summaryrefslogtreecommitdiff
path: root/pcbnew/drc_clearance_test_functions.cpp
diff options
context:
space:
mode:
authorsaurabhb172020-02-26 16:11:59 +0530
committerGitHub2020-02-26 16:11:59 +0530
commite255d0622297488c1c52755be670733418c994cf (patch)
tree1392c90227aeea231c1d86371131e04c40382918 /pcbnew/drc_clearance_test_functions.cpp
parent0db48f6533517ecebfd9f0693f89deca28408b76 (diff)
parentc38609295ad4b617aef472b9c575aee18710a50f (diff)
downloadKiCad-eSim-e255d0622297488c1c52755be670733418c994cf.tar.gz
KiCad-eSim-e255d0622297488c1c52755be670733418c994cf.tar.bz2
KiCad-eSim-e255d0622297488c1c52755be670733418c994cf.zip
Merge pull request #1 from saurabhb17/develop
Secondary files
Diffstat (limited to 'pcbnew/drc_clearance_test_functions.cpp')
-rw-r--r--pcbnew/drc_clearance_test_functions.cpp1191
1 files changed, 1191 insertions, 0 deletions
diff --git a/pcbnew/drc_clearance_test_functions.cpp b/pcbnew/drc_clearance_test_functions.cpp
new file mode 100644
index 0000000..39d1b9d
--- /dev/null
+++ b/pcbnew/drc_clearance_test_functions.cpp
@@ -0,0 +1,1191 @@
+/**
+ * @file drc_clearance_test_functions.cpp
+ */
+
+/*
+ * This program source code file is part of KiCad, a free EDA CAD application.
+ *
+ * Copyright (C) 2004-2015 Jean-Pierre Charras, jean-pierre.charras@gipsa-lab.inpg.fr
+ * Copyright (C) 2007 Dick Hollenbeck, dick@softplc.com
+ * Copyright (C) 2015 KiCad Developers, see change_log.txt for contributors.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, you may find one here:
+ * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
+ * or you may search the http://www.gnu.org website for the version 2 license,
+ * or you may write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
+ */
+
+/****************************/
+/* DRC control */
+/****************************/
+
+#include <fctsys.h>
+#include <wxPcbStruct.h>
+#include <trigo.h>
+
+#include <pcbnew.h>
+#include <drc_stuff.h>
+
+#include <class_board.h>
+#include <class_module.h>
+#include <class_track.h>
+#include <class_zone.h>
+#include <class_marker_pcb.h>
+#include <math_for_graphics.h>
+#include <polygon_test_point_inside.h>
+
+
+/* compare 2 trapezoids (can be rectangle) and return true if distance > aDist
+ * i.e if for each edge of the first polygon distance from each edge of the other polygon
+ * is >= aDist
+ */
+bool trapezoid2trapezoidDRC( wxPoint aTref[4], wxPoint aTcompare[4], int aDist )
+{
+ /* Test if one polygon is contained in the other and thus the polygon overlap.
+ * This case is not covered by the following check if one polygond is
+ * completely contained in the other (because edges don't intersect)!
+ */
+ if( TestPointInsidePolygon( aTref, 4, aTcompare[0] ) )
+ return false;
+
+ if( TestPointInsidePolygon( aTcompare, 4, aTref[0] ) )
+ return false;
+
+ int ii, jj, kk, ll;
+
+ for( ii = 0, jj = 3; ii<4; jj = ii, ii++ ) // for all edges in aTref
+ {
+ for( kk = 0, ll = 3; kk < 4; ll = kk, kk++ ) // for all edges in aTcompare
+ {
+ double d;
+ int intersect = TestForIntersectionOfStraightLineSegments( aTref[ii].x,
+ aTref[ii].y,
+ aTref[jj].x,
+ aTref[jj].y,
+ aTcompare[kk].x,
+ aTcompare[kk].y,
+ aTcompare[ll].x,
+ aTcompare[ll].y,
+ NULL, NULL, &d );
+ if( intersect || (d< aDist) )
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* compare a trapezoids (can be rectangle) and a segment and return true if distance > aDist
+ */
+bool trapezoid2segmentDRC( wxPoint aTref[4], wxPoint aSegStart, wxPoint aSegEnd, int aDist )
+{
+ /* Test if the segment is contained in the polygon.
+ * This case is not covered by the following check if the segment is
+ * completely contained in the polygon (because edges don't intersect)!
+ */
+ if( TestPointInsidePolygon( aTref, 4, aSegStart ) )
+ return false;
+
+ int ii, jj;
+
+ for( ii = 0, jj = 3; ii < 4; jj = ii, ii++ ) // for all edges in aTref
+ {
+ double d;
+ int intersect = TestForIntersectionOfStraightLineSegments( aTref[ii].x,
+ aTref[ii].y,
+ aTref[jj].x,
+ aTref[jj].y,
+ aSegStart.x,
+ aSegStart.y,
+ aSegEnd.x,
+ aSegEnd.y,
+ NULL, NULL, &d );
+ if( intersect || (d< aDist) )
+ return false;
+ }
+
+ return true;
+}
+
+
+/* compare a trapezoid to a point and return true if distance > aDist
+ * do not use this function for horizontal or vertical rectangles
+ * because there is a faster an easier way to compare the distance
+ */
+bool trapezoid2pointDRC( wxPoint aTref[4], wxPoint aPcompare, int aDist )
+{
+ /* Test if aPcompare point is contained in the polygon.
+ * This case is not covered by the following check if this point is inside the polygon
+ */
+ if( TestPointInsidePolygon( aTref, 4, aPcompare ) )
+ {
+ return false;
+ }
+
+ // Test distance between aPcompare and each segment of the polygon:
+ for( int ii = 0, jj = 3; ii < 4; jj = ii, ii++ ) // for all edge in polygon
+ {
+ if( TestSegmentHit( aTref[ii], aTref[jj], aPcompare, aDist ) )
+ return false;
+ }
+
+ return true;
+}
+
+
+bool DRC::doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool testPads )
+{
+ TRACK* track;
+ wxPoint delta; // lenght on X and Y axis of segments
+ LSET layerMask;
+ int net_code_ref;
+ wxPoint shape_pos;
+
+ NETCLASSPTR netclass = aRefSeg->GetNetClass();
+ BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings();
+
+ /* In order to make some calculations more easier or faster,
+ * pads and tracks coordinates will be made relative to the reference segment origin
+ */
+ wxPoint origin = aRefSeg->GetStart(); // origin will be the origin of other coordinates
+
+ m_segmEnd = delta = aRefSeg->GetEnd() - origin;
+ m_segmAngle = 0;
+
+ layerMask = aRefSeg->GetLayerSet();
+ net_code_ref = aRefSeg->GetNetCode();
+
+ // Phase 0 : Test vias
+ if( aRefSeg->Type() == PCB_VIA_T )
+ {
+ const VIA *refvia = static_cast<const VIA*>( aRefSeg );
+ // test if the via size is smaller than minimum
+ if( refvia->GetViaType() == VIA_MICROVIA )
+ {
+ if( refvia->GetWidth() < dsnSettings.m_MicroViasMinSize )
+ {
+ m_currentMarker = fillMarker( refvia, NULL,
+ DRCE_TOO_SMALL_MICROVIA, m_currentMarker );
+ return false;
+ }
+ }
+ else
+ {
+ if( refvia->GetWidth() < dsnSettings.m_ViasMinSize )
+ {
+ m_currentMarker = fillMarker( refvia, NULL,
+ DRCE_TOO_SMALL_VIA, m_currentMarker );
+ return false;
+ }
+ }
+
+ // test if via's hole is bigger than its diameter
+ // This test is necessary since the via hole size and width can be modified
+ // and a default via hole can be bigger than some vias sizes
+ if( refvia->GetDrillValue() > refvia->GetWidth() )
+ {
+ m_currentMarker = fillMarker( refvia, NULL,
+ DRCE_VIA_HOLE_BIGGER, m_currentMarker );
+ return false;
+ }
+
+ // For microvias: test if they are blind vias and only between 2 layers
+ // because they are used for very small drill size and are drill by laser
+ // and **only one layer** can be drilled
+ if( refvia->GetViaType() == VIA_MICROVIA )
+ {
+ LAYER_ID layer1, layer2;
+ bool err = true;
+
+ refvia->LayerPair( &layer1, &layer2 );
+
+ if( layer1 > layer2 )
+ std::swap( layer1, layer2 );
+
+ if( layer2 == B_Cu && layer1 == m_pcb->GetDesignSettings().GetCopperLayerCount() - 2 )
+ err = false;
+ else if( layer1 == F_Cu && layer2 == In1_Cu )
+ err = false;
+
+ if( err )
+ {
+ m_currentMarker = fillMarker( refvia, NULL,
+ DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR, m_currentMarker );
+ return false;
+ }
+ }
+ }
+ else // This is a track segment
+ {
+ if( aRefSeg->GetWidth() < dsnSettings.m_TrackMinWidth )
+ {
+ m_currentMarker = fillMarker( aRefSeg, NULL,
+ DRCE_TOO_SMALL_TRACK_WIDTH, m_currentMarker );
+ return false;
+ }
+ }
+
+ // for a non horizontal or vertical segment Compute the segment angle
+ // in tenths of degrees and its length
+ if( delta.x || delta.y )
+ {
+ // Compute the segment angle in 0,1 degrees
+ m_segmAngle = ArcTangente( delta.y, delta.x );
+
+ // Compute the segment length: we build an equivalent rotated segment,
+ // this segment is horizontal, therefore dx = length
+ RotatePoint( &delta, m_segmAngle ); // delta.x = length, delta.y = 0
+ }
+
+ m_segmLength = delta.x;
+
+ /******************************************/
+ /* Phase 1 : test DRC track to pads : */
+ /******************************************/
+
+ /* Use a dummy pad to test DRC tracks versus holes, for pads not on all copper layers
+ * but having a hole
+ * This dummy pad has the size and shape of the hole
+ * to test tracks to pad hole DRC, using checkClearanceSegmToPad test function.
+ * Therefore, this dummy pad is a circle or an oval.
+ * A pad must have a parent because some functions expect a non null parent
+ * to find the parent board, and some other data
+ */
+ MODULE dummymodule( m_pcb ); // Creates a dummy parent
+ D_PAD dummypad( &dummymodule );
+
+ dummypad.SetLayerSet( LSET::AllCuMask() ); // Ensure the hole is on all layers
+
+ // Compute the min distance to pads
+ if( testPads )
+ {
+ unsigned pad_count = m_pcb->GetPadCount();
+
+ for( unsigned ii = 0; ii<pad_count; ++ii )
+ {
+ D_PAD* pad = m_pcb->GetPad( ii );
+
+ /* No problem if pads are on an other layer,
+ * But if a drill hole exists (a pad on a single layer can have a hole!)
+ * we must test the hole
+ */
+ if( !( pad->GetLayerSet() & layerMask ).any() )
+ {
+ /* We must test the pad hole. In order to use the function
+ * checkClearanceSegmToPad(),a pseudo pad is used, with a shape and a
+ * size like the hole
+ */
+ if( pad->GetDrillSize().x == 0 )
+ continue;
+
+ dummypad.SetSize( pad->GetDrillSize() );
+ dummypad.SetPosition( pad->GetPosition() );
+ dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
+ PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
+ dummypad.SetOrientation( pad->GetOrientation() );
+
+ m_padToTestPos = dummypad.GetPosition() - origin;
+
+ if( !checkClearanceSegmToPad( &dummypad, aRefSeg->GetWidth(),
+ netclass->GetClearance() ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, pad,
+ DRCE_TRACK_NEAR_THROUGH_HOLE, m_currentMarker );
+ return false;
+ }
+
+ continue;
+ }
+
+ // The pad must be in a net (i.e pt_pad->GetNet() != 0 )
+ // but no problem if the pad netcode is the current netcode (same net)
+ if( pad->GetNetCode() // the pad must be connected
+ && net_code_ref == pad->GetNetCode() ) // the pad net is the same as current net -> Ok
+ continue;
+
+ // DRC for the pad
+ shape_pos = pad->ShapePos();
+ m_padToTestPos = shape_pos - origin;
+
+ if( !checkClearanceSegmToPad( pad, aRefSeg->GetWidth(), aRefSeg->GetClearance( pad ) ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, pad,
+ DRCE_TRACK_NEAR_PAD, m_currentMarker );
+ return false;
+ }
+ }
+ }
+
+ /***********************************************/
+ /* Phase 2: test DRC with other track segments */
+ /***********************************************/
+
+ // At this point the reference segment is the X axis
+
+ // Test the reference segment with other track segments
+ wxPoint segStartPoint;
+ wxPoint segEndPoint;
+ for( track = aStart; track; track = track->Next() )
+ {
+ // No problem if segments have the same net code:
+ if( net_code_ref == track->GetNetCode() )
+ continue;
+
+ // No problem if segment are on different layers :
+ if( !( layerMask & track->GetLayerSet() ).any() )
+ continue;
+
+ // the minimum distance = clearance plus half the reference track
+ // width plus half the other track's width
+ int w_dist = aRefSeg->GetClearance( track );
+ w_dist += (aRefSeg->GetWidth() + track->GetWidth()) / 2;
+
+ // If the reference segment is a via, we test it here
+ if( aRefSeg->Type() == PCB_VIA_T )
+ {
+ delta = track->GetEnd() - track->GetStart();
+ segStartPoint = aRefSeg->GetStart() - track->GetStart();
+
+ if( track->Type() == PCB_VIA_T )
+ {
+ // Test distance between two vias, i.e. two circles, trivial case
+ if( EuclideanNorm( segStartPoint ) < w_dist )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_VIA_NEAR_VIA, m_currentMarker );
+ return false;
+ }
+ }
+ else // test via to segment
+ {
+ // Compute l'angle du segment a tester;
+ double angle = ArcTangente( delta.y, delta.x );
+
+ // Compute new coordinates ( the segment become horizontal)
+ RotatePoint( &delta, angle );
+ RotatePoint( &segStartPoint, angle );
+
+ if( !checkMarginToCircle( segStartPoint, w_dist, delta.x ) )
+ {
+ m_currentMarker = fillMarker( track, aRefSeg,
+ DRCE_VIA_NEAR_TRACK, m_currentMarker );
+ return false;
+ }
+ }
+
+ continue;
+ }
+
+ /* We compute segStartPoint, segEndPoint = starting and ending point coordinates for
+ * the segment to test in the new axis : the new X axis is the
+ * reference segment. We must translate and rotate the segment to test
+ */
+ segStartPoint = track->GetStart() - origin;
+ segEndPoint = track->GetEnd() - origin;
+ RotatePoint( &segStartPoint, m_segmAngle );
+ RotatePoint( &segEndPoint, m_segmAngle );
+ if( track->Type() == PCB_VIA_T )
+ {
+ if( checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
+ continue;
+
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_TRACK_NEAR_VIA, m_currentMarker );
+ return false;
+ }
+
+ /* We have changed axis:
+ * the reference segment is Horizontal.
+ * 3 cases : the segment to test can be parallel, perpendicular or have an other direction
+ */
+ if( segStartPoint.y == segEndPoint.y ) // parallel segments
+ {
+ if( abs( segStartPoint.y ) >= w_dist )
+ continue;
+
+ // Ensure segStartPoint.x <= segEndPoint.x
+ if( segStartPoint.x > segEndPoint.x )
+ std::swap( segStartPoint.x, segEndPoint.x );
+
+ if( segStartPoint.x > (-w_dist) && segStartPoint.x < (m_segmLength + w_dist) ) /* possible error drc */
+ {
+ // the start point is inside the reference range
+ // X........
+ // O--REF--+
+
+ // Fine test : we consider the rounded shape of each end of the track segment:
+ if( segStartPoint.x >= 0 && segStartPoint.x <= m_segmLength )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_TRACK_ENDS1, m_currentMarker );
+ return false;
+ }
+
+ if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_TRACK_ENDS2, m_currentMarker );
+ return false;
+ }
+ }
+
+ if( segEndPoint.x > (-w_dist) && segEndPoint.x < (m_segmLength + w_dist) )
+ {
+ // the end point is inside the reference range
+ // .....X
+ // O--REF--+
+ // Fine test : we consider the rounded shape of the ends
+ if( segEndPoint.x >= 0 && segEndPoint.x <= m_segmLength )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_TRACK_ENDS3, m_currentMarker );
+ return false;
+ }
+
+ if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_TRACK_ENDS4, m_currentMarker );
+ return false;
+ }
+ }
+
+ if( segStartPoint.x <=0 && segEndPoint.x >= 0 )
+ {
+ // the segment straddles the reference range (this actually only
+ // checks if it straddles the origin, because the other cases where already
+ // handled)
+ // X.............X
+ // O--REF--+
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_TRACK_SEGMENTS_TOO_CLOSE, m_currentMarker );
+ return false;
+ }
+ }
+ else if( segStartPoint.x == segEndPoint.x ) // perpendicular segments
+ {
+ if( ( segStartPoint.x <= (-w_dist) ) || ( segStartPoint.x >= (m_segmLength + w_dist) ) )
+ continue;
+
+ // Test if segments are crossing
+ if( segStartPoint.y > segEndPoint.y )
+ std::swap( segStartPoint.y, segEndPoint.y );
+
+ if( (segStartPoint.y < 0) && (segEndPoint.y > 0) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_TRACKS_CROSSING, m_currentMarker );
+ return false;
+ }
+
+ // At this point the drc error is due to an end near a reference segm end
+ if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_ENDS_PROBLEM1, m_currentMarker );
+ return false;
+ }
+ if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_ENDS_PROBLEM2, m_currentMarker );
+ return false;
+ }
+ }
+ else // segments quelconques entre eux
+ {
+ // calcul de la "surface de securite du segment de reference
+ // First rought 'and fast) test : the track segment is like a rectangle
+
+ m_xcliplo = m_ycliplo = -w_dist;
+ m_xcliphi = m_segmLength + w_dist;
+ m_ycliphi = w_dist;
+
+ // A fine test is needed because a serment is not exactly a
+ // rectangle, it has rounded ends
+ if( !checkLine( segStartPoint, segEndPoint ) )
+ {
+ /* 2eme passe : the track has rounded ends.
+ * we must a fine test for each rounded end and the
+ * rectangular zone
+ */
+
+ m_xcliplo = 0;
+ m_xcliphi = m_segmLength;
+
+ if( !checkLine( segStartPoint, segEndPoint ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_ENDS_PROBLEM3, m_currentMarker );
+ return false;
+ }
+ else // The drc error is due to the starting or the ending point of the reference segment
+ {
+ // Test the starting and the ending point
+ segStartPoint = track->GetStart();
+ segEndPoint = track->GetEnd();
+ delta = segEndPoint - segStartPoint;
+
+ // Compute the segment orientation (angle) en 0,1 degre
+ double angle = ArcTangente( delta.y, delta.x );
+
+ // Compute the segment lenght: delta.x = lenght after rotation
+ RotatePoint( &delta, angle );
+
+ /* Comute the reference segment coordinates relatives to a
+ * X axis = current tested segment
+ */
+ wxPoint relStartPos = aRefSeg->GetStart() - segStartPoint;
+ wxPoint relEndPos = aRefSeg->GetEnd() - segStartPoint;
+
+ RotatePoint( &relStartPos, angle );
+ RotatePoint( &relEndPos, angle );
+
+ if( !checkMarginToCircle( relStartPos, w_dist, delta.x ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_ENDS_PROBLEM4, m_currentMarker );
+ return false;
+ }
+
+ if( !checkMarginToCircle( relEndPos, w_dist, delta.x ) )
+ {
+ m_currentMarker = fillMarker( aRefSeg, track,
+ DRCE_ENDS_PROBLEM5, m_currentMarker );
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+
+/* test DRC between 2 pads.
+ * this function can be also used to test DRC between a pas and a hole,
+ * because a hole is like a round pad.
+ */
+bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad )
+{
+ int dist;
+
+ double pad_angle;
+
+ // Get the clearance between the 2 pads. this is the min distance between aRefPad and aPad
+ int dist_min = aRefPad->GetClearance( aPad );
+
+ // relativePadPos is the aPad shape position relative to the aRefPad shape position
+ wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos();
+
+ dist = KiROUND( EuclideanNorm( relativePadPos ) );
+
+ // Quick test: Clearance is OK if the bounding circles are further away than "dist_min"
+ if( (dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius()) >= dist_min )
+ return true;
+
+ /* Here, pads are near and DRC depend on the pad shapes
+ * We must compare distance using a fine shape analysis
+ * Because a circle or oval shape is the easier shape to test, try to have
+ * aRefPad shape type = PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
+ * if aRefPad = TRAP. and aPad = RECT, also swap pads
+ * Swap aRefPad and aPad if needed
+ */
+ bool swap_pads;
+ swap_pads = false;
+
+ // swap pads to make comparisons easier
+ // priority is aRefPad = ROUND then OVAL then RECT then other
+ if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE )
+ {
+ // pad ref shape is here oval, rect or trapezoid
+ switch( aPad->GetShape() )
+ {
+ case PAD_SHAPE_CIRCLE:
+ swap_pads = true;
+ break;
+
+ case PAD_SHAPE_OVAL:
+ swap_pads = true;
+ break;
+
+ case PAD_SHAPE_RECT:
+ if( aRefPad->GetShape() != PAD_SHAPE_OVAL )
+ swap_pads = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if( swap_pads )
+ {
+ std::swap( aRefPad, aPad );
+ relativePadPos = -relativePadPos;
+ }
+
+ /* Because pad exchange, aRefPad shape is PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL,
+ * if one of the 2 pads was a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
+ * Therefore, if aRefPad is a PAD_SHAPE_SHAPE_RECT or a PAD_SHAPE_TRAPEZOID,
+ * aPad is also a PAD_SHAPE_RECT or a PAD_SHAPE_TRAPEZOID
+ */
+ bool diag = true;
+
+ switch( aRefPad->GetShape() )
+ {
+ case PAD_SHAPE_CIRCLE:
+
+ /* One can use checkClearanceSegmToPad to test clearance
+ * aRefPad is like a track segment with a null length and a witdth = GetSize().x
+ */
+ m_segmLength = 0;
+ m_segmAngle = 0;
+
+ m_segmEnd.x = m_segmEnd.y = 0;
+
+ m_padToTestPos = relativePadPos;
+ diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min );
+ break;
+
+ case PAD_SHAPE_RECT:
+ // pad_angle = pad orient relative to the aRefPad orient
+ pad_angle = aRefPad->GetOrientation() + aPad->GetOrientation();
+ NORMALIZE_ANGLE_POS( pad_angle );
+
+ if( aPad->GetShape() == PAD_SHAPE_RECT )
+ {
+ wxSize size = aPad->GetSize();
+
+ // The trivial case is if both rects are rotated by multiple of 90 deg
+ // Most of time this is the case, and the test is fast
+ if( ( (aRefPad->GetOrientation() == 0) || (aRefPad->GetOrientation() == 900)
+ || (aRefPad->GetOrientation() == 1800) || (aRefPad->GetOrientation() == 2700) )
+ && ( (aPad->GetOrientation() == 0) || (aPad->GetOrientation() == 900) || (aPad->GetOrientation() == 1800)
+ || (aPad->GetOrientation() == 2700) ) )
+ {
+ if( (pad_angle == 900) || (pad_angle == 2700) )
+ {
+ std::swap( size.x, size.y );
+ }
+
+ // Test DRC:
+ diag = false;
+ RotatePoint( &relativePadPos, aRefPad->GetOrientation() );
+ relativePadPos.x = std::abs( relativePadPos.x );
+ relativePadPos.y = std::abs( relativePadPos.y );
+
+ if( ( relativePadPos.x - ( (size.x + aRefPad->GetSize().x) / 2 ) ) >= dist_min )
+ diag = true;
+
+ if( ( relativePadPos.y - ( (size.y + aRefPad->GetSize().y) / 2 ) ) >= dist_min )
+ diag = true;
+ }
+ else // at least one pad has any other orient. Test is more tricky
+ { // Use the trapezoid2trapezoidDRC which also compare 2 rectangles with any orientation
+ wxPoint polyref[4]; // Shape of aRefPad
+ wxPoint polycompare[4]; // Shape of aPad
+ aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
+ aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
+
+ // Move aPad shape to relativePadPos
+ for( int ii = 0; ii < 4; ii++ )
+ polycompare[ii] += relativePadPos;
+
+ // And now test polygons:
+ if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) )
+ diag = false;
+ }
+ }
+ else if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID )
+ {
+ wxPoint polyref[4]; // Shape of aRefPad
+ wxPoint polycompare[4]; // Shape of aPad
+ aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
+ aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
+
+ // Move aPad shape to relativePadPos
+ for( int ii = 0; ii < 4; ii++ )
+ polycompare[ii] += relativePadPos;
+
+ // And now test polygons:
+ if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) )
+ diag = false;
+ }
+ else
+ {
+ // Should not occur, because aPad and aRefPad are swapped
+ // to have only aPad shape RECT or TRAP and aRefPad shape TRAP or RECT.
+ wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad ref RECT @ %d, %d to pad shape %d @ %d, %d"),
+ aRefPad->GetPosition().x, aRefPad->GetPosition().y,
+ aPad->GetShape(), aPad->GetPosition().x, aPad->GetPosition().y );
+ }
+ break;
+
+ case PAD_SHAPE_OVAL: /* an oval pad is like a track segment */
+ {
+ /* Create a track segment with same dimensions as the oval aRefPad
+ * and use checkClearanceSegmToPad function to test aPad to aRefPad clearance
+ */
+ int segm_width;
+ m_segmAngle = aRefPad->GetOrientation(); // Segment orient.
+
+ if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment
+ {
+ segm_width = aRefPad->GetSize().y;
+ m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y;
+ }
+ else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg
+ {
+ segm_width = aRefPad->GetSize().x;
+ m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x;
+ m_segmAngle += 900;
+ }
+
+ /* the start point must be 0,0 and currently relativePadPos
+ * is relative the center of pad coordinate */
+ wxPoint segstart;
+ segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment
+
+ RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment
+ // Calculate segment end position relative to the segment origin
+ m_segmEnd.x = -2 * segstart.x;
+ m_segmEnd.y = -2 * segstart.y;
+
+ // Recalculate the equivalent segment angle in 0,1 degrees
+ // to prepare a call to checkClearanceSegmToPad()
+ m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x );
+
+ // move pad position relative to the segment origin
+ m_padToTestPos = relativePadPos - segstart;
+
+ // Use segment to pad check to test the second pad:
+ diag = checkClearanceSegmToPad( aPad, segm_width, dist_min );
+ break;
+ }
+
+ case PAD_SHAPE_TRAPEZOID:
+
+ // at this point, aPad is also a trapezoid, because all other shapes
+ // have priority, and are already tested
+ wxASSERT( aPad->GetShape() == PAD_SHAPE_TRAPEZOID );
+ {
+ wxPoint polyref[4]; // Shape of aRefPad
+ wxPoint polycompare[4]; // Shape of aPad
+ aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
+ aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
+
+ // Move aPad shape to relativePadPos
+ for( int ii = 0; ii < 4; ii++ )
+ polycompare[ii] += relativePadPos;
+
+ // And now test polygons:
+ if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) )
+ diag = false;
+ }
+ break;
+
+ default:
+ wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape" ) );
+ break;
+ }
+
+ return diag;
+}
+
+
+/* test if distance between a segment is > aMinDist
+ * segment start point is assumed in (0,0) and segment start point in m_segmEnd
+ * and its orientation is m_segmAngle (m_segmAngle must be already initialized)
+ * and have aSegmentWidth.
+ */
+bool DRC::checkClearanceSegmToPad( const D_PAD* aPad, int aSegmentWidth, int aMinDist )
+{
+ wxSize padHalfsize; // half dimension of the pad
+ wxPoint startPoint, endPoint;
+
+ int segmHalfWidth = aSegmentWidth / 2;
+ int distToLine = segmHalfWidth + aMinDist;
+
+ padHalfsize.x = aPad->GetSize().x >> 1;
+ padHalfsize.y = aPad->GetSize().y >> 1;
+
+ if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID ) // The size is bigger, due to GetDelta() extra size
+ {
+ padHalfsize.x += std::abs(aPad->GetDelta().y) / 2; // Remember: GetDelta().y is the GetSize().x change
+ padHalfsize.y += std::abs(aPad->GetDelta().x) / 2; // Remember: GetDelta().x is the GetSize().y change
+ }
+
+ if( aPad->GetShape() == PAD_SHAPE_CIRCLE )
+ {
+ /* Easy case: just test the distance between segment and pad centre
+ * calculate pad coordinates in the X,Y axis with X axis = segment to test
+ */
+ RotatePoint( &m_padToTestPos, m_segmAngle );
+ return checkMarginToCircle( m_padToTestPos, distToLine + padHalfsize.x, m_segmLength );
+ }
+
+ /* calculate the bounding box of the pad, including the clearance and the segment width
+ * if the line from 0 to m_segmEnd does not intersect this bounding box,
+ * the clearance is always OK
+ * But if intersect, a better analysis of the pad shape must be done.
+ */
+ m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
+ m_ycliplo = m_padToTestPos.y - distToLine - padHalfsize.y;
+ m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
+ m_ycliphi = m_padToTestPos.y + distToLine + padHalfsize.y;
+
+ startPoint.x = startPoint.y = 0;
+ endPoint = m_segmEnd;
+
+ double orient = aPad->GetOrientation();
+
+ RotatePoint( &startPoint, m_padToTestPos, -orient );
+ RotatePoint( &endPoint, m_padToTestPos, -orient );
+
+ if( checkLine( startPoint, endPoint ) )
+ return true;
+
+ /* segment intersects the bounding box. But there is not always a DRC error.
+ * A fine analysis of the pad shape must be done.
+ */
+ switch( aPad->GetShape() )
+ {
+ default:
+ return false;
+
+ case PAD_SHAPE_OVAL:
+ {
+ /* an oval is a complex shape, but is a rectangle and 2 circles
+ * these 3 basic shapes are more easy to test.
+ *
+ * In calculations we are using a vertical oval shape
+ * (i.e. a vertical rounded segment)
+ * for horizontal oval shapes, swap x and y size and rotate the shape
+ */
+ if( padHalfsize.x > padHalfsize.y )
+ {
+ std::swap( padHalfsize.x, padHalfsize.y );
+ orient = AddAngles( orient, 900 );
+ }
+
+ // here, padHalfsize.x is the radius of rounded ends.
+
+ int deltay = padHalfsize.y - padHalfsize.x;
+ // here: padHalfsize.x = radius,
+ // deltay = dist between the centre pad and the centre of a rounded end
+
+ // Test the rectangular area between the two circles (the rounded ends)
+ m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
+ m_ycliplo = m_padToTestPos.y - deltay;
+ m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
+ m_ycliphi = m_padToTestPos.y + deltay;
+
+ if( !checkLine( startPoint, endPoint ) )
+ {
+ return false;
+ }
+
+ // test the first circle
+ startPoint.x = m_padToTestPos.x; // startPoint = centre of the upper circle of the oval shape
+ startPoint.y = m_padToTestPos.y + deltay;
+
+ // Calculate the actual position of the circle, given the pad orientation:
+ RotatePoint( &startPoint, m_padToTestPos, orient );
+
+ // Calculate the actual position of the circle in the new X,Y axis:
+ RotatePoint( &startPoint, m_segmAngle );
+
+ if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
+ {
+ return false;
+ }
+
+ // test the second circle
+ startPoint.x = m_padToTestPos.x; // startPoint = centre of the lower circle of the oval shape
+ startPoint.y = m_padToTestPos.y - deltay;
+ RotatePoint( &startPoint, m_padToTestPos, orient );
+ RotatePoint( &startPoint, m_segmAngle );
+
+ if( !checkMarginToCircle( startPoint, padHalfsize.x + distToLine, m_segmLength ) )
+ {
+ return false;
+ }
+ }
+ break;
+
+ case PAD_SHAPE_RECT:
+ // the area to test is a rounded rectangle.
+ // this can be done by testing 2 rectangles and 4 circles (the corners)
+
+ // Testing the first rectangle dimx + distToLine, dimy:
+ m_xcliplo = m_padToTestPos.x - padHalfsize.x - distToLine;
+ m_ycliplo = m_padToTestPos.y - padHalfsize.y;
+ m_xcliphi = m_padToTestPos.x + padHalfsize.x + distToLine;
+ m_ycliphi = m_padToTestPos.y + padHalfsize.y;
+
+ if( !checkLine( startPoint, endPoint ) )
+ return false;
+
+ // Testing the second rectangle dimx , dimy + distToLine
+ m_xcliplo = m_padToTestPos.x - padHalfsize.x;
+ m_ycliplo = m_padToTestPos.y - padHalfsize.y - distToLine;
+ m_xcliphi = m_padToTestPos.x + padHalfsize.x;
+ m_ycliphi = m_padToTestPos.y + padHalfsize.y + distToLine;
+
+ if( !checkLine( startPoint, endPoint ) )
+ return false;
+
+ // testing the 4 circles which are the clearance area of each corner:
+
+ // testing the left top corner of the rectangle
+ startPoint.x = m_padToTestPos.x - padHalfsize.x;
+ startPoint.y = m_padToTestPos.y - padHalfsize.y;
+ RotatePoint( &startPoint, m_padToTestPos, orient );
+ RotatePoint( &startPoint, m_segmAngle );
+
+ if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
+ return false;
+
+ // testing the right top corner of the rectangle
+ startPoint.x = m_padToTestPos.x + padHalfsize.x;
+ startPoint.y = m_padToTestPos.y - padHalfsize.y;
+ RotatePoint( &startPoint, m_padToTestPos, orient );
+ RotatePoint( &startPoint, m_segmAngle );
+
+ if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
+ return false;
+
+ // testing the left bottom corner of the rectangle
+ startPoint.x = m_padToTestPos.x - padHalfsize.x;
+ startPoint.y = m_padToTestPos.y + padHalfsize.y;
+ RotatePoint( &startPoint, m_padToTestPos, orient );
+ RotatePoint( &startPoint, m_segmAngle );
+
+ if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
+ return false;
+
+ // testing the right bottom corner of the rectangle
+ startPoint.x = m_padToTestPos.x + padHalfsize.x;
+ startPoint.y = m_padToTestPos.y + padHalfsize.y;
+ RotatePoint( &startPoint, m_padToTestPos, orient );
+ RotatePoint( &startPoint, m_segmAngle );
+
+ if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
+ return false;
+
+ break;
+
+ case PAD_SHAPE_TRAPEZOID:
+ {
+ wxPoint poly[4];
+ aPad->BuildPadPolygon( poly, wxSize( 0, 0 ), orient );
+
+ // Move shape to m_padToTestPos
+ for( int ii = 0; ii < 4; ii++ )
+ {
+ poly[ii] += m_padToTestPos;
+ RotatePoint( &poly[ii], m_segmAngle );
+ }
+
+ if( !trapezoid2segmentDRC( poly, wxPoint( 0, 0 ), wxPoint(m_segmLength,0), distToLine ) )
+ return false;
+ }
+ break;
+ }
+
+ return true;
+}
+
+
+/**
+ * Helper function checkMarginToCircle
+ * Check the distance between a circle (round pad, via or round end of track)
+ * and a segment. the segment is expected starting at 0,0, and on the X axis
+ * return true if distance >= aRadius
+ */
+bool DRC::checkMarginToCircle( wxPoint aCentre, int aRadius, int aLength )
+{
+ if( abs( aCentre.y ) > aRadius ) // trivial case
+ return true;
+
+ // Here, distance between aCentre and X axis is < aRadius
+ if( (aCentre.x >= -aRadius ) && ( aCentre.x <= (aLength + aRadius) ) )
+ {
+ if( (aCentre.x >= 0) && (aCentre.x <= aLength) )
+ return false; // aCentre is between the starting point and the ending point of the segm
+
+ if( aCentre.x > aLength ) // aCentre is after the ending point
+ aCentre.x -= aLength; // move aCentre to the starting point of the segment
+
+ if( EuclideanNorm( aCentre ) < aRadius )
+ // distance between aCentre and the starting point or the ending point is < aRadius
+ return false;
+ }
+
+ return true;
+}
+
+
+// Helper function used in checkLine::
+static inline int USCALE( unsigned arg, unsigned num, unsigned den )
+{
+ int ii;
+
+ ii = KiROUND( ( (double) arg * num ) / den );
+ return ii;
+}
+
+
+/** Helper function checkLine
+ * Test if a line intersects a bounding box (a rectangle)
+ * The rectangle is defined by m_xcliplo, m_ycliplo and m_xcliphi, m_ycliphi
+ * return true if the line from aSegStart to aSegEnd is outside the bounding box
+ */
+bool DRC::checkLine( wxPoint aSegStart, wxPoint aSegEnd )
+{
+#define WHEN_OUTSIDE return true
+#define WHEN_INSIDE
+ int temp;
+
+ if( aSegStart.x > aSegEnd.x )
+ std::swap( aSegStart, aSegEnd );
+
+ if( (aSegEnd.x < m_xcliplo) || (aSegStart.x > m_xcliphi) )
+ {
+ WHEN_OUTSIDE;
+ }
+
+ if( aSegStart.y < aSegEnd.y )
+ {
+ if( (aSegEnd.y < m_ycliplo) || (aSegStart.y > m_ycliphi) )
+ {
+ WHEN_OUTSIDE;
+ }
+
+ if( aSegStart.y < m_ycliplo )
+ {
+ temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegStart.y),
+ (aSegEnd.y - aSegStart.y) );
+
+ if( (aSegStart.x += temp) > m_xcliphi )
+ {
+ WHEN_OUTSIDE;
+ }
+
+ aSegStart.y = m_ycliplo;
+ WHEN_INSIDE;
+ }
+
+ if( aSegEnd.y > m_ycliphi )
+ {
+ temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegEnd.y - m_ycliphi),
+ (aSegEnd.y - aSegStart.y) );
+
+ if( (aSegEnd.x -= temp) < m_xcliplo )
+ {
+ WHEN_OUTSIDE;
+ }
+
+ aSegEnd.y = m_ycliphi;
+ WHEN_INSIDE;
+ }
+
+ if( aSegStart.x < m_xcliplo )
+ {
+ temp = USCALE( (aSegEnd.y - aSegStart.y), (m_xcliplo - aSegStart.x),
+ (aSegEnd.x - aSegStart.x) );
+ aSegStart.y += temp;
+ aSegStart.x = m_xcliplo;
+ WHEN_INSIDE;
+ }
+
+ if( aSegEnd.x > m_xcliphi )
+ {
+ temp = USCALE( (aSegEnd.y - aSegStart.y), (aSegEnd.x - m_xcliphi),
+ (aSegEnd.x - aSegStart.x) );
+ aSegEnd.y -= temp;
+ aSegEnd.x = m_xcliphi;
+ WHEN_INSIDE;
+ }
+ }
+ else
+ {
+ if( (aSegStart.y < m_ycliplo) || (aSegEnd.y > m_ycliphi) )
+ {
+ WHEN_OUTSIDE;
+ }
+
+ if( aSegStart.y > m_ycliphi )
+ {
+ temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegStart.y - m_ycliphi),
+ (aSegStart.y - aSegEnd.y) );
+
+ if( (aSegStart.x += temp) > m_xcliphi )
+ {
+ WHEN_OUTSIDE;
+ }
+
+ aSegStart.y = m_ycliphi;
+ WHEN_INSIDE;
+ }
+
+ if( aSegEnd.y < m_ycliplo )
+ {
+ temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegEnd.y),
+ (aSegStart.y - aSegEnd.y) );
+
+ if( (aSegEnd.x -= temp) < m_xcliplo )
+ {
+ WHEN_OUTSIDE;
+ }
+
+ aSegEnd.y = m_ycliplo;
+ WHEN_INSIDE;
+ }
+
+ if( aSegStart.x < m_xcliplo )
+ {
+ temp = USCALE( (aSegStart.y - aSegEnd.y), (m_xcliplo - aSegStart.x),
+ (aSegEnd.x - aSegStart.x) );
+ aSegStart.y -= temp;
+ aSegStart.x = m_xcliplo;
+ WHEN_INSIDE;
+ }
+
+ if( aSegEnd.x > m_xcliphi )
+ {
+ temp = USCALE( (aSegStart.y - aSegEnd.y), (aSegEnd.x - m_xcliphi),
+ (aSegEnd.x - aSegStart.x) );
+ aSegEnd.y += temp;
+ aSegEnd.x = m_xcliphi;
+ WHEN_INSIDE;
+ }
+ }
+
+ if( ( (aSegEnd.x + aSegStart.x) / 2 <= m_xcliphi )
+ && ( (aSegEnd.x + aSegStart.x) / 2 >= m_xcliplo ) \
+ && ( (aSegEnd.y + aSegStart.y) / 2 <= m_ycliphi )
+ && ( (aSegEnd.y + aSegStart.y) / 2 >= m_ycliplo ) )
+ {
+ return false;
+ }
+ else
+ {
+ return true;
+ }
+}