp @@ -0,0 +1,4642 @@ +/******************************************************************************* +* * +* Author : Angus Johnson * +* Version : 6.4.0 * +* Date : 2 July 2015 * +* Website : http://www.angusj.com * +* Copyright : Angus Johnson 2010-2015 * +* * +* License: * +* Use, modification & distribution is subject to Boost Software License Ver 1. * +* http://www.boost.org/LICENSE_1_0.txt * +* * +* Attributions: * +* The code in this library is an extension of Bala Vatti's clipping algorithm: * +* "A generic solution to polygon clipping" * +* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * +* http://portal.acm.org/citation.cfm?id=129906 * +* * +* Computer graphics and geometric modeling: implementation and algorithms * +* By Max K. Agoston * +* Springer; 1 edition (January 4, 2005) * +* http://books.google.com/books?q=vatti+clipping+agoston * +* * +* See also: * +* "Polygon Offsetting by Computing Winding Numbers" * +* Paper no. DETC2005-85513 pp. 565-575 * +* ASME 2005 International Design Engineering Technical Conferences * +* and Computers and Information in Engineering Conference (IDETC/CIE2005) * +* September 24-28, 2005 , Long Beach, California, USA * +* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * +* * +*******************************************************************************/ + +/******************************************************************************* +* * +* This is a translation of the Delphi Clipper library and the naming style * +* used has retained a Delphi flavour. * +* * +*******************************************************************************/ + +#include "clipper.hpp" +#include <cmath> +#include <vector> +#include <algorithm> +#include <stdexcept> +#include <cstring> +#include <cstdlib> +#include <ostream> +#include <functional> + +namespace ClipperLib { + +static double const pi = 3.141592653589793238; +static double const two_pi = pi *2; +static double const def_arc_tolerance = 0.25; + +enum Direction { dRightToLeft, dLeftToRight }; + +static int const Unassigned = -1; //edge not currently 'owning' a solution +static int const Skip = -2; //edge that would otherwise close a path + +#define HORIZONTAL (-1.0E+40) +#define TOLERANCE (1.0e-20) +#define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE)) + +struct TEdge { + IntPoint Bot; + IntPoint Curr; //current (updated for every new scanbeam) + IntPoint Top; + double Dx; + PolyType PolyTyp; + EdgeSide Side; //side only refers to current side of solution poly + int WindDelta; //1 or -1 depending on winding direction + int WindCnt; + int WindCnt2; //winding count of the opposite polytype + int OutIdx; + TEdge *Next; + TEdge *Prev; + TEdge *NextInLML; + TEdge *NextInAEL; + TEdge *PrevInAEL; + TEdge *NextInSEL; + TEdge *PrevInSEL; +}; + +struct IntersectNode { + TEdge *Edge1; + TEdge *Edge2; + IntPoint Pt; +}; + +struct LocalMinimum { + cInt Y; + TEdge *LeftBound; + TEdge *RightBound; +}; + +struct OutPt; + +//OutRec: contains a path in the clipping solution. Edges in the AEL will +//carry a pointer to an OutRec when they are part of the clipping solution. +struct OutRec { + int Idx; + bool IsHole; + bool IsOpen; + OutRec *FirstLeft; //see comments in clipper.pas + PolyNode *PolyNd; + OutPt *Pts; + OutPt *BottomPt; +}; + +struct OutPt { + int Idx; + IntPoint Pt; + OutPt *Next; + OutPt *Prev; +}; + +struct Join { + OutPt *OutPt1; + OutPt *OutPt2; + IntPoint OffPt; +}; + +struct LocMinSorter +{ + inline bool operator()(const LocalMinimum& locMin1, const LocalMinimum& locMin2) + { + return locMin2.Y < locMin1.Y; + } +}; + +//------------------------------------------------------------------------------ +//------------------------------------------------------------------------------ + +inline cInt Round(double val) +{ + if ((val < 0)) return static_cast<cInt>(val - 0.5); + else return static_cast<cInt>(val + 0.5); +} +//------------------------------------------------------------------------------ + +inline cInt Abs(cInt val) +{ + return val < 0 ? -val : val; +} + +//------------------------------------------------------------------------------ +// PolyTree methods ... +//------------------------------------------------------------------------------ + +void PolyTree::Clear() +{ + for (PolyNodes::size_type i = 0; i < AllNodes.size(); ++i) + delete AllNodes[i]; + AllNodes.resize(0); + Childs.resize(0); +} +//------------------------------------------------------------------------------ + +PolyNode* PolyTree::GetFirst() const +{ + if (!Childs.empty()) + return Childs[0]; + else + return 0; +} +//------------------------------------------------------------------------------ + +int PolyTree::Total() const +{ + int result = (int)AllNodes.size(); + //with negative offsets, ignore the hidden outer polygon ... + if (result > 0 && Childs[0] != AllNodes[0]) result--; + return result; +} + +//------------------------------------------------------------------------------ +// PolyNode methods ... +//------------------------------------------------------------------------------ + +PolyNode::PolyNode(): Childs(), Parent(0), Index(0), m_IsOpen(false) +{ + // Avoid uninitialized vars + m_endtype = etClosedPolygon; + m_jointype = jtSquare; +} +//------------------------------------------------------------------------------ + +int PolyNode::ChildCount() const +{ + return (int)Childs.size(); +} +//------------------------------------------------------------------------------ + +void PolyNode::AddChild(PolyNode& child) +{ + unsigned cnt = (unsigned)Childs.size(); + Childs.push_back(&child); + child.Parent = this; + child.Index = cnt; +} +//------------------------------------------------------------------------------ + +PolyNode* PolyNode::GetNext() const +{ + if (!Childs.empty()) + return Childs[0]; + else + return GetNextSiblingUp(); +} +//------------------------------------------------------------------------------ + +PolyNode* PolyNode::GetNextSiblingUp() const +{ + if (!Parent) //protects against PolyTree.GetNextSiblingUp() + return 0; + else if (Index == Parent->Childs.size() - 1) + return Parent->GetNextSiblingUp(); + else + return Parent->Childs[Index + 1]; +} +//------------------------------------------------------------------------------ + +bool PolyNode::IsHole() const +{ + bool result = true; + PolyNode* node = Parent; + while (node) + { + result = !result; + node = node->Parent; + } + return result; +} +//------------------------------------------------------------------------------ + +bool PolyNode::IsOpen() const +{ + return m_IsOpen; +} +//------------------------------------------------------------------------------ + +#ifndef use_int32 + +//------------------------------------------------------------------------------ +// Int128 class (enables safe math on signed 64bit integers) +// eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1 +// Int128 val2((long64)9223372036854775807); +// Int128 val3 = val1 * val2; +// val3.AsString => "85070591730234615847396907784232501249" (8.5e+37) +//------------------------------------------------------------------------------ + +class Int128 +{ + public: + ulong64 lo; + long64 hi; + + Int128(long64 _lo = 0) + { + lo = (ulong64)_lo; + if (_lo < 0) hi = -1; else hi = 0; + } + + + Int128(const Int128 &val): lo(val.lo), hi(val.hi){} + + Int128(const long64& _hi, const ulong64& _lo): lo(_lo), hi(_hi){} + + Int128& operator = (const long64 &val) + { + lo = (ulong64)val; + if (val < 0) hi = -1; else hi = 0; + return *this; + } + + bool operator == (const Int128 &val) const + {return (hi == val.hi && lo == val.lo);} + + bool operator != (const Int128 &val) const + { return !(*this == val);} + + bool operator > (const Int128 &val) const + { + if (hi != val.hi) + return hi > val.hi; + else + return lo > val.lo; + } + + bool operator < (const Int128 &val) const + { + if (hi != val.hi) + return hi < val.hi; + else + return lo < val.lo; + } + + bool operator >= (const Int128 &val) const + { return !(*this < val);} + + bool operator <= (const Int128 &val) const + { return !(*this > val);} + + Int128& operator += (const Int128 &rhs) + { + hi += rhs.hi; + lo += rhs.lo; + if (lo < rhs.lo) hi++; + return *this; + } + + Int128 operator + (const Int128 &rhs) const + { + Int128 result(*this); + result+= rhs; + return result; + } + + Int128& operator -= (const Int128 &rhs) + { + *this += -rhs; + return *this; + } + + Int128 operator - (const Int128 &rhs) const + { + Int128 result(*this); + result -= rhs; + return result; + } + + Int128 operator-() const //unary negation + { + if (lo == 0) + return Int128(-hi, 0); + else + return Int128(~hi, ~lo + 1); + } + + operator double() const + { + const double shift64 = 18446744073709551616.0; //2^64 + if (hi < 0) + { + if (lo == 0) return (double)hi * shift64; + else return -(double)(~lo + ~hi * shift64); + } + else + return (double)(lo + hi * shift64); + } + +}; +//------------------------------------------------------------------------------ + +Int128 Int128Mul (long64 lhs, long64 rhs) +{ + bool negate = (lhs < 0) != (rhs < 0); + + if (lhs < 0) lhs = -lhs; + ulong64 int1Hi = ulong64(lhs) >> 32; + ulong64 int1Lo = ulong64(lhs & 0xFFFFFFFF); + + if (rhs < 0) rhs = -rhs; + ulong64 int2Hi = ulong64(rhs) >> 32; + ulong64 int2Lo = ulong64(rhs & 0xFFFFFFFF); + + //nb: see comments in clipper.pas + ulong64 a = int1Hi * int2Hi; + ulong64 b = int1Lo * int2Lo; + ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi; + + Int128 tmp; + tmp.hi = long64(a + (c >> 32)); + tmp.lo = long64(c << 32); + tmp.lo += long64(b); + if (tmp.lo < b) tmp.hi++; + if (negate) tmp = -tmp; + return tmp; +}; +#endif + +//------------------------------------------------------------------------------ +// Miscellaneous global functions +//------------------------------------------------------------------------------ + +bool Orientation(const Path &poly) +{ + return Area(poly) >= 0; +} +//------------------------------------------------------------------------------ + +double Area(const Path &poly) +{ + int size = (int)poly.size(); + if (size < 3) return 0; + + double a = 0; + for (int i = 0, j = size -1; i < size; ++i) + { + a += ((double)poly[j].X + poly[i].X) * ((double)poly[j].Y - poly[i].Y); + j = i; + } + return -a * 0.5; +} +//------------------------------------------------------------------------------ + +double Area(const OutPt *op) +{ + const OutPt *startOp = op; + if (!op) return 0; + double a = 0; + do { + a += (double)(op->Prev->Pt.X + op->Pt.X) * (double)(op->Prev->Pt.Y - op->Pt.Y); + op = op->Next; + } while (op != startOp); + return a * 0.5; +} +//------------------------------------------------------------------------------ + +double Area(const OutRec &outRec) +{ + return Area(outRec.Pts); +} +//------------------------------------------------------------------------------ + +bool PointIsVertex(const IntPoint &Pt, OutPt *pp) +{ + OutPt *pp2 = pp; + do + { + if (pp2->Pt == Pt) return true; + pp2 = pp2->Next; + } + while (pp2 != pp); + return false; +} +//------------------------------------------------------------------------------ + +//See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos +//http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf +int PointInPolygon(const IntPoint &pt, const Path &path) +{ + //returns 0 if false, +1 if true, -1 if pt ON polygon boundary + int result = 0; + size_t cnt = path.size(); + if (cnt < 3) return 0; + IntPoint ip = path[0]; + for(size_t i = 1; i <= cnt; ++i) + { + IntPoint ipNext = (i == cnt ? path[0] : path[i]); + if (ipNext.Y == pt.Y) + { + if ((ipNext.X == pt.X) || (ip.Y == pt.Y && + ((ipNext.X > pt.X) == (ip.X < pt.X)))) return -1; + } + if ((ip.Y < pt.Y) != (ipNext.Y < pt.Y)) + { + if (ip.X >= pt.X) + { + if (ipNext.X > pt.X) result = 1 - result; + else + { + double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) - + (double)(ipNext.X - pt.X) * (ip.Y - pt.Y); + if (!d) return -1; + if ((d > 0) == (ipNext.Y > ip.Y)) result = 1 - result; + } + } else + { + if (ipNext.X > pt.X) + { + double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) - + (double)(ipNext.X - pt.X) * (ip.Y - pt.Y); + if (!d) return -1; + if ((d > 0) == (ipNext.Y > ip.Y)) result = 1 - result; + } + } + } + ip = ipNext; + } + return result; +} +//------------------------------------------------------------------------------ + +int PointInPolygon (const IntPoint &pt, OutPt *op) +{ + //returns 0 if false, +1 if true, -1 if pt ON polygon boundary + int result = 0; + OutPt* startOp = op; + for(;;) + { + if (op->Next->Pt.Y == pt.Y) + { + if ((op->Next->Pt.X == pt.X) || (op->Pt.Y == pt.Y && + ((op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X)))) return -1; + } + if ((op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y)) + { + if (op->Pt.X >= pt.X) + { + if (op->Next->Pt.X > pt.X) result = 1 - result; + else + { + double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - + (double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); + if (!d) return -1; + if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) result = 1 - result; + } + } else + { + if (op->Next->Pt.X > pt.X) + { + double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - + (double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); + if (!d) return -1; + if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) result = 1 - result; + } + } + } + op = op->Next; + if (startOp == op) break; + } + return result; +} +//------------------------------------------------------------------------------ + +bool Poly2ContainsPoly1(OutPt *OutPt1, OutPt *OutPt2) +{ + OutPt* op = OutPt1; + do + { + //nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon + int res = PointInPolygon(op->Pt, OutPt2); + if (res >= 0) return res > 0; + op = op->Next; + } + while (op != OutPt1); + return true; +} +//---------------------------------------------------------------------- + +bool SlopesEqual(const TEdge &e1, const TEdge &e2, bool UseFullInt64Range) +{ +#ifndef use_int32 + if (UseFullInt64Range) + return Int128Mul(e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X) == + Int128Mul(e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y); + else +#endif + return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) == + (e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y); +} +//------------------------------------------------------------------------------ + +bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, + const IntPoint pt3, bool UseFullInt64Range) +{ +#ifndef use_int32 + if (UseFullInt64Range) + return Int128Mul(pt1.Y-pt2.Y, pt2.X-pt3.X) == Int128Mul(pt1.X-pt2.X, pt2.Y-pt3.Y); + else +#endif + return (pt1.Y-pt2.Y)*(pt2.X-pt3.X) == (pt1.X-pt2.X)*(pt2.Y-pt3.Y); +} +//------------------------------------------------------------------------------ + +bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, + const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range) +{ +#ifndef use_int32 + if (UseFullInt64Range) + return Int128Mul(pt1.Y-pt2.Y, pt3.X-pt4.X) == Int128Mul(pt1.X-pt2.X, pt3.Y-pt4.Y); + else +#endif + return (pt1.Y-pt2.Y)*(pt3.X-pt4.X) == (pt1.X-pt2.X)*(pt3.Y-pt4.Y); +} +//------------------------------------------------------------------------------ + +inline bool IsHorizontal(TEdge &e) +{ + return e.Dx == HORIZONTAL; +} +//------------------------------------------------------------------------------ + +inline double GetDx(const IntPoint pt1, const IntPoint pt2) +{ + return (pt1.Y == pt2.Y) ? + HORIZONTAL : (double)(pt2.X - pt1.X) / (pt2.Y - pt1.Y); +} +//--------------------------------------------------------------------------- + +inline void SetDx(TEdge &e) +{ + cInt dy = (e.Top.Y - e.Bot.Y); + if (dy == 0) e.Dx = HORIZONTAL; + else e.Dx = (double)(e.Top.X - e.Bot.X) / dy; +} +//--------------------------------------------------------------------------- + +inline void SwapSides(TEdge &Edge1, TEdge &Edge2) +{ + EdgeSide Side = Edge1.Side; + Edge1.Side = Edge2.Side; + Edge2.Side = Side; +} +//------------------------------------------------------------------------------ + +inline void SwapPolyIndexes(TEdge &Edge1, TEdge &Edge2) +{ + int OutIdx = Edge1.OutIdx; + Edge1.OutIdx = Edge2.OutIdx; + Edge2.OutIdx = OutIdx; +} +//------------------------------------------------------------------------------ + +inline cInt TopX(TEdge &edge, const cInt currentY) +{ + return ( currentY == edge.Top.Y ) ? + edge.Top.X : edge.Bot.X + Round(edge.Dx *(currentY - edge.Bot.Y)); +} +//------------------------------------------------------------------------------ + +void IntersectPoint(TEdge &Edge1, TEdge &Edge2, IntPoint &ip) +{ +#ifdef use_xyz + ip.Z = 0; +#endif + + double b1, b2; + if (Edge1.Dx == Edge2.Dx) + { + ip.Y = Edge1.Curr.Y; + ip.X = TopX(Edge1, ip.Y); + return; + } + else if (Edge1.Dx == 0) + { + ip.X = Edge1.Bot.X; + if (IsHorizontal(Edge2)) + ip.Y = Edge2.Bot.Y; + else + { + b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx); + ip.Y = Round(ip.X / Edge2.Dx + b2); + } + } + else if (Edge2.Dx == 0) + { + ip.X = Edge2.Bot.X; + if (IsHorizontal(Edge1)) + ip.Y = Edge1.Bot.Y; + else + { + b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx); + ip.Y = Round(ip.X / Edge1.Dx + b1); + } + } + else + { + b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx; + b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx; + double q = (b2-b1) / (Edge1.Dx - Edge2.Dx); + ip.Y = Round(q); + if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx)) + ip.X = Round(Edge1.Dx * q + b1); + else + ip.X = Round(Edge2.Dx * q + b2); + } + + if (ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y) + { + if (Edge1.Top.Y > Edge2.Top.Y) + ip.Y = Edge1.Top.Y; + else + ip.Y = Edge2.Top.Y; + if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx)) + ip.X = TopX(Edge1, ip.Y); + else + ip.X = TopX(Edge2, ip.Y); + } + //finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ... + if (ip.Y > Edge1.Curr.Y) + { + ip.Y = Edge1.Curr.Y; + //use the more vertical edge to derive X ... + if (std::fabs(Edge1.Dx) > std::fabs(Edge2.Dx)) + ip.X = TopX(Edge2, ip.Y); else + ip.X = TopX(Edge1, ip.Y); + } +} +//------------------------------------------------------------------------------ + +void ReversePolyPtLinks(OutPt *pp) +{ + if (!pp) return; + OutPt *pp1, *pp2; + pp1 = pp; + do { + pp2 = pp1->Next; + pp1->Next = pp1->Prev; + pp1->Prev = pp2; + pp1 = pp2; + } while( pp1 != pp ); +} +//------------------------------------------------------------------------------ + +void DisposeOutPts(OutPt*& pp) +{ + if (pp == 0) return; + pp->Prev->Next = 0; + while( pp ) + { + OutPt *tmpPp = pp; + pp = pp->Next; + delete tmpPp; + } +} +//------------------------------------------------------------------------------ + +inline void InitEdge(TEdge* e, TEdge* eNext, TEdge* ePrev, const IntPoint& Pt) +{ + std::memset(e, 0, sizeof(TEdge)); + e->Next = eNext; + e->Prev = ePrev; + e->Curr = Pt; + e->OutIdx = Unassigned; +} +//------------------------------------------------------------------------------ + +void InitEdge2(TEdge& e, PolyType Pt) +{ + if (e.Curr.Y >= e.Next->Curr.Y) + { + e.Bot = e.Curr; + e.Top = e.Next->Curr; + } else + { + e.Top = e.Curr; + e.Bot = e.Next->Curr; + } + SetDx(e); + e.PolyTyp = Pt; +} +//------------------------------------------------------------------------------ + +TEdge* RemoveEdge(TEdge* e) +{ + //removes e from double_linked_list (but without removing from memory) + e->Prev->Next = e->Next; + e->Next->Prev = e->Prev; + TEdge* result = e->Next; + e->Prev = 0; //flag as removed (see ClipperBase.Clear) + return result; +} +//------------------------------------------------------------------------------ + +inline void ReverseHorizontal(TEdge &e) +{ + //swap horizontal edges' Top and Bottom x's so they follow the natural + //progression of the bounds - ie so their xbots will align with the + //adjoining lower edge. [Helpful in the ProcessHorizontal() method.] + std::swap(e.Top.X, e.Bot.X); +#ifdef use_xyz + std::swap(e.Top.Z, e.Bot.Z); +#endif +} +//------------------------------------------------------------------------------ + +void SwapPoints(IntPoint &pt1, IntPoint &pt2) +{ + IntPoint tmp = pt1; + pt1 = pt2; + pt2 = tmp; +} +//------------------------------------------------------------------------------ + +bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, + IntPoint pt2b, IntPoint &pt1, IntPoint &pt2) +{ + //precondition: segments are Collinear. + if (Abs(pt1a.X - pt1b.X) > Abs(pt1a.Y - pt1b.Y)) + { + if (pt1a.X > pt1b.X) SwapPoints(pt1a, pt1b); + if (pt2a.X > pt2b.X) SwapPoints(pt2a, pt2b); + if (pt1a.X > pt2a.X) pt1 = pt1a; else pt1 = pt2a; + if (pt1b.X < pt2b.X) pt2 = pt1b; else pt2 = pt2b; + return pt1.X < pt2.X; + } else + { + if (pt1a.Y < pt1b.Y) SwapPoints(pt1a, pt1b); + if (pt2a.Y < pt2b.Y) SwapPoints(pt2a, pt2b); + if (pt1a.Y < pt2a.Y) pt1 = pt1a; else pt1 = pt2a; + if (pt1b.Y > pt2b.Y) pt2 = pt1b; else pt2 = pt2b; + return pt1.Y > pt2.Y; + } +} +//------------------------------------------------------------------------------ + +bool FirstIsBottomPt(const OutPt* btmPt1, const OutPt* btmPt2) +{ + OutPt *p = btmPt1->Prev; + while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Prev; + double dx1p = std::fabs(GetDx(btmPt1->Pt, p->Pt)); + p = btmPt1->Next; + while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Next; + double dx1n = std::fabs(GetDx(btmPt1->Pt, p->Pt)); + + p = btmPt2->Prev; + while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Prev; + double dx2p = std::fabs(GetDx(btmPt2->Pt, p->Pt)); + p = btmPt2->Next; + while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Next; + double dx2n = std::fabs(GetDx(btmPt2->Pt, p->Pt)); + + if (std::max(dx1p, dx1n) == std::max(dx2p, dx2n) && + std::min(dx1p, dx1n) == std::min(dx2p, dx2n)) + return Area(btmPt1) > 0; //if otherwise identical use orientation + else + return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n); +} +//------------------------------------------------------------------------------ + +OutPt* GetBottomPt(OutPt *pp) +{ + OutPt* dups = 0; + OutPt* p = pp->Next; + while (p != pp) + { + if (p->Pt.Y > pp->Pt.Y) + { + pp = p; + dups = 0; + } + else if (p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X) + { + if (p->Pt.X < pp->Pt.X) + { + dups = 0; + pp = p; + } else + { + if (p->Next != pp && p->Prev != pp) dups = p; + } + } + p = p->Next; + } + if (dups) + { + //there appears to be at least 2 vertices at BottomPt so ... + while (dups != p) + { + if (!FirstIsBottomPt(p, dups)) pp = dups; + dups = dups->Next; + while (dups->Pt != pp->Pt) dups = dups->Next; + } + } + return pp; +} +//------------------------------------------------------------------------------ + +bool Pt2IsBetweenPt1AndPt3(const IntPoint pt1, + const IntPoint pt2, const IntPoint pt3) +{ + if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2)) + return false; + else if (pt1.X != pt3.X) + return (pt2.X > pt1.X) == (pt2.X < pt3.X); + else + return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y); +} +//------------------------------------------------------------------------------ + +bool HorzSegmentsOverlap(cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b) +{ + if (seg1a > seg1b) std::swap(seg1a, seg1b); + if (seg2a > seg2b) std::swap(seg2a, seg2b); + return (seg1a < seg2b) && (seg2a < seg1b); +} + +//------------------------------------------------------------------------------ +// ClipperBase class methods ... +//------------------------------------------------------------------------------ + +ClipperBase::ClipperBase() //constructor +{ + m_CurrentLM = m_MinimaList.begin(); //begin() == end() here + m_UseFullRange = false; + + // Avoid uninitialized vars + m_PreserveCollinear = false; + m_HasOpenPaths = false; + m_ActiveEdges = NULL; +} +//------------------------------------------------------------------------------ + +ClipperBase::~ClipperBase() //destructor +{ + Clear(); +} +//------------------------------------------------------------------------------ + +void RangeTest(const IntPoint& Pt, bool& useFullRange) +{ + if (useFullRange) + { + if (Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange) + throw clipperException("Coordinate outside allowed range"); + } + else if (Pt.X > loRange|| Pt.Y > loRange || -Pt.X > loRange || -Pt.Y > loRange) + { + useFullRange = true; + RangeTest(Pt, useFullRange); + } +} +//------------------------------------------------------------------------------ + +TEdge* FindNextLocMin(TEdge* E) +{ + for (;;) + { + while (E->Bot != E->Prev->Bot || E->Curr == E->Top) E = E->Next; + if (!IsHorizontal(*E) && !IsHorizontal(*E->Prev)) break; + while (IsHorizontal(*E->Prev)) E = E->Prev; + TEdge* E2 = E; + while (IsHorizontal(*E)) E = E->Next; + if (E->Top.Y == E->Prev->Bot.Y) continue; //ie just an intermediate horz. + if (E2->Prev->Bot.X < E->Bot.X) E = E2; + break; + } + return E; +} +//------------------------------------------------------------------------------ + +TEdge* ClipperBase::ProcessBound(TEdge* E, bool NextIsForward) +{ + TEdge *Result = E; + TEdge *Horz = 0; + + if (E->OutIdx == Skip) + { + //if edges still remain in the current bound beyond the skip edge then + //create another LocMin and call ProcessBound once more + if (NextIsForward) + { + while (E->Top.Y == E->Next->Bot.Y) E = E->Next; + //don't include top horizontals when parsing a bound a second time, + //they will be contained in the opposite bound ... + while (E != Result && IsHorizontal(*E)) E = E->Prev; + } + else + { + while (E->Top.Y == E->Prev->Bot.Y) E = E->Prev; + while (E != Result && IsHorizontal(*E)) E = E->Next; + } + + if (E == Result) + { + if (NextIsForward) Result = E->Next; + else Result = E->Prev; + } + else + { + //there are more edges in the bound beyond result starting with E + if (NextIsForward) + E = Result->Next; + else + E = Result->Prev; + MinimaList::value_type locMin; + locMin.Y = E->Bot.Y; + locMin.LeftBound = 0; + locMin.RightBound = E; + E->WindDelta = 0; + Result = ProcessBound(E, NextIsForward); + m_MinimaList.push_back(locMin); + } + return Result; + } + + TEdge *EStart; + + if (IsHorizontal(*E)) + { + //We need to be careful with open paths because this may not be a + //true local minima (ie E may be following a skip edge). + //Also, consecutive horz. edges may start heading left before going right. + if (NextIsForward) + EStart = E->Prev; + else + EStart = E->Next; + if (IsHorizontal(*EStart)) //ie an adjoining horizontal skip edge + { + if (EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X) + ReverseHorizontal(*E); + } + else if (EStart->Bot.X != E->Bot.X) + ReverseHorizontal(*E); + } + + EStart = E; + if (NextIsForward) + { + while (Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip) + Result = Result->Next; + if (IsHorizontal(*Result) && Result->Next->OutIdx != Skip) + { + //nb: at the top of a bound, horizontals are added to the bound + //only when the preceding edge attaches to the horizontal's left vertex + //unless a Skip edge is encountered when that becomes the top divide + Horz = Result; + while (IsHorizontal(*Horz->Prev)) Horz = Horz->Prev; + if (Horz->Prev->Top.X > Result->Next->Top.X) Result = Horz->Prev; + } + while (E != Result) + { + E->NextInLML = E->Next; + if (IsHorizontal(*E) && E != EStart && + E->Bot.X != E->Prev->Top.X) ReverseHorizontal(*E); + E = E->Next; + } + if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X) + ReverseHorizontal(*E); + Result = Result->Next; //move to the edge just beyond current bound + } else + { + while (Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip) + Result = Result->Prev; + if (IsHorizontal(*Result) && Result->Prev->OutIdx != Skip) + { + Horz = Result; + while (IsHorizontal(*Horz->Next)) Horz = Horz->Next; + if (Horz->Next->Top.X == Result->Prev->Top.X || + Horz->Next->Top.X > Result->Prev->Top.X) Result = Horz->Next; + } + + while (E != Result) + { + E->NextInLML = E->Prev; + if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X) + ReverseHorizontal(*E); + E = E->Prev; + } + if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X) + ReverseHorizontal(*E); + Result = Result->Prev; //move to the edge just beyond current bound + } + + return Result; +} +//------------------------------------------------------------------------------ + +bool ClipperBase::AddPath(const Path &pg, PolyType PolyTyp, bool Closed) +{ +#ifdef use_lines + if (!Closed && PolyTyp == ptClip) + throw clipperException("AddPath: Open paths must be subject."); +#else + if (!Closed) + throw clipperException("AddPath: Open paths have been disabled."); +#endif + + int highI = (int)pg.size() -1; + if (Closed) while (highI > 0 && (pg[highI] == pg[0])) --highI; + while (highI > 0 && (pg[highI] == pg[highI -1])) --highI; + if ((Closed && highI < 2) || (!Closed && highI < 1)) return false; + + //create a new edge array ... + TEdge *edges = new TEdge [highI +1]; + + bool IsFlat = true; + //1. Basic (first) edge initialization ... + try + { + edges[1].Curr = pg[1]; + RangeTest(pg[0], m_UseFullRange); + RangeTest(pg[highI], m_UseFullRange); + InitEdge(&edges[0], &edges[1], &edges[highI], pg[0]); + InitEdge(&edges[highI], &edges[0], &edges[highI-1], pg[highI]); + for (int i = highI - 1; i >= 1; --i) + { + RangeTest(pg[i], m_UseFullRange); + InitEdge(&edges[i], &edges[i+1], &edges[i-1], pg[i]); + } + } + catch(...) + { + delete [] edges; + throw; //range test fails + } + TEdge *eStart = &edges[0]; + + //2. Remove duplicate vertices, and (when closed) collinear edges ... + TEdge *E = eStart, *eLoopStop = eStart; + for (;;) + { + //nb: allows matching start and end points when not Closed ... + if (E->Curr == E->Next->Curr && (Closed || E->Next != eStart)) + { + if (E == E->Next) break; + if (E == eStart) eStart = E->Next; + E = RemoveEdge(E); + eLoopStop = E; + continue; + } + if (E->Prev == E->Next) + break; //only two vertices + else if (Closed && + SlopesEqual(E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange) && + (!m_PreserveCollinear || + !Pt2IsBetweenPt1AndPt3(E->Prev->Curr, E->Curr, E->Next->Curr))) + { + //Collinear edges are allowed for open paths but in closed paths + //the default is to merge adjacent collinear edges into a single edge. + //However, if the PreserveCollinear property is enabled, only overlapping + //collinear edges (ie spikes) will be removed from closed paths. + if (E == eStart) eStart = E->Next; + E = RemoveEdge(E); + E = E->Prev; + eLoopStop = E; + continue; + } + E = E->Next; + if ((E == eLoopStop) || (!Closed && E->Next == eStart)) break; + } + + if ((!Closed && (E == E->Next)) || (Closed && (E->Prev == E->Next))) + { + delete [] edges; + return false; + } + + if (!Closed) + { + m_HasOpenPaths = true; + eStart->Prev->OutIdx = Skip; + } + + //3. Do second stage of edge initialization ... + E = eStart; + do + { + InitEdge2(*E, PolyTyp); + E = E->Next; + if (IsFlat && E->Curr.Y != eStart->Curr.Y) IsFlat = false; + } + while (E != eStart); + + //4. Finally, add edge bounds to LocalMinima list ... + + //Totally flat paths must be handled differently when adding them + //to LocalMinima list to avoid endless loops etc ... + if (IsFlat) + { + if (Closed) + { + delete [] edges; + return false; + } + E->Prev->OutIdx = Skip; + MinimaList::value_type locMin; + locMin.Y = E->Bot.Y; + locMin.LeftBound = 0; + locMin.RightBound = E; + locMin.RightBound->Side = esRight; + locMin.RightBound->WindDelta = 0; + for (;;) + { + if (E->Bot.X != E->Prev->Top.X) ReverseHorizontal(*E); + if (E->Next->OutIdx == Skip) break; + E->NextInLML = E->Next; + E = E->Next; + } + m_MinimaList.push_back(locMin); + m_edges.push_back(edges); + return true; + } + + m_edges.push_back(edges); + bool leftBoundIsForward; + TEdge* EMin = 0; + + //workaround to avoid an endless loop in the while loop below when + //open paths have matching start and end points ... + if (E->Prev->Bot == E->Prev->Top) E = E->Next; + + for (;;) + { + E = FindNextLocMin(E); + if (E == EMin) break; + else if (!EMin) EMin = E; + + //E and E.Prev now share a local minima (left aligned if horizontal). + //Compare their slopes to find which starts which bound ... + MinimaList::value_type locMin; + locMin.Y = E->Bot.Y; + if (E->Dx < E->Prev->Dx) + { + locMin.LeftBound = E->Prev; + locMin.RightBound = E; + leftBoundIsForward = false; //Q.nextInLML = Q.prev + } else + { + locMin.LeftBound = E; + locMin.RightBound = E->Prev; + leftBoundIsForward = true; //Q.nextInLML = Q.next + } + + if (!Closed) locMin.LeftBound->WindDelta = 0; + else if (locMin.LeftBound->Next == locMin.RightBound) + locMin.LeftBound->WindDelta = -1; + else locMin.LeftBound->WindDelta = 1; + locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta; + + E = ProcessBound(locMin.LeftBound, leftBoundIsForward); + if (E->OutIdx == Skip) E = ProcessBound(E, leftBoundIsForward); + + TEdge* E2 = ProcessBound(locMin.RightBound, !leftBoundIsForward); + if (E2->OutIdx == Skip) E2 = ProcessBound(E2, !leftBoundIsForward); + + if (locMin.LeftBound->OutIdx == Skip) + locMin.LeftBound = 0; + else if (locMin.RightBound->OutIdx == Skip) + locMin.RightBound = 0; + m_MinimaList.push_back(locMin); + if (!leftBoundIsForward) E = E2; + } + return true; +} +//------------------------------------------------------------------------------ + +bool ClipperBase::AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed) +{ + bool result = false; + for (Paths::size_type i = 0; i < ppg.size(); ++i) + if (AddPath(ppg[i], PolyTyp, Closed)) result = true; + return result; +} +//------------------------------------------------------------------------------ + +void ClipperBase::Clear() +{ + DisposeLocalMinimaList(); + for (EdgeList::size_type i = 0; i < m_edges.size(); ++i) + { + TEdge* edges = m_edges[i]; + delete [] edges; + } + m_edges.clear(); + m_UseFullRange = false; + m_HasOpenPaths = false; +} +//------------------------------------------------------------------------------ + +void ClipperBase::Reset() +{ + m_CurrentLM = m_MinimaList.begin(); + if (m_CurrentLM == m_MinimaList.end()) return; //ie nothing to process + std::sort(m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter()); + + m_Scanbeam = ScanbeamList(); //clears/resets priority_queue + //reset all edges ... + for (MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm) + { + InsertScanbeam(lm->Y); + TEdge* e = lm->LeftBound; + if (e) + { + e->Curr = e->Bot; + e->Side = esLeft; + e->OutIdx = Unassigned; + } + + e = lm->RightBound; + if (e) + { + e->Curr = e->Bot; + e->Side = esRight; + e->OutIdx = Unassigned; + } + } + m_ActiveEdges = 0; + m_CurrentLM = m_MinimaList.begin(); +} +//------------------------------------------------------------------------------ + +void ClipperBase::DisposeLocalMinimaList() +{ + m_MinimaList.clear(); + m_CurrentLM = m_MinimaList.begin(); +} +//------------------------------------------------------------------------------ + +bool ClipperBase::PopLocalMinima(cInt Y, const LocalMinimum *&locMin) +{ + if (m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y) return false; + locMin = &(*m_CurrentLM); + ++m_CurrentLM; + return true; +} +//------------------------------------------------------------------------------ + +IntRect ClipperBase::GetBounds() +{ + IntRect result; + MinimaList::iterator lm = m_MinimaList.begin(); + if (lm == m_MinimaList.end()) + { + result.left = result.top = result.right = result.bottom = 0; + return result; + } + result.left = lm->LeftBound->Bot.X; + result.top = lm->LeftBound->Bot.Y; + result.right = lm->LeftBound->Bot.X; + result.bottom = lm->LeftBound->Bot.Y; + while (lm != m_MinimaList.end()) + { + //todo - needs fixing for open paths + result.bottom = std::max(result.bottom, lm->LeftBound->Bot.Y); + TEdge* e = lm->LeftBound; + for (;;) { + TEdge* bottomE = e; + while (e->NextInLML) + { + if (e->Bot.X < result.left) result.left = e->Bot.X; + if (e->Bot.X > result.right) result.right = e->Bot.X; + e = e->NextInLML; + } + result.left = std::min(result.left, e->Bot.X); + result.right = std::max(result.right, e->Bot.X); + result.left = std::min(result.left, e->Top.X); + result.right = std::max(result.right, e->Top.X); + result.top = std::min(result.top, e->Top.Y); + if (bottomE == lm->LeftBound) e = lm->RightBound; + else break; + } + ++lm; + } + return result; +} +//------------------------------------------------------------------------------ + +void ClipperBase::InsertScanbeam(const cInt Y) +{ + m_Scanbeam.push(Y); +} +//------------------------------------------------------------------------------ + +bool ClipperBase::PopScanbeam(cInt &Y) +{ + if (m_Scanbeam.empty()) return false; + Y = m_Scanbeam.top(); + m_Scanbeam.pop(); + while (!m_Scanbeam.empty() && Y == m_Scanbeam.top()) { m_Scanbeam.pop(); } // Pop duplicates. + return true; +} +//------------------------------------------------------------------------------ + +void ClipperBase::DisposeAllOutRecs(){ + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + DisposeOutRec(i); + m_PolyOuts.clear(); +} +//------------------------------------------------------------------------------ + +void ClipperBase::DisposeOutRec(PolyOutList::size_type index) +{ + OutRec *outRec = m_PolyOuts[index]; + if (outRec->Pts) DisposeOutPts(outRec->Pts); + delete outRec; + m_PolyOuts[index] = 0; +} +//------------------------------------------------------------------------------ + +void ClipperBase::DeleteFromAEL(TEdge *e) +{ + TEdge* AelPrev = e->PrevInAEL; + TEdge* AelNext = e->NextInAEL; + if (!AelPrev && !AelNext && (e != m_ActiveEdges)) return; //already deleted + if (AelPrev) AelPrev->NextInAEL = AelNext; + else m_ActiveEdges = AelNext; + if (AelNext) AelNext->PrevInAEL = AelPrev; + e->NextInAEL = 0; + e->PrevInAEL = 0; +} +//------------------------------------------------------------------------------ + +OutRec* ClipperBase::CreateOutRec() +{ + OutRec* result = new OutRec; + result->IsHole = false; + result->IsOpen = false; + result->FirstLeft = 0; + result->Pts = 0; + result->BottomPt = 0; + result->PolyNd = 0; + m_PolyOuts.push_back(result); + result->Idx = (int)m_PolyOuts.size() - 1; + return result; +} +//------------------------------------------------------------------------------ + +void ClipperBase::SwapPositionsInAEL(TEdge *Edge1, TEdge *Edge2) +{ + //check that one or other edge hasn't already been removed from AEL ... + if (Edge1->NextInAEL == Edge1->PrevInAEL || + Edge2->NextInAEL == Edge2->PrevInAEL) return; + + if (Edge1->NextInAEL == Edge2) + { + TEdge* Next = Edge2->NextInAEL; + if (Next) Next->PrevInAEL = Edge1; + TEdge* Prev = Edge1->PrevInAEL; + if (Prev) Prev->NextInAEL = Edge2; + Edge2->PrevInAEL = Prev; + Edge2->NextInAEL = Edge1; + Edge1->PrevInAEL = Edge2; + Edge1->NextInAEL = Next; + } + else if (Edge2->NextInAEL == Edge1) + { + TEdge* Next = Edge1->NextInAEL; + if (Next) Next->PrevInAEL = Edge2; + TEdge* Prev = Edge2->PrevInAEL; + if (Prev) Prev->NextInAEL = Edge1; + Edge1->PrevInAEL = Prev; + Edge1->NextInAEL = Edge2; + Edge2->PrevInAEL = Edge1; + Edge2->NextInAEL = Next; + } + else + { + TEdge* Next = Edge1->NextInAEL; + TEdge* Prev = Edge1->PrevInAEL; + Edge1->NextInAEL = Edge2->NextInAEL; + if (Edge1->NextInAEL) Edge1->NextInAEL->PrevInAEL = Edge1; + Edge1->PrevInAEL = Edge2->PrevInAEL; + if (Edge1->PrevInAEL) Edge1->PrevInAEL->NextInAEL = Edge1; + Edge2->NextInAEL = Next; + if (Edge2->NextInAEL) Edge2->NextInAEL->PrevInAEL = Edge2; + Edge2->PrevInAEL = Prev; + if (Edge2->PrevInAEL) Edge2->PrevInAEL->NextInAEL = Edge2; + } + + if (!Edge1->PrevInAEL) m_ActiveEdges = Edge1; + else if (!Edge2->PrevInAEL) m_ActiveEdges = Edge2; +} +//------------------------------------------------------------------------------ + +void ClipperBase::UpdateEdgeIntoAEL(TEdge *&e) +{ + if (!e->NextInLML) + throw clipperException("UpdateEdgeIntoAEL: invalid call"); + + e->NextInLML->OutIdx = e->OutIdx; + TEdge* AelPrev = e->PrevInAEL; + TEdge* AelNext = e->NextInAEL; + if (AelPrev) AelPrev->NextInAEL = e->NextInLML; + else m_ActiveEdges = e->NextInLML; + if (AelNext) AelNext->PrevInAEL = e->NextInLML; + e->NextInLML->Side = e->Side; + e->NextInLML->WindDelta = e->WindDelta; + e->NextInLML->WindCnt = e->WindCnt; + e->NextInLML->WindCnt2 = e->WindCnt2; + e = e->NextInLML; + e->Curr = e->Bot; + e->PrevInAEL = AelPrev; + e->NextInAEL = AelNext; + if (!IsHorizontal(*e)) InsertScanbeam(e->Top.Y); +} +//------------------------------------------------------------------------------ + +bool ClipperBase::LocalMinimaPending() +{ + return (m_CurrentLM != m_MinimaList.end()); +} + +//------------------------------------------------------------------------------ +// TClipper methods ... +//------------------------------------------------------------------------------ + +Clipper::Clipper(int initOptions) : ClipperBase() //constructor +{ + m_ExecuteLocked = false; + m_UseFullRange = false; + m_ReverseOutput = ((initOptions & ioReverseSolution) != 0); + m_StrictSimple = ((initOptions & ioStrictlySimple) != 0); + m_PreserveCollinear = ((initOptions & ioPreserveCollinear) != 0); + m_HasOpenPaths = false; +#ifdef use_xyz + m_ZFill = 0; +#endif + + // Avoid uninitialized vars + m_ClipType = ctIntersection; + m_SortedEdges = NULL; + m_ClipFillType = pftEvenOdd; + m_SubjFillType = pftEvenOdd; + m_UsingPolyTree = true; +} +//------------------------------------------------------------------------------ + +#ifdef use_xyz +void Clipper::ZFillFunction(ZFillCallback zFillFunc) +{ + m_ZFill = zFillFunc; +} +//------------------------------------------------------------------------------ +#endif + +bool Clipper::Execute(ClipType clipType, Paths &solution, PolyFillType fillType) +{ + return Execute(clipType, solution, fillType, fillType); +} +//------------------------------------------------------------------------------ + +bool Clipper::Execute(ClipType clipType, PolyTree &polytree, PolyFillType fillType) +{ + return Execute(clipType, polytree, fillType, fillType); +} +//------------------------------------------------------------------------------ + +bool Clipper::Execute(ClipType clipType, Paths &solution, + PolyFillType subjFillType, PolyFillType clipFillType) +{ + if( m_ExecuteLocked ) return false; + if (m_HasOpenPaths) + throw clipperException("Error: PolyTree struct is needed for open path clipping."); + m_ExecuteLocked = true; + solution.resize(0); + m_SubjFillType = subjFillType; + m_ClipFillType = clipFillType; + m_ClipType = clipType; + m_UsingPolyTree = false; + bool succeeded = ExecuteInternal(); + if (succeeded) BuildResult(solution); + DisposeAllOutRecs(); + m_ExecuteLocked = false; + return succeeded; +} +//------------------------------------------------------------------------------ + +bool Clipper::Execute(ClipType clipType, PolyTree& polytree, + PolyFillType subjFillType, PolyFillType clipFillType) +{ + if( m_ExecuteLocked ) return false; + m_ExecuteLocked = true; + m_SubjFillType = subjFillType; + m_ClipFillType = clipFillType; + m_ClipType = clipType; + m_UsingPolyTree = true; + bool succeeded = ExecuteInternal(); + if (succeeded) BuildResult2(polytree); + DisposeAllOutRecs(); + m_ExecuteLocked = false; + return succeeded; +} +//------------------------------------------------------------------------------ + +void Clipper::FixHoleLinkage(OutRec &outrec) +{ + //skip OutRecs that (a) contain outermost polygons or + //(b) already have the correct owner/child linkage ... + if (!outrec.FirstLeft || + (outrec.IsHole != outrec.FirstLeft->IsHole && + outrec.FirstLeft->Pts)) return; + + OutRec* orfl = outrec.FirstLeft; + while (orfl && ((orfl->IsHole == outrec.IsHole) || !orfl->Pts)) + orfl = orfl->FirstLeft; + outrec.FirstLeft = orfl; +} +//------------------------------------------------------------------------------ + +bool Clipper::ExecuteInternal() +{ + bool succeeded = true; + try { + Reset(); + m_Maxima = MaximaList(); + m_SortedEdges = 0; + + succeeded = true; + cInt botY, topY; + if (!PopScanbeam(botY)) return false; + InsertLocalMinimaIntoAEL(botY); + while (PopScanbeam(topY) || LocalMinimaPending()) + { + ProcessHorizontals(); + ClearGhostJoins(); + if (!ProcessIntersections(topY)) + { + succeeded = false; + break; + } + ProcessEdgesAtTopOfScanbeam(topY); + botY = topY; + InsertLocalMinimaIntoAEL(botY); + } + } + catch(...) + { + succeeded = false; + } + + if (succeeded) + { + //fix orientations ... + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + { + OutRec *outRec = m_PolyOuts[i]; + if (!outRec->Pts || outRec->IsOpen) continue; + if ((outRec->IsHole ^ m_ReverseOutput) == (Area(*outRec) > 0)) + ReversePolyPtLinks(outRec->Pts); + } + + if (!m_Joins.empty()) JoinCommonEdges(); + + //unfortunately FixupOutPolygon() must be done after JoinCommonEdges() + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + { + OutRec *outRec = m_PolyOuts[i]; + if (!outRec->Pts) continue; + if (outRec->IsOpen) + FixupOutPolyline(*outRec); + else + FixupOutPolygon(*outRec); + } + + if (m_StrictSimple) DoSimplePolygons(); + } + + ClearJoins(); + ClearGhostJoins(); + return succeeded; +} +//------------------------------------------------------------------------------ + +void Clipper::SetWindingCount(TEdge &edge) +{ + TEdge *e = edge.PrevInAEL; + //find the edge of the same polytype that immediately preceeds 'edge' in AEL + while (e && ((e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0))) e = e->PrevInAEL; + if (!e) + { + if (edge.WindDelta == 0) + { + PolyFillType pft = (edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType); + edge.WindCnt = (pft == pftNegative ? -1 : 1); + } + else + edge.WindCnt = edge.WindDelta; + edge.WindCnt2 = 0; + e = m_ActiveEdges; //ie get ready to calc WindCnt2 + } + else if (edge.WindDelta == 0 && m_ClipType != ctUnion) + { + edge.WindCnt = 1; + edge.WindCnt2 = e->WindCnt2; + e = e->NextInAEL; //ie get ready to calc WindCnt2 + } + else if (IsEvenOddFillType(edge)) + { + //EvenOdd filling ... + if (edge.WindDelta == 0) + { + //are we inside a subj polygon ... + bool Inside = true; + TEdge *e2 = e->PrevInAEL; + while (e2) + { + if (e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0) + Inside = !Inside; + e2 = e2->PrevInAEL; + } + edge.WindCnt = (Inside ? 0 : 1); + } + else + { + edge.WindCnt = edge.WindDelta; + } + edge.WindCnt2 = e->WindCnt2; + e = e->NextInAEL; //ie get ready to calc WindCnt2 + } + else + { + //nonZero, Positive or Negative filling ... + if (e->WindCnt * e->WindDelta < 0) + { + //prev edge is 'decreasing' WindCount (WC) toward zero + //so we're outside the previous polygon ... + if (Abs(e->WindCnt) > 1) + { + //outside prev poly but still inside another. + //when reversing direction of prev poly use the same WC + if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt; + //otherwise continue to 'decrease' WC ... + else edge.WindCnt = e->WindCnt + edge.WindDelta; + } + else + //now outside all polys of same polytype so set own WC ... + edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta); + } else + { + //prev edge is 'increasing' WindCount (WC) away from zero + //so we're inside the previous polygon ... + if (edge.WindDelta == 0) + edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1); + //if wind direction is reversing prev then use same WC + else if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt; + //otherwise add to WC ... + else edge.WindCnt = e->WindCnt + edge.WindDelta; + } + edge.WindCnt2 = e->WindCnt2; + e = e->NextInAEL; //ie get ready to calc WindCnt2 + } + + //update WindCnt2 ... + if (IsEvenOddAltFillType(edge)) + { + //EvenOdd filling ... + while (e != &edge) + { + if (e->WindDelta != 0) + edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0); + e = e->NextInAEL; + } + } else + { + //nonZero, Positive or Negative filling ... + while ( e != &edge ) + { + edge.WindCnt2 += e->WindDelta; + e = e->NextInAEL; + } + } +} +//------------------------------------------------------------------------------ + +bool Clipper::IsEvenOddFillType(const TEdge& edge) const +{ + if (edge.PolyTyp == ptSubject) + return m_SubjFillType == pftEvenOdd; else + return m_ClipFillType == pftEvenOdd; +} +//------------------------------------------------------------------------------ + +bool Clipper::IsEvenOddAltFillType(const TEdge& edge) const +{ + if (edge.PolyTyp == ptSubject) + return m_ClipFillType == pftEvenOdd; else + return m_SubjFillType == pftEvenOdd; +} +//------------------------------------------------------------------------------ + +bool Clipper::IsContributing(const TEdge& edge) const +{ + PolyFillType pft, pft2; + if (edge.PolyTyp == ptSubject) + { + pft = m_SubjFillType; + pft2 = m_ClipFillType; + } else + { + pft = m_ClipFillType; + pft2 = m_SubjFillType; + } + + switch(pft) + { + case pftEvenOdd: + //return false if a subj line has been flagged as inside a subj polygon + if (edge.WindDelta == 0 && edge.WindCnt != 1) return false; + break; + case pftNonZero: + if (Abs(edge.WindCnt) != 1) return false; + break; + case pftPositive: + if (edge.WindCnt != 1) return false; + break; + default: //pftNegative + if (edge.WindCnt != -1) return false; + } + + switch(m_ClipType) + { + case ctIntersection: + switch(pft2) + { + case pftEvenOdd: + case pftNonZero: + return (edge.WindCnt2 != 0); + case pftPositive: + return (edge.WindCnt2 > 0); + default: + return (edge.WindCnt2 < 0); + } + break; + case ctUnion: + switch(pft2) + { + case pftEvenOdd: + case pftNonZero: + return (edge.WindCnt2 == 0); + case pftPositive: + return (edge.WindCnt2 <= 0); + default: + return (edge.WindCnt2 >= 0); + } + break; + case ctDifference: + if (edge.PolyTyp == ptSubject) + switch(pft2) + { + case pftEvenOdd: + case pftNonZero: + return (edge.WindCnt2 == 0); + case pftPositive: + return (edge.WindCnt2 <= 0); + default: + return (edge.WindCnt2 >= 0); + } + else + switch(pft2) + { + case pftEvenOdd: + case pftNonZero: + return (edge.WindCnt2 != 0); + case pftPositive: + return (edge.WindCnt2 > 0); + default: + return (edge.WindCnt2 < 0); + } + break; + case ctXor: + if (edge.WindDelta == 0) //XOr always contributing unless open + switch(pft2) + { + case pftEvenOdd: + case pftNonZero: + return (edge.WindCnt2 == 0); + case pftPositive: + return (edge.WindCnt2 <= 0); + default: + return (edge.WindCnt2 >= 0); + } + else + return true; + break; + default: + return true; + } +} +//------------------------------------------------------------------------------ + +OutPt* Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) +{ + OutPt* result; + TEdge *e, *prevE; + if (IsHorizontal(*e2) || ( e1->Dx > e2->Dx )) + { + result = AddOutPt(e1, Pt); + e2->OutIdx = e1->OutIdx; + e1->Side = esLeft; + e2->Side = esRight; + e = e1; + if (e->PrevInAEL == e2) + prevE = e2->PrevInAEL; + else + prevE = e->PrevInAEL; + } else + { + result = AddOutPt(e2, Pt); + e1->OutIdx = e2->OutIdx; + e1->Side = esRight; + e2->Side = esLeft; + e = e2; + if (e->PrevInAEL == e1) + prevE = e1->PrevInAEL; + else + prevE = e->PrevInAEL; + } + + if (prevE && prevE->OutIdx >= 0) + { + cInt xPrev = TopX(*prevE, Pt.Y); + cInt xE = TopX(*e, Pt.Y); + if (xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) && + SlopesEqual(IntPoint(xPrev, Pt.Y), prevE->Top, IntPoint(xE, Pt.Y), e->Top, m_UseFullRange)) + { + OutPt* outPt = AddOutPt(prevE, Pt); + AddJoin(result, outPt, e->Top); + } + } + return result; +} +//------------------------------------------------------------------------------ + +void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) +{ + AddOutPt( e1, Pt ); + if (e2->WindDelta == 0) AddOutPt(e2, Pt); + if( e1->OutIdx == e2->OutIdx ) + { + e1->OutIdx = Unassigned; + e2->OutIdx = Unassigned; + } + else if (e1->OutIdx < e2->OutIdx) + AppendPolygon(e1, e2); + else + AppendPolygon(e2, e1); +} +//------------------------------------------------------------------------------ + +void Clipper::AddEdgeToSEL(TEdge *edge) +{ + //SEL pointers in PEdge are reused to build a list of horizontal edges. + //However, we don't need to worry about order with horizontal edge processing. + if( !m_SortedEdges ) + { + m_SortedEdges = edge; + edge->PrevInSEL = 0; + edge->NextInSEL = 0; + } + else + { + edge->NextInSEL = m_SortedEdges; + edge->PrevInSEL = 0; + m_SortedEdges->PrevInSEL = edge; + m_SortedEdges = edge; + } +} +//------------------------------------------------------------------------------ + +bool Clipper::PopEdgeFromSEL(TEdge *&edge) +{ + if (!m_SortedEdges) return false; + edge = m_SortedEdges; + DeleteFromSEL(m_SortedEdges); + return true; +} +//------------------------------------------------------------------------------ + +void Clipper::CopyAELToSEL() +{ + TEdge* e = m_ActiveEdges; + m_SortedEdges = e; + while ( e ) + { + e->PrevInSEL = e->PrevInAEL; + e->NextInSEL = e->NextInAEL; + e = e->NextInAEL; + } +} +//------------------------------------------------------------------------------ + +void Clipper::AddJoin(OutPt *op1, OutPt *op2, const IntPoint OffPt) +{ + Join* j = new Join; + j->OutPt1 = op1; + j->OutPt2 = op2; + j->OffPt = OffPt; + m_Joins.push_back(j); +} +//------------------------------------------------------------------------------ + +void Clipper::ClearJoins() +{ + for (JoinList::size_type i = 0; i < m_Joins.size(); i++) + delete m_Joins[i]; + m_Joins.resize(0); +} +//------------------------------------------------------------------------------ + +void Clipper::ClearGhostJoins() +{ + for (JoinList::size_type i = 0; i < m_GhostJoins.size(); i++) + delete m_GhostJoins[i]; + m_GhostJoins.resize(0); +} +//------------------------------------------------------------------------------ + +void Clipper::AddGhostJoin(OutPt *op, const IntPoint OffPt) +{ + Join* j = new Join; + j->OutPt1 = op; + j->OutPt2 = 0; + j->OffPt = OffPt; + m_GhostJoins.push_back(j); +} +//------------------------------------------------------------------------------ + +void Clipper::InsertLocalMinimaIntoAEL(const cInt botY) +{ + const LocalMinimum *lm; + while (PopLocalMinima(botY, lm)) + { + TEdge* lb = lm->LeftBound; + TEdge* rb = lm->RightBound; + + OutPt *Op1 = 0; + if (!lb) + { + //nb: don't insert LB into either AEL or SEL + InsertEdgeIntoAEL(rb, 0); + SetWindingCount(*rb); + if (IsContributing(*rb)) + Op1 = AddOutPt(rb, rb->Bot); + } + else if (!rb) + { + InsertEdgeIntoAEL(lb, 0); + SetWindingCount(*lb); + if (IsContributing(*lb)) + Op1 = AddOutPt(lb, lb->Bot); + InsertScanbeam(lb->Top.Y); + } + else + { + InsertEdgeIntoAEL(lb, 0); + InsertEdgeIntoAEL(rb, lb); + SetWindingCount( *lb ); + rb->WindCnt = lb->WindCnt; + rb->WindCnt2 = lb->WindCnt2; + if (IsContributing(*lb)) + Op1 = AddLocalMinPoly(lb, rb, lb->Bot); + InsertScanbeam(lb->Top.Y); + } + + if (rb) + { + if (IsHorizontal(*rb)) + { + AddEdgeToSEL(rb); + if (rb->NextInLML) + InsertScanbeam(rb->NextInLML->Top.Y); + } + else InsertScanbeam( rb->Top.Y ); + } + + if (!lb || !rb) continue; + + //if any output polygons share an edge, they'll need joining later ... + if (Op1 && IsHorizontal(*rb) && + m_GhostJoins.size() > 0 && (rb->WindDelta != 0)) + { + for (JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i) + { + Join* jr = m_GhostJoins[i]; + //if the horizontal Rb and a 'ghost' horizontal overlap, then convert + //the 'ghost' join to a real join ready for later ... + if (HorzSegmentsOverlap(jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X, rb->Top.X)) + AddJoin(jr->OutPt1, Op1, jr->OffPt); + } + } + + if (lb->OutIdx >= 0 && lb->PrevInAEL && + lb->PrevInAEL->Curr.X == lb->Bot.X && + lb->PrevInAEL->OutIdx >= 0 && + SlopesEqual(lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top, m_UseFullRange) && + (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0)) + { + OutPt *Op2 = AddOutPt(lb->PrevInAEL, lb->Bot); + AddJoin(Op1, Op2, lb->Top); + } + + if(lb->NextInAEL != rb) + { + + if (rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 && + SlopesEqual(rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr, rb->Top, m_UseFullRange) && + (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0)) + { + OutPt *Op2 = AddOutPt(rb->PrevInAEL, rb->Bot); + AddJoin(Op1, Op2, rb->Top); + } + + TEdge* e = lb->NextInAEL; + if (e) + { + while( e != rb ) + { + //nb: For calculating winding counts etc, IntersectEdges() assumes + //that param1 will be to the Right of param2 ABOVE the intersection ... + IntersectEdges(rb , e , lb->Curr); //order important here + e = e->NextInAEL; + } + } + } + + } +} +//------------------------------------------------------------------------------ + +void Clipper::DeleteFromSEL(TEdge *e) +{ + TEdge* SelPrev = e->PrevInSEL; + TEdge* SelNext = e->NextInSEL; + if( !SelPrev && !SelNext && (e != m_SortedEdges) ) return; //already deleted + if( SelPrev ) SelPrev->NextInSEL = SelNext; + else m_SortedEdges = SelNext; + if( SelNext ) SelNext->PrevInSEL = SelPrev; + e->NextInSEL = 0; + e->PrevInSEL = 0; +} +//------------------------------------------------------------------------------ + +#ifdef use_xyz +void Clipper::SetZ(IntPoint& pt, TEdge& e1, TEdge& e2) +{ + if (pt.Z != 0 || !m_ZFill) return; + else if (pt == e1.Bot) pt.Z = e1.Bot.Z; + else if (pt == e1.Top) pt.Z = e1.Top.Z; + else if (pt == e2.Bot) pt.Z = e2.Bot.Z; + else if (pt == e2.Top) pt.Z = e2.Top.Z; + else (*m_ZFill)(e1.Bot, e1.Top, e2.Bot, e2.Top, pt); +} +//------------------------------------------------------------------------------ +#endif + +void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &Pt) +{ + bool e1Contributing = ( e1->OutIdx >= 0 ); + bool e2Contributing = ( e2->OutIdx >= 0 ); + +#ifdef use_xyz + SetZ(Pt, *e1, *e2); +#endif + +#ifdef use_lines + //if either edge is on an OPEN path ... + if (e1->WindDelta == 0 || e2->WindDelta == 0) + { + //ignore subject-subject open path intersections UNLESS they + //are both open paths, AND they are both 'contributing maximas' ... + if (e1->WindDelta == 0 && e2->WindDelta == 0) return; + + //if intersecting a subj line with a subj poly ... + else if (e1->PolyTyp == e2->PolyTyp && + e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion) + { + if (e1->WindDelta == 0) + { + if (e2Contributing) + { + AddOutPt(e1, Pt); + if (e1Contributing) e1->OutIdx = Unassigned; + } + } + else + { + if (e1Contributing) + { + AddOutPt(e2, Pt); + if (e2Contributing) e2->OutIdx = Unassigned; + } + } + } + else if (e1->PolyTyp != e2->PolyTyp) + { + //toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ... + if ((e1->WindDelta == 0) && abs(e2->WindCnt) == 1 && + (m_ClipType != ctUnion || e2->WindCnt2 == 0)) + { + AddOutPt(e1, Pt); + if (e1Contributing) e1->OutIdx = Unassigned; + } + else if ((e2->WindDelta == 0) && (abs(e1->WindCnt) == 1) && + (m_ClipType != ctUnion || e1->WindCnt2 == 0)) + { + AddOutPt(e2, Pt); + if (e2Contributing) e2->OutIdx = Unassigned; + } + } + return; + } +#endif + + //update winding counts... + //assumes that e1 will be to the Right of e2 ABOVE the intersection + if ( e1->PolyTyp == e2->PolyTyp ) + { + if ( IsEvenOddFillType( *e1) ) + { + int oldE1WindCnt = e1->WindCnt; + e1->WindCnt = e2->WindCnt; + e2->WindCnt = oldE1WindCnt; + } else + { + if (e1->WindCnt + e2->WindDelta == 0 ) e1->WindCnt = -e1->WindCnt; + else e1->WindCnt += e2->WindDelta; + if ( e2->WindCnt - e1->WindDelta == 0 ) e2->WindCnt = -e2->WindCnt; + else e2->WindCnt -= e1->WindDelta; + } + } else + { + if (!IsEvenOddFillType(*e2)) e1->WindCnt2 += e2->WindDelta; + else e1->WindCnt2 = ( e1->WindCnt2 == 0 ) ? 1 : 0; + if (!IsEvenOddFillType(*e1)) e2->WindCnt2 -= e1->WindDelta; + else e2->WindCnt2 = ( e2->WindCnt2 == 0 ) ? 1 : 0; + } + + PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2; + if (e1->PolyTyp == ptSubject) + { + e1FillType = m_SubjFillType; + e1FillType2 = m_ClipFillType; + } else + { + e1FillType = m_ClipFillType; + e1FillType2 = m_SubjFillType; + } + if (e2->PolyTyp == ptSubject) + { + e2FillType = m_SubjFillType; + e2FillType2 = m_ClipFillType; + } else + { + e2FillType = m_ClipFillType; + e2FillType2 = m_SubjFillType; + } + + cInt e1Wc, e2Wc; + switch (e1FillType) + { + case pftPositive: e1Wc = e1->WindCnt; break; + case pftNegative: e1Wc = -e1->WindCnt; break; + default: e1Wc = Abs(e1->WindCnt); + } + switch(e2FillType) + { + case pftPositive: e2Wc = e2->WindCnt; break; + case pftNegative: e2Wc = -e2->WindCnt; break; + default: e2Wc = Abs(e2->WindCnt); + } + + if ( e1Contributing && e2Contributing ) + { + if ((e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) || + (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor) ) + { + AddLocalMaxPoly(e1, e2, Pt); + } + else + { + AddOutPt(e1, Pt); + AddOutPt(e2, Pt); + SwapSides( *e1 , *e2 ); + SwapPolyIndexes( *e1 , *e2 ); + } + } + else if ( e1Contributing ) + { + if (e2Wc == 0 || e2Wc == 1) + { + AddOutPt(e1, Pt); + SwapSides(*e1, *e2); + SwapPolyIndexes(*e1, *e2); + } + } + else if ( e2Contributing ) + { + if (e1Wc == 0 || e1Wc == 1) + { + AddOutPt(e2, Pt); + SwapSides(*e1, *e2); + SwapPolyIndexes(*e1, *e2); + } + } + else if ( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1)) + { + //neither edge is currently contributing ... + + cInt e1Wc2, e2Wc2; + switch (e1FillType2) + { + case pftPositive: e1Wc2 = e1->WindCnt2; break; + case pftNegative : e1Wc2 = -e1->WindCnt2; break; + default: e1Wc2 = Abs(e1->WindCnt2); + } + switch (e2FillType2) + { + case pftPositive: e2Wc2 = e2->WindCnt2; break; + case pftNegative: e2Wc2 = -e2->WindCnt2; break; + default: e2Wc2 = Abs(e2->WindCnt2); + } + + if (e1->PolyTyp != e2->PolyTyp) + { + AddLocalMinPoly(e1, e2, Pt); + } + else if (e1Wc == 1 && e2Wc == 1) + switch( m_ClipType ) { + case ctIntersection: + if (e1Wc2 > 0 && e2Wc2 > 0) + AddLocalMinPoly(e1, e2, Pt); + break; + case ctUnion: + if ( e1Wc2 <= 0 && e2Wc2 <= 0 ) + AddLocalMinPoly(e1, e2, Pt); + break; + case ctDifference: + if (((e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) || + ((e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0))) + AddLocalMinPoly(e1, e2, Pt); + break; + case ctXor: + AddLocalMinPoly(e1, e2, Pt); + } + else + SwapSides( *e1, *e2 ); + } +} +//------------------------------------------------------------------------------ + +void Clipper::SetHoleState(TEdge *e, OutRec *outrec) +{ + TEdge *e2 = e->PrevInAEL; + TEdge *eTmp = 0; + while (e2) + { + if (e2->OutIdx >= 0 && e2->WindDelta != 0) + { + if (!eTmp) eTmp = e2; + else if (eTmp->OutIdx == e2->OutIdx) eTmp = 0; + } + e2 = e2->PrevInAEL; + } + if (!eTmp) + { + outrec->FirstLeft = 0; + outrec->IsHole = false; + } + else + { + outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx]; + outrec->IsHole = !outrec->FirstLeft->IsHole; + } +} +//------------------------------------------------------------------------------ + +OutRec* GetLowermostRec(OutRec *outRec1, OutRec *outRec2) +{ + //work out which polygon fragment has the correct hole state ... + if (!outRec1->BottomPt) + outRec1->BottomPt = GetBottomPt(outRec1->Pts); + if (!outRec2->BottomPt) + outRec2->BottomPt = GetBottomPt(outRec2->Pts); + OutPt *OutPt1 = outRec1->BottomPt; + OutPt *OutPt2 = outRec2->BottomPt; + if (OutPt1->Pt.Y > OutPt2->Pt.Y) return outRec1; + else if (OutPt1->Pt.Y < OutPt2->Pt.Y) return outRec2; + else if (OutPt1->Pt.X < OutPt2->Pt.X) return outRec1; + else if (OutPt1->Pt.X > OutPt2->Pt.X) return outRec2; + else if (OutPt1->Next == OutPt1) return outRec2; + else if (OutPt2->Next == OutPt2) return outRec1; + else if (FirstIsBottomPt(OutPt1, OutPt2)) return outRec1; + else return outRec2; +} +//------------------------------------------------------------------------------ + +bool OutRec1RightOfOutRec2(OutRec* outRec1, OutRec* outRec2) +{ + do + { + outRec1 = outRec1->FirstLeft; + if (outRec1 == outRec2) return true; + } while (outRec1); + return false; +} +//------------------------------------------------------------------------------ + +OutRec* Clipper::GetOutRec(int Idx) +{ + OutRec* outrec = m_PolyOuts[Idx]; + while (outrec != m_PolyOuts[outrec->Idx]) + outrec = m_PolyOuts[outrec->Idx]; + return outrec; +} +//------------------------------------------------------------------------------ + +void Clipper::AppendPolygon(TEdge *e1, TEdge *e2) +{ + //get the start and ends of both output polygons ... + OutRec *outRec1 = m_PolyOuts[e1->OutIdx]; + OutRec *outRec2 = m_PolyOuts[e2->OutIdx]; + + OutRec *holeStateRec; + if (OutRec1RightOfOutRec2(outRec1, outRec2)) + holeStateRec = outRec2; + else if (OutRec1RightOfOutRec2(outRec2, outRec1)) + holeStateRec = outRec1; + else + holeStateRec = GetLowermostRec(outRec1, outRec2); + + //get the start and ends of both output polygons and + //join e2 poly onto e1 poly and delete pointers to e2 ... + + OutPt* p1_lft = outRec1->Pts; + OutPt* p1_rt = p1_lft->Prev; + OutPt* p2_lft = outRec2->Pts; + OutPt* p2_rt = p2_lft->Prev; + + //join e2 poly onto e1 poly and delete pointers to e2 ... + if( e1->Side == esLeft ) + { + if( e2->Side == esLeft ) + { + //z y x a b c + ReversePolyPtLinks(p2_lft); + p2_lft->Next = p1_lft; + p1_lft->Prev = p2_lft; + p1_rt->Next = p2_rt; + p2_rt->Prev = p1_rt; + outRec1->Pts = p2_rt; + } else + { + //x y z a b c + p2_rt->Next = p1_lft; + p1_lft->Prev = p2_rt; + p2_lft->Prev = p1_rt; + p1_rt->Next = p2_lft; + outRec1->Pts = p2_lft; + } + } else + { + if( e2->Side == esRight ) + { + //a b c z y x + ReversePolyPtLinks(p2_lft); + p1_rt->Next = p2_rt; + p2_rt->Prev = p1_rt; + p2_lft->Next = p1_lft; + p1_lft->Prev = p2_lft; + } else + { + //a b c x y z + p1_rt->Next = p2_lft; + p2_lft->Prev = p1_rt; + p1_lft->Prev = p2_rt; + p2_rt->Next = p1_lft; + } + } + + outRec1->BottomPt = 0; + if (holeStateRec == outRec2) + { + if (outRec2->FirstLeft != outRec1) + outRec1->FirstLeft = outRec2->FirstLeft; + outRec1->IsHole = outRec2->IsHole; + } + outRec2->Pts = 0; + outRec2->BottomPt = 0; + outRec2->FirstLeft = outRec1; + + int OKIdx = e1->OutIdx; + int ObsoleteIdx = e2->OutIdx; + + e1->OutIdx = Unassigned; //nb: safe because we only get here via AddLocalMaxPoly + e2->OutIdx = Unassigned; + + TEdge* e = m_ActiveEdges; + while( e ) + { + if( e->OutIdx == ObsoleteIdx ) + { + e->OutIdx = OKIdx; + e->Side = e1->Side; + break; + } + e = e->NextInAEL; + } + + outRec2->Idx = outRec1->Idx; +} +//------------------------------------------------------------------------------ + +OutPt* Clipper::AddOutPt(TEdge *e, const IntPoint &pt) +{ + if( e->OutIdx < 0 ) + { + OutRec *outRec = CreateOutRec(); + outRec->IsOpen = (e->WindDelta == 0); + OutPt* newOp = new OutPt; + outRec->Pts = newOp; + newOp->Idx = outRec->Idx; + newOp->Pt = pt; + newOp->Next = newOp; + newOp->Prev = newOp; + if (!outRec->IsOpen) + SetHoleState(e, outRec); + e->OutIdx = outRec->Idx; + return newOp; + } else + { + OutRec *outRec = m_PolyOuts[e->OutIdx]; + //OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most' + OutPt* op = outRec->Pts; + + bool ToFront = (e->Side == esLeft); + if (ToFront && (pt == op->Pt)) return op; + else if (!ToFront && (pt == op->Prev->Pt)) return op->Prev; + + OutPt* newOp = new OutPt; + newOp->Idx = outRec->Idx; + newOp->Pt = pt; + newOp->Next = op; + newOp->Prev = op->Prev; + newOp->Prev->Next = newOp; + op->Prev = newOp; + if (ToFront) outRec->Pts = newOp; + return newOp; + } +} +//------------------------------------------------------------------------------ + +OutPt* Clipper::GetLastOutPt(TEdge *e) +{ + OutRec *outRec = m_PolyOuts[e->OutIdx]; + if (e->Side == esLeft) + return outRec->Pts; + else + return outRec->Pts->Prev; +} +//------------------------------------------------------------------------------ + +void Clipper::ProcessHorizontals() +{ + TEdge* horzEdge; + while (PopEdgeFromSEL(horzEdge)) + ProcessHorizontal(horzEdge); +} +//------------------------------------------------------------------------------ + +inline bool IsMinima(TEdge *e) +{ + return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e); +} +//------------------------------------------------------------------------------ + +inline bool IsMaxima(TEdge *e, const cInt Y) +{ + return e && e->Top.Y == Y && !e->NextInLML; +} +//------------------------------------------------------------------------------ + +inline bool IsIntermediate(TEdge *e, const cInt Y) +{ + return e->Top.Y == Y && e->NextInLML; +} +//------------------------------------------------------------------------------ + +TEdge *GetMaximaPair(TEdge *e) +{ + if ((e->Next->Top == e->Top) && !e->Next->NextInLML) + return e->Next; + else if ((e->Prev->Top == e->Top) && !e->Prev->NextInLML) + return e->Prev; + else return 0; +} +//------------------------------------------------------------------------------ + +TEdge *GetMaximaPairEx(TEdge *e) +{ + //as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's horizontal) + TEdge* result = GetMaximaPair(e); + if (result && (result->OutIdx == Skip || + (result->NextInAEL == result->PrevInAEL && !IsHorizontal(*result)))) return 0; + return result; +} +//------------------------------------------------------------------------------ + +void Clipper::SwapPositionsInSEL(TEdge *Edge1, TEdge *Edge2) +{ + if( !( Edge1->NextInSEL ) && !( Edge1->PrevInSEL ) ) return; + if( !( Edge2->NextInSEL ) && !( Edge2->PrevInSEL ) ) return; + + if( Edge1->NextInSEL == Edge2 ) + { + TEdge* Next = Edge2->NextInSEL; + if( Next ) Next->PrevInSEL = Edge1; + TEdge* Prev = Edge1->PrevInSEL; + if( Prev ) Prev->NextInSEL = Edge2; + Edge2->PrevInSEL = Prev; + Edge2->NextInSEL = Edge1; + Edge1->PrevInSEL = Edge2; + Edge1->NextInSEL = Next; + } + else if( Edge2->NextInSEL == Edge1 ) + { + TEdge* Next = Edge1->NextInSEL; + if( Next ) Next->PrevInSEL = Edge2; + TEdge* Prev = Edge2->PrevInSEL; + if( Prev ) Prev->NextInSEL = Edge1; + Edge1->PrevInSEL = Prev; + Edge1->NextInSEL = Edge2; + Edge2->PrevInSEL = Edge1; + Edge2->NextInSEL = Next; + } + else + { + TEdge* Next = Edge1->NextInSEL; + TEdge* Prev = Edge1->PrevInSEL; + Edge1->NextInSEL = Edge2->NextInSEL; + if( Edge1->NextInSEL ) Edge1->NextInSEL->PrevInSEL = Edge1; + Edge1->PrevInSEL = Edge2->PrevInSEL; + if( Edge1->PrevInSEL ) Edge1->PrevInSEL->NextInSEL = Edge1; + Edge2->NextInSEL = Next; + if( Edge2->NextInSEL ) Edge2->NextInSEL->PrevInSEL = Edge2; + Edge2->PrevInSEL = Prev; + if( Edge2->PrevInSEL ) Edge2->PrevInSEL->NextInSEL = Edge2; + } + + if( !Edge1->PrevInSEL ) m_SortedEdges = Edge1; + else if( !Edge2->PrevInSEL ) m_SortedEdges = Edge2; +} +//------------------------------------------------------------------------------ + +TEdge* GetNextInAEL(TEdge *e, Direction dir) +{ + return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL; +} +//------------------------------------------------------------------------------ + +void GetHorzDirection(TEdge& HorzEdge, Direction& Dir, cInt& Left, cInt& Right) +{ + if (HorzEdge.Bot.X < HorzEdge.Top.X) + { + Left = HorzEdge.Bot.X; + Right = HorzEdge.Top.X; + Dir = dLeftToRight; + } else + { + Left = HorzEdge.Top.X; + Right = HorzEdge.Bot.X; + Dir = dRightToLeft; + } +} +//------------------------------------------------------------------------ + +/******************************************************************************* +* Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or * +* Bottom of a scanbeam) are processed as if layered. The order in which HEs * +* are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] * +* (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), * +* and with other non-horizontal edges [*]. Once these intersections are * +* processed, intermediate HEs then 'promote' the Edge above (NextInLML) into * +* the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. * +*******************************************************************************/ + +void Clipper::ProcessHorizontal(TEdge *horzEdge) +{ + Direction dir; + cInt horzLeft, horzRight; + bool IsOpen = (horzEdge->WindDelta == 0); + + GetHorzDirection(*horzEdge, dir, horzLeft, horzRight); + + TEdge* eLastHorz = horzEdge, *eMaxPair = 0; + while (eLastHorz->NextInLML && IsHorizontal(*eLastHorz->NextInLML)) + eLastHorz = eLastHorz->NextInLML; + if (!eLastHorz->NextInLML) + eMaxPair = GetMaximaPair(eLastHorz); + + MaximaList::const_iterator maxIt; + MaximaList::const_reverse_iterator maxRit; + if (m_Maxima.size() > 0) + { + //get the first maxima in range (X) ... + if (dir == dLeftToRight) + { + maxIt = m_Maxima.begin(); + while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X) maxIt++; + if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X) + maxIt = m_Maxima.end(); + } + else + { + maxRit = m_Maxima.rbegin(); + while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X) maxRit++; + if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X) + maxRit = m_Maxima.rend(); + } + } + + OutPt* op1 = 0; + + for (;;) //loop through consec. horizontal edges + { + + bool IsLastHorz = (horzEdge == eLastHorz); + TEdge* e = GetNextInAEL(horzEdge, dir); + while(e) + { + + //this code block inserts extra coords into horizontal edges (in output + //polygons) whereever maxima touch these horizontal edges. This helps + //'simplifying' polygons (ie if the Simplify property is set). + if (m_Maxima.size() > 0) + { + if (dir == dLeftToRight) + { + while (maxIt != m_Maxima.end() && *maxIt < e->Curr.X) + { + if (horzEdge->OutIdx >= 0 && !IsOpen) + AddOutPt(horzEdge, IntPoint(*maxIt, horzEdge->Bot.Y)); + maxIt++; + } + } + else + { + while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.X) + { + if (horzEdge->OutIdx >= 0 && !IsOpen) + AddOutPt(horzEdge, IntPoint(*maxRit, horzEdge->Bot.Y)); + maxRit++; + } + } + }; + + if ((dir == dLeftToRight && e->Curr.X > horzRight) || + (dir == dRightToLeft && e->Curr.X < horzLeft)) break; + + //Also break if we've got to the end of an intermediate horizontal edge ... + //nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal. + if (e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML && + e->Dx < horzEdge->NextInLML->Dx) break; + + if (horzEdge->OutIdx >= 0 && !IsOpen) //note: may be done multiple times + { + op1 = AddOutPt(horzEdge, e->Curr); + TEdge* eNextHorz = m_SortedEdges; + while (eNextHorz) + { + if (eNextHorz->OutIdx >= 0 && + HorzSegmentsOverlap(horzEdge->Bot.X, + horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X)) + { + OutPt* op2 = GetLastOutPt(eNextHorz); + AddJoin(op2, op1, eNextHorz->Top); + } + eNextHorz = eNextHorz->NextInSEL; + } + AddGhostJoin(op1, horzEdge->Bot); + } + + //OK, so far we're still in range of the horizontal Edge but make sure + //we're at the last of consec. horizontals when matching with eMaxPair + if(e == eMaxPair && IsLastHorz) + { + if (horzEdge->OutIdx >= 0) + AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge->Top); + DeleteFromAEL(horzEdge); + DeleteFromAEL(eMaxPair); + return; + } + + if(dir == dLeftToRight) + { + IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y); + IntersectEdges(horzEdge, e, Pt); + } + else + { + IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y); + IntersectEdges( e, horzEdge, Pt); + } + TEdge* eNext = GetNextInAEL(e, dir); + SwapPositionsInAEL( horzEdge, e ); + e = eNext; + } //end while(e) + + //Break out of loop if HorzEdge.NextInLML is not also horizontal ... + if (!horzEdge->NextInLML || !IsHorizontal(*horzEdge->NextInLML)) break; + + UpdateEdgeIntoAEL(horzEdge); + if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Bot); + GetHorzDirection(*horzEdge, dir, horzLeft, horzRight); + + } //end for (;;) + + if (horzEdge->OutIdx >= 0 && !op1) + { + op1 = GetLastOutPt(horzEdge); + TEdge* eNextHorz = m_SortedEdges; + while (eNextHorz) + { + if (eNextHorz->OutIdx >= 0 && + HorzSegmentsOverlap(horzEdge->Bot.X, + horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X)) + { + OutPt* op2 = GetLastOutPt(eNextHorz); + AddJoin(op2, op1, eNextHorz->Top); + } + eNextHorz = eNextHorz->NextInSEL; + } + AddGhostJoin(op1, horzEdge->Top); + } + + if (horzEdge->NextInLML) + { + if(horzEdge->OutIdx >= 0) + { + op1 = AddOutPt( horzEdge, horzEdge->Top); + UpdateEdgeIntoAEL(horzEdge); + if (horzEdge->WindDelta == 0) return; + //nb: HorzEdge is no longer horizontal here + TEdge* ePrev = horzEdge->PrevInAEL; + TEdge* eNext = horzEdge->NextInAEL; + if (ePrev && ePrev->Curr.X == horzEdge->Bot.X && + ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 && + (ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && + SlopesEqual(*horzEdge, *ePrev, m_UseFullRange))) + { + OutPt* op2 = AddOutPt(ePrev, horzEdge->Bot); + AddJoin(op1, op2, horzEdge->Top); + } + else if (eNext && eNext->Curr.X == horzEdge->Bot.X && + eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 && + eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && + SlopesEqual(*horzEdge, *eNext, m_UseFullRange)) + { + OutPt* op2 = AddOutPt(eNext, horzEdge->Bot); + AddJoin(op1, op2, horzEdge->Top); + } + } + else + UpdateEdgeIntoAEL(horzEdge); + } + else + { + if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Top); + DeleteFromAEL(horzEdge); + } +} +//------------------------------------------------------------------------------ + +bool Clipper::ProcessIntersections(const cInt topY) +{ + if( !m_ActiveEdges ) return true; + try { + BuildIntersectList(topY); + size_t IlSize = m_IntersectList.size(); + if (IlSize == 0) return true; + if (IlSize == 1 || FixupIntersectionOrder()) ProcessIntersectList(); + else return false; + } + catch(...) + { + m_SortedEdges = 0; + DisposeIntersectNodes(); + throw clipperException("ProcessIntersections error"); + } + m_SortedEdges = 0; + return true; +} +//------------------------------------------------------------------------------ + +void Clipper::DisposeIntersectNodes() +{ + for (size_t i = 0; i < m_IntersectList.size(); ++i ) + delete m_IntersectList[i]; + m_IntersectList.clear(); +} +//------------------------------------------------------------------------------ + +void Clipper::BuildIntersectList(const cInt topY) +{ + if ( !m_ActiveEdges ) return; + + //prepare for sorting ... + TEdge* e = m_ActiveEdges; + m_SortedEdges = e; + while( e ) + { + e->PrevInSEL = e->PrevInAEL; + e->NextInSEL = e->NextInAEL; + e->Curr.X = TopX( *e, topY ); + e = e->NextInAEL; + } + + //bubblesort ... + bool isModified; + do + { + isModified = false; + e = m_SortedEdges; + while( e->NextInSEL ) + { + TEdge *eNext = e->NextInSEL; + IntPoint Pt; + if(e->Curr.X > eNext->Curr.X) + { + IntersectPoint(*e, *eNext, Pt); + if (Pt.Y < topY) Pt = IntPoint(TopX(*e, topY), topY); + IntersectNode * newNode = new IntersectNode; + newNode->Edge1 = e; + newNode->Edge2 = eNext; + newNode->Pt = Pt; + m_IntersectList.push_back(newNode); + + SwapPositionsInSEL(e, eNext); + isModified = true; + } + else + e = eNext; + } + if( e->PrevInSEL ) e->PrevInSEL->NextInSEL = 0; + else break; + } + while ( isModified ); + m_SortedEdges = 0; //important +} +//------------------------------------------------------------------------------ + + +void Clipper::ProcessIntersectList() +{ + for (size_t i = 0; i < m_IntersectList.size(); ++i) + { + IntersectNode* iNode = m_IntersectList[i]; + { + IntersectEdges( iNode->Edge1, iNode->Edge2, iNode->Pt); + SwapPositionsInAEL( iNode->Edge1 , iNode->Edge2 ); + } + delete iNode; + } + m_IntersectList.clear(); +} +//------------------------------------------------------------------------------ + +bool IntersectListSort(IntersectNode* node1, IntersectNode* node2) +{ + return node2->Pt.Y < node1->Pt.Y; +} +//------------------------------------------------------------------------------ + +inline bool EdgesAdjacent(const IntersectNode &inode) +{ + return (inode.Edge1->NextInSEL == inode.Edge2) || + (inode.Edge1->PrevInSEL == inode.Edge2); +} +//------------------------------------------------------------------------------ + +bool Clipper::FixupIntersectionOrder() +{ + //pre-condition: intersections are sorted Bottom-most first. + //Now it's crucial that intersections are made only between adjacent edges, + //so to ensure this the order of intersections may need adjusting ... + CopyAELToSEL(); + std::sort(m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort); + size_t cnt = m_IntersectList.size(); + for (size_t i = 0; i < cnt; ++i) + { + if (!EdgesAdjacent(*m_IntersectList[i])) + { + size_t j = i + 1; + while (j < cnt && !EdgesAdjacent(*m_IntersectList[j])) j++; + if (j == cnt) return false; + std::swap(m_IntersectList[i], m_IntersectList[j]); + } + SwapPositionsInSEL(m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2); + } + return true; +} +//------------------------------------------------------------------------------ + +void Clipper::DoMaxima(TEdge *e) +{ + TEdge* eMaxPair = GetMaximaPairEx(e); + if (!eMaxPair) + { + if (e->OutIdx >= 0) + AddOutPt(e, e->Top); + DeleteFromAEL(e); + return; + } + + TEdge* eNext = e->NextInAEL; + while(eNext && eNext != eMaxPair) + { + IntersectEdges(e, eNext, e->Top); + SwapPositionsInAEL(e, eNext); + eNext = e->NextInAEL; + } + + if(e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned) + { + DeleteFromAEL(e); + DeleteFromAEL(eMaxPair); + } + else if( e->OutIdx >= 0 && eMaxPair->OutIdx >= 0 ) + { + if (e->OutIdx >= 0) AddLocalMaxPoly(e, eMaxPair, e->Top); + DeleteFromAEL(e); + DeleteFromAEL(eMaxPair); + } +#ifdef use_lines + else if (e->WindDelta == 0) + { + if (e->OutIdx >= 0) + { + AddOutPt(e, e->Top); + e->OutIdx = Unassigned; + } + DeleteFromAEL(e); + + if (eMaxPair->OutIdx >= 0) + { + AddOutPt(eMaxPair, e->Top); + eMaxPair->OutIdx = Unassigned; + } + DeleteFromAEL(eMaxPair); + } +#endif + else throw clipperException("DoMaxima error"); +} +//------------------------------------------------------------------------------ + +void Clipper::ProcessEdgesAtTopOfScanbeam(const cInt topY) +{ + TEdge* e = m_ActiveEdges; + while( e ) + { + //1. process maxima, treating them as if they're 'bent' horizontal edges, + // but exclude maxima with horizontal edges. nb: e can't be a horizontal. + bool IsMaximaEdge = IsMaxima(e, topY); + + if(IsMaximaEdge) + { + TEdge* eMaxPair = GetMaximaPairEx(e); + IsMaximaEdge = (!eMaxPair || !IsHorizontal(*eMaxPair)); + } + + if(IsMaximaEdge) + { + if (m_StrictSimple) m_Maxima.push_back(e->Top.X); + TEdge* ePrev = e->PrevInAEL; + DoMaxima(e); + if( !ePrev ) e = m_ActiveEdges; + else e = ePrev->NextInAEL; + } + else + { + //2. promote horizontal edges, otherwise update Curr.X and Curr.Y ... + if (IsIntermediate(e, topY) && IsHorizontal(*e->NextInLML)) + { + UpdateEdgeIntoAEL(e); + if (e->OutIdx >= 0) + AddOutPt(e, e->Bot); + AddEdgeToSEL(e); + } + else + { + e->Curr.X = TopX( *e, topY ); + e->Curr.Y = topY; + } + + //When StrictlySimple and 'e' is being touched by another edge, then + //make sure both edges have a vertex here ... + if (m_StrictSimple) + { + TEdge* ePrev = e->PrevInAEL; + if ((e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) && + (ePrev->Curr.X == e->Curr.X) && (ePrev->WindDelta != 0)) + { + IntPoint pt = e->Curr; +#ifdef use_xyz + SetZ(pt, *ePrev, *e); +#endif + OutPt* op = AddOutPt(ePrev, pt); + OutPt* op2 = AddOutPt(e, pt); + AddJoin(op, op2, pt); //StrictlySimple (type-3) join + } + } + + e = e->NextInAEL; + } + } + + //3. Process horizontals at the Top of the scanbeam ... + m_Maxima.sort(); + ProcessHorizontals(); + m_Maxima.clear(); + + //4. Promote intermediate vertices ... + e = m_ActiveEdges; + while(e) + { + if(IsIntermediate(e, topY)) + { + OutPt* op = 0; + if( e->OutIdx >= 0 ) + op = AddOutPt(e, e->Top); + UpdateEdgeIntoAEL(e); + + //if output polygons share an edge, they'll need joining later ... + TEdge* ePrev = e->PrevInAEL; + TEdge* eNext = e->NextInAEL; + if (ePrev && ePrev->Curr.X == e->Bot.X && + ePrev->Curr.Y == e->Bot.Y && op && + ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && + SlopesEqual(e->Curr, e->Top, ePrev->Curr, ePrev->Top, m_UseFullRange) && + (e->WindDelta != 0) && (ePrev->WindDelta != 0)) + { + OutPt* op2 = AddOutPt(ePrev, e->Bot); + AddJoin(op, op2, e->Top); + } + else if (eNext && eNext->Curr.X == e->Bot.X && + eNext->Curr.Y == e->Bot.Y && op && + eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && + SlopesEqual(e->Curr, e->Top, eNext->Curr, eNext->Top, m_UseFullRange) && + (e->WindDelta != 0) && (eNext->WindDelta != 0)) + { + OutPt* op2 = AddOutPt(eNext, e->Bot); + AddJoin(op, op2, e->Top); + } + } + e = e->NextInAEL; + } +} +//------------------------------------------------------------------------------ + +void Clipper::FixupOutPolyline(OutRec &outrec) +{ + OutPt *pp = outrec.Pts; + OutPt *lastPP = pp->Prev; + while (pp != lastPP) + { + pp = pp->Next; + if (pp->Pt == pp->Prev->Pt) + { + if (pp == lastPP) lastPP = pp->Prev; + OutPt *tmpPP = pp->Prev; + tmpPP->Next = pp->Next; + pp->Next->Prev = tmpPP; + delete pp; + pp = tmpPP; + } + } + + if (pp == pp->Prev) + { + DisposeOutPts(pp); + outrec.Pts = 0; + return; + } +} +//------------------------------------------------------------------------------ + +void Clipper::FixupOutPolygon(OutRec &outrec) +{ + //FixupOutPolygon() - removes duplicate points and simplifies consecutive + //parallel edges by removing the middle vertex. + OutPt *lastOK = 0; + outrec.BottomPt = 0; + OutPt *pp = outrec.Pts; + bool preserveCol = m_PreserveCollinear || m_StrictSimple; + + for (;;) + { + if (pp->Prev == pp || pp->Prev == pp->Next) + { + DisposeOutPts(pp); + outrec.Pts = 0; + return; + } + + //test for duplicate points and collinear edges ... + if ((pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) || + (SlopesEqual(pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange) && + (!preserveCol || !Pt2IsBetweenPt1AndPt3(pp->Prev->Pt, pp->Pt, pp->Next->Pt)))) + { + lastOK = 0; + OutPt *tmp = pp; + pp->Prev->Next = pp->Next; + pp->Next->Prev = pp->Prev; + pp = pp->Prev; + delete tmp; + } + else if (pp == lastOK) break; + else + { + if (!lastOK) lastOK = pp; + pp = pp->Next; + } + } + outrec.Pts = pp; +} +//------------------------------------------------------------------------------ + +int PointCount(OutPt *Pts) +{ + if (!Pts) return 0; + int result = 0; + OutPt* p = Pts; + do + { + result++; + p = p->Next; + } + while (p != Pts); + return result; +} +//------------------------------------------------------------------------------ + +void Clipper::BuildResult(Paths &polys) +{ + polys.reserve(m_PolyOuts.size()); + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + { + if (!m_PolyOuts[i]->Pts) continue; + Path pg; + OutPt* p = m_PolyOuts[i]->Pts->Prev; + int cnt = PointCount(p); + if (cnt < 2) continue; + pg.reserve(cnt); + for (int i = 0; i < cnt; ++i) + { + pg.push_back(p->Pt); + p = p->Prev; + } + polys.push_back(pg); + } +} +//------------------------------------------------------------------------------ + +void Clipper::BuildResult2(PolyTree& polytree) +{ + polytree.Clear(); + polytree.AllNodes.reserve(m_PolyOuts.size()); + //add each output polygon/contour to polytree ... + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) + { + OutRec* outRec = m_PolyOuts[i]; + int cnt = PointCount(outRec->Pts); + if ((outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3)) continue; + FixHoleLinkage(*outRec); + PolyNode* pn = new PolyNode(); + //nb: polytree takes ownership of all the PolyNodes + polytree.AllNodes.push_back(pn); + outRec->PolyNd = pn; + pn->Parent = 0; + pn->Index = 0; + pn->Contour.reserve(cnt); + OutPt *op = outRec->Pts->Prev; + for (int j = 0; j < cnt; j++) + { + pn->Contour.push_back(op->Pt); + op = op->Prev; + } + } + + //fixup PolyNode links etc ... + polytree.Childs.reserve(m_PolyOuts.size()); + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) + { + OutRec* outRec = m_PolyOuts[i]; + if (!outRec->PolyNd) continue; + if (outRec->IsOpen) + { + outRec->PolyNd->m_IsOpen = true; + polytree.AddChild(*outRec->PolyNd); + } + else if (outRec->FirstLeft && outRec->FirstLeft->PolyNd) + outRec->FirstLeft->PolyNd->AddChild(*outRec->PolyNd); + else + polytree.AddChild(*outRec->PolyNd); + } +} +//------------------------------------------------------------------------------ + +void SwapIntersectNodes(IntersectNode &int1, IntersectNode &int2) +{ + //just swap the contents (because fIntersectNodes is a single-linked-list) + IntersectNode inode = int1; //gets a copy of Int1 + int1.Edge1 = int2.Edge1; + int1.Edge2 = int2.Edge2; + int1.Pt = int2.Pt; + int2.Edge1 = inode.Edge1; + int2.Edge2 = inode.Edge2; + int2.Pt = inode.Pt; +} +//------------------------------------------------------------------------------ + +inline bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2) +{ + if (e2.Curr.X == e1.Curr.X) + { + if (e2.Top.Y > e1.Top.Y) + return e2.Top.X < TopX(e1, e2.Top.Y); + else return e1.Top.X > TopX(e2, e1.Top.Y); + } + else return e2.Curr.X < e1.Curr.X; +} +//------------------------------------------------------------------------------ + +bool GetOverlap(const cInt a1, const cInt a2, const cInt b1, const cInt b2, + cInt& Left, cInt& Right) +{ + if (a1 < a2) + { + if (b1 < b2) {Left = std::max(a1,b1); Right = std::min(a2,b2);} + else {Left = std::max(a1,b2); Right = std::min(a2,b1);} + } + else + { + if (b1 < b2) {Left = std::max(a2,b1); Right = std::min(a1,b2);} + else {Left = std::max(a2,b2); Right = std::min(a1,b1);} + } + return Left < Right; +} +//------------------------------------------------------------------------------ + +inline void UpdateOutPtIdxs(OutRec& outrec) +{ + OutPt* op = outrec.Pts; + do + { + op->Idx = outrec.Idx; + op = op->Prev; + } + while(op != outrec.Pts); +} +//------------------------------------------------------------------------------ + +void Clipper::InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge) +{ + if(!m_ActiveEdges) + { + edge->PrevInAEL = 0; + edge->NextInAEL = 0; + m_ActiveEdges = edge; + } + else if(!startEdge && E2InsertsBeforeE1(*m_ActiveEdges, *edge)) + { + edge->PrevInAEL = 0; + edge->NextInAEL = m_ActiveEdges; + m_ActiveEdges->PrevInAEL = edge; + m_ActiveEdges = edge; + } + else + { + if(!startEdge) startEdge = m_ActiveEdges; + while(startEdge->NextInAEL && + !E2InsertsBeforeE1(*startEdge->NextInAEL , *edge)) + startEdge = startEdge->NextInAEL; + edge->NextInAEL = startEdge->NextInAEL; + if(startEdge->NextInAEL) startEdge->NextInAEL->PrevInAEL = edge; + edge->PrevInAEL = startEdge; + startEdge->NextInAEL = edge; + } +} +//---------------------------------------------------------------------- + +OutPt* DupOutPt(OutPt* outPt, bool InsertAfter) +{ + OutPt* result = new OutPt; + result->Pt = outPt->Pt; + result->Idx = outPt->Idx; + if (InsertAfter) + { + result->Next = outPt->Next; + result->Prev = outPt; + outPt->Next->Prev = result; + outPt->Next = result; + } + else + { + result->Prev = outPt->Prev; + result->Next = outPt; + outPt->Prev->Next = result; + outPt->Prev = result; + } + return result; +} +//------------------------------------------------------------------------------ + +bool JoinHorz(OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, + const IntPoint Pt, bool DiscardLeft) +{ + Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight); + Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight); + if (Dir1 == Dir2) return false; + + //When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we + //want Op1b to be on the Right. (And likewise with Op2 and Op2b.) + //So, to facilitate this while inserting Op1b and Op2b ... + //when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b, + //otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.) + if (Dir1 == dLeftToRight) + { + while (op1->Next->Pt.X <= Pt.X && + op1->Next->Pt.X >= op1->Pt.X && op1->Next->Pt.Y == Pt.Y) + op1 = op1->Next; + if (DiscardLeft && (op1->Pt.X != Pt.X)) op1 = op1->Next; + op1b = DupOutPt(op1, !DiscardLeft); + if (op1b->Pt != Pt) + { + op1 = op1b; + op1->Pt = Pt; + op1b = DupOutPt(op1, !DiscardLeft); + } + } + else + { + while (op1->Next->Pt.X >= Pt.X && + op1->Next->Pt.X <= op1->Pt.X && op1->Next->Pt.Y == Pt.Y) + op1 = op1->Next; + if (!DiscardLeft && (op1->Pt.X != Pt.X)) op1 = op1->Next; + op1b = DupOutPt(op1, DiscardLeft); + if (op1b->Pt != Pt) + { + op1 = op1b; + op1->Pt = Pt; + op1b = DupOutPt(op1, DiscardLeft); + } + } + + if (Dir2 == dLeftToRight) + { + while (op2->Next->Pt.X <= Pt.X && + op2->Next->Pt.X >= op2->Pt.X && op2->Next->Pt.Y == Pt.Y) + op2 = op2->Next; + if (DiscardLeft && (op2->Pt.X != Pt.X)) op2 = op2->Next; + op2b = DupOutPt(op2, !DiscardLeft); + if (op2b->Pt != Pt) + { + op2 = op2b; + op2->Pt = Pt; + op2b = DupOutPt(op2, !DiscardLeft); + }; + } else + { + while (op2->Next->Pt.X >= Pt.X && + op2->Next->Pt.X <= op2->Pt.X && op2->Next->Pt.Y == Pt.Y) + op2 = op2->Next; + if (!DiscardLeft && (op2->Pt.X != Pt.X)) op2 = op2->Next; + op2b = DupOutPt(op2, DiscardLeft); + if (op2b->Pt != Pt) + { + op2 = op2b; + op2->Pt = Pt; + op2b = DupOutPt(op2, DiscardLeft); + }; + }; + + if ((Dir1 == dLeftToRight) == DiscardLeft) + { + op1->Prev = op2; + op2->Next = op1; + op1b->Next = op2b; + op2b->Prev = op1b; + } + else + { + op1->Next = op2; + op2->Prev = op1; + op1b->Prev = op2b; + op2b->Next = op1b; + } + return true; +} +//------------------------------------------------------------------------------ + +bool Clipper::JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2) +{ + OutPt *op1 = j->OutPt1, *op1b; + OutPt *op2 = j->OutPt2, *op2b; + + //There are 3 kinds of joins for output polygons ... + //1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere + //along (horizontal) collinear edges (& Join.OffPt is on the same horizontal). + //2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same + //location at the Bottom of the overlapping segment (& Join.OffPt is above). + //3. StrictSimple joins where edges touch but are not collinear and where + //Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point. + bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y); + + if (isHorizontal && (j->OffPt == j->OutPt1->Pt) && + (j->OffPt == j->OutPt2->Pt)) + { + //Strictly Simple join ... + if (outRec1 != outRec2) return false; + op1b = j->OutPt1->Next; + while (op1b != op1 && (op1b->Pt == j->OffPt)) + op1b = op1b->Next; + bool reverse1 = (op1b->Pt.Y > j->OffPt.Y); + op2b = j->OutPt2->Next; + while (op2b != op2 && (op2b->Pt == j->OffPt)) + op2b = op2b->Next; + bool reverse2 = (op2b->Pt.Y > j->OffPt.Y); + if (reverse1 == reverse2) return false; + if (reverse1) + { + op1b = DupOutPt(op1, false); + op2b = DupOutPt(op2, true); + op1->Prev = op2; + op2->Next = op1; + op1b->Next = op2b; + op2b->Prev = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } else + { + op1b = DupOutPt(op1, true); + op2b = DupOutPt(op2, false); + op1->Next = op2; + op2->Prev = op1; + op1b->Prev = op2b; + op2b->Next = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } + } + else if (isHorizontal) + { + //treat horizontal joins differently to non-horizontal joins since with + //them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt + //may be anywhere along the horizontal edge. + op1b = op1; + while (op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b && op1->Prev != op2) + op1 = op1->Prev; + while (op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 && op1b->Next != op2) + op1b = op1b->Next; + if (op1b->Next == op1 || op1b->Next == op2) return false; //a flat 'polygon' + + op2b = op2; + while (op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b && op2->Prev != op1b) + op2 = op2->Prev; + while (op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 && op2b->Next != op1) + op2b = op2b->Next; + if (op2b->Next == op2 || op2b->Next == op1) return false; //a flat 'polygon' + + cInt Left, Right; + //Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges + if (!GetOverlap(op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right)) + return false; + + //DiscardLeftSide: when overlapping edges are joined, a spike will created + //which needs to be cleaned up. However, we don't want Op1 or Op2 caught up + //on the discard Side as either may still be needed for other joins ... + IntPoint Pt; + bool DiscardLeftSide; + if (op1->Pt.X >= Left && op1->Pt.X <= Right) + { + Pt = op1->Pt; DiscardLeftSide = (op1->Pt.X > op1b->Pt.X); + } + else if (op2->Pt.X >= Left&& op2->Pt.X <= Right) + { + Pt = op2->Pt; DiscardLeftSide = (op2->Pt.X > op2b->Pt.X); + } + else if (op1b->Pt.X >= Left && op1b->Pt.X <= Right) + { + Pt = op1b->Pt; DiscardLeftSide = op1b->Pt.X > op1->Pt.X; + } + else + { + Pt = op2b->Pt; DiscardLeftSide = (op2b->Pt.X > op2->Pt.X); + } + j->OutPt1 = op1; j->OutPt2 = op2; + return JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide); + } else + { + //nb: For non-horizontal joins ... + // 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y + // 2. Jr.OutPt1.Pt > Jr.OffPt.Y + + //make sure the polygons are correctly oriented ... + op1b = op1->Next; + while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Next; + bool Reverse1 = ((op1b->Pt.Y > op1->Pt.Y) || + !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)); + if (Reverse1) + { + op1b = op1->Prev; + while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Prev; + if ((op1b->Pt.Y > op1->Pt.Y) || + !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)) return false; + }; + op2b = op2->Next; + while ((op2b->Pt == op2->Pt) && (op2b != op2))op2b = op2b->Next; + bool Reverse2 = ((op2b->Pt.Y > op2->Pt.Y) || + !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)); + if (Reverse2) + { + op2b = op2->Prev; + while ((op2b->Pt == op2->Pt) && (op2b != op2)) op2b = op2b->Prev; + if ((op2b->Pt.Y > op2->Pt.Y) || + !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)) return false; + } + + if ((op1b == op1) || (op2b == op2) || (op1b == op2b) || + ((outRec1 == outRec2) && (Reverse1 == Reverse2))) return false; + + if (Reverse1) + { + op1b = DupOutPt(op1, false); + op2b = DupOutPt(op2, true); + op1->Prev = op2; + op2->Next = op1; + op1b->Next = op2b; + op2b->Prev = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } else + { + op1b = DupOutPt(op1, true); + op2b = DupOutPt(op2, false); + op1->Next = op2; + op2->Prev = op1; + op1b->Prev = op2b; + op2b->Next = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } + } +} +//---------------------------------------------------------------------- + +static OutRec* ParseFirstLeft(OutRec* FirstLeft) +{ + while (FirstLeft && !FirstLeft->Pts) + FirstLeft = FirstLeft->FirstLeft; + return FirstLeft; +} +//------------------------------------------------------------------------------ + +void Clipper::FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec) +{ + //tests if NewOutRec contains the polygon before reassigning FirstLeft + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + { + OutRec* outRec = m_PolyOuts[i]; + OutRec* firstLeft = ParseFirstLeft(outRec->FirstLeft); + if (outRec->Pts && firstLeft == OldOutRec) + { + if (Poly2ContainsPoly1(outRec->Pts, NewOutRec->Pts)) + outRec->FirstLeft = NewOutRec; + } + } +} +//---------------------------------------------------------------------- + +void Clipper::FixupFirstLefts2(OutRec* InnerOutRec, OutRec* OuterOutRec) +{ + //A polygon has split into two such that one is now the inner of the other. + //It's possible that these polygons now wrap around other polygons, so check + //every polygon that's also contained by OuterOutRec's FirstLeft container + //(including 0) to see if they've become inner to the new inner polygon ... + OutRec* orfl = OuterOutRec->FirstLeft; + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + { + OutRec* outRec = m_PolyOuts[i]; + + if (!outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec) + continue; + OutRec* firstLeft = ParseFirstLeft(outRec->FirstLeft); + if (firstLeft != orfl && firstLeft != InnerOutRec && firstLeft != OuterOutRec) + continue; + if (Poly2ContainsPoly1(outRec->Pts, InnerOutRec->Pts)) + outRec->FirstLeft = InnerOutRec; + else if (Poly2ContainsPoly1(outRec->Pts, OuterOutRec->Pts)) + outRec->FirstLeft = OuterOutRec; + else if (outRec->FirstLeft == InnerOutRec || outRec->FirstLeft == OuterOutRec) + outRec->FirstLeft = orfl; + } +} +//---------------------------------------------------------------------- +void Clipper::FixupFirstLefts3(OutRec* OldOutRec, OutRec* NewOutRec) +{ + //reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + { + OutRec* outRec = m_PolyOuts[i]; + OutRec* firstLeft = ParseFirstLeft(outRec->FirstLeft); + if (outRec->Pts && outRec->FirstLeft == OldOutRec) + outRec->FirstLeft = NewOutRec; + } +} +//---------------------------------------------------------------------- + +void Clipper::JoinCommonEdges() +{ + for (JoinList::size_type i = 0; i < m_Joins.size(); i++) + { + Join* join = m_Joins[i]; + + OutRec *outRec1 = GetOutRec(join->OutPt1->Idx); + OutRec *outRec2 = GetOutRec(join->OutPt2->Idx); + + if (!outRec1->Pts || !outRec2->Pts) continue; + if (outRec1->IsOpen || outRec2->IsOpen) continue; + + //get the polygon fragment with the correct hole state (FirstLeft) + //before calling JoinPoints() ... + OutRec *holeStateRec; + if (outRec1 == outRec2) holeStateRec = outRec1; + else if (OutRec1RightOfOutRec2(outRec1, outRec2)) holeStateRec = outRec2; + else if (OutRec1RightOfOutRec2(outRec2, outRec1)) holeStateRec = outRec1; + else holeStateRec = GetLowermostRec(outRec1, outRec2); + + if (!JoinPoints(join, outRec1, outRec2)) continue; + + if (outRec1 == outRec2) + { + //instead of joining two polygons, we've just created a new one by + //splitting one polygon into two. + outRec1->Pts = join->OutPt1; + outRec1->BottomPt = 0; + outRec2 = CreateOutRec(); + outRec2->Pts = join->OutPt2; + + //update all OutRec2.Pts Idx's ... + UpdateOutPtIdxs(*outRec2); + + if (Poly2ContainsPoly1(outRec2->Pts, outRec1->Pts)) + { + //outRec1 contains outRec2 ... + outRec2->IsHole = !outRec1->IsHole; + outRec2->FirstLeft = outRec1; + + if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1); + + if ((outRec2->IsHole ^ m_ReverseOutput) == (Area(*outRec2) > 0)) + ReversePolyPtLinks(outRec2->Pts); + + } else if (Poly2ContainsPoly1(outRec1->Pts, outRec2->Pts)) + { + //outRec2 contains outRec1 ... + outRec2->IsHole = outRec1->IsHole; + outRec1->IsHole = !outRec2->IsHole; + outRec2->FirstLeft = outRec1->FirstLeft; + outRec1->FirstLeft = outRec2; + + if (m_UsingPolyTree) FixupFirstLefts2(outRec1, outRec2); + + if ((outRec1->IsHole ^ m_ReverseOutput) == (Area(*outRec1) > 0)) + ReversePolyPtLinks(outRec1->Pts); + } + else + { + //the 2 polygons are completely separate ... + outRec2->IsHole = outRec1->IsHole; + outRec2->FirstLeft = outRec1->FirstLeft; + + //fixup FirstLeft pointers that may need reassigning to OutRec2 + if (m_UsingPolyTree) FixupFirstLefts1(outRec1, outRec2); + } + + } else + { + //joined 2 polygons together ... + + outRec2->Pts = 0; + outRec2->BottomPt = 0; + outRec2->Idx = outRec1->Idx; + + outRec1->IsHole = holeStateRec->IsHole; + if (holeStateRec == outRec2) + outRec1->FirstLeft = outRec2->FirstLeft; + outRec2->FirstLeft = outRec1; + + if (m_UsingPolyTree) FixupFirstLefts3(outRec2, outRec1); + } + } +} + +//------------------------------------------------------------------------------ +// ClipperOffset support functions ... +//------------------------------------------------------------------------------ + +DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2) +{ + if(pt2.X == pt1.X && pt2.Y == pt1.Y) + return DoublePoint(0, 0); + + double Dx = (double)(pt2.X - pt1.X); + double dy = (double)(pt2.Y - pt1.Y); + double f = 1 *1.0/ std::sqrt( Dx*Dx + dy*dy ); + Dx *= f; + dy *= f; + return DoublePoint(dy, -Dx); +} + +//------------------------------------------------------------------------------ +// ClipperOffset class +//------------------------------------------------------------------------------ + +ClipperOffset::ClipperOffset(double miterLimit, double arcTolerance) +{ + this->MiterLimit = miterLimit; + this->ArcTolerance = arcTolerance; + m_lowest.X = -1; + + //Avoid uninitialized vars: + m_delta = m_sinA = m_sin = m_cos = 0; + m_miterLim = m_StepsPerRad = 0; + +} +//------------------------------------------------------------------------------ + +ClipperOffset::~ClipperOffset() +{ + Clear(); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::Clear() +{ + for (int i = 0; i < m_polyNodes.ChildCount(); ++i) + delete m_polyNodes.Childs[i]; + m_polyNodes.Childs.clear(); + m_lowest.X = -1; +} +//------------------------------------------------------------------------------ + +void ClipperOffset::AddPath(const Path& path, JoinType joinType, EndType endType) +{ + int highI = (int)path.size() - 1; + if (highI < 0) return; + PolyNode* newNode = new PolyNode(); + newNode->m_jointype = joinType; + newNode->m_endtype = endType; + + //strip duplicate points from path and also get index to the lowest point ... + if (endType == etClosedLine || endType == etClosedPolygon) + while (highI > 0 && path[0] == path[highI]) highI--; + newNode->Contour.reserve(highI + 1); + newNode->Contour.push_back(path[0]); + int j = 0, k = 0; + for (int i = 1; i <= highI; i++) + if (newNode->Contour[j] != path[i]) + { + j++; + newNode->Contour.push_back(path[i]); + if (path[i].Y > newNode->Contour[k].Y || + (path[i].Y == newNode->Contour[k].Y && + path[i].X < newNode->Contour[k].X)) k = j; + } + if (endType == etClosedPolygon && j < 2) + { + delete newNode; + return; + } + m_polyNodes.AddChild(*newNode); + + //if this path's lowest pt is lower than all the others then update m_lowest + if (endType != etClosedPolygon) return; + if (m_lowest.X < 0) + m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k); + else + { + IntPoint ip = m_polyNodes.Childs[(int)m_lowest.X]->Contour[(int)m_lowest.Y]; + if (newNode->Contour[k].Y > ip.Y || + (newNode->Contour[k].Y == ip.Y && + newNode->Contour[k].X < ip.X)) + m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k); + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::AddPaths(const Paths& paths, JoinType joinType, EndType endType) +{ + for (Paths::size_type i = 0; i < paths.size(); ++i) + AddPath(paths[i], joinType, endType); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::FixOrientations() +{ + //fixup orientations of all closed paths if the orientation of the + //closed path with the lowermost vertex is wrong ... + if (m_lowest.X >= 0 && + !Orientation(m_polyNodes.Childs[(int)m_lowest.X]->Contour)) + { + for (int i = 0; i < m_polyNodes.ChildCount(); ++i) + { + PolyNode& node = *m_polyNodes.Childs[i]; + if (node.m_endtype == etClosedPolygon || + (node.m_endtype == etClosedLine && Orientation(node.Contour))) + ReversePath(node.Contour); + } + } else + { + for (int i = 0; i < m_polyNodes.ChildCount(); ++i) + { + PolyNode& node = *m_polyNodes.Childs[i]; + if (node.m_endtype == etClosedLine && !Orientation(node.Contour)) + ReversePath(node.Contour); + } + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::Execute(Paths& solution, double delta) +{ + solution.clear(); + FixOrientations(); + DoOffset(delta); + + //now clean up 'corners' ... + Clipper clpr; + clpr.AddPaths(m_destPolys, ptSubject, true); + if (delta > 0) + { + clpr.Execute(ctUnion, solution, pftPositive, pftPositive); + } + else + { + IntRect r = clpr.GetBounds(); + Path outer(4); + outer[0] = IntPoint(r.left - 10, r.bottom + 10); + outer[1] = IntPoint(r.right + 10, r.bottom + 10); + outer[2] = IntPoint(r.right + 10, r.top - 10); + outer[3] = IntPoint(r.left - 10, r.top - 10); + + clpr.AddPath(outer, ptSubject, true); + clpr.ReverseSolution(true); + clpr.Execute(ctUnion, solution, pftNegative, pftNegative); + if (solution.size() > 0) solution.erase(solution.begin()); + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::Execute(PolyTree& solution, double delta) +{ + solution.Clear(); + FixOrientations(); + DoOffset(delta); + + //now clean up 'corners' ... + Clipper clpr; + clpr.AddPaths(m_destPolys, ptSubject, true); + if (delta > 0) + { + clpr.Execute(ctUnion, solution, pftPositive, pftPositive); + } + else + { + IntRect r = clpr.GetBounds(); + Path outer(4); + outer[0] = IntPoint(r.left - 10, r.bottom + 10); + outer[1] = IntPoint(r.right + 10, r.bottom + 10); + outer[2] = IntPoint(r.right + 10, r.top - 10); + outer[3] = IntPoint(r.left - 10, r.top - 10); + + clpr.AddPath(outer, ptSubject, true); + clpr.ReverseSolution(true); + clpr.Execute(ctUnion, solution, pftNegative, pftNegative); + //remove the outer PolyNode rectangle ... + if (solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0) + { + PolyNode* outerNode = solution.Childs[0]; + solution.Childs.reserve(outerNode->ChildCount()); + solution.Childs[0] = outerNode->Childs[0]; + solution.Childs[0]->Parent = outerNode->Parent; + for (int i = 1; i < outerNode->ChildCount(); ++i) + solution.AddChild(*outerNode->Childs[i]); + } + else + solution.Clear(); + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoOffset(double delta) +{ + m_destPolys.clear(); + m_delta = delta; + + //if Zero offset, just copy any CLOSED polygons to m_p and return ... + if (NEAR_ZERO(delta)) + { + m_destPolys.reserve(m_polyNodes.ChildCount()); + for (int i = 0; i < m_polyNodes.ChildCount(); i++) + { + PolyNode& node = *m_polyNodes.Childs[i]; + if (node.m_endtype == etClosedPolygon) + m_destPolys.push_back(node.Contour); + } + return; + } + + //see offset_triginometry3.svg in the documentation folder ... + if (MiterLimit > 2) m_miterLim = 2/(MiterLimit * MiterLimit); + else m_miterLim = 0.5; + + double y; + if (ArcTolerance <= 0.0) y = def_arc_tolerance; + else if (ArcTolerance > std::fabs(delta) * def_arc_tolerance) + y = std::fabs(delta) * def_arc_tolerance; + else y = ArcTolerance; + //see offset_triginometry2.svg in the documentation folder ... + double steps = pi / std::acos(1 - y / std::fabs(delta)); + if (steps > std::fabs(delta) * pi) + steps = std::fabs(delta) * pi; //ie excessive precision check + m_sin = std::sin(two_pi / steps); + m_cos = std::cos(two_pi / steps); + m_StepsPerRad = steps / two_pi; + if (delta < 0.0) m_sin = -m_sin; + + m_destPolys.reserve(m_polyNodes.ChildCount() * 2); + for (int i = 0; i < m_polyNodes.ChildCount(); i++) + { + PolyNode& node = *m_polyNodes.Childs[i]; + m_srcPoly = node.Contour; + + int len = (int)m_srcPoly.size(); + if (len == 0 || (delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon))) + continue; + + m_destPoly.clear(); + if (len == 1) + { + if (node.m_jointype == jtRound) + { + double X = 1.0, Y = 0.0; + for (cInt j = 1; j <= steps; j++) + { + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[0].X + X * delta), + Round(m_srcPoly[0].Y + Y * delta))); + double X2 = X; + X = X * m_cos - m_sin * Y; + Y = X2 * m_sin + Y * m_cos; + } + } + else + { + double X = -1.0, Y = -1.0; + for (int j = 0; j < 4; ++j) + { + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[0].X + X * delta), + Round(m_srcPoly[0].Y + Y * delta))); + if (X < 0) X = 1; + else if (Y < 0) Y = 1; + else X = -1; + } + } + m_destPolys.push_back(m_destPoly); + continue; + } + //build m_normals ... + m_normals.clear(); + m_normals.reserve(len); + for (int j = 0; j < len - 1; ++j) + m_normals.push_back(GetUnitNormal(m_srcPoly[j], m_srcPoly[j + 1])); + if (node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon) + m_normals.push_back(GetUnitNormal(m_srcPoly[len - 1], m_srcPoly[0])); + else + m_normals.push_back(DoublePoint(m_normals[len - 2])); + + if (node.m_endtype == etClosedPolygon) + { + int k = len - 1; + for (int j = 0; j < len; ++j) + OffsetPoint(j, k, node.m_jointype); + m_destPolys.push_back(m_destPoly); + } + else if (node.m_endtype == etClosedLine) + { + int k = len - 1; + for (int j = 0; j < len; ++j) + OffsetPoint(j, k, node.m_jointype); + m_destPolys.push_back(m_destPoly); + m_destPoly.clear(); + //re-build m_normals ... + DoublePoint n = m_normals[len -1]; + for (int j = len - 1; j > 0; j--) + m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y); + m_normals[0] = DoublePoint(-n.X, -n.Y); + k = 0; + for (int j = len - 1; j >= 0; j--) + OffsetPoint(j, k, node.m_jointype); + m_destPolys.push_back(m_destPoly); + } + else + { + int k = 0; + for (int j = 1; j < len - 1; ++j) + OffsetPoint(j, k, node.m_jointype); + + IntPoint pt1; + if (node.m_endtype == etOpenButt) + { + int j = len - 1; + pt1 = IntPoint((cInt)Round(m_srcPoly[j].X + m_normals[j].X * + delta), (cInt)Round(m_srcPoly[j].Y + m_normals[j].Y * delta)); + m_destPoly.push_back(pt1); + pt1 = IntPoint((cInt)Round(m_srcPoly[j].X - m_normals[j].X * + delta), (cInt)Round(m_srcPoly[j].Y - m_normals[j].Y * delta)); + m_destPoly.push_back(pt1); + } + else + { + int j = len - 1; + k = len - 2; + m_sinA = 0; + m_normals[j] = DoublePoint(-m_normals[j].X, -m_normals[j].Y); + if (node.m_endtype == etOpenSquare) + DoSquare(j, k); + else + DoRound(j, k); + } + + //re-build m_normals ... + for (int j = len - 1; j > 0; j--) + m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y); + m_normals[0] = DoublePoint(-m_normals[1].X, -m_normals[1].Y); + + k = len - 1; + for (int j = k - 1; j > 0; --j) OffsetPoint(j, k, node.m_jointype); + + if (node.m_endtype == etOpenButt) + { + pt1 = IntPoint((cInt)Round(m_srcPoly[0].X - m_normals[0].X * delta), + (cInt)Round(m_srcPoly[0].Y - m_normals[0].Y * delta)); + m_destPoly.push_back(pt1); + pt1 = IntPoint((cInt)Round(m_srcPoly[0].X + m_normals[0].X * delta), + (cInt)Round(m_srcPoly[0].Y + m_normals[0].Y * delta)); + m_destPoly.push_back(pt1); + } + else + { + k = 1; + m_sinA = 0; + if (node.m_endtype == etOpenSquare) + DoSquare(0, 1); + else + DoRound(0, 1); + } + m_destPolys.push_back(m_destPoly); + } + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::OffsetPoint(int j, int& k, JoinType jointype) +{ + //cross product ... + m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y); + if (std::fabs(m_sinA * m_delta) < 1.0) + { + //dot product ... + double cosA = (m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y ); + if (cosA > 0) // angle => 0 degrees + { + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta))); + return; + } + //else angle => 180 degrees + } + else if (m_sinA > 1.0) m_sinA = 1.0; + else if (m_sinA < -1.0) m_sinA = -1.0; + + if (m_sinA * m_delta < 0) + { + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta))); + m_destPoly.push_back(m_srcPoly[j]); + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta))); + } + else + switch (jointype) + { + case jtMiter: + { + double r = 1 + (m_normals[j].X * m_normals[k].X + + m_normals[j].Y * m_normals[k].Y); + if (r >= m_miterLim) DoMiter(j, k, r); else DoSquare(j, k); + break; + } + case jtSquare: DoSquare(j, k); break; + case jtRound: DoRound(j, k); break; + } + k = j; +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoSquare(int j, int k) +{ + double dx = std::tan(std::atan2(m_sinA, + m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y) / 4); + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx)), + Round(m_srcPoly[j].Y + m_delta * (m_normals[k].Y + m_normals[k].X * dx)))); + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx)), + Round(m_srcPoly[j].Y + m_delta * (m_normals[j].Y - m_normals[j].X * dx)))); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoMiter(int j, int k, double r) +{ + double q = m_delta / r; + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q), + Round(m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q))); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoRound(int j, int k) +{ + double a = std::atan2(m_sinA, + m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y); + int steps = std::max((int)Round(m_StepsPerRad * std::fabs(a)), 1); + + double X = m_normals[k].X, Y = m_normals[k].Y, X2; + for (int i = 0; i < steps; ++i) + { + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + X * m_delta), + Round(m_srcPoly[j].Y + Y * m_delta))); + X2 = X; + X = X * m_cos - m_sin * Y; + Y = X2 * m_sin + Y * m_cos; + } + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + m_normals[j].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta))); +} + +//------------------------------------------------------------------------------ +// Miscellaneous public functions +//------------------------------------------------------------------------------ + +void Clipper::DoSimplePolygons() +{ + PolyOutList::size_type i = 0; + while (i < m_PolyOuts.size()) + { + OutRec* outrec = m_PolyOuts[i++]; + OutPt* op = outrec->Pts; + if (!op || outrec->IsOpen) continue; + do //for each Pt in Polygon until duplicate found do ... + { + OutPt* op2 = op->Next; + while (op2 != outrec->Pts) + { + if ((op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op) + { + //split the polygon into two ... + OutPt* op3 = op->Prev; + OutPt* op4 = op2->Prev; + op->Prev = op4; + op4->Next = op; + op2->Prev = op3; + op3->Next = op2; + + outrec->Pts = op; + OutRec* outrec2 = CreateOutRec(); + outrec2->Pts = op2; + UpdateOutPtIdxs(*outrec2); + if (Poly2ContainsPoly1(outrec2->Pts, outrec->Pts)) + { + //OutRec2 is contained by OutRec1 ... + outrec2->IsHole = !outrec->IsHole; + outrec2->FirstLeft = outrec; + if (m_UsingPolyTree) FixupFirstLefts2(outrec2, outrec); + } + else + if (Poly2ContainsPoly1(outrec->Pts, outrec2->Pts)) + { + //OutRec1 is contained by OutRec2 ... + outrec2->IsHole = outrec->IsHole; + outrec->IsHole = !outrec2->IsHole; + outrec2->FirstLeft = outrec->FirstLeft; + outrec->FirstLeft = outrec2; + if (m_UsingPolyTree) FixupFirstLefts2(outrec, outrec2); + } + else + { + //the 2 polygons are separate ... + outrec2->IsHole = outrec->IsHole; + outrec2->FirstLeft = outrec->FirstLeft; + if (m_UsingPolyTree) FixupFirstLefts1(outrec, outrec2); + } + op2 = op; //ie get ready for the Next iteration + } + op2 = op2->Next; + } + op = op->Next; + } + while (op != outrec->Pts); + } +} +//------------------------------------------------------------------------------ + +void ReversePath(Path& p) +{ + std::reverse(p.begin(), p.end()); +} +//------------------------------------------------------------------------------ + +void ReversePaths(Paths& p) +{ + for (Paths::size_type i = 0; i < p.size(); ++i) + ReversePath(p[i]); +} +//------------------------------------------------------------------------------ + +void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType) +{ + Clipper c; + c.StrictlySimple(true); + c.AddPath(in_poly, ptSubject, true); + c.Execute(ctUnion, out_polys, fillType, fillType); +} +//------------------------------------------------------------------------------ + +void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType) +{ + Clipper c; + c.StrictlySimple(true); + c.AddPaths(in_polys, ptSubject, true); + c.Execute(ctUnion, out_polys, fillType, fillType); +} +//------------------------------------------------------------------------------ + +void SimplifyPolygons(Paths &polys, PolyFillType fillType) +{ + SimplifyPolygons(polys, polys, fillType); +} +//------------------------------------------------------------------------------ + +inline double DistanceSqrd(const IntPoint& pt1, const IntPoint& pt2) +{ + double Dx = ((double)pt1.X - pt2.X); + double dy = ((double)pt1.Y - pt2.Y); + return (Dx*Dx + dy*dy); +} +//------------------------------------------------------------------------------ + +double DistanceFromLineSqrd( + const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2) +{ + //The equation of a line in general form (Ax + By + C = 0) + //given 2 points (x¹,y¹) & (x²,y²) is ... + //(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0 + //A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹ + //perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²) + //see http://en.wikipedia.org/wiki/Perpendicular_distance + double A = double(ln1.Y - ln2.Y); + double B = double(ln2.X - ln1.X); + double C = A * ln1.X + B * ln1.Y; + C = A * pt.X + B * pt.Y - C; + return (C * C) / (A * A + B * B); +} +//--------------------------------------------------------------------------- + +bool SlopesNearCollinear(const IntPoint& pt1, + const IntPoint& pt2, const IntPoint& pt3, double distSqrd) +{ + //this function is more accurate when the point that's geometrically + //between the other 2 points is the one that's tested for distance. + //ie makes it more likely to pick up 'spikes' ... + if (Abs(pt1.X - pt2.X) > Abs(pt1.Y - pt2.Y)) + { + if ((pt1.X > pt2.X) == (pt1.X < pt3.X)) + return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd; + else if ((pt2.X > pt1.X) == (pt2.X < pt3.X)) + return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd; + else + return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd; + } + else + { + if ((pt1.Y > pt2.Y) == (pt1.Y < pt3.Y)) + return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd; + else if ((pt2.Y > pt1.Y) == (pt2.Y < pt3.Y)) + return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd; + else + return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd; + } +} +//------------------------------------------------------------------------------ + +bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd) +{ + double Dx = (double)pt1.X - pt2.X; + double dy = (double)pt1.Y - pt2.Y; + return ((Dx * Dx) + (dy * dy) <= distSqrd); +} +//------------------------------------------------------------------------------ + +OutPt* ExcludeOp(OutPt* op) +{ + OutPt* result = op->Prev; + result->Next = op->Next; + op->Next->Prev = result; + result->Idx = 0; + return result; +} +//------------------------------------------------------------------------------ + +void CleanPolygon(const Path& in_poly, Path& out_poly, double distance) +{ + //distance = proximity in units/pixels below which vertices + //will be stripped. Default ~= sqrt(2). + + size_t size = in_poly.size(); + + if (size == 0) + { + out_poly.clear(); + return; + } + + OutPt* outPts = new OutPt[size]; + for (size_t i = 0; i < size; ++i) + { + outPts[i].Pt = in_poly[i]; + outPts[i].Next = &outPts[(i + 1) % size]; + outPts[i].Next->Prev = &outPts[i]; + outPts[i].Idx = 0; + } + + double distSqrd = distance * distance; + OutPt* op = &outPts[0]; + while (op->Idx == 0 && op->Next != op->Prev) + { + if (PointsAreClose(op->Pt, op->Prev->Pt, distSqrd)) + { + op = ExcludeOp(op); + size--; + } + else if (PointsAreClose(op->Prev->Pt, op->Next->Pt, distSqrd)) + { + ExcludeOp(op->Next); + op = ExcludeOp(op); + size -= 2; + } + else if (SlopesNearCollinear(op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd)) + { + op = ExcludeOp(op); + size--; + } + else + { + op->Idx = 1; + op = op->Next; + } + } + + if (size < 3) size = 0; + out_poly.resize(size); + for (size_t i = 0; i < size; ++i) + { + out_poly[i] = op->Pt; + op = op->Next; + } + delete [] outPts; +} +//------------------------------------------------------------------------------ + +void CleanPolygon(Path& poly, double distance) +{ + CleanPolygon(poly, poly, distance); +} +//------------------------------------------------------------------------------ + +void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance) +{ + out_polys.resize(in_polys.size()); + for (Paths::size_type i = 0; i < in_polys.size(); ++i) + CleanPolygon(in_polys[i], out_polys[i], distance); +} +//------------------------------------------------------------------------------ + +void CleanPolygons(Paths& polys, double distance) +{ + CleanPolygons(polys, polys, distance); +} +//------------------------------------------------------------------------------ + +void Minkowski(const Path& poly, const Path& path, + Paths& solution, bool isSum, bool isClosed) +{ + int delta = (isClosed ? 1 : 0); + size_t polyCnt = poly.size(); + size_t pathCnt = path.size(); + Paths pp; + pp.reserve(pathCnt); + if (isSum) + for (size_t i = 0; i < pathCnt; ++i) + { + Path p; + p.reserve(polyCnt); + for (size_t j = 0; j < poly.size(); ++j) + p.push_back(IntPoint(path[i].X + poly[j].X, path[i].Y + poly[j].Y)); + pp.push_back(p); + } + else + for (size_t i = 0; i < pathCnt; ++i) + { + Path p; + p.reserve(polyCnt); + for (size_t j = 0; j < poly.size(); ++j) + p.push_back(IntPoint(path[i].X - poly[j].X, path[i].Y - poly[j].Y)); + pp.push_back(p); + } + + solution.clear(); + solution.reserve((pathCnt + delta) * (polyCnt + 1)); + for (size_t i = 0; i < pathCnt - 1 + delta; ++i) + for (size_t j = 0; j < polyCnt; ++j) + { + Path quad; + quad.reserve(4); + quad.push_back(pp[i % pathCnt][j % polyCnt]); + quad.push_back(pp[(i + 1) % pathCnt][j % polyCnt]); + quad.push_back(pp[(i + 1) % pathCnt][(j + 1) % polyCnt]); + quad.push_back(pp[i % pathCnt][(j + 1) % polyCnt]); + if (!Orientation(quad)) ReversePath(quad); + solution.push_back(quad); + } +} +//------------------------------------------------------------------------------ + +void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed) +{ + Minkowski(pattern, path, solution, true, pathIsClosed); + Clipper c; + c.AddPaths(solution, ptSubject, true); + c.Execute(ctUnion, solution, pftNonZero, pftNonZero); +} +//------------------------------------------------------------------------------ + +void TranslatePath(const Path& input, Path& output, const IntPoint delta) +{ + //precondition: input != output + output.resize(input.size()); + for (size_t i = 0; i < input.size(); ++i) + output[i] = IntPoint(input[i].X + delta.X, input[i].Y + delta.Y); +} +//------------------------------------------------------------------------------ + +void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed) +{ + Clipper c; + for (size_t i = 0; i < paths.size(); ++i) + { + Paths tmp; + Minkowski(pattern, paths[i], tmp, true, pathIsClosed); + c.AddPaths(tmp, ptSubject, true); + if (pathIsClosed) + { + Path tmp2; + TranslatePath(paths[i], tmp2, pattern[0]); + c.AddPath(tmp2, ptClip, true); + } + } + c.Execute(ctUnion, solution, pftNonZero, pftNonZero); +} +//------------------------------------------------------------------------------ + +void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution) +{ + Minkowski(poly1, poly2, solution, false, true); + Clipper c; + c.AddPaths(solution, ptSubject, true); + c.Execute(ctUnion, solution, pftNonZero, pftNonZero); +} +//------------------------------------------------------------------------------ + +enum NodeType {ntAny, ntOpen, ntClosed}; + +void AddPolyNodeToPaths(const PolyNode& polynode, NodeType nodetype, Paths& paths) +{ + bool match = true; + if (nodetype == ntClosed) match = !polynode.IsOpen(); + else if (nodetype == ntOpen) return; + + if (!polynode.Contour.empty() && match) + paths.push_back(polynode.Contour); + for (int i = 0; i < polynode.ChildCount(); ++i) + AddPolyNodeToPaths(*polynode.Childs[i], nodetype, paths); +} +//------------------------------------------------------------------------------ + +void PolyTreeToPaths(const PolyTree& polytree, Paths& paths) +{ + paths.resize(0); + paths.reserve(polytree.Total()); + AddPolyNodeToPaths(polytree, ntAny, paths); +} +//------------------------------------------------------------------------------ + +void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths) +{ + paths.resize(0); + paths.reserve(polytree.Total()); + AddPolyNodeToPaths(polytree, ntClosed, paths); +} +//------------------------------------------------------------------------------ + +void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths) +{ + paths.resize(0); + paths.reserve(polytree.Total()); + //Open paths are top level only, so ... + for (int i = 0; i < polytree.ChildCount(); ++i) + if (polytree.Childs[i]->IsOpen()) + paths.push_back(polytree.Childs[i]->Contour); +} +//------------------------------------------------------------------------------ + +std::ostream& operator <<(std::ostream &s, const IntPoint &p) +{ + s << "(" << p.X << "," << p.Y << ")"; + return s; +} +//------------------------------------------------------------------------------ + +std::ostream& operator <<(std::ostream &s, const Path &p) +{ + if (p.empty()) return s; + Path::size_type last = p.size() -1; + for (Path::size_type i = 0; i < last; i++) + s << "(" << p[i].X << "," << p[i].Y << "), "; + s << "(" << p[last].X << "," << p[last].Y << ")\n"; + return s; +} +//------------------------------------------------------------------------------ + +std::ostream& operator <<(std::ostream &s, const Paths &p) +{ + for (Paths::size_type i = 0; i < p.size(); i++) + s << p[i]; + s << "\n"; + return s; +} +//------------------------------------------------------------------------------ + +} //ClipperLib namespace diff --git a/polygon/clipper.hpp b/polygon/clipper.hpp new file mode 100644 index 0000000..1c38371 --- /dev/null +++ b/polygon/clipper.hpp @@ -0,0 +1,404 @@ +/******************************************************************************* +* * +* Author : Angus Johnson * +* Version : 6.4.0 * +* Date : 2 July 2015 * +* Website : http://www.angusj.com * +* Copyright : Angus Johnson 2010-2015 * +* * +* License: * +* Use, modification & distribution is subject to Boost Software License Ver 1. * +* http://www.boost.org/LICENSE_1_0.txt * +* * +* Attributions: * +* The code in this library is an extension of Bala Vatti's clipping algorithm: * +* "A generic solution to polygon clipping" * +* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * +* http://portal.acm.org/citation.cfm?id=129906 * +* * +* Computer graphics and geometric modeling: implementation and algorithms * +* By Max K. Agoston * +* Springer; 1 edition (January 4, 2005) * +* http://books.google.com/books?q=vatti+clipping+agoston * +* * +* See also: * +* "Polygon Offsetting by Computing Winding Numbers" * +* Paper no. DETC2005-85513 pp. 565-575 * +* ASME 2005 International Design Engineering Technical Conferences * +* and Computers and Information in Engineering Conference (IDETC/CIE2005) * +* September 24-28, 2005 , Long Beach, California, USA * +* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * +* * +*******************************************************************************/ + +#ifndef clipper_hpp +#define clipper_hpp + +#define CLIPPER_VERSION "6.2.6" + +//use_int32: When enabled 32bit ints are used instead of 64bit ints. This +//improve performance but coordinate values are limited to the range +/- 46340 +//#define use_int32 + +//use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance. +//#define use_xyz + +//use_lines: Enables line clipping. Adds a very minor cost to performance. +#define use_lines + +//use_deprecated: Enables temporary support for the obsolete functions +//#define use_deprecated + +#include <vector> +#include <list> +#include <set> +#include <stdexcept> +#include <cstring> +#include <cstdlib> +#include <ostream> +#include <functional> +#include <queue> + +namespace ClipperLib { + +enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }; +enum PolyType { ptSubject, ptClip }; +//By far the most widely used winding rules for polygon filling are +//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32) +//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL) +//see http://glprogramming.com/red/chapter11.html +enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }; + +#ifdef use_int32 + typedef int cInt; + static cInt const loRange = 0x7FFF; + static cInt const hiRange = 0x7FFF; +#else + typedef signed long long cInt; + static cInt const loRange = 0x3FFFFFFF; + static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL; + typedef signed long long long64; //used by Int128 class + typedef unsigned long long ulong64; + +#endif + +struct IntPoint { + cInt X; + cInt Y; +#ifdef use_xyz + cInt Z; + IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {}; +#else + IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {}; +#endif + + friend inline bool operator== (const IntPoint& a, const IntPoint& b) + { + return a.X == b.X && a.Y == b.Y; + } + friend inline bool operator!= (const IntPoint& a, const IntPoint& b) + { + return a.X != b.X || a.Y != b.Y; + } +}; +//------------------------------------------------------------------------------ + +typedef std::vector< IntPoint > Path; +typedef std::vector< Path > Paths; + +inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;} +inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;} + +std::ostream& operator <<(std::ostream &s, const IntPoint &p); +std::ostream& operator <<(std::ostream &s, const Path &p); +std::ostream& operator <<(std::ostream &s, const Paths &p); + +struct DoublePoint +{ + double X; + double Y; + DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {} + DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {} +}; +//------------------------------------------------------------------------------ + +#ifdef use_xyz +typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt); +#endif + +enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4}; +enum JoinType {jtSquare, jtRound, jtMiter}; +enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound}; + +class PolyNode; +typedef std::vector< PolyNode* > PolyNodes; + +class PolyNode +{ +public: + PolyNode(); + virtual ~PolyNode(){}; + Path Contour; + PolyNodes Childs; + PolyNode* Parent; + PolyNode* GetNext() const; + bool IsHole() const; + bool IsOpen() const; + int ChildCount() const; +private: + unsigned Index; //node index in Parent.Childs + bool m_IsOpen; + JoinType m_jointype; + EndType m_endtype; + PolyNode* GetNextSiblingUp() const; + void AddChild(PolyNode& child); + friend class Clipper; //to access Index + friend class ClipperOffset; +}; + +class PolyTree: public PolyNode +{ +public: + ~PolyTree(){Clear();}; + PolyNode* GetFirst() const; + void Clear(); + int Total() const; +private: + PolyNodes AllNodes; + friend class Clipper; //to access AllNodes +}; + +bool Orientation(const Path &poly); +double Area(const Path &poly); +int PointInPolygon(const IntPoint &pt, const Path &path); + +void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd); +void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd); +void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd); + +void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415); +void CleanPolygon(Path& poly, double distance = 1.415); +void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415); +void CleanPolygons(Paths& polys, double distance = 1.415); + +void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed); +void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed); +void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution); + +void PolyTreeToPaths(const PolyTree& polytree, Paths& paths); +void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths); +void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths); + +void ReversePath(Path& p); +void ReversePaths(Paths& p); + +struct IntRect { cInt left; cInt top; cInt right; cInt bottom; }; + +//enums that are used internally ... +enum EdgeSide { esLeft = 1, esRight = 2}; + +//forward declarations (for stuff used internally) ... +struct TEdge; +struct IntersectNode; +struct LocalMinimum; +struct OutPt; +struct OutRec; +struct Join; + +typedef std::vector < OutRec* > PolyOutList; +typedef std::vector < TEdge* > EdgeList; +typedef std::vector < Join* > JoinList; +typedef std::vector < IntersectNode* > IntersectList; + +//------------------------------------------------------------------------------ + +//ClipperBase is the ancestor to the Clipper class. It should not be +//instantiated directly. This class simply abstracts the conversion of sets of +//polygon coordinates into edge objects that are stored in a LocalMinima list. +class ClipperBase +{ +public: + ClipperBase(); + virtual ~ClipperBase(); + virtual bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed); + bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed); + virtual void Clear(); + IntRect GetBounds(); + bool PreserveCollinear() {return m_PreserveCollinear;}; + void PreserveCollinear(bool value) {m_PreserveCollinear = value;}; +protected: + void DisposeLocalMinimaList(); + TEdge* AddBoundsToLML(TEdge *e, bool IsClosed); + virtual void Reset(); + TEdge* ProcessBound(TEdge* E, bool IsClockwise); + void InsertScanbeam(const cInt Y); + bool PopScanbeam(cInt &Y); + bool LocalMinimaPending(); + bool PopLocalMinima(cInt Y, const LocalMinimum *&locMin); + OutRec* CreateOutRec(); + void DisposeAllOutRecs(); + void DisposeOutRec(PolyOutList::size_type index); + void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2); + void DeleteFromAEL(TEdge *e); + void UpdateEdgeIntoAEL(TEdge *&e); + + typedef std::vector<LocalMinimum> MinimaList; + MinimaList::iterator m_CurrentLM; + MinimaList m_MinimaList; + + bool m_UseFullRange; + EdgeList m_edges; + bool m_PreserveCollinear; + bool m_HasOpenPaths; + PolyOutList m_PolyOuts; + TEdge *m_ActiveEdges; + + typedef std::priority_queue<cInt> ScanbeamList; + ScanbeamList m_Scanbeam; +}; +//------------------------------------------------------------------------------ + +class Clipper : public virtual ClipperBase +{ +public: + Clipper(int initOptions = 0); + bool Execute(ClipType clipType, + Paths &solution, + PolyFillType fillType = pftEvenOdd); + bool Execute(ClipType clipType, + Paths &solution, + PolyFillType subjFillType, + PolyFillType clipFillType); + bool Execute(ClipType clipType, + PolyTree &polytree, + PolyFillType fillType = pftEvenOdd); + bool Execute(ClipType clipType, + PolyTree &polytree, + PolyFillType subjFillType, + PolyFillType clipFillType); + bool ReverseSolution() { return m_ReverseOutput; }; + void ReverseSolution(bool value) {m_ReverseOutput = value;}; + bool StrictlySimple() {return m_StrictSimple;}; + void StrictlySimple(bool value) {m_StrictSimple = value;}; + //set the callback function for z value filling on intersections (otherwise Z is 0) +#ifdef use_xyz + void ZFillFunction(ZFillCallback zFillFunc); +#endif +protected: + virtual bool ExecuteInternal(); +private: + JoinList m_Joins; + JoinList m_GhostJoins; + IntersectList m_IntersectList; + ClipType m_ClipType; + typedef std::list<cInt> MaximaList; + MaximaList m_Maxima; + TEdge *m_SortedEdges; + bool m_ExecuteLocked; + PolyFillType m_ClipFillType; + PolyFillType m_SubjFillType; + bool m_ReverseOutput; + bool m_UsingPolyTree; + bool m_StrictSimple; +#ifdef use_xyz + ZFillCallback m_ZFill; //custom callback +#endif + void SetWindingCount(TEdge& edge); + bool IsEvenOddFillType(const TEdge& edge) const; + bool IsEvenOddAltFillType(const TEdge& edge) const; + void InsertLocalMinimaIntoAEL(const cInt botY); + void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge); + void AddEdgeToSEL(TEdge *edge); + bool PopEdgeFromSEL(TEdge *&edge); + void CopyAELToSEL(); + void DeleteFromSEL(TEdge *e); + void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2); + bool IsContributing(const TEdge& edge) const; + bool IsTopHorz(const cInt XPos); + void DoMaxima(TEdge *e); + void ProcessHorizontals(); + void ProcessHorizontal(TEdge *horzEdge); + void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); + OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); + OutRec* GetOutRec(int idx); + void AppendPolygon(TEdge *e1, TEdge *e2); + void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt); + OutPt* AddOutPt(TEdge *e, const IntPoint &pt); + OutPt* GetLastOutPt(TEdge *e); + bool ProcessIntersections(const cInt topY); + void BuildIntersectList(const cInt topY); + void ProcessIntersectList(); + void ProcessEdgesAtTopOfScanbeam(const cInt topY); + void BuildResult(Paths& polys); + void BuildResult2(PolyTree& polytree); + void SetHoleState(TEdge *e, OutRec *outrec); + void DisposeIntersectNodes(); + bool FixupIntersectionOrder(); + void FixupOutPolygon(OutRec &outrec); + void FixupOutPolyline(OutRec &outrec); + bool IsHole(TEdge *e); + bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl); + void FixHoleLinkage(OutRec &outrec); + void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt); + void ClearJoins(); + void ClearGhostJoins(); + void AddGhostJoin(OutPt *op, const IntPoint offPt); + bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2); + void JoinCommonEdges(); + void DoSimplePolygons(); + void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec); + void FixupFirstLefts2(OutRec* InnerOutRec, OutRec* OuterOutRec); + void FixupFirstLefts3(OutRec* OldOutRec, OutRec* NewOutRec); +#ifdef use_xyz + void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2); +#endif +}; +//------------------------------------------------------------------------------ + +class ClipperOffset +{ +public: + ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25); + ~ClipperOffset(); + void AddPath(const Path& path, JoinType joinType, EndType endType); + void AddPaths(const Paths& paths, JoinType joinType, EndType endType); + void Execute(Paths& solution, double delta); + void Execute(PolyTree& solution, double delta); + void Clear(); + double MiterLimit; + double ArcTolerance; +private: + Paths m_destPolys; + Path m_srcPoly; + Path m_destPoly; + std::vector<DoublePoint> m_normals; + double m_delta, m_sinA, m_sin, m_cos; + double m_miterLim, m_StepsPerRad; + IntPoint m_lowest; + PolyNode m_polyNodes; + + void FixOrientations(); + void DoOffset(double delta); + void OffsetPoint(int j, int& k, JoinType jointype); + void DoSquare(int j, int k); + void DoMiter(int j, int k, double r); + void DoRound(int j, int k); +}; +//------------------------------------------------------------------------------ + +class clipperException : public std::exception +{ + public: + clipperException(const char* description): m_descr(description) {} + virtual ~clipperException() throw() {} + virtual const char* what() const throw() {return m_descr.c_str();} + private: + std::string m_descr; +}; +//------------------------------------------------------------------------------ + +} //ClipperLib namespace + +#endif //clipper_hpp + + diff --git a/polygon/determine_if_point_inside_polygon.odt b/polygon/determine_if_point_inside_polygon.odt Binary files differnew file mode 100644 index 0000000..af612f7 --- /dev/null +++ b/polygon/determine_if_point_inside_polygon.odt diff --git a/polygon/math_for_graphics.cpp b/polygon/math_for_graphics.cpp new file mode 100644 index 0000000..c43f323 --- /dev/null +++ b/polygon/math_for_graphics.cpp @@ -0,0 +1,520 @@ +// math for graphics utility routines and RC, from FreePCB + +#include <vector> + +#include <cmath> +#include <float.h> +#include <limits.h> +#include <common.h> +#include <fctsys.h> + +#include <PolyLine.h> +#include <math_for_graphics.h> + +static bool InRange( double x, double xi, double xf ); + +/* Function FindSegmentIntersections + * find intersections between line segment (xi,yi) to (xf,yf) + * and line segment (xi2,yi2) to (xf2,yf2) + * returns true if intersection found + */ +bool FindSegmentIntersections( int xi, int yi, int xf, int yf, + int xi2, int yi2, int xf2, int yf2 ) +{ + if( std::max( xi, xf ) < std::min( xi2, xf2 ) + || std::min( xi, xf ) > std::max( xi2, xf2 ) + || std::max( yi, yf ) < std::min( yi2, yf2 ) + || std::min( yi, yf ) > std::max( yi2, yf2 ) ) + return false; + + return TestForIntersectionOfStraightLineSegments( xi, yi, xf, yf, + xi2, yi2, xf2, yf2 ); +} + + +/* Function FindLineSegmentIntersection + * find intersection between line y = a + bx and line segment (xi,yi) to (xf,yf) + * if b > DBL_MAX/10, assume vertical line at x = a + * return false if no intersection or true if intersect + * return coords of intersections in *x1, *y1, *x2, *y2 + * if no intersection, returns min distance in dist + */ +bool FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, int yf, + double* x1, double* y1, double* x2, double* y2, + double* dist ) +{ + double xx = 0, yy = 0; // Init made to avoid C compil "uninitialized" warning + bool bVert = false; + + if( b > DBL_MAX / 10.0 ) + bVert = true; + + if( xf != xi ) // non-vertical segment, get intersection + { + // horizontal or oblique straight segment + // put into form y = c + dx; + double d = (double) (yf - yi) / (double) (xf - xi); + double c = yf - d * xf; + + if( bVert ) + { + // if vertical line, easy + if( InRange( a, xi, xf ) ) + { + *x1 = a; + *y1 = c + d * a; + return 1; + } + else + { + if( dist ) + *dist = std::min( std::abs( a - xi ), std::abs( a - xf ) ); + + return false; + } + } + + if( std::abs( b - d ) < 1E-12 ) + { + // parallel lines + if( dist ) + { + *dist = GetPointToLineDistance( a, b, xi, xf ); + } + + return false; // lines parallel + } + + // calculate intersection + xx = (c - a) / (b - d); + yy = a + b * (xx); + + // see if intersection is within the line segment + if( yf == yi ) + { + // horizontal line + if( (xx>=xi && xx>xf) || (xx<=xi && xx<xf) ) + return false; + } + else + { + // oblique line + if( (xx>=xi && xx>xf) || (xx<=xi && xx<xf) + || (yy>yi && yy>yf) || (yy<yi && yy<yf) ) + return false; + } + } + else + { + // vertical line segment + if( bVert ) + return false; + + xx = xi; + yy = a + b * xx; + + if( (yy>=yi && yy>yf) || (yy<=yi && yy<yf) ) + return 0; + } + + *x1 = xx; + *y1 = yy; + return true; +} + + +/* + * Function TestForIntersectionOfStraightLineSegments + * Test for intersection of line segments + * If lines are parallel, returns false + * If true, returns also intersection coords in x, y + * if false, returns min. distance in dist (may be 0.0 if parallel) + */ +bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y1f, + int x2i, int y2i, int x2f, int y2f, + int* x, int* y, double* d ) +{ + double a, b, dist; + + // first, test for intersection + if( x1i == x1f && x2i == x2f ) + { + // both segments are vertical, can't intersect + } + else if( y1i == y1f && y2i == y2f ) + { + // both segments are horizontal, can't intersect + } + else if( x1i == x1f && y2i == y2f ) + { + // first seg. vertical, second horizontal, see if they cross + if( InRange( x1i, x2i, x2f ) + && InRange( y2i, y1i, y1f ) ) + { + if( x ) + *x = x1i; + + if( y ) + *y = y2i; + + if( d ) + *d = 0.0; + + return true; + } + } + else if( y1i == y1f && x2i == x2f ) + { + // first seg. horizontal, second vertical, see if they cross + if( InRange( y1i, y2i, y2f ) + && InRange( x2i, x1i, x1f ) ) + { + if( x ) + *x = x2i; + + if( y ) + *y = y1i; + + if( d ) + *d = 0.0; + + return true; + } + } + else if( x1i == x1f ) + { + // first segment vertical, second oblique + // get a and b for second line segment, so that y = a + bx; + b = double( y2f - y2i ) / (x2f - x2i); + a = (double) y2i - b * x2i; + + double x1, y1, x2, y2; + int test = FindLineSegmentIntersection( a, b, x1i, y1i, x1f, y1f, + &x1, &y1, &x2, &y2 ); + + if( test ) + { + if( InRange( y1, y1i, y1f ) && InRange( x1, x2i, x2f ) && InRange( y1, y2i, y2f ) ) + { + if( x ) + *x = KiROUND( x1 ); + + if( y ) + *y = KiROUND( y1 ); + + if( d ) + *d = 0.0; + + return true; + } + } + } + else if( y1i == y1f ) + { + // first segment horizontal, second oblique + // get a and b for second line segment, so that y = a + bx; + b = double( y2f - y2i ) / (x2f - x2i); + a = (double) y2i - b * x2i; + + double x1, y1, x2, y2; + int test = FindLineSegmentIntersection( a, b, x1i, y1i, x1f, y1f, + &x1, &y1, &x2, &y2 ); + + if( test ) + { + if( InRange( x1, x1i, x1f ) && InRange( x1, x2i, x2f ) && InRange( y1, y2i, y2f ) ) + { + if( x ) + *x = KiROUND( x1 ); + + if( y ) + *y = KiROUND( y1 ); + + if( d ) + *d = 0.0; + + return true; + } + } + } + else if( x2i == x2f ) + { + // second segment vertical, first oblique + // get a and b for first line segment, so that y = a + bx; + b = double( y1f - y1i ) / (x1f - x1i); + a = (double) y1i - b * x1i; + + double x1, y1, x2, y2; + int test = FindLineSegmentIntersection( a, b, x2i, y2i, x2f, y2f, + &x1, &y1, &x2, &y2 ); + + if( test ) + { + if( InRange( x1, x1i, x1f ) && InRange( y1, y1i, y1f ) && InRange( y1, y2i, y2f ) ) + { + if( x ) + *x = KiROUND( x1 ); + + if( y ) + *y = KiROUND( y1 ); + + if( d ) + *d = 0.0; + + return true; + } + } + } + else if( y2i == y2f ) + { + // second segment horizontal, first oblique + // get a and b for second line segment, so that y = a + bx; + b = double( y1f - y1i ) / (x1f - x1i); + a = (double) y1i - b * x1i; + + double x1, y1, x2, y2; + int test = FindLineSegmentIntersection( a, b, x2i, y2i, x2f, y2f, + &x1, &y1, &x2, &y2 ); + + if( test ) + { + if( InRange( x1, x1i, x1f ) && InRange( y1, y1i, y1f ) ) + { + if( x ) + *x = KiROUND( x1 ); + + if( y ) + *y = KiROUND( y1 ); + + if( d ) + *d = 0.0; + + return true; + } + } + } + else + { + // both segments oblique + if( long( y1f - y1i ) * (x2f - x2i) != long( y2f - y2i ) * (x1f - x1i) ) + { + // not parallel, get a and b for first line segment, so that y = a + bx; + b = double( y1f - y1i ) / (x1f - x1i); + a = (double) y1i - b * x1i; + + double x1, y1, x2, y2; + int test = FindLineSegmentIntersection( a, b, x2i, y2i, x2f, y2f, + &x1, &y1, &x2, &y2 ); + + // both segments oblique + if( test ) + { + if( InRange( x1, x1i, x1f ) && InRange( y1, y1i, y1f ) ) + { + if( x ) + *x = KiROUND( x1 ); + + if( y ) + *y = KiROUND( y1 ); + + if( d ) + *d = 0.0; + + return true; + } + } + } + } + + // don't intersect, get shortest distance between each endpoint and the other line segment + dist = GetPointToLineSegmentDistance( x1i, y1i, x2i, y2i, x2f, y2f ); + + double xx = x1i; + double yy = y1i; + double dd = GetPointToLineSegmentDistance( x1f, y1f, x2i, y2i, x2f, y2f ); + + if( dd < dist ) + { + dist = dd; + xx = x1f; + yy = y1f; + } + + dd = GetPointToLineSegmentDistance( x2i, y2i, x1i, y1i, x1f, y1f ); + + if( dd < dist ) + { + dist = dd; + xx = x2i; + yy = y2i; + } + + dd = GetPointToLineSegmentDistance( x2f, y2f, x1i, y1i, x1f, y1f ); + + if( dd < dist ) + { + dist = dd; + xx = x2f; + yy = y2f; + } + + if( x ) + *x = KiROUND( xx ); + + if( y ) + *y = KiROUND( yy ); + + if( d ) + *d = dist; + + return false; +} + + +/* Function GetClearanceBetweenSegments + * Get clearance between 2 segments + * Returns coordinates of the closest point between these 2 segments in x, y + * If clearance > max_cl, just returns max_cl+1 and doesn't return x,y + */ +int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int w1, + int x2i, int y2i, int x2f, int y2f, int w2, + int max_cl, int* x, int* y ) +{ + // check clearance between bounding rectangles + int min_dist = max_cl + ( (w1 + w2) / 2 ); + + if( std::min( x1i, x1f ) - std::max( x2i, x2f ) > min_dist ) + return max_cl+1; + + if( std::min( x2i, x2f ) - std::max( x1i, x1f ) > min_dist ) + return max_cl+1; + + if( std::min( y1i, y1f ) - std::max( y2i, y2f ) > min_dist ) + return max_cl+1; + + if( std::min( y2i, y2f ) - std::max( y1i, y1f ) > min_dist ) + return max_cl+1; + + int xx, yy; + double dist; + TestForIntersectionOfStraightLineSegments( x1i, y1i, x1f, y1f, + x2i, y2i, x2f, y2f, &xx, &yy, &dist ); + int d = KiROUND( dist ) - ((w1 + w2) / 2); + if( d < 0 ) + d = 0; + + if( x ) + *x = xx; + + if( y ) + *y = yy; + + return d; +} + + +/* Function GetPointToLineDistance + * Get min. distance from (x,y) to line y = a + bx + * if b > DBL_MAX/10, assume vertical line at x = a + * returns closest point on line in xpp, ypp + */ +double GetPointToLineDistance( double a, double b, int x, int y, double* xpp, double* ypp ) +{ + if( b > DBL_MAX / 10 ) + { + // vertical line + if( xpp && ypp ) + { + *xpp = a; + *ypp = y; + } + + return std::abs( a - x ); + } + + // find c,d such that (x,y) lies on y = c + dx where d=(-1/b) + double d = -1.0 / b; + double c = (double) y - d * x; + + // find nearest point to (x,y) on line through (xi,yi) to (xf,yf) + double xp = (a - c) / (d - b); + double yp = a + b * xp; + + if( xpp && ypp ) + { + *xpp = xp; + *ypp = yp; + } + + // find distance + return Distance( x, y, xp, yp ); +} + + +/** + * Function GetPointToLineSegmentDistance + * Get distance between line segment and point + * @param x,y = point + * @param xi,yi Start point of the line segament + * @param xf,yf End point of the line segment + * @return the distance + */ +double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int yf ) +{ + // test for vertical or horizontal segment + if( xf==xi ) + { + // vertical line segment + if( InRange( y, yi, yf ) ) + return std::abs( x - xi ); + else + return std::min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) ); + } + else if( yf==yi ) + { + // horizontal line segment + if( InRange( x, xi, xf ) ) + return std::abs( y - yi ); + else + return std::min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) ); + } + else + { + // oblique segment + // find a,b such that (xi,yi) and (xf,yf) lie on y = a + bx + double b = (double) (yf - yi) / (xf - xi); + double a = (double) yi - b * xi; + + // find c,d such that (x,y) lies on y = c + dx where d=(-1/b) + double d = -1.0 / b; + double c = (double) y - d * x; + + // find nearest point to (x,y) on line through (xi,yi) to (xf,yf) + double xp = (a - c) / (d - b); + double yp = a + b * xp; + + // find distance + if( InRange( xp, xi, xf ) && InRange( yp, yi, yf ) ) + return Distance( x, y, xp, yp ); + else + return std::min( Distance( x, y, xi, yi ), Distance( x, y, xf, yf ) ); + } +} + + +// test for value within range +bool InRange( double x, double xi, double xf ) +{ + if( xf > xi ) + { + if( x >= xi && x <= xf ) + return true; + } + else + { + if( x >= xf && x <= xi ) + return true; + } + + return false; +} diff --git a/polygon/math_for_graphics.h b/polygon/math_for_graphics.h new file mode 100644 index 0000000..c8be901 --- /dev/null +++ b/polygon/math_for_graphics.h @@ -0,0 +1,71 @@ +#ifndef MATH_FOR_GRAPHICS_H +#define MATH_FOR_GRAPHICS_H +// math stuff for graphics, from FreePCB + +/* Function FindLineSegmentIntersection + * find intersection between line y = a + bx and line segment (xi,yi) to (xf,yf) + * if b > DBL_MAX/10, assume vertical line at x = a + * return false if no intersection or true if intersect + * return coords of intersections in *x1, *y1, *x2, *y2 + * if no intersection, returns min distance in dist + */ +bool FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, int yf, + double * x1, double * y1, double * x2, double * y2, double * dist=NULL ); + +/* Function FindSegmentIntersections + * find intersections between line segment (xi,yi) to (xf,yf) + * and line segment (xi2,yi2) to (xf2,yf2) + * returns true if intersection found + */ +bool FindSegmentIntersections( int xi, int yi, int xf, int yf, + int xi2, int yi2, int xf2, int yf2 ); + +/** + * Function TestForIntersectionOfStraightLineSegments + * Test for intersection of line segments + * If lines are parallel, returns false + * If true, returns also intersection coords in x, y + * if false, returns min. distance in dist (may be 0.0 if parallel) + * and coords on nearest point in one of the segments in (x,y) + * @param x1i, y1i, x1f, y1f = integer coordinates of the first segment + * @param x2i, y2i, x2f, y2f = integer coordinates of the other segment + * @param x, y = pointers on 2 integer to store the intersection coordinates (can be NULL) + * @param dist = pointeur on a double to store the dist. + * @return true if intersect. + */ +bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y1f, + int x2i, int y2i, int x2f, int y2f, + int * x=NULL, int * y=NULL, double * dist=NULL ); + +/* Function GetClearanceBetweenSegments + * Get clearance between 2 segments + * Returns coordinates of the closest point between these 2 segments in x, y + * If clearance > max_cl, just returns max_cl+1 and doesn't return x,y + */ +int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int w1, + int x2i, int y2i, int x2f, int y2f, int w2, + int max_cl, int * x, int * y ); + +/** + * Function GetPointToLineSegmentDistance + * Get distance between line segment and point + * @param x,y = point + * @param xi,yi, xf,yf = the end-points of the line segment + * @return the distance + */ +double GetPointToLineSegmentDistance( int x, int y, int xi, int yi, int xf, int yf ); + +/* Function GetPointToLineDistance + * Get min. distance from (x,y) to line y = a + bx + * if b > DBL_MAX/10, assume vertical line at x = a + * returns closest point on line in xpp, ypp + */ +double GetPointToLineDistance( double a, double b, int x, int y, + double * xp=NULL, double * yp=NULL ); + +inline double Distance( double x1, double y1, double x2, double y2 ) +{ + return hypot( x1 - x2, y1 - y2 ); +} + +#endif diff --git a/polygon/poly2tri/common/shapes.cc b/polygon/poly2tri/common/shapes.cc new file mode 100644 index 0000000..06eb1f8 --- /dev/null +++ b/polygon/poly2tri/common/shapes.cc @@ -0,0 +1,500 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +#include "shapes.h" +#include <iostream> + +namespace p2t { +Triangle::Triangle( Point& a, Point& b, Point& c ) +{ + points_[0] = &a; points_[1] = &b; points_[2] = &c; + neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL; + constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false; + delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; + interior_ = false; +} + + +// Update neighbor pointers +void Triangle::MarkNeighbor( Point* p1, Point* p2, Triangle* t ) +{ + if( (p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]) ) + neighbors_[0] = t; + else if( (p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]) ) + neighbors_[1] = t; + else if( (p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]) ) + neighbors_[2] = t; + else + assert( 0 ); +} + + +// Exhaustive search to update neighbor pointers +void Triangle::MarkNeighbor( Triangle& t ) +{ + if( t.Contains( points_[1], points_[2] ) ) + { + neighbors_[0] = &t; + t.MarkNeighbor( points_[1], points_[2], this ); + } + else if( t.Contains( points_[0], points_[2] ) ) + { + neighbors_[1] = &t; + t.MarkNeighbor( points_[0], points_[2], this ); + } + else if( t.Contains( points_[0], points_[1] ) ) + { + neighbors_[2] = &t; + t.MarkNeighbor( points_[0], points_[1], this ); + } +} + + +/** + * Clears all references to all other triangles and points + */ +void Triangle::Clear() +{ + Triangle* t; + + for( int i = 0; i<3; i++ ) + { + t = neighbors_[i]; + + if( t != NULL ) + { + t->ClearNeighbor( this ); + } + } + + ClearNeighbors(); + points_[0] = points_[1] = points_[2] = NULL; +} + + +void Triangle::ClearNeighbor( Triangle* triangle ) +{ + if( neighbors_[0] == triangle ) + { + neighbors_[0] = NULL; + } + else if( neighbors_[1] == triangle ) + { + neighbors_[1] = NULL; + } + else + { + neighbors_[2] = NULL; + } +} + + +void Triangle::ClearNeighbors() +{ + neighbors_[0] = NULL; + neighbors_[1] = NULL; + neighbors_[2] = NULL; +} + + +void Triangle::ClearDelunayEdges() +{ + delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; +} + + +Point* Triangle::OppositePoint( Triangle& t, Point& p ) +{ + Point* cw = t.PointCW( p ); + + /* + double x = cw->x; + double y = cw->y; + + x = p.x; + y = p.y; + */ + + return PointCW( *cw ); +} + + +// Legalized triangle by rotating clockwise around point(0) +void Triangle::Legalize( Point& point ) +{ + points_[1] = points_[0]; + points_[0] = points_[2]; + points_[2] = &point; +} + + +// Legalize triagnle by rotating clockwise around oPoint +void Triangle::Legalize( Point& opoint, Point& npoint ) +{ + if( &opoint == points_[0] ) + { + points_[1] = points_[0]; + points_[0] = points_[2]; + points_[2] = &npoint; + } + else if( &opoint == points_[1] ) + { + points_[2] = points_[1]; + points_[1] = points_[0]; + points_[0] = &npoint; + } + else if( &opoint == points_[2] ) + { + points_[0] = points_[2]; + points_[2] = points_[1]; + points_[1] = &npoint; + } + else + { + assert( 0 ); + } +} + + +int Triangle::Index( const Point* p ) +{ + if( p == points_[0] ) + { + return 0; + } + else if( p == points_[1] ) + { + return 1; + } + else if( p == points_[2] ) + { + return 2; + } + + assert( 0 ); + return 0; // you better hope its a Debug build. +} + + +int Triangle::EdgeIndex( const Point* p1, const Point* p2 ) +{ + if( points_[0] == p1 ) + { + if( points_[1] == p2 ) + { + return 2; + } + else if( points_[2] == p2 ) + { + return 1; + } + } + else if( points_[1] == p1 ) + { + if( points_[2] == p2 ) + { + return 0; + } + else if( points_[0] == p2 ) + { + return 2; + } + } + else if( points_[2] == p1 ) + { + if( points_[0] == p2 ) + { + return 1; + } + else if( points_[1] == p2 ) + { + return 0; + } + } + + return -1; +} + + +void Triangle::MarkConstrainedEdge( const int index ) +{ + constrained_edge[index] = true; +} + + +void Triangle::MarkConstrainedEdge( Edge& edge ) +{ + MarkConstrainedEdge( edge.p, edge.q ); +} + + +// Mark edge as constrained +void Triangle::MarkConstrainedEdge( Point* p, Point* q ) +{ + if( (q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0]) ) + { + constrained_edge[2] = true; + } + else if( (q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0]) ) + { + constrained_edge[1] = true; + } + else if( (q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1]) ) + { + constrained_edge[0] = true; + } +} + + +// The point counter-clockwise to given point +Point* Triangle::PointCW( Point& point ) +{ + if( &point == points_[0] ) + { + return points_[2]; + } + else if( &point == points_[1] ) + { + return points_[0]; + } + else if( &point == points_[2] ) + { + return points_[1]; + } + + assert( 0 ); + return NULL; // you better hope its a Debug build. +} + + +// The point counter-clockwise to given point +Point* Triangle::PointCCW( Point& point ) +{ + if( &point == points_[0] ) + { + return points_[1]; + } + else if( &point == points_[1] ) + { + return points_[2]; + } + else if( &point == points_[2] ) + { + return points_[0]; + } + + assert( 0 ); + return NULL; // you better hope its a Debug build. +} + + +// The neighbor clockwise to given point +Triangle* Triangle::NeighborCW( Point& point ) +{ + if( &point == points_[0] ) + { + return neighbors_[1]; + } + else if( &point == points_[1] ) + { + return neighbors_[2]; + } + + return neighbors_[0]; +} + + +// The neighbor counter-clockwise to given point +Triangle* Triangle::NeighborCCW( Point& point ) +{ + if( &point == points_[0] ) + { + return neighbors_[2]; + } + else if( &point == points_[1] ) + { + return neighbors_[0]; + } + + return neighbors_[1]; +} + + +bool Triangle::GetConstrainedEdgeCCW( Point& p ) +{ + if( &p == points_[0] ) + { + return constrained_edge[2]; + } + else if( &p == points_[1] ) + { + return constrained_edge[0]; + } + + return constrained_edge[1]; +} + + +bool Triangle::GetConstrainedEdgeCW( Point& p ) +{ + if( &p == points_[0] ) + { + return constrained_edge[1]; + } + else if( &p == points_[1] ) + { + return constrained_edge[2]; + } + + return constrained_edge[0]; +} + + +void Triangle::SetConstrainedEdgeCCW( Point& p, bool ce ) +{ + if( &p == points_[0] ) + { + constrained_edge[2] = ce; + } + else if( &p == points_[1] ) + { + constrained_edge[0] = ce; + } + else + { + constrained_edge[1] = ce; + } +} + + +void Triangle::SetConstrainedEdgeCW( Point& p, bool ce ) +{ + if( &p == points_[0] ) + { + constrained_edge[1] = ce; + } + else if( &p == points_[1] ) + { + constrained_edge[2] = ce; + } + else + { + constrained_edge[0] = ce; + } +} + + +bool Triangle::GetDelunayEdgeCCW( Point& p ) +{ + if( &p == points_[0] ) + { + return delaunay_edge[2]; + } + else if( &p == points_[1] ) + { + return delaunay_edge[0]; + } + + return delaunay_edge[1]; +} + + +bool Triangle::GetDelunayEdgeCW( Point& p ) +{ + if( &p == points_[0] ) + { + return delaunay_edge[1]; + } + else if( &p == points_[1] ) + { + return delaunay_edge[2]; + } + + return delaunay_edge[0]; +} + + +void Triangle::SetDelunayEdgeCCW( Point& p, bool e ) +{ + if( &p == points_[0] ) + { + delaunay_edge[2] = e; + } + else if( &p == points_[1] ) + { + delaunay_edge[0] = e; + } + else + { + delaunay_edge[1] = e; + } +} + + +void Triangle::SetDelunayEdgeCW( Point& p, bool e ) +{ + if( &p == points_[0] ) + { + delaunay_edge[1] = e; + } + else if( &p == points_[1] ) + { + delaunay_edge[2] = e; + } + else + { + delaunay_edge[0] = e; + } +} + + +// The neighbor across to given point +Triangle& Triangle::NeighborAcross( Point& opoint ) +{ + if( &opoint == points_[0] ) + { + return *neighbors_[0]; + } + else if( &opoint == points_[1] ) + { + return *neighbors_[1]; + } + + return *neighbors_[2]; +} + + +void Triangle::DebugPrint() +{ + std::cout << points_[0]->x << "," << points_[0]->y << " "; + std::cout << points_[1]->x << "," << points_[1]->y << " "; + std::cout << points_[2]->x << "," << points_[2]->y << "\n"; +} +} diff --git a/polygon/poly2tri/common/shapes.h b/polygon/poly2tri/common/shapes.h new file mode 100644 index 0000000..c65f485 --- /dev/null +++ b/polygon/poly2tri/common/shapes.h @@ -0,0 +1,351 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +// Include guard +#ifndef SHAPES_H +#define SHAPES_H + +#include <vector> +#include <cstddef> +#include <assert.h> +#include <cmath> + +namespace p2t { +struct Edge; + +struct Point +{ + double x, y; + + /// Default constructor does nothing (for performance). + Point() + { + x = 0.0; + y = 0.0; + } + + /// The edges this point constitutes an upper ending point + std::vector<Edge*> edge_list; + + /// Construct using coordinates. + Point( double x, double y ) : x( x ), y( y ) {} + + /// Set this point to all zeros. + void set_zero() + { + x = 0.0; + y = 0.0; + } + + /// Set this point to some specified coordinates. + void set( double x_, double y_ ) + { + x = x_; + y = y_; + } + + /// Negate this point. + Point operator -() const + { + Point v; + + v.set( -x, -y ); + return v; + } + + /// Add a point to this point. + void operator +=( const Point& v ) + { + x += v.x; + y += v.y; + } + + /// Subtract a point from this point. + void operator -=( const Point& v ) + { + x -= v.x; + y -= v.y; + } + + /// Multiply this point by a scalar. + void operator *=( double a ) + { + x *= a; + y *= a; + } + + /// Get the length of this point (the norm). + double Length() const + { + return sqrt( x * x + y * y ); + } + + /// Convert this point into a unit point. Returns the Length. + double Normalize() + { + double len = Length(); + + x /= len; + y /= len; + return len; + } +}; + +// Represents a simple polygon's edge +struct Edge +{ + Point* p, * q; + + /// Constructor + Edge( Point& p1, Point& p2 ) : p( &p1 ), q( &p2 ) + { + if( p1.y > p2.y ) + { + q = &p1; + p = &p2; + } + else if( p1.y == p2.y ) + { + if( p1.x > p2.x ) + { + q = &p1; + p = &p2; + } + else if( p1.x == p2.x ) + { + // Repeat points + assert( false ); + } + } + + q->edge_list.push_back( this ); + } +}; + +// Triangle-based data structures are know to have better performance than quad-edge structures +// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator" +// "Triangulations in CGAL" +class Triangle +{ +public: + +/// Constructor + Triangle( Point& a, Point& b, Point& c ); + +/// Flags to determine if an edge is a Constrained edge + bool constrained_edge[3]; +/// Flags to determine if an edge is a Delauney edge + bool delaunay_edge[3]; + + Point* GetPoint( const int& index ); + Point* PointCW( Point& point ); + Point* PointCCW( Point& point ); + Point* OppositePoint( Triangle& t, Point& p ); + + Triangle* GetNeighbor( const int& index ); + void MarkNeighbor( Point* p1, Point* p2, Triangle* t ); + void MarkNeighbor( Triangle& t ); + + void MarkConstrainedEdge( const int index ); + void MarkConstrainedEdge( Edge& edge ); + void MarkConstrainedEdge( Point* p, Point* q ); + + int Index( const Point* p ); + int EdgeIndex( const Point* p1, const Point* p2 ); + + Triangle* NeighborCW( Point& point ); + Triangle* NeighborCCW( Point& point ); + bool GetConstrainedEdgeCCW( Point& p ); + bool GetConstrainedEdgeCW( Point& p ); + void SetConstrainedEdgeCCW( Point& p, bool ce ); + void SetConstrainedEdgeCW( Point& p, bool ce ); + bool GetDelunayEdgeCCW( Point& p ); + bool GetDelunayEdgeCW( Point& p ); + void SetDelunayEdgeCCW( Point& p, bool e ); + void SetDelunayEdgeCW( Point& p, bool e ); + + bool Contains( Point* p ); + bool Contains( const Edge& e ); + bool Contains( Point* p, Point* q ); + void Legalize( Point& point ); + void Legalize( Point& opoint, Point& npoint ); + +/** + * Clears all references to all other triangles and points + */ + void Clear(); + void ClearNeighbor( Triangle* triangle ); + void ClearNeighbors(); + void ClearDelunayEdges(); + + inline bool IsInterior(); + inline void IsInterior( bool b ); + + Triangle& NeighborAcross( Point& opoint ); + + void DebugPrint(); + +private: + +/// Triangle points + Point* points_[3]; +/// Neighbor list + Triangle* neighbors_[3]; + +/// Has this triangle been marked as an interior triangle? + bool interior_; +}; + +inline bool cmp( const Point* a, const Point* b ) +{ + if( a->y < b->y ) + { + return true; + } + else if( a->y == b->y ) + { + // Make sure q is point with greater x value + if( a->x < b->x ) + { + return true; + } + } + + return false; +} + + +/// Add two points_ component-wise. +inline Point operator +( const Point& a, const Point& b ) +{ + return Point( a.x + b.x, a.y + b.y ); +} + + +/// Subtract two points_ component-wise. +inline Point operator -( const Point& a, const Point& b ) +{ + return Point( a.x - b.x, a.y - b.y ); +} + + +/// Multiply point by scalar +inline Point operator *( double s, const Point& a ) +{ + return Point( s * a.x, s * a.y ); +} + + +inline bool operator ==( const Point& a, const Point& b ) +{ + return a.x == b.x && a.y == b.y; +} + + +inline bool operator !=( const Point& a, const Point& b ) +{ + return !(a.x == b.x) && !(a.y == b.y); +} + + +/// Peform the dot product on two vectors. +inline double Dot( const Point& a, const Point& b ) +{ + return a.x * b.x + a.y * b.y; +} + + +/// Perform the cross product on two vectors. In 2D this produces a scalar. +inline double Cross( const Point& a, const Point& b ) +{ + return a.x * b.y - a.y * b.x; +} + + +/// Perform the cross product on a point and a scalar. In 2D this produces +/// a point. +inline Point Cross( const Point& a, double s ) +{ + return Point( s * a.y, -s * a.x ); +} + + +/// Perform the cross product on a scalar and a point. In 2D this produces +/// a point. +inline Point Cross( const double s, const Point& a ) +{ + return Point( -s * a.y, s * a.x ); +} + + +inline Point* Triangle::GetPoint( const int& index ) +{ + return points_[index]; +} + + +inline Triangle* Triangle::GetNeighbor( const int& index ) +{ + return neighbors_[index]; +} + + +inline bool Triangle::Contains( Point* p ) +{ + return p == points_[0] || p == points_[1] || p == points_[2]; +} + + +inline bool Triangle::Contains( const Edge& e ) +{ + return Contains( e.p ) && Contains( e.q ); +} + + +inline bool Triangle::Contains( Point* p, Point* q ) +{ + return Contains( p ) && Contains( q ); +} + + +inline bool Triangle::IsInterior() +{ + return interior_; +} + + +inline void Triangle::IsInterior( bool b ) +{ + interior_ = b; +} +} + +#endif diff --git a/polygon/poly2tri/common/utils.h b/polygon/poly2tri/common/utils.h new file mode 100644 index 0000000..3de9fb1 --- /dev/null +++ b/polygon/poly2tri/common/utils.h @@ -0,0 +1,133 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef UTILS_H +#define UTILS_H + +// Otherwise #defines like M_PI are undeclared under Visual Studio +#define _USE_MATH_DEFINES + +#include <exception> +#include <math.h> + +namespace p2t { +const double PI_3div4 = 3 * M_PI / 4; +const double PI_div2 = 1.57079632679489661923; +const double EPSILON = 1e-12; + +enum Orientation { + CW, CCW, COLLINEAR +}; + +/** + * Forumla to calculate signed area<br> + * Positive if CCW<br> + * Negative if CW<br> + * 0 if collinear<br> + * <pre> + * A[P1,P2,P3] = (x1*y2 - y1*x2) + (x2*y3 - y2*x3) + (x3*y1 - y3*x1) + * = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3) + * </pre> + */ +Orientation Orient2d( Point& pa, Point& pb, Point& pc ) +{ + double detleft = (pa.x - pc.x) * (pb.y - pc.y); + double detright = (pa.y - pc.y) * (pb.x - pc.x); + double val = detleft - detright; + + if( val > -EPSILON && val < EPSILON ) + { + return COLLINEAR; + } + else if( val > 0 ) + { + return CCW; + } + + return CW; +} + + +/* + * bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) + * { + * double pdx = pd.x; + * double pdy = pd.y; + * double adx = pa.x - pdx; + * double ady = pa.y - pdy; + * double bdx = pb.x - pdx; + * double bdy = pb.y - pdy; + * + * double adxbdy = adx * bdy; + * double bdxady = bdx * ady; + * double oabd = adxbdy - bdxady; + * + * if (oabd <= EPSILON) { + * return false; + * } + * + * double cdx = pc.x - pdx; + * double cdy = pc.y - pdy; + * + * double cdxady = cdx * ady; + * double adxcdy = adx * cdy; + * double ocad = cdxady - adxcdy; + * + * if (ocad <= EPSILON) { + * return false; + * } + * + * return true; + * } + * + */ + +bool InScanArea( Point& pa, Point& pb, Point& pc, Point& pd ) +{ + double oadb = (pa.x - pb.x) * (pd.y - pb.y) - (pd.x - pb.x) * (pa.y - pb.y); + + if( oadb >= -EPSILON ) + { + return false; + } + + double oadc = (pa.x - pc.x) * (pd.y - pc.y) - (pd.x - pc.x) * (pa.y - pc.y); + + if( oadc <= EPSILON ) + { + return false; + } + + return true; +} +} + +#endif diff --git a/polygon/poly2tri/poly2tri.h b/polygon/poly2tri/poly2tri.h new file mode 100644 index 0000000..487755e --- /dev/null +++ b/polygon/poly2tri/poly2tri.h @@ -0,0 +1,39 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef POLY2TRI_H +#define POLY2TRI_H + +#include "common/shapes.h" +#include "sweep/cdt.h" + +#endif + diff --git a/polygon/poly2tri/sweep/advancing_front.cc b/polygon/poly2tri/sweep/advancing_front.cc new file mode 100644 index 0000000..019df4a --- /dev/null +++ b/polygon/poly2tri/sweep/advancing_front.cc @@ -0,0 +1,109 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +#include "advancing_front.h" + +namespace p2t { + +AdvancingFront::AdvancingFront(Node& head, Node& tail) +{ + head_ = &head; + tail_ = &tail; + search_node_ = &head; +} + +Node* AdvancingFront::LocateNode(const double& x) +{ + Node* node = search_node_; + + if (x < node->value) { + while ((node = node->prev) != NULL) { + if (x >= node->value) { + search_node_ = node; + return node; + } + } + } else { + while ((node = node->next) != NULL) { + if (x < node->value) { + search_node_ = node->prev; + return node->prev; + } + } + } + return NULL; +} + +Node* AdvancingFront::FindSearchNode(const double& x) +{ + (void)x; // suppress compiler warnings "unused parameter 'x'" + // TODO: implement BST index + return search_node_; +} + +Node* AdvancingFront::LocatePoint(const Point* point) +{ + const double px = point->x; + Node* node = FindSearchNode(px); + const double nx = node->point->x; + + if (px == nx) { + if (point != node->point) { + // We might have two nodes with same x value for a short time + if (point == node->prev->point) { + node = node->prev; + } else if (point == node->next->point) { + node = node->next; + } else { + assert(0); + } + } + } else if (px < nx) { + while ((node = node->prev) != NULL) { + if (point == node->point) { + break; + } + } + } else { + while ((node = node->next) != NULL) { + if (point == node->point) + break; + } + } + if(node) search_node_ = node; + return node; +} + +AdvancingFront::~AdvancingFront() +{ +} + +} + diff --git a/polygon/poly2tri/sweep/advancing_front.h b/polygon/poly2tri/sweep/advancing_front.h new file mode 100644 index 0000000..bab73d4 --- /dev/null +++ b/polygon/poly2tri/sweep/advancing_front.h @@ -0,0 +1,118 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef ADVANCED_FRONT_H +#define ADVANCED_FRONT_H + +#include "../common/shapes.h" + +namespace p2t { + +struct Node; + +// Advancing front node +struct Node { + Point* point; + Triangle* triangle; + + Node* next; + Node* prev; + + double value; + + Node(Point& p) : point(&p), triangle(NULL), next(NULL), prev(NULL), value(p.x) + { + } + + Node(Point& p, Triangle& t) : point(&p), triangle(&t), next(NULL), prev(NULL), value(p.x) + { + } + +}; + +// Advancing front +class AdvancingFront { +public: + +AdvancingFront(Node& head, Node& tail); +// Destructor +~AdvancingFront(); + +Node* head(); +void set_head(Node* node); +Node* tail(); +void set_tail(Node* node); +Node* search(); +void set_search(Node* node); + +/// Locate insertion point along advancing front +Node* LocateNode(const double& x); + +Node* LocatePoint(const Point* point); + +private: + +Node* head_, *tail_, *search_node_; + +Node* FindSearchNode(const double& x); +}; + +inline Node* AdvancingFront::head() +{ + return head_; +} +inline void AdvancingFront::set_head(Node* node) +{ + head_ = node; +} + +inline Node* AdvancingFront::tail() +{ + return tail_; +} +inline void AdvancingFront::set_tail(Node* node) +{ + tail_ = node; +} + +inline Node* AdvancingFront::search() +{ + return search_node_; +} + +inline void AdvancingFront::set_search(Node* node) +{ + search_node_ = node; +} + +} + +#endif diff --git a/polygon/poly2tri/sweep/cdt.cc b/polygon/poly2tri/sweep/cdt.cc new file mode 100644 index 0000000..d783825 --- /dev/null +++ b/polygon/poly2tri/sweep/cdt.cc @@ -0,0 +1,72 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +#include "cdt.h" + +namespace p2t { + +CDT::CDT(std::vector<Point*> polyline) +{ + sweep_context_ = new SweepContext(polyline); + sweep_ = new Sweep; +} + +void CDT::AddHole(std::vector<Point*> polyline) +{ + sweep_context_->AddHole(polyline); +} + +void CDT::AddPoint(Point* point) { + sweep_context_->AddPoint(point); +} + +void CDT::Triangulate() +{ + sweep_->Triangulate(*sweep_context_); +} + +std::vector<p2t::Triangle*> CDT::GetTriangles() +{ + return sweep_context_->GetTriangles(); +} + +std::list<p2t::Triangle*> CDT::GetMap() +{ + return sweep_context_->GetMap(); +} + +CDT::~CDT() +{ + delete sweep_context_; + delete sweep_; +} + +} + diff --git a/polygon/poly2tri/sweep/cdt.h b/polygon/poly2tri/sweep/cdt.h new file mode 100644 index 0000000..3e6f024 --- /dev/null +++ b/polygon/poly2tri/sweep/cdt.h @@ -0,0 +1,105 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef CDT_H +#define CDT_H + +#include "advancing_front.h" +#include "sweep_context.h" +#include "sweep.h" + +/** + * + * @author Mason Green <mason.green@gmail.com> + * + */ + +namespace p2t { + +class CDT +{ +public: + + /** + * Constructor - add polyline with non repeating points + * + * @param polyline + */ + CDT(std::vector<Point*> polyline); + + /** + * Destructor - clean up memory + */ + ~CDT(); + + /** + * Add a hole + * + * @param polyline + */ + void AddHole(std::vector<Point*> polyline); + + /** + * Add a steiner point + * + * @param point + */ + void AddPoint(Point* point); + + /** + * Triangulate - do this AFTER you've added the polyline, holes, and Steiner points + */ + void Triangulate(); + + /** + * Get CDT triangles + */ + std::vector<Triangle*> GetTriangles(); + + /** + * Get triangle map + */ + std::list<Triangle*> GetMap(); + + private: + + /** + * Internals + */ + + SweepContext* sweep_context_; + Sweep* sweep_; + +}; + +} + +#endif diff --git a/polygon/poly2tri/sweep/sweep.cc b/polygon/poly2tri/sweep/sweep.cc new file mode 100644 index 0000000..75e7adf --- /dev/null +++ b/polygon/poly2tri/sweep/sweep.cc @@ -0,0 +1,817 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +#include <stdexcept> +#include "sweep.h" +#include "sweep_context.h" +#include "advancing_front.h" +#include "../common/utils.h" + +namespace p2t { + +// Triangulate simple polygon with holes +void Sweep::Triangulate(SweepContext& tcx) +{ + tcx.InitTriangulation(); + tcx.CreateAdvancingFront(nodes_); + // Sweep points; build mesh + SweepPoints(tcx); + // Clean up + FinalizationPolygon(tcx); +} + +void Sweep::SweepPoints(SweepContext& tcx) +{ + for (int i = 1; i < tcx.point_count(); i++) { + Point& point = *tcx.GetPoint(i); + Node* node = &PointEvent(tcx, point); + for (unsigned int i = 0; i < point.edge_list.size(); i++) { + EdgeEvent(tcx, point.edge_list[i], node); + } + } +} + +void Sweep::FinalizationPolygon(SweepContext& tcx) +{ + // Get an Internal triangle to start with + Triangle* t = tcx.front()->head()->next->triangle; + Point* p = tcx.front()->head()->next->point; + while (!t->GetConstrainedEdgeCW(*p)) { + t = t->NeighborCCW(*p); + } + + // Collect interior triangles constrained by edges + tcx.MeshClean(*t); +} + +Node& Sweep::PointEvent(SweepContext& tcx, Point& point) +{ + Node& node = tcx.LocateNode(point); + Node& new_node = NewFrontTriangle(tcx, point, node); + + // Only need to check +epsilon since point never have smaller + // x value than node due to how we fetch nodes from the front + if (point.x <= node.point->x + EPSILON) { + Fill(tcx, node); + } + + //tcx.AddNode(new_node); + + FillAdvancingFront(tcx, new_node); + return new_node; +} + +void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node* node) +{ + tcx.edge_event.constrained_edge = edge; + tcx.edge_event.right = (edge->p->x > edge->q->x); + + if (IsEdgeSideOfTriangle(*node->triangle, *edge->p, *edge->q)) { + return; + } + + // For now we will do all needed filling + // TODO: integrate with flip process might give some better performance + // but for now this avoid the issue with cases that needs both flips and fills + FillEdgeEvent(tcx, edge, node); + EdgeEvent(tcx, *edge->p, *edge->q, node->triangle, *edge->q); +} + +void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point) +{ + if (IsEdgeSideOfTriangle(*triangle, ep, eq)) { + return; + } + + Point* p1 = triangle->PointCCW(point); + Orientation o1 = Orient2d(eq, *p1, ep); + if (o1 == COLLINEAR) { + if( triangle->Contains(&eq, p1)) { + triangle->MarkConstrainedEdge(&eq, p1 ); + // We are modifying the constraint maybe it would be better to + // not change the given constraint and just keep a variable for the new constraint + tcx.edge_event.constrained_edge->q = p1; + triangle = &triangle->NeighborAcross(point); + EdgeEvent( tcx, ep, *p1, triangle, *p1 ); + } else { + std::runtime_error("EdgeEvent - collinear points not supported"); + assert(0); + } + return; + } + + Point* p2 = triangle->PointCW(point); + Orientation o2 = Orient2d(eq, *p2, ep); + if (o2 == COLLINEAR) { + if( triangle->Contains(&eq, p2)) { + triangle->MarkConstrainedEdge(&eq, p2 ); + // We are modifying the constraint maybe it would be better to + // not change the given constraint and just keep a variable for the new constraint + tcx.edge_event.constrained_edge->q = p2; + triangle = &triangle->NeighborAcross(point); + EdgeEvent( tcx, ep, *p2, triangle, *p2 ); + } else { + std::runtime_error("EdgeEvent - collinear points not supported"); + assert(0); + } + return; + } + + if (o1 == o2) { + // Need to decide if we are rotating CW or CCW to get to a triangle + // that will cross edge + if (o1 == CW) { + triangle = triangle->NeighborCCW(point); + } else{ + triangle = triangle->NeighborCW(point); + } + EdgeEvent(tcx, ep, eq, triangle, point); + } else { + // This triangle crosses constraint so lets flippin start! + FlipEdgeEvent(tcx, ep, eq, triangle, point); + } +} + +bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq) +{ + int index = triangle.EdgeIndex(&ep, &eq); + + if (index != -1) { + triangle.MarkConstrainedEdge(index); + Triangle* t = triangle.GetNeighbor(index); + if (t) { + t->MarkConstrainedEdge(&ep, &eq); + } + return true; + } + return false; +} + +Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node) +{ + Triangle* triangle = new Triangle(point, *node.point, *node.next->point); + + triangle->MarkNeighbor(*node.triangle); + tcx.AddToMap(triangle); + + Node* new_node = new Node(point); + nodes_.push_back(new_node); + + new_node->next = node.next; + new_node->prev = &node; + node.next->prev = new_node; + node.next = new_node; + + if (!Legalize(tcx, *triangle)) { + tcx.MapTriangleToNodes(*triangle); + } + + return *new_node; +} + +void Sweep::Fill(SweepContext& tcx, Node& node) +{ + Triangle* triangle = new Triangle(*node.prev->point, *node.point, *node.next->point); + + // TODO: should copy the constrained_edge value from neighbor triangles + // for now constrained_edge values are copied during the legalize + triangle->MarkNeighbor(*node.prev->triangle); + triangle->MarkNeighbor(*node.triangle); + + tcx.AddToMap(triangle); + + // Update the advancing front + node.prev->next = node.next; + node.next->prev = node.prev; + + // If it was legalized the triangle has already been mapped + if (!Legalize(tcx, *triangle)) { + tcx.MapTriangleToNodes(*triangle); + } + +} + +void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n) +{ + + // Fill right holes + Node* node = n.next; + + while (node->next) { + // if HoleAngle exceeds 90 degrees then break. + if (LargeHole_DontFill(node)) break; + Fill(tcx, *node); + node = node->next; + } + + // Fill left holes + node = n.prev; + + while (node->prev) { + // if HoleAngle exceeds 90 degrees then break. + if (LargeHole_DontFill(node)) break; + Fill(tcx, *node); + node = node->prev; + } + + // Fill right basins + if (n.next && n.next->next) { + double angle = BasinAngle(n); + if (angle < PI_3div4) { + FillBasin(tcx, n); + } + } +} + +// True if HoleAngle exceeds 90 degrees. +bool Sweep::LargeHole_DontFill(Node* node) { + + Node* nextNode = node->next; + Node* prevNode = node->prev; + if (!AngleExceeds90Degrees(node->point, nextNode->point, prevNode->point)) + return false; + + // Check additional points on front. + Node* next2Node = nextNode->next; + // "..Plus.." because only want angles on same side as point being added. + if ((next2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, next2Node->point, prevNode->point)) + return false; + + Node* prev2Node = prevNode->prev; + // "..Plus.." because only want angles on same side as point being added. + if ((prev2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, nextNode->point, prev2Node->point)) + return false; + + return true; +} + +bool Sweep::AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb) { + double angle = Angle(*origin, *pa, *pb); + bool exceeds90Degrees = ((angle > PI_div2) || (angle < -PI_div2)); + return exceeds90Degrees; +} + +bool Sweep::AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb) { + double angle = Angle(*origin, *pa, *pb); + bool exceedsPlus90DegreesOrIsNegative = (angle > PI_div2) || (angle < 0); + return exceedsPlus90DegreesOrIsNegative; +} + +double Sweep::Angle(Point& origin, Point& pa, Point& pb) { + /* Complex plane + * ab = cosA +i*sinA + * ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx) + * atan2(y,x) computes the principal value of the argument function + * applied to the complex number x+iy + * Where x = ax*bx + ay*by + * y = ax*by - ay*bx + */ + double px = origin.x; + double py = origin.y; + double ax = pa.x- px; + double ay = pa.y - py; + double bx = pb.x - px; + double by = pb.y - py; + double x = ax * by - ay * bx; + double y = ax * bx + ay * by; + double angle = atan2(x, y); + return angle; +} + +double Sweep::BasinAngle(Node& node) +{ + double ax = node.point->x - node.next->next->point->x; + double ay = node.point->y - node.next->next->point->y; + return atan2(ay, ax); +} + +double Sweep::HoleAngle(Node& node) +{ + /* Complex plane + * ab = cosA +i*sinA + * ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx) + * atan2(y,x) computes the principal value of the argument function + * applied to the complex number x+iy + * Where x = ax*bx + ay*by + * y = ax*by - ay*bx + */ + double ax = node.next->point->x - node.point->x; + double ay = node.next->point->y - node.point->y; + double bx = node.prev->point->x - node.point->x; + double by = node.prev->point->y - node.point->y; + return atan2(ax * by - ay * bx, ax * bx + ay * by); +} + +bool Sweep::Legalize(SweepContext& tcx, Triangle& t) +{ + // To legalize a triangle we start by finding if any of the three edges + // violate the Delaunay condition + for (int i = 0; i < 3; i++) { + if (t.delaunay_edge[i]) + continue; + + Triangle* ot = t.GetNeighbor(i); + + if (ot) { + Point* p = t.GetPoint(i); + Point* op = ot->OppositePoint(t, *p); + int oi = ot->Index(op); + + // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization) + // then we should not try to legalize + if (ot->constrained_edge[oi] || ot->delaunay_edge[oi]) { + t.constrained_edge[i] = ot->constrained_edge[oi]; + continue; + } + + bool inside = Incircle(*p, *t.PointCCW(*p), *t.PointCW(*p), *op); + + if (inside) { + // Lets mark this shared edge as Delaunay + t.delaunay_edge[i] = true; + ot->delaunay_edge[oi] = true; + + // Lets rotate shared edge one vertex CW to legalize it + RotateTrianglePair(t, *p, *ot, *op); + + // We now got one valid Delaunay Edge shared by two triangles + // This gives us 4 new edges to check for Delaunay + + // Make sure that triangle to node mapping is done only one time for a specific triangle + bool not_legalized = !Legalize(tcx, t); + if (not_legalized) { + tcx.MapTriangleToNodes(t); + } + + not_legalized = !Legalize(tcx, *ot); + if (not_legalized) + tcx.MapTriangleToNodes(*ot); + + // Reset the Delaunay edges, since they only are valid Delaunay edges + // until we add a new triangle or point. + // XXX: need to think about this. Can these edges be tried after we + // return to previous recursive level? + t.delaunay_edge[i] = false; + ot->delaunay_edge[oi] = false; + + // If triangle have been legalized no need to check the other edges since + // the recursive legalization will handles those so we can end here. + return true; + } + } + } + return false; +} + +bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) +{ + double adx = pa.x - pd.x; + double ady = pa.y - pd.y; + double bdx = pb.x - pd.x; + double bdy = pb.y - pd.y; + + double adxbdy = adx * bdy; + double bdxady = bdx * ady; + double oabd = adxbdy - bdxady; + + if (oabd <= 0) + return false; + + double cdx = pc.x - pd.x; + double cdy = pc.y - pd.y; + + double cdxady = cdx * ady; + double adxcdy = adx * cdy; + double ocad = cdxady - adxcdy; + + if (ocad <= 0) + return false; + + double bdxcdy = bdx * cdy; + double cdxbdy = cdx * bdy; + + double alift = adx * adx + ady * ady; + double blift = bdx * bdx + bdy * bdy; + double clift = cdx * cdx + cdy * cdy; + + double det = alift * (bdxcdy - cdxbdy) + blift * ocad + clift * oabd; + + return det > 0; +} + +void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op) +{ + Triangle* n1, *n2, *n3, *n4; + n1 = t.NeighborCCW(p); + n2 = t.NeighborCW(p); + n3 = ot.NeighborCCW(op); + n4 = ot.NeighborCW(op); + + bool ce1, ce2, ce3, ce4; + ce1 = t.GetConstrainedEdgeCCW(p); + ce2 = t.GetConstrainedEdgeCW(p); + ce3 = ot.GetConstrainedEdgeCCW(op); + ce4 = ot.GetConstrainedEdgeCW(op); + + bool de1, de2, de3, de4; + de1 = t.GetDelunayEdgeCCW(p); + de2 = t.GetDelunayEdgeCW(p); + de3 = ot.GetDelunayEdgeCCW(op); + de4 = ot.GetDelunayEdgeCW(op); + + t.Legalize(p, op); + ot.Legalize(op, p); + + // Remap delaunay_edge + ot.SetDelunayEdgeCCW(p, de1); + t.SetDelunayEdgeCW(p, de2); + t.SetDelunayEdgeCCW(op, de3); + ot.SetDelunayEdgeCW(op, de4); + + // Remap constrained_edge + ot.SetConstrainedEdgeCCW(p, ce1); + t.SetConstrainedEdgeCW(p, ce2); + t.SetConstrainedEdgeCCW(op, ce3); + ot.SetConstrainedEdgeCW(op, ce4); + + // Remap neighbors + // XXX: might optimize the markNeighbor by keeping track of + // what side should be assigned to what neighbor after the + // rotation. Now mark neighbor does lots of testing to find + // the right side. + t.ClearNeighbors(); + ot.ClearNeighbors(); + if (n1) ot.MarkNeighbor(*n1); + if (n2) t.MarkNeighbor(*n2); + if (n3) t.MarkNeighbor(*n3); + if (n4) ot.MarkNeighbor(*n4); + t.MarkNeighbor(ot); +} + +void Sweep::FillBasin(SweepContext& tcx, Node& node) +{ + if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) { + tcx.basin.left_node = node.next->next; + } else { + tcx.basin.left_node = node.next; + } + + // Find the bottom and right node + tcx.basin.bottom_node = tcx.basin.left_node; + while (tcx.basin.bottom_node->next + && tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y) { + tcx.basin.bottom_node = tcx.basin.bottom_node->next; + } + if (tcx.basin.bottom_node == tcx.basin.left_node) { + // No valid basin + return; + } + + tcx.basin.right_node = tcx.basin.bottom_node; + while (tcx.basin.right_node->next + && tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y) { + tcx.basin.right_node = tcx.basin.right_node->next; + } + if (tcx.basin.right_node == tcx.basin.bottom_node) { + // No valid basins + return; + } + + tcx.basin.width = tcx.basin.right_node->point->x - tcx.basin.left_node->point->x; + tcx.basin.left_highest = tcx.basin.left_node->point->y > tcx.basin.right_node->point->y; + + FillBasinReq(tcx, tcx.basin.bottom_node); +} + +void Sweep::FillBasinReq(SweepContext& tcx, Node* node) +{ + // if shallow stop filling + if (IsShallow(tcx, *node)) { + return; + } + + Fill(tcx, *node); + + if (node->prev == tcx.basin.left_node && node->next == tcx.basin.right_node) { + return; + } else if (node->prev == tcx.basin.left_node) { + Orientation o = Orient2d(*node->point, *node->next->point, *node->next->next->point); + if (o == CW) { + return; + } + node = node->next; + } else if (node->next == tcx.basin.right_node) { + Orientation o = Orient2d(*node->point, *node->prev->point, *node->prev->prev->point); + if (o == CCW) { + return; + } + node = node->prev; + } else { + // Continue with the neighbor node with lowest Y value + if (node->prev->point->y < node->next->point->y) { + node = node->prev; + } else { + node = node->next; + } + } + + FillBasinReq(tcx, node); +} + +bool Sweep::IsShallow(SweepContext& tcx, Node& node) +{ + double height; + + if (tcx.basin.left_highest) { + height = tcx.basin.left_node->point->y - node.point->y; + } else { + height = tcx.basin.right_node->point->y - node.point->y; + } + + // if shallow stop filling + if (tcx.basin.width > height) { + return true; + } + return false; +} + +void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node) +{ + if (tcx.edge_event.right) { + FillRightAboveEdgeEvent(tcx, edge, node); + } else { + FillLeftAboveEdgeEvent(tcx, edge, node); + } +} + +void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node) +{ + while (node->next->point->x < edge->p->x) { + // Check if next node is below the edge + if (Orient2d(*edge->q, *node->next->point, *edge->p) == CCW) { + FillRightBelowEdgeEvent(tcx, edge, *node); + } else { + node = node->next; + } + } +} + +void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) +{ + if (node.point->x < edge->p->x) { + if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) { + // Concave + FillRightConcaveEdgeEvent(tcx, edge, node); + } else{ + // Convex + FillRightConvexEdgeEvent(tcx, edge, node); + // Retry this one + FillRightBelowEdgeEvent(tcx, edge, node); + } + } +} + +void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) +{ + Fill(tcx, *node.next); + if (node.next->point != edge->p) { + // Next above or below edge? + if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) { + // Below + if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) { + // Next is concave + FillRightConcaveEdgeEvent(tcx, edge, node); + } else { + // Next is convex + } + } + } + +} + +void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) +{ + // Next concave or convex? + if (Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point) == CCW) { + // Concave + FillRightConcaveEdgeEvent(tcx, edge, *node.next); + } else{ + // Convex + // Next above or below edge? + if (Orient2d(*edge->q, *node.next->next->point, *edge->p) == CCW) { + // Below + FillRightConvexEdgeEvent(tcx, edge, *node.next); + } else{ + // Above + } + } +} + +void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node) +{ + while (node->prev->point->x > edge->p->x) { + // Check if next node is below the edge + if (Orient2d(*edge->q, *node->prev->point, *edge->p) == CW) { + FillLeftBelowEdgeEvent(tcx, edge, *node); + } else { + node = node->prev; + } + } +} + +void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) +{ + if (node.point->x > edge->p->x) { + if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) { + // Concave + FillLeftConcaveEdgeEvent(tcx, edge, node); + } else { + // Convex + FillLeftConvexEdgeEvent(tcx, edge, node); + // Retry this one + FillLeftBelowEdgeEvent(tcx, edge, node); + } + } +} + +void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) +{ + // Next concave or convex? + if (Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) { + // Concave + FillLeftConcaveEdgeEvent(tcx, edge, *node.prev); + } else{ + // Convex + // Next above or below edge? + if (Orient2d(*edge->q, *node.prev->prev->point, *edge->p) == CW) { + // Below + FillLeftConvexEdgeEvent(tcx, edge, *node.prev); + } else{ + // Above + } + } +} + +void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) +{ + Fill(tcx, *node.prev); + if (node.prev->point != edge->p) { + // Next above or below edge? + if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) { + // Below + if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) { + // Next is concave + FillLeftConcaveEdgeEvent(tcx, edge, node); + } else{ + // Next is convex + } + } + } + +} + +void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p) +{ + Triangle& ot = t->NeighborAcross(p); + Point& op = *ot.OppositePoint(*t, p); + + if (&ot == NULL) { + // If we want to integrate the fillEdgeEvent do it here + // With current implementation we should never get here + //throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle"); + assert(0); + } + + if (InScanArea(p, *t->PointCCW(p), *t->PointCW(p), op)) { + // Lets rotate shared edge one vertex CW + RotateTrianglePair(*t, p, ot, op); + tcx.MapTriangleToNodes(*t); + tcx.MapTriangleToNodes(ot); + + if (p == eq && op == ep) { + if (eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p) { + t->MarkConstrainedEdge(&ep, &eq); + ot.MarkConstrainedEdge(&ep, &eq); + Legalize(tcx, *t); + Legalize(tcx, ot); + } else { + // XXX: I think one of the triangles should be legalized here? + } + } else { + Orientation o = Orient2d(eq, op, ep); + t = &NextFlipTriangle(tcx, (int)o, *t, ot, p, op); + FlipEdgeEvent(tcx, ep, eq, t, p); + } + } else { + Point& newP = NextFlipPoint(ep, eq, ot, op); + FlipScanEdgeEvent(tcx, ep, eq, *t, ot, newP); + EdgeEvent(tcx, ep, eq, t, p); + } +} + +Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op) +{ + if (o == CCW) { + // ot is not crossing edge after flip + int edge_index = ot.EdgeIndex(&p, &op); + ot.delaunay_edge[edge_index] = true; + Legalize(tcx, ot); + ot.ClearDelunayEdges(); + return t; + } + + // t is not crossing edge after flip + int edge_index = t.EdgeIndex(&p, &op); + + t.delaunay_edge[edge_index] = true; + Legalize(tcx, t); + t.ClearDelunayEdges(); + return ot; +} + +Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op) +{ + Orientation o2d = Orient2d(eq, op, ep); + if (o2d == CW) { + // Right + return *ot.PointCCW(op); + } else if (o2d == CCW) { + // Left + return *ot.PointCW(op); + } + + //throw new RuntimeException("[Unsupported] Opposing point on constrained edge"); + assert(0); + + // Never executed, due tu assert( 0 ). Just to avoid compil warning + return ep; +} + +void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, + Triangle& t, Point& p) +{ + Triangle& ot = t.NeighborAcross(p); + Point& op = *ot.OppositePoint(t, p); + + if (&t.NeighborAcross(p) == NULL) { + // If we want to integrate the fillEdgeEvent do it here + // With current implementation we should never get here + //throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle"); + assert(0); + } + + if (InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW(eq), op)) { + // flip with new edge op->eq + FlipEdgeEvent(tcx, eq, op, &ot, op); + // TODO: Actually I just figured out that it should be possible to + // improve this by getting the next ot and op before the the above + // flip and continue the flipScanEdgeEvent here + // set new ot and op here and loop back to inScanArea test + // also need to set a new flip_triangle first + // Turns out at first glance that this is somewhat complicated + // so it will have to wait. + } else{ + Point& newP = NextFlipPoint(ep, eq, ot, op); + FlipScanEdgeEvent(tcx, ep, eq, flip_triangle, ot, newP); + } +} + +Sweep::~Sweep() { + + // Clean up memory + for( unsigned i = 0; i < nodes_.size(); i++ ) + { + delete nodes_[i]; + } + +} + +} + diff --git a/polygon/poly2tri/sweep/sweep.h b/polygon/poly2tri/sweep/sweep.h new file mode 100644 index 0000000..07822d1 --- /dev/null +++ b/polygon/poly2tri/sweep/sweep.h @@ -0,0 +1,284 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +/** + * Sweep-line, Constrained Delauney Triangulation (CDT) See: Domiter, V. and + * Zalik, B.(2008)'Sweep-line algorithm for constrained Delaunay triangulation', + * International Journal of Geographical Information Science + * + * "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com + */ + +#ifndef SWEEP_H +#define SWEEP_H + +#include <vector> + +namespace p2t { + +class SweepContext; +struct Node; +struct Point; +struct Edge; +class Triangle; + +class Sweep +{ +public: + + /** + * Triangulate + * + * @param tcx + */ + void Triangulate(SweepContext& tcx); + + /** + * Destructor - clean up memory + */ + ~Sweep(); + +private: + + /** + * Start sweeping the Y-sorted point set from bottom to top + * + * @param tcx + */ + void SweepPoints(SweepContext& tcx); + + /** + * Find closes node to the left of the new point and + * create a new triangle. If needed new holes and basins + * will be filled to. + * + * @param tcx + * @param point + * @return + */ + Node& PointEvent(SweepContext& tcx, Point& point); + + /** + * + * + * @param tcx + * @param edge + * @param node + */ + void EdgeEvent(SweepContext& tcx, Edge* edge, Node* node); + + void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point); + + /** + * Creates a new front triangle and legalize it + * + * @param tcx + * @param point + * @param node + * @return + */ + Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node); + + /** + * Adds a triangle to the advancing front to fill a hole. + * @param tcx + * @param node - middle node, that is the bottom of the hole + */ + void Fill(SweepContext& tcx, Node& node); + + /** + * Returns true if triangle was legalized + */ + bool Legalize(SweepContext& tcx, Triangle& t); + + /** + * <b>Requirement</b>:<br> + * 1. a,b and c form a triangle.<br> + * 2. a and d is know to be on opposite side of bc<br> + * <pre> + * a + * + + * / \ + * / \ + * b/ \c + * +-------+ + * / d \ + * / \ + * </pre> + * <b>Fact</b>: d has to be in area B to have a chance to be inside the circle formed by + * a,b and c<br> + * d is outside B if orient2d(a,b,d) or orient2d(c,a,d) is CW<br> + * This preknowledge gives us a way to optimize the incircle test + * @param pa - triangle point, opposite d + * @param pb - triangle point + * @param pc - triangle point + * @param pd - point opposite a + * @return true if d is inside circle, false if on circle edge + */ + bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd); + + /** + * Rotates a triangle pair one vertex CW + *<pre> + * n2 n2 + * P +-----+ P +-----+ + * | t /| |\ t | + * | / | | \ | + * n1| / |n3 n1| \ |n3 + * | / | after CW | \ | + * |/ oT | | oT \| + * +-----+ oP +-----+ + * n4 n4 + * </pre> + */ + void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op); + + /** + * Fills holes in the Advancing Front + * + * + * @param tcx + * @param n + */ + void FillAdvancingFront(SweepContext& tcx, Node& n); + + // Decision-making about when to Fill hole. + // Contributed by ToolmakerSteve2 + bool LargeHole_DontFill(Node* node); + bool AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb); + bool AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb); + double Angle(Point& origin, Point& pa, Point& pb); + + /** + * + * @param node - middle node + * @return the angle between 3 front nodes + */ + double HoleAngle(Node& node); + + /** + * The basin angle is decided against the horizontal line [1,0] + */ + double BasinAngle(Node& node); + + /** + * Fills a basin that has formed on the Advancing Front to the right + * of given node.<br> + * First we decide a left,bottom and right node that forms the + * boundaries of the basin. Then we do a reqursive fill. + * + * @param tcx + * @param node - starting node, this or next node will be left node + */ + void FillBasin(SweepContext& tcx, Node& node); + + /** + * Recursive algorithm to fill a Basin with triangles + * + * @param tcx + * @param node - bottom_node + */ + void FillBasinReq(SweepContext& tcx, Node* node); + + bool IsShallow(SweepContext& tcx, Node& node); + + bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq); + + void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node); + + void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node); + + void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); + + void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); + + void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); + + void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node); + + void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); + + void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); + + void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); + + void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p); + + /** + * After a flip we have two triangles and know that only one will still be + * intersecting the edge. So decide which to contiune with and legalize the other + * + * @param tcx + * @param o - should be the result of an orient2d( eq, op, ep ) + * @param t - triangle 1 + * @param ot - triangle 2 + * @param p - a point shared by both triangles + * @param op - another point shared by both triangles + * @return returns the triangle still intersecting the edge + */ + Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op); + + /** + * When we need to traverse from one triangle to the next we need + * the point in current triangle that is the opposite point to the next + * triangle. + * + * @param ep + * @param eq + * @param ot + * @param op + * @return + */ + Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op); + + /** + * Scan part of the FlipScan algorithm<br> + * When a triangle pair isn't flippable we will scan for the next + * point that is inside the flip triangle scan area. When found + * we generate a new flipEdgeEvent + * + * @param tcx + * @param ep - last point on the edge we are traversing + * @param eq - first point on the edge we are traversing + * @param flipTriangle - the current triangle sharing the point eq with edge + * @param t + * @param p + */ + void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p); + + void FinalizationPolygon(SweepContext& tcx); + + std::vector<Node*> nodes_; + +}; + +} + +#endif diff --git a/polygon/poly2tri/sweep/sweep_context.cc b/polygon/poly2tri/sweep/sweep_context.cc new file mode 100644 index 0000000..6c0b044 --- /dev/null +++ b/polygon/poly2tri/sweep/sweep_context.cc @@ -0,0 +1,216 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +#include "sweep_context.h" +#include <algorithm> +#include "advancing_front.h" + +namespace p2t { + +SweepContext::SweepContext(std::vector<Point*> polyline) : + front_(0), + head_(0), + tail_(0), + af_head_(0), + af_middle_(0), + af_tail_(0) +{ + basin = Basin(); + edge_event = EdgeEvent(); + + points_ = polyline; + + InitEdges(points_); +} + +void SweepContext::AddHole(std::vector<Point*> polyline) +{ + InitEdges(polyline); + for(unsigned int i = 0; i < polyline.size(); i++) { + points_.push_back(polyline[i]); + } +} + +void SweepContext::AddPoint(Point* point) { + points_.push_back(point); +} + +std::vector<Triangle*> SweepContext::GetTriangles() +{ + return triangles_; +} + +std::list<Triangle*> SweepContext::GetMap() +{ + return map_; +} + +void SweepContext::InitTriangulation() +{ + double xmax(points_[0]->x), xmin(points_[0]->x); + double ymax(points_[0]->y), ymin(points_[0]->y); + + // Calculate bounds. + for (unsigned int i = 0; i < points_.size(); i++) { + Point& p = *points_[i]; + if (p.x > xmax) + xmax = p.x; + if (p.x < xmin) + xmin = p.x; + if (p.y > ymax) + ymax = p.y; + if (p.y < ymin) + ymin = p.y; + } + + double dx = kAlpha * (xmax - xmin); + double dy = kAlpha * (ymax - ymin); + head_ = new Point(xmax + dx, ymin - dy); + tail_ = new Point(xmin - dx, ymin - dy); + + // Sort points along y-axis + std::sort(points_.begin(), points_.end(), cmp); + +} + +void SweepContext::InitEdges(std::vector<Point*> polyline) +{ + int num_points = polyline.size(); + for (int i = 0; i < num_points; i++) { + int j = i < num_points - 1 ? i + 1 : 0; + edge_list.push_back(new Edge(*polyline[i], *polyline[j])); + } +} + +Point* SweepContext::GetPoint(const int& index) +{ + return points_[index]; +} + +void SweepContext::AddToMap(Triangle* triangle) +{ + map_.push_back(triangle); +} + +Node& SweepContext::LocateNode(Point& point) +{ + // TODO implement search tree + return *front_->LocateNode(point.x); +} + +void SweepContext::CreateAdvancingFront(std::vector<Node*> nodes) +{ + + (void) nodes; + // Initial triangle + Triangle* triangle = new Triangle(*points_[0], *tail_, *head_); + + map_.push_back(triangle); + + af_head_ = new Node(*triangle->GetPoint(1), *triangle); + af_middle_ = new Node(*triangle->GetPoint(0), *triangle); + af_tail_ = new Node(*triangle->GetPoint(2)); + front_ = new AdvancingFront(*af_head_, *af_tail_); + + // TODO: More intuitive if head is middles next and not previous? + // so swap head and tail + af_head_->next = af_middle_; + af_middle_->next = af_tail_; + af_middle_->prev = af_head_; + af_tail_->prev = af_middle_; +} + +void SweepContext::RemoveNode(Node* node) +{ + delete node; +} + +void SweepContext::MapTriangleToNodes(Triangle& t) +{ + for (int i = 0; i < 3; i++) { + if (!t.GetNeighbor(i)) { + Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i))); + if (n) + n->triangle = &t; + } + } +} + +void SweepContext::RemoveFromMap(Triangle* triangle) +{ + map_.remove(triangle); +} + +void SweepContext::MeshClean(Triangle& triangle) +{ + std::vector<Triangle *> triangles; + triangles.push_back(&triangle); + + while(!triangles.empty()){ + Triangle *t = triangles.back(); + triangles.pop_back(); + + if (t != NULL && !t->IsInterior()) { + t->IsInterior(true); + triangles_.push_back(t); + for (int i = 0; i < 3; i++) { + if (!t->constrained_edge[i]) + triangles.push_back(t->GetNeighbor(i)); + } + } + } +} + +SweepContext::~SweepContext() +{ + + // Clean up memory + + delete head_; + delete tail_; + delete front_; + delete af_head_; + delete af_middle_; + delete af_tail_; + + typedef std::list<Triangle*> type_list; + + for(type_list::iterator iter = map_.begin(); iter != map_.end(); ++iter) { + Triangle* ptr = *iter; + delete ptr; + } + + for(unsigned int i = 0; i < edge_list.size(); i++) { + delete edge_list[i]; + } + +} + +} diff --git a/polygon/poly2tri/sweep/sweep_context.h b/polygon/poly2tri/sweep/sweep_context.h new file mode 100644 index 0000000..1010c0e --- /dev/null +++ b/polygon/poly2tri/sweep/sweep_context.h @@ -0,0 +1,186 @@ +/* + * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors + * http://code.google.com/p/poly2tri/ + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * * Neither the name of Poly2Tri nor the names of its contributors may be + * used to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef SWEEP_CONTEXT_H +#define SWEEP_CONTEXT_H + +#include <list> +#include <vector> +#include <cstddef> + +namespace p2t { + +// Inital triangle factor, seed triangle will extend 30% of +// PointSet width to both left and right. +const double kAlpha = 0.3; + +struct Point; +class Triangle; +struct Node; +struct Edge; +class AdvancingFront; + +class SweepContext { +public: + +/// Constructor +SweepContext(std::vector<Point*> polyline); +/// Destructor +~SweepContext(); + +void set_head(Point* p1); + +Point* head(); + +void set_tail(Point* p1); + +Point* tail(); + +int point_count(); + +Node& LocateNode(Point& point); + +void RemoveNode(Node* node); + +void CreateAdvancingFront(std::vector<Node*> nodes); + +/// Try to map a node to all sides of this triangle that don't have a neighbor +void MapTriangleToNodes(Triangle& t); + +void AddToMap(Triangle* triangle); + +Point* GetPoint(const int& index); + +Point* GetPoints(); + +void RemoveFromMap(Triangle* triangle); + +void AddHole(std::vector<Point*> polyline); + +void AddPoint(Point* point); + +AdvancingFront* front(); + +void MeshClean(Triangle& triangle); + +std::vector<Triangle*> GetTriangles(); +std::list<Triangle*> GetMap(); + +std::vector<Edge*> edge_list; + +struct Basin { + Node* left_node; + Node* bottom_node; + Node* right_node; + double width; + bool left_highest; + + Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL), width(0.0), left_highest(false) + { + } + + void Clear() + { + left_node = NULL; + bottom_node = NULL; + right_node = NULL; + width = 0.0; + left_highest = false; + } +}; + +struct EdgeEvent { + Edge* constrained_edge; + bool right; + + EdgeEvent() : constrained_edge(NULL), right(false) + { + } +}; + +Basin basin; +EdgeEvent edge_event; + +private: + +friend class Sweep; + +std::vector<Triangle*> triangles_; +std::list<Triangle*> map_; +std::vector<Point*> points_; + +// Advancing front +AdvancingFront* front_; +// head point used with advancing front +Point* head_; +// tail point used with advancing front +Point* tail_; + +Node *af_head_, *af_middle_, *af_tail_; + +void InitTriangulation(); +void InitEdges(std::vector<Point*> polyline); + +}; + +inline AdvancingFront* SweepContext::front() +{ + return front_; +} + +inline int SweepContext::point_count() +{ + return points_.size(); +} + +inline void SweepContext::set_head(Point* p1) +{ + head_ = p1; +} + +inline Point* SweepContext::head() +{ + return head_; +} + +inline void SweepContext::set_tail(Point* p1) +{ + tail_ = p1; +} + +inline Point* SweepContext::tail() +{ + return tail_; +} + +} + +#endif diff --git a/polygon/polygon_test_point_inside.cpp b/polygon/polygon_test_point_inside.cpp new file mode 100644 index 0000000..df2a34b --- /dev/null +++ b/polygon/polygon_test_point_inside.cpp @@ -0,0 +1,171 @@ +/* + * This program source code file is part of KiCad, a free EDA CAD application. + * + * Copyright (C) 2007-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr + * Copyright (C) 2007-2014 KiCad Developers, see CHANGELOG.TXT for contributors. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, you may find one here: + * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * or you may search the http://www.gnu.org website for the version 2 license, + * or you may write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA + */ + +/** + * @file polygon_test_point_inside.cpp + */ + +#include <cmath> +#include <vector> +#include <PolyLine.h> + +/* this algo uses the the Jordan curve theorem to find if a point is inside or outside a polygon: + * It run a semi-infinite line horizontally (increasing x, fixed y) + * out from the test point, and count how many edges it crosses. + * At each crossing, the ray switches between inside and outside. + * If odd count, the test point is inside the polygon + * This is called the Jordan curve theorem, or sometimes referred to as the "even-odd" test. + * Take care to starting and ending points of segments outlines, when the horizontal line crosses a segment outline + * exactly on an ending point: + * Because the starting point of a segment is also the ending point of the previous, only one must be used. + * And we do no use twice the same segment, so we do NOT use both starting and ending points of these 2 segments. + * So we must use only one ending point of each segment when calculating intersections + * but it cannot be always the starting or the ending point. This depend on relative position of 2 consectutive segments + * Here, the ending point above the Y reference position is used + * and the ending point below or equal the Y reference position is NOT used + * Obviously, others cases are irrelevant because there is not intersection. + */ + +#define OUTSIDE false +#define INSIDE true + +bool TestPointInsidePolygon( const CPOLYGONS_LIST& aPolysList, + int aIdxstart, + int aIdxend, + int aRefx, + int aRefy) + +/** + * Function TestPointInsidePolygon + * test if a point is inside or outside a polygon. + * the polygon must have only lines (not arcs) for outlines. + * @param aPolysList: the list of polygons + * @param aIdxstart: the starting point of a given polygon in m_FilledPolysList. + * @param aIdxend: the ending point of this polygon in m_FilledPolysList. + * @param aRefx, aRefy: the point coordinate to test + * @return true if the point is inside, false for outside + */ +{ + // count intersection points to right of (refx,refy). If odd number, point (refx,refy) is inside polyline + int ics, ice; + int count = 0; + + // find all intersection points of line with polyline sides + for( ics = aIdxstart, ice = aIdxend; ics <= aIdxend; ice = ics++ ) + { + int seg_startX = aPolysList.GetX( ics ); + int seg_startY = aPolysList.GetY( ics ); + int seg_endX = aPolysList.GetX( ice ); + int seg_endY = aPolysList.GetY( ice ); + + /* Trivial cases: skip if ref above or below the segment to test */ + if( ( seg_startY > aRefy ) && (seg_endY > aRefy ) ) + continue; + + // segment below ref point, or one of its ends has the same Y pos as the ref point: skip + // So we eliminate one end point of 2 consecutive segments. + // Note: also we skip horizontal segments if ref point is on this horizontal line + // So reference points on horizontal segments outlines always are seen as outside the polygon + if( ( seg_startY <= aRefy ) && (seg_endY <= aRefy ) ) + continue; + + /* refy is between seg_startY and seg_endY. + * note: here: horizontal segments (seg_startY == seg_endY) are skipped, + * either by the first test or by the second test + * see if an horizontal semi infinite line from refx is intersecting the segment + */ + + // calculate the x position of the intersection of this segment and the semi infinite line + // this is more easier if we move the X,Y axis origin to the segment start point: + seg_endX -= seg_startX; + seg_endY -= seg_startY; + double newrefx = (double) (aRefx - seg_startX); + double newrefy = (double) (aRefy - seg_startY); + + // Now calculate the x intersection coordinate of the line from (0,0) to (seg_endX,seg_endY) + // with the horizontal line at the new refy position + // the line slope = seg_endY/seg_endX; + // and the x pos relative to the new origin is intersec_x = refy/slope + // Note: because horizontal segments are skipped, 1/slope exists (seg_endY never == O) + double intersec_x = (newrefy * seg_endX) / seg_endY; + if( newrefx < intersec_x ) // Intersection found with the semi-infinite line from refx to infinite + count++; + } + + return count & 1 ? INSIDE : OUTSIDE; +} + + +/* Function TestPointInsidePolygon (overlaid) + * same as previous, but use wxPoint and aCount corners + */ +bool TestPointInsidePolygon( const wxPoint *aPolysList, int aCount, const wxPoint &aRefPoint ) +{ + // count intersection points to right of (refx,refy). If odd number, point (refx,refy) is inside polyline + int ics, ice; + int count = 0; + // find all intersection points of line with polyline sides + for( ics = 0, ice = aCount-1; ics < aCount; ice = ics++ ) + { + int seg_startX = aPolysList[ics].x; + int seg_startY = aPolysList[ics].y; + int seg_endX = aPolysList[ice].x; + int seg_endY = aPolysList[ice].y; + + /* Trivial cases: skip if ref above or below the segment to test */ + if( ( seg_startY > aRefPoint.y ) && (seg_endY > aRefPoint.y ) ) + continue; + + // segment below ref point, or one of its ends has the same Y pos as the ref point: skip + // So we eliminate one end point of 2 consecutive segments. + // Note: also we skip horizontal segments if ref point is on this horizontal line + // So reference points on horizontal segments outlines always are seen as outside the polygon + if( ( seg_startY <= aRefPoint.y ) && (seg_endY <= aRefPoint.y ) ) + continue; + + /* refy is between seg_startY and seg_endY. + * note: here: horizontal segments (seg_startY == seg_endY) are skipped, + * either by the first test or by the second test + * see if an horizontal semi infinite line from refx is intersecting the segment + */ + + // calculate the x position of the intersection of this segment and the semi infinite line + // this is more easier if we move the X,Y axis origin to the segment start point: + seg_endX -= seg_startX; + seg_endY -= seg_startY; + double newrefx = (double) (aRefPoint.x - seg_startX); + double newrefy = (double) (aRefPoint.y - seg_startY); + + // Now calculate the x intersection coordinate of the line from (0,0) to (seg_endX,seg_endY) + // with the horizontal line at the new refy position + // the line slope = seg_endY/seg_endX; + // and the x pos relative to the new origin is intersec_x = refy/slope + // Note: because horizontal segments are skipped, 1/slope exists (seg_endY never == O) + double intersec_x = (newrefy * seg_endX) / seg_endY; + if( newrefx < intersec_x ) // Intersection found with the semi-infinite line from refx to infinite + count++; + } + + return count & 1 ? INSIDE : OUTSIDE; +} diff --git a/polygon/polygon_test_point_inside.h b/polygon/polygon_test_point_inside.h new file mode 100644 index 0000000..833eba8 --- /dev/null +++ b/polygon/polygon_test_point_inside.h @@ -0,0 +1,59 @@ +/* + * This program source code file is part of KiCad, a free EDA CAD application. + * + * Copyright (C) 2007-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr + * Copyright (C) 2007-2014 KiCad Developers, see CHANGELOG.TXT for contributors. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, you may find one here: + * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * or you may search the http://www.gnu.org website for the version 2 license, + * or you may write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA + */ + +#ifndef __WXWINDOWS__ +// define here wxPoint if we want to compile outside wxWidgets +class wxPoint +{ +public: + int x, y; +}; +#endif +class CPOLYGONS_LIST; + +/** + * Function TestPointInsidePolygon + * test if a point is inside or outside a polygon. + * @param aPolysList: the list of polygons + * @param aIdxstart: the starting point of a given polygon in m_FilledPolysList. + * @param aIdxend: the ending point of the polygon in m_FilledPolysList. + * @param aRefx, aRefy: the point coordinate to test + * @return true if the point is inside, false for outside + */ +bool TestPointInsidePolygon( const CPOLYGONS_LIST& aPolysList, + int aIdxstart, + int aIdxend, + int aRefx, + int aRefy); +/** + * Function TestPointInsidePolygon (overlaid) + * same as previous, but mainly use wxPoint + * @param aPolysList: the list of polygons + * @param aCount: corners count in aPolysList. + * @param aRefPoint: the point coordinate to test + * @return true if the point is inside, false for outside + */ +bool TestPointInsidePolygon( const wxPoint* aPolysList, + int aCount, + const wxPoint &aRefPoint ); diff --git a/polygon/polygons_defs.h b/polygon/polygons_defs.h new file mode 100644 index 0000000..82bccfa --- /dev/null +++ b/polygon/polygons_defs.h @@ -0,0 +1,89 @@ +/* + * This program source code file is part of KiCad, a free EDA CAD application. + * + * Copyright (C) 2012-2014 Jean-Pierre Charras, jp.charras at wanadoo.fr + * Copyright (C) 2012-2014 KiCad Developers, see CHANGELOG.TXT for contributors. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, you may find one here: + * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * or you may search the http://www.gnu.org website for the version 2 license, + * or you may write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA + */ + +/* + * file polygons_defs.h + * definitions to use boost::polygon in KiCad. + */ + +#ifndef _POLYGONS_DEFS_H_ +#define _POLYGONS_DEFS_H_ + +#include <boost/polygon/polygon.hpp> + +// Define some types used here from boost::polygon +namespace bpl = boost::polygon; // bpl = boost polygon library +using namespace bpl::operators; // +, -, =, ... + +// Definitions needed by boost::polygon +typedef int coordinate_type; + +/** + * KI_POLYGON defines a single polygon ( boost::polygon_data type. + * When holes are created in a KPolygon, they are + * linked to main outline by overlapping segments, + * so there is always one polygon and one list of corners + * coordinates are int + */ +typedef bpl::polygon_data<int> KI_POLYGON; + +/** + * KI_POLYGON_SET defines a set of single KI_POLYGON. + * A KI_POLYGON_SET is used to store a set of polygons + * when performing operations between 2 polygons + * or 2 sets of polygons + * The result of operations like and, xor... between 2 polygons + * is always stored in a KI_POLYGON_SET, because these operations + * can create many polygons + */ +typedef std::vector<KI_POLYGON> KI_POLYGON_SET; + +/** + * KI_POLY_POINT defines a point for boost::polygon. + * KI_POLY_POINT store x and y coordinates (int) + */ +typedef bpl::point_data<int> KI_POLY_POINT; + +/** + * KI_POLYGON_WITH_HOLES defines a single polygon with holes + * When holes are created in a KI_POLYGON_WITH_HOLES, they are + * stored as separate single polygons, + * KI_POLYGON_WITH_HOLES store always one polygon for the external outline + * and one list of polygons (holes) which can be empty + */ +typedef bpl::polygon_with_holes_data<int> KI_POLYGON_WITH_HOLES; + +/** + * KI_POLYGON_WITH_HOLES_SET defines a set of KI_POLYGON_WITH_HOLES. + * A KI_POLYGON_WITH_HOLES_SET is used to store a set of polygons with holes + * when performing operations between 2 polygons + * or 2 sets of polygons with holes + * The result of operations like and, xor... between 2 polygons with holes + * is always stored in a KI_POLYGON_WITH_HOLES_SET, because these operations + * can create many separate polygons with holespolygons + */ +typedef std::vector<KI_POLYGON_WITH_HOLES> KI_POLYGON_WITH_HOLES_SET; + + +#endif // #ifndef _POLYGONS_DEFS_H_ |